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ABSTRACT

BURMESTER CURVE AND NUMERICAL MOTION GENERATION OF
GRASHOF MECHANISMS WITH PERIMETER AND TRANSMISSION ANGLE

OPTIMIZATION IN MATHCAD

by
Peter J. Martin

An infinite number of planar four-year mechanism solutions exist for a series of prescribed

rigid-body positions. Given a set of Burmester curves or numerically-generated fixed

and moving pivot curves, sorting through the limitless number of possible mechanism

solutions to find one that ensures full link rotatibility, satisfies compactness criteria and

produces feasible transmission angles can be a daunting task. In this work, two

algorithms are developed and presented by which the user can select optimum planar

four-year motion generators (optimum with respect to Grashof criteria, mechanism

perimeter criteria and transmission angle criteria) from a set of all mechanism solutions

produced by through either Burmester curves or numerically-generated fixed and moving

curves. Both the Burmester curve-based method and the numerical fixed and moving

pivot curve-based method have been codified in MathCAD to support advanced analysis

capabilities. The examples in this work demonstrate the synthesis of optimum Grashof

crank-rocker, drag link, double-decker and triple-rocker motion generators.
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CHAPTER 1

INTRODUCTION

1.1 Background

Planar four-year mechanisms are used in numerous mechanical systems. Due to the

kinematic and design simplicity of planar four-year mechanisms, they are typically very

practical to design and incorporate in mechanical applications. The usefulness of these

mechanisms is evident in applications ranging from simple tools and furniture (see Figure

1.1) to complex industrial machinery (see Figure 1.2). Extensive work on the design,

analysis and synthesis of planar four-year mechanisms has been introduced to date.
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Achieving specified rigid-body positions is often an important consideration when

designing planar four-year mechanisms. Kinematic motion generation involves the

determination of particular mechanism variables required to approximate or precisely

achieve particular user specified rigid-body positions. The planar four-year mechanism

variables typically include the fixed and moving pivot locations, the crank, follower

and/or coupler orientations and lengths. Figure 1.3 illustrates one of the many common

uses for a planar four-year mechanism. The stamping link or the coupler in this four-year

mechanism moves through specific rigid body orientations to transfer the stamp from the

ink pad to the box. If one only has information regarding the particular rigid-body

positions required to stamp the ink pad and box, one could determine the mechanism

parameters that would achieve the rigid-body positions through the use of a kinematic

motion generation method.

Figure 1.3 Planar four-year stamping mechanism.



3

An analytical or graphical motion generation method such as Burmester curve

synthesis or a numerical motion generation method can produce solution loci for the

fixed and moving pivots for planar four-year mechanisms. In Burmester curve synthesis,

the solution loci are often called circle point and center point curves. These loci will be

called moving and fixed pivot curves, respectively in this work. Although the fixed and

moving pivot curves produced through Burmester curve synthesis and those generated

through a numerical method require unique solution methodologies, both curves

represent an infinite number of mechanical solutions for a series of prescribed rigid-body

positions. From the fixed and moving pivot curves, the user can select an indefinite

number of mechanism solutions. Although all of the mechanism solutions will achieve

the prescribed rigid-body positions, some of them may not allow full crank ratability,

produce out-of-range transmission angles or not result in a compact four-year mechanism

design.

In order to efficiently and judiciously search a set fixed and moving pivot curves

for an optimum mechanism solution, a search and selection methodology to narrow the

indefinite number of mechanism solutions to determine the optimum solution (optimum

with respect to specific design requirements and parameters) is required.

1.2 Literature Review

A great deal of research has been done in the field of mechanism synthesis and

optimization both graphically and analytically. Previous work in the area of motion

generation (rigid-body guidance) includes the work of Fixing, Honeying, Dewed and

Jiansheng [1]  considered a guidance-line rotation method for the synthesis of planar
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mechanism. Akhras and Angeles [2] presented an unconstrained nonlinear least-square

techniques used in the optimization of planar mechanisms.

Previous work in the area of path generation includes the work of Vasiliu and

Yarmou [3] considered a method to synthesize the dimensions of a planar path generator

mechanism by an approximating function which generates the trajectory shape.

Sanchez Malin and Gοnzalez [4] considered a design method where space reduction is

optimized in path synthesis mechanisms. Sancibrian, Madero, Garcia and Fernάndez [5]

developed a gradient-based optimization approach for synthesis of planar path

mechanisms. Tong and Chiang [6] produced the synthesis of planar and spherical fours-

barb path generators based on compatible equations from the geometrical relations

between the pole of the coupler and the mechanism joints. Noble and Hunt [7] presented a

method in which analytical expressions are derived and the solution to these equations

yields optimum synthesis of the planar four-year coupler curve. Chi, Yang, Yang and

Cheng [9] introduced a synthesis procedure which models the deviation of the actual path

generated by a coupler point from the desired one.

Previous work in the area of function generation includes the work of Chiang [9]

presented synthesis of four-year function generators by means of equations of three

relative poles, instead of the conventional four opposite relative poles. Rao [ 10]

considered a geometric programming method to synthesis four-year function generators.

Alizade, Novruzbekov, and Candor [11]  introduced the optimal kinematic synthesis of

mechanisms by application of the penalty function technique, and presents a new method

of finding feasible initial approximations for the mechanism parameters. Bagci [ 12]

presented a method of optimum synthesis of planar function generators, where the
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dimensions of an optimum mechanism are determined by minimizing the error in

Freudenstein's input-output displacement equation of the mechanism. Sandmen [13]

developed a method for optimizing mechanisms by means of a nonlinear goal

programming algorithm. Simionescu and Beale [ 14] presented an approach to optimum

synthesis of the planar four-year function generator using the Ackermann steering linkage

considered as an example. Bagci and Rinser [15] considered a method of optimum

synthesis of function generators mechanisms in which the derivatives of the generated

displacements along with the displacements at a discrete set of design positions are

satisfied.

Previous work in the area of synthesis and optimization for multiple mechanism

types includes the work Cabrera, Simon and Prado [ 16] introduced solution methods for

optimal synthesis of planar mechanisms by applying genetic algorithms based on

evolutionary techniques and the type of goal function. Cossalter, Doric and Passing [ 17]

developed a numerical method to optimally synthesis planar mechanisms. Krishiiamurty

and Turcic [ 18] presented optimization techniques based on the methods of nonlinear

goal programming to perform optimal synthesis of general planar mechanisms.

Cutherland and Siddall [ 19] introduced a dimensional synthesis optimization method in

which an objective function combining the contributions of kinematic structural error,

mechanical error and link length to synthesis different types of mechanisms. Vallejo,

Aviles, Hernandez and Amezua [20] used a nonlinear optimization method to synthesis

planar mechanisms of any type. Erdman [21] presented a method for the synthesis of

planar linkages by means of modeling dyads by complex numbers in several different

equation forms for three prescribed positions. Da Lido, Cossalter and Lot [22] introduced
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the use of natural coordinates for the optimal synthesis of mechanisms. Sancibrian,

Garcia, Mader and Fernandes [23] developed a approach which uses exact

differentiation to obtain madient elements to the kinematic synthesis of path generation,

function generation and rigid-body guidance in planar multibody systems. Fernέ'ndes-

Bustos, Aguirrebeitia, Aviles and Angela [24] considered the use of genetic algorithms

with a finite-element-based error function for kinematic analysis and synthesis of 1-dof

mechanisms.

Other previous work in the area of mechanism synthesis and optimisation

includes the work Alba, Declare and Gracie [25] presented a method which minimises

the error between the actual path of one or several points of the mechanism and the paths

for each of them predefined by a certain number of points for 2D and 3D mechanisms.

Share and Dave [26] introduced a method to optimise 4-bar crank-rocker mechanism by

maximising the minimum transmission angle. Lebedev [27] developed a vector method

for the synthesis of planar mechanisms. KKhare and Dave [28] described an analytical

procedure for the synthesis of the planar four-year double-decker mechanism for optimum

transmission characteristics. Sun and Waldron [29] developed graphical techniques

which allow control of the maximum transmission angles in the design positions for

mechanism synthesis. Waldron [30] presented a maphical iteration method for locating

regions of the Burmester circle-point curve which give fully rotatable cranks. Chen [31]

introduced a method for the synthesis of planar four-year double-decker mechanism by

means of closed-form equations for determining the prescribed extreme positions.
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1.3 Objectives and Scope of Work

In this work, algorithms for selecting planar four-year motion generators with respect to

Grashof conditions, mechanism perimeter constraints and transmission angle constraints

are developed and presented. The algorithms search fixed and moving pivot curves and

produce the parameters of the optimum motion generator (optimum with respect to

particular Grashof conditions, transmission angle constraints and mechanism perimeter

constraints). Two distinct algorithms have been developed and codified in MathCAD to

support advanced analysis capabilities. One algorithm incorporates fixed and moving

pivot curves generated by Burmester synthesis and the other incorporates numerically-

generated fixed and moving pivot curves. Using these algorithms, the user can determine

the parameters for planar four-year mechanisms that not only achieve a series of user-

prescribed rigid-body positions, but also satisfy Grashof constraints, minimum

mechanism perimeter and transmission angle constraints.



CHAPTER 2

MOTION GENERATION

2.1 Burmester Curve Methodology

Planar four-year mechanisms are sometimes depicted as two-line vector pairs called

dyads. The dyads for a planar four-year mechanism are illustrated in Figure 2.1. Vectors

W and Z represent the left-side dyad of the four-year mechanism and vectors W* and Z*

represent the right-side dyad. Vectors W and W* represent the crane and follower lines,

respectively. Variables m (m*), k (k*) and Ρ represent the fixed pivots, moving pivots

and coupler point, respectively.

Figure 2.1 Planar four-year mechanism dyads.

Figure 2.2 illustrates the left-side dyad in its initial position and its jth position in

an arbitrary coordinate system. The locations of coupler point Ρ in its initial position  Pj

and its jth position Pj are represented by vectors R 1 and Re , respectively. The

displacement of coupler point Ρ from Pi to Be is represented by a path displacement

8
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vector 1 where 4 = Rj - R 1 . The angular displacement of the coupler line (the rotation of

the Z vector from the initial position to the jth position) is represented by the variable α^.

The angular displacement of the crane line (the rotation of the W vector from the initial

position to the jth position) is represented by the variable β;.

Figure 2.2 Left-side dyad in its first and jth position.

In motion generation, the initial position and configuration of the planar four-year

mechanism (and subsequently, the left and right-side dyad vectors) are unenown. To

calculate vectors W and Z in Figure 2.2, Equation 2.2 is used. Equation 2.1 is the sum of

the loop containing vectors W, Z and R 1 in the first and jth positions. Equation 2.2 is a

rearranged expression of Equation 2.1 (where 4 = Red - R 1 and vectors W and Z are

factored out). Equation 2.2 is referred to as the "standard form."

Four prescribed coupler positions (i.e., j = 2, 3, 4) will result in the formation of

three closed vector loops and subsequently, three standard form equations. Equations

2.3, 2.4 and 2.5 represent the standard forms for the dyad displacements from positions 1
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to 2, 1 to 3 and 1 to 4, respectively. These three equations form a set of five unenowns

(W, Z, β2, β3,β4). User-prescribed variables include three coupler point displacements (4)

and three coupler displacement angles (αα). For four prescribed positions one "free

choice" is available to equate the number of unenowns to the number of equations. Table

2.1 depicts the possible number of unenowns and "free choices" for a given number of

coupler positions. Assuming one has prescribed a range of angles β2, a range of solutions

Given any two of the three β values, Equations 2.2-2.5 can be solved for Z and W

using Crater's rule for example. If one selects a range of /32 values, a locus of moving

pivot locations (variable k 1 in Figure 2.2) could be produced enowing k1 = R1 — Z and a

locus of the fixed pivot locations (variable m 1 in Figure 2.2) could be produced enowing

m = k 1 — W. Fixed and moving pivot curves are also called circle and center point curves,
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respectively, or more commonly, Burmester curves. Figure 2.3 illustrates a pair of

Burmester curves produced for four prescribed coupler positions. Each point on the

moving pivot curve has a corresponding fixed pivot curve point (or vice-versa). A planar

four-year motion generator can be constructed given two pairs of moving and fixed pivot

curve points (see Figure 2.3).

Figure 2.3 Burmester curve pair.

2.2 Burmester Curve Algorithm

As mentioned in the Section 2.1, it was assumed that ranges for angles β and β4 could be

determined given a prescribed range for angle β2. Equations 2.3 through 2.5 are

represented in matrix form in Equation 2.6. The second column of the coefficient matrix
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in Equation 2.6 and the right side column matrix contain the prescribed data and the first

column of the coefficient matrix contains the unenown displacement angles / and /34.

The solution to the system will only exist if the rane of the augmented matrix of the

coefficients is 2. The augmented matrix M in Equation 2.7 is formed by adding the right

Since the unenowns in Equation 2.7 are in the first column of the augment matrix

M, the determinant can be expanded about this column (see Equation 2.8). The Δ

variables represent the cofactors of the elements in the first column of Equation 2.7. In

Equations 2.9 through 2.12, the Δ variables are enown since they contain only enown

input data.
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In Equation 2.8 (also referred to as the compatibility equation), the unenowns

variables are the exponents /32, /33 and β4. Given a value or a range of values for /32, a

solution or range of solutions for variables /.33 and /34 in Equation 2.8 can be determined

either geometrically (see Figure 2.4) or calculated using the algorithm given in Equations

2.15 through 2.24 [32]. Equation 2.8 can be further simplified into Equation 2.13.



2.3 Numerical Motion Generation

Figure 2.5 illustrates a planar four-year mechanism. In this wore, line m-k is designated

as the input (or crane) while line m-k * is designated as the output (or follower) line. The

lengths of m-k and m-k * are represented by R 1 and R2, respectively. The crane and

follower lines of the planar four-year motion generator must satisfy a constant length

condition only. Given a general fixed pivot m and a moving pivot k, the constant length

condition in Equation 2.25 must be satisfied when synthesizing the crank and follower

lines of the planar four-year motion generator.
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Equation 2.26 represents the displacement of the coupler from the initial position

to the jth position. The variable P represents the position of a coupler curve point while

variable Θ represents the angular displacement of the coupler between the initial position

and jth position. Since there are five variables (Cy , ky , ma , my and R), a maximum of six
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coupler positions can be chosen, with no arbitrary choice of parameter. Given five

Equations 2.28 through 2.31 form a set of four non-linear simultaneous equations

and can be solved numerically using Newton's method for example. With Newton's

method, initial guesses of the unknown variables to be determined are required. The use

of Computer-Aided Design software could enable one to maee judicious initial guesses

for the unknown variables. Since only one of the five unenown variables can be

specified, the user is free to specify a single value or a range of values. Assuming the

latter, a range of solutions corresponding to the range for the specified variable is

calculated. For example, the user can specify a range for variable ma  and calculate m y , kX ,

CyandRfor each value ofmacspecified in the range. The end results are ranges of

solutions for the unenown variables.

Given the solution ranges for mac and my, a fixed pivot curve is formed while the

solution ranges for Cab and ky form a moving pivot curve. Figure 2.6 illustrates fixed and

moving pivot curves produced for five prescribed coupler positions using the approach

described in the previous paragraph. Each point on the fixed pivot curve has a

corresponding point on the moving pivot curve (or vice-versa). A planar four-year motion

generator can be constructed given two pairs of fixed and moving point curve points and
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is illustrated in Figure 2.6. These numerically produced fixed and moving pivot loci are

analogous to Burmester center point and circle point curves, respectively [32].



CHAPTER 3

MECHANISM SELECTION CRITERIA AND ALGORITHMS

3.1 Mechanism Selection Criteria

A planar four-year mechanism design with complete crank rotatability is often necessary.

For example, when a drive mechanism is implemented to rotate the crane link

continuously, full crank rotatability is a requirement. A planar four-year mechanism in

which one of the links can perform a full rotation relative to the other three links is

classified as a Grashof mechanism. Grashof criteria predict line ratability and are

based on the lengths of the four links as well as the inversions of the four-year lineage.

Five classifications for planar four-year Grashof mechanisms exist and are given in Table

3.1. In Table 3.1, variables, Amin, Lomax, La and Lb represent the longest link length,

shortest line length, and intermediate line lengths, respectively. With the exception of

the Grashof Triple Rocker (also called a Non-Grashof mechanism), all Grashof

mechanisms have at least one fully rotatable link.

Table 3.1 Classification of Planar Four-year Grashof Mechanisms

The Grashof inequalities are based on basic geometric triangle principles [33].

Figure 3.1 and Figure 3.2 represent two limiting positions of a crank-rocker mechanism.

By applying basic geometric principles to Figure 3.1 and Figure 3.2, Equations 2.27-2.32

18
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can be derived from the fundamental principle that the length of one side of a triangle

(hypotenuse) must be less than the sum of the lengths of the other two sides.
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Therefore the crank must be the shortest link in the four-year mechanism. If the fixed link

or mound link is the longest link in Equation 3.1 then the Grashof criteria in Equation

3.12 results.

For all possible inversions of the crank rocker mechanism Equation 3.12 holds true.

Incorporating Grashof criteria into a fixed and moving pivot curve search algorithm will

enable one to design motion generators of any Grashof mechanism classification.

Another practical characteristic in the design of planar four-year mechanisms is

that it is compact. In this work, a compact mechanism is defined as one in which the sum

of the lengths of the four linkages (crank, coupler, follower and mound) or mechanism
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perimeter is the smallest possible (see Figure 3.3). As seen in Figure 3.3, for the same

point of interest P, the perimeter of mechanism 1 is smaller than mechanism 2. A

compact mechanism generally requires less material, produces smaller workspaces, is

more structurally sound (resulting in greater load-carrying capacity) and generates larger

transmission angles (resulting in reduced joint wear) than non compact mechanisms.

The transmission angle (angle ψ in Figure 3.4) is the angle between the coupler

and the follower or output link. Transmission angles are optimally no less than 40° or

45° and no greater than 135° or 140° depending on the design of the joint and lubrication

[32]. Figure 3.4 illustrates a mechanism with an extreme transmission angle. As link 1

rotates and the transmission angle reaches extreme values the torque force transmitted
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from link 2 to link 3 is at its lowest but joint 1 sees high load bearing forces causing

excessive wear or mechanism failure. When the load bearing forces exceed the

transmitted torque the mechanism will lock and possibly break. The links in Figure 3.5

form a quadrilateral where the length of the diagonal is represented by variable Ld.

Equation 3.13 is formed using the law of cosines for the triangle formed by L1, L2 and Ld.

Figure 3.4 Planar four-year mechanism with extreme transmission angle.

Figure 3.5 Planar four-year mechanism breakdown to determine transmission angle.



23

Using Equation 3.15 the transmission angle at any instance can be calculated. The

positions of interest are the two extreme positions (when the crank link and mound link

are collinear) of the mechanism. The maximum and minimum transmission angles occur

at these positions.

3.2 Optimum Mechanism Selection Algorithms

Figure 3.6 illustrates a diamam of the two algorithms developed in this work. Fixed and

moving-pivot curves generated either by Burmester approach or numerically are the

initial input the dimensional parameters and operational parameters of the optimised

motion generator are the final output. Although both algorithms share common

procedures in blocks 2 through 4 in Figure 3.6, this section will explain the distinctions in

blocks 1 and 5 between both algorithms.
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Figure 3.6 Flow chart of mechanism design algorithms.

The first procedure in the algorithms (blocks Al and B 1 in Figure 3.6) involves

the calculation of fixed and moving pivot curves for a series of prescribed rigid-body

positions. In block B 1, the fixed and moving pivot curves are calculated numerically

using the method described in Section 2.3. In block Al, the fixed and moving point

curves are calculated algebraically using the Burmester algorithm given in Section 2.2.

Although fixed and moving pivot curves generated by the Burmester algorithm and those

generated numerically are calculated using unique quantitative methods, they all support

the concept that there is an indefinite number of mechanism solutions for a series of four
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or five rigid-body positions. In blocks Al and B1, four rigid-body displacements

represented by five distinct rigid-body positions and associated coupler displacement

angles are prescribed. The type of Grashof mechanism (i.e., crank rocker, double rocker,

etc) solution desired is also selected. The MathCAD code associated with blocks Al and

B 1 can be seen in Appendix A (Section 1) and Β (Section 1), respectively.

The second procedure in the algorithms (block 2 in Figure 3.6) involves the

calculation of every possible mechanism solution for the prescribed rigid-body positions.

These solutions include the lengths of the crank, coupler follower and ground links of

each planar four-year motion generator. By measuring the distances between all

combinations of any two moving and fixed point curve sets the link lengths of every

mechanism solution were calculated. In the example problems in this work, these

mechanism solutions are illustrated as line and surface plots. The MathCAD code

associated with blocks Α2/B2 can be seen in Appendix A (Section 2) and Β (Section 2),

respectively.

The third procedure in the algorithm (block 3 in Figure 3.6) involves the

calculation and selection of all mechanism solutions (from the solutions calculated in the

second procedures) that do not violate the user-prescribed minimum and maximum

transmission angle constraints. In block Α3/Β3, the transmission angles are calculated

over a user-prescribed crank angle range for every possible mechanism solution in the

second procedure. The MathCAD code associated with blocks Α3/Β3 can be seen in

Appendix A (Section 3) and Β (Section 3), respectively.
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The fourth procedure in the algorithm (block 4 in Figure 3.6) involves the

selection of all mechanism solutions of a particular Grashof classification from among

the possible solutions produced in the third procedure. The user specifies the particular

Grashof mechanism solution to be determined. Table 1 in Chapter 2 includes all of the

Grashof mechanism classifications and conditions. The MathCAD code associated with

blocks Α4/B4 can be seen in Appendix A (Section 4) and Β (Section 4), respectively.

The fifth procedure in the algorithm (block 5 in Figure 3.6.) involves the selection

of the mechanism solution from among the possible solutions produced in the fourth

procedure with the smallest perimeter. A minimum perimeter condition will ensure the

selection of the most compact four-year motion generator design. In general, compact

mechanisms produce smaller workspaces, are more structurally sound and generates

larger transmission angles than four-year mechanisms with larger perimeters. The

MathCAD code associated with blocks Α5/B5 can be seen in Appendix A (Section 5) and

Β (Section 5), respectively.

The sixth procedure in the algorithm (blocks A6 and Β6 in Figure 3.6) involves

the calculation of the dimensional parameters of the most compact Grashof motion

generator produced in the fifth procedure. These parameters include the fixed and

moving pivot coordinates and the driving link angles required to achieve the prescribed

rigid body positions. In block Β6, the crank displacement angles required to approximate

the prescribed rigid body positions with minimum structural error are calculated. Since

the fixed and moving loci are calculated numerically in block Β 1, a demee of structural

error will exist in the mechanism solution between the prescribed rigid body positions

and the closest approximation achieved by the synthesised motion generator. In block
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A6, the crank displacement angles required to achieve the prescribed rigid body positions

are calculated. Since the fixed and moving pivot curves calculated by the Burmester

algorithm are calculated algebraically (unlike the fixed and moving pivot loci in block

B 1) in block Al, no structural is associated with its mechanism solution. The MathCAD

code associated with blocks A6 and B6 can be seen in Appendix A (Section 6) and B

(Section 6), respectively.



CHAPTER 4

EXAMPLE PROBLEMS

4.1 Optimized Grashof Crank-Rocker Motion Generator

This example demonstrates the synthesis of a Grashof crank-rocker motion generator

with minimum perimeter and feasible transmission angles (40° <_ ψ <_ 140°) given a series

of prescribed rigid-body positions.

Table 4.1 includes the prescribed point coordinates and displacement angles for

four rigid-body positions. Given these rigid-body positions, fixed and moving pivot

curves will be produced using the Burmester method described in Section 2.2 (Block Al

in Figure 3.6 and Appendix A Section 1.1). Using the following range for variable β2:

182 = 0.05, 0.1...0.75 raid

the fixed and moving pivot curves illustrated in Figure 4.1 are produced. As the

prescribed increment for β2 decreases the number on data points for the fixed and moving

pivot curves and subsequently, the number of available four-year motion generator

solutions increases.

Table 4.1 Prescribed Rigid-body Parameters
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Figure 4.1 Fixed and moving pivot curves generated from data in Table 4.1.

From the output of Appendix A Section 1.2 (Block A2 in Figure 3.6), a plot of the

crank/follower lengths of every four-year motion generator solution in the fixed and

moving pivot curves in Figure 4.1 is produced and illustrated in Figure 4.2. The abscissa

in Figure 4.2 represents the sequentially assigned data point number and the ordinate

represents the crank/follower length. The crank/follower length is the distance between

each fixed pivot point and the corresponding moving pivot point.



Figure 4.2 Crank/follower length solutions from fixed and moving pivot curves in
Figure 4.1.

From the output of Appendix A Section 1.2 (Block A2 in Figure 3.6), surface

plots of the coupler and ground lengths of every four-year motion generator solution in the

fixed and moving pivot curves in Figure 4.1 is produced and illustrated in Figure 4.3 and

Figure 4.4, respectively. The horizontal and vertical axes in Figure 4.3 and Figure 4.4 are

identical and represent the sequentially assigned data point number and the axis normal to

the page represents the coupler length in Figure 4.3 and the ground length in Figure 4.4.

The crank/follower length is the distance between each fixed pivot point and the

corresponding moving pivot point. The coupler length is the distance between any two

moving pivot points and the ground length is the distance between any two fixed pivot

points.



Figure 4.3 Coupler length solutions from fixed and moving pivot curves in Figure 4.1.

Figure 4.4 Ground length solutions from fixed and moving pivot curves in Figure 4.1.

Given such a potentially vast number of mechanism solutions, the Burmester

curve-based optimization algorithm presented in this work enables one to select an

optimum motion generator solution with respect to Grashof criteria, mechanism

perimeter and transmission angle criteria judiciously and efficiently.

After the transmission angle calculation stage and the down selection stages

(Block A3 in Figure 3.6 and Appendix A Section 1.3), the fixed pivots, moving pivots

and crank displacement angles for the optimized motion generator selected are produced
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in block A6 (Appendix A Section 1.6). The following are the fixed pivots, moving pivots

and crank displacement angles for the optimised motion generator selected:

The displacement angles (raid) are required to achieve the prescribed rigid-body positions.

The crank link (link m-k) has a length of 0.4647 units (therefore Amin = crank =

0.4647). The mound link (LLmax) has a length of 2.7048 units. The sum of the remaining

two links (the follower link and coupler link) is 3.3312 units. According to Grashof

criteria in Table 3.1, the optimised mechanism is indeed a crank-rocker.

Figure 4.5 illustrates the optimized Grashof crank-rocker motion generator. The

maph in Figure 4.6 illustrates the transmission angles produced by the optimised Grashof

Crank-rocker motion generator. Figure 4.6 shows the transmission angle achieved by the

synthesised motion generator in Figure 4.5 and are within the min!max transmission

angle criteria (40° <_ ψ <_ 140°)



Figure 4.5 Optimized Grashof crank-rocker motion generator.
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Figure 4.6 Transmission angles produced by optimized Grashof crank-rocker motion
generator.
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4.2 Optimized Grashof Drag Link Motion Generator

This example demonstrates the synthesis of a Grashof drag link motion generator with

minimum perimeter and feasible transmission angles (40° <_ ψ <_ 140°) given a series of

prescribed rigid-body positions.

Table 4.2 includes the prescribed point coordinates and displacement angles for

four rigid-body positions. Given these rigid-body positions, fixed and moving pivot

curves will be produced using the numerical method described in Section 2.3 (Block B 1

in Figure 3.6 and Appendix B Section 1.1). Using the following range for variable ma

and initial guesses for my, Cab, ky, R 1 :

the fixed and moving pivot curves illustrated in Figure 4.7 are produced. As the

prescribed increment for mac decreases the number on data points for the fixed and

moving pivot curves and subsequently, the number of available four-year motion generator

solutions increases.

Table 4.2 Prescribed Rigid-body Parameters
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From the output of Appendix B Section 1.2 (Block B2 in Figure 3.6), a plot of the

crank/follower lengths of every four-year motion generator solution in the fixed and

moving pivot curves in Figure 4.7 is produced and illustrated in Figure 4.8. The abscissa

in Figure 4.8 represents the sequentially assigned data point number and the ordinate

represents the crank/follower length. The crank/follower length is the distance between

each fixed pivot point and the corresponding moving pivot point.

Figure 4.8 Crank/follower length solutions from fixed and moving pivot curves in
Figure 4.7.
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From the output of Appendix B Section 1.2 (Block B2 in Figure 3.6), surface

plots of the coupler and ground lengths of every four-year motion generator solution in the

fixed and moving pivot curves in Figure 4.7 is produced and illustrated in Figure 4.9 and

Figure 4.10, respectively. The horisontal and vertical axes in Figure 4.9 and Figure 4.10

are identical and represent the sequentially assigned data point number and the axis

normal to the page represents the coupler length in Figure 4.9 and the ground length in

Figure 4.10. The crank/follower length is the distance between each fixed pivot point and

the corresponding moving pivot point. The coupler length is the distance between any

two moving pivot points and the ground length is the distance between any two fixed

pivot points.

Figure 4.9 Coupler length solutions from fixed and moving pivot curves in Figure 4.7.
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Figure 4.10 Ground length solutions from fixed and moving pivot curves in Figure 4.7.

Given such a potentially vast number of mechanism solutions, the numerical

curve-based optimisation algorithm presented in this work enables one to select an

optimum motion generator solution with respect to Grashof criteria, mechanism

perimeter and transmission angle criteria judiciously and efficiently.

After the transmission angle calculation stage and the down selection stages (Block

B3 in Figure 3.6 and Appendix B Section 1.3), the fixed pivots, moving pivots and crank

displacement angles for the optimized motion generator selected are produced in block

B6 (Appendix B Section 1.6). The following are the fixed pivots, moving pivots and

crank displacement angles for the optimised motion generator selected:

m = (2.000, -1.4431), k = (3.6147, 0.9465), m* = (1.500, -0.6340), k* = (2.6912, 2.1234)

The ground link (link mom *) has a length of 0.9511 units (therefore Amine = ground

= 0.9511). The crank link (Ajax) has a length of 3.0037 units. The sum of the remaining

two links (the follower and coupler link) is 4.3801 units. According to Grashof criteria in

Table 3.1, the optimised mechanism is indeed a drag link.
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Figure 4.11 illustrates the optimised Grashof drag link motion generator. The

maph in Figure 4.12 illustrates the transmission angles produced by the optimised

Grashof drag link motion generator. Unlike the algebraic mechanism solutions

associated with Burmester curves, mechanism solutions associated with numerical-

generate fixed and moving pivot curves have a degree of structural error. Table 4.3

includes the rigid-body positions achieved by the optimised motion generator, the

calculated structural error, the associated crank angle, and the coupler angle error. Figure

4.12 shows the transmission angle achieved by the synthesized motion generator in

Figure 4.11 and are within the min/max transmission angle criteria (40° <_ ψ < 140°).
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4.3 Optimized Grashof Double Rocker Motion Generator

This example demonstrates the synthesis of a Grashof double rocker motion generator

with minimum perimeter given a series of prescribed rigid-body positions.

Table 4.4 includes the prescribed point coordinates and displacement angles for

four rigid-body positions. Given these rigid-body positions, fixed and moving pivot

curves will be produced using the numerical method described in Section 2.3 (Block B 1

in Figure 3.6 and Appendix B Section 1.1). Using the following range for variable mac

and initial guesses for my , Cab, ky , R1:



the fixed and moving pivot curves illustrated in Figure 4.13 are produced. As the

prescribed increment for m ac decreases the number on data points for the fixed and

moving pivot curves and subsequently, the number of available four-year motion generator

solutions increases.

Table 4.4 Prescribed Rigid-body Parameters

Figure 4.13 Fixed and moving pivot curves generated from data in Table 4.4.

From the output of Appendix B Section 1.2 (Block B2 in Figure 3.6), a plot of the

crank/follower lengths of every four-year motion generator solution in the fixed and

moving pivot curves in Figure 4.13 is produced and illustrated in Figure 4.14. The

abscissa in Figure 4.14 represents the sequentially assigned data point number and the
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ordinate represents the crank/follower length. The crank/follower length is the distance

between each fixed pivot point and the corresponding moving pivot point.

Figure 4.14 Crank/follower length solutions from fixed and moving pivot curves in
Figure 4.13.

From the output of Appendix B Section 1.2 (block B2 in Figure 3.6), surface plots

of the coupler and ground lengths of every four-year motion generator solution in the fixed

and moving pivot curves in Figure 4.13 is produced and illustrated in Figure 4.15 and

Figure 4.16, respectively. The horisontal and vertical axes in Figure 4.15 and Figure 4.16

are identical and represent the sequentially assigned data point number and the axis

normal to the page represents the coupler length in Figure 4.15 and the ground length in

Figure 4.16. The crank/follower length is the distance between each fixed pivot point and

the corresponding moving pivot point. The coupler length is the distance between any

two moving pivot points and the ground length is the distance between any two fixed

pivot points.
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Figure 4.15 Coupler length solutions from fixed and moving pivot curves in Figure 4.13.

Figure 4.16 Ground length solutions from fixed and moving pivot curves in Figure 4.13.

Given such a potentially vast number of mechanism solutions, the numerical

curveobased optimization algorithm presented in this work enables one to select an

optimum motion generator solution with respect to Grashof criteria, mechanism

perimeter and transmission angle criteria judiciously and efficiently.

After the transmission angle calculation stage and the down selection stages (Block

B3 in Figure 3.6 and Appendix B Section 1.3), the fixed pivots, moving pivots and crank

displacement angles for the optimized motion generator selected are produced in block
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B6 (Appendix B Section 1.6). The following are the fixed pivots, moving pivots and

crank displacement angles for the optimised motion generator selected:

The coupler link (link f f*) has a length of 0.2017 units (therefore Aj ;,, = coupler =

0.2017). The crank link (LmFax) has a length of 0.9669 units. The sum of the remaining

two links (the follower and ground link) is 1.1789 units. According to Grashof criteria in

Table 3.1, the optimized mechanism is indeed a double rocker.

Figure 4.17 illustrates the optimised Grashof double rocker motion generator.

Unlike the algebraic mechanism solutions associated with Burmester curves, mechanism

solutions associated with numerically-generated fixed and moving pivot curves have a

degree of structural error. Table 4.5 includes the rigid-body positions achieved by the

optimised motion generator, the associated crank angle and the calculated structural

error.



Table 4.5 Rigid-body Positions Achieved by the Optimised Grashof Double Rocker
Motion Generator and Structural Error
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4.4 Optimized Grashof Triple Rocker Motion Generator

This example demonstrates the synthesis of a Grashof triple rocker motion generator with

minimum perimeter and feasible transmission angles (40 _< ψ) given a series of prescribed

rigid-body positions.

Table 4.6 includes the prescribed point coordinates and displacement angles for

four rigid-body positions. Given these rigid-body positions, fixed and moving pivot

curves will be produced using the Burmester method described in Section 2.2 (Block Al

in Figure 3.6 and Appendix A Section 1.1). Using the following range for variable  β2 :

β2 = 0.05, 0.1...0.75 raid

the fixed and moving pivot curves illustrated in Figure 4.18 are produced. As the

prescribed increment for β2 decreases the number on data points for the fixed and moving

pivot curves and subsequently, the number of available four-year motion generator

solutions increases.



Table 4.6 Prescribed Rigid-body Parameters
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Figure 4.18 Fixed and moving pivot curves generated from data in Table 4.6.

From the output of Appendix A Section 1.2 (Block A2 in Figure 3.6), a plot of the

crank/follower lengths of every four-year motion generator solution in the fixed and

moving pivot curves in Figure 4.18 is produced and illustrated in Figure 4.19. The

abscissa in Figure 4.19 represents the sequentially assigned data point number and the

ordinate represents the crank/follower length. The crank/follower length is the distance

between each fixed pivot point and the corresponding moving pivot point.
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Figure 4.19 Crank/follower length solutions from fixed and moving pivot curves in
Figure 4.18.

From the output of Appendix A Section 1.2 (Block A2 in Figure 3.6), surface

plots of the coupler and ground lengths of every fourobar motion generator solution in the

fixed and moving pivot curves in Figure 4.18 is produced and illustrated in Figure 4.20

and Figure 4.21, respectively. The horisontal and vertical axes in Figure 4.20 and Figure

4.21 are identical and represent the sequentially assigned data point number and the axis

normal to the page represents the coupler length in Figure 4.20 and the ground length in

Figure 4.21. The crank/follower length is the distance between each fixed pivot point and

the corresponding moving pivot point. The coupler length is the distance between any

two moving pivot points and the ground length is the distance between any two fixed

pivot points.
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Figure 4.21 Ground length solutions from fixed and moving pivot curves in Figure 4.18.

Given such a potentially vast number of mechanism solutions, the Burmester

curve-based optimisation algorithm presented in this work enables one to select an

optimum motion generator solution with respect to Grashof criteria, mechanism

perimeter and transmission angle criteria judiciously and efficiently.
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After the transmission angle calculation stage and the down selection stages (Block

A3 in Figure 3.6 and Appendix A Section 1.3), the fixed pivots, moving pivots and crank

displacement angles for the optimised motion generator selected are produced in block

A6 (Appendix A Section 1.6). The following are the fixed pivots, moving pivots and

crank displacement angles for the optimised motion generator selected:

The displacement angles (raid) are required to achieve the prescribed rigid-body positions.

β2 = 0.55000000, ,β3 = 0.79053405, /34 = 3.38192468

The coupler link (link k-k *) has a length of 0.1044 units (therefore Amine = coupler

= 0.1044). The crank link (Ajar) has a length of 0.5239 units. The sum of the remaining

two links (the follower line and mound link) is 0.5572 units. According to Grashof

criteria in Table 3.1, the optimised mechanism is indeed a triple rocker.

Figure 4.22 illustrates the optimised Grashof triple rocker motion generator. The

maph in Figure 4.23 illustrates the transmission angles produced by the optimised

Grashof triple rocker motion generator. Figure 4.22 shows the transmission angle

achieved by the synthesised motion generator in Figure 4.22 and are within the min

transmission angle criteria (40° _< through the operation range of 158° to 317°.



Figure 4.23 Transmission angles produced by optimized Grashof triple rocker motion
generator.
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CHAPTER 5

DISCUSSION

In this work, two distinct algorithms for selecting planar four-year motion generators with

respect to Grashof conditions, mechanism perimeter constraints and transmission angle

constraints were developed and codified in MathCAD. In MathCAD, one can express

numerical values to a precision of over ten decimal places. All of the data calculated in

this work are specified to four decimal places. All calculated mechanism dimensions

(linear dimensions only, not angular) are unit less and the word "unit" is often used as a

suffix to describe them throughout the examples in this work.

Coordinate systems with Χ and Υ labels for the abscissa and ordinate,

respectively are used throughout this work. In the Burmester curve synthesis examples,

the Χ-Υ coordinate system is analogous to a Real-Imaginary coordinate system.

As written, the algorithms developed and codified in this work do not

accommodate the Grashof change point mechanism (see Table 3.1). This mechanism is

not discussed in the text either. A change point mechanism represents a theoretical

mechanism solution. In real-world engineering design, the change point mechanism is

not practical to design, implement or maintain. Although the algorithms do not

accommodate the change point mechanism, the user can configure the codified

algorithms to do so by incorporating change point mechanism conditions in Blocks Α4

and B4.
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All mechanism solutions via the numerical method contain a degree of structural

error (unlike the Burmester method which produces analytical mechanism solutions). In

this work, structural error is the average difference between the X and V-components of

the prescribed rigid-body points and those achieved by the synthesised mechanism. The

coupler angle error is the difference between the prescribed rigid displacement angle and

those. achieved by the synthesised mechanism.

Although the algorithms developed and presented in this work were codified in

MathCAD (because of availability and ease of use), the user is not necessarily limited to

MathCAD. The user can codify the algorithms presented in this work in other platforms.

Platforms such as C, C++, Mathematics, Matlab and Maple (among others) are well

suited for the computationally intense operations required in the algorithms.

For the error check procedure in Section 6 of Appendix B, a four-year

displacement analysis model presented by Suh and Radcliffe [34] is used. In this model,

the coupler angle displacement variable (labeled a by Suh and Radcliffe) is calculated

using a quadratic equation (therefore two solutions of a are calculated). After

performing the error check with both signs in the quadratic equation, the coupler angles

that produce the smaller structural error values are used in the example problems.

It is highly likely that the Grashof double rocker will violate even the most liberal

transmission angle criteria since the coupler link of the double rocker makes a complete

rotation with respect to mound. The same can possibly hold true for the triple rocker

(depending on which link is Ain ). The codified algorithms in this work allow the user to

activate or deactivate the transmission angle criteria and modify the minimum and

maximum angles required.



CHAPTER 6

CONCLUSION

For a series of prescribed rigid-body positions, an infinite number of planar four-year

mechanism solutions exist. Sorting through the unlimited number of possible mechanism

solutions to find one that ensures full link rotatibility, produces feasible transmission

angles, and is as compact as possible can be a overwhelming given a set of Burmester

curves or numerically-generated fixed and moving pivot curves. In this work, two

algorithms are developed and presented by which the user can select optimum planar

four-year motion generators (optimum with respect to Grashof criteria, mechanism

perimeter criteria and transmission angle criteria) from a set of all mechanism solutions

produced by through either Burmester curves or numerically-generated fixed and moving

curves. Both algorithms have been codified in MathCAD for enhanced analysis

capabilities and ease of use. The examples in this work demonstrate the synthesis of

compact planar, crank-rocker, drag link, double-decker and triple-rocker four bar motion

generators with feasible transmission angles.
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APPENDIX A

BURMESTER CURVE MOTION GENERATION PROGRAM IN MATHCAD

A.1 Burmester Curve Motion Generation

This Appendix contains the MathCAD code used in this work. The algorithm

incorporates fixed and moving pivot curves generated by Burmester synthesis. The

algorithm in sections A.1.1 through A.1.6 searches fixed and moving pivot curves and

produces the parameters of the optimum motion generator (optimum with respect to

particular Grashof conditions, transmission angle constraints and mechanism perimeter

constraints).

A.1.1 Generate and Input Burmester Fixed and Moving Pivot Curves

ENTER WHAT TYPE OF MECHANISM (1 for GRASHOF or 2 for NON-
GRASHOF)
Mechanism

ENTER WHICH LINK IS TO BE THE SMALLEST (3 for CRANK, 4 for
GROUND, 5 for COUPLER)
Link

FEASIBLE TRANSMISSION ANGLE CRITERIA (1 for YES or 2 for NO)
TANGLE :=

ENTER MIN AND MAX TRANSMISSION ANGLE (ADVISE 40<φ<140)
ΜΙΝ := 	 ΜΑΧ :_

PRESCRIBED RIGID-BODY POSITIONS
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δ2 := ροζ ίηt 2 - ροζ ίηt,

δ 3 := ροζ ίηt 3 - ροζ ίηt,

δ4 := point—  point

ΕΝ :=

Πα 2 :_ (angle - angle,) 180

Πα 3 := (angle - angler) 180

Πα 4 := (angle - angle,) 180

Α 2 <-

STEP :=

/e ;.« 3 -1 δ
3

\e ,α 4 -1 64

/e Ι.α2
 -y

 δ
2

ιe1 αα  1 δ /4

'e2 -1 δ2

ι e, α3-1 δ 3 ^

Α 3 —

Α 4 4 -

Α 1 —Α2 — Α 3 — Α 4

vary 0
ναr_2 ♦- 0

ναr_3Ε-0
var_4 <- 0
ναr_5 4- 0
ναr_6 ♦- 0
for β 2 Ε START, STEP..END

Δ-Δ 1 ± Δ 2 • e12

/Re(Δ, ) Ν
ΜΔ Ε-

\ Im(Δ, )^

"Re(Δ 2 )"

Im(Δ 2 ))

'Re(Δ 3 )'

ιΙm(Δ3 )/

/Re(Δ 4 )"

Im(Δ 4 )^

'Re(Δ)l

\Im(Δ))

k 1 <- 0
k 2 <--y

ΜΑ <-

ΜΔ Ε-

ΜΑ  ♦-

ΜΔ44-

START :=

bur :=



Cy := Re(C)Cx = Re(C)

(ΜΑ -ΜΑ_ΜΔ2
Θ4 +- k 1 • 2•π-k 2 •aces 	

2•ΜΑ 3 •ΜΑΚ

Ν 4 4- arg(Δ) + Θ 4 - arg(Α 4) if Re(03) = Re(04 ) + Im(04 )
/ ΜΔ3 - ΜΑΚ 4 _ ΜΑ2

Θ3 Ε- αcos 	
2•ΜΔ 4 •ΜΔ

β 3 ι- arg(Δ) + 0 3 - arg(Δ 3) if Re(03) = Re(04 ) + Im(0 4 )
e ^βzι) _ 1

+·β3(0) -y 	e►.3 	 δα ))
W - Μ ο

Ζ 4-Μ ι

R 1 ♦— point
k 1 -R 1 -Ζ
m<-k 1 -W

vary_2<- augment(var_2, C1)if var_1= 0
vary _ 34-augment(var _ 3, m) if vary _ y= 0
να_4 +- augment(var _ 4, β2) if vary _ y= 0
vary_54-augment(var _5,β4) if vary _ y= 0
vary 6 augment(var _ 6, β3) if vary _ y= 0

continue otherwise
stack(ναr _ 2, vary _ 3, var4 _ 4, vary _ 5, να _ 6)
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Μ -

eι,α2 -i' 
	

(δ2

Ι

C 	 burro,,
for i Ε 2..cols(bur) -y

C - -stack(m, bur01)
k

m +- bυrι,ι
for i Ε 2..cols(bur) -1

m Ε- stacked, burl )
m

C= m

Fixed and Moving Pivot Coordinates

mx := Re(m) my := Im(m)

Α.1.2 Calculation of All Mechanism Solutions

Number of elements in array
i := O..rows(m) -y j := O..rows(m) -y



j(kx —mxi)2 ±(Cy i —my1)2

my1 — CΥί
if i ^ jυ, 	-

LENGTH OF CRANK AND FOLLOWER

CRANS := "ν!(mx; — C; )2 + (my — Cy )2

FOLLOWER ; :_ ‚/(mx ; — Mx;  )2 + (my ; — Ay;  )2

LENGTH OF GROUND AND COUPLER

GROUND ; := . J(mx — ma )2 + (my ; — my )

COUPLER ; ; := . J(Cx — kx)2 + (1ςυ, — ky ; )2

Α.1.3 Calculation of all Mechanisms with Feasible Transmission Angles
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START :=
ANGLE :=

END :=STEP :=
for i E O..rows(COUPLER) —1

for j E O..rows(COUPLER) —1

A[ 	 max; - kA;

V ίkχί —mxi)2 ±(Cy -my 1 ) 2

Tx - Ex ;

. /(Tx ; - EV;  ) 2 + (TO;  - TO  ) 2

my1 -my

/(mx ; - ET
V;  )2 + (ma;  - mOί ) 2

Ai • ν ;

u ;  • ν ;

ANGLES ;; f— 0 otherwise

van—1-0
for i Ε O..rows(COUPLER) —1

for j Ε O..rows(COUPLER) —1

ANGLES ; ; Ε - a cos if i # j

if i ^ j

for δ Ε START, STEP • Π
..END •

180 180,

L F- ίοκουΝυω )2 + (CRANS, )2

(2 . GROUND ; ; • CRANS ; • cos(ΑΝGLES ; ; + δ))
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C

F:
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ΑΡΡΕΝDΙΧ Β

NUMERICAL MOTION GENERATION PROGRAM IN MATHCAD

B.1 Numerical Motion Generation

This Appendix contains the MathCAD code used in this work. The algorithm

incorporates fixed and moving pivot curves generated by numerically-generated fixed

and moving pivot curves. The algorithm in sections B.1.1 through Β.1.6 searches fixed

and moving pivot curves and produces the parameters of the optimum motion generator

(optimum with respect to particular Grashof conditions, transmission angle constraints

and mechanism perimeter constraints).

B.1.1 Generate and Input Numerical Fixed and Moving Pivot Curves

ENTER WHAT TYPE OF MECHANISM (1 for GRASHOF or 2 for NON-
GRASHOF)
Mechanism :=

ENTER WHICH LINK IS TO BE THE SMALLEST (3 for CRANK, 4 for
GROUND, 5 for COUPLER)
Link :=

FEASIBLE TRANSMISSION ANGLE CRITERIA (1 for YES or 2 for NO)
TANGLE

ENTER MIN AND MAX TRANSMISSION ANGLE (ADVISE 40<φ<140)
MID :=	 MAX :=

DD QΓ'Dττι ηι D Τ'Τ1'_Ώ"Ι'ν D"QΤTΤΛΧΤC
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perimeter 4- Dummy _ Perimeter if Dummy_Perimeter < perimeter
continue otherwise

augment(mx, perimeter)

Β.1.6 Optimized Motion Generator and Operating Parameters

FIXED AND MOVING PIVOTS FOR MECHANISM

67

for i E O..rows(kx) -1

Dummy _ Follower t- j(mx - kJ ; )2(my1 - my )4

array E- augment(mx , Ex, , my ; , Ay;  )
coordinates <- array if Dummy _ Follower = Ce11200
coordinates _ 1 F- array if Dummy _ Follower = Ce11202 4
continue otherwise

if Ce11200 0 < Ce11202 4
smallest F- coordinates
1 larg est F- coordinates _ 1

otherwise
smallest - coordinates 1
1 arg est 4- coordinates

stack(smallest, largest)

Ce113 :=

ERROR AND MOVING PIVOT COORDINATES

Ex := Ce11300 0 	mix := Ce11300 	kx := Ce11301 1 	kix := Ce11301

my := Cell02  4 	miy := Ce11314 	ky := Ce11303  3 	Ely := Ce11313

"max' 	 kx0 	 Γk1J'
m := my	 m1:= miry 	 k := ky 	 kly := kiy

.1 ^ 	\1 j	.1 j	1j

COUPLER POINTS
pix = pox,
ply 	 1)3'1

"Aix'

p1:= ply
\ 1 j
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Dummy _ error F- pH - Απο + ΑΒ - ρ2 1 

2 

υα-

ν +-

p 0 - a0

'(Ρο -a1)2  + (Αι -a 1 )
p 1 - a 1

J(Αο -a 1 ) 2 +(ρ1 -a 1 ) 2

A1 0 -k 0

(ριο - a0)4 + (ρ11 - k1)2
p1 1 - k 1

1Ι(Α 1ο - a1)4 + (p11 - k1)2

υ• ν

ΙυΗνΙ
ANG VAR t- a cos

AN ; AN  VAR if Dummy _ error < error; n Re(α) =
Re(α) + Im(α)
new _ p ; f- p0  if Dummy _ error < error; n Re(α) =
Re(α) + Im(α)
new _ p ; <- p, if Dummy _ error < error; n Re(α) =
Re(α) + Im(α)
angle ; - θ if Dummy_error < error; n Re(α) = Re(α) + Im(α)
error 4- Dummy _ error if Dummy _ error < error ; n Re(α) =
Re(α) + Im(α)
continue otherwise



1801

π )

1801

π )

180 
π

new_p 2 ,neww_p 2 ,error2 ,j angle
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augment
180
ι

(new _ Α 3 , ηeωω _ Α 3 , error, angle .180
π

augment
180

ANG4 —α13
stack

new _ p 4 , new _ p 4 , error, ( angle

ANG5 —α14 .1801

new _p 5 ,neww_p 5 ,error5 , angle

ANG4 —α15
Π )

1801

CELL =

augment

augment
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