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ABSTRACT
BURMESTER CURVE AND NUMERICAL MOTION GENERATION OF
GRASHOF MECHANISMS WITH PERIMETER AND TRANSMISSION ANGLE
OPTIMIZATION IN MATHCAD
by
Peter J. Martin
An infinite number of planar four-bar mechanism solutions exist for a series of prescribed
rigid-body positions. Given a set of Burmester curves or numerically-generated fixed
and moving pivot curves, sorting through the limitless number of possible mechanism
solutions to find one that ensures full link rotatibility, satisfies compactness criteria and
produces feasible transmission angles can be a daunting task. In this work, two
algorithms are developed and presented by which the user can select optimum planar
four-bar motion generators (optimum with respect to Grashof criteria, mechanism
perimeter criteria and transmission angle criteria) from a set of all mechanism solutions
produced by through either Burmester curves or numerically-generated fixed and moving
curves. Both the Burmester curve-based method and the numerical fixed and moving
pivot curve-based method have been codified in MathCAD to support advanced analysis

capabilities. The examples in this work demonstrate the synthesis of optimum Grashof

crank-rocker, drag link, double-rocker and triple-rocker motion generators.
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CHAPTER 1

INTRODUCTION

1.1 Background
Planar four-bar mechanisms are used in numerous mechanical systems. Due to the
kinematic and design simplicity of planar four-bar mechanisms, they are typically very
practical to design and incorporate in mechanical applications. The usefulness of these
mechanisms is evident in applications ranging from simple tools and furniture (see Figure
1.1) to complex industrial machinery (see Figure 1.2). Extensive work on the design,

analysis and synthesis of planar four-bar mechanisms has been introduced to date.

Figure 1.1 Four-bar mechanism application in simple hand tool.

Figure 1.2 Four-bar mechanism application in front end loader.



Achieving specified rigid-body positions is often an important consideration when
designing planar four-bar mechanisms. Kinematic motion generation involves the
determination of particular mechanism variables required to approximate or precisely
achieve particular user specified rigid-body positions. The planar four-bar mechanism
variables typically include the fixed and moving pivot locations, the crank, follower
and/or coupler orientations and lengths. Figure 1.3 illustrates one of the many common
uses for a planar four-bar mechanism. The stamping link or the coupler in this four-bar
mechanism moves through specific rigid body orientations to transfer the stamp from the
ink pad to the box. If one only has information regarding the particular rigid-body
positions required to stamp the ink pad and box, one could determine the mechanism
parameters that would achieve the rigid-body positions through the use of a kinematic

motion generation method.

Box

Figure 1.3 Planar four-bar stamping mechanism.



An analytical or graphical motion generation method such as Burmester curve
synthesis or a numerical motion generation method can produce solution loci for the
fixed and moving pivots for planar four-bar mechanisms. In Burmester curve synthesis,
the solution loci are often called circle point and center point curves. These loci will be
called moving and fixed pivot curves, respectively in this work. Although the fixed and
moving pivot curves produced through Burmester curve synthesis and those generated
through a numerical method require unique solution methodologies, both curves
represent an infinite number of mechanical solutions for a series of prescribed rigid-body
positions. From the fixed and moving pivot curves, the user can select an indefinite
number of mechanism solutions. Although all of the mechanism solutions will achieve
the prescribed rigid-body positions, some of them may not allow full crank rotatability,
produce out-of-range transmission angles or not result in a compact four-bar mechanism
design.

In order to efficiently and judiciously search a set fixed and moving pivot curves
for an optimum mechanism solution, a search and selection methodology to narrow the
indefinite number of mechanism solutions to determine the optimum solution (optimum

with respect to specific design requirements and parameters) is required.

1.2 Literature Review
A great deal of research has been done in the field of mechanism synthesis and
optimization both graphically and analytically. Previous work in the area of motion
generation (rigid-body guidance) includes the work of Zhixing, Hongying, Dewei and

Jiansheng [1] considered a guidance-line rotation method for the synthesis of planar



mechanism. Akhras and Angeles [2] presented an unconstrained nonlinear least-square
techniques used in the optimization of planar mechanisms.

Previous work in the area of path generation includes the work of Vasiliu and
Yannou [3] considered a method to synthesize the dimensions of a planar path generator
mechanism by an approximating function which generates the trajectory shape.
Sanchez Marin and Gonzalez [4] considered a design method where space reduction is
optimized in path synthesis mechanisms. Sancibrian, Viadero, Garcia and Fernandez [5]
developed a gradient-based optimization approach for synthesis of planar path
mechanisms. Tong and Chiang [6] produced the synthesis of planar and spherical four-
bar path generators based on compatible equations from the geometrical relations
between the pole of the coupler and the mechanism joints. Nolle and Hunt [7] presented a
method in which analytical expressions are derived and the solution to these equations
yields optimum synthesis of the planar four-bar coupler curve. Shi, Yang, Yang and
Cheng [9] introduced a synthesis procedure which models the deviation of the actual path
generated by a coupler point from the desired one.

Previous work in the area of function generation includes the work of Chiang [9]
presented synthesis of four-bar function generators by means of equations of three
relative poles, instead of the conventional four opposite relative poles. Rao [10]
considered a geometric programming method to synthesis four-bar function generators.
Alizade, Novruzbekov, and Sandor [11] introduced the optimal kinematic synthesis of
mechanisms by application of the penalty function technique, and presents a new method
of finding feasible initial approximations for the mechanism parameters. Bagci [12]

presented a method of optimum synthesis of planar function generators, where the



dimensions of an optimum mechanism are determined by minimizing the error in
Freudenstein's input-output displacement equation of the mechanism. Sandgren [13]
developed a method for optimizing mechanisms by means of a nonlinear goal
programming algorithm. Simionescu and Beale [14] presented an approach to optimum
synthesis of the planar four-bar function generator using the Ackermann steering linkage
considered as an example. Bagci and Rieser [15] considered a method of optimum
synthesis of function generators mechanisms in which the derivatives of the generated
displacements along with the displacements at a discrete set of design positions are
satisfied.

Previous work in the area of synthesis and optimization for multiple mechanism
types includes the work Cabrera, Simon and Prado [16] introduced solution methods for
optimal synthesis of planar mechanisms by applying genetic algorithms based on
evolutionary techniques and the type of goal function. Cossalter, Doria and Pasini [17]
developed a numerical method to optimally synthesis planar mechanisms. Krishnamurty
and Turcic [18] presented optimization techniques based on the methods of nonlinear
goal programming to perform optimal synthesis of general planar mechanisms.
Sutherland and Siddall [19] introduced a dimensional synthesis optimization method in
which an objective function combining the contributions of kinematic structural error,
mechanical error and link length to synthesis different types of mechanisms. Vallejo,
Avilés, Hernandez and Amezua [20] used a nonlinear optimization method to synthesis
planar mechanisms of any type. Erdman [21] presented a method for the synthesis of
planar linkages by means of modeling dyads by complex numbers in several different

equation forms for three prescribed positions. Da Lio, Cossalter and Lot [22] introduced



the use of natural coordinates for the optimal synthesis of mechanisms. Sancibrian,
Garcia, Viadero and Fernandez [23] developed a approach which uses exact
differentiation to obtain gradient elements to the kinematic synthesis of path generation,
function generation and rigid-body guidance in planar multibody systems. Fernandez-
Bustos, Aguirrebeitia, Avilés and Angulo [24] considered the use of genetic algorithms
with a finite-element-based error function for kinematic analysis and synthesis of 1-dof
mechanisms.

Other previous work in the area of mechanism synthesis and optimization
includes the work Alba, Doblaré and Gracia [25] presented a method which minimizes
the error between the actual path of one or several points of the mechanism and the paths
for each of them predefined by a certain number of points for 2D and 3D mechanisms.
Khare and Dave [26] introduced a method to optimize 4-bar crank-rocker mechanism by
maximizing the minimum transmission angle. Lebedev [27] developed a vector method
for the synthesis of planar mechanisms. Khare and Dave [28] described an analytical
procedure for the synthesis of the planar four-bar double-rocker mechanism for optimum
transmission characteristics. Sun and Waldron [29] developed graphical techniques
which allow control of the maximum transmission angles in the design positions for
mechanism synthesis. Waldron [30] presented a graphical iteration method for locating
regions of the Burmester circle-point curve which give fully rotatable cranks. Chen [31]
introduced a method for the synthesis of planar four-bar double-rocker mechanism by

means of closed-form equations for determining the prescribed extreme positions.



1.3 Objectives and Scope of Work
In this work, algorithms for selecting planar four-bar motion generators with respect to
Grashof conditions, mechanism perimeter constraints and transmission angle constraints
are developed and presented. The algorithms search fixed and moving pivot curves and
produce the parameters of the optimum motion generator (optimum with respect to
particular Grashof conditions, transmission angle constraints and mechanism perimeter
constraints). Two distinct algorithms have been developed and codified in MathCAD to
support advanced analysis capabilities. One algorithm incorporates fixed and moving
pivot curves generated by Burmester synthesis and the other incorporates numerically-
generated fixed and moving pivot curves. Using these algorithms, the user can determine
the parameters for planar four-bar mechanisms that not only achieve a series of user-
prescribed rigid-body positions, but also satisfy Grashof constraints, minimum

mechanism perimeter and transmission angle constraints.



CHAPTER 2

MOTION GENERATION

2.1 Burmester Curve Methodology
Planar four-bar mechanisms are sometimes depicted as two-link vector pairs called
dyads. The dyads for a planar four-bar mechanism are illustrated in Figure 2.1. Vectors
W and Z represent the left-side dyad of the four-bar mechanism and vectors W* and Z*
represent the right-side dyad. Vectors W and W* represent the crank and follower links,
respectively. Variables m (m*), k (k*) and P represent the fixed pivots, moving pivots

and coupler point, respectively.

X

Figure 2.1 Planar four-bar mechanism dyads.

Figure 2.2 illustrates the left-side dyad in its initial position and its jth position in
an arbitrary coordinate system. The locations of coupler point P in its initial position P,
and its jth position P; are represented by vectors R, and R;, respectively. The

displacement of coupler point P from P to P, is represented by a path displacement



vector & where & = R; - R;. The angular displacement of the coupler link (the rotation of
the Z vector from the initial position to the jth position) is represented by the variable a;.

The angular displacement of the crank link (the rotation of the W vector from the initial

position to the jth position) is represented by the variable f;.

Figure 2.2 Left-side dyad in its first and jth position.

In motion generation, the initial position and configuration of the planar four-bar
mechanism (and subsequently, the left and right-side dyad vectors) are unknown. To
calculate vectors W and Z in Figure 2.2, Equation 2.2 is used. Equation 2.1 is the sum of
the loop containing vectors W, Z and R, in the first and jth positions. Equation 2.2 is a
rearranged expression of Equation 2.1 (where § = Rj - R, and vectors W and Z are
factored out). Equation 2.2 is referred to as the “standard form.”

Four prescribed coupler positions (i.e., j = 2, 3, 4) will result in the formation of
three closed vector loops and subsequently, three standard form equations. Equations

2.3, 2.4 and 2.5 represent the standard forms for the dyad displacements from positions 1
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to 2,1 to 3 and 1 to 4, respectively. These three equations form a set of five unknowns
(W, Z, B, B3, s). User-prescribed variables include three coupler point displacements (&)
and three coupler displacement angles (¢;). For four prescribed positions one “free
choice” is available to equate the number of unknowns to the number of equations. Table
2.1 depicts the possible number of unknowns and “free choices” for a given number of
coupler positions. Assuming one has prescribed a range of angles /5, a range of solutions

for the six unknowns can be calculated using Equations 2.3, 2.4, and 2.5.

We'+Ze" "R +R~Z-W =0 2.1)
wle? 1)+ zle" -1)=4, 22)
wle? 1)+ z(e-1)= 4, 2.3)
wle 1)+ ze-1)=0, 2.4)
wle?—1)+ z(e“-1)=0, 2.5)

Table 2.1 Maximum Number of Solutions for Unknown Dyad W (Wgre, Wim), Z (Zge,
Zim) when & and ¢ are Prescribed

Numbe.r.of con Pler Number of Number of Number of free
positions (j): . .
e equations unknowns choices
j=2,3,....n
2 2 S(W,Z, ) 3
3 4 6 (W,Z, B S) 2
4 6 TW,.Z, B B Ps) 1
> 8 8 (W.Z, B s 1 f55) 0

Given any two of the three £ values, Equations 2.2-2.5 can be solved for Z and W
using Cramer’s rule for example. If one selects a range of 3 values, a locus of moving
pivot locations (variable k; in Figure 2.2) could be produced knowing k; = R, — Z and a
locus of the fixed pivot locations (variable m, in Figure 2.2) could be produced knowing

m = k; — W. Fixed and moving pivot curves are also called circle and center point curves,
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in Equation 2.6 and the right side column matrix contain the prescribed data and the first
column of the coefficient matrix contains the unknown displacement angles £; and f;.
The solution to the system will only exist if the rank of the augmented matrix of the
coefficients is 2. The augmented matrix M in Equation 2.7 is formed by adding the right
side column and left side coefficient matrices in Equation 2.6. If the rank of the

augmented matrix is 2, its determinant is zero (Equations 2.7 and 2.8).

efr-1 %1 d,

ip ia w

e”-1 e®-1 =|d, (2.6)
ip ia Zz

e’ -1 e"-1 9J,

e-1 e=-1 ¢,
Det[M]=Det| ¢” -1 &*-1 4, |=0 Q2.7
ef—1 e™-1 o,

Since the unknowns in Equation 2.7 are in the first column of the augment matrix
M, the determinant can be expanded about this column (see Equation 2.8). The A
variables represent the cofactors of the elements in the first column of Equation 2.7. In

Equations 2.9 through 2.12, the A variables are known since they contain only known

input data.
A, e+ AP+ A e+ A =0 (2.8)
where
A =-A,—A;—A, (2.9)
ia3_l
A, =" % (2.10)
e“-1 9,
“w_1 &
A, = 2 2.11)
e*—1 4,
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e%-1 4,
e®~1 9,

2.12)

4

In Equation 2.8 (also referred to as the compatibility equation), the unknowns
variables are the exponents £, £ and £;. Given a value or a range of values for /5, a

solution or range of solutions for variables f; and S in Equation 2.8 can be determined
either geometrically (see Figure 2.4) or calculated using the algorithm given in Equations

2.15 through 2.24 [32]. Equation 2.8 can be further simplified into Equation 2.13.
Aye’ + A e =—A (2.13)
where

~A=-A—-A, e (2.14)

Figure 2.4 Geometric solution of Equations 2.2-2.5 for the unknown angles f;.
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A=A +A, e (2.15)
cosf, = o ;||AA33H|2A[—|A 2 (2.16)
sin, =|\{i-cos” 6,)) >0 where 0<0, <7 2.17)
py=argA+ 0, —arg A, (2.18)
8, =270, (2.19)
B, =argA+6, —argA, (2.20)
cosf, = |A3|2 _IA"’z —’A|2 (2.21)
2044
sin, =|\{l-cos?6,) >0 where 0<6, <7 2.22)
P, =argA+0, —argA, (2.23)
,54 =argA+0, —argA, + 7 (2.24)

2.3 Numerical Motiqn Generation
Figure 2.5 illustrates a planar four-bar mechanism. In this work, link m-k is designated
as the input (or crank) while link m -k is designated as the output (or follower) link. The
lengths of m-k and m'-k" are represented by R, and R», respectively. The crank and
follower links of the planar four-bar motion generator must satisfy a constant length
condition only. Given a general fixed pivot m and a moving pivot k, the constant length
condition in Equation 2.25 must be satisfied when synthesizing the crank and follower

links of the planar four-bar motion generator.
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coupler positions can be chosen, with no arbitrary choice of parameter. Given five
prescribed rigid-body positions, Equations 2.28 through 2.31 can be used with one

arbitrary choice of parameter.

(k,—m)' (k, —m)-R* =0 (2.28)
(k;—m) (k, ~m)-R’ =0 (2.29)
(k,—m) (k, -m)-R* =0 (2.30)
(k,—m)" (k, —m)-R*=0 (2.31)

Equations 2.28 through 2.31 form a set of four non-linear simultaneous equations
and can be solved numerically using Newton’s method for example. With Newton’s
method, initial guesses of the unknown variables to be determined are required. The use
of Computer-Aided Design software could enable one to make judicious initial guesses
for the unknown variables. Since only one of the five unknown variables can be
specified, the user is free to specify a single value or a range of values. Assuming the
latter, a range of solutions corresponding to the range for the specified variable is
calculated. For example, the user can specify a range for variable my and calculate my, &y,
ky and R for each value of my specified in the range. The end results are ranges of
solutions for the unknown variables.

Given the solution ranges for m, and my, a fixed pivot curve is formed while the
solution ranges for k, and k, form a moving pivot curve. Figure 2.6 illustrates fixed and
moving pivot curves produced for five prescribed coupler positions using the approach
described in the previous paragraph. Each point on the fixed pivot curve has a
corresponding point on the moving pivot curve (or vice-versa). A planar four-bar motion

generator can be constructed given two pairs of fixed and moving point curve points and






CHAPTER 3

MECHANISM SELECTION CRITERIA AND ALGORITHMS

3.1 Mechanism Selection Criteria

A planar four-bar mechanism design with complete crank rotatability is often necessary.
For example, when a drive mechanism is implemented to rotate the crank link
continuously, full crank rotatability is a requirement. A planar four-bar mechanism in
which one of the links can perform a full rotation relative to the other three links is
classified as a Grashof mechanism. Grashof criteria predict link rotatability and are
based on the lengths of the four links as well as the inversions of the four-bar linkage.
Five classifications for planar four-bar Grashof mechanisms exist and are given in Table
3.1. In Table 3.1, variables, Lmin, Lmax, La and Ly represent the longest link length,
shortest link length, and intermediate link lengths, respectively. With the exception of
the Grashof Triple Rocker (also called a Non-Grashof mechanism), all Grashof
mechanisms have at least one fully rotatable link.

Table 3.1 Classification of Planar Four-bar Grashof Mechanisms

Type of Mechanism | Shortest Link | Relationship between
Link Lengths
Crank rocker Crank Linax + Linin < La+ Ly
Drag link Ground Liax + Linin < La+ Ly
Double rocker Coupler Liax + Limin < La+ Ly
Change point Any Linax + Lmin = La + Ly
Triple rocker Any Lmax + Liin > La+ Ly

The Grashof inequalities are based on basic geometric triangle principles [33].
Figure 3.1 and Figure 3.2 represent two limiting positions of a crank-rocker mechanism.

By applying basic geometric principles to Figure 3.1 and Figure 3.2, Equations 2.27-2.32

18
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can be derived from the fundamental principle that the length of one side of a triangle

(hypotenuse) must be less than the sum of the lengths of the other two sides.

X

Figure 3.2 Limiting position of a crank-rocker mechanism.

Ly<L,-L+L, 3.1
L,-L <L+L, (3.2)
Ly <L+L,-L (3.3)

Ly <L+L,+L, (3.4)
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L+L,<Ly+L, (3.5)
Ly <L+ Li+L, (3.6)

Adding Equations 3.1 and 3.3 results in Equation 3.7.

Ly+L, <L,-L+L+L+L,~-L, 3.7
where

0<2L,-2L, (3.8)
or

L <L, (3.9)

Similarly, combining Equations 3.1 and 3.5 results in Equation 3.10

L <L, (3.10)
and combining Equations 3.3 and 3.5 results in Equation 3.11

L <L, (3.11)
Therefore the crank must be the shortest link in the four-bar mechanism. If the fixed link
or ground link is the longest link in Equation 3.1 then the Grashof criteria in Equation
3.12 results.

Lo+L, <L+L, (3.12)
For all possible inversions of the crank rocker mechanism Equation 3.12 holds true.
Incorporating Grashof criteria into a fixed and moving pivot curve search algorithm will
enable one to design motion generators of any Grashof mechanism classification.

Another practical characteristic in the design of planar four-bar mechanisms is

that it is compact. In this work, a compact mechanism is defined as one in which the sum

of the lengths of the four linkages (crank, coupler, follower and ground) or mechanism
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from link 2 to link 3 is at its lowest but joint 1 sees high load bearing forces causing
excessive wear or mechanism failure. When the load bearing forces exceed the
transmitted torque the mechanism will lock and possibly break. The links in Figure 3.5
form a quadrilateral where the length of the diagonal is represented by variable Lg.

Equation 3.13 is formed using the law of cosines for the triangle formed by L, L, and Lg.

Figure 3.4 Planar four-bar mechanism with extreme transmission angle.

L
L3

L

Figure 3.5 Planar four-bar mechanism breakdown to determine transmission angle.
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Li=L+L-2L, L, cosb, (3.13)
Using the triangle L3, L, and Lq and the law of cosines result in Equations 3.14 and 3.15.
L =L+1;-2L,L,cos¢ (3.14)

or

(3.15)

Using Equation 3.15 the transmission angle at any instance can be calculated. The
positions of interest are the two extreme positions (when the crank link and ground link
are colinear) of the mechanism. The maximum and minimum transmission angles occur

at these positions.

3.2 Optimum Mechanism Selection Algorithms
Figure 3.6 illustrates a diagram of the two algorithms developed in this work. Fixed and
moving-pivot curves generated either by Burmester approach or numerically are the
initial input the dimensional parameters and operational parameters of the optimized
motion generator are the final output. Although both algorithms share common
procedures in blocks 2 through 4 in Figure 3.6, this section will explain the distinctions in

blocks 1 and 5 between both algorithms.



Al: Generate & Input
Burmester Fixed and Moving
Pivot Curves
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B1: Generate & Input
Numerical Fixed and Moving
Pivot Curves

y

A2/B2: Calculate all
Mechanism Solutions

A3/B3: Down select all
Mechanism Solutions with
Feasible Transmission Angles

y

A4/B4: Down select all
Mechanism Solutions of
Particular Grashof Type

A5/B5: Down select Minimum
Perimeter Solution

y

A6: Output Optimized Motion
Generator and Operating
Parameters

Figure 3.6 Flow chart of mechanism design algorithms.

y

B6: Output Optimized Motion
Generator, Operating
Parameters and Structural Error

The first procedure in the algorithms (blocks Al and B1 in Figure 3.6) involves

the calculation of fixed and moving pivot curves for a series of prescribed rigid-body

positions. In block B1, the fixed and moving pivot curves are calculated numerically

using the method described in Section 2.3. In block Al, the fixed and moving point

curves are calculated algebraically using the Burmester algorithm given in Section 2.2.

Although fixed and moving pivot curves generated by the Burmester algorithm and those

generated numerically are calculated using unique quantitative methods, they all support

the concept that there is an indefinite number of mechanism solutions for a series of four
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or five rigid-body positions. In blocks Al and BI, four rigid-body displacements
represented by five distinct rigid-body positions and associated coupler displacement
angles are prescribed. The type of Grashof mechanism (i.e., crank rocker, double rocker,
etc) solution desired is also selected. The MathCAD code associated with blocks Al and
B1 can be seen in Appendix A (Section 1) and B (Section 1), respectively.

The second procedure in the algorithms (block 2 in Figure 3.6) involves the
calculation of every possible mechanism solution for the prescribed rigid-body positions.
These solutions include the lengths of the crank, coupler follower and ground links of
each planar four-bar motion generator. By measuring the distances between all
combinations of any two moving and fixed point curve sets the link lengths of every
mechanism solution were calculated. In the example problems in this work, these
mechanism solutions are illustrated as line and surface plots. The MathCAD code
associated with blocks A2/B2 can be seen in Appendix A (Section 2) and B (Section 2),
respectively.

The third procedure in the algorithm (block 3 in Figure 3.6) involves the
calculation and selection of all mechanism solutions (from the solutions calculated in the
second procedures) that do not violate the user-prescribed minimum and maximum
transmission angle constraints. In block A3/B3, the transmission angles are calculated
over a user-prescribed crank angle range for every possible mechanism solution in the
second procedure. The MathCAD code associated with blocks A3/B3 can be seen in

Appendix A (Section 3) and B (Section 3), respectively.
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The fourth procedure in the algorithm (block 4 in Figure 3.6) involves the
selection of all mechanism solutions of a particular Grashof classification from among
the possible solutions produced in the third procedure. The user specifies the particular
Grashof mechanism solution to be determined. Table 1 in Chapter 2 includes all of the
Grashof mechanism classifications and conditions. The MathCAD code associated with
blocks A4/B4 can be seen in Appendix A (Section 4) and B (Section 4), respectively.

The fifth procedure in the algorithm (block 5 in Figure 3.6.) involves the selection
of the mechanism solution from among the possible solutions produced in the fourth
procedure with the smallest perimeter. A minimum perimeter condition will ensure the
selection of the most compact four-bar motion generator design. In general, compact
mechanisms produce smaller workspaces, are more structurally sound and generates
larger transmission angles than four-bar mechanisms with larger perimeters. The
MathCAD code associated with blocks A5/B5 can be seen in Appendix A (Section 5) and
B (Section 5), respectively.

The sixth procedure in the algorithm (blocks A6 and B6 in Figure 3.6) involves
the calculation of the dimensional parameters of the most compact Grashof motion
generator produced in the fifth procedure. These parameters include the fixed and
moving pivot coordinates and the driving link angles required to achieve the prescribed
rigid body positions. In block B6, the crank displacement angles required to approximate
the prescribed rigid body positions with minimum structural error are calculated. Since
the fixed and moving loci are calculated numerically in block B1, a degree of structural
error will exist in the mechanism solution between the prescribed rigid body positions

and the closest approximation achieved by the synthesized motion generator. In block
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A6, the crank displacement angles required to achieve the prescribed rigid body positions
are calculated. Since the fixed and moving pivot curves calculated by the Burmester
algorithm are calculated algebraically (unlike the fixed and moving pivot loci in block
B1) in block Al, no structural is associated with its mechanism solution. The MathCAD
code associated with blocks A6 and B6 can be seen in Appendix A (Section 6) and B

(Section 6), respectively.



CHAPTER 4

EXAMPLE PROBLEMS

4.1 Optimized Grashof Crank-Rocker Motion Generator
This example demonstrates the synthesis of a Grashof crank-rocker motion generator
with minimum perimeter and feasible transmission angles (40° < ¢ < 140°) given a series
of prescribed rigid-body positions.

Table 4.1 includes the prescribed point coordinates and displacement angles for
four rigid-body positions. Given these rigid-body positions, fixed and moving pivot
curves will be produced using the Burmester method described in Section 2.2 (Block Al
in Figure 3.6 and Appendix A Section 1.1). Using the following range for variable f,:

$>=0.05,0.1...0.75 rad
the fixed and moving pivot curves illustrated in Figure 4.1 are produced. As the
prescribed increment for 8, decreases the number on data points for the fixed and moving
pivot curves and subsequently, the number of available four-bar motion generator
solutions increases.

Table 4.1 Prescribed Rigid-body Parameters

Rigid-Body Positions

P & @&
1 1.4159, 1.9161 0 0
2 1.6345, 1.7778 3.6292 3.6292
3 1.6356, 1.6369 13.5386 13.5386
4 0.8147,1.4919 51.8900 51.8900
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in block A6 (Appendix A Section 1.6). The following are the fixed pivots, moving pivots

and crank displacement angles for the optimized motion generator selected:

m=(2.5693, 1.2089), k = (2.3082, 0.8245), m* = (3.1379, 3.8533), k*=(2.0298, 1.4117)

The displacement angles (rad) are required to achieve the prescribed rigid-body positions.
B2 =10.6500, 53 = 1.0162, p4=4.2538

The crank link (link m-k) has a length of 0.4647 units (therefore Ly, = crank =
0.4647). The ground link (Lnax) has a length of 2.7048 units. The sum of the remaining
two links (the follower link and coupler link) is 3.3312 units. According to Grashof
criteria in Table 3.1, the optimized mechanism is indeed a crank-rocker.

Figure 4.5 illustrates the optimized Grashof crank-rocker motion generator. The
graph in Figure 4.6 illustrates the transmission angles produced by the optimized Grashof
Crank-rocker motion generator. Figure 4.6 shows the transmission angle achieved by the
synthesized motion generator in Figure 4.5 and are within the min/max transmission

angle criteria (40° < ¢ < 140°)
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4.2 Optimized Grashof Drag Link Motion Generator
This example demonstrates the synthesis of a Grashof drag link motion generator with
minimum perimeter and feasible transmission angles (40° < ¢ < 140°) given a series of
prescribed rigid-body positions.

Table 4.2 includes the prescribed point coordinates and displacement angles for
four rigid-body positions. Given these rigid-body positions, fixed and moving pivot
curves will be produced using the numerical method described in Section 2.3 (Block B1
in Figure 3.6 and Appendix B Section 1.1). Using the following range for variable m
and initial guesses for my, ky, ky, Ri:

myx=0.5,1.0,...5.0,my=-0.5, k=05, k =1.0, R, =2.0
the fixed and moving pivot curves illustrated in Figure 4.7 are produced. As the
prescribed increment for my decreases the number on data points for the fixed and
moving pivot curves and subsequently, the number of available four-bar motion generator
solutions increases.

Table 4.2 Prescribed Rigid-body Parameters

Rigid-Body Positions
P &
1 2.1949, 2.9022
2 1.5406, 3.0443 4.8100
3 0.8728, 3.0498 10.1338
4 0.2208, 2.9234 16.0919
5 -0.3897, 2.6754 22.7946
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Table 4.5 Rigid-body Positions Achieved by the Optimized Grashof Double Rocker
Motion Generator and Structural Error

Rigid-Body p Structural Crank Angle Coupler
Position Error o° Angle Error
1 0.5728, 1.4741
2 0.4088, 1.4475 0.0003 10.5000 0.0199
3 0.2496, 1.3889 0.0004 21.5000 0.0424
4 0.1041, 1.2988 0.0002 33.0000 0.0700
5 -0.0209, 1.1761 0.0010 45.5000 0.1088

4.4 Optimized Grashof Triple Rocker Motion Generator
This example demonstrates the synthesis of a Grashof triple rocker motion generator with
minimum perimeter and feasible transmission angles (40 < @) given a series of prescribed
rigid-body positions.

Table 4.6 includes the prescribed point coordinates and displacement angles for
four rigid-body positions. Given these rigid-body positions, fixed and moving pivot
curves will be produced using the Burmester method described in Section 2.2 (Block Al
in Figure 3.6 and Appendix A Section 1.1). Using the following range for variable f,:

p>=0.05,0.1...0.75 rad
the fixed and moving pivot curves illustrated in Figure 4.18 are produced. As the
prescribed increment for f, decreases the number on data points for the fixed and moving
pivot curves and subsequently, the number of available four-bar motion generator

solutions increases.
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After the transmission angle calculation stage and the down selection stages (Block
A3 in Figure 3.6 and Appendix A Section 1.3), the fixed pivots, moving pivots and crank
displacement angles for the optimized motion generator selected are produced in block
A6 (Appendix A Section 1.6). The following are the fixed pivots, moving pivots and
crank displacement angles for the optimized motion generator selected:

m = (2.4636, 1.5093), k = (2.1710, 1.0746), m* = (2.5205, 1.3781), k*=(2.2717, 1.0469)
The displacement angles (rad) are required to achieve the prescribed rigid-body positions.
PS> =0.55000000, B3 = 0.79053405, 4= 3.38192468

The coupler link (link k-k*) has a length of 0.1044 units (therefore Ly, = coupler
=0.1044). The crank link (Lmax) has a length of 0.5239 units. The sum of the remaining
two links (the follower link and ground link) is 0.5572 units. According to Grashof
criteria in Table 3.1, the optimized mechanism is indeed a triple rocker.

Figure 4.22 illustrates the optimized Grashof triple rocker motion generator. The
graph in Figure 4.23 illustrates the transmission angles produced by the optimized
Grashof triple rocker motion generator. Figure 4.22 shows the transmission angle
achieved by the synthesized motion generator in Figure 4.22 and are within the min

transmission angle criteria (40° < @) through the operation range of 158° to 317°.






CHAPTERS

DISCUSSION

In this work, two distinct algorithms for selecting planar four-bar motion generators with
respect to Grashof conditions, mechanism perimeter constraints and transmission angle
constraints were developed and codified in MathCAD. In MathCAD, one can express
numerical values to a precision of over ten decimal places. All of the data calculated in
this work are specified to four decimal places. All calculated mechanism dimensions
(linear dimensions only, not angular) are unit less and the word “unit” is often used as a
suffix to describe them throughout the examples in this work.

Coordinate systems with X and Y labels for the abscissa and ordinate,
respectively are used throughout this work. In the Burmester curve synthesis examples,
the X-Y coordinate system is analogous to a Real-Imaginary coordinate system.

As written, the algorithms developed and codified in this work do not
accommodate the Grashof change point mechanism (see Table 3.1). This mechanism is
not discussed in the text either. A change point mechanism represents a theoretical
mechanism solution. In real-world engineering design, the change point mechanism is
not practical to design, implement or maintain. Although the algorithms do not
accommodate the change point mechanism, the user can configure the codified
algorithms to do so by incorporating change point mechanism conditions in Blocks A4

and B4.

S0
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All mechanism solutions via the numerical method contain a degree of structural
error (unlike the Burmester method which produces analytical mechanism solutions). In
this work, structural error is the average difference between the X and Y-components of
the prescribed rigid-body points and those achieved by the synthesized mechanism. The
coupler angle error is the difference between the prescribed rigid displacement angle and
those-achieved by the synthesized mechanism.

Although the algorithms developed and presented in this work were codified in
MathCAD (because of availability and ease of use), the user is not necessarily limited to
MathCAD. The user can codify the algorithms presented in this work in other platforms.
Platforms such as C, C++, Mathematica, Matlab and Maple (among others) are well
suited for the computationally intense operations required in the algorithms.

For the error check procedure in Section 6 of Appendix B, a four-bar
displacement analysis model presented by Suh and Radcliffe [34] is used. In this model,
the coupler angle displacement variable (labeled « by Suh and Radcliffe) is calculated
using a quadratic equation (therefore two solutions of « are calculated). After
performing the error check with both signs in the quadratic equation, the coupler angles
that produce the smaller structural error values are used in the example problems.

It is highly likely that the Grashof double rocker will violate even the most liberal
transmission angle criteria since the coupler link of the double rocker makes a complete
rotation with respect to ground. The same can possibly hold true for the triple rocker
(depending on which link is Lyin). The codified algorithms in this work allow the user to
activate or deactivate the transmission angle criteria and modify the minimum and

maximum angles required.



CHAPTER 6

CONCLUSION

For a series of prescribed rigid-body positions, an infinite number of planar four-bar
mechanism solutions exist. Sorting through the unlimited number of possible mechanism
solutions to find one that ensures full link rotatibility, produces feasible transmission
angles, and is as compact as possible can be a overwhelming given a set of Burmester
curves or numerically-generated fixed and moving pivot curves. In this work, two
algorithms are developed and presented by which the user can select optimum planar
four-bar motion generators (optimum with respect to Grashof criteria, mechanism
perimeter criteria and transmission angle criteria) from a set of all mechanism solutions
produced by through either Burmester curves or numerically-generated fixed and moving
curves. Both algorithms have been codified in MathCAD for enhanced analysis
capabilities and ease of use. The examples in this work demonstrate the synthesis of
compact planar, crank-rocker, drag link, double-rocker and triple-rocker four bar motion

generators with feasible transmission angles.
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APPENDIX A

BURMESTER CURVE MOTION GENERATION PROGRAM IN MATHCAD

A.1 Burmester Curve Motion Generation
This Appendix contains the MathCAD code used in this work. The algorithm
incorporates fixed and moving pivot curves generated by Burmester synthesis. The
algorithm in sections A.1.1 through A.1.6 searches fixed and moving pivot curves and
produces the parameters of the optimum motion generator (optimum with respect to

particular Grashof conditions, transmission angle constraints and mechanism perimeter

constraints).

A.1.1 Generate and Input Burmester Fixed and Moving Pivot Curves

ENTER WHAT TYPE OF MECHANISM (1 for GRASHOF or 2 for NON-
GRASHOF)
Mechanism =

ENTER WHICH LINK IS TO BE THE SMALLEST (3 for CRANK, 4 for
GROUND, 5 for COUPLER)
Link =

FEASIBLE TRANSMISSION ANGLE CRITERIA (1 for YES or 2 for NO)
TANGLE =

ENTER MIN AND MAX TRANSMISSION ANGLE (ADVISE 40<¢<140)
MIN = MAX =

PRESCRIBED RIGID-BODY POSITIONS

Angle of Coupler Points on Coupler
angle, = point, =
angle, = point, =
angle, = point; =
angle, = point, :=
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a, = (angle, —angle,) S
T
a, = (angle; —angle ) - —

a, = (angle, —angle,) - T

START =

bur:=

750 d, = point,— point,

™ d, = point,— point,

™ d, :=point,— point,

STEP = END =

A -

e —1 §,
e -1 8,
- e‘:""z -1 3,
e -1 9,

A« -A, A -A,
var 1< 0

var 2«0

var 3«0

var 4«0

var 5«0

var 6«0

for B, € START,STEP. END
A A +A, e
Re(A))

Im(A,)

Re(A,)
Im(A,)
Re(A,)
Im(A;)

Re(A,)
Im(A,)

Re(A)
Im(A)
k,«0

k, «-1

A,

MA, «

MA, «

MA; «

MA, «

MA «
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MA’, - MA] - MA?
93<—k1-2-n—k2-acos[ ! : J

2-MA, -MA
By «arg(A) +6, —arg(A,) if Re(8;)=Re(8;) +Im(6;)
MA’ — MA’ — MA?
2-MA,-MA j
B, < arg(A)+6, —arg(A,) if Re(8,)=Re(8,) +Im(6,)

M(_(efwf) -1 e _1J‘1 (5}

eP® 1 e -1 3,
WM,

Z+M,

R, <« point,

k, <R, -Z

mek, -W

var 2 < augment(var 2,k,) if var_1=0
var 3 « augment(var 3,m) if var_1=0

0, <—acos(

var 4 < augment(var 4,p,) if var_1=0
var 5 < augment(var 5,B;) if var 1=0
var 6 < augment(var _6,B,) if var_1=0
continue otherwise

stack(var _2,var 3,var _4,var_5,var 6)

k= | k « bur,, m:= | m <« bur,
for i € 2..cols(bur)—1 for i € 2..cols(bur)—1
k « stack(k, bur) m <« stack(m, bur; ;)
k m

Fixed and Moving Pivot Coordinates

mx = Re(m)

my = Im(m) kx := Re(k) ky := Re(k)

A.1.2 Calculation of All Mechanism Solutions

Number of elements in array
i:=0.rows(m)-1 j=0.rows(m) -1
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LENGTH OF CRANK AND FOLLOWER

CRANK, :=/(mx; —kx, }! +(my, - ky, ]
FOLLOWER, :=/(mx, —kx, )} +(my, —ky,)

LENGTH OF GROUND AND COUPLER

GROUND, ; := |/(mx, —mx, } +(my, - my, f

COUPLER, ; := ,/(kx, — kx, J + (ky, —ky, f

A.1.3 Calculation of all Mechanisms with Feasible Transmission Angles

START = STEP = END =
ANGLE := | for i € 0..rows(COUPLER) -1

for j e 0.rows(COUPLER) -1
i mx, — kx;

J(kx, —mx;)? + (ky, —my, )’
my; — kYi

_\/(kxi —mx,)’ +(ky, —my,)’

mx; — mx;

ifi#]

‘\/(mxj _mxi)2 +(ij —in)2

i my, - my, ifi#]

_‘\/(mxj - mx,)’ + (my; —my,)’ ]

ANGLES, (—acosL B J ifi#]
|ui\'|"j|

ANGLES,; ; - 0 otherwise

var 1«0

for i € 0..rows(COUPLER) -1
for je 0..rows(COUPLER) -1

for & € START,STEP .(iJ..END - (i)
180 180

L « (GROUND, ,} +(CRANK, ) -
(2- GROUND, , - CRANK; - cos(ANGLES, , +3))




(COUPLER, ,} + (FOLLOWER, f - (L) i

trans <— acos
[ 2-COUPLER ;- FOLLOWER,

i # jA COUPLER # 0 AFOLLOWER, # 0

trans «— 0 otherwise
var_1 <« augment(var_1, trans)

ENDJ

STEP

rrows < cols(COUPLER )’
M« var_1,

ccolumns <1+ (

for i € 2..ccolumns
M « stack(M,var_lO,i)
foriel.rrows—1
Z < var_ly .coumsisi
for j e 2..ccolumns
7« stack(Z, var_1
M « augment(M, Z)

MM’
forie 0,1..(

0,ccolumns-i+j )

cols(var_1) - 1) -1
ccolumns

for je0,1 EIR
STEP

P, <M,

if TANGLE=1

if Mechanism =2
P,eM,; if

J
Re(Mi,j ) =0
P, < 0 otherwise

if Mechanism=1
P, «0if

180
P ; < M, ; otherwise

P, ; <M, otherwise
array <« (0 0 0 0)
array 1<-(0 0 0 0)

Re(M, )> (MIN &) ARe(M, )< (MAX.L

Re(M, )< [MIN-L] vRe(M,,)> (MAX-—
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for z € 0..rows(P) -1
for i € 0..rows(COUPLER) -1
for je 0..rows(COUPLER) -1
for 5e0
if COUPLER, ; # 0 AFOLLOWER; # 0

[ (COUPLER, ,f +(FOLLOWER, f |
(GROUND, ,f +(CRANK, )’ -
2-GROUND, ;- CRANK, -
[cos(ANGLES,., ,+9) J
2-COUPLER, , - FOLLOWER,

dummy <« acos

CRANK;,COUPLER, ,FOLLOWER,
GROUND, |

if dummy=P,,

array <« augment[

array 1« stack(array 1, array) if dummy=P,,

continue otherwise

array _1
CCRANK := ANGLE"” CCOUPLER := ANGLE"Y
FFOLLOWER = ANGLE"? GGROUND = ANGLE"?

Cell =

A.1.4 Down-select of Grashoff

array <« (0 0 0 0)
for i€ 0..rows(GGROUND) -1
CCRANK,;
CCOUPLER,;
FFOLLOWER,
GGROUND,;

CCRANK.,CCOUPLER,,FFOLLOWER,
GGROUND,

array < stack(array,M1) if CCRANK, = v, A Link =3

V <« sort

Ml « augment[
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array < stack(array,M1) if GGROUND, = v, A Link=4
array < stack(array,M1) if CCOUPLER, = v, ALink=5
continue otherwise
arrayl«<~(0 0 0 0)
for ie 0..rows(array) —1
array; ,
array;
V <« sort |
array; ,
array; ,
MI « augment(array, ,,array, ,,array; ,,array, ;)
arrayl « stack(arrayl,M1) if v,+v,<v, +v, A Mechanism=1
arrayl « stack(arrayl,M1) if v, +v,<v, +v, A Mechanism =2
continue otherwise
arrayl

A.1.5 Down-select of Perimeter

SOLUTION WITH SMALLEST PERIMETER

Cell2 =

perimeter «— oo

M2«(©0 0 0 0)

for iel..rows(Cell) -1

Dummy _ Perimeter « Cell, , + Cell; , + Cell, , + Cell, ;

MI « augment(Cell, ,, Cell, ,,Cell, ,,Cell; ;)

M2 « Ml if Dummy_ Perimeter < perimeter
perimeter «— Dummy Perimeter if Dummy Perimeter < perimeter

continue otherwise
augment(M2, perimeter)

A.1.6 Optimized Motion Generator and Operating Parameters

FIXED AND MOVING PIVOTS FOR MECHANISM

Cell3 =

for ie0..rows(kx) -1

Dummy _Follower « \/ (mxi -kx, )2 (myi —my; )2
array < augment(mx,,kx,,my,,ky,)



coordinates <— array if Dummy_ Follower = Cell2,
coordinates 1< array if Dummy_Follower= Cell2,

continue otherwise
solution « stack(coordinates, coordinates 1)

SOLUTION FOR ROTATION ANGLES

Cell4 =

B,

bur, conger =

value « 0
for ie0..rows(kx)-1

value <1 if mx;= Cell3,,

continue otherwise
value

Bs B,

bur, g,y = bur, e, =
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APPENDIX B

NUMERICAL MOTION GENERATION PROGRAM IN MATHCAD

B.1 Numerical Motion Generation
This Appendix contains the MathCAD code used in this work. The algorithm
incorporates fixed and moving pivot curves generated by numerically-generated fixed
and moving pivot curves. The algorithm in sections B.1.1 through B.1.6 searches fixed
and moving pivot curves and produces the parameters of the optimum motion generator
(optimum with respect to particular Grashof conditions, transmission angle constraints

and mechanism perimeter constraints).

B.1.1 Generate and Input Numerical Fixed and Moving Pivot Curves

ENTER WHAT TYPE OF MECHANISM (1 for GRASHOF or 2 for NON-
GRASHOF)
Mechanism =

ENTER WHICH LINK IS TO BE THE SMALLEST (3 for CRANK, 4 for
GROUND, 5 for COUPLER)
Link :=

FEASIBLE TRANSMISSION ANGLE CRITERIA (1 for YES or 2 for NO)
TANGLE =

ENTER MIN AND MAX TRANSMISSION ANGLE (ADVISE 40<¢<140)
MIN = MAX =

PRESCRIBED RIGID-BODY POSITIONS

px, = pX, = pX; = pX, = pX; =
Py, = Py, = PYy; = Py, = pys =
al2 = al3:= ald4 = al5 =
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DISPLACEMENT MATRICES

D12:=| sin(al2) cos(al2) py, —pX, -sin(al2) - py, - cos(ctl2)
0 0 1
cos(al3) —sin(al3) px; —px,-cos(al3)+ py, -sin(al 3)J

cos(al2) -—sin(al2) px, —px,-cos(al2)+ py, -sin(al 2)}

D13:=| sin(al3) cos(al3) py, —px, -sin(al3)—py, -cos(al3)

0 0 1

cos(al4) -—sin(al4) px, —px,-cos(ald)+ py, -sin(al4)

D14 :=| sin(al4) cos(al4) py,—px, -sin(al4)-py, - cos(al4)}
0 0 1

cos(al5) —sin(alS) px,—px,-cos(alS)+ py, -sin(al5)

D15:=| sin(al5) cos(alS) pys—pxX,-sin(alS)—py,- cos(alS)J

0 0 1
PRESCRIBED VALUES INITIAL GUESSES
end = my = kx = ky = Rl:=
i=1.end
mOx(i) =1
Given
i kx) (mx@))] [ kx) (mx(@))]

DI12-|ky |-| my ||-{D12-|ky|-| my ||-RI’=0
I 1 1)L 1 1 )]
i kx mx(i) 17 kx mx(i) ]
D13-|ky |[-| my [|-|D13-|ky|-| my ||-R1’=0
1 1)l 1 1)
i kx) (mx@@))] [ kx) (mx(@))]
D14-|ky |-| my ||-|D14-|ky |-| my ||-RI’=0
I 1 1)l 1 1 )]
kx) (mx(i))] kx) (mx())]
D15-| ky |-| my |[|-|D15-|ky|-| my ||-R1’=0
1 1 1 1

F(i) := Find(my, kx,ky,R1)



63

CALCULATED SOLUTIONS FOR FIXED AND MOVING PIVOT
COORDINATES

mx; , = mx(i) my,_, == F(i), kx; , =F(), ky,; ; =F(1),

B.1.2 Calculation of all Mechanism Solutions

Number of elements in array
i=0.end -1 j:="0.end -1

LENGTH OF CRANK AND FOLLOWER
CRANK; := /(mx, -k, f +(my, —ky, f
FOLLOWER, = /(mx, - kx, } + (my, —ky,

LENGTH OF GROUND AND COUPLER

GROUND, ; := ,/(mx, ~ mx; } +(my, - my,f
COUPLER, = /(kx; —kx,J +(ky, —ky,

B.1.3 Calculation of all Mechanisms with Feasible Transmission Angles
START = STEP = END =

ANGLE = | for i € 0..rows(COUPLER) -1
for j e 0.rows(COUPLER) -1

mx, —kx;

\/(kxi - mxi)2 +(ky, - in)2
my; — Ky;

_\/(kxi -mx,)’ +(ky, - in)2

- mx; — mx;

\/(mxj -mx,)" + (my; — my, )’
my; —my;

_\/(mxj _mxi)z +(ij —in)2 ]

ifi#]

i




ANGLES; ; «-acos By ifi#]
Jus] -]vj‘

ANGLES; ; - 0 otherwise

var 1«0
for i € 0..rows(COUPLER) -1
for je 0..rows(COUPLER) -1

180
L « (GROUND, ,f +(CRANK, )} -
(2-GROUND, - CRANK, - cos(ANGLES, ; +3 )

for 8 € START,STEP - (Tg—o)..END - (i)

(COUPLER, ,J + (FOLLOWER, f - (L)

trans < acos[

i# jACOUPLER, ; # 0 AFOLLOWER, # 0

trans <— 0 otherwise
var_1 <« augment(var_1,trans)

END
STEP

rrows < cols(COUPLER )’
M« var 1,

ccolumns « 1+ (

for i € 2..ccolumns
M « stack(M,var_lo,i)
foriel.rrows—1
Z < var_ly oumgis
for j e 2..ccolumns
Z <« stack(Z, var_1
M « augment(M, Z)

MM
forie O,l..(

0,ccolumns i+ )

ccolumns

for je0,1.. END
STEP

Pi,j <« Mi,j
if TANGLE=1
if Mechamsm 2
I P <—M

cols(var_1)- 1) _1

2-COUPLER, ;- FOLLOWER

}f
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if

array « (0
array 1«

for je
for &

array 1

CCRANK := ANGLE"?
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Re(M, )> (MIN'%]A Re(M, )< (MAX.é‘a)v

Re(M, )=0
P, < 0 otherwise

Mechanism = 1
P, « 0 if

Re(M, )< (MIN : &j vRe(M,,)> (MAX : %}

P, < M, otherwise

P, ; < M, otherwise

0 0 0)
(0 0o 0 0

for z € 0..rows(P) -1
for i € 0..rows(COUPLER) -1

0..rows(COUPLER) -1
el

if COUPLER , # 0 AFOLLOWER, # 0

[ (COUPLER, , f +(FOLLOWER ' - |
(GROUND, ,f + (CRANK, )’ -
2-GROUND, ;- CRANK; -
[cos(ANGLEsL [+3) ]
2.COUPLER, ;- FOLLOWER,

dummy <« acos

CRANK,,COUPLER
GROUND, |

if dummy=P,

i,j°

FOLLOWER;,
array < augment

array 1« stack(array 1, array) if dummy=P,
continue otherwise

CCOUPLER := ANGLE"

FFOLLOWER = ANGLE® GGROUND = ANGLE"”
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B.1.4 Down-select of Grashoff

Cell:= | array«< (0 0 0 0)
for i€ 0..rows(GGROUND) -1
CCRANK,
CCOUPLER,
FFOLLOWER.,
GGROUND;

CCRANK,,CCOUPLER,,FFOLLOWER,,
GGROUND, ]
array < stack(array,Ml) if CCRANK; = v, A Link=3
array < stack(array,M1) if GGROUND, = v, A Link =4
array < stack(array,M1) if CCOUPLER, = v, A Link =35
continue otherwise

arrayl (0 0 0 0)

for ie 0..rows(array) —1

vV < sort

M1 « augment(

array;
V <« sort T
array; ,
array; ,
MI « augment(array, ,,array; ,array; ,,array; ;)
arrayl « stack(arrayl,M1) if v, +v,;<v, +v, A Mechanism= 1
arrayl < stack(arrayl,M1) if v, +v;<v, +v, A Mechanism= 2

continue otherwise
arrayl

B.1.5 Down-select of Perimeter
SOLUTION WITH SMALLEST PERIMETER

Cell2 ;= | perimeter < o

M2«((0 0 0 0)

for ie1..rows(Cell) -1
Dummy _ Perimeter < Cell, , + Cell,, + Cell, , + Cell, ,
M1 « augment(Cell, ,, Cell, ;, Cell, ,,Cell, ;)
M2 « M1 if Dummy Perimeter < perimeter
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perimeter «— Dummy Perimeter if Dummy Perimeter < perimeter

continue otherwise
augment(M2, perimeter)

B.1.6 Optimized Motion Generator and Operating Parameters
FIXED AND MOVING PIVOTS FOR MECHANISM

Cell3:= | for ie 0..rows(kx) -1

Dummy _ Follower « \/ (mx, —kx, )2 (my, —my, )’

array < augment(mx,,kx;,my;,ky;)

coordinates «— array if Dummy_ Follower= Cell2,,
coordinates 1< array if Dummy_Follower= Cell2,,
continue otherwise

if Cell2,,<Cell2,,

smallest «— coordinates

largest «- coordinates 1

otherwise
smallest «— coordinates 1

largest < coordinates
stack(smallest,larg est)

ERROR AND MOVING PIVOT COORDINATES

mx = Cell3 , mlx = Cell3, , kx = Cell3,, klx:=Cell3,
my := Cell), mly := Cell3,, ky = Cell3, kly = Cell3;

mx mlx kx kix
m:=| my ml :=| mly k:=|ky kl:=| kly

1 1 1 1

COUPLER POINTS
plx = px,
ply =py,

plx
pl:=| ply

1
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ERROR
CCell:= | error, «
EITor, —
EITor, — 00
EITor; — o
forie2..5

for j€ 0,0.5- JT—)..360 : (—”—)
180 180

cos(0) -—sin(@) 0
R «|sin(®) cos(®6) O
0 0 1
a<R:-(k-m)+m
plp(—R.(pl—m)+m
klp <R -(kl-m)+m

0 -1 0
Pe|1 0 0
0 0 1
00 0
Q«|0 0 0
00 1

1
[«
E <—(a ml) [ -Q)-(klp-a)]

F< (a—ml)-[P-(klp—a)]
1[(klp-a)-(klp—a) +(a —ml)
G« (a—-ml)- [Q (kip - )] [( a-ml)—(kl-ml)-(kl- ml)}

—Fi\/iE2+F2—G2i .
o« 2-atan Refer to Chapter S for explanation

G-E
cos(ar) —sin(a) 0
Ra «| sin(a) cos(a) O
0 0 1
b« Ra-(klp-a)+a
p<Ra-(plp-a)+a
P2X < pX;
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p2y < py;
p2x
p2 « | p2y
1

[P — P24/ + [P, — P2}

Dummy _error «—

2
Po — 3¢
U« \[(po _30)2 +(p, _al)z
P —a
_\/(po _ao)2 +(p1 _al)2
[ pl, —k,
Ve \/(plo —ko)* +(pl, - k,)’
pll _kl
_\/(plo _k0)2 +(p}, —k])z

ANG_VAR « acos[—u—’l]
Juf -]

ANG,; « ANG_ VAR if Dummy _error < error, ARe(a) =
Re(a) + Im(a)

new _p, < p, if Dummy_error < error, ARe(at) =

Re(a) + Im(a)

new p, <« p, if Dummy_error < error, A Re(a) =

Re(a) + Im(a)

angle, «- 0 if Dummy error < error, A Re(a) = Re(at) + Im(at)
error, «— Dummy _error if Dummy_error < error, A Re(a) =
Re(a) + Im(a)

continue otherwise



CCELL =

UANG3 —al3| -@j
I

new_p4,neww_p‘,,error“,(angle4 .

(|ANG4 —ald|- 180)

T

augment

neW_ps,neww_ps,errorS,(angle5 .

augment

(|ANG5 —als| -1—89)
n

new _p,, neww__pz,errorz,[angle2 .———}
augment 180 " ’
(yANG2 —al2|- —j
i T
augment

new _p,,Neww _p3,error3,[angle3 J,}
T
>
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