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ABSTRACT

CONSTITUTIVE MODELING OF THE THERMO-MECHANICS ASSOCIATED
WITH CRYSTALLIZABLE SHAPE MEMORY POLYMERS

by
Gautam Baron

This research addresses issues central to material modeling and process simulations.

Here, issues related for developing constitutive model for crystallizable shape memory

polymers are addressed in details. Shape memory polymers are novel material that can be

easily formed into complex shapes, retaining memory of their original shape even after

undergoing large deformations. The temporary shape is stable and return to the original

shape is triggered by a suitable mechanism such heating the polymer above a transition

temperature. Crystallizable shape memory polymers are called crystallizable because the

temporary shape is fixed by a crystalline phase, while return to the original shape is due

to the melting of this crystalline phase.

A set of constitutive equations has been developed to model the thermo-

mechanical behavior of crystallizable shape memory polymers using elements of

thermodynamics, continuum mechanics and polymer science. Models are developed for

the original amorphous phase, the temporary semi-crystalline phase and transition

between these phases. Modeling of the crystallization process is done using a framework

that was developed recently for studying crystallization in polymers and is based on the

theory of multiple natural configurations. Using the same frame work, the melting of the

crystalline phase to capture the return of the polymer to its original shape is also modeled.

The developed models are used to simulate a range of boundary value problems

commonly encountered in the use of these materials. Predictions of the model are verified



against experimental data available in literature and the agreement between theory and

experiments are good. The model is able to accurately capture the drop in stress observed

on cooling and the return to the original shape on heating. To solve complex boundary

value problems in realistic geometries a user material subroutine (MAT) for this model

has been developed for use in conjunction with the commercial finite element software

ABACUS. The accuracy of the MAT has been verified by testing it against problems

for which the results are known. The MAT was then used to solve complex 2-D and 3-

D boundary value problems of practical interest.
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CHAPTER 1

INTRODUCTION

1.1 Research Objecnive

This study focuses on the modeling the thermos mechanics and phase change occurring in

crystallizable shape memory polymers (CAMP) undergoing large deformations in to

transient shape. Shape memory polymers (SUMP) are a relatively new material and have

novel property. These kinds of polymers are able to `remember' their original shape

even after undergoing large deformations. Because of this they are finding use in

applications ranging from biomedical devices to space technology. Currently there are no

models available that can accurately characterize their behavior and this is partly because

of modeling crystallization and melting process coupled with shape change in polymers is

a difficult yet important one. This requires elements of mechanics, thermodynamics and

polymer science and a proper combination of these elements is necessary to develop the

accurate models. The aim of this research is to formulate full y invariant three

dimensional constitutive equations in a thermodynamic setting that are capable of

predicting the thermal and mechanical behavior of CAMP under a variety of conditions.

The model developed will be implemented in to a finite element program to simulate the

behavior of shape memory polymers in realistic geometries and conditions. This work

will help speed up the use of this novel material in production of different plastic

products in a variety of applications.
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1.2 Innroduction no Shape Memory Polymers

A new class of materials called `smart material' has emerged as a result of rapid

technological advancements. Material scientists predict a prominent role for such kinds of

materials in the future to come. Amart materials are those whose one or more properties

can be dramatically altered such as piezoelectric materials, electro-rheostatic materials,

electro-rheostatic materials, shape memory alloys and shape memory polymers.

Polymeric materials have become the integral part of human life in 21 St century.

Wide range of applications varying from technologically important to ones those are of

commonplace everyday use. Ahape memory polymers are new type of polymers that has

been first developed by group of researchers in Japan and later introduced in USA. These

kinds of polymers posses a unique property, they remember their original shape even

after undergoing large deformation into a temporary shape. Return to the original shape is

activated by the suitable external trigger. Based on the external stimuli used as triggering

mechanism, shape memory polymer can be classified in to thermos responsive, photo-

responsive and Photo-responsive shape memory polymers. Photo-responsive shape

memory polymers uses light source as an external stimulus that is capable to induce the

photochromic reaction causing geometrical rearrangement of the monomers that leads to

large shape change at bulk level. Where as in case of chemo responsive, another chemical

is used as an external stimulus and shape recovery can be caused by changing the pH

value of the reactive environment it is in. Thermo responsive materials are those which

use heat as the external stimulus. Ahape memory alloys and shape memory polymers are

good examples of thermos responsive shape memory materials. However, mechanisms for

shape fixity and shape recovery are totally different in each case. Detailed descriptions of

the mechanism that is responsible for shape fixity and shape recovery are discussed for

both the cases in following chapters.
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1.3 Thermo Responsive Shape Memory Polymers

Thermo responsive shape memory material can be classified in to two groups: shape

memory alloys and shape memory polymers. First time shape memory was observed in

Nickel-Titanium alloys broadly known as Nitinol in the year of 1958 (Milliner (1999)).

Aolid state phase change that occurs in metal alloys is responsible for the exhibition of

this unique property in nickel-titanium alloys. To have better understanding of the

mechanism, responsible for shape memory in nickel-titanium alloys, knowledge of

phases associated with alloys is necessary. There are two phases associated with the

alloys: anstenite structure and martensite structure. Even though austenite structure and

deformed martensite structure has different molecular configurations, on the macroscopic

level they can have similar shape as shown in Figure 1.1. Cooling alloy below certain

temperature (martensite phase transformation end temperature) 100% austenite structure

converts in to 100% martensite structure. Martensite structure can be deformed easily

when comparing it with austenite structure. After distorting, unreformed martensite

structures will take a permanent deform structure and even after load removal it will

remain in a deformed shape due to rearrangement of molecules. This deformed shape is

the transient shape for shape memory alloys. Heat is the driving force for the molecular

rearrangements and so upon heating deformed martensite structure will then converted in

to more ordered anstenite structure transforming the transient shape back to its original

shape as shown in Figure 1.2.



Figure 1.1 Microscopic and macroscopic views of the two phases of shape memory
alloys.
(Source: Oulu University - http://herkules.oulu.fi/isbn9514252217/htmUx317.html date: Dec 26, 2005)



Figure 1.2 Microscopic diagram of the shape memory effect.
(Source: Oulu University - http://herkules.oulu.ϊι!isbn9514252217/htmUx317.html date: Dec 26, 2005)
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Ahape memory alloys are being used in various applications in different fields

including aerospace, robotics, bioengineering etc. for example vascular scents, sensors

and actuators, space shuttles, hydraulic fittings for aeroplane and many more. Even

though shape memory alloys have many applications, they do however have some

limitations. Ahape memory alloys are expensive to use due to its expensive

manufacturing process that requires special treatments and expensive metals. Moreover,

Shape memory alloys cannot under go large deformation and they cannot be made bio-

degradable, these reasons put restrictions on their ufyge.

Ahape memory polymers can be a good alternative to shape memory alloys in

many cases where shape memory alloys can not be used. According to Monkman (2000),

Shape memory polymers can be used as actuators and various other applications and can

be a good alternative to expensive shape memory alloys. Making shape memory

polymers biodegradable, follow up surgery required with the use of metallic implants

can be avoided (Lendlein et al. (2002(b))). Ahape memory polymers are cheaper to

produce than shape memory alloys as they can be easily processed in to a variety of

different shapes and sizes using standard processing methods such as extrusion, molding

forming etc., that are routinely used in the manufacture of plastics. Moreover, by

adjusting their chemical structure and composition by a small amount, their transient

temperature can be set to any temperature with in a large window (Davis et ail. (2003),

Jong et al. (2000), Lendlein et al. (2001), Liu et al. (2002)). Because of the above

mentioned property there are potential applications for shape memory polymers,

ranging from actuators, MEMS devices, temperature sensors to damping elements in

structure to name a few. Due to their bio-friendly nature, these materials have the

potential to be used in biomedical applications, many of which are in their early stages of

development. Fibers and films made from shape memory polymers have good insulating
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properties at low temperatures and high gas permeability at higher temperatures

preventing the build up of heat. Work on making smart clothing, which, do not require

frequent ironing and changes the texture according to environment, is going on. Other

applications include digital storage media that can be easily rewritten, intravenous

needles and other implantable medical devices that soften in the body. The applications

are in the process of development such as their use in deployment of space structures in

simple manner at very low costs and with a much smaller storage volume as compared to

other deployment mechanisms. For more detail on these and other applications see

(Tobushi et al. (1996), Monkman (2000), Poilane et al. (2000) and They et al. (2001)).

1.4 Driving Mechanisms for Shape Fixiny and Shape Recovery

Although heat is used in both cases as an external stimulus, the driving mechanism that is

responsible for shape memory is different in both: shape memory alloys and shape

memory polymers. The mechanisms responsible for memorizing or fixing the original

shape or transient shape is shape memory polymers are: entanglements of the polymer

molecules, cross-linking, crystalline state and glassy state (see Lin et al. (1999), Inc

(1998), Kim et al. (2000)). Depending on the specific polymer, one of these four

mechanisms is responsible for fixing the transient shape. If glass transition is responsible

for the transient shape, then glass transition temperature, 8g' is the recovery temperature,

8R '
 If it is due to crystallization the melting temperature, Am  , is the recovery temperature.

If transient shape is fixed due to crystallization then such shape memory polymers are

called crystallizable shape polymer and if transient shape is fixed due to glass transition

temperature such shape memory polymer are called amorphous shape memory polymer.

In this work, only crystallizable shape memory polymers are discussed.



8

Crystallizable shape memory polymers can be either thermosets or thermoplastics.

Thermoplastic crystallizable shape memory polymers are block copolymers consisting of

alternating chains of two different polymers (A and B) linked end to end. The polymers A

and B are chosen so that the copolymer exhibits shape memory behavior. One of the

constituent polymers, say A, is chosen to have a high melting or glass transition

temperature, which is denoted by 0h while the other polymer, represented by B, has a

lower melting temperature, which for reasons to be made apparent shortly, by 0R (for

recovery temperature). When the polymer is cooled from a melt like state the polymer

with the higher melting / glass transition temperature, here polymer A, solidifies first

forming segregated hard domains. These hard domains are linked together by polymer B,

which crystallizes at a lower temperature (0R). Between these two temperatures

(OR <8 < Rh ) the materials behavior is rubber-like, with the hard domains acting as

cross-link due to which the polymer returns to its original shape even after undergoing

large deformations. If the polymer is cooled below 8R' polymer B partially crystallizes

and the material stiffens, losing its rubber like behavior. If the material is cooled while it

is in a deformed configuration, polymer B crystallizes in this deformed configuration, and

these newly formed crystallites act as temporary cross-link which prevent the shape

memory polymer from returning to its original shape. On unloading the specimen below

RR a small amount of recovery is observed as the polymer has its original cross-link still

in place. On subsequent heating above 0R the crystalline phase associated polymer B

melts and the shape memory polymer returns to its original shape. On further heating

above 8R the hard domains also melt and the material returns to the melt-like state.
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The orientation of the crystals formed below 0R depends on the deformation

undergone by the polymer just prior to cooling (see Wang et al. (1999)). These crystals

will have a preferred direction depending on the deformation that will cause the material

properties to be anisotropy. Thermoset shape memory polymers also show similar

behavior, except the permanent shape is a result of chemically cross-linking a

crystallizable polymer and not due to the presence of hard domains. Vulcanization of

rubber is a common example of such a process, wherein the introduced Sulphur reacts

with natural rubber forming a network structure. Above the melting temperature of the

polymer, which is again denoted by 0R , the SUMP has a rubber like behavior due to the

presence of chemical cross-link, however upon cooling below 0R , polymer

crystallization takes place. These newly formed crystals act to stiffen the AMPS with the

crystallites acting as cross-link. If the polymer is deformed prior to cooling, the

crystallites, which act as temporary cross-link are formed in the deformed configuration

and as a result the polymer retains its transient shape. The original shape is recovered on

heating above the melting temperature. The behavior of these two types of SMPG, i.e.,

thermosets and thermoplastic SUMP is hence, very similar.

The shape memory behavior of SMPs is illustrated schematically in Figure 1.3

along with a typical uni-axial stress-strain curve, Figure 1.4 (see Kim et al. (1996, 1998)

and Lendlein et al. (2001)). In Figure 1.3, the filled circles represent the cross-link (they

could be the hard domains or chemical cross-link), the wavy line connecting the cross-

links represents the crystallizable polymer in its amorphous state while the rectangular

blocks represent the crystallizable polymer in a crystalline state. Atate 1 in both figures

denotes the unreformed configuration. Above the recovery temperature 0R the polymers

behavior is rubber-like and its elastic behavior is driven by changes in entropy. On
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deforming above 8R' the polymer molecules between the cross-links stretch (state 2). If

the polymer is now cooled to a temperature below 8R' crystallization takes place and the

crystals are formed in this deformed configuration. The onset of crystallization is

accompanied by a sharp drop in the stress (from state 2 to state 3). After unloading (state

3 to state 4) the polymer remains in a deformed configuration with a small amount of

recovery. This recovery is due to the presence of two components (amorphous and

crystalline) each with their own stress free states. The amorphous part has a tendency to

retract to its original configuration while the crystalline part prefers the deformed

configuration. As the crystalline part is a lot stiffer, the recovery strain is small (see

Figure. 1.4). The mechanical response of the polymer in this state is similar to that of a

semi-crystalline polymer with oriented crystallites, i.e., it is relatively stiff and the

mechanical behavior is anisotropy. Usually when this semi-crystalline polymer is subject

to small deformations it exhibits elastic behavior, energetic in origin. If however, the

polymer is subject to large deformations, inelastic behavior caused by reorientation of the

crystallites and secondary crystallization takes place. During these inelastic processes

degradation of the original cross-link can occur reducing the ability of the polymer to

return to its original shape on heating. When the polymer is heated to above 8R' (from

state 4 to state 1) the crystallites melt returning to their original amorphous state, if the

cross-link originally present in the polymer remain the polymer retracts to its original

shape. This retractive force depends on the extent to which the polymer was deformed

prior to cooling and is an important parameter when shape memory polymers are used in

actuators.



Figure 1.3 Schematic illustration of the shape memory effect in polymers.

Figure 1.4 Typical stress versus strain curve for shape memory polymer.
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1.5 Ounline of nhe Dissernanion

In Chapter 2, prescribes the discussion of the work of other research groups whose works

are important for the current research. Also, it includes various attempts made to model

shape memory polymers, phase transition and crystallization. Aignificant experimental

observations will be noted and simplifying assumptions, solution methods and results of

simulations of will be outlined. In Chapter 3, some important concepts of Continuum

Mechanics and Thermodynamics will be presented concisely. Chapter 4 presents the

details of the continuum framework for the crystallizable shape memory polymers.

Thermo-mechanics associate with each phase of the crystallizable shape memory

polymers will be modeled using the concepts of Continuum Mechanics and

Thermodynamics. Crystallization and Melting includes phase transition phenomenon, and

using the frame work developed for the crystallization in polymers this phenomenon will

be incorporated in to the model.

In Chapter 5, simulation of standard, one dimensional deformation processes such

as uni-axial extension and circular shear will be carried out. For each process required

kinematical quantities and balance laws will be derived in their proper form. A numerical

method to develop the computer code that is required for simulations will be

programmed. In Chapter 6, using the model developed in Chapter 4 and MATLAB

simulation of 1-D, non-isothermal process will be carried out. Aimulations of this process

will be helpful to understand thermo-mechanics associated with the CSMPs. In Chapter

7, some basic concepts of EM are prescribed along with the procedure to create a user

subroutine (MAT) for a user material. Further, the developed user subroutine is tested

with standard suggested tests in ABAQUS/CAE. Chapter 8 is about the finite element

analysis of various processes where the material used in the process is CAMPS. These
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analyses will be done using ABAQUS/CAE and it will show the applicability of the

developed MAT based on the constitutive equation derived in Chapter 4.

The summary of the dissertation with an outline of original contributions of this

research are presented in Chapter 9 along with recommendations for the future work.



CHAPTER 2

BACKGROUND

2.1 Introducnion

In this chapter, related works in the area of shape memory polymer are discussed. Each

work is studied in depth to understand the critical issues presented. A brief description of

the materials used for making shape memory polymer along with, experimental methods

that is used for various tests and material characterization is also discussed. The study on

various modeling techniques and different analysis done for the shape memory polymers

is described and critical finding of their works is mentioned.

Crystallization is the most important phenomenon in case of crystallizable shape

memory polymers. A separate section in this chapter is devoted to study related to

crystallization. The section mainly discusses the various modeling approaches to

crystallization.

2.2 Relaned Work

Wang et al. (1999), used poly(ether ester)s consisting of polyethylene oxide) and

poly(terephthalate) segments, POET copolymer as shape memory polymers and showed

that only oriented and/or extended chains are contributive to recovery of deformation and

these chains in stretch direction will result in crystalline morphology similar to `shish

kebab' upon cooling.

Shape memory technology for polymers needs optimum combination of two

components out of which one is responsible for polymer architecture or morphology to

fulfill certain structural requirement and other require for programming technology for

14
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shape fixity and recovery. Ahape memory polymer elongation is possible up to 1100%

(see Lendlein et al. (2002(a))).

In the work of Jong and Kim (Jeong et al. (2000), Kim et al. (1996, 1998, 2000)),

detail description of both phases of shape memory polymer namely: amorphous phase

and crystalline phase can be found. Optimized ratio of both copolymers is essential for

maximizing the crystallinity and with the increasing crystallinity hysteresis can also be

increased. Transition temperature of shape memory polymer can also be adjusted using

proper combination of the copolymer used.

C. Poilane et al. (2000), quantified the mechanical characteristic of shape memory

polymers using three different techniques namely nanoindentation, bulging and

membrane point deflection. Nanoindentation and bulging test can be useful when the

simple tensile tests are difficult to perform. Lendlein et al. (2001), used s — caprolactone,

biodegradable copolymer, for making crystalline shape memory polymer and showed in

thermocyclic experiments that a recovery rate more than 99% can be achieved.

Tobushi et al. (2001), developed non-linear thermomechanical model of

crystallizable shape memory polymer. It is assumed that shape fixity is caused due to

glass transition temperature and final solid after cooling is amorphous in nature. The

equation is as follows:

where, B , C and T denote strain, stress and temperature respectively. E, μ, λ and α

represent modulus of elasticity, viscosity, retardation time and coefficient of thermal

expansion. k, b, σ^ , Cy & Bs are constants of the equation. Similar work can be found in

work of Lin et al. (1999). These models are merely 1-D curve fitting and models are not
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frame invariant and can not be used for three-dimensional geometries as it is not

applicable for large deformation.

Based on the thermodynamic concepts of entropy and internal energy, it is

possible to interpret the thermomechanical behavior of SMPs from a macroscopic

viewpoint without explicitly incorporating details of the molecular interactions. Liu et al.

(2006) developed model using the same concept for amorphous shape memory polymers.

The model quantifies the storage and release of the entropic deformation during thermo-

mechanical processes. The fraction of the material freezing a temporary entropy state is a

function of temperature, which can be determined by fitting the free strain recovery

response. Α free energy function for the model is formulated and thermodynamic

consistency is ensured. However, as the model was for amorphous shape memory

polymers both phases were considered as isotropic, hyperelastic solid and transition from

rubbery phase to glassy phase were done my increasing shear modulus only. The main

difference between modeling amorphous shape memory polymers and crystalline shape

memory polymer is the modeling phase transition. Phase transition in CAMP involves

crystallization. Property of the semicrystalline phase or temporary shape depend on

what happens during the crystallization.

2.3 Snudy on nhe Crysnallizanion Process in Polymers

Heat conduction was dominant mechanism to study the phase transition such studies cane

be traced back to the works of Lame et al. (1831) and Stefen (1891), in which

temperature is considered to be basic variable (see Bankoff (1964), Crank (1984), Fasano

et al. (1979) and Rubinstein (1971)). One approach to model the phase transition is the

`phase field' model. The model includes a parameter, along with conduction, called the
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order parameter whose value determines the state of the material. The parameter takes on

extreme values of +1 for pure liquid and -1 for pure solid. The heat conduction equation

is modified to incorporate the effect of the order parameter that leads to an additional

equation whose origin can be traced back to Landau-Ginzburg theory of phase transitions

(see Landau (1967)). Both the Atefen approach and the phase field approach does not

include the issues related to symmetry of the final solid and this issue only can resolved

with the addition of kinematic fields.

A known approach in polymer physics to study the crystallization kinetics is an

Avarami approach. Avarami approach is based on the notion of filling space through the

nucleation and growth of one phase in to another. It is assumed in this approach that

nucleation initiated at certain location known as nucleation sites. On set of the nucleation

the growth of crystalline material is then prescribed by growth rate. The problems in

which exact instant when crystallization is initiated in not known, such as non-isothermal

processes it is difficult to apply the Avarami equation. Moreover, Avarami approach does

not address issue of important thermodynamic quantities such as the internal energy and

the entropy in straight forward manner. These are major drawbacks with this approach.

Also, there are certain polymers such as polyethylene terephthalate which at temperatures

just above the glass transition temperature crystallize only due to deformation. The

Avarami equation fails to predict such kind to behavior and not general enough to capture

the various types of crystallization behavior observed in polymers. Due to such reasons,

this approach is not used in this work (more information on the Avarami approach can be

found in Eder et al. (1990), Mandelkern L (1964) and Wunderlich (1976)).

The other approach that is useful for modeling the thermo mechanics associated

with crystallization is the notion of the natural configuration. Usually, stress-free

configuration is considered as natural configuration of a material. For elastic materials,
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elastic response can be fully described by the deformation of the body from a single

natural configuration. The stress at a material point is determined by a functional of the

history of the density and the deformation gradient, at a material point where stress free

configuration is considered as reference configuration. For materials exhibiting inelastic

response, such as polymers, single natural configuration is not sufficient for the full

description of the behavior. Rajagopal (1995) has demonstrated the central role played by

natural configuration in a variety of dissipative processes with associated symmetry

changes and the change of response characteristics of the body. The work covers large

class of materials under one frame work: multi network theory (see Rajagopal et al.

(1992)), classical metal plasticity (see Rajagopal et al. (1998)), twinning (see Rajagopal

et al. (1995)), solid to solid phase transition (Rajagopal et al. (1999)), viscoleastic liquids

(Rajagopal et al. (2000)), anisotropic fluids (Rajagopal et al. (2001)) and geological

materials (Muralikńshna et al. (2004)). Rao et al. (2000) introduced the utility of the

framework to capture transition, from viscous rate type of fluid to anisotropic hyper

elastic solid, due to solidification and crystallization in polymers with purely mechanical

settings. Rao et al. (2002) used this approach because of its robustness to model

crystallization in process and created a thermodynamic framework for the study

crystallization in polymers. The key feature of this framework is that a body can exist,

stress free, in numerous natural configurations, the underlying natural configuration of

the body changing during the process, with the response of the body being elastic from

these evolving natural configurations. This framework has been successfully utilized to

simulate various polymer processes involving crystallization phenomena (Barot et al.

(2005, 2006), Rao (2002, 2004), Rao et al. (2005)).



CHAPTER 3

PRELIMINARIES

3.1 Innroduction

In this chapter, the familiar concepts of Continuum Mechanics are prescribed. The review

includes introduction to all the required kinematical quantities as well as the measures of

stress and study of the other physical laws which requires a general approach that

includes Thermodynamics. Roughly, the review comprises the following basic

ingredients:

• A brief description of motion and deformation.

• A brief discussion of stress in continuum.

• Α brief description of the fundamental laws of physics governing the motion of a
continuum.

All the results are given here without proof; the proof can be found in some of the

classical work of Truesdell (1991), Truesdell et al. (1965), Holzapel G (2000), Rajagopal

et al. (1999), Green et al. (1977) and Rao et al. (2002).

3.2 Kinematics

3.2.1 Body, Motion and Deformanion

Α continuum theory has been developed independently of the molecular and atomistic

theory. Α body B may be viewed as continuous distribution of matter in a topological

space Ν and time t, over which a non-negative measure M , called mass, is defined.

Large numbers of molecules makes a typical continuum particle and the behavior of such

continuum particle reflects a collective behavior of all the molecules constituting a

19
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continuum particle. An invertible mapping κ from the space of bodies N to a three-

dimensional Euclidean space s is called a placer. The image of Β through the

placer, K(B) is a Configuration or shape of the body.

A mass of any part of the body B, say P can be expressed with the help of a

scalar function p called density:

where κ is the certain configuration of Β .

Consider a body Β in a configuration KR (B) , let X denote a typical position of a

material point in  KR. Let χ, be the configuration at a time t, and then the motion

x assigns to each particle in configuration KR a position in the configuration κ , at

time t , i.e.

The velocity of the particle is given by

The velocity and the acceleration here are expressed here by denoting the position of a

particle in reference configuration such description is often called as the Lagrangian

description or Material description. Aince, the motion χ r is invertible,

It is possible to express velocity and acceleration and other quantity that depend on

particle by denoting the particle with its current configuration also. The way of describing
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quantities using its current configuration is known as Eulerain description or Spatial

description. The velocity and the acceleration field in spatial description can be written as

Eulerian approach is suitable for studying the mechanics of fluids where as for the solid

mechanics Lagrangian representation is preferred.

The deformation gradient 
FAR

 , with respect to reference configuration, is defined

through

Using polar decomposition theorem for F 	can be showed

where 
Rκρ

 is a proper orthogonal tensor, 
UDR

 and V  are symmetric, positive definite

tensors. The physical meaning of equation(3.1.8) is that every deformation can be

decomposed locally as rotation followed by a pure stretch or in a pure stretch followed by

a rotation. The left and right Cauchy-Green stretch tensors BAR
 and 

CκR
 are defined

through

where, λa is principal Eigen values of tensor 
UκR

 and ńa and Na are the principal spatial

directions and principal referential directions respectively.
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As the information of the stretch inside the body is given by Cauchy-Green

tensors the measures of strains are usually defined in terms of either BK or CK , e.g. The

Green-St. Venant strain, strain form in Lagrangian form,

where, I is an identity tensor. Aimilarly, Eulerian measure of strain, known as Almansi-

Hamel strain, can be prescribed by

L can be decomposed in to its symmetric part(D) ,which represents the rate of

deformation tensor, and skew-symmetric part(W) ,which represents the rate of rotation

tensor or vorticity tensor by following expression

3.2.2 Snress Tensor

There are two types of the forces a body can observe. First, the arbitrary force, known as

external forces, that acts on the parts or the whole of the boundary surface S and second,

known as internal forces, acts on a surface within the interior of the body in some

distributed manner. These forces are also known as traction n and body forces

b respectively. The unit of the traction force is fore per unit area while, body force has

the dimension of fore per unit volume. Using Cauchy stress theorem, the dependence of

the traction on the surface can be prescribed by as follows:
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Where, σΤ is true stress or Cauchy stress and n is the unit normal vector to the surface S .

In material representation, it is known as Piola-Kirchoff stress and it can be given in

terms of Cauchy stress as follows:

In practical, first Piola-Kirchoff ΝΙC55 ι disc) known as nominal stress or engineering

stress. Two other measures of stress are the second Piola-Kirchoff stress tensor

This form is useful for developing finite element code particularly, one that is used with

3.2.3 Conservanion Laws and Thermodynamics

Physical meaning of any of the balance law is the fact that a physical quantity under

consideration does not change its value during the process. Any acceptable process has to

satisfy the appropriate balance laws. Conservation laws of Continuum Mechanics

include the conservation of mass, momentum and angular momentum. There are cases,

where the modeling cannot be done with the aid of laws of Continuum Mechanics and

one has to use the conservation laws of Thermo-mechanics such as first and second laws

of thermodynamics which requires the knowledge of the concepts of energy and entropy.

The conservation of mass states the fact that the mass of any part P of the body

remain unaltered irrespective of the motion the body undergoes. The spatial form of the

conservation of mass is:
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while the referential form of the same principle is:

where, p0 is the density in reference configuration. Incompressible material can only

undergo the volume preserving motion in which case the density remains constant. The

conservation of mass for an incompressible material reduces to

or in referential form using equation(3.1.19)

The conservation of linear momentum is equivalent of Newton's second law for

the continua. Its Eulerian local form is:

where b is the body force. The balance of linear momentum in referential form can be

written as:

where the Div is the divergence taken in the reference configuration and B is the body

force in reference configuration.

For an incompressible material the stress tensor σ reduces to

where p is the Lagrange multiplier due to the constraints of incompressibility, and σ Ε is

the constitutively determined extra stress. The balance of angular momentum for a body

in the absence of internal couples requires that the stress tensor be symmetric.

Concept of energy can be related to its conservation directly as no one has no

knowledge of what energy is (see Feynman (1989)). Energy neither can be produce nor it
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can be destroyed and it can only be transformed in to one form to its other several forms.

Talking about mechanical energy only, the balance of mechanical energy known as

power theorem can be written as:

where, X is kinetic energy, 7 is rate of internal mechanical work or stress power and

pxt represents rate of external mechanical work. Equation (3.1.26) can be written in more

general form that is suitable for continuum occupying some arbitrary region Ω as

The first law of Thermodynamics can be thought of as implicit definition of

energy. This law of Thermodynamics correlates between mechanical energy and the other

form of energy known as 'heat'. There exists a physical quantity known as `internal

energy', B , that closes the energy balance equation. Α statement for the first law can be

then stated as "The sum of the variations of kinetic energy, Κ , and of internal energy B

(the sum of two can be depicted as (£)) is equal to sum of the rate at which work is done

by the external forces, )'Y, and of the energy per unit time that enter the system as heat

transfer, Q ". Mathematical representation of the statement is as follows:

where,
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and r is the radiant heating, q is the heat flux through the surface Ω . As Ω is arbitrary

surface, combining the power theorem and the first law of thermodynamics the local form

of the balance of energy for a continuum can be written as follows

The second law of Thermodynamics identifies the fundamental difference

between the two forms of energy namely mechanical energy in form of work and thermal

energy in form of heat. The second law of Thermodynamics can be stated, according to

Kelvin, (see Pippard (1957)) as follows: "It is impossible tο devise an engine which,

working in a cycle, shall produce no effect other than extraction of hear from a reservoir

and the performance of an equivalent amount of mechanical work" This observation

cannot be deduced from the first law. Only second law can indicates the direction of an

energy transfer process.

The useful form for the second law is known as entropy inequality principle. It is

important to introduce the concept of entropy before writing the statement. Entropy, S, is

defined as fundamental state variable. Assuming the entropy is possessed by continuum

body Ω occupying some region is defined to be

where η is entropy per unit mass. The production of entropy is the difference between the

rate of change on entropy and the rate of entropy input in to body at an absolute

temperature 8 . According to the second law of thermodynamics, this rate of entropy

production for all the thermodynamics process is never negative. The mathematical

expression for the statement is
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where dξ is entropy produced. For reversible process dξ is equal to zero and for

irreversible process dξ is positive. Hence, for any realistic process Equation (3.1.32) can

also be written as

It can be showed that using Equation (3.1.31), second term in Equation (3.1.29) and

Equation (3.1.33) the balance law for entropy can have following form

Combining the balance of energy, Equation (3.1.30), and the balance of entropy,

Equation (3.1.34) results in the reduced energy-dissipation equation. The reduced energy-

dissipation equation is

where ζ is defined as the rate of dissipation. Both ξ and ζ are constrained to be non-

negative for an acceptable process. Here it should be noted that the rate of dissipation is

positive if and only if the rate of entropy production is positive. As the entropy

production can take place because of the variety reasons, for e.g., due to phase change,

chemical reactions, heat conductions etc., the rate of dissipation as defined through

Equation (3.1.35) is non-zero whenever entropy production is zero. Equation (3.1.35) can

also be written as

where ψ is the Helmholtz potential and is given by Ψ = B — θη . This form of reduced

energy dissipation equation is useful to place restriction for the constitutive equations. As

mentioned above, for any realistic process the rate of entropy production is zero and so
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consequently the rate of dissipation will also be zero. Most thermo-mechanical processes

are irreversible process and for that entropy production is greater than zero. It can also be

assumed that the rate of dissipation can be split in to a part that is due to heat conduction

and another part that is a consequence of other irreversible affects, i.e.,

where ζ'  is the rate of dissipation due to heat conduction and ζ» is the rate of dissipation

due to other processes. The rate of dissipation due to conduction is assumed to be given

by

Substituting Equation (3.1.38) in to Equation (3.1.37), following can be obtained



CHAPTER 4

CONSTITUTIVE MODELING

4.1 Innroducnion

The Constitutive equation provides a material its distinguished identity. As a matter of

fact, all materials obeys the balance law; and hence, to differentiate one material from

another, it is necesfyry to include information about the typical characteristics of the

material in to the model. The Constitutive equation of the material contains such

information. The constitutive equations relate quantities like the stress tensor and the

Helmholtz potential with the history of the deformation that the body has undergone. The

problem can be solved if this piece of information is known.

4.2 Phases Associaned winh Crysnallizable Shape Memory Polymer

As painted out earlier, a typical cycle consists of four different processes namely:

loading, cooling/crystallization, unloading and heating/melting. The morphology of the

shape memory polymer changes during each of these processes. It is essential to

understand the changes that occur to the polymer at the molecular level and then quantify

their effects on the polymer for the changes that occur at the continuum level. The

mechanical properties of the same polymer can vary widely depending on the phase

description. Following is a description of each phase associated with each process

described above for shape memory polymers.

4.2.1 Isonropic Rubbery Phase

Above the recovery temperature ( Or ) ' shape memory polymers exhibit the characteristics

of rubber. In literature, it is also referred to as the amorphous phase due to the
29
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morphology of the state. In the amorphous state, polymer chains take up a completely

random distribution in the matrix. For a rubber, the retractive force is determined by

changes in the entropy and the internal energy does not change significantly with

deformation at all. Hence, this type of behavior is also known as `entropic elasticity'. In a

stress free state, a linear amorphous polymer chain will adopt the conformation with the

maximum entropy (see Flory (1953)).

Above the recovery temperature, polymer chains have a higher degree of freedom

and this situation enables the chains to take up one of the possible energetic equivalent

conformations without disentangling itself significantly. The compact coil type of

conformation is entropically favored, and so the majority of the macromolecules will

form the compact coil type of conformation instead of the stretched conformation. This is

the reason why a piece of rubber will shrink upon heating and expand upon cooling. In

this state, the material has the same the strength in all directions and will get stretched in

the direction of the external force. For a force that is applied for a short time, the

entanglements of the polymer chains with their direct neighbors puts restrictions on large

movements of these chains. Due to this restriction, upon unloading or removal of external

force, the polymer goes back to its original shape. This recovery is sometimes referred as

`memory effect' (Lendlein et al. (2002(a))). For a force that is applied for a longer time, a

relaxation process will take place which results in a plastic, irreversible deformation of

the sample. A longer time enables the polymer chains to disentangle and slip off each

other. These rearrangements of the polymer chains will end up in more entropically

favored random coils and this phenomenon is known as the relaxation process.

In the crystallizable shape memory polymers, the amorphous region contains

randomly oriented networks of the polymer chain segments along with the randomly

oriented hard blocks that act as connecting points. The presence of these hard blocks or
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connecting points is due to one of the co-polymers used to form crystallizable shape

memory polymers. The co-polymer used can have a higher glass transition temperature or

a higher crystallization temperature than the transition temperature of the crystallizable

shape memory polymers. These hard blocks are actually are responsible for remembering

the `original shape' above the transition temperature. Due to their presence, soft polymer

chain segments do not undergo complete relaxation. The cumulative strength of these

hard blocks and soft segments of polymer chains is considered as the strength of the

amorphous phase of the crystallizable shape memory polymers. Besides the hard blocks,

the network has flexible components in the form of amorphous chain segments. If the

transition temperature is below the working temperature, the network will be elastic in

nature. Atretching these segments results in loss of entropy. Upon removal of the load, the

material, returns to its original shape and regains the lost entropy. This is a typical

characteristic of hyper elastic materials.

In a nutshell, a crystallizable shape memory polymers above the recovery

temperature is modeled as a hyper-elastic incompressible isotropic solid that is capable of

strain hardening for large deformations. Constitutive equations for the stress in isotropic

hyper elastic solids are widely available and fit easily into our theory based on natural

configurations.

In Figure 4.1, ιςR is a reference configuration and KC(t) is the configuration

currently occupied by the material. It is assumed here that the material does not undergo

any relaxation process, and so there is no relaxation mechanism included in this work.

Since the behavior is elastic, it has only one natural configuration, which is the reference

configuration and it has an instantaneous elastic response from this configuration.
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Figure 4.1 Natural configuration associated with the amorphous (or rubbery) phase.

The deformation gradient F^ denotes the mapping between the tangent spaceR

associated with KR, at a point in the reference configuration and the tangent space

associated with KC(t) . The natural configuration is fixed and does not change as in the case

of a viscous fluid, and hence there will be no dissipation of energy.

Α so called `hyperelastic material' postulates the existence of a Helmholtz free-

energy function Ψ , which is defined per unit reference volume. The Helmholtz potential

is also referred to as the strain-energy function or stored-energy function. It is assumed

that the amorphous region is homogenous since the distribution of the internal

constituents is assumed to be uniform on the continuum scale. For this type of material,

the strain-energy function depends only upon the deformation gradient F. Ψ = Ψ(F) is a

typical example of a scalar value function of a tensor variable F, which is assumed to be
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continuous. Stress response of hyper elastic materials is derived from a given scalar-

valued energy function, which imply that hyperelasticity has a conservative structure.

Different types of constitutive models can be found in the following texts (Treolar

(1976), Ogden (1984) and Holpzafel (2000)). In general, for a hyperelastic

incompressible material the Cauchy stress σ is given by:

where, p is the Lagrange multiplier due to the constraints of incompressibility, Fr is thea

deformation gradient measured from reference configuration KR = κα associated with the

amorphous rubbery phase, p is the density, Ψa is the Helmholtz potential. The Helmholtz

potential is related to the entropy, na through the following equation:

Also, Equation (4.2.2) is equivalent to the following relation between the internal energy

and the entropy:

Here, it is important to note that it is assumed that the internal energy and the entropy of

the amorphous phase depend on the temperature and the mapping F For an isotropic

incompressible phase, the form for the internal energy and the entropy depend on

F through the first two invariants of B. i.e.,xQ 	^a

therefore the internal energy, the entropy and, consequently, the Helmholtz potential can

have the forms:



In rubber-like materials, the internal energy is a weak function of deformation and

is mainly a function of temperature. Specific models to describe the behavior of the

rubbery phase of the shape memory polymers will be chosen by picking forms for the

internal energy and entropy consistent with the experimental results. In this project, a

model chosen is the simplest hyperelastic model which often serves as a prototype for

rubber-like materials due to the absence of accurate material data. The model chosen for

the rubbery-amorphous region is referred to as the Neo-Hookean model in the literature.

The Neo-Hookean model has some theoretical relevance since the mathematical

representation is analogous to that of an ideal gas: "the Neo-Hookean potential represents

the Helmholtz free energy of a molecular network with Gaussian chain-length

distribution" (ABAOT TS user manual) The farm chosen for the internal energy  is

where, Ca is the specific heat of the amorphous phase and Αa is a constant. The

corresponding form for the entropy reduces to

where, Ba is constant and ,tιa is the constant related to the shear modulus of the

amorphous phase. Because of the chosen form for the internal energy and the entropy, the

Helmholtz potential is now just a function of the temperature and the first invariant of the

stretch tensor only, and so Equation (4.2.7) reduces to:



It is also assumed that the viscous dissipation 7 d in this phase is also a function of

temperature and deformation.

where, ζ is the rate of dissipation. However, the amorphous phase is modeled as an

elastic solid and so the rate of the dissipation is expected to be identically zero.

Aubstituting these forms in the reduced energy dissipation equation (Equation (3.1.39))

and using Equation (4.2.10), Equation (4.2.11) we get

Aince, one is looking for the form that can fytisfy the above equation, it is reasonable to

assume that the stress is given by

Note that the form is similar to the one given by Equation (4.2.1). The Cauchy stress can

be written using Equation (4.2.2), Equation (4.2.3) and Equation (4.2.13) as

where, μa (= 2Ρ0 a ) is the shear modulus of the amorphous region.

The aim of this study is to model a particular class of polymers rather than any

individual polymer. Hence, in the absence of accurate data a three-dimensional, frame

invariant model requires compensation for compressibility. Some materials behave

differently in bulk and shear. In such cases the idea of splitting the deformation locally

into two parts, namely: `volumetric part' and `isochoric part', would be quite beneficial,
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and has been successfully applied within the context of isothermal finite strain elasticity

(see Holpzafel (2000)). The idea was originally proposed by Flory (1961). The unique

decoupled representation of the strain-energy function for compressible isotropic

hyperelastic materials is given by: (see Holpzafel (2000))

where, J is the volume ratio and can be found using J = det(Β)Υ and i3 is the volume

2
preserving component of a deformation and can be found using Β = (J) 3 Β. The

specific form of the Neo-Hookean model for the compressible, isotropic, hyperelastic

material can be written as follows:

yra is the strain energy function for the rubbery phase, C10 & D1 are coefficients of the

equation related to shear modulus (μ α ) and bulk modulus (Ka ) of the amorphous region

respectively, and they can be correlated as C10 = ^β- & Κα = 2 , and
2	 D1

Ira = tr(C) = tr(). The reason for choosing this particular form for the model is the

compatibility it provides with finite element analysis using the available software like

ABAQUA.

4.2.2 Phase Transition: Amorphous Phase no Semi-Crysnalline Phase

Below the recovery temperature (.)' crystallization begins in the CSMP's. During the

phase transition, one can find both, the amorphous phase and the crystalline phase, at the

same time. This mixture of phases is considered as a constrained mixture. As in
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traditional mixture theory (see Truesdeil(1957), Bowen (1975), Atkin and Craίne(1976),

Rajagopal and Taο(1995)), co-occupancy is allowed, in a homogenized sense, of the

phase at a point. However, it is important to note that unlike traditional mixture theory, it

is assumed that the displacement in both phases is equal. The assumption is based on the

fact that in polymeric materials same molecule traverses both the amorphous phase and

crystalline phase. Hence, both the phase are constrained to move together.

The newly formed crystalline material is also an elastic solid. The stress in the

current configuration can be calculated by finding the deformation gradient from a

configuration of known stress to the current configuration. In this case, the configuration

of the deformed amorphous solid, when the crystal is formed, is the known configuration.

This is the natural configuration of the newly born crystal.

Figure 4.2 At time i s crystallization begins and stops at time t 1 .  Between these times

newly formed crystals are formed with different natural confιgurations.
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With further deformation of the material, this newly formed crystalline phase also

deforms. The subsequently formed crystals are also born in their own natural

configurations as described above. This transient phase can be thought of as a mixture of

a crystalline phase with different natural configurations and an amorphous phase in a

deformed configuration with respect to the original stress free configuration.

Furthermore, the natural configuration of the crystalline solid fraction born at some time

t is the configuration of the body at the time t. If crystallization begins at time t, in

Figure 4.2, let τ be the some time later than i s at which crystals starts forming. It is

assumed that the thermodynamic quantity, the internal energy and entropy (at a time t)

in the body due to a crystalline fraction born at time τ is determined by the deformation

gradient from the configuration of the body at time τ to the current configuration at time

t, i.e. F. With these assumptions the internal energy, entropy and the HelmholtzKc=^

potential of the newly formed crystalline phase are given by: (see Rao and Rajagopal

(2002))

while the internal energy and entropy of the amorphous phase are determined by

F, 	 B,r0 .

The internal energy and the entropy of the mixture are assumed to be additive and

can be given by:



where, a is crystallinity, ίε is the interfacial energy per unit mass of the amorphous-

crystalline mixture and Ιη is the interfacial entropy per unit mass of the amorphous-

crystalline mixture. These interfacial components are added to take into account the

presence of phase boundary. This is because their presence will change the structure of

the amorphous and crystalline regions in the vicinity of the interface. In polymers, this

term is expected to be important, as the crystalline lamellae are small and there is a

substantial amount of material in the interfacial region in between the crystalline and

amorphous regions (see Mandelkern L. et al. (1981), Flory P. J. et al. (1984), Kuwabara

K. et al. (1997)). Also, Ba and na are assumed to have the same form as that for the

amorphous phase and are given by Equation (4.2.5) and Equation (4.2.6). Using Equation

(4.2.20) and Equation (4.2.21), the Helmholtz potential for the mixture is then given by

The presence of the ιιιινgιaι 111 mmmc Lι{υ ιιιυιι '+.ι.ιι) awvc ι5 νecaυ5c me crysmaιιιne

phase is formed gradually and not instantaneously.

As mentioned earlier, the semi-crystalline solid that is formed is an anisotropic

solid. The anisotropy depends on the orientation of the crystal that is formed. The

tensors Βka(i) , i=t s < τ1 < τ < Τ2 < t f , give us information about the orientation of the

crystals in the mixture at any give time t, albeit in an averaged sense. Experiments

suggest that one can use the mutually perpendicular principal directions to determine the

directions of the anisotropic solid. The principal directions can be quantified by any two
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(2000)). At every instant, depending upon the loading conditions, there can be an unequal

stretch in the principal directions. The symmetry group of an orthotropic solid is

determined by three mutually perpendicular directions hence, this form of anisotropy

seems reasonable to assume for the crystalline phase of the solid. The three principal

direction can change with time and are determined by ιι K<<: ^ and m. The directions

associated with n and m are used in order to incorporate the dependence of

anisotropy in the elastic response of the crystalline phase. Hence, it is assumed that

Helmholtz potential of an incompressible orthotropic elastic solid is consistent with the

configuration 
KC(T)

 . For an incompressible orthotropic elastic solid, the Helmholtz

potential depends on the first two invariants of the right Cauchy-Green tensor, C,

which is denoted by 1' . , III and the following scalars (see Spencer (1972))

The Helmholtz potential for an incompressible orthotropic elastic solid then can be

written as:

where the invariants depend on t and τ . It is important to note here that there are alternate

ways to include anisotropy.

Before choosing a specific form for the entropy and the internal energy, it is

important to discuss the rate of dissipation. There can be dissipation in the material due to

the presence of the amorphous phase. However, in this case it is assumed that it is an

elastic solid and hence, there will be negligible dissipation associated with this phase.

Moreover, it is observed in the experiments carried out on polyethylene that the
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temperature at which majority of the quiescent crystallization takes place is lower than

the temperature at the melting takes place. This observation indicates that crystallization

is an entropy producing process as the state of the melt before and after crystallization-

melting cycle is the fyme. It is assumed that the rate of dissipation can be split into two

parts, the first related to the dissipation associated with the amorphous phase and the

second related to the phase change.

where, ζρ is the rate of dissipation associated with the phase change. It is assumed that

ζp depends on the crystallinity, α , crystallization rate, ά and temperature, 8 . It can also

he depend on the other kinematic variables i.e..

It is obvious to assume that the rate of dissipation ζp is exactly zero when no

crystallization is taking place i.e.,

Substituting the Helmholtz potentiak m	 ι,ιjυα'ιυιι ‚r.L..L'L'] ννιιιι ι a sινυιι vy L.,1iU1λιινιι

(4.2.10) and Ψ given by Equation (4.2.25) and ζp given by Equation (4.2.27) in to the

reduced energy dissipation Equation (3.1.39), we obtain

It is assumed that the following form for the stress that fytisfies the above equation:
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It is also noted that for a Helmholtz potential consistent with that of an orthotropic elastic

solid with Ψ ', given by Equation (4.2.25), we obtain the following representation

The entropy and the Helmholtz potential are related through

For crystalline materials, there is not significant change in the configurational

entropy with the deformation, while the internal energy does depend on the deformation,

because of which, the following forms for the internal energy and the entropy of the

crystalline phase are assumed,

where C^ is the specific heat associated with the crystalline phase, A and Β are constants

and μ' , ‚'1 and μc2 are material moduli associated with the crystalline phase. It is

important to mention here that the internal energy is represented as a linear function of

the temperature and chosen form for the entropy follows Equation (4.2.32).

The Cauchy stress in a constrained mixture of phases from Equation (4.2.30) can

be seen to be:
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In the Equation (4.2.35) above, 6a is the stress due to the amorphous region and can be

described as in Equation (4.2.13), where as 6 is the stress due to the crystalline region.

Using Equation (4.2.1), Equation (4.2.33) and Equation (4.2.34) The Cauchy stress for

the crystalline region at any given time t can be written as follows

Using Equation (4.2.13), Equation (4.2.35) and Equation (4.2.36) the Cauchy stress for

the transition phase can then be given by

The internal energy for the mixture is given by Equation (4.2.20) and the form for

the internal energy in the amorphous phase and the crystalline phase is given by Equation

(4.2.8) and Equation (4.2.33), respectively. The energy equation for the mixture is

derived by substituting the internal energy into the energy equation (Equation (3.1.30))

with the assumption that the amorphous phase is non-dissipative,

This completes the development of the constitutive equations for the phase transition.

For a compressible orthotropic Neo-Hookean solid, using arguments similar to

those used for equatiοn(4.2.15), The Helmholtz potential can be prescribed as follows:



The specific form for the stored energy

function, which is chosen for writing the UMAT for ABAQUS, in order to simulate the

crystalline phase, is given below:

ψ is the strain energy function for the crystalline phase, C20 & D2 are the coefficients of

the equation related to the shear and bulk modulus of the crystalline region respectively,

and they can be correlated as C20 = ` and Κ' = 2 . C, = ‚' 1 and C202 = μΡ^2 are the
2 	 D2

shear moduli related to the anisotropic crystalline phase. Using arguments similar to

those used for Equation (4.2.22), the stored energy function for the mixture can be

written using Equation (4.2.16), Equation (4.2.22) and Equation (4.2.40) as follows:

4.2.3 Semi-Crystalline Phase

With a decrease in temperature, crystallinity increases up to a certain extent. With the

increase in crystallinity, the amorphous fraction of the polymer chain will loose mobility

which will result in cessation of the crystallization in the material. If the temperature

drops to the glass transition temperature, the polymer chain looses its mobility and

crystallization stops. Thus, after the cessation of the crystallization, the temporary shape

is always the mixture of the amorphous solid and the crystalline solid. Aometimes

crystallization, as in case of polyethylene, stops between the glass transition temperature

and the melting temperature. Between those temperatures, the solid consists of rigid
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crystals and a flexible amorphous fraction making the resultant solid both tough and

flexible. Also, as described earlier, due to the deformation the crystals formed have an

orientation which causes anisotropy. Hence, the solid formed after the cesfytion of the

crystallization is tough, flexible and anisotropic.

As shown in Figure 4.3, after the cessation of the crystallization, stress in the

material can be found out by the mapping between the current configuration and the

original configuration, along with the summation of all the mappings between

configurations of the body at every instant that a new crystal was born to the current

configuration. The Helmholtz potential for such a hyperelastic solid can be then given by

Note that Equation (4.2.42) is very similar to Equation (4.2.22) with a little change in the

limits of the integral. This is due to the fact that crystallization stops at time t 1 ,  after

which no configuration will evolve from which mapping is possible. Therefore, The

Cauchy stress in the material will also have a form similar to that as of Equation (4.2.37)

with a change in the limits. The Cauchy stress in the solid at this point can be prescribe

The required stored energy function for modeling the compressible crystallizable

shape memory polymers using ABAQUS can be then prescribe by
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Figure 4.3 The figure shows the natural configuration of the unloaded material (KP(t * ) )

after crystallization.

4.2.4 Phase Transition: Semi-Crystalline Phase to Amorphous Phase

The return to the original shape is accomplished by heating the material above the

recovery temperature. Once the temperature reaches above the recovery temperature, the

crystals start melting. Due to the melting of these crystals the crystalline phase will start

disappearing and the material will become more and more rubbery. Due to unloading,

there will be no stress in the material and eventually all the crystalline material will

transform into the amorphous phase taking the material back into its original shape. To

track the evolution of the shape as it evolves from the temporary to the permanent shape,

it is necessary to track which fraction of the crystalline phase is melting at any given

time. This is particularly true for the case where crystallization takes place under constant

stress, as different crystals are formed at different stretches, and hence can have different

stress-free states. Therefore, when a crystallite that is more stressed melts the polymer as
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a whole will retract towards its original shape more than if a less stressed crystallite

melted. For the constant stretch case, all the crystals were formed in the same

configuration so the order in which the crystals melt does not impact the intermediate

shapes occupied by the polymer. However, for crystallization under constant stress, or for

a more general case wherein crystallization takes place under conditions of varying

stress, the order in which the crystallites melt is important. The assumption made with

regards to the melting process is that the crystallites formed last melt first. This

assumption is supported by experiments in which crystallites formed farthest from the

equilibrium melting temperature (i.e. crystallites that were formed last) are thinner and

melt at lower temperatures (i.e. melt first)(see Gedde (1995)).

At the beginning of heating, the two phases will have different stress-free states

because of which shape fixity is possible. Figure 4.4 shows that after unloading material

is in stress free configuration xptt  . Due to the melting of the crystals, the material will

pass through all the different stress free configurations, ending up in the stress free

configuration of the permanent shape. Assuming that the melting of the crystals begins at

some time t, the configuration of the material at time t. 3 is given by Kt = Kp(t) . The

Helmholtz potential of the mixture during the melting at any given point of time can be

then calculated using following equation:

Note, in the above equation the time is tagged when the material has crystallinity during

melting to the actual times when the material had the fyme crystallinity during the
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crystallization i.e., τ e [t s , t f ] . From the rate equation for melting, which will be

described in detail later in this section the current value of crystallinity is known, and

therefore, the amount that has melted is also known. Since, crystallinity can be tracked as

a function of time during crystallization, through interpolation between known values of

crystallinity and the times at which those values occur, one can determine the time during

the crystallization process, denoted by τ e [ t , t f , when the amount of crystalline

material present equals the current level of crystallinity during melting, i.e., α( τ )=α(t) .

This is possible because of the assumption that crystallites formed later are the first to

melt.

Figure 4.4 The figure shows that upon heating, the CSMP is achieving its original stress-
free configuration.
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The rate of dissipation, ζd , as discussed above, during melting can be divided

into two parts. The first part is the rate of dissipation due to the presence of the

amorphous phase, ζQ , that can be prescribed as in Equation (4.2.11) which has negligible

value in this case and the second part is the rate of dissipation due to the phase

change, ζ,,, . The rate of dissipation due to the phase change during crystallization and

melting depends on the fyme parameters. However, it is important to note that they are

not same. The rate of dissipation associated with the phase change during melting can be

give by:

Moreover, it is reasonable to assume that if melting rate is zero then the rate of

dissipation associated with the phase change during melting is also exactly equal to zero.

With this information it is now possible to write the reduced energy dissipation Equation

(3.1.39) for the melting process with the aid of Equation (4.2.10), Equation (4.2.45),

Equation (4.2.25), Equation (4.2.11) and Equation (4.2.46) as follows

For Equation (4.2.48) to hold a sufficient condition is that the Cauchy stress satisfy the

following
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The stress in the polymer during melting is exactly equal to zero due to the fact that the

material is totally unloaded. Yet, it is important to prescribe the equation of the Cauchy

stress because it is useful to find the shape of the material at any given time during the

melting process. Using Equation (4.2.8), Equation (4.2.9), Equation (4.2.33), Equation

(4.2.34), Equation (4.2.36) and Equation (4.2.49), the Cauchy stress can be given by:

The energy equation for the mixture is derived by substituting the internal energy

into the energy equation (Equation (3.1.30)). Moreover, it is also known that during

heating the material is totally inloaded, and hence, there is no stress in the material. For

this situation the energy equation can be prescribed as:

Using arguments similar to those made in the previous sections, for the

compressible hyper elastic solid, the required stored energy function for writing the

UMAT for ABAQUS can be prescribe by
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4.3 Acnivanion Crinerion for Crysnallizanion and Crysnallizanion Rane

It is essential for the crystallizable shape memory polymers to have an activation criterion

for crystallization and a crystallization rate (or the growth criterion). A mathematical

representation of conditions that indicates the beginning of the crystallization is called the

activation criterion, where as, the growth criterion is an equation which gives the amount

of material converted in the crystalline phase.

Crystallizable shape memory polymers have, as discussed above, two phases

namely the amorphous phase and crystalline phase. Both the phases are modeled as

elastic processes and will show virtually no dissipation. Hence, entropy production takes

place only after the onset of crystallization. Usually, amorphous polymers in a melted

form show a viscous effect. This can be another reason for entropy production. Hence,

the rate of dissipation can be split into two parts, the first related to the dissipation due to

the viscous effects in the amorphous phase, ζQ , and the second related to the phase

change, C_ , i.e. (see equation from section 4.2).

This is a useful equation for prescribing the activation criterion and the crystallization

rate. The term in the bracket of Equation (4.3.1) shows the difference between the

Helmholtz potentials of the amorphous and the crystalline phase_ And this term acts as

the driving force, D f , for crystallization. It can be defined as



When crystallization is initiated, the crystallinity is identically zero, and the

driving force is given by

The activation function can be defined through the driving force as

where A is the initiation barrier and is a positive constant. Crystalline material does not

form in a stress free state and hence the activation criterion depends on the temperature Θ

and tensor ΒKa . If the activation function has a negative value then it does not exceed the

initiation barrier and crystallization cannot take place. If, at a material point, the

activation function is taking a zero value then it indicates that crystallization is about to

begin and that that material point is on the activation surface. Increasing the value of the

activation function above zero causes crystallization to initiate. The mathematical

presentation of the fact then can be prescribed as follows:

Depending on the chosen forms of the various thermodynamic quantities for the

amorphous phase in this work, the activation function for crystallization can be written

as:
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where, ΛΗa is the latent heat. Note, in the Equation (4.3.6) the latent energy near the

vicinity of the equilibrium melting temperature of the crystals has been derived assuming

that the energy and entropy of the two phases are independent in this temperature range

(see Rao and Rajagopal (2002)).

Using Equation (4.3.2), Equation (4.3.1) can be rewritten as follows:

The crystallization rate can be obtained using the Equation (4.3.7). As Equation (4.3.7) is

in general non-linear, more than one value of ά is possible. The value of ά chosen is the

one that maximizes the rate of dissipation. Consequently, to derive the rate of

crystallization, it is necessary to prescribe the rate of dissipation. In this work, the form

chosen is

where the constant αo represents the maximum crystallinity and G , k and m are constants.

For the chosen form of rate of the dissipation, as crystallinity reaches its maximum value,

the rate of dissipation becomes very large, effectively curtailing any further

crystallization. Also, this form fytisfies the required conditions as in equatiοn(4.2.28).

For the chosen form of the rate of dissipation the crystallization rate takes the following

form:

where G is a constant.
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4.4 Acnivanion Crinerion for Melning and Melning Rane

The melting of crystals in CSMP is an irreversible process, just like crystallization. The

difference between the Helmholtz potentials of the crystalline and amorphous phase acts

as the driving force for melting. Using the reduced energy dissipation equation for

melting that is given by Equation (4.2.48), the driving force for the melting process can

be prescribed by

Moreover, for the forms selected for a' mac, a and ζm , it is clear that the following

relationship holds,

At the instant melting is initiated, both phases can be in a deformed state, As a result, the

activation function will depend on the deformation variables associated with both the

amorphous and crystalline phases. In such a case activation function through the driving

force can be defined as

where B is the initiation barrier and is a positive constant.

The activation function will take negative values when there is no melting and it

will take exactly zero when melting is about to begin. Once the activation function

exceeds zero, melting begins. The activation criterion for the initiation of melting can be

stated more precisely as follows:
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This completes the specification of the initiation criterion for the melting process.

Depending on the chosen forms of the various thermodynamic quantities for the

amorphous phase and the crystalline phase in this work, the activation function for the

melting process can be written as:

For deriving the rate of melting, it is important to prescribe the rate of dissipation

associated with the phase change during the melting process. In this work, the simplest

form that depends on the crystallinity and the crystallization rate has been chosen.

It is important to note that the chosen form for ζ, n is very similar to the rate of dissipation

associated with the phase transition during crystallization i.e. ζp . When the last crystal

melts, crystallinity takes a zero value and ζm will take the maximum value. Further

heating, above the melting temperature of the CAMP, will cause decomposition of the

material. For the chosen form for ζ^, , the melting rate can be prescribed using Equation

(4.4.2) and Equation (4.4.5) as follows:

This is the necessary equation required to complete the model. In the following chapters,

this model will be evaluated by simulating various processes.



CHAPTER 5

APPLICATION OF THE MODEL TO ONE-DIMENSIONAL PROBLEM

5.1 Innroducnion

In this chapter, the shape memory behavior in CAMP's is modeled in a mechanical

setting with the understanding that this is the first step in developing a full

thermodynamic model for these materials. The aim of this study is to clarify the

mechanical issues relating to these shape memory polymers.

This chapter presents the effects of the chosen constitutive equations for the

amorphous phase and the semi-crystalline phase as well as the implications of the natural

configuration associated with the crystalline phase on the temporary shape and return to

its original shape. Specific problem solved here that the model that arises using the

assumption that the polymer crystallizes in a stress-free state, is able to capture the

experimental observations accurately. To illustrate the efficacy of the model developed a

typical uni-axial cycle of deformation is simulated using MATLAB code and compare its

result with experimental data. For the uni-axial cycle of deformation, two cases studied

are crystallization under constant strain and crystallization under constant stress. In

addition, another problem solved is circular shear of a hollow cylinder. This is an

inhomogeneous deformation for which also, two cases are considered, namely

crystallization under constant shear and crystallization under constant moment. For both

these deformations, the rates are slow and so, inertial terms have been ignored.

56
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5.2 Kinemanics

5.2.1 Uni-Axial Snrenching

The first deformation cycle modeled is a uni-axial cycle of deformation. As mentioned

earlier, for a shape memory polymer, the study of only the loading process is not

sufficient. To capture the complete behavior, the whole cycle which consists of four

distinct phases, namely loading, crystallization (cooling), unloading and melting (heating)

is simulated. For the uni-axial cycle of deformation two commonly encountered cases are

studied. The first involves crystallization under constant strain. The shape memory

polymer is stretched to a prescribed length, and while the length is kept constant,

crystallization is initiated by cooling. In the second case, the behavior of the polymer is

studied when crystallization is initiated, while keeping the stress constant.

Uni-axial extension for an incompressible material is given by:

where, X, Y, Z are the co-ordinates in the undeformed configuration and x, y , z are the

co-ordinates in the deformed configuration and Λ(t) is the stretch ratio. Here, the

polymer is extended in the x -direction. For such a motion, the tensors F and F are

given by:

Other kinematical tensors, namely Β κα , ΒK<< ^ , C and Cκ,<f, are also diagonal and are

given by:



For a uni-axial extension, if the lateral surfaces are stress free, the stress in the

directions other than the direction of extension is assumed to be zero. Moreover, the

stress tensor can be written as

where p is the Lagrangian multiplier and σt is the constitutively determined

extra stress. Using equation(5.2.6) and the above mentioned assumptions, stress in the

direction of stretch can be written as follows:

5.2.2 Circular Shear

In this section, the cycle of circular shear of a shape memory polymer is presented. The

geometry of the problem is illustrated in Figure 5.1. It is a long, hollow, circular cylinder

which is fixed to a rigid support at its inner radius R 1 , and to a rigid sleeve at its outer

radius R2 . A moment per unit length of the cylinder is applied to the outer sleeve, causing

it to rotate about the center-line of the cylinder. Because of this, the hollow cylinder is

subject to circular shear. The hollow cylinder is subjected to two cycles of deformation,

similar to the ones used for the uni-axial example. For the first cycle, the cylinder is

sheared and then while the moment is kept constant, crystallization is initiated.
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Figure 5.1 Schematic associated with the circular shear geometry.

Following this, the cylinder is unloaded and then melting of the crystalline phase

returns the cylinder to its original shape. In the second type of deformation, the shear is

kept constant as crystallization takes place. Note, this is an inhomogeneous deformation

in which the shear components of stress are non zero and in addition the directions of

anisotropy can evolve, depending on the conditions under which crystallization takes

place. Furthermore, the shear vary through the thickness of the cylinder. For this

deformation, the two vectors that characterize the direction of anisotropy , nkc(T) and

mK  , evolve. The deformation for circular shear in cylindrical co-ordinates is given by:
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where (R, Θ, Z) and (r, 0, z) denotes the coordinates of the material particle in the

reference and current configuration respectively and f (R, t) denotes the rotation at time

t and radius R. For such a motion, the deformation gradient, denoted by F, is given bya

which is the local shear at any given radial

location in the cylinder. From now, we will suppress the variable r in the local shear k

and the incremental local shear Δk with the tacit understanding that it vary with radius.

ΒKa is the important tensor for finding stress in the amorphous region, and that along

with C, can be prescribe by:

The other important kinematic tensors for finding stress in the crystalline phase are Β
K^c=^

and C._ and can be written as:



The direction of anisotropy in the crystalline phase formed at time τ is

determined by the unit vectors n , 	,  which in turn are the eigenvectors of B

at the time of formation of the crystalline phase. Moreover, n, 	 mK<<τ, are in the

r —8 plane. The third eigenvector is perpendicular to the r —8 plane and is the unit

vector in z — direction. One can define nkc(T)) and 
mKc(T)

 through:

In the above equation, a, b, c and d are functions of τ and their values needed to be

calculated. The invariants J1 and Κ1 can be calculated using Equation (4.2.23) and

Equation (4.2.24) as follows:

An inverse solution method is utilized to solve this problem. For the deformation

described it possible to find stress components that satisfy the balance of linear

momentum, the appropriate boundary conditions and have the following structure:

Κα

It is needed to search for stress components that depend on the radius and time that will

satisfy the balance of linear momentum. The balance of linear momentum reduces to:



Integrating the above equation for the shear stress, and utilizing the inner radius of the

cylinder to non-dimensionalized radius, we obtain:

where σγ9 is the dimensionless shear stress at the radial location r and at time t. Μ0 is

the moment per unit length applied to the outer surface of the cylinder, while Μ0 is a

dimensionless quantity related to the moment applied. This is the key equation used to

solve for the variation of local shear with time and radius as the polymer undergoes a

cycle of deformation.

5.3 Solunion Menhod

5.3.1 Uni-axial Strenching

Next, the set of equations for each stage of the shape memory process is derived for this

uni-axial cycle.

1. The Loading Process: During the loading process, the material is above the transition

temperature and is totally amorphous in nature. Hence, α = 0 and the stress in the

direction of stretch can be written using Equation (4.2.13), Equation (5.2.4) and Equation

(5.2.7) as follows:
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For the case when the final stretch is known, by prescribing the stretch as a function of

time, the progression of stress is readily known from Equation (5.3.1). Conversely, for

the case when the final stress is known, by prescribing the stress as a function of time, the

algebraic equation for stretch can be readily solved.

2. The Cooling Process: Once crystallization is initiated, the rate of crystallization is

given by the appropriate crystallization kinetics, which are intimately related to the

temperature and thermodynamics of the problem. Typically, for polymers, different

forms of the Avrami equation are used, and recently Rao et al. (2004, 2005) have derived

rate equations based on thermodynamic considerations. However, in this work, issues

with regards to the mechanical behavior of shape memory polymers is only considered,

there is no need to delve into the thermodynamics of the problem. And that will be the

topic of the next chapter. Here, It is assumed that the rate at which crystallization takes

place is given by a crystallization rate equation, with the tacit understanding that such an

equation can be derived from a firm basis in thermodynamics (see Rao et al. (2002)). The

specific equation chosen to mimic the rate of crystallization is given through a

differential equation for the mass fraction of the crystalline phase and is given by:

where, G is a constant, αo is the maximum crystallinity possible in the material and i s

is the time at which crystallization is initiated. The above equation is solved numerically

using a standard numerical scheme for ordinary differential equations. Once

crystallization ceases, i.e., when, α = αo at a later time denoted by t f , the material is

unloaded.
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Crystallization can be done either under constant strain or constant stress.

Depending on how the crystallization takes place, the solution methodology changes

slightly. Both cases should be discussed separately.

Crystallization under constant strain: When crystallization is done under constant

strain, there is no change in the stretch i.e.:

Using Equation (4.2.37), Equation (5.2.4), Equation (5.2.5), Equation (5.3.3) and

noting that the crystalline phase is formed in a stress free state and hence the contribution

to the stress from the crystalline phase, while the stretch is kept constant, is zero results in

the following equation for the stress:

Crystallization under constant stress: When the polymer crystallizes under

constant stress the mechanical behavior is quite different. Because the newly crystallized

material is formed in a stress free state, while the stress on the polymer is kept constant,

the polymer will stretch as crystallization proceeds. Explained differently, when part of

the amorphous polymer crystallizes, the ability of the amorphous polymer to carry the

stress diminishes, as there is less amorphous polymer available. However, the newly

formed crystalline polymer is formed in a stress free state and is unable to carry the load

either. The only way the polymer can sustain this stress is to stretch as the already present

crystalline phase and the remaining amorphous phase take on the additional stress. The

crystalline phase is a lot stiffer than the original amorphous phase and hence the

magnitude of this incremental stretch is much smaller than the original stretch.

The stress in direction of extension can be found using Equation (4.2.37),

Equation (5.2.4), Equation (5.2.5), and Equation (5.2.7), and is prescribed by:



Rearranging Equation (5.3.5), the variation of the stretch with time can be prescribed as

The values of these integrals are known at time t as all past values of stretch and

crystallization rates are known. To solve for the current value of stretch, Λ (t) , the values

of these three integrals are first evaluated numerically and then substituted into Equation

(5.3.6). Now, in Equation (5.3.6) the only unknown variable is the current stretch A (t) .

The resulting equation is a polynomial equation of order five, which is solved

numerically utilizing the fact that out of the five possible solutions, only one is physically

possible. For this problem, the conditions that the correct root had to be real and greater

than unity (as the polymer is stretched) sufficed to identify the physically realizable

solution.

3. The Unloading Process: It is important to note that during unloading, the material is a

mixture of two different phases, the crystalline and amorphous phases, with each having
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different stress-free states. Hence both phases will not unload to a stress-free state,

though the mixture will be stress-free. The equation for the stress during unloading

reduces to

In the above equation the limit of the integral is now t f , the time at which crystallization

ended and αs is the final crystallinity. Again, re-writing equation(5.3.8) in a manner

identical manner to Equations (5.3.6) and Equation (5.3.7) we obtain:

where, L1 , 4 and 13 are integrals identical to those given by Equation (5.3.7), except that

the upper limit is t f . The values of these integrals remain unchanged during the

unloading process as their integrands only depend on the stretches and crystallization

rates during crystallization, i.e. between times i s to t f . To determine the variation of

stretch during the unloading process, the stress value brought down to zero from its value

at the end of crystallization. For each intermediate value of stress, the value of stretch can

be obtained by solving the resulting polynomial Equation (5.3.9) in a manner identical to
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that described earlier, keeping in mind that out of the multiple roots, the right root is the

one that has physical significance.

4. The Melning Process: After unloading, the polymer is in its temporary shape. Return

to the original shape is accomplished by melting the crystalline phase. This is done by

heating the polymer above the melting temperature of the crystalline phase. As described

earlier, the temporary shape of the polymer is retained because the two phases have

different stress-free states. As the crystalline phase melts, the shape of the polymer

slowly returns to its original shape as the crystalline phase is no longer present to keep it

in its temporary shape. To track the evolution of the shape as it evolves from the

temporary to permanent shape it is necessary to track which fraction of the crystalline

phase is melting at any given time. This is particularly true for the case where

crystallization takes place under constant stress as different crystals form at different

stretches, and for this reason, the crystalline phase has different stress-free states. So,

when a crystallite that is more stressed melts, the polymer as a whole will retract towards

its original shape more than if a less stressed crystallite melted. For the constant stretch

case all the crystals form in the same configuration, and therefore, the order in which the

crystals melt does not impact the intermediate shapes occupied by the polymer. However,

for crystallization under constant stress, or for a more general case wherein crystallization

takes place under conditions of varying stress, the order in which the crystallites melt is

important. The assumption made with regards to the melting process is that the

crystallites formed last melt first, this assumption is supported from experiments as

crystallites formed farthest from the equilibrium melting temperature (i.e. crystallites that

were formed last) are thinner and melt at lower temperatures (i.e. melt first). During the

melting process, the crystalline phase begins to melt at some time denoted in this study
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by tms . The stress in the polymer is zero and the equation for determining the stretch

The above equation can be rewritten as an algebraic equation of the order of five as

follows:

where the integrals have integrands identical to Equation (5.3.7) and Equation (5.3.10)

with different limits and are given by:

Incremental values of crystallinity are obtained from the prescribed melting

equation for crystallinity, which is given by:

where, G is a constant, tms is the time at which melting is initiated and t mf is the time at

which melting ceases, i.e. when α =0 .  This is the last equation required to complete the

cycle. Here, the melting rate equation is prescribed as an empirical equation because the



69

primarily focus is on the mechanical implications. One can determine the incremental

decrease in crystallinity and the net crystallinity after each time step by solving Equation

(5.3.14). Using the interpolation procedure described above the value of t can be

determined. Using the value of t, the values of integrals in Equation (5.3.1 3) can be

determined. The values of the integrals are substituted into Equation (5.3.12) and the

resulting polynomial equation is solved for the appropriate value of stretch. This

completes the solution procedure for the uni-axial cycle of deformation.

5.3.2 Circular Shear

The solution methodology closely follows what is developed for the uni-axial problem.

1. The Loading Process: The cylinder is loaded by gradually increasing the applied

moment at the outer radius, which produces shearing. Aince during the loading process

the polymer is amorphous, from Equation (4.2.13), Equation (5.2.11), Equation (5.2.15)

and Equation (5.2.17), the local shear inside the cylinder is given by:

Note, the shear varies with radius and time as the applied moment is increased.

2. The Cooling Process: As presented two cases for the uni-axial extension cycle earlier,

here also, two different cases are described. The first is crystallization under constant

shear and the second is crystallization under constant moment.

Crystallization with constant local shear: Once the maximum moment is applied,

crystallization begins keeping the local shear constant. As the new crystals form in a

stress free state during the crystallization process, the moment required to maintain a state

of constant shear decreases. During the crystallization process the local shear remains

constant, i.e.



I rieretore, using Equation (4.23 ]), Equation (5.2.11), Equation (5.2.12), Equation

(5.2.17) and Equation (5.3.16) the shear stress can be written as:

It is important to note that it is possible from Equation (5.3.17) to calculate how the

applied moment has to vary in order to maintain constant shear. The crystallization rate

equation is identical to the one chosen earlier in Equation (5.3.2).

Crystallization with constant applied moment: In this second case, after loading,

the moment is kept constant, and crystallization is initiated. Because the newly

crystallized material is formed in a stress free state, while the applied moment is kept

constant, the polymer will continue to shear as crystallization proceeds for exactly the

same reasons explained earlier for the uni-axial case, where in crystallization taking place

under constant stress were investigated. The equation for shear stress can be written using

Equation (4.2.37), Equation (5.2.11), Equation (5.2.12), Equation (5.2.14) and Equation

(5.2.17) as follows:

Hence, during crystallization under constant moment, the local shear at each radial

location can be obtained rearranging and expanding Equation (5.3.18)



The values of the integrals only depend on kinematic variables at times prior to the

current time and hence, can be directly evaluated. Once, these integrals are evaluated

numerically for each radial location, the current value of shear at that radial location is

obtained by solving the resulting cubic Equation (5.3.20). The correct root is identified by

examining the physical validity of the result (it has to be real and greater than zero).

3. The Unloading Process: To determine the shape recovery on unloading it is noted that

the relationship between the local shear at any radius and the applied moment is given by

Equation (5.3.19) and Equation (5.3.20) with the exception that the limits of the integrals

are now fixed from time is (the time crystallization began) to time t f. (when

crystallization ended). Substituting these integrals into Equation (5.3.19) the variation of

local shear at any radial location with time is determined by solving the cubic equation

for different decreasing values of moment, till the applied moment is zero.

4. The Melning Process: Here as in the uni-axial case it is assumed that the crystallites

formed at the end of the crystallization process melt first. The local shear during the

melting process is again given by Equation (5.3.19) with the integrals given by Equation

(5.3.20) with a part of the integral not contributing to the stress as it has melted. The

methodology and reasoning are identical to the uni-axial case and will not be reiterated
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again. The stress in the polymer is zero and the equation for determining the stretch

As noted earlier, the time is tagged when the crystals were formed with the actual times

when they were formed, i.e., τ e [t 5 ,Ι .Ι. ] . The melting rate equation is identical to the one

used in the uni-axial case and is given by Equation(5.3.14) and the methodology for

solving for the local shear is identical with the exception that now the equations are

solved for each radial location at which the variation of local shear with time is desired.

This completes the solution methodology used, in the next section; results of the

calculations are discussed.

5.4 Results

The calculations were performed for two geometry, namely, uni-axial extension and

circular shear, the first being homogenous while the second inhomogeneous. In each

geometries, two types of results were obtained. For the uni-axial case, crystallization
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under constant strain and crystallization under constant stress were studied. In the case of

circular shear, the two cases investigated are: crystallization under constant shear and

crystallization under constant moment. In addition the results of the calculation from the

uni-axial simulation are compared against experimental data.

The first set of results is for uni-axial extension with crystallization taking place

while the strain is kept constant. The graph of true stress versus strain (in %) for different

values of final crystallinity are shown in Figure 5.2. Note that the stress increases when

the polymer is deformed above the recovery temperature. After the onset of

crystallization the stress drops as the newly formed crystalline phase is formed in a stress

free state. Note that the drop in stress observed during crystallization increases for larger

final values of crystallinity. Finally on unloading there is a small amount of retraction, the

new material is significantly stiffer than the original amorphous material. Also, the

material with more crystalline material is stiffer than the material with less amount of

crystalline material, this can be discerned by looking at the slope during unloading.
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Figure 5.2 Plot of stress versus strain for uni-axial extension with crystallization taking
place at constant strain for three different crystallinity values. The constants used for
simulation are mentioned in Table 5.1.

Table 5.1 Data Used for Simulating Circular Shear in Cylinder (Constant Strain
Process)
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Figure 5.3 Plot of nominal stress versus strain for uni-axial extension with crystallization
taking place at constant strain. + indicates experimental data (Lendlein et al. 2001). The
constants used are mentioned in Table 5.2.

Table 5.2 Data Used for Aimulation of Verification Process
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Figure 5.4 Plot of stress versus strain for uni-axial extension with crystallization taking
place at constant stress for three different crystallinity. Constant used in the simulation
are mentioned in Table 5.1.
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For uni-axial extension, the behavior of the model were compared with data

presented in Lendlein et al. 2001.The material constants are consistent with the data

presented. The stress in this case is the nominal stress, and the plot is of nominal stress

versus the strain and is shown in Figure 5.3. As you can see the data points compare very

well with the model predictions.

In the uni-axial geometry, the results were also obtained for a case when

crystallization takes place while the stress is kept constant. This case is shown in Figure

5.4 Again, three sets of curves are plotted, each corresponding to a different level of final

crystallinity. Note that as the crystalline phase is formed in a stress free state, for the

stress to be held constant, the polymer will have to immediately undergo a small

extension. This is clearly observed in Figure 5.4, where as crystallization proceeds the

material extends. The maximum stretch is directly correlated with the final crystallinity,

with its magnitude increasing with the final crystallinity. On unloading the sample

retracts by a small but finite amount because of the increase in stiffness. Also, note as the

final crystallinity increases the stiffness also increases.

The second geometry investigated was circular shear of a hollow cylinder. The

first case studied in this geometry was a deformation cycle in which a moment was

applied above the recovery temperature, as a result of which the cylinder underwent a

shearing deformation. When a prescribed value of moment has been reached, the moment

is held constant and crystallization is initiated. Then the cylinder is unloaded to zero

moment. The variation of moment with time is shown in Figure 5.5, it is ramped up to the

prescribed value and then ramped down to zero. The variation of moment with shear is

shown in Figure 5.6. Note that the shear at the inner radius of the cylinder is maximum

while at the outer radius it is minimum.



Figure 5.5 Plot of time versus applied moment for circular shear geometry. During
crystallization, moment is kept constant. Constant used for simulation are mentioned in
Table 5.3.

Table 5.3 Data used for Aimulating Circular Shear in Cylinder (Constant Moment
Process)
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Figure 5.6 Plot of applied moment versus shear for circular shear geometry. During
crystallization, moment is kept constant. The constants used in simulation are mentioned
in Table 5.3.
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Figure 5.7 Plot of time versus shear for circular shear geometry. During crystallization,
moment is kept constant. The constants used for simulation are mentioned in Table 5.3.
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After the onset of crystallization, the shear at all locations increases because the

crystalline phase is formed in a stress free state and to support the same moment, the

cylinder has to shear further. During unloading a small retraction in deformation is

observed and as it is noted that the material is a lot stiffer after crystallization. Figure 5.7

plots the shear versus time for the whole process for different radii, the different stages

are marked. Initially the shear increases. After the onset of crystallization, there is further

increase in shear at each location for reasons explained earlier. During the unloading

process there is a small decrease in shear with the decrease being larger at the inner

radius of the cylinder where the shear is the maximum. Finally as the crystalline phase

melts, the shear again returns to zero.

The second case investigated in the cylindrical geometry was the case where after

loading the shear was kept constant during the crystallization process. The variation of

moment with time is shown in Figure 5.8, note that the after the onset of crystallization,

the moment drops and finally returns to zero on unloading. The plot of moment versus

shear is shown in Figure 5.9. Note that, the shear is maximum at the inner cylinder and

after the onset of crystallization the moment drops. Also, similar to the other cases, on

unloading a small retraction is observed. Finally in Figure 5.10 the shear versus time

graph was plotted. Initially the shear increases as the moment is increased, then during

crystallization the shear is kept constant. On unloading a small amount of retraction can

be seen in Figure 5.10. During melting of the crystalline phase, the shear drops back to

zero.



Figure 5.8 Plot of time versus applied moment for circular shear geometry. During
crystallization, shear is kept constant. The constants used for simulation are mentioned in
Table 5.3.



Figure 5.9 Plot of applied moment versus shear for circular shear geometry. During
crystallization, shear is kept constant. The constants used for the simulation are
mentioned in Table 5.3.
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Figure 5.10 Plot of time versus shear for circular shear geometry. During crystallization,
shear is kept constant. The constants used for simulation are mentioned in Table 5.3.



CHAPTER 6

APPLICATION OF THE MODEL TO THERMALLY COUPLED SYSTEM:
INFLATION AND EXTENSION OF HOLLOW CYLINDER

6.1 Introducnion

In this chapter, description about the work that is needed to be done for the fulfillment of

the requirements of the current study is presented. Ao far, thermo-mechanics associated

with CAMP is well understood. It have been shown in the previous chapter that using the

developed model (described in Chapter 4) it is possible to model phase transitions (the

amorphous phase to semi-crystalline phase and vice versa) with in mechanical settings

for one-dimensional processes. The future study will be more comprehensive and the aim

is to be able to simulate more realistic processes with more complex geometry.

6.2 Simulanion of Non-isonhermal and Inhomogeneous Deformanion Cycle

The representative deformation cycle chosen is inflation and extension of the tube. In this

process the material undergoes large inhomogeneous deformation and heat transfer

process can be prescribed with realistic boundary conditions. Figure 6.1 shows the

schematic of the process in which the primary mode of the heat transfer inside the

material is heat conduction. It is assumed that inner surface of the cylinder is insulated

and outer surface of the cylinder is having convective boundary condition. In this case

physical quantity for which attention must be paid are radius of the cylinder, pressure

difference that is applied and the stretch-ratio. For this case, it is assumed that the rates

are slow and hence, inertial terms have been ignored and the stretch ratio(A(t)) is kept

constant in all processes loading, cooling, unloading and heating.
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Figure 6.1 Schematic associated with the inflation and extension of a tube.

6.2.1 Monion

Consider the Figure 6.1 showing hollow cylinder with internal radius R 1 , external

radius R2 and height H at time t=0. The cylindrical co-ordinates (R, Θ. Z) are used for

analysis purpose. Material is stretched in z direction and the tube is pressurized gradually

to inflate tube such a way that motion of the processes can be stated as follows:

For the given case deformation gradients F and F, can be written as:



For the given case, equation for the conservation of mass is

According to the conservation of mass given by Equation (6.2.4) and based on the

assumption that stretch ratio remains constant through out the deformation cycle,

The other important kinematic tensors such as B ,C , B 	 and C can be

prescribed as



The directions associated with the anisotropy in the crystalline phase formed at time τ is

determined by the unit vectors u,  ίι, and m K< < _ , , which in turn are the eigenvectors of Β^Q at

the time of formation of the crystalline phase. One can define n  and m χ. , , through:

These values eigenvectors are required to find invariants associated with anisotropy such

as .I^ and Κ1 .

6.2.2 Mass Conservanion

For the current problem, the mass conservation principle is given by Equation

(6.2.4) but a more useful form of the principle can be written using Equation (6.2.2) and

Equation (6.2.4) and applying proper limits. We obtain,
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This is a useful equation because knowing R 1 and r, one can map the radius of each

particle from the reference configuration to the deform configuration or the current

configuration.

6.2.3 Balance of Linear Momennum

For the current geometry the balance of linear momentum in cylindrical co-ordinates can

be written as follows:

Where, 1. is internal pressure and Ι^ is ambient pressure that apply to the outer wall of

the cylinder. Using Equation (6.2.11) and the boundary conditions given in Equation

(6.2.12) a relation between pressure difference and radii as give below.

This is an important equation for simulating the process.

6.2.4 Hean Transfer

It is assumed that there is no heat transfer possible from the top and the bottom of the

cylinder. Hence, at a particular radius r in all r —8 planes, material points will have the

same temperature. In one cycle of deformation, there are two processes: the

crystallization and the melting both of which are non-isothermal. For both the cases, it is

needed to be prescribed a heat transfer rate separately.
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1. Hean Transfer Rane for nhe Cooling Process

Considering the geometry and the boundary conditions for the cooling process, use of the

standard diffusion equation in cylindrical co-ordinates should be enough for prescribing

the cooling rate

with the following initial and boundary conditions

where, y, All and C are the diffusivity, the latent heat and the specific heat of the

material respectively and k is some constant. The required crystallization rate, ά

necessary to find the heat transfer rate is given by Equation (4.3.9).

2. Heat Transfer for nhe Melning Process

The heating rate can also be given using the fyme equation but there will be change in

boundary conditions.

with the following initial and boundary conditions
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The required crystallization rate, ά necesfyry to find the heat transfer rate is given by

Equation (4.4.7).

6.3 Solunion Menhod

In this section, the key equations for all four processes are prescribed in non-dimensional

form and then discussion about the solution procedure for each equation is also discussed.

As, it is assumed here; that the stretch ratio remains constant during the entire cycle, the

actual computational domain is in the r —8 plane only.

6.3.1 The Loading Process

The key parameters in non-dimensional form are prescribed below,

Here, n is total number of nodes. For the fyke of clarity we will drop * sign for non-

dimensional form.

Key equation for the loading process is one that correlates pressure difference and

the radius at any given time. The equation in non-dimensional form can be written as

The loading can be prescribed either by an internal pressure which is a function of time or

by incrementing the values of inner radius at every time step. If the loading process is

prescribed by the internal pressure, then in the above equation, the value of the term on

right hand side of the equation is known. Now guessing values for r l , using Equation

(6.2.10) numerical values of the radius at any point and at any given moment of time can
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be found. For each assumed value for the inner radius, using trapezoidal rule for

calculating integration on the left hand side of the equation, verification of the

assumption is possible. If the loading is defined by defining inner radius as a function of

time then using Equation (6.2.10), numerical values of radii for each node can be found.

Once, known all the values; using trapezoidal rule for integration, pressure difference can

be found easily.

6.3.2 The Cooling Process

For the cooling process important equations are the energy equation, the crystallization

rate equation and the balance of momentum. The non-dimensional form is given by:

Using Equation (6.3.3), following equations for the cooling rate with the initial

condition and boundary conditions can be written as stated below.

The crystallization equation in the non-dimensional form can be written as,



And the equation for the pressure difference can be prescribed as

The computational domain is divided and it ranges from inner radius R 1 to outer

radius R2 of the cylinder, in several parts. Using this grid and the explicit scheme for the

diffusion equation one can find the temperature at every node. Once the temperature is

known, crystallinity can be found solving ordinary differential equation (Equation (6.3.6)

) using the Euler's method. While cooling the material shape is kept fixed and hence,

there will be no change in the values of radii at different nodes. In such scenario,

Equation (6.3.7) will be reduced to

Knowing the values of all radii from the last time step, using trapezoidal rule it is easy to

find the pressure difference.

6.3.3 The Unloading Process

The unloading process is assumed to be isothermal and so there will be no change in the

crystallinity i.e. no phase transition will occur. The pressure difference gradually

decreases as the internal pressure lowers to match the external pressure. With this concept



94

of unloading of the material, it is very difficult to find the values of radius at each node

point at any time during the unloading process. The equation that connects the pressure

difference to the radius can be presented in dimensionless form

Guessing the values of inner radius one can find the values of radii at each nodal point

using Equatiοn(6.2.10). Only for the right guess for the value of inner radius,

Equatiοn(6.3.9) will be satisfied.

6.3.4 The Heating Process

For the heating process, the heating rate equation along with the initial condition and

boundary conditions in non-dimensional form can be written as

Solving the diffusion equation using explicit scheme gives the temperature at every nodal

point. Once the temperature is known, using the Euler's method, below mentioned non-

dimensional crystallization equation can be solved for the crystallinity at each point.
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The balance of momentum equation in non-dimensional form can be prescribed as

Using the same technique that used for finding the radii in the unloading process,

Equation (6.3.13) can be solved.

6.4 Results

Using the set of equations developed for inflation and extension of the tube, the process

has been simulated. Here, some of the interesting results that were found during these

simulations are discussed. Two different set of results are developed for two different

cases of processes simulations. In first case, it was assumed that the deformed shape is

not deforming further during the cooling process. Figure 6.2 shows the temperature

variation through out the cycle. From Figure 6.3, it can be said that at every point when

the temperature drops below the transition temperature, the crystallinity increases and

once it attains the highest value it remains there until the temperature takes higher values

than the transition temperature. With the increase in temperature the crystals start melting

and the semi-crystalline phase transforms in to the amorphous decreasing the crystallinity

in the material. Figure 6.4, shows the plot between the pressure and the radii of nodes.

With the increase in pressure radius is also increasing. During crystallization as per our

assumptions, there will be no change in the values of radii of different node points, yet

the pressure drop can be observed. The pressure should drops because the new crystals

are stronger than the amorphous chains and so there will be less pressure required to
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retain the shape of the material. As the material is unloaded due to the presence of the

rigid crystals material will retain its shape. However, it can also be seen that due to

presence of the amorphous phase there is a small strain recovery. During the melting

process, strained crystal melts and transfers in to the amorphous phase and as there is no

pressure difference exists, it will go back to its original shape as shown in Figure 6.4.

Figure 6.2 The temperature variation plot for inflation and extension of the tube where
there is no change in the shape during the cooling process. (see Table 6.1 for the constant
used)



Table 6.1 Data used for Aimulating Process of Inflation and Expansion of the Hollow
Tube
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Figure 6.3 The crystallinity variation with time in the inflation and extension of the tube
where there is no change in the shape during the cooling process.
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Figure 6.4 The pressure difference versus radius plot for the inflation and extension of
the tube where there is no change in the shape during the cooling process.
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For the other case also, the similar graphs were plotted between the respective

quantity. However, the difference in this case is that during the cooling pressure it is

assumed that the pressure remains the constant. Figure 6.5 and Figure 6.6 shows the

temperature and crystallinity plots for the cycle and it show similar pattern as of the other

case. Figure 6.7 shows the plot between the pressure and the radius of a node. In this

case, as the pressure remains constant, with the formation of new crystals in their natural

configuration it will start deforming. This deformation will cause the increase in radius as

new crystals form. At the end of the unloading process, pressure difference is zero and so,

due to the presence of the soft amorphous phase there can be small strain recovery can be

seen in the Figure 6.7 And because of above mentioned reasons here also one can see

100% shape recovery at the end of the heating process.



Figure 6.5 The temperature variation plot for the inflation and extension of the tube
where there is no change in the pressure difference during the cooling process.
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Figure 6.6 The crystallinity variation with time in the inflation and extension of the tube
where there is no change in the pressure difference during the cooling process.
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Figure 6.7 The pressure difference versus radius plot for the inflation and extension of
the tube where there is no change in the pressure difference during the cooling process.



CHAPTER 7

FINITE ELEMENT MODULE FOR CRYSTALLIZABLE SHAPE MEMORY
POLYMERS

7.1 Innroduction

Finite element analysis is a numerical method for analyzing complex structural and

thermal problems. For plastics, it is important that finite element software have good

nonlinear capabilities. Often, nonlinear analysis is an add-on, not provided in the base

package. Currently, there is no mathematical model available for CAMPs hence; there is

no add-on available to add in of the commercial software package available. With help of

the mathematical model described in the Chapter 4, it is now possible to create finite

element module. Using this finite element module, finite element analysis of any

processes that involves use of CAMPs can be carried out. In this chapter, the basic theory

used and step by step procedure required to develop finite element module is described.

Out of available commercial finite element softwares, very few allows user to include

user define finite element module for newer material. ABACUA/CAE as a finite element

software package is used for simulations. Creating user subroutine (UMAT) in

FORTRAN for CAMPs, finite element analysis can be carried out in ABAQUA/CAE.

Required tests to validate developed user subroutine (UMAT) based on the current model

is also performed.

7.2 Weak Formulanion, Linearizanion and Sniffness Manrix

The finite element method requires the formulation of the balance laws in the form of

variational principles. From the developed model in Chapter 4, it can be said that any
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finite element analysis for CSMPs would be a non-linear problem and so, linearization of

a weak form is essential.

7.2.1 Weak Formulanion and Linearization

Balance of linear momentum is most important equation needed to be converted in to

weak form to perform finite element analysis of structural problems. Following is the

derivation of weak form of balance of linear momentum that can be used in finite element

analysis.

Assuming displacement, u is given by

The balance of linear momentum (Equation (3.1.22)) can be rewritten in following format

for body  ()

The weak form for the balance of linear momentum can be achieved by multiplying test

function, η = η(x) = η(x, t) to Equation (7.2.2).

Using the Equation (3.1.14), assuming that body Ω is in equilibrium and using standard

identities of tensor algebra, following standard format of the weak can be derived

If we look upon η as the virtual displacement field δu , defined on the current

configuration then Equation (7.2.4) becomes
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The internal (mechanical) virtual work, &W,. , and external (mechanical) virtual

work, δWex1 can be defined as

Using Equation (7.2.5) and Equation (7.2.6) principal of virtual work can be written as

follows:

One can also derive the weak form of the balance of linear momentum in

reference configuration as described below

If the constitutive equation for the stress is linear in kinematic variables the finite

element approximation will result in linear system of equations. However, if the

constitution equation is non-linear then weak form will also be non-linear and Newton-

Raphson method, an iterative method is used to solve the problem. For each iterations, it

is necesfyry to solve linearized form of the weak form. Given a non-linear function

f (z, Δυ) one can linearize the function with respect to some direction ú about some

known configuration x as

where

For Newton's method setting f (x, Δυ) = 0 and neglecting higher order terms, we get
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Now, it is important to find useful form of the linearized weak form of the momentum

equation. In this work, it is assumed that body force b and surface traction n are

independent of the deformation of the body in consideration. So, the corresponding

linearization of the external virtual work vanishes and the linearization will only affects

the internal virtual work. For this work, the linearization of the weak form prescribed in

reference configuration. The internal virtual work in material description can be given

where S is the second Piola- Kirchoff stress. Applying linearization we get

This is required equation needed to be solved.

7.2.2 Sniffness Manrix

Applying linearization defined in Equation (7.2.10) solution of Equation (7.2.13) can be

achieved. Simplification leads to following useful result for the hyperelastic materials

where C is 4m order tangent stiffness matrix and can be defined as

First term in above Equation (7.2.14) is the material contribution to the tangent stiffness

matrix and the second term represents geometrical contribution to the tangent stiffness

matrix. In this work, ABACUS/standard solver is used for the calculations. It requires 4`"

order tangent stiffness matrix defined through the Kirchoff stress tensor instead of second
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Piola stress tensor. In such case, linearized form of the principal of virtual work will take

following form

while, tangent stiffness matrix C is defined as

Here, 2' is the Jawman rate of the Kirchoff stress. Keeping this fact in mind following

procedure has been adopted to derive the components of the tangent stiffness matrix (See

appendix Α for complete derivation of tangent stiffness matrix for CSMP).

Find the equation of the Cauchy stress tensor(σ) , using the stored energy

function(ψ) , using following equation

• Find the Kirchoff stress (T), by multiplying volume ratio to Equation
(7.2.18)

• Take the material time derivative of the Kirchoff stress (t) .
• Bring it to Jawman rate (i' ) , using following equation

• Use Equation (7.2.17) to calculate tangent stiffness matrix.

Once stiffness matrix is derived, it is possible to create a finite element module. This

particular module then will be used to carry out different finite element analysis of

different realistic processes that is made from CAMP's.
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7.3 Developmenn of Finine Elemenn Module

Α finite element module that contains information regarding properties of a material is

called material module. Using material module, it is possible apply material properties to

a solid model. The combination of a solid model and a material module makes a material

model of a part under consideration. The solid model follows instructions prescribed in a

material module. Α material module facilitates user to input different physical properties

and related constants associated with material used to form the real object. Aome finite

element software provide various material modules for various commonly used materials

such as metals, glass, polymers etc.. Where as some finite element software not only

provide material modules for more commonly used material but also allows user to create

their own material module for the specific material for which use of standard material is

not appropriate.

In this chapter, the process simulation in which CSMP is used is shown. CAMPs

are recently developed polymer while comparing it to other commonly used polymer

such as polyethylene, polypropylene, PET, Nylon etc. Use of a material module that is

made for commonly used polymer is not appropriate for our purpose. Hence, a new

material module based on the constitutive equation derived in Chapter 4 is developed.

The material module will be used along with different solid models made for different

solids used in different processes.

In this work, ABACUA/CAE as finite element software is used. ABAQUS/CAE

allows users to create their material module for the specific material. Creating material

module requires a formulation of FORTRAN code known as UMAT (User MATerial).

UMAT essentially contains all required information to carry out structural analysis that

may require definition of stress, strain, tangent stiffness matrix etc. Α typical CAMP cycle

involves temperature variation along with the phase change. Temperature change causes
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phase change and latent heat is involved with phase transition phenomenon. Crystallinity

also causes change in the mechanical properties such as strength. Hence, along with

UMAT another FORTRAN program is needed to be written called UMATHT which

includes the effect of latent heat associate with phase change and it also provides

necesfyry information to solve heat conduction. Moreover, crystallinity is required to be

defined as solution dependent state variable because it depends on the temperature and

kinematic variables which change their value with time. Hence, it is important to include

user subroutine called SDVINI through which crystallinity values updating is possible.

In following subsections, the templates of these subroutines along with their

importance and utility are presented. All the information prescribed here can be found

in ABAQUA user material (Kindly, refer ABACUA/CAE standard online user manual for

in depth details).

7.3.1 UMΑΤ

User-defined mechanical behavior in ABAQUA can be included by adding a user

subroutine UMAT in to a library of the models. A constitutive model is programmed in a

user subroutine. For finite-strain applications the interface for subroutine UMAT is

implemented using Cauchy stress components ("true" stress) and integrated rate-of-

deformation as the strain increment. While solving problem the user subroutine UMAT

is called for each nodal points of mesh at every increment. User subroutine UMAT

includes the instructions for updating stresses and solution-dependent state variables to

their values at the end of the increment. It is also necessary to include the material

Jacobian matrix for the mechanical constitutive model. Jacobian matrix usually defined

through the variation in Kirchoff stress. Jacobian matrix prescribed in rate form is

integrated numerically in the subroutine.
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There is a particular way user can define the stress and strain components in

ABAQUS as shown in Table 7.1.

Table 7.1 Convention Followed in ABACUS for Stress and Strain

C11 : Direct stress in the 1-direction B11 : Direct strain in the 1-direction

C22 : Direct stress in the 2-direction B22 : Direct strain in the 2-direction

C33 : Direct stress in the 3-direction B33 : Direct strain in the 3-direction

C12 : Ahear stress in the 1-2 plane 812 : Ahear strain in the 1-2 plane

C13 : Shear stress in the 1-3 plane 3 : Shear strain in the 1-3 plane

C23 : Ahear stress in the 2-3 plane B23 : Ahear strain in the 2-3 plane

Moreover, for linearized elasticity matrix following relationship holds

As one can see C is a 4 1h order tensor and it contains 81 components. Due to energy

consideration and geometric symmetry these 81 components reduce to 36 components.

Using the Voight notations, above Equation (7.3.1) can be re written as:
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Table 7.2 The Standard Template for UMAT

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
1 RPL,DDSDDT,DRPLDE,DRPLDT,
2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,
3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,
4 CELENT,DFGRDO,DFGRDI,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

C
INCLUDE 'ΑΒΑ_PARAM.INC'

C
CHARACTER* 80 CMNAME
DIMENSION STRESS(NTENS),STATEV(NSTATV),
1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),
2 STRΑN(NΤΕΝS),DSΤRΑΝ(NΤΕΝS),ΤΙΜΕ(2),PREDEF(1),DPRED(1),
3 PROPS(NPROPS),COORDS(3),DROΤ(3,3),DFGRDO(3,3),DFGRDI(3,3)

user coding to define DDSDDE, STRESS, STATEN, SSE, SPD, SCD
and, f necessary, RPL, DDSDDT, DRPLDE, DRPLDT, PNEWDT

RETURN
END

DDSDDE(NTENS,NTENS)
Jacobian matrix of the constitutive model. DDSDDE(I,J) defines the change in the
Ith stress component at the end of the time increment caused by an infinitesimal
perturbation of the J th component of the strain increment array.
STRESS(NTENS)
This array is passed in as the stress tensor at the beginning of the increment and
must be updated in this routine to be the stress tensor at the end of the increment.
STATEV(NSTATV)
An array containing the solution-dependent state variables.

SSE, SPD, SCD
Apecific elastic strain energy, plastic dissipation, and "creep" dissipation,
respectively. Only in a fully coupled temperature-displacement analysis.

RPL
Volumetric heat generation per unit time at the end of the increment caused by
mechanical working of the material.
DDSDDT(NTENS)
Variation of the stress increments with respect to the temperature.

DRPLDE(NTENS)
Variation of RPL with respect to the strain increments.

DRPLDT
Variation of RPL with respect to the temperature.
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Atiffness matrix C is denoted as DDSDDE in a UMAT. It is very essential for user to

prescribe it in above mentioned format while writing UMAT.

Table 7.2 shows the standard template provided in ABACUS user manual to

create user subroutine UMAT.Using the template shown in Table 7.2 and constitutive

equation derived in Chapter 4, our own UMATs (See appendix B and appendix C) are

created for iso-thermal and non-isothermal processes those were simulated. Detail

description of problems solved is given in following sections.

7.3.2 UMATHT

User subroutine UMATHT can be used to define the thermal constitutive behavior of the

material, including internal heat generation. For example, if a material modeled can go

through a complex phase change, the specific heat can be defined in user subroutine

UMATHT in sufficient detail to capture the phase change. It is important that while

writing UMATHT one must define the internal energy per unit mass and its variation

with respect to temperature and to spatial gradients of temperature. It is also necessary to

define the heat flux vector and its variation with respect to temperature and to gradients

of temperature. If a material modeled can go through a complex phase change, the

specific heat can be defined in user subroutine UMATHT in sufficient detail to capture

the phase change. Using the template shown in Table 7.3 and based on the modeling done

in Chapter 4, UMATHT that can take care of the latent heat effects (see Appendix D for

UMATHT) in non-isothermal problem are developed.
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Table 7.3 The Standard Template for UMATHT

(Source: ABAQUS/CAE manual)
SUBROUTINE UMATHT(U,DUDT,DUDG,FLUX,DFDT,DFDG,

1 AΡΑΤΕV,ΤΕΜΡ,DTEMP,DΤΕΜDX,ΤΙΜΕ,DΤΙΜΕ,PREDEF,DPRΕD,
2 CMNAME,NTGRD,NSTATV,PROPS,NPROPA,COORDS,PNEWDT,
3 YOEL,NPT,LAYER,KAPT,KATEP,KINC)

C
INCLUDE 'ABA_PARAM.INC'

C
CHARACTER* 80 CMNAME
DIMENAION DUDG(NTGRD),FLUX(NTGRD),DFDT(NTGRD),
1 DFDG(NTGRD,NTGRD),ATATEV(NATATV),DTEMDX(NTGRD),
2 ΤΙΜΕ(2),PRΕDEF(1),DPRΕD(1),PROPA(NPROPS),COORDA(3)

user coding to define U,DUDT,DUDG,FLUX,DFDT,DFDG,
and possibly update ATATEV, PNEWDT

RETURN
END

U
Internal thermal energy per unit mass.

DUDT
Variation of internal thermal energy per unit mass with respect to temperature.

DUDG(NTGRD)
Variation of internal thermal energy per unit mass with respect to the spatial gradients of
temperature.
FLUX(NTGRD)
Heat flux vector.

DFDT(NTGRD)
Variation of the heat flux vector with respect to temperature.

DFDG(NTGRD,NTGRD)
Variation of the heat flux vector with respect to the spatial gradients of temperature.

STATEV(NSTATV)
An array containing the solution-dependent state variables.

7.3.3 SDVINI

SDVINI is the user subroutine through which user can define solution dependent state

variable such as crystallinity. User subroutine ADVINI can also be called to specify the

initial conditions. The user can then define all solution-dependent state variables at each
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point as functions of coordinates, element number, etc. Solution dependent state variable

initialized in SDVINI can be updated in UMAT and UMATHT. Using template shown in

Table 7.4 user sub routines ADVINI for isothermal and non-iso thermal problems were

created. (See appendix E and appendix F)

Table 7.4 The Atandard Template for SDVINI

(Source: ABAQUS/CAE manual)

SUBROUTINE SDVINI(STATEV,COORDS,NSTATV,NCRDS,NOEL,NPT,

1 LAYER,KSPT)

C

INCLUDE 'ABA PARAM.INC'

C

DIMENSION STATEV(NSTATV),COORDS(NCRDS)

user coding to define STATEV(NSTATV)

RETURN

END

STATEV(NSTATV)
An array containing the solution-dependent state vaiiables.

7.4 Testing of the Material Module

Once, the material module is created it is very important to test it to see if it is working

correctly. There are different tests one can perform to test the material module such as

single element test, single element test with oriented co-ordinate system and convergence

test. In following subsection these tests are described. Above mentioned test is

performed on subroutine UMAT.
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7.4.1 Single Elemenn Tensile Test

Name of the test suggests how the test is being performed. In this test solid model is

constructed and then using the material model created by the user is applied to make the

material model. Once the material model is created, boundary conditions are applied to

the model. The solid model is then meshed to perform finite element analysis. It is

important to note here that during the test meshing is done with only one element only.

Once the mesh is created then finite element model is send to finite element solver for

further processing. Post processor is then used to see different results obtained from the

finite element solver.

The tensile test that performed here was on the cube (see Figure 7.1). There are

reasons for choosing cube geometry. The first reason is: using a single 20-node brick

element only, one can mesh the solid model of the cube. The other reason is: while

stretching in one direction, one can observe the equal reduction in lengths of the other

sides of the cube. The equal reduction is only possible with the cube geometry only.

Α single element test is used to validate user subroutine UMAT. Α UMAT can be

tested by performing static general structural analysis. In Chapter 5, 1-D uni-axial

stretching process using MATLAB were simulated. Simulating the same cycle using

ABAQUA/CAE with the aid of developed UMAT and comparing its results with one

obtained in Chapter 5 will be able to test UMAT. Following is the step by step procedure

for simulating uni-axial stretching cycle.

Step-1. Create a solid model: Α solid model can be created using standard CAD software

such as Pro/ENGINEER, Solid Works, ABAQUS, AutoCAD etc. In this case, the solid

model using `part module' of the ABAQUS/CAE was created. Using extrude feature it is

very easy to create cube. Figure 7.1 shows the extruded part is stored with name 'cube'.
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Sneρ-2. Create a material model: Using the UMAT developed and `property module' of

the ABACUA/CAE material model of `cube' can be developed. Creating a section and

applying material created to it makes the material model. Applying this material module

by assigning section to solid model makes the material model of `cube' made with

CSMP. (Aee appendix G for material module)

Steρ-3. Define processes: A process can be defined in `step module' of the

ABAQUA/CAE. It is known that a typical uni-axial cycle is consisting of four processes

namely: Loading, Cooling/Crystallization, Unloading and Heating. Hence, four steps are

required to solve the problem. However, the process here is simulated using five steps by

using two steps for the heating/melting process as it needs use of smaller time steps at the

end of heating process.

Steρ-4. Apply boundary conditions: Boundary conditions can be applied using the `load

module' of the ABAQUS/CAE. Here, object of the study is to see validity of the user

subroutine UMAT hence, instead of prescribing pressure condition or force condition at

surfaces or edges or at nodes, displacement boundary conditions were applied to the

edges. Figure 7.2 shows the applied boundary conditions.

Steρ-5. Mesh the model: Using the `mesh module' of ABAQUS/CAE solid model can be

meshed to carry out solution. In this test, it is required that `cube' is meshed with only

one element. The element chosen for this test is C3D20RH: A 20-node quadratic brick,

hybrid element that allows linear pressure and reduced integration.

Sneρ-6. Solve the finite element model: Using the `job module' of ABACUS/CAE user

subroutine UMAT can be called for solving the problem. User subroutine UMAT

(umatpropl.f) is used for solving the problem.



Figure 7.1 A snapshot of ABAQUS/CAE interface showing solid model of the part
'cube'. (Uni-axial tensile test)
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Figure 7.2 A snapshot of ABACUA/CAE interface showing applied boundary
conditions. (Uni-axial tensile test)
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This completes the procedure for simulating uni-axial stretching of the single

element. Using the visualization module different results can be presented. In following

section the result obtained will be discussed.

7.4.2 Single Elemenn Test with Orienned Co-ordinane Sysnem

The other test suggested by the makers of ABAQUS is to perform single element test in

which local co-ordinate system is not aligned with the global co-ordinate system. If the

results of the test are matching with one described in subsection 7.4.1 then it gives surety

that MAT will work with any orientation that a part can have.

For performing this test, similar procedure that was followed for the single

element uni-axial stretching test with some minor differences is adopted. The first change

needed to be done is after creating the part, is to orient the local co-ordinate system

attached to the part. Using the `assembly module' of ABAQUS/CAE it is easy to re-

orient local co-ordinate system. Re-orienting local co-ordinate system will re-orient the

part with respect to the global co-ordinate system. Figure 7.3 shows the rotated part

`cube' in the assembly module. The part is rotated to 30 degree in the counter clockwise

direction with respect to z-axis. The second minor change is the boundary conditions

which are applied with respect to local co-ordinate system instead of global co-ordinate

system. Making these changes uni-axial tensile testing can be performed on the part with

re-oriented co-ordinate system. Results obtained from this test will be compared with the

test performed earlier.

7.4.3 Convergence Tesn

Finite element solution does not guarantee exact solutions of any problem. Using finite

element method one can approximate value that is with in acceptable tolerance limit of

the correct value. There are two methods to carry out finite element solution. One is
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called h-method and another is p-method. In h-method, number of elements used is

increased to achieve better solution where as in p-method, increasing degree of

polynomial used to create shape function more correct answer can be obtained.

ABACUA/CAE allows use of linear or quadratic shape function only. Hence, only way to

improve a result in ABAQUA/CAE is to use more elements. After certain iterations, very

little improvement in result can be observed as solution converges to correct answer.

Hence, if solution is converges to particular value with the increment in number of

elements used then that answer is assumed is correct answer and method adopted to

solved the problem can be considered as correct method.

To test the developed user subroutine UMAT, the convergence test is also

performed. Consider a square plate with a circular hole in the middle. Applying the

tensile load to the plate will create stress concentration near the hole. Increasing the

number of elements near the hole region, correct value of stress near the region can be

estimated. A square plate with a center circular hole has symmetry with 2 axes hence,

instead of creating solid model of entire plate, only % part of the plate should be enough

to carry out the analysis as shown in Figure 7.4. Following is the step by step procedure

for analysis.
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Figure 7.3 A snapshot of ABAQUS/CAE interface showing the part with re-oriented co-
ordinate system. (Uni-axial tensile test with rotated co-ordinate system)
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Step-1. Create a solid model: Using the part module a solid model of the plate is created.

Figure 7.4 shows the solid model of '/4th part of 40mmΧ40mm square plate with a center

hole of radius 1mm.

Step-2. Create a material model: Using the same module that used in previous test, the

material model is created for the plate.

Step-3. Define processes: A process can be defined in `step module' of the

ABAQUS/CAE. For each process namely: Loading, Cooling/Crystallization, Unloading

and Heating; individual step is created. During the cooling process shape of the plate is

preserved. While heating moving boundary condition is de-activated.

Step-4. Apply boundary conditions: The surface on the left side of the plate is having

symmetry with y axis and bottom surface of the plate is having symmetry with x-axis.

Displacement can be applied to the surface on the right side of the plate. Figure 7.5 shows

the applied boundary conditions. The displacement condition is deactivated in unloading

and heating process.

Step-5. Mesh the model: The solid model is meshed using element called C3D20RH: A

20-node quadratic brick, hybrid element that allows linear pressure and reduced

integration. Figure 7.6 shows different mesh generated for the plate.

Step-6. Solve the finite element model. Solution can be carried out as of the case of

single element tensile testing. Multiple runs had to carry out for the different meshes.

Total five runs C2 to C5 are carried out and the results obtained are prescribed in the

following result section.
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Figure 7.4 A snapshot of ABAQUS/CAE interface showing the solid model of the plate
with center hole. (Convergence test)



Figure 7.5 A snapshot of ABAQUS/CAE interface showing applied boundary
conditions. (Convergence test)

125



Figure 7.6 Different meshes used for convergence test runs (C2 to C6).
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7.5 Results

In this section, the results obtained from various tests performed as prescribed in

subsection 7.4 are presented. Three different tests were performed and for each type of

tests, different set of results are obtained.

Figure 7.7 Plot of crystallinity versus time. (Aingle element test)

The first set of results is from the single element test. The single element test is

uni-axial stretching of the cube for which the solid model is meshed with only one single

element. Figure 7.7 shows the variation in the crystallinity in the element with the time.

Initially, during the loading process the crystallinity is zero, while the cooling process it

linearly increasing.



Figure 7.8 Plot of stress versus time. The results are obtained using MATLAB and
ABAQUS module. (Single element test)
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Figure 7.9 Plot of strain versus time. The results are obtained using MATLAB and
ABAQUS module. (Single element test)
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During the unloading process, crystallinity remains constant and during heating it

linearly decreasing as designed. Figure 7.8 shows the stress variation with the time.

During the loading process, the stress is increasing with increase in the strain (see Figure

7.9). While cooling significant reduction in the stress can be observed while the strain

remains constant as new crystals form. Upon unloading the stress is reducing to zero yet,

the strain will not go to zero and preserves the deformed shape. During heating, formed

crystal melts and strain reduces to zero as material approaches to original shape. Figure

7.8 and Figure 7.9 also shows the comparisons between the results obtain from

MATLAB program and the results obtained from ABAQUS matching quite closely.

MATLAB program predicts the correct answer of the 1-D problem. Figure 7.10

shows the chart where the stress fringe plots, deformations of the cube and displacement

fringe plot are shown parallel with the crystallinity value at that time. At a time, stress

plot in the part show only one color because the part is meshed with single element and

so, all nodes in the element will have same value. Nodes on the left face of the element

are constrained while the displacement boundary conditions is applied to nodes on the

right face of the cube hence, equally distributed color pattern can be seen in the

displacement fringe plot.
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Continued...

7.10.8.) Intermediate time: Heating process. (a = 0.3)

7.10.9.) Intermediate time: Heating process. (a = 0.2 )

7.10.10.) Intermediate time: Heating process. (a = 0.1)

7.10.11.) Intermediate time: Heating process (α = 0.05)



Figure 7.10 Chart shows stress fringe plots, deformed solid part with superimposed
undeformed wire —framed part and displacement fringe plot for a typical uni-axial cycle
for CSMP. (Single element test)

One can see from the displacement plots that nodes on the right face of the cube

are moved enough to make cube length double. It produces 100% strain in the direction

of stretch in the part geometry. Figure 7.11 confirms that the strain in the part is 100%

after the completion of the loading cycle.

Second set of the results is from the oriented single element test. Figure 7.11 and

Figure 7.12 show charts of comparison between stress fringe plots obtained through

single element test and oriented single element test and displacement fringe plots

obtained through same tests respectively. The comparison shows good agreement in

results visually for stress fringe plots. Even the displacement plots are matching exactly.
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Figure 7.11 Chart shows results (stress fringe plots) obtained through single element test
and oriented single element test for a typical cycle.
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Figure 7.12 Chart shows results (displacement fringe plots) obtained, using single
element and oriented single element, for a typical uni-axial cycle for CSMP. (Datum is
global co-ordinate system)

Third set of the results is obtained by carrying out the convergence test. Figure

7.13 shows the plot of maximum stress in the part versus number of elements used to

perform analysis. It can be infer from the plot that up to certain limit increasing number

of elements result is improving drastically. However, after certain increments in number

of elements used there is no significant improvement in result can be seen as the result

converges to correct answer. Figure 7.14 shows the stress fringe plots for runs C2 to C6.

Note that the reduction in the area of stress concentration (Area in Red) can be observed

with the use of more fine meshes around the `hole region.
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Figure 7.13 Plot of maximum stress versus number of elements used for simulating uni-
axial stretching of a plate with central circular hole. (Convergence test)
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CHAPTER 8

APPLICATIONS OF THE FINITE ELMENT MODULE

8.1 Introduction

In this chapter, the applications of the finite element module created using the

constitutive equation derived in the Chapter 4 are illustrated. To show the applicability of

the module, three different simulations were carried out. The first simulation is the

inflation and expansion of the hollow cylinder. The second process is also on cylindrical

geometry where hollow cylinder is twisted with respect to the central axis and the third

process simulated is the bending of the thin strip. All of the processes are non-linear and

non-isothermal.

A material can be deformed mechanically mainly using following actions or their

combinations. These actions are stretching, compression, shearing, twisting and bending.

The first process involves tensile loading on the part with geometry that works well with

cylindrical co-ordinates and in the second process; a material is deformed by twisting

action which produces shearing effect in the elements. During the shrink fit operation the

inflation and expansion of the tube occurs while twisting action can be seen in rotating

actuators. In third process, a material has shape that is easy to work with in Cartesian co-

ordinates and a material is deformed by bending action that produces tensile stress in

some elements and compressive stress in the other elements. The strip bending is popular

technique in making house hold items.
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8.2 Inflation and Expansion of a Hollow Cylinder

8.2.1 Problem Definition and Solution Technique

The hollow cylinder made with CSMP experience tensile force along its central axis of

revolution and at inner surface pressure is applied. These actions cause inflation and

expansion of the cylinder simultaneously. Once the part is deformed, keeping the shape

constant, the material is cooled by cooling inner and outer surfaces simultaneously. Once

material is cooled below the transition temperature (-10 °C), the tensile force and pressure

applied are removed. The original shape takes place when the material is heated at inner

and outer surfaces.

The material undergoes inhomogeneous deformation and the process is non-

isothermal process where primary mode of heat transfer is conduction. Following is

complete step by step procedure adopted to carry out the finite element analysis of the

process.

Step-1. Create a solid model: Using the part module, a solid model of the hollow

cylinder is created. Figure 8.1 shows the solid model of the hollow cylinder with the 2

mm inside diameter and 3 mm diameter with 0.5mm in height. Using `revolution' feature

in part module above described geometry constructed.

Step-2. Create a material model: Using the material module developed in previous

chapter material model of the cylinder is created. However, this time the non-isothermal

process is under consideration and so there will be little modification is required in the

material module. Material module developed for this process is presented in appendix H.
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Figure 8.1 Solid model of a hollow cylinder created in ABACUS/CAE.

Steρ-3. Define processes: Each process can be defined in the `step module' of the

ABAQUS/CAE. For each process namely: Loading, Cooling/Crystallization, Unloading

and Heating/Melting; individual steps are created. During the cooling process, the shape

of the hollow cylinder is preserved. While during the heating process the boundaries are

free to retract.

Steρ-4. Apply boundary conditions: Figure 8.2 shows applicable boundary conditions

according to the problem definition. Top face of the cylinder is stretched while the all

points of the inner surface are moved equally in radial direction that causes inflation of

the cylinder. The bottom part of cylinder is constrained in z direction and in angular

direction. Linear variation in temperature applied at inner and outer surfaces of the

cylinder. For cooling, temperature decreases linearly at both surfaces and for heating, the

temperature is increasing at both surfaces where as top and bottom surfaces are

considered as insulating.



Figure 8.2 Different boundary conditions applicable to the hollow cylinder for inflating
and expanding it with heat transfer going on.
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Steρ-5. Mesh the model: The solid model is meshed using element called C3D8ΗΤ: An

8-node thermally coupled hybrid brick with shape function for trilinear displacement and

temperature that only allows constant pressure.

Step-6. Solve the finite element model. Using the job module in ABACUS/CAE, user

subroutines (UMAT, UMATHT and SDVINI) can be called to carry out the solution for

the process.

8.2.2 Results

In this subsection, different results obtained using the post processor module of

ABAQUS/CAE are listed. To clarify the issues related with temperature and crystallinity

temperature variation plot (Figure 8.3) and crystallinity variation plot (Figure 8.4) are

shown.

Figure 8.3 Temperature variation at the outer and inner surfaces of the hollow cylinder
for the entire cycle
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According to the applied boundary conditions, the linear decrease in temperature

while cooling and linear increase in temperature while heating process at the inner and

outer surfaces of the hollow cylinder can be observed (see Figure 8.3). During cooling

new crystal forms and crystallinity reaches to its maximum value. Upon heating those

formed crystal melts and crystallinity decreases. Figure 8.4 shows variation in

crystallinity according to the temperature variation.

Figure 8.4 Crystallinity variation at the outer and inner surfaces of the hollow cylinder
for the entire cycle.

While loading process, the temperature is kept constant and there is no

temperature gradient can be seen through out the body (see Figure 8.5-A, B). During the

cooling process, the temperatures at the surfaces are decreasing first and then due to

conduction the temperature decreases inside (see Figure 8.5-C). During the unloading

process the temperature is kept constant at the inner and outer surfaces. During this

process temperature continue to decrease in the interior of the cylinder as the inner and
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outer surfaces are cooler than inner part of the hollow cylinder (see Figure 8.5-D). Figure

8.5-E shows the temperature fringe plot after heating process showing that the part is

heated back to obtain original shape and overall temperature of the part is well above the

transition temperature.

E) Temperature fringe plot (After heating) F) Legend: Temperature in Celsius

Figure 8.5 Temperature variation with in the hollow cylinder at different stages of the
cycle.
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Figure 8.6-A, B show that when the temperature is above the transition

temperature there is no crystallinity in the part. The crystallinity increases with on

cooling initially at their outer surfaces then to the interiors (see Figure 8.6-C, D). During

the heating process as the temperature increases at the inner and outer surfaces, the

crystallinity decreases there and then due to heat conduction crystallinity decreases to

zero in the interiors as well (see Figure 8.6-E). Figure 8.7 shows the stress distribution in

the hollow cylinder at various stages of the cycle. With deformation the stress increases

as expected and on cooling, the stress is decreases along with the formation of the

crystalline phase. Upon unloading the stress deceases further but due to variation in

crystallinity in different part the stress does not go to zero. This is a consequence of the

fact that this is not a homogenous deformation. On heating, crystal melts and the material

goes back to its original shape and at end as there is no deformation in the amorphous

phase there is any stress in the part as well. Figure 8.8 shows how material deforms and

maintains the temporary shape even after unloading. It also shows that upon heating, the

material takes back its original shape.
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Figure 8.6 Crystallinity variation with in the hollow cylinder at different stages of the
cycle.
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Figure 8.7 von-Mises stress variation with in the hollow cylinder at different stages of
the cycle.
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8.3 Twisting of a Hollow Cylinder

8.3.1 Problem Definition and Solution Technique

The fyme hollow cylindrical geometry is used for this deformation cycle also. In this

case, the bottom surface of the cylinder is constrained while an angular rotation is applied

at the top surface. These actions will create shearing twisting in cylindrical geometry. As

done in the previous problem, keeping the shape fixed, the material is then cooled from

inner and outer surfaces of the cylinder to fix this temporary shape. The original shape is

recovered by heating the material.

Using the procedure adopted in the previous problem, the analysis can be carried

out. However, there will be little change in fourth step only.

Step-4. Apply boundary conditions: Figure 8.9 shows applicable boundary conditions

according to the problem definition. Top face of the cylinder is selected for the angular

rotation and the bottom surface of the cylinder is constrained in z direction and in angular

direction. Linear variation in temperature applied at inner and outer surfaces of the

cylinder. For cooling, temperature decreases linearly at both surfaces and for heating, the

temperature is increasing at both surfaces.

8.3.2 Results

In this subsection, different results obtained using the post processor module of

ABAQUS/CAE are presented. Applying rotation to the upper surface of the hollow

cylinder creates a twisting action. The bottom surface is fixed and so no displacement

will occur at nodes on that surface while upper surface will have maximum distortion

(see Figure 8.10-A). This distortion causes stress inside the material, as shown in Figure

8.11-A. As the cooling process is done keeping the strain constant, there will be no

change observed in the displacement plot (Figure 8.10-B). However, reduction in the



152

stress is observed due to formation of the crystals as shown in Figure 8.11-B. Upon

unloading, little strain recovery is observed in the middle region of the hollow cylinder

(see Figure 8.10-C) as that region is not as crystalline as the inner and outer surfaces.

This is inhomogeneous deformation and crystallinity is not same everywhere due to

which strain recovery at each node also vary and irregular stress pattern can be observed

(see Figure 8.11-C). Upon heating full strain recovery can be observed (see Figure 8.10

and Figure 8.11).

Figure 8.9 Different boundary conditions applicable to the hollow cylinder for twisting
action and heat transfer.



Figure 8.10 Displacement ( υ88 ) fringe plot for the hollow cylinder experiencing
twisting moment with cooling and heating effect.



154

Figure 8.11 von-Mises stress fringe plot for the hollow cylinder experiencing twisting
moment with cooling and heating effect.



155

8.4 Bending of the Thin Strip.

8.4.1 Problem Definition and Solution Technique

As the name suggests, thin strip made of CSMP is object under consideration. The thin

strip is simply supported at both ends and at the midpoint of the thin strip; force is

applied with the rigid V-shape punch with blunt round edge. Applying force will bend the

strip and then the strip is cooled keeping the punch at the same position. The temperature

of the strip reduced to -20°C which is well below the transition temperature (-10 °C). The

punch is then slowly brought back to its original position. Strip is then heated back up to

100°C to get the original shape back. Cooling and heating is done by linearly varying

temperature at the front and back surface of the plate (see Figure 8.12).

Following is complete step by step procedure adopted to carry out the finite

element analysis of the process.

Step-1. Create a solid model: Using the part module a solid model of the thin strip of

the dimension 100mm x 20 mm x 1 mm is created (see Figure 8.12) using the extrusion

command. Aimilarly, V-punch with 5mm nose radius is created. To save the

computational time punch is considered as analytically solid object.

Step-2. Create a material model: Material module developed for this process is

presented in appendix H. Applying this module to the solid model of the thin plate, the

material model is constructed.

Step-3. Define processes: A process can be defined in `step module' of the

ABAQUS/CAE. For each process namely: Loading, Cooling/Crystallization, Unloading

and Heating; individual step is created. As mentioned above, while cooling the punch is

not retracted so that, thin strip will be in bend shape during the process. Punch is then

retracted slowly and strip is heated up to 10°C.
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Steρ-4. Apply boundary conditions: Figure 8.13 shows applicable boundary conditions

according to the problem definition. All degrees of freedom are constrained of the two

edges on the back surface to create rigid support at the edges. The punch is analytically

solid and hence, by applying displacement of 5 mm in Z-direction at the reference point

created on the punch, the entire punch can be moved in z-direction. Linearly decreasing

temperature boundary condition was applied to the front and back surfaces (as shown in

Figure 8.12) for cooling the strip. For heating, the temperature variation is linear and

increasing at the same surfaces.

Step-5 and step-6 are similar to those of in previous tests.

Heat transfer BCs
ar,r,li a/ Mara

Figure 8.12 An assembly of the solid models of thin plate and the punch designed for
simple bending test.
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8.4.2 Results

Even in this deformation cycle also, one can see in Figure 8.14 that as middle region of

the plate deforms more, the stress in that region is higher than compare to other region of

the plate. Remarkable stress reduction can be observed as the crystal forms while the

cooling process. Upon unloading negligible strain recovery happens and due to the

variable crystallinity value at each node, and a small value of residual stress can be

observed in the material. It is assumed that crystals formed last will melt first and so,

upon heating when temperature exceeds transition temperature, crystallinity goes back to

zero value at all nodes. As there is no stress in the amorphous region, the material goes

back to its original shape.

Figure 8.13 Applied boundary conditions to the thin plate and punch, required to
perform simple bending test.
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Figure 8.14 Snapshots of von-Mises stress fringe plots taken at various stage of the test.



CHAPTER 9

CONCLUSIONS AND SCOPE OF THE STUDY

9.1 Summary

The principle focus of this research was on developing a three dimensional, frame

invariant, constitutive model for crystallizable shape memory polymers with emphasis on

mechanics and thermodynamics associated with phase transition, anisotropy and

mechanism for the return to the original shape. Toward this purpose, the following have

been accomplished and presented in this dissertation:

A general framework has been developed for crystallizable shape memory

polymers using the notion of natural configurations of a material and a phenomenological

frame work developed for the crystallization in polymers which is flexible enough to

accommodate various crystallization kinetic models.

A frame work is extended to model shape fixity of the temporary shape and shape

recovery of the original shape by capturing solid to solid phase transition (amorphous

phase to semi-crystalline phase and vice versa).

A finite element module for CSMPs is created based on the mathematical model

developed for the CSMPs. All required tests are performed to validate the finite element

module. Applications of the finite element module are presented by carrying out various

simulations for various realistic processes (coupled temperature-displacement processes

involving inhomogeneous deformation) those includes use of CSMPs.

In following section, the salient conclusions drawn from the present study are

discussed. Following this, recommendations for future work are also listed.
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9.2 Conclusions

The evolution of natural configurations of a material and the accompanying dissipation of

energy developed in (Rajagopal 1995) provide the very basic theory for the phase

transition phenomenon. Based on this theory, (Rao & Rajagopal) developed a framework

specifically to model crystallization in polymers. Using these studies now it is possible to

derive the constitutive model for the crystallizable shape memory polymers. The

constitutive model which can accurately predict the behavior of CSMPs along with the

mechanisms that is capable to capture shape fixity and shape recover phenomena, is

developed. The anisotropy in the temporary shape due to the presence of crystals formed

during the cooling process is also included in the model.

Followings are some basic ideas and theories prescribed by other researchers,

essential for carrying out the current work.

• The notion of natural configurations of a material and dissipation of energy.

(Rajagopal et al. 1995)

• Phase transition phenomena associated with the crystallization in polymers.

(Rao and Rajagopal et al. 2002 )

• The linearization and tangent stiffness calculation for the finite element

formulation. (Holpzafel et al. 2000)

• Development of user subroutine (I.JMAT) for simulating realistic processes.

(ABAQUS manual)

The original contributions of the present work are

• Α three-dimensional frame invariant constitutive model is presented for the

CSMP that incorporates elements of kinematic theories, thermodynamics and

polymer science.
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• Solid to solid phase transitions (amorphous phase to semi-crystalline phase and

vice versa) associated with CAMP's are modeled using the notion of evolving

natural configuration and a developed framework for crystallization in polymers.

• Presented mechanisms associated with the shape fixity of the temporary shape

and shape recovery of the original shape.

• Incorporated the mechanism responsible for anisotropy caused due to the

presence of crystals in the semi-crystalline phase (temporary shape).

• A standard procedure adopted to create finite element module to carry out finite

element analysis of non-linear, non-isothermal, coupled temperature-

displacement problem.

• Aimulated one-dimensional processes in mechanical setting using MATLAB to

understand mechanical issues related to derivation of constitutive equation for

CSMPs.

• Used MATLAB for simulating non-isothermal one-dimensional process to

exhibit the applicability of the derived constitutive equations creating the

comprehensive base for more complex study associated with complex

geometries and realistic process conditions.

• Created a finite element module based on the current work by writing user

subroutine UMAT, UMATHT and SDVINI in FORTRAN. The finite element

module is add-on required with ABAQUA/CAE for simulating realistic

processes that includes use of CSMPs.

• Performed all required test to validate the developed finite element module for

user material (in this case CAMP).
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• Illustrated applications of the add-on by simulating processes that are more

realistic and require use of advance techniques in computer aided designing and

finite element analysis.

9.3 Recommendations for Future Work

The phenomenological constitutive modeling is done at continuum level in this work and

finite element analyses of the realistic processes have been carried out. However, issues

related to interface is yet needed to be studied. Probably, use of scaling related techniques

for modeling will be useful in conjunction with polymer science.

In the current work, some physical, mechanical and thermal property are

assumed independent of temperature and phase associated with. Further improvement in

model can be made by addressing these issues.

In every finite element analyses done for the realistic processes, cooling process is

assumed to take place at constant strain (shape). The constitutive equation derived is

capable enough to handle constant or variable stress cooling processes. However, those

simulations require more complex algorithm.

The model prediction is compared with experimental data available in literature,

for 1-D processes only. For achieving better reliability more physical testing should be

carried out. Results of theses tests should be used for the comparison with model

prediction or the results obtained with the finite element solutions. There are some

material constants associated with anisotropy in the temporary shape. Those material

constants can be found by performing various mechanical tests.



APPENDIX Α

DERIVATION OF TANGENT STIFFNESS MATRIX FOR CSMP

In this appendix, methodology to derive the tangent stiffness matrix from the given stored
energy function (for hyper elastic material) is shown.

We need to find stiffness tensor matrix C for FEM analysis. ABACUS need the stiffness
matrix prescribed in following format.

The derivative on right hand can be written as:
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Το get the Jawman rate of the Cauchy stress, we need to find the material time derivative
of the Cauchy stress.
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Εquation(Α.9) can be written alternatively using index notations as:
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Using equation(A.1O) in equation(Α.4) stiffness matrix in index notation can be
prescribed as:
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APPENDIX B

USER SUBROUTINE (UMAT) FOR ISOTHERMAL PROCESS

This user subroutine is for crystallizable shape memory polymer and it can be used for
when it is assumed that crystallization occurs at constant temperature and constant strain.
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END DO

END IF

RETURN
END

C**********************************************************************

C Necessary Kronecker Delta function is defined below
REAL FUNCTION KRON(P,Q)
INTEGER P, Q
IF (P .EQ. Q) THEN
KRON= 1
ELSE
KRON=O
END IF
RETURN
END
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APPENDIX C

USER SUBROUTINE (UMAT) FOR NON-ISOTHERMAL PROCESS

This subroutine can be used for simulation of the process that uses part made from

crystallizable shape memory polymer.
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C	 CHECKING IF INTERMIEDIATE CONFIG NEEDS
C	 TO BE INITIALIZED
C
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C
C 	 INITIALISING VALUES
C

Τ' τα π/ ι ι'- π τ+ ω τ+τ+. ν / ι
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C**********************************************************************

C Now, we are finding the directions required for finding J 1 and K 1
C for crystalline part which causes orthotropy
C Directions are n(VECN) & m(VECM)
C	 * * * * * verify about (1) used in utility subroutine SPRIND
C	 * * * * * (1) is for stress and (2) for strain tensor
C CALCULATE LEFT CAUCHY-GREEN TENSOR
C
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C***********************************************************************

C DESCRIBING THE REQUIRED MATRIX
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END DO
END DO

END IF

RETURN
END

Γ**********************************************************************
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APPENDIX D

USER SUBROUTINE (UMATHT) FOR NON-ISOTHERMAL PROCESS

This subroutine is to incorporate heat transfer and phase transition associated with the

crystallizable shape memory polymer.

SUBROUTINE UMATHT(U,DUDT,DUDG,FLUX,DFDT,DFDG,STATEV,TEMP,DTEMP,
1 DTEMDX,TIME,DTIME,PREDEF,DPRED,CMNAME,NTGRD,NSTATEV,PROPS,NPROPS,
2 COORDS,PNEWDT,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

C
C

INCLUDE 'ABA PARAM.INC'
C

CHARACTER*80 CMNAME
C

DIMENSION DUDG(NTGRD),FLUX(NTGRD),DFDT(NTGRD),DFDG(NTGRD,NTGRD),
1 STATEV(NSTATEV),DTEMDX(NTGRD),ΤΙΜΕ(2), PREDEF(1),DPRED(1),
2 PROPS(NPROPS),COORDS(3)

C
C

COND = PROPS(1)
SPECHT = PROPS(2)

C
C INPUT SPECIFIC HEAT
C

DUDT = SPECHT
DU = DUDT*DTEMP
U=U+DU

C
C INPUT FLUX = -[Κ]*{DTEMDX}; CONDUCTIVITY MULTIPLIED WITH TEMP
C 	 DIFFERNCE

DO I = 1, NTGRD
FLUX(I) = -COND*DΤΕΜDX(I)

END DO
C
C INPUT ISOTROPIC CONDUCTIVITY
C

DO Ι = 1,NTGRD
DFDG(Ι,Ι) = -COND

END DO
C

RETURN
END
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APPENDIX E

USER SUBROUTINE (SDVINI) FOR ISOTHERMAL PROCESS

This subroutine is used to prescribe initial conditions for isothermal processes that uses

part made with crystallizable shape memory polymer.

SUBROUTINE SDVINI(STATEV,COORDS,NSTATV,NCRDS,NOEL,NPT,LAYER,KSPT)
C

INCLUDE 'ΑΒΑ PARAM.INC'
C

RETURN

END
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APPENDIX F

USER SUBROUTINE (SDVINI) FOR NON-ISOTHERMAL PROCESS

This subroutine is used to prescribe initial conditions for non-isothermal processes that

uses part made with crystallizable shape memory polymer.

SUBROUTINE SDVINI(STATEV,COORDS,NSTATV,NCRDS,NOEL,NPT,LAYER,KSPT)
C

INCLUDE 'ABA PARAM.INC'

DIMENSION STATE V(NSTATV),COORDS(NCRDS)

RETURN

END
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APPENDIX G

THE MATERIAL MODULE FOR ISO THERMAL PROCESS

The following module is used with user subroutines given in appendix B and appendix E.

Snapshots shown below are taken from ABACUS/CAE window.

Figure G.1 Snap shots of the material module created in ABAQUS for iso-thermal
process that includes use of crystallizable shape memory polymers.
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APPENDIX H

MATERIAL MODULE NON-ISOTHERMAL PROCESS

The following module is used with user subroutines given in appendix C, appendix D and
appendix F.

Figure H.1 Snap shots of the material module created in ABAQUS for non isothermal
process that includes use of crystallizable shape memory polymers.
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