
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.



ABSTRACT

FABRICATION OF HYDROXYAPATITE-BIODEGRADABLE POLYMER
SCAFFOLDS BY ELECTROSPINNING FOR POTENTIAL

BONE TISSUE APPLICATION

by
Satomi Suzuki

The purpose of this study is to determine the potential of combining hydroxyapatite (HA)

and polymers to form synthetic composite materials used for bone tissue engineering

applications. In this study, ceramic-biodegradable polymer composites are fabricated by

electrospinning method. The biodegradable polymers used are poly(L-lactic acid)

(PLLA), and poly(lactide-co-glycolide) (PLGA). Two types of HA-polymer solutions are

first prepared to achieve HA weight percentage of 0, 10, and 25% of the total combined

weight of HA and PLLA, and HA and PLGA. The solutions are electrospun to form

nanofibrous mats incorporated with HA powder. A biomimetic process was also

conducted as a secondary approach.

The nanofibrous mats obtained follow characterization using scanning electron

microscope (SEM) - Energy Dispersive X-ray Analysis (EDXA), Thermogravimetric

Analysis (TGA), and X-ray Diffraction (XRD). In this study, hydroxyapatite (HA)

particles were successfully incorporated into the three dimensional porous

biodegradable PLLA and PLGA polymer fiber mats by electrospinning.
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CHAPTER 1

INTRODUCTION

In orthopedics, defects in large bones have been a major problem. The need for bone

regeneration to heal bone diseases caused by bone tumors, bone infection, and bone loss

by trauma is growing; however, no optimal solution has been established yet for the

repair of large bone defects of greater than 3 cm [1, 2]. Bone grafts have played a major

role in therapies for bone defects. In the United States, more than 300,000 bone graftings

were conducted in 1998 [3]. The number of procedures conducted increased to 500,000

in 1999 and the estimated cost for these bone-grafting procedures approaches $2.5 billion

per year [3]. The graft transplanting using autologous or allogenic bone grafts has been

applied as one of the traditional treatments for the bone repair with nine out of ten of

procedures in 1998 involved either autograft or allograft [3, 4].

The autograft is the bone graft in which tissue is harvested from the patient and

placed at the injury site. This is an ideal bone graft because it has all the characteristics

required for new bone growth; however, the additional surgery required to harvest the

autograft increases the possibility of complications such as infection, inflammation, and

chronic pain. Quantities of the bone tissue to be harvested are also limited and may result

in supply shortage. The allograft is another bone graft procedure in which tissue to be

harvested and placed at the injury site is taken from donors or cadavers. Allografts

eliminate some shortcomings of autograft bone implants such as morbidity of donor site

and problems with limited supply. However, due to the use of non-self tissue, allografts

always carry risks of disease transmission and immunorejection by patients. In 1992, one
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case of hepatitis B and three cases of hepatitis C transmission associated with allografts

have been reported [3]. In 2000, two patients received allografts developed septic arthritis,

and in 2001 one patient died from clostridium sordellii infection within four days of

allograft surgery [3]. After this, 25 more cases of infection or illness related with

allografts were revealed by the investigation of the Centers for Disease Control and

Prevention [3].

The shortcomings and limitations associated with autografts and allografts

accelerate the necessity of the development of alternatives that satisfy two criteria for a

successful graft; osteoconduction and osteoinduction. Tissue engineering approach for

bone repairing has been proposed as one of the alternatives. In tissue engineering,

bioceramic scaffolds, osteogenic cells, growth factors, and physical forces play a role to

repair bone defects [4].

Researchers have been devoted to bone tissue engineering where they develop

three dimensional porous scaffolds with tissue-inducing factors [5]. The three

dimensional porous scaffolds need to be designed so that they play an important role to

manipulate osteoblasts functions and to guide and induce new bone formation. Materials

used in scaffolds also need to be osteoconductive for osteoprogenitor cells to migrate and

adhere onto the scaffolds, differentiate and form a new bone [6, 7]. The desirable

scaffolds should be also biodegradable with proper degradation rate so that the scaffolds

will eventually be replaced by newly formed bone. Thus the scaffold in bone tissue

engineering should satisfy the requirements: biocompatiblility, osteoconductivity,

interconnected porous structure, proper biodegradability, and proper mechanical strength.
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Current study indicates that ceramics shows exceptional biocompatibility

properties interacting bone cells and tissues and carries a great potential for bone tissue

engineering application [8, 9]. The long-term direct osteointegration, the structural and

functional connection between bone tissues and the implants, however, is not achieved by

the osteoblasts adhesion to the ceramics surface alone [8]. Also, dense hydroxyapatite is

not suitable for long term load bearing applications due to its poor mechanical strengths

as a bulk.

In scaffold production, polymers are considered as basic materials widely used

in tissue engineering applications [10]. A polymer is a natural or synthetic

macromolecule composed of small repeated units called monomers. To be used in

advanced prosthetic applications, a polymer scaffold is required to show high

biocompatibility, proper biodegradability, high porosity with proper pore size, and proper

pore distribution with high specific area. For adequate nutrients to be transported for cell

ingrowth, a desirable scaffold needs to have proper pore size and shape [11]. To be able

to tailor scaffold pore size and shape is a critical factor for scaffold morphology

optimization.

The formation of polymer fibers processed by electrospinning has been

explored by some groups of researchers since its patented introduction by Formhals in

1934 [12-14]. Electrospinning is a fiber production technology that can generate polymer

nanofibrous mats that contain fibers ranging from 50 to 500 nm in diameter consistently

[15]. The advantages of non-woven polymer nanofibers are that it enables a control of

pore size and have a great potential to be scaffolds for cell growth.
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Thus, fabrication of scaffolds by combining bioactive ceramics such as

hydroxyapatite and polymers to develop ceramic-synthetic polymer composites by

electrospinning carries a great potential to create the most desirable biodegradable

scaffold with sufficient mechanical strength and highly porous structure by mimicking

the architecture of natural bone.



CHAPTER 2

BACKGROUND

2.1 Bone Biology

Bone is consists of two types of tissues: compact (accounts for about 80% of the total

skeleton) and spongy (cancellous) (accounts for about 20% of total skeleton). The major

difference in these two tissues is how dense and tightly the tissues are packed. In bone

homeostasis, three types of cells in bone contribute: osteoblast, osteoclast, and osteocyte

(Table 2.1). Osteoblast accounts for bone formation, osteoclast works to break down and

resorb bone, and osteocyte are bone cells that are matured.

Table 2.1 Bone Cell Types and Their Morphologies and Functions

Cell type Morphology Function
Osteoblast Cuboidal shape

Polarized and located at
the bone surface

Synthesis and regulation of bone
ECM deposition and mineralization
Respond to mechanical stimuli

Osteocytes Satellate shape
Possesses fewer organelles
than osteoblasts

Calcification of osteoid matrix
Blood calcium homeostasis
Mechanosensor of the bone

Osteoclasts Polarized cells,
Multinucleated

Bone resorption

Compact bone is composed of packed osteon and haversian. Haversian is a

central canal that is located in osteon and it is surrounded by concentric rings of matrix.

Osteocyte , the matured bone cell, is located in a space called lacunae between the rings

of matrix. Canaliculi spread from lacunae to harversian canal providing passages through

hard matrix. Osteonic canals include blood vessels.

5
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Spongy (cancellous) bone is less dense and lighter compared to the compact

bone. Spongy bone is composed of trabeculae and bars of bone that are adjacent to small

cavities which contain red bone marrow (Figure 2.1). To receive a blood supply,

canaliculi are connected to the adjacent cavities. The trabeculae is arranged to provide

maximum strength. Trabeculae located in spongy bone follows the lines of stress and

when the direction of stress applied changes, it can also realign.

Periosteum

Volkmann's canal

Figure 2.1 Structure of bone, compact bone and spongy (cancellous bone) [1].

2.2 Bone Tissue Engineering

The term "tissue engineering" was defined in 1988 as "The application of the principles

and methods of engineering and the life sciences toward the fundamental understanding

of structure-function relationships in normal and pathological mammalian tissue and the

development of biological substitutes that restore, maintain, or improve tissue function"

[17]. Whereas the classic biomaterial approach is based on the implantation of spare
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parts, tissue engineering is based on the tissue formation and regeneration that leads to

the formation of new functional tissues. For the successful tissue engineering application,

the understanding and integration of physics, biology, chemistry, material science,

engineering, and medicine is essential.

In bone tissue engineering, bone cells, extracellular matrix, intercellular

communications, growth factors, and cell-matrix interactions are some components to be

understood from a biological perspective [18]. In addition to this, another important

factor in bone tissue engineering is the three dimensional structure of the bone. Since

cells do not grow in a three dimensional manner in vitro, designing a scaffold that mimic

the bone structure is crucial for the cells to grow to form a new tissue in three

dimensional manner in vivo [18].

2.2.1 Scaffolds for Bone Tissue Engineering

A scaffold is a temporary template for cells to regenerate and restore functional tissues.

Scaffolds for bone provide cells with a tissue specific environment and architecture in

three dimensional. Scaffolds support and provide a reservoir for nutrients, water,

cytokines, and growth factors.

In vivo, cells use scaffolds as a temporary matrix where they can deposit and

proliferate to induce bone ingrowth, until new bone tissue is fully restored. Scaffolds also

act as a template for a vascularization of newly formed tissues [19]. Engineering a

scaffold requires the development of a series of properties that will be discussed later.
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2.2.2 Essential Properties for a Desirable Scaffold

Researchers have been devoted to bone tissue engineering where they develop desirable

three dimensional porous scaffolds with tissue-inducing factors [5, 18, 19]. The three

dimensional porous scaffolds need to be designed so that they play an important role

manipulating osteoblasts functions as well as guide and induce new bone formation.

Materials used in scaffolds also need to be osteoconductive for osteoprogenitor cells to

migrate and adhere onto the scaffolds, differentiate and form a new bone [6, 7]. The

desirable scaffolds should be also biodegradable with proper degradation rate so that the

scaffolds will eventually be replaced totally by newly formed bone.

Porosity is also important. Scaffolds should have fully interconnected highly

porous structure with high surface to volume ratio for cell ingrowth and vascularization

for newly formed tissue [19]. Thus the scaffold in bone tissue engineering should satisfy

the requirements: biocompatiblility, osteoconductivity, osteoinductivity, interconnected

porous structure, proper biodegradability, and proper mechanical strength.

2.2.3 Osteoconduction

Osteoconduction is a process where bone cells from recipient host bed migrate into the

three dimensional bone implant and new bone is formed as a result of the cell migration.

In successful bone engineering, osteoconductivity is crucial for an implant to integrate

into the host site. Bone tissue, minerals and collagenous components are osteoconductive.

Osteoconduction is observed in highly porous implant similar to bone structure.
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Osteoconductive materials serves as a scaffold on which bone cells can attach,

migrate, and grow. Osteogenic cells work better when they have a scaffold to attach to.

Porous biodegradable polymers, bioactive ceramics including hydroxyapatite, and

collagen hydroxyapatite combinations are all osteoconductive [20]. When the materials

used for the implant have low biocompatibility, the implant does not show much

osteoconductivity.

2.2.4 Osteoinduction

Osteoinduction is a process where osteoprogenitor cells, immature bone cells, are

recruited to a bone healing site and an osteogenic differentiation pathway is induced to

produce preosteoblasts [21]. This induction of osteogenic differentiation pathway is

called osteogenesis.

Osteoinduction is seen in all type of bone healing process. The majority of bone

healing depends on this osteoinduction process. Osteoinductive materials induce new

bone formation by stimulating osteogenic cells.

In case a portion of bone to be regenerated is large, natural osteoinduction with

the presence of a scaffold may not be enough for a total tissue regeneration [18]. For this

reason, a scaffold with its own osteoinductivity is essential for a successful integration of

the scaffold to the host site.
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2.3 Biomaterials Used in Bone Tissue Engineering

The selection of materials used to produce scaffolds for bone tissue engineering

application is very important since the properties of scaffolds rely on the properties of the

materials used to a great extent. The materials proposed for the scaffold production so far

are metals, ceramics, and polymers [18].

To achieve a successful osteointegration of a scaffold, bioactive ceramics such as

hydroxyapatite, tricalcium phosphate and biodegradable polymers have been selected by

a number of researchers. Current study indicates that ceramics shows exceptional

biocompatibility properties, interacting bone cells and tissues and carries a great potential

for bone tissue engineering application [8, 9]. The biodegradable polymer is

biodegradable and its biodegradability is controllable.

2.3.1 Hydroxyapatite

Chemical Formula of Hydroxyapatite: Ca10(PO4)6(OH)2

Hydroxyapatite was first identified as one of the mineral components of

mammalian hard tissue and bone in 1926 [22]. About 25 years ago, synthetic

hydroxyapatite was started to be considered as a potentially useful biomaterial in

dentistry, orthopedics and bone grafts [23]. Through the intensive studies of

hydroxyapatite based scaffolds, hydroxyapatite is known to show good bone bonding

ability and osteocoductivity in vivo [18]. Due to its ability to support osteointegration and

bone ingrowth in its tissue engineering applications, hydroxyapatite is classified as one of

the few biomaterials known as bioactive materials [19].
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Hydroxyapatite has been known to be osteoconductive through a number of

researches conducted in the past. Nagashima et al. conducted an experiment to investigate

the osteoconductivity of a porous hydroxyapatite block [24]. The porous hydroxyapatite

blocks were designed to have mean pore diameter of 90 microns and with 70% porous

volume. The blocks were implanted into the dog's defect site of lamina. The blocks were

taken out and examined after 3 months and 6 months.

The result showed new bone formation in the pores of the blocks and bone

growth occurred more frequently in the part close to the original bone than in the other

parts of the porous hydroxyapatite blocks implanted. Similar research had been

conducted by Boyde et al. and Yuan et al. and both cases of porous hydroxyaptite

implants achieved osteoconduction [25, 26]

Hydroxyapatite, however, is also known to have poor mechanical strengths as a

bulk material. For this reason, dense hydroxyapatite cannot be used for long term load

bearing applications in spite of its beneficial biocompatible properties [23]. To overcome

its physical inadequacies with bulk, hydroxyapatite is often used as a coating for metallic

implants such as titanium/titanium alloys and stainless steels. This way, the resulting

implants enable the bone cells to interact with hydroxyapatite to react with, while bioinert

metallic parts provide the mechanical strength required without being considered as a

foreign body or being isolated from the surrounding tissues. Hydroxyapatite is also

non-degradable and it has been shown to remain intact over a period of ten years in the

body [51].
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Hydroxyapatite in forms of porous blocks and powders can also be used as bone

fillers. The hydroxyapatite filler provides scaffolds for naturally forming bones reducing

a healing time and it also become a part of the bone structure [27].

2.3.2 Advantages and Disadvantages of Hydroxyapatite Incorporated Implants

Hydroxyapatite is often used as a coating of metallic implants such as titanium/titanium

alloys and stainless steels. This way, the resulting implants enable the body to see

hydroxyapatite to react with, while bioinert metallic parts providing the mechanical

strength required without being considered as a foreign body or being isolated from the

surrounding tissues.

The optimization of coating quality and the effects of coating resorption,

however, are yet to be discussed. If the resorption of the coating is not kept at the optimal

levels, disintegration of the coating resulted by the resorption can reduce the bonding

strength formed between the bone and the implant and this may result in the complete

loss of the implant [28].

The hydroxyapatite coating have been done by a variety of methods include dip

coating into a powder suspension, electrophoretic deposition, electron beam evaporation

combined with ion beam mixing, laser ablation, sol-gel, plasma spray, rf sputtering

methods [28]. These coating methods, however, have advantages and disadvantages. The

summary of advantages and disadvantages of each coating method is described in Table

2.2.
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Table 2.2 Summary of Hydroxyapatite Coating Methods [49]

Method Thickness
of the
coating

Advantages Disadvantages

Dip Coating 0.05-0.5mm Inexpensive
Coatings applied
quickly
Can coat complex
substrates

Requires high sintering temperatures
Thermal expansion mismatch

Sputter Coating 0.02-1μm Uniform coating
thickness on flat
substrates

Line of sight technique
Expensive, Time consuming
Cannot coat complex substrates
Produces amorphous coatings

Pulsed Laser
Deposition

0.05- 5μm As for sputter coating As for sputter coating

Hot Pressing and
Hot Isostatic
Pressing

0.2-2.0mm Produces dense
coatings

HP cannot coat complex substrates
High temperature required
Thermal expansion mismatch
Elastic property differences
Expensive, Removal/Interaction of
encapsulation material

Electrophoretic
Deposition

0.1-2.0mm Uniform coating
thickness
Rapid deposition
rates
Can coat complex
substrates

Difficult to produce crack-free coatings
Requires high sintering temperatures

Thermal
Spraying

30-200μm High deposition rates Line of sight technique
High temperatures induce
decomposition, Rapid cooling produces
amorphous coatings

Sol-Gel <1μm Can coat complex
shapes
Low processing
temperatures
Relatively cheap as
coatings are very thin

Some processes require controlled
atmosphere processing
Expensive raw materials
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2.3.3 Biodegradable Polyester

A polymer is a natural or synthetic macromolecule composed of smaller repeated units

called monomers. Many synthetic polymers are resistant to physical and chemical

degradation and thus disposal related issues are raised after use of the synthetic polymers.

For this reason, biodegradable polyesters such as poly(glycolic acid) (PLG), poly(lactic

acid) (PLA), and their copolymer poly(lactide-co-glycolide) (PLGA) have been

extensively studied for their potentials in biomedical and pharmaceutical applications

over the past few decades [29, 301

The biodegradable polyester is one of the few synthetic polymers that are

biodegradable and its biodegradability is controllable. Through degradation, PGA, PLA,

and PLGA transform into non-toxic substances and will be removed from human body.

In tissue engineering, biodegradable polyesters are often used to create a biodegradable

scaffolds which have controlled degradation rate [291

2.3.4 poly(L-lactic acid) (PLLA)

Catalyst+
Heat

Figure 2.2 Ring-opening polymerization of lactide to obtain polylactide [311
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Polylactic acid or Polylactide is a biodegradable aliphatic polyester derived

from lactic acid. Polylactic acid/Polylactide is produced through ring-opening

polymerization using catalyst (Figure 2.2). Poly(L-lactic acid) (PLLA) is a resulting

product of lactic acid polymerization in the L form.

The crystallinity of PLLA is around 37%, its glass transition temperature is

between 50 ° C ~ 80 ° C, and its melting temperature is 173 ° C-178 ° C. Like most

thermoplastics, polylactic acid can be processed to form fibers and films. Due to its

biodegradable properties, polylactic acid is used widely in various biomedical

applications and evaluated for tissue engineering. The price of PLA is higher than many

petroleum derived plastics; however, it has been falling as production of PLA increases.

2.3.5 poly(lactide-co-glycolide) (PLGA)

Figure 2.3 Structure of poly(lactic-co-glycolic acid) [32].

Poly(lactide-co-glycolide) (PLGA) is a FDA approved copolymer of PLA and

PGA. PLGA is synthesized by random ring-opening copolymerization of lactic acid and

glycolic acid (Figure 2.4). Successive monomer units of lactic acid and glycolic acid are

linked together by ester linkages during polymerization of PLGA and yield a linear

aliphatic polyester as a final product (Figure 2.3).
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Figure 2.4 Synthesis of poly(lactic-co-glycolic acid) [33].

The ratio of lactide to glycolide monomers used in the polymerization

determines the content of the comonomers in the final polymer, such as PLGA 75:25

which identifies a copolymer of 75% lactic acid and 25% glycolic acid composition.

PLGA has a glass transition temperature in the range of 40 — 60°C and is amorphous

rather than crystalline (Figure 2.5).

Figure 2.5 Polymer network structure: crystalline (bundles) phase and amorphous
(dispersed) phase of polymer.

Different from homopolymers of lactic acid and glycolic acid which have poor solubilities,

PLGA can be dissolved in wide range of solvents such as chlorinated solvents,

tetrahydrofuran, ethyl acetate, and acetone.
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In the presence of water, hydrolysis of its ester linkage leads degradation of

PLGA into non-toxic substances and will be removed from human body. The degradation

time of PLGA is related to the ratio of monomers used in polymerization; the higher the

number of glycolides, the lower the PLGA degradation time required. There is an

exception, however, that PLGA 50:50 exhibits faster degradation time. In the body,

PLGA produces lactic acid and glycolic acid through hydrolysis. These two substances

are by-products of metabolic pathways in the body under a normal physiological

condition. The alteration of the monomer ratio of PLGA during its synthesis enables to

control the degradation time of PLGA. Due to its high biodegradability and

biocompatibility, PLGA is currently used widely in biomedical and pharmaceutical

applications.

2.4 Electrospinnig

Electrospinning is a polymer processing method in which polymer solution is

transformed into a fine fiber and deposited onto a collector plate by electrostatic force.

This method is patented by Formhals in 1934, and since then the formation of polymer

fibers processed by electrospinning has been explored by several researchers [12-14].

Electrospinning can generate polymer nanofibrous mats that contain fibers ranging from

50 to 500 nm in diameter consistently [15]. The advantages of non-woven polymer

nanofibers are that it enables a control of fiber diameter and have a great potential to be

scaffolds for cell growth.



2.4.1 The Setup and a Principle of Electrospinning

Polymer
solution

Jet

18

Syringe

Metering
Pump

High Voltage
Supply

Pipette

Taylor cone

Collector screen
(Rotating or Stationary)

Figure 2.6 Apparatus of electrospinning [34].

Electrospinning system consists of two major parts: a collector and a sprayer

(Figure 2.6). The sprayer consists of syringe with needle which contains a polymer

solution to be electrospun and syringe pump which pushes the polymer solution at a

certain rate. The collector plate collects the fibers that are drawn from the tip of the

syringe needle. The collector screen and the syringe needle are attached to the high

voltage DC power supply. The syringe needle is attached to the positive output of the

high voltage power supply. In electrospinning system, the applied voltage ranges from 7

kV to 30 kV. This range of the voltage being applied is high enough so that the surface

tension of a polymer solution can be overcome to form a fiber. The electrostatic force

between the tip of the needle and the collector screen induce the formation of fiber jets

from the tip of the needle and the positively charged fibers travel to the surface of the

collector screen.
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(a) stage 1(b)stage2(c) stage3

Figure 2.7 Formation of the Taylor cone. Voltage increases with each stage until
equilibrium between the electrostatic force and surface tension is achieved in stage 3
[35].

When the electrostatic force and the surface tension of the polymer solution is at

equilibrium, the solution forms a cone shape at the tip of the needle in the electrospinning

process (Figure 2.7). This cone is called Taylor cone and was described first by Sir

Geoffrey Ingram Taylor in 1964 [36]. Taylor cone is observed only in viscoelastic,

Newtonian, and inviscid liquids [37].

Taylor's primary interest was the behavior of water droplets in a strong electric

field. According to Taylor's theory, a semi-vertical angle of 49.3 ° is required to form a

perfect cone under the described condition. Taylor demonstrated a formation of

theoretically described cone shape before jet formation and the semi-vertical angle is

known as Taylor angle [36].

When the electrostatic force between the collector plate and the tip of the needle

overcome the surface tension of the polymer solution coming out from the tip of the

needle, fibers start to be drawn from the tip of the Taylor cone. As the fibers travel to the

collector plate, the solvent contained in the polymer solution evaporates leaving

non-woven polymer fabrics. This fiber formation is observed only when the polymer
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concentration in the solution to be electrospun is high enough to cause molecular chain

entanglement. Otherwise, droplets are dispersed to the collector.

Using electrospinning method, a wide range of polymers can be processed to

form nanofibrous mats. Those polymers include cellulose derivatives, polylactides,

polyamides, polyethyleneoxide, and polymers contain solid nanoparticles or small

molecules.

2.4.2 Advantage of Scaffold Processing by Electrospinning

The great advantage of electrospinning method its ability to create unusually small fiber

mats which range from micro- to nano- size (Figure 2.8). The nanofibrous mats

fabricated by electrospinning have high surface area to volume ratio and a fiber size can

also be controlled. By creating the high surface area to volume ratio, electrospinning

enables the fabrication of three-dimensional scaffolds that mimic the architecture of

extracellular matrix (ECM) including bone [38].

The nanofibrous scaffold carries the potential for a number of applications.

Those possible applications range from wound dressing materials, artificial organs,

protective clothing, separation membranes, sensors and nano-composites.

Figure 2.8 Electrospun PLLA nanofibrous mats.
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2.5 Biomimetic Process with Simulated Body Fluid (SBF)

The development of three-dimensional nanofibrous scaffold with hydroxyapatite coating

can be also achieved by biomimetic process using simulated body fluid (SBF) developed

by Kokubo [39]. Biomimetic refers to a laboratory procedure designed to imitate a

natural chemical process. Recent research shows the biomimetic process is one of the

most promising tissue engineering techniques that can produce bioactive apatite coating

at ordinary temperature and pressure [40]. Kokubo et al. developed an acellular SBF with

inorganic ion concentrations similar to natural human blood plasma (Table 2.3).

Table 2.3 Ion Concentration of The Simulated Body Fluid and Human Blood Plasma
[41]

Ion
Concentration (mol/m³)

Simulated Body Fluid (SBF) Human Blood Plasma
Na+ 142.0 142.0

K+ 5.0 5.0
Mg²+ 1.5 1.5
Ca

²+ 2.5 2.5
Cl- 147.8 103.0

HCO3 - 4.2 27.0

HP03- 1.0 1.0

SO
²- 0.5 0.5

SBF is prepared to have calcium and phosphate ions supersaturated with respect

to apatite. When a substrate is immersed in the SBF, the heterogeneous nucleation of

calcium phosphate induces the formation of apatite layer on the substrate in vitro at

pH=7.4 and temperature 37 °C (Figure 2.9).
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Heterogeneous nucleation is the process of initiation of a new phase in a

supersaturated solution environment and the nucleation system contains two or more

components. SBF is a metastable solution. The solution is in a state of

pseudo-equilibrium that will change if disturbed in some manner.

Figure 2.9 Heterogeneous nucleation containing multiple components [42]. Nucleation
of calcium and phosphate ions induces the formation of apatite layer on the surface of the
substrate.

To promote a formation of apatite through heterogeneous nucleation, a 1.5 SBF

solution with 1.5 times each ion concentration of SBF is proposed by Kokubo et al [43]

(Table 2.4). The preparation procedure of Kokubo's SBF and 1.5 SBF are stated in

appendix A.
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Table 2.4 Modification of Ion Concentration in SBF [41]

Ion
Concentration (mol/m3)

SBF 1.5 SBF
Na+ 142.0 213.0

5.0 7.5
Mg²+ 1.5 2.3
Ca²+ 2.5 3.8
Cl- 147.8 221.7

HCO3- 4.2 6.3
HPO³- 1.0 1.5
SO2- 0.5 0.8
pH 7.25 7.25

The formation of apatite incorporated nanofibrous polymer scaffold can be

achieved by the combination of an electrospun mat with SBF solution. This combination

defines a biomimetic method. For this study bioceramics/polymer composite scaffolds

are developed by electrospinning.

2.6 Literature Review

A number of fabrication methods of ceramics/bioglass coated three dimensional scaffold

has been suggested to this date, and its properties, structure, biocompatibility,

osteoconductivity, and the effect of ceramics/bioglass content have been intensively

studied by several researchers.

Lu et al. conducted an experiment to determine the effects of bioglass (BG)

content on the maturation of osteoblast-like cells on the PLGA-BG composite developed

by solvent-casting followed by biomimetic process [44]. Lu developed PLGA-BG

composite with its BG content of 0 wt%, 10 wt%, and 50 wt% and monitored the cell
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proliferation, alkaline phosphatase activity and mineralization as a function of BG

content and culturing time.

In her study, Lu found that the kinetics of calcium phosphate layer formation,

and the response of human osteoblast-like cells were dependent on BG content of the

PLGA-BG composite; the 10 wt% and 25 wt% BG composite supported greater

osteoblast growth and differentiation compared to the 50 wt% BG group. The study by

Lu suggests that there is a threshold BG content that is optimal for osteoblast growth, and

the interaction between PLGA and BG may modulate the kinetics of calcium-phosphorus

formation and the overall cellular response [45].

Causa et al. conducted a study to analyze the mechanical properties, structure,

biocompatibility, and osteoconductivity of polymer-HA composite [46]. The HA

particles were added to the polycaprolactone (PCL) matrix and three PCL-HA

composites with HA content of 13 wt%, 20 wt%, and 32 wt% were developed. In their

study, it was found that composite of 20% and 32% HA led to a significant improvement

in mechanical performance of scaffold. The PCL-HA composite was also found to

improve osteoconduction compared to the PCL alone [43].

Laurencin et al. conducted a study to examine the in vitro attachment and growth

of bone morphogenetic protein (BMP)-producing cells on a PLAGA-HA scaffold [44]. In

their study, Laurencin et al. found that the polymer-ceramic scaffold supported bone

morphogenetic protein-2 (BMP-2) production, allowing the attachment and growth of

retroviral transfected, BMP-2-producing cells. It was also found that in vivo, the scaffold

functioned as a delivery vehicle for bioactive BMP-2, as it induced heterotopic bone

formation in a SCID mouse model [44].



CHAPTER 3

RESEARCH OBJECTIVE

The purpose of this study is to determine the potential of fabricating hydroxyapatite (HA)

and polymers (PLLA and PLGA) by electrospinning to form synthetic composite

materials for bone tissue engineering applications. The nanofibrous mats obtained by

electrospinning follow characterization using scanning electron microscope (SEM) -

Energy Dispersive X-ray Analysis (EDXA), Thermogravimetric Analysis (TGA), and

X-ray Diffraction (XRD) and the morphology, chemical composition, wt% of HA

deposit, and the identification of mineral components of the electrospun mats are

analyzed.
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CHAPTER 4

EXPERIMENTAL METHODS

4.1 Electrospinning Equipment

In this experiment, the electrospinning apparatus was set as in Figure 4.1. The apparatus

consists of syringe pump, syringe with polymer solution loaded inside, needle attached to

the syringe, collector screen, and high voltage power supply.

The collector screen and the syringe needle are attached to the high voltage DC

power supply. The syringe needle is attached to the positive output of the high voltage

power supply [Gamma High Voltage Power Supply ES30P, Gamma High Voltage

Research, Ormond Beach, FL].

syringe pump
needle collector screen

polymer solution

capillary-collector
distance

High Voltage Power Supply 25 kV

Figure 4.1 Electrospinning setup.
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The syringe with polymer solution loaded inside is mounted on a syringe pump

[Harvard Syringe Pump Model 901]. In this experiment, the electrospinning process was

performed with a constant syringe pump flow rate of 0.103 ml/min, 25 kV power supply

voltage, capillary — collector distance 22.5 cm, and size 12-gauge and 20-gauge needles.

The size 12-gauge needle was used to create micro size electrospun fibers and the size

20-gauge needle was used to create nano size electrospun fibers. Copper metal was used

as a collector for this experiment.

4.2 Materials

Two types of polymers were used in this electrospinning experiment: poly(L-lactic acid),

Resomer® L207 [Boehringer Inglheim Fine Chemicals] and poly(lactide-co-glycolide),

7525DL High IV [Alkermes, INC]. Both PLLA and PLGA are FDA approved

biodegradable polyesters which transform into non-toxic substances in vivo.

The solvent used to create 10%wt polymer solution of PLLA and PLGA was

methylene chloride [Fisher Scientific]. Ceramics used in this experiment was

hydroxyapatite powder [product #289396, Sigma-Aldrich]. Hydroxyapatite is known to

have good bone bonding ability and osteocoductivity in vivo.

4.3 Solution Preparation

4.3.1 Electrospinning of HA/Polymer solution

The solutions of poly(L-lactic acid) (PLLA) and methylene chloride of 10 wt% and

poly(lactide-co-glycolide) (PLGA) and methylene chloride of 10 wt% were prepared. To

create solutions of 10 wt% concentrations, 5 grams of PLLA and 5 grams of PLGA were
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dissolved in 45 grams of methylene chloride each and mixed thoroughly. Hydroxyapatite

(HA) powder were ground using mortar and pestle to achieve the powder size of 3 ~ 10 it

m. The ground HA powder was measured and added to the three PLLA solutions and

three PLGA solutions prepared previously so that the HA powder added in each solution

to account for 0, 10, and 25 wt% of the total solids. The following two different methods

were used for the addition of HA powder into polymer solutions, to compare the

dispersion of HA powder in resulting electrospun mats.

Method 1:

The HA powder measured was added to each polymer solution. The solutions were then

mixed overnight with magnetic stirrer. This was followed by the electrospinning process.

Method 2:

The addition of HA powder to each polymer solution was carried out within five minutes

before the electrospinning of solution to prevent the formation of large HA lumps in the

nanofibrous mats. The HA-polymer solutions were mixed well right before the

electrospinning process.

The HA-polymer solutions with 0 HA wt% were used as a control. Each solution

was electrospun separately using 12-gauge and 20-gauge needles (Table 4.1). The

parameters for this electrospinning process were kept constant: voltage 25kV, flow rates

0.103 ml/min and the distance form the collector 22.5cm.

Table 4.1 Solutions Prepared to be Electrospun

Polymer solution PLLA PLGA
HA wt% 0% 10% 25% 0% 10% 25%

Gauge size
LF- 12-gauge
SF- 20-gauge

LF SF LF SF LF SF LF SF LF SF LF SF
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4.3.2 A Biomimetic Protocol for Electrospun Mats with SBF

Following is the biomimetic experiment using SBF to create apatite coated polymer

nanofibrous scaffolds. In this process, the electrospun nanofibrous polymer mats are

immersed in SBF solution.

Solution of PLLA and methylene chloride of 10 wt% and solution of PLGA and

methylene chloride of 10 wt% were prepared. Both solutions were electrospun using two

different needle sizes: 12-gauge needle (LF), and 20-gauge needle (SF). The parameters

for this electrospinning process were kept constant: voltage 25kV, flow rates 0.103

ml/min and the distance to the collector 22.5cm. Total of 32 samples were punched out in

the size of 5mm diameter flower shape from the electrospun nanofibrous mats; eight

samples from PLLA LF mats, eight samples from PLLA SF mats, eight samples from

PLGA LF mats, and eight samples from PLGA SF mats.

The samples were immersed in an aqueous suspension of 0.2 wt% calcium

hydroxide at 40 °C for 24 hours being shaken at a rate of 60 times/min. After being

treated with calcium hydroxide, two samples from each mat were used as a control group

and were not treated with SBF. Three samples from each control were then immersed in a

regular concentration of SBF and the other three samples were immersed in a 1.5 SBF

and kept for one week at pH 7.25 at 36.5 °C.

4.4 Characterization of HA/Polymer Electrospun Mats

The electrospun mats obtained followed characterization using Scanning Electron

Microscope (SEM) - Energy Dispersive X-ray Analysis (EDXA), Thermogravimetric

Analysis (TGA), and X-ray Diffraction (XRD) and the morphology, chemical
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composition, wt% of HA deposit, and the identification of mineral components of the

electrospun mats were analyzed respectively.

In SEM-EDXA, pure HA powder was analyzed as a reference. The pure PLLA

and PLGA electrospun mats with 0% HA were used as controls for TGA to obtain

accurate wt% of HA particles in 10% and 25% HA incorporated electrospun mats. In

XRD, both pure HA powder and pure PLLA and PLGA electrospun mats were used as

references for identification of the corresponding peaks observed in 10% and 25% HA

incorporated mats.

4.4.1 Scanning Electron Microscope (SEM)

(?Eric B. Workman

Figure 4.2 Scanning electron microscope [47].

The formation, fiber and HA distributions, and morphology of the nanofibrous

mats were observed using scanning electron microscope (SEM) in this study (Figure 4.2).

The SEM is designed for a direct study of the surface of solid objects. Unlike

traditional optical microscopes that use lenses to bend the light waves, SEM uses
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electromagnets to bend an electron beam to form images. By using electrons, SEM

enables observers to have a better control in desired magnification management and also

provides better clarity in images. Since SEM has a large depth of the field, large area of

sample can be focused at one time. It can also produce high resolution images allowing

closely spaced features to be examined at high magnification. For this reason, the image

that has good representation of the sample's three-dimensional structure is produced by

SEM.

In this study, two SEM images were taken for each sample. The mean fiber

diameter of the resulting electrospun mats were quantified by analyzing the

measurements of ten randomly selected fibers per SEM image.

Sample Preparation:

The only requirement for the SEM sample is to be electrically conductive and thus the

preparation of the samples is not difficult. Since metals are electrically conductive, no

preparation is required to be viewed by SEM. To examine non-conductive metals such as

ceramics and plastics, however, the samples need to be coated with a thin layer of a

conductive material such as gold or carbon.
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Figure 4.3 Carbon coater [48].

To examine non-conductive samples, carbon coating method is often used to

provide a conductive layer on the samples by carbon coater (Figure 4.3). Carbon films are

used due to their mechanical stability, low background signal, and good electrical

conductivity. The films of their thickness 50 nm or more are used in SEM preparation.

To achieve the coating, a high vacuum evaporator with carbon fiber is commonly used. In

a carbon coater, a carbon fiber burns and evaporates within a second or less at high

temperature leaving a carbon coating on a sample. This quick evaporation process is

called a "flash evaporation". The evaporation depends on the surface area, length of the

fiber, and the temperature.

Mechanisms of SEM:

In SEM, electron beam is produced at the top of the microscope by heating metallic

filaments. The electron beam passes vertically through the microscope column. When the

beam reaches to the electromagnetic lenses, the beam is directed down towards a sample.

Once the beam hits the sample, secondary (or backscattered) electrons are produced from
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the sample. The secondary electrons are collected by detectors and converted to a signal

that produces an image on the screen (Figure 4.4).

Figure 4.4 Electron path of SEM [50].

Vacuum:

When a SEM is used, the column and sample must always be at vacuum. A vacuum

environment means that most of the air molecules have been removed from the inside of

the microscope. There are many reasons for requiring a vacuum in an SEM. If the

filament were surrounded by air, it would quickly burn out, like a light bulb. If the

column were full of air, the electrons would collide with the gas molecules and never

reach the sample. If gas molecules react with the sample different compounds could form

and condense on the sample. This can lower the quality of the image.
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4.4.2 Energy Dispersive X-ray Analysis (EDXA)

The elemental compositions of samples are analyzed using Energy Dispersive X-ray

Analysis (EDXA) following a pre-coating of samples with carbon. EDXA is a qualitative

analysis that involves the identification of the elements present in the area of a sample

irradiated by electron beam. This process is accomplished by identifying the fluorescent

characteristic x-rays emitted from the irradiated area of the sample.

EDXA is accomplished by extremely rapid process. The entire x-ray spectrum of

the sample can be acquired in a matter of seconds. EDXA allow users to estimate the

chemical stoichiometry of the sample since the relative intensity of x-ray in the spectrum

is proportional to the abundance of elements in the sample. EDXA also involves

semi-quantitative approach that can provide an estimate of elemental weight fractions, or

atomic proportions of the sample. Since the detection of x-ray does not depend on

beam-sample-detector geometry, EDXA is an effective method to characterize rough

samples such as loose grains or unpolished materials. The weak intensities of x-ray

produced by the elements at trace levels limit the qualitative approach of EDXA.

In this study, the weight % ratio of P/Ca in EDXA result at 500X was compared

to the elemental weight % ratio of P/CA=2.16 of HA for the confirmation of the presence

of HA in the sample.
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4.4.3 Thermogravimetric Analysis (TGA)

A quantitative measurement of mass change of nanofibrous mats associated with thermal

degradation was obtained using Thermogravimetric Analysis (TGA). The mass change of

materials from dehydration, decomposition, and oxidation of samples with time and

temperature was observed for a quantitative purpose.

TGA is widely used for the testing of materials such as polymers, composites,

adhesives, food, chemicals, and organic materials. TGA uses heat to force physical

changes and reactions in the sample. The quantitative measurement of mass change in the

sample is associated with transition and thermal degradation. The change in mass from

dehydration, decomposition, and oxidation with time and temperature is recorded in TGA.

The thermogravimetric curves are given due to physiochemical reactions of samples at a

specific temperature range and heating rate. These characteristic curves are obtained due

to the physical processes occurring in the sample.

In this study, degradation of samples was observed in the temperature range of 0

°C— 450°C at a heating rate of 10 °C/min.

4.4.4 X-ray Diffraction (XRD)

In this study, the identification of mineral components of the electrospun mats was

achieved by X-ray Diffraction (XRD).

XRD is an analytical technique used to identify unknown crystalline materials.

Monochromatic x-ray is used to calculate the interplanar spacing of the material. Samples

in powder form are analyzed in the orientation in which crystallographic directions are

achieved by the beam. When the interference is observed, a reflection is produced. The
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relative peak height is proportional to the number of grains contained in the powder

sample. The x-ray spectra generated in XRD provide a structural fingerprint of the

unknown sample. In case of the samples composed of mixtures of crystalline can be

analyzed in the same manner. The relative peak heights of the materials can be used for

semi-quantitative estimates for the abundance. The x-ray beam is also used to examine

the structural information of the thin films on surfaces.

The advantages of analysis using XRD are its rapid identification of materials,

ease of sample preparation, large library of known crystalline structures, and

computer-aided material identification.

Measurement Conditions:

In this study, the XRD was conducted with the following instrument settings:

For pure HA powder:

Start Position [°2Th.] 	 15.0100
End Position [°2Th.] 	 119.9900
Step Size [°2Th.] 	 0.0200
Scan Step Time [s]	 0.5000

For HA-polymer electrospun mats:

Start Position [°2Th.]	 20.0100
End Position [°2Th.] 	 69.9900
Step Size [°2Th.] 	 0.0200
Scan Step Time [s]	 4.3000



The following parameters were kept constant for both HA powder and HA-polymer
electrospun mats:

Scan Type	 Continuous
Offset [°2Th.]	 0.0000
Divergence Slit Type	 Fixed
Divergence Slit Size [O] 	 0.8709
Specimen Length [mm] 10.00
Receiving Slit Size [mm] 0.1000
Measurement Temperature [°C] 25.00
Anode Material	 Cu
Generator Settings	 45 kV, 40 mA
Goniometer Radius [mm] 	 200.00
Dist. Focus-Diverg. Slit [mm] 	 100.00
Incident Beam Monochromator No
Spinning	 No
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CHAPTER 5

RESULTS

The HA-polymer solution prepared in method 1 developed a number of lumps of HA

particles due to the overnight stirring of HA powder in polymer solution. The resulting

electrospun mats contained large lumps of HA powder which are not desirable for ideal

scaffold. For this reason, the method 1 was not successful. On the contrary, the

HA-polymer solution prepared in method 2 did not develop HA lumps and the resulting

electrospun mat did not contain distinctive lumps of HA powder.

In the biomimetic procedure of electrospun mats treated with SBF, all the

electrospun mats shrank after they were immersed in an aqueous suspension of 0.2 wt%

calcium hydroxide at 40 °C for 24 hours being shaken at a rate of 60 times/min. All the

PLGA SF mats were completely dissolved, the PLLA SF mats shrank to about 50% of

their original size, the PLLA LF and PLGA LF shrank to about 60-70% of their original

size. For this reason, the biomimetic procedure was not successful for this study and the

characterization for the scaffold developed by this procedure is not included in this

section.

5.1 Morphology and Elemental Composition of HA and Electrospun Scaffold

The morphology of HA powder was observed under scanning electron microscope

(SEM). The original HA crystals have a mean diameter in the range of 20 ~ 30 ,u m

(Figure 5.1, 5.2). The HA powder ground before the addition to the polymer solution was

also observed under SEM and showed a mean diameter size in the range of 3 ~ 8 μm

38







41

The electrospun pure PLLA LF mat was observed under SEM at 500X

magnification following carbon coating (Figure 5.5). The result of EDXA showed the

elemental composition of pure PLLA polymer; carbon 77.98 wt%, oxygen 22.00 wt%,

phosphorus 0.01 wt%, and calcium 0.05 wt%, confirming that pure polymer did not

contain any phosphorus or calcium (Figure 5.6).

Figure 5.5 PLLA LF pure electrospun mat (0% HA) at 500X magnification.

Quantitative results

Figure 5.6 EDXA of Pure PLLA LF mat at 500X.
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The electrospun PLLA LF 10% HA mat was observed under SEM at 500X and

2.25 KX magnification following carbon coating (Figures 5.7, 5.8). The image at 2.25

KX magnification showed HA particles in the polymer fiber (Figure 5.8). The size of HA

particles is in the range of 1.6 ~ 3.3 ,u m. The result of EDXA at 500 X showed the

elemental composition of PLLA LF 10% HA and the wt% of calcium was slightly higher

than that of pure PLLA (Figure 5.9).

Figure 5.7 PLLA LF 10% HA electrospun mat at 500X magnification.
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Figure 5.8 PLLA LF 10% HA electrospun mat at 2.2SKX magnification. 

Quantitative reslJlts 
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Figure 5.9 EDXA of PLLA LF 10% HA electro spun mat at SOOX. 
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The electrospun PLLA LF 25% HA mat was observed under SEM at 500X and

2.25 KX magnification following carbon coating (Figures 5.10, 5.11). The image at 2.25

KX magnification showed the HA particles in the polymer fiber (Figure 5.11). The size

of HA particles is in the range of 2.2 ~ 6.2 μ m. The result of EDXA at 500X showed

the elemental composition of both calcium and phosphorus of PLLA LF 25% HA was

higher than that of pure PLLA (Figure 5.12).

Figure 5.10 PLLA LF 25% HA electrospun mat at 500X magnification.
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Figure 5.11 PLLA LF 25% HA electro spun mat at 2.25KX magnification. 
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Figure 5.12 EDXA of PLLA LF 25% HA electrospun mat at 500X. 
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The electrospun pure PLGA LF mat was observed under SEM at 500X and 2.25

KX magnification following carbon coating (Figures 5.13, 5.14). The result of EDXA

showed the elemental composition of pure PLGA polymer; carbon 40.62 wt%, oxygen

59.41 wt%, phosphorus 0.02 wt%, and calcium -0.13 wt%, confirming that pure polymer

did not contain any phosphorus or calcium (Figure 5.14).

Figure 5.13 PLGA LF pure electrospun mat (0% HA) at 500X magnification.
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Figure 5.14 PLGA LF pure electro spun mat (0% HA) at 2.25 KX magnification. 

Quantitative results 

60 

50 Element Weight% Atomic % 

~ 0 
+oJ 

40 C 40.62 41.66 

..c 0 59.41 52.33 
0> 30 

~ 20 
P 0.02 0.01 

Ca -0.13 -0.05 

10 Totals 100.00 

0 

-10 

C 0 P Ca 

Figure 5.15 EDXA PLGA LF at 500X. 
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The electrospun PLGA LF 10% HA mat was observed under SEM at 500X and

2.25 KX magnification following the carbon coating (Figures 5.16, 5.17). The image at

2.25 KX magnification showed the HA particles in the polymer fiber (Figure 5.17). The

size of HA particles is in the range of 2.9 ~ 10.0 J2 m. The result of EDXA at 500X

showed the elemental composition of PLGA LF 10% HA and the presence of calcium

and phosphorus were not confirmed (Figure 5.18).

Figure 5.16 PLGA LF 10% HA electrospun mat at 500X magnification.
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Figure 5.17 PLGA LF 10% HA electrospun mat at 2.25 KX magnification. 
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Figure 5.18 EDXA of PLGA LF 10% HA electrospun mat at 500X. 
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The electrospun PLGA LF 25% HA mat was observed under SEM at 500X and

2.25 KX magnification following the carbon coating (Figures 5.19, 5.20). The image at

2.25 KX magnification showed the HA particles in the polymer fiber (Figure 5.20). The

size of HA particles is in the range of 2.5 ~ 7.1 μ m. The result of EDXA at 500X

showed the elemental composition of both calcium and phosphorus of PLGA LF 25%

HA was higher than that of pure PLLA (Figure 5.21).

Figure 5.19 PLGA LF 25% HA electrospun mat at 500X magnification.
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Figure 5.20 PLGA LF 25% HA electrospun mat at 2.25 KX magnification. 

Quantitative results 
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Figure 5.21 EDXA of PLGA LF 25% HA e1ectrospun mat at 500X. 
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5.2 Thermal Gravimetric Analysis (TGA)

Thermal gravimetric analysis (TGA) was carried out using Q50 Thermogravimetric

Analyzer. TGA was used to observe the temperature dependent weight changes in the HA

incorporated electrospun mats. In this analysis, the heating was carried out in the range of

0 °C to 450 °C at the rate of 10 °C per minute for all the samples. All the TGA figures are

shown in Appendix B.

The TGA was conducted on pure HA powder, and pure polymer electrospun

mats, PLLA LF, PLLA SF, PLGA LF, and PLGA SF, as references (Figure B.1 - B.5).

The pure HA powder showed 97.40 % weight retention confirming that HA powder was

not affected at the temperature range of 0 °C to 450 °C (Figure B.1). On the contrary, all

the weight retention percentages of the pure polymer electrospun mats were under one

percent at 450 °C; PLLA LF — 0.2653%, PLLA SF — 0.6026%, PLGA LF — 0.9221%, and

PLGA SF — 0.6447% (Figure B.2 — B.5). This result indicates that all the pure polymers

went through decomposition process before the temperature reached to 450 °C. Thus the

weight retention of each sample containing HA at 450 °C is considered as weight percent

deposits of HA powder.

The TGA was conducted twice on each HA incorporated electrospun mats. Two

samples were randomly selected from each electrospun mat and cut out for TGA.

The first TGA data for PLLA-HA and PLGA-HA are shown in Table 5.1 and

Table 5.3, respectively. The second TGA data for PLLA-HA and PLGA-HA are shown

in Table 5.2, and Table 5.4, respectively. The average weight percent of HA deposits of

each mat was calculated and shown in Table 5.5, Table 5.6, and Figure 5.22.



Table 5.1 Weight Retention of PLLA/HA Electrospun Mats 1 St Run

Table 5.2 Weight Retention of PLLA/HA Electrospun Mats 2nd Run

Table 5.3 Weight Retention of PLGA/HA Electrospun Mats 1 st Run

Table 5.4 Weight Retention of PLGA/HA Electrospun Mats 2 nd Run

Table 5.5 Average Weight Retention of PLLA/HA Electrospun Mats
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Table 5.6 Average Weight Retention of PLGAlHA Electrospun Mats 
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Figure 5.22 The average wt % deposits of HA incorporated PLLA and PLGA 
electro spun mats. 
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5.3 X-ray Diffraction (XRD) 

The X-ray diffraction (XRD) was conducted on HA incorporated electrospun mats for the 

material identification. The XRD pattern of pure HA powder was used as a reference for 

the HA peak at the position of 2theta = 33 (Figure 5.23). The XRD was conducted on 

PLLA LF 10% HA, PLGA LF 10% HA, PLLA LF 25% HA, and PLGA LF 25% HA 

samples (Figure 5.24 - 5.27). In all the XRD patterns of the samples, the peaks at the 

position of 2theta = 33 which corresponds to the HA were observed. This confirms the 

presence of HA in all the electro spun mats. 

ColJ1ts 
021306 Hydroxyapatite powder.xrdml 

150 

100 

20 30 40 50 60 70 80 90 100 110 

Position r2Thetaj 

Figure 5.23 XRD of pure HA powder. 
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Figure 5.24 XRD of PLLA 10% HA electro spun mat. 

Counts 

100 

I 
30 

I 
40 

Position [02Thetaj 

I 
50 

Figure 5.25 XRD of PLGA 10% HA electrospun mat. 
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Figure 5.26 XRD of PLLA 25% HA electrospun mat.
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Figure 5.27 XRD of PLGA 25% HA electrospun mat.



CHAPTER 6

CONCLUSION AND DISCUSSION

In this study, hydroxyapatite (HA) particles were successfully incorporated into the three

dimensional porous biodegradable PLLA and PLGA polymer fiber mats by

electrospinning. The SEM images show the attachment of ground HA particles on the

surface of the polymer fibers. The presence of HA in electrospun mats was confirmed by

EDXA and XRD. The TGA result showed that the HA incorporated electrospun mats

contained HA deposits of 10 — 20% less weight percentage than that of HA originally

added in a polymer solution. The possible reason for this loss in weight percentage is that

the original HA particles and electrospun samples contained moisture. The moisture

contained in the mats was evaporated during the TGA heating process of above 100 °C,

however, the weight of moisture still contributed for the original weight of the

electrospun mats in TGA.

The distinctive difference in properties of electrospun mats developed by large

needle (LF) and small needle (SF) was not confirmed in this study. The further

characterization and cell study are essential for this evaluation.

The biomimetic process with SBF was also conducted as a secondary approach

to produce HA incorporated electrospun mats in this study. This biomimetic approach,

however, was not successful since the pure polymer electrospun mats were dissolved

when they were treated with calcium hydroxide solution. This may resulted due to the

hydrolysis of ester linkage of polymers in the presence of water in calcium hydroxide

solution and the hydrolysis of polymers lead the degradation electrospun mats. The

hydrolysis reaction might have been accelerated, since the size of the samples punched
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out from the electrospun mats was very small and the highly porous structure of

electrospun mats increased the exposure of polymer surface to the solution.

Future Recommendations

The testing of mechanical strength and the porosity of the nanofibrous scaffold developed

in this study need to be carried out for a complete characterization of the mats. The

EDXA is possibly used to analyze the uniformity of dispersion of the HA particles

throughout the electrospun mats. The combination with other kind of

bioceramics/bioglass such as tricalcium phosphate (TCP) can be used instead of pure HA

powder for an optimal induction of bone growth.

After the development of adequate HA incorporated 3-D porous structure is

confirmed through characterization, the choice of the desirable cells that interact and

expand with the scaffold is the next step. The possible choices of the cells are bone

marrow-derived osteoprogenitor cells, osteoblasts, and stem cells for a bone tissue

application.



APPENDIX A

PREPARATION OF SBF SOLUTION

SBF is a metastable solution containing calcium and phosphate ions already
supersaturated with respect to the apatite. Therefore SBF and 1.5 SBF are prepared as
follows using the reagents in Table A.1:

Table A.1 Amounts of Reagents for Preparation of SBF and 1.5 SBF

Reagent
Concentration (mol/m 3)

Simulated Body Fluid (SBF)
1000mL

Human Blood Plasma
1000mL

Ultra-pure water 750mL 750mL
NaCl 7.996g 11.994g

NaHCO3 0.350g 0.525g
KC1 0.224g 0.336g

K2HPO4  3H20 0.228g 0.342g

MgCl2• 6H20 0.305g 0.458g

1 kmol/m³ HC1 40 cm3 60 cm3
CaCl2 0.278g 0.417g

Na2SO4 0.071g 0.107g
(CH2OH3)CNH2 6.057g 9.086g
1 kmol/m³  HC1 Appropriate amount for adjusting pH

(a) Cleaning

• Clean all the bottles including flasks, beakers etc. with dilute hydrochloric acid
solution, sterilizing agent and ultra-pure water in this order

• Immerse all the bottles etc. in dilute hydrochloric acid solution for several hours.
Remove the bottles from the solution and wash with tap water well.

• Immerse the bottles etc. in sterilizing liquid for overnight. Remove them from the
liquid, and washed with ultra-pure water well.

• Wash the bottles with ion-exchanged water for several times and cover their
mouths with wrapping film. The bottles do not need to be dried. If the bottles
would need to be dried place them in drier below 50 °C.

(b) Dissolution of chemicals
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• Put 750 mL(=cm³) of ultra-pure water into a 1000 mL beaker (polyethylene
beaker is preferred). Stir the water and keep its temperature at 36.5 °C with
magnetic stir with heater. The beaker is preferred to be placed in clean bench, to
avoid dusts.

• Add each chemical given in Table III into the water until #8, one by one in the
order given in Table III, after each reagent was completely dissolved. Weigh a
chemical with weighing bottle. Add it in the water. Wash the remaining chemical
on the weighing bottle with ultra-pure water and add the solution in the water.

• Addition of reagent #9 should be little by little with less than about 1g, in order to
avoid local increase in pH of the solution.

(c) Adjustment of pH

• Calibrate the pH meter with fresh standard buffer solution.
• After #9 on the order in Table III, check the temperature of the solution in the

beaker, and place the electrode of pH meter in the solution. Measure its pH while
the temperature is at 36.5 °C. At this point, pH of the solution is approximately
7.5. Titrate lkmol/dm³-HCl solution with pipette to adjust the pH at 7.25 (or
7.40).

• After the adjustment of pH, transfer the solution from the beaker to a glass
volumetric flask of 1000 mL. Wash the inside of the beaker with ultra-pure water
several times and add the solution to the flask.

• Add ultra pure water to the solution, adjusting the total volume of the solution to
1000 mL, and the shake the flask well. Keep the flask at room temperature until
its temperature should be approximately 20 °C. After cooling, add ultra-pure
water again, the solution to the total volume of the solution to 1000 mL, and then
shake the flask well.

(d) Storage

• Rinse a polyethylene (or polystyrene) bottle of 1000 mL with a bit of the prepared
solution (SBF), at least three times. Transfer the solution from the flask to the
polyethylene bottle.

• Store the bottle in a refrigerator at 5-10 °C.

(e) Notes

• Stability of the solution obtained must be examined. Put 50 mL of the solution in
a polystyrene bottle and place it in incubator at 36.5 °C. After 2-3 days, check
whether the solution has any precipitation or not. If any precipitation would be
found, do not use the solution.

• Bottles in which precipitation occur must not be used for any further experiments,
because some calcium phosphates would be adhered on their walls inside. A
precipitation of calcium phosphate especially such as hydroxyapatite easily
induces further formation of hydroxyapatite in the solution, since the simulated
body fluid (SBF) is already supersaturated.



APPENDIX B

TERMOGRAVIMETRIC ANALYSIS (TGA)

Figure B.1 Percentage weight retention of pure HA powder.

Figure B.2 Percentage weight retention of pure PLLA LF mat.
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Figure B.3 Percentage weight retention of pure PLLA SF mat.
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Figure B.4 Percentage weight retention of pure PLGA LF mat.



Figure B.5 Percentage weight retention of pure PLGA SF mat.
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Figure B.6 Percentage weight retention of pure PLLA LF - 10% HA mat.



Figure B.7 Percentage weight retention of pure PLLA LF - 10% HA mat.
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Figure B.8 Percentage weight retention of pure PLLA SF - 10% HA mat.



Figure B.9 Percentage weight retention of pure PLLA SF - 10% HA mat.
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Figure B.10 Percentage weight retention of pure PLLA LF - 25% HA mat.



Figure B.11 Percentage weight retention of pure PLLA LF - 25% HA mat.
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Figure B.12 Percentage weight retention of pure PLLA SF - 25% HA mat.



Figure B.13 Percentage weight retention of pure PLLA SF - 25% HA mat.
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Figure B.14 Percentage weight retention of pure PLGA LF - 10% HA mat.



Figure B.15 Percentage weight retention of pure PLGA LF - 10% HA mat.
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Figure B.16 Percentage weight retention of pure PLGA SF - 10% HA mat.



Figure B.17 Percentage weight retention of pure PLGA SF - 10% HA mat.
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Figure B.18 Percentage weight retention of pure PLGA LF - 25% HA mat.



Figure B.19 Percentage weight retention of pure PLGA LF - 25% HA mat.
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Figure B.20 Percentage weight retention of pure PLGA SF - 25% HA mat.



Figure B.21 Percentage weight retention of pure PLGA SF - 25% HA mat.
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