

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

FPGA-BASED IMPLEMENTATION OF
PARALLEL GRAPH PARTITIONING

by
Mohammad Kharashgeh

Graph partitioning is a very important application that can be found in numerous areas,

from finite element methods to data processing and VLSI circuit design. Many

algorithms have been developed to solve this problem. Of special interest is multilevel

graph partitioning that provides a very efficient solution. This method can also be

parallelized and implemented on various multiprocessor architectures. Unfortunately, the

target of such implementations is often unavailable high-end multiprocessor systems.

Here a parallel version of this method for an in-house developed multiprocessor system is

implemented on an FPGA. The system designed provides a cost-effective solution.

The design is based on two Altera soft IP Nios processors. They are synchronized

using shared locks. Also, they communicate information by writing messages into

buffers. These buffers are also implemented with shared memory.

The design was tested for various graph sizes. The speedup was not attractive for

the small graphs but becomes much better as the size of the graph increases. A speedup

up to 22% was achieved compared to the single processor design. Larger graphs could

yield better speedups. The quality of the partitions produced was also close to the

numbers achieved by a single processor. Balance constraints were forced on the

partitions and the variations were within 2% of the optimal ones.

FPGA-BASED IMPLEMENTATION OF
PARALLEL GRAPH PARTITIONING

by
Mohammad Kharashgeh

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

August 2006

APPROVAL PAGE

FPGA-BASED IMPLEMENTATION OF
PARALLEL GRAPH PARTITIONING

Mohammad Kharashgeh

Dr. Sotirios G. Ziavras, Thesis Advisor 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Jie Hu, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Mohammad Kharashgeh

Degree:	 Master of Science

Date:	 August 2006

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2006

• Bachelor of Science in Computer Engineering,
Jordan University of Science and Technology, Irbid, Jordan, 2003

Major:	 Computer Engineering

To my parents

V

ACKNOWLEDGMENT

I would like to thank my thesis advisor, Dr. Sotirios Ziavras, for everything he provided

throughout my thesis work. Also, I would like to thank my thesis committee members:

Dr. Jie Hu and Dr. Edwin Hou.

Also, I would like to thank my colleagues in the research lab: Xizhen Xu and

Zafrul Hasan for their valuable help. And thanks to my friends Emad, Mohammad Al-

Shara, Yazan and Ammar for their support.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 GRAPH PARTITIONING 	 1

1.1 Introduction 	 1

1.2 Graph Partitioning Techniques 	 2

1.3 Multilevel Graph Partitioning 	 4

1.4 Parallel Multilevel Graph Partitioning 	 11

1.5 Motivations and Objectives 	 13

2 FPGA Technology 	 14

2.1 Introduction 	 14

2.2 FPGA Resources 	 15

2.3 FPGA Types 	 15

2.4 IP Cores 	 16

2.5 The Nios II Development Board 	 16

3 HARDWARE ARCHITECTURE 	 18

3.1 Introduction 	 18

3.2 Components Used 	 19

3.3 Mailboxes Interprocessor Communication 	 20

3.4 Synchronization 	 21

3.5 Communication with the Host PC 	 21

4 SOFTWARE DESIGN 	 22

4.1 Introduction 	 22

4.2 Reading a Graph 	 22

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.3 Graph Partitioning Phases 	 24

5 PERFORMANCE MEASURES 	 31

5.1 Introduction 	 31

5.2 Speedup 	 31

5.3 Quality of Partitions 	 34

5.4 Partitions Balance 	 35

5.5 Memory Usage 	 36

5.6 Conclusions and Future Work 	 37

APPENDIX A GRAPH INPUT AND OUTPUT FILE FORMATS 	 38

APPENDIX B GRAPH GENERATOR PROGRAM 	 42

APPENDIX C ALTERA DEVELOPMENT ENVIRONMENT 	 44

	

APPENDIX D SOURCE CODE 49

REFERENCES 	 64

viii

LIST OF TABLES

Table	 Page

5.1 	 Relation between Interface Percentage and Speedup 	 34

5.2 	 Edge-cut achieved for Different Designs 	 35

5.3 	 Number of Vertices at the Next Finer Level 	 36

ix

LIST OF FIGURES

Figure	 Page

1.1	 Example of an input graph 	 6

1.2	 Sample matching of a graph 	 7

1.3	 Coarser graph 	 7

1.4	 Initial partitioning of coarser graph 	 8

1.5	 Projecting a partition back to the next finer level 	 9

1.6	 Refinement improves the partitioning quality 	 10

3.1	 High level diagram of the two-processor system 	 18

4.1	 Sample input graph 	 23

4.2	 Graph partitioning phases 	 24

4.3	 Graph structure 	 25

4.4	 Matching conflict 	 28

5.1	 Time needed to partition various graphs 	 32

5.2	 Speedup achieved from single to two-processor system 	 32

A.1	 Sample input graph 	 39

A.2 Content of sample graph 	 39

A.3	 Sample partitioning 	 40

A.4 Content of sample part 	 41

C.1	 Altera SOPC Builder user interface 	 45

C.2	 Quartus II compilation screen 	 46

C.3	 Nios II IDE user interface 	 47

CHAPTER 1

GRAPH PARTITIONING

1.1 Introduction

Graph partitioning, or the related topics of mesh partitioning and node tearing, are very

important problems in various domains. Applications of graph partitioning include VLSI

design, finite element method analysis, scientific simulations, and data processing.

1.1.1 Problem Statement

Given a graph G = (V, E) which consists of a number of weighted vertices (V) and a

number of weighted edges (E), our goal is to partition this graph into K sub-graphs

(partitions) while minimizing the total cost of the edge cut between these sub-graphs and

also keeping the partitions well-balanced. To keep the partitions well-balanced, the graph

partitioning algorithm should minimize the variation between different partition weights

(the sum of all vertices in a given partition).

1.1.2 Algorithmic Complexity of the Problem

The problem of finding the optimal (best) partitioning of the graph is considered to be

NP-complete (can not be solved in polynomial time) [3]. It complexity grows

exponentially with the size of the graph [2].

Several heuristics and techniques have been developed to produce suboptimal

solutions (local minimum solutions) close to the optimal in an acceptable amount of time.

In the next section, a brief description of some of these techniques is given.

1

2

1.2 Graph Partitioning Techniques

Many algorithms have been developed to solve the graph partitioning problem targeting

various criteria in how to partition a graph. In [1], the authors classify the graph

partitioning algorithms into five main categories: geometric techniques, combinatorial

techniques, spectral methods, multilevel schemes, and combined schemes.

1.2.1 Geometric Techniques

Geometric algorithms compute a partition of a graph assuming that the node coordinates

are available. The idea of this family of algorithms is to try to group nodes that are

geometrically near to each other regardless of the connectivity between them. If the

coordinates are not available, some methods may be used to devise such coordinates

based on graph connectivity. Typically, the geometric methods are very fast but the

quality of the partition produced is much less than those produced by other algorithms.

So, many trials of this technique may be performed and the one with the best quality may

be selected.

Examples of specific geometric methods are: Coordinate nested dissection [1],

recursive inertial bisection [1], and space-filling curve techniques [1].

1.2.2 Combinatorial Techniques

Combinatorial methods produce graph partitions based on the adjacency information in

the graph. Different heuristics have been developed under this category. One of the most

famous algorithms of this type is the one developed by Kernighan and Lin back in 1969

[2]. Their method starts with an arbitrary partition for the graph and then tries to improve

3

the result (i.e., reduce the weight of the edge-cut between partitions) by swapping subsets

of nodes between partitions in a way that leads to net reduction in the edge-cut.

The Kernighan/Lin method produces good quality partitions. On the other hand,

it is relatively slow and not easy to parallelize as vertex movement may conflict when

done concurrently by different processors.

Newer techniques (such as multilevel partitioning) are proven to be superior to the

Kernighan/Lin (K/L for short) method. But, actually these newer methods make use of

the K/L method or one of its variations in one of their phases (such as the refinement

step).

Generally, the K/L algorithm and its variations (such as Fiduccia-Mattheyses) are

used in repartitioning. Repartitioning means that a partition is already available and

further improvement will be done using a refinement algorithm.

1.2.3 Spectral Methods

Spectral methods work by computing the second eigenvector of the discrete Laplacian of

the graph [1]. Spectral methods produce high quality partitions but it is computationally

intensive, so it is relatively slow. Several improvements have been made to the basic

algorithm to make it faster.

1.2.4 Multilevel Techniques

Multilevel algorithms partition the graph in three phases. In the first phase, namely

coarsening, the input graph is shrunk and coarsened into a related smaller graph. This

process continues until the coarsest graph is of a manageable size. In the second phase,

4

namely initial partitioning, any method for graph partitioning could be used to get good

partitions for the coarse graph. The last phase, namely uncoarsening, is projecting the

coarser graph back onto the finer one and at the same time refines the partition produced

at the coarser level [3].

Multilevel algorithms are fast and produce graph partitions of high quality. These

algorithms are the main focus of this document and will be discussed in more detail in

later sections.

1.2.5 Combined Schemes

Different partitioning techniques could be grouped together to produce better partitioning

schemes. For example, a fast but low quality partitioning is first produced by geometric

methods, then the solution is improved by using another method like the K/L algorithm

[1].

Also, a multilevel scheme can use a refinement algorithm based on the K/L

algorithm in the uncoarsening phase [8]. Some algorithms are available that adapt the

multilevel approach and use spectral methods to compute the initial partitioning of the

graph.

1.3 Multilevel Graph Partitioning

Multilevel techniques provide very efficient solutions for the graph partitioning problem.

The quality of the partitions produced is high and the run time is small compared to other

techniques [1]. In addition, the multilevel algorithms can be parallelized efficiently. The

5

above are the reasons why we chose to implement this method on our multiprocessor

system [see the next chapter for the design details].

1.3.1 Introduction

As stated before, the multilevel technique includes three phases: Coarsening the

graph several times until it is of a manageable size, then partitioning the coarse graph,

and finally projecting the partitioned graph back to the finer ones step by step while

performing refinement (using a K/L variation) at each step.

We illustrate the idea of multilevel techniques and their efficiency as follows. We

start by looking back at the K/L algorithm. As stated in [2], an initial partitioning is

chosen (most probably randomly) and then it is improved iteratively by swapping subsets

of the partitions in a way that improves the partitions. On the other hand, multilevel

algorithms start refinement with a very good initial partitioning in the second phase

(which greatly affects the quality); they also carry out much faster in refinement because

at coarser levels moving a vertex means moving a group vertices at finer levels.

The following subsections illustrate the three phases of multilevel graph

partitioning in greater detail.

1.3.2 Graph Coarsening

The input in this phase is the original graph to be partitioned and the output is a related

graph of a much smaller size. To reach the intended coarse graph, successive application

of a graph matching algorithm is used.

6

A precise definition of graph matching is as follows: Find largest-size set of edges

S from E, where E represents the set of all edges, such that each vertex in V, where V

represents the set of all vertices, is incident to at most one edge in S. Although the above

definition is correct, it is a little bit not clear in our case. For simplicity, we consider

graph matching as finding the maximal number of groupings between two neighbor

vertices where each vertex can participate just once (matched with only one neighbor

vertex).

For example, assume the input graph to be partitioned in figure 1.1.

Figure 1.1 Example of an input graph.

The above graph has eight vertices and eleven edges. All the vertices and edges

have the weight of one (as indicated).

Now we will match every two neighbors. Many choices are available for doing

this and one of them is illustrated in figure 1.2

7

Figure 1.2 Sample matching of a graph.

The next step after matching is to construct the coarser graph. This is done by

merging the matched vertices and their weights. The resultant coarser graph is shown in

figure 1.3:

Figure 1.3 Coarser graph.

8

Different methods are suggested for graph matching. In [3], a number of methods

are described. For example:

• Random matching: a vertex can be matched with any neighbor vertex (not

matched yet).

• Heavy-edge matching: a vertex is matched with the neighbor vertex

corresponding to the heaviest edge. This scheme helps in producing higher

quality partitions.

1.3.3 Initial Partitioning

In this phase the coarser graph can be partitioned using many different algorithms [8].

Figure 1.4 illustrates how the above coarser graph can be partitioned into two parts. The

best edge-cut at this level is 3.

Figure 1.4 Initial partitioning of coarser graph (edge-cut is 3).

9

In this project, we use a specific initial partitioning algorithm called Grow

Bisection [8]. This algorithm starts with a random vertex as the initial partition. Then, it

augments this small partition by adding vertices to it in a breadth-first fashion. This

continues until the partition reaches the needed specific total weight.

Since this procedure is sensitive to the choice of the starting vertex, several trials

can be done and the one with the smallest edge-cut (best quality partitioning) may be

chosen [8].

1.3.4 Uncoarsening and Refinement

The first step in this phase is to project the current partition back to the finer graph at the

next level. Figure 1.5 illustrates this step. As you can see, the edge-cut is the same (3) as

the edge-cut of the previous level.

Figure 1.5 Projecting a partition back to the next finer level.

10

One can notice that although the edge-cut between partitions at the coarser level

was minimum, it is not the case at the finer level (a better edge-cut is achievable). Here

comes the importance of refinement.

Graph refinement is performed using the K/L algorithm or one of its variations.

As a result, two vertices in our case could be swapped to produce higher quality partitions

(the edge-cut is just 2) as illustrated in figure 1.6

Figure 1.6 Refinement improves the partitioning quality

A specific refinement algorithm, Greedy Refinement[3], is implemented in this

project. Greedy Refinement (GR for short) works by computing the gain if a vertex is

moved from one partition to another. Under this scheme, either vertices with positive

gain are moved or vertices of zero gain when their movement improves the balance

between partitions.

11

1.4 Parallel Multilevel Graph Partitioning

Many efforts have been made to parallelize multilevel graph partitioning [9], [10], [11],

and [12]. All algorithms keep the single processor spirit by using the same three phases.

But additional computations and unavoidable overheads are added to the basic process.

For the coarsening phase, conflicts between processors may arise as vertices on

different processors may try to match the same vertex at the same time. So, [11] suggests

performing an extra step of graph coloring before coarsening. Graph coloring assigns

colors to the vertices so that no two adjacent vertices have the same color. Graph

coloring can be used in matching to reduce conflicts by matching vertices of one color at

a time. Also, coloring happens to be essential in the refinement process.

For the initial partitioning phase, since the run time of this phase is small relative

to the other phases, this phase could still be performed on one of the processors. So, after

the end of the coarsening phase the coarser graph is moved to one of the processors in

order to be partitioned there.

In the uncoarsening phase, conflicts may also arise in concurrent vertex

movements as there are cases in which moving a vertex to another partition by a

processor may improve the quality but not when another vertex is moved by another

processor at the same time. So, graph coloring is used in the refinement phase to remove

conflicts. This is done by exclusively considering for movement vertices of one color at

a time.

Synchronization is needed between processors in the matching and refinement

steps. This is done as follows: every processor works on its subset of vertices with the

current color, then, it waits for all the other processors to be done too with this iteration.

12

This is important to reduce conflicts as stated before. At the end of the iteration

important information is communicated between processors.

Interface vertices (vertices on the boundaries between processors) require special

attention in the parallel formulation. Some interface vertex information should be

duplicated on both end processors. After each iteration, updated information about the

interface vertices is sent to the other boundary processor. This information includes

current color, match, and partition of this interface vertex.

To summarize the parallel graph partitioning process: First, the input graph is

distributed evenly among the processors in a chosen way (in [10], it is shown that the

choice of this distribution does not affect the output quality). Then, the graph is colored.

After that, the coloring is used to aid in matching and, hence, constructing the coarser

graph. Then the coarser graph is manipulated by a single processor in order to produce

the initial partitions. The resultant partitions are sent to the corresponding processors.

Next, uncoarsening and refinement is performed — making use of graph coloring.

The goal of parallel graph partitioning may be different from one design to

another. For some cases, there is no relation between the graph partitioning output and

the underlying multiprocessor system; i.e. the goal is to specify a partition number for

every vertex. On the other hand, the ultimate goal of other graph partitioning schemes is

to have the partitions assigned at the end to specific processors. For such case it is usual

to have the number of intended partitions equal to the number of processors.

The latter case identifies two approaches for solving the problem. The first one

'actually' moves vertices between processors doing refinement. The second approach

uses the idea of virtual immigration. Virtual immigration does not actually move vertices,

13

but just changes the partition number for that vertex when intended for movement. The

second approach is much faster but needs an extra step at the end to redistribute the

vertices to the correct processors.

1.5 Motivation and Objectives

Graph partitioning is a very important problem. Fast graph partitioning is critical in

many applications and domains. Multilevel algorithms provide efficient solutions. They

can also be parallelized on multiprocessor systems. Unfortunately, these

implementations often target unavailable high-end multiprocessor systems. Our goal is to

designing an FPGA-based multiprocessor system to perform parallel graph partitioning.

Thus, we want to provide a cost-effective solution to this important problem.

CHAPTER 2

FPGA TECHNOLOGY

2.1 Introduction

FPGA stands for Field-Programmable Gate Array. As stated in [4]: "A field

programmable gate array (FPGA) is a large scale integrated circuit that can be

programmed after it is manufactured rather than being limited to a predetermined,

unchangeable hardware function."

FPGAs are considered the main component for a family of architectures called

reconfigurable architectures. Before FPGAs, there were two main approaches for the

execution of algorithms [5]: hardwired technology (such as ASICs) or software-based

approach using microprocessors.

ASICs (Application Specific Integrated Circuits) are designed to perform

exclusively a specific job. Once ASICs are manufactured for a specific application, they

can not be changed. So, ASICs lack flexibility in functionality. On the other hand,

ASICs have the advantage of being extremely fast in performing the specific job they are

designed for.

The other approach, software-based microprocessors, is extremely flexible and

different applications could be performed by the same microprocessor. Some overhead

in performance is encountered to maintain this flexibility.

FPGAs are somehow a trade-off between the two approaches. Allowing the

designer to have his/her own custom hardware logic to perform critical functionality and

at the same can incorporate microprocessor(s) in the design. Added to this is the ability

to dynamically reconfigure the system, if needed.

14

15

2.2 FPGA Resources

A typical FPGA contains the following resources [4]:

• Logic elements: These are arrays of basic logic resources used by a process called

mapping to perform the desired logic function.

• Lookup tables (LUTs): Basically, they are ROM-style hardware that can be used

to implement any combinational function. LUTs as well are usually the building

blocks of logic elements.

• Memory resources: Most FPGAs contain on-chip memory resources such as

SRAM that could be used as local memory.

• Routing resources: A considerable portion of the FPGA chip is allocated for

routing purposes. When configuring the FPGA, these routing resources will be

used to connect different hardware to produce the desired functionality.

• Configurable I/O: Typical FPGAs have programmable I/O features. Many

options are available to the designer to program pins and interfaces to suite his/her

needs.

2.3 FPGA Types

According to [6], there are two main styles or types of FPGA technology: SRAM-based

and antifuse-based:

• SRAM-based: FPGAs of this type hold their configurations in static memory.

This type has the advantage of easy programming.The SRAM contents can be

changed dynamically through reprogramming to reconfigure the FPGA. Most

FPGAs are of this category.

16

• Antifuse-based: To program FPGAs of this type, a voltage is applied across the

wanted antifuses. Each antifuse is programmed separately.

2.4 IP Cores

IP stands for Intellectual Property. One of the main advantages of designing FPGA-

based systems is the availability of IP cores. These are ready-to-use components that can

be easily instantiated in the design.

Different vendor libraries are available for IP cores. These cores could be as

simple as an adder and as complex as a fully featured microprocessor. Several IP cores

are also available for many peripheral devices.

2.5 The Nios II Development Board

Most FPGA chips come as part of a development board. This board will include

resources other than the FPGA chip, such as on-board off-chip memory, and I/O ports

and interfaces to aid in the communication between the FPGA-based system and other

devices.

The multiprocessor graph partitioning system described in this document [see

next chapters] was implemented on the Altera Nios II Development Board — Cyclone II

edition [7].

The main component of this board is the Altera Cyclone II FPGA. This FPGA

has 33,216 logic elements. If the economical Nios II processor IP is used then the

number of logic elements in this FPGA is enough to instantiate around fifteen Nios II

microprocessors.

17

Also, this FPGA contains 483,840 bits of on-chip memory, for a total of about

60KB; they could be used as local memory. In addition, the following are available on

this board:

• 2 Mbytes of synchronous SRAM.

• 32 Mbytes of DDR SDRAM.

• 16 Mbytes of Flash memory.

• RS 232 serial connector.

• JTAG connector for FPGA configuration purposes.

• Ethernet connector.

• Oscillator to serve as clock input.

• Other devices (such as LEDs and push buttons) .

CHAPTER 3

HARDWARE ARCHITECTURE

3.1 Introduction

In this chapter we describe the designed multiprocessor architecture and its various

components for the graph partitioning problem.

It is a two-processor system that uses messages for interprocessor communication

and shared variables to synchronize. Figure 3.1 shows a high level diagram of the system.

Actually, different memory and communication configurations were used. Each

choice has its pros and cons. Initially, we used a communication scheme based on Altera

components and library for mailboxes described in detail in section 3.3. This approach

has the advantage of easy programming (library support and communication constructs

provided), but suffers from high delay in sending and receiving data.

Figure 3.1 High level diagram of the two-processor system.

18

19

Another communication approach (much faster and eventually used to get our

results) is based on sending and receiving messages by writing them in a specified

location of local shared memory. The programmer is responsible of reading the recent

data and not overwriting old data based on synchronization.

Mainly two memory configurations were used. The first one uses local memory

for both the graph data and message buffers. This configuration gives the fastest results,

but unfortunately, local memory is limited and can not be used to test larger graph.

The second memory configuration (The performance chapter uses results using

this configuration) uses static RAM to hold graph data and local memory for message

buffers. This approach is slower, but provides more space.

3.2 Components Used

The following components were used:

• Two Nios II microprocessors. Nios II processors are 32-bit RISC

processors. They are implemented with instruction caches of size 2KB

and support for branch prediction.

• Local memories (meml and mem2). These memories use on-chip

memory bits. The size of each is 16KB.

• Shared memory. It also uses on-chip memory bits. It holds shared

variables (locks) for synchronization purposes.

• Two mailboxes. These are ready to use components that are used to

communicate messages between processors. Each mailbox is based on

20

1KB of shared memory to hold messages in a FIFO manner. Each

message is deleted once it is read.

• 2MB of off-chip static RAM. This memory is used in one of the

configurations as the program and data memory and its address space is

partitioned between the two processors.

• UART connection. This serial connection is used to communicate data

with the host PC. Its baud rate is 115200 bps.

• JTAG connection. This connection is used to download FPGA

configuration to the chip.

3.3 Mailboxes Interprocessor Communication

The two processors communicate with each other using mailboxes. Any processor

can write and read from a mailbox (if defined as shared by the design tool)). In our case,

we use these mailboxes as one —way devices. This means that one of them for processor 1

to write messages for processor 2, the latter can just read from this mailbox. The situation

is the opposite for the other mailbox.

Both of these FIFO mailboxes need a buffer to store messages. These buffers are

simply local memory. Each one has 1KB of buffer space; when fully no messages are

accepted. Also messages are automatically deleted when read.

Supporting software library is used to access these mailboxes. The functionality

such as reading and writing to mailboxes is greatly abstracted and simplified by using the

Altera software library.

21

3.4 Synchronization

The two processors are synchronized using shared locks. Both processors need to be sure

that the other one is done with the current software iteration before proceeding to the next

iteration. The chosen for synchronization is as follow:

• When processor 2 reaches a synchronization point, it sets the lock and waits for

processor 1 to reset it.

• When processor 1 reaches a synchronization point, it waits until the lock is set (by

processor 2) and then resets it.

So the execution will continue as soon as both processors reach the synchronization

point.

3.5 Communication with the host PC

Two different types of communication are employed between the FPGA board and the

host PC:

• The first communication is through the JTAG serial line; by this communication,

the host PC downloads the configuration of the FPGA onto the board.

• The other type of communication is through the RS-232 UART interface. By this,

the host PC sends the input graph to the FPGA. Library support is used on either

side to access the serial line. The above communication is done in the character

mode. It is then transformed into integers by the receiving side.

CHAPTER 4

SOFTWARE DESIGN

4.1 Introduction

In this chapter, more details about the graph partitioning software will be given. First,

reading the graph from a file and constructing the data structures for the graph will be

discussed. Then we will describe the graph C structure used in details. After that, each

step of the graph partitioning algorithm will be illustrated.

4.2 Reading a Graph

Two methods of dealing with input graphs are used; one is reading it from a graph file

and the other is generating it using a generator program (Appendices A and B provide

more details). The ultimate output of both cases should be the same — four adjacency

arrays also involving weights. For the first method, we get these arrays by re-using the

"ReadGraph" function found in the METIS graph partitioning software [15]. For the

other method, these arrays are generated directly.

As stated above, four arrays are used to represent a graph. This is done following

the Compressed Storage format (CSR) [15]. The four arrays are:

• adjncy[2*M]: contains the neighbors of vertex 1, then neighbors of vertex 2, and

so on. Here M is the total number of edges, and we need 2*M because every edge

is listed twice (once by each of the neighbors it connects).

22

23

• xadj[N+1]: contains the starting and ending index of the adjncy array for the

neighbors of the first vertex then the second and so on. N is the number of

vertices.

• adjwgt[2*M]: contains the weight of the corresponding edge found in the adjncy

array.

• vwgt[N]: contains the weight of every vertex (in order).

For example, a sample graph is shown in Figure 4.1. No vertex or edge weights

are specified for this sample graph. If weights are not specified in the input file, they will

have the default value of 1.

Figure 4.1 Sample input graph

24

The corresponding CSR format arrays for the above graph would be:

adjncy[22] = {2, 3, 1, 3, 5, 1, 2, 4, 3, 6, 2, 6, 7, 4, 5, 7, 8, 5, 6, 8, 6, 7}

xadj[9] =	 {0,	 2,	 5,	 8,	 10,	 13,	 17, 20,	 22}

Extra spaces in the xadj array were used to illustrate its relation to the adjncy array. The

relationship is as follows: For the first vertex, its neighbors are listed in adjncy array

starting with the index value of 0 to the index value of 2 (but adjncy[2] is not included).

For the next vertex, its neighbors start at index 2 up to index 5, and so on. For the two

weight arrays, they will have the default value of 1 for every vertex and edge.

4.3 Graph Partitioning Phases

Figure 4.2 shows a general flow graph for the partitioning process.

Figure 4.2 Graph partitioning phases

25

The above diagram is a simplified view of the partitioning process, as most of the

phases contain sub-phases. Also, in parallel graph partitioning, an extra step of graph

coloring at the beginning is introduced. Software development issues for all of these

phases will be described in detail in the following sections.

Figure 4.3 shows the Graph structure used. The first four variables represent the

number of vertices, edges, colors, and interface vertices respectively. The third set is four

arrays of size `nvtxs' and specify properties of each vertex (color, partition ...). The ID

and ED are arrays that contain the internal and external degree of each vertex. `pwge is

an array of size of the number of partitions and hold the total weight for each.

Graph

nvtx s
rie dge s
ncolors
ninterfac e s

xadj
adj nc y
vwgt
adjwgt

interface
color
cmap
part

BD
ED

edgcut
pwgt

Figure 4.3 Graph structure.

26

4.3.1 Pre-Processing Phases

Several steps should be done before starting coarsening the graph in parallel; these are:

Initial distribution, interface calculations, and vertex coloring.

In the initial distribution sub-phase, the graph is linearly distributed among

processors by the master processors. Linear means that if we have two processors, for

example, to participate in graph partitioning, the first processor will take the first half of

the graph (first have of `adjncy' and the corresponding information) and the other

processor will take the other half. In some cases when there is a variation of processing

power between available processors, the more powerful side will take larger part of the

graph. In our case, we just use symmetric graph distribution.

It is important to note that the initial distribution phase is completely different

from the initial partitioning phase (after coarsening) in the multilevel graph partitioning

approach. In some other partitioning approaches, the two phases may mean the same (as

in the K/L approach described in chapter 1). But in multilevel graph partitioning, the

initial partitioning actually assigns partitions to vertices while initial distribution is just a

way to distribute the processing load between participating processors.

In the interface calculations sub-phase, each processor considers all of its vertices

and checks if it has neighbors from other processors' domains. If so it sets the interface

value of that vertex to 'true', else it will be false.

In the coloring phase, a variation of Luby's algorithm [18] is used. This variation

is suggested in [11]. Each processor tries to find a maximal independent set for a given

color (without having two neighbor vertices of the same color) then they synchronize and

exchange information about the newly assigned colors before starting the next iteration.

27

Coloring the whole graph is time-expensive. Actually, the algorithm becomes

slower for successive colors. So, as suggested in [11] , no need to color the whole graph

and coloring a good percentage of it (e.g., 80%) will produce comparable quality

measures with much less time.

4.3.2 Graph Coarsening

In this phase, we perform three main steps; graph matching, coarse vertex mapping, and

constructing coarser graph.

Many matching conflicts (conflicts happen when a vertex matches another one

which at the same time is matched to a third) are avoided by matching the graph in

parallel using the computed coloring of the graph. We perform matching by considering

vertices of the same color to be matched in one iteration. Vertices of no color (color

variable equals -1) can not participate in the matching themselves, but still they can be

matched by other colored vertices.

Since no two neighbor vertices can have the same color, interface vertices from

different processor domains can not match at the same time. This greatly reduces the

possible conflicts in matching.

One conflict scenario is still possible. Figure 4.4 shows an example of that case.

Here vertices 2 (from processor 1 domain) and 4 (from processor 2 domain) have the

same color, and so, can participate in the current iteration of graph matching. Both of

them found vertex 3 unmatched and decided to match. The match variable of vertex 3

may have an unknown value (either 2 or 4). In our case, we give priority to local vertices

and it will have value of 2. To allow vertex 4 adjust its wrong value, after each matching

28

iteration the processors synchronize and they update match values. Then every vertex

reads the match variable of the vertex it matched. If it is the same as its number, it will

proceed normally. Other than that it will set its match variable to -1 to indicate that it is

not matched. At the end of graph matching, every vertex should have a vertex matched

to it or it will be matched to itself.

Figure 4.4 Matching conflict.

The next step after matching is generating the coarse map. In this step every

vertex is mapped ('cmap' variable assigned a value) to another vertex at the coarser level.

Of course matched vertices in the finer level should be mapped to the same vertex at the

coarser level.

The last step in coarsening is constructing the actual coarser graph based on

matching and coarse map. This is the most complicated step in terms of code size.

29

This step starts by changing the vertex numbers from the previous level to the

new vertex numbers at the coarser level using the coarse map generated previously.

After that, the processors synchronize and send adjacency information about interface

vertices. Then the adjacency lists of the matched vertices are grouped together to form

the adjacency information of the new coarser graph. At the same time weights of the new

vertices and edges are updated.

4.3.3 Initial Partitioning

This step is relatively fast and can be done serially without affecting performance. So,

the coarse graph pieces is grouped from different processors and given to the master

processor which performs the partitioning and then sends back the result to the different

processors.

In this phase, any partitioning algorithm can be used to partition the coarse

'relatively small' graph. In our case we use Grow Bisection algorithm [11]. For

example, if we want to partition the graph into two parts, we will start by having all

vertices in partition number 1. After that, we select a vertex and make it the seed for

partition 2. Then we augment partition 2 by adding vertices using breadth first approach

starting from the seed.

4.3.4 Uncoarsening

Two steps are done in this phase; projecting the partition back to the original graph, and

refining the partition at each level to improve the quality of the partition (by reducing the

edge-cut).

30

In the first step, every vertex at the finer level is assigned the partition of the

corresponding vertex at the coarser level.

The second step, namely refinement, is the most important step in the algorithm.

In this step the quality of the initial partition is improved iteratively. The refinement

algorithm used in this step is Greedy Refinement (GR) described in [11].

The GR algorithm is based on the previously computed coloring of the graph. It

performs vertex movement between partitions to reduce edge cut iteratively; one iteration

for every color.

An iteration starts by calculating the internal degree and external degree for each

vertex, and storing these values in the ID and ED arrays respectively. Internal degree of a

vertex can be found by summing the weights of the edges connecting it with vertices

having the same partition. On the other hand, external degree of a vertex is the sum of

the edge weights connecting it to vertices belonging to another partition.

A vertex will be moved to another partition only in these two cases:

• If the value ID — ED is greater than zero for a vertex and moving that

vertex to the other partition will not make that partition total weight

exceeds the maximum imposed by balance constraints.

• If the ID — ED = 0, and moving the vertex will improve the balance

between partitions.

At the end of the iteration, the processors are synchronized. Then they

communicate to calculate the new values of the edge cut and the weights of the partitions

after vertex movements.

CHAPTER 5

PERFORMANCE MEASURES

5.1 Introduction

In this chapter, the results for graph partitioning using our two-processor system are

presented. The test graphs used are regular grid structures (NxN graphs). Although

irregular graphs better represent practical problems, we used the mentioned regular

graphs to study the relation between the size of the graph and the speedup gained. We

used for the tests three different sizes: from 10x10 (100 vertices) to 40x40 (1600

vertices).

Four aspects of graph partitioning will be considered, namely speedup as

compared to a single processor system, quality of partitions, balance among partitions,

and memory usage. These measures are explained in the following sections.

5.2 Speedup

The parallel two-processor implementation is not a direct shift from the single processor.

This means that the code for the single processor is not just duplicated to the two

processors with minimal effort and overhead. Actually, the multiprocessor

implementation has many aspects irrelevant to the single processor one. Graph coloring

is used to avoid conflicts in the matching and refinement phases, interface vertices

require extra computing, and other topics like vertex ownership and numbering have to

be treated.

31

32

Figure 5.1 illustrates the time needed for partitioning the test graphs on the single

and multiprocessor designs.

Figure 5.1 Time needed to partition various graphs.

For the smallest graph (100 vertices) the single processor is faster than the two processor
system. But for the largest graph, the two-processor system it is 12% faster. Figure 5.2
shows the speedup (or slowdown) achieved.

Figure 5.2 Speedup achieved from single to two-processor system.

33

Basically, each of the two processors executes the single processor code as well

the following overhead:

• The coloring phase is a pure overhead on the parallel implementation as it is not

needed in the serial implementation. So, the speedup is sensitive to the time

consumed in this phase.

• Computing matching based on graph coloring which consumes extra time

checking for colors.

• Interface vertices computations. Vertices on the border of a processor domain

require extra computations.

• Communicating interface vertices data (color, match ... etc.).

• Synchronization between the two processors.	 Some steps need to be

synchronized and this consumes more time.

All of the above factors (except coloring) depend on the percentage of the

interface vertices of the whole graph. In general, as the size of the graph increases, the

percentage of the interface vertices will decrease. If the percentage of interface vertices

is decreased, we are able to get more speedup from our multiprocessor system. Table 5.1

shows the relation between speedup and the percentage of interface vertices.

All the results shown are consistent except for the 20x20 graph. The reason for

the high speedup is that it uses just five colors to color 90% percent of the graph. The

number of colors depends on random values using Luby's algorithm [18] and [11].

According to the distribution of the random numbers among vertices, a graph could have

34

more or less colors. If less colors were used to color most of the graph, the coloring

phase and other dependent phases will need less time, and hence achieve better speedup.

Table 5.1 Relation between Interface Percentage and Speedup.

Graph Size Number of
colors

Interface
percentage

Speedup

10x10 100 6 20% Slowdown (7%)
14x14 196 6 14% Slowdown (3%)
20x20 400 5 10% 22%
30x30 900 6 6.7% 7%
40x40 1600 6 5% 14%

5.3 Quality of Partitions

The ultimate measure for partitions quality is the (weighted) sum of the edge-cut. This is

found by summing the weights of the edges that connect vertices which belong to

different partitions. Hence, a partition with lower edge-cut is considered a better partition

(other constraints apply; see the section about partition balance below).

It is hard for any parallel implementation to beat the serial one in getting lower

edge-cut (although possible). The reason is that the single-processor design has a global

view of the whole graph which helps in getting better partitions. On the other hand, the

graph is distributed between processors for the parallel multiprocessor implementation.

So, in general, the goal of parallel graph partitioning is to achieve quality comparable to

the quality produced by the basic serial algorithm.

Table 5.2 illustrates the edge-cut found for the single- and two-processors systems

and compares it to the optimal case.

35

Table 5.2 edge-cut achieved for different designs.

Graph Number of
edges

One processor Two processor Optimal

10x10 360 14 16 10
14x14 728 20 25 14
20x20 1520 30 35 20
30x30 3480 44 56 30
40x40 6240 60 73 40

The algorithm used for refinement and improving the quality of the partition is Greedy

Refinement [11]. Although this algorithm is fast, it may fail to escape local minimum of

the edge-cut. In general, this algorithm as seen in the above table produce partitions of a

reasonable quality and still do it fast.

5.4 Partitions Balance

Partitions balance reflects how the weights of the vertices are distributed among the

partitions. If the total sum of weights of vertices is W and we have N partition, a

perfectly balanced partitioning would give every partition W/N of the weights.

In general, partitions balance is a constraint rather than a goal (like low edge-cut).

So, a graph partitioning system will impose a maximum and minimum limit for partitions

weight. Usually, this is done as a variation percentage limit of the above W/N value.

Partition balance is harder to maintain when there is a huge variation in vertex

weights, especially when moving heavy-weighted vertices between partitions.

In the experiments, the partitions produced were well balanced and most of them

where within 2% of the W/N value.

36

5.5 Memory Usage

It is desirable to perform memory-aware graph partitioning. As well, the multilevel

scheme saves all the graphs at different coursing level. Usually, the coarser graph is half

or slightly more of the finer graph.

Table 5.3 shows the number of vertices the test graphs after the coarsening step.

Table 5.3 Number of Vertices at the Next Finer Level.

Graph Original number of
vertices

Coarse number of
vertices (serial)

Coarse number of
vertices (parallel)

10x10 100 50 55
14x14 196 98 110
20x20 400 200 222
30x30 900 450 490
40x40 1600 800 872

As it is apparent in table 5.3, single processor system can shrink the input graph more

effectively (and save more memory). The reason is that in the parallel scheme based on

coloring, not all the vertices participate in matching and are left unmatched to the next

level.

The multiprocessor system needs extra memory to hold redundant information

about interface processors, i.e., interface nodes information is duplicated among the

boundary processors. So, the extra needed memory is proportional to the number of

interface vertices.

In general, the parallel implementation requires more memory than the serial one,

but the memory requirements per processor is much less in the parallel formulation.

37

5.6 Conclusions and Future Work

In this work, a two-processor system for parallel graph partitioning on an FPGA was

designed. A single processor design was also implemented to be the compared with the

two-processor system.

A speedup up to 22% from the single processor design was achieved. This

speedup is strongly dependent on the percentage of interface vertices and on the number

of colors used.

One can think that the optimal speedup for moving from a single processor to two

processors would be 2; i.e., the dual processor system should be twice faster. That is not

the case for parallel graph partitioning. The reason for that is the new step of coloring the

graph before coarsening which is not needed in single processor design. This step is

considered a pure overhead in the parallel formulation, especially, it accounts for 20-25%

of the total partitioning time.

Comparing our two-processor design with a single processor one with "optional

coloring" step would be up to 1.7 faster; which is a very attractive speedup. And for

other phases, we reached a point near the limits of speedup.

The gain of moving from two processors to three or more is expected to be much

better that moving for single to two-processor system. Future work will be to implement

a three-processor system.

A huge part of the work was dedicated for coding and debugging, because of the

use of our own parallel programming constructs. For future applications, we may look

for available parallel libraries. We also plan to consider code development using Java

language on an FPGA-based Java processor.

APPENDIX A

GRAPH INPUT AND OUTPUT FILE FORMATS

A.1 Introduction

Two ways were used to input a test graph into our graph partitioning software.

The first method is to read it from a graph input file with a specific format. This format

will be described in this appendix. This is the same format used by well-known graph

partitioning software, such as METIS [15] and Chaco [16]. Here we provide an overview

of this file format. More details are available in [15] and [16].

The second method is using a generated input graph. All generated graphs were

of the type NxN grids. Although the "regular" graphs generated with this method have

less practical value, we used them to study the relationship between the size of the graph

and performance metrics in a consistent manner. The graph generation program is

described in appendix B.

A.2 Input File Format

Input files contain information about the adjacency structure of the graph and the weights

of vertices and edges. When either or both of the vertex and edge weights are

unavailable, they get the default value of 1. Actually, most input test graphs have default

weight values of 1.

We will illustrate the format with a simple example. Figure A.1 shows a sample

graph with eight vertices.

38

39

Figure A.1 Sample input graph.

The eight vertices are numbered from 1 to 8. The corresponding file that

describes this graph "sample.graph" is shown in figure A.2.

Figure A.2 Content of "sample.graph"

40

The first line contains two numbers. The first one specifies the number of

vertices and the other value is the number of edges. After that every line lists the

neighbor vertices for every vertex. The first line lists the neighbors of vertex 1, the

second line lists the neighbors of vertex 2, and so on. Since no weights are specified, all

vertex and edge weights will have the default value of 1.

A.3 Output File Format

The output file format is simple. It just specifies for every vertex the partition number

assigned by the graph partitioning program. Figure A.3 shows an example partitioning of

the above sample graph.

Figure A.3 Sample partitioning.

41

For the above partitioning, figure A.4 shows the content of the output partition

file. It has a line for every vertex and that line specifies the assigned partition for it

(either partition 0 or partition 1 in our case).

Figure A.4 Content of "sample.part".

APPENDIXB

GRAPHGENERATORPROGRAM

B.1 Introduction

To study the relation between graph size and other performance metrics, a family of

similar graphs (with different sizes) was used. These graphs were NxN grids. A program

was written to generate directly the "xadr and "adjncy" data structures (to be used

directly as input to the graph partitioning software).

B.2 Generator Source Code Listing

The following is listing of the C++ code for the graphgeneratorprogram:

#include <iostream.h>

#include <fstream.h>

#define N 10 // The generated graph will be NxN

int main()

ofstream fout;

fout.open("grid.dat");

int xadi[N*N+1];

int adjncy[4*N*(N-1)];

xadj[0] = 0;

int counter = 0;

int j=0;

for(int i=0; i<(N*N); i++)

counter = 0;

if(i >= N)

counter++;

adjncy[j] = i-N;

42

j++;

}
if(i%N != 0)

f
counter++;

adjncy[j] = 1-1;

j++;

/
if(i%N != (N-1))

{
counter++;

adjncy[j] = 1+1;

j++;

}
if(i < N*N-N)

f
counter++;

adjncy[j] = i+N;

j++;

}
xadj[i+1] = xadj[i] + counter;

/

fout«"xadj["«N*N+1«"] = {0";

for(int k=0; k<N*N; k++)

{
if(k%N == 0)

fout«endl;

fout«","«xadj[k+1];

/
fout«"}"«endl«endl;

fout«"adjncy["«4*N*(N-1)«"] = {";

for(k=0; k<4*N*(N-1); k++)

{
if(k%N == 0)

fout«endl;

fout«adjncy[k]«",";

/
fout«"}";

return 0;

/

43

APPENDIX C

ALTERA DEVELOPMENT ENVIRONMENT

C.1 Introduction

Several Altera tools were used throughout the development process. Altera SOPC

Builder was used for hardware design using IP cores. Altera Quartus II was used for

compiling the design and for programming it on the FPGA. Also, Altera Nios DE was

used for the software development and for running it on the FPGA. In the following

sections we provide more details.

C.2 SOPC Builder

Altera SOPC Builder 5.0 was used for the hardware design. It provides a user friendly

environment for building systems from the list of available (IP) components. The user

can choose the hardware components to be included and add them to the design. Then

the components are connected using Altera Avalon Bus Fabric. Connecting components

could be done easily by clicking the mouse on the intersection of the connectivity matrix

between the desired components. Figure C.1 shows SOPC Builder user interface. The

connectivity matrix is apparent in the figure.

Each component has properties that can be edited and customized easily; one can

change the baud rate of a UART, increase the size of a local memory component, or even

change advanced properties of the processor core used.

44

45

sope Builder can assign addresses for devices automatica lly, although the

designer can customize it. The designer can also assign the IRQ level number for

different devices (lower IRQ values have priority), with the processor clock IRQ having

the highest level of priority (value ofzero).

When the design IS ready an HDL code representing the system IS generated by

sope Builder. For more detai ls, the designer can refer to the sope documentation

avai lable from Altera [1 7].

~~"bdScUrYlS NIot U~....!·c~·~ (~ n JIb"C~~ Systllnl G",nlnlCion
-------------,,--

is 1 ... SOPC &Mer "

T~ot ~c. elcpo ,~d,CydoneI(E:P2ClS) ",J ""'''''''' .--. ,-----
J ~Ct'.uNew~ ..
lii A"",",,~' <0" ::~ I • '*" I Pl'ooencr

=-:J ~50
iI 8ridge_ . • ..

"
3 c-ne",ion

• JTAGU>.RT ru..-- - - - - -
• $PI (3 \'ke SeneI

.......... I)r,CI'ifltiorl "'" SUe EM ~~
• UART (RS-232 sc

0 Jt~_....rt '" """ t:-es '.l1lt::! O)({)1(IIS91F ~ '

.!I DieplI)I 0 - UARI(RS·m __ pa1)
\.-" .~=:,rr .!I [P1CZI M;os 0He60pn 0

orlltftoah __ .J:J-
..... In.g •• erIdQt -"

<il Ef>1Stt IIoe De¥eIOJIfI' 0 m' '''..n-an FlUfI--V(c-""'~ac:e)

3j EP1S41_1IMeIOpoT 0 . ,lc _emJloJI YIlm T~.e lllidt;)e t'_OS
,!I fl'2C)6Mi1MIle~ 0 !B."'_ V1Jr"' CY1C131!OC SSR..I.M iii Cb:O'XDOO._ 0X021 Fffff

0 ddr_-.dIam * ~ SOfW,I COrtrolle< ~ F<I ·r·8S iii 0x0C0000. ill<09'fffff
\ij [PUll DSP IIowd Sl" '."11 ' 1l><010153;:i 31 (P.tSU _ 0evM0prI 0 IOcklj lloftfn ~.~(ftAMOI~ c_os

""",""'''''''. ~ 0 perlOfmanc",_counI", J..1Or1NlrCe Ccu1er li'II -"
3 bI;,.IAiIit_ 0 BcM I,:Nos I Proceuor · eo.p:.. or' <>-"

.P ... ~eCou ! - nstruction..,lrlHttlf 1'*-""
81 le(,lN.'Y Compooonli ! -_ dIII~ i-"" g ~.
& Mor.-y 0 '

-- _"9-~ ~:mw ~_8S "'''t 0x01016"'1
• Cv1lr"" CY1C1'

cpul _dodc 111 (h(l101S8Bf '

• OMSMANCon
0 m~' p....a-., ",""","y (lUW QiI AQM) ,"-os ... 1'1 0x01011J'fl'1

• DOR2 SClRAM Co
0 ""'-, ~~Momary{ltlJolc. ROW) _ a_as ... "~ -:::- I • EPCSSeriotI flont 0 8 ."., f!.':'':~~ _ , .. _"

• flesl'l Menoy (C< v -~ -
l..L....-- > ~

r--- dMll~'" ~ r- ~19_derN\J~ i'"~'" h"11 {J:<1)101 4fF'
II!' n.o •• e''''''~. "1< I 0 C'JIU2_clock ~.,.- f>" , •• ,11$121

1
(J:<1)101 S83f'1 r.L

~., 'JP;> 0 1 0 mem2 ~~(lWIIc.R«04) do::1!15 ' ''''''''1 O)1)1 01JfF'
E) ""'., ~Mem:7y(1U,IoI c.~) cI:.1!I5 ...,.1S.. OxOl O151ff1 v

I e""", I I .- ... I I ~ -- I
Nioa De..ela(wnenl 8o..-d, Cyc:one' EdiOOn: SSRAM dare byt,J.r\e~ .. " s~ Rot ... ! ,, '''''~.Iios ~ ao.rd,Cy<;1one I &::lilion Rel ... eroce ~
cpu'! _~ ~""'lIeo a$ II ~eo O!leBCafe Ph$!nOWIII and wi 1fnI!-(II..C <rieU ~ 0'1 o...1UJ I wt~ II vlOtd ~1O

cD ~pu2 _t oene<lIeo a$ III~ec ~e Ph$ ~ and 1fIIe-(II..C 0I0IeH ~ O'IQuertut I wtn II vlOtdk_
.!; Doo!I CfleC/I:O'Ig IG' ~es

-
~ .- ~ I """ .. I

Figure C.l Altera sope Builder user interface.

46

C.3 Quartus II

Altera Quartus II 5.0 was used for compiling, fitting, and programming the design on the

FPGA.

After successfully generating the design in SOPC Builder, it should be compi led

by Quartus II before being downloaded to the board. But before that, the designer should

verify pin assignment and other board settings such as the name of the FPGA used.

Figure C.2 shows the screen of a Quartus II compilation summary.

When the compilation is done, an "design.sof' file is generated. This ".sof' file is

used by Quartus II programmer to configure the FPGA with the required design.

UlUUh, t y) ~§~

==----3-:1- I);U' '"' \!lI iii • ';'. e, ~ ~

~ c,doo1e M: EP2C3SF672C6
tt- fu _¥d¥d - 6660[3)

~,"s~ ...
c­
fri-o~1II

~P .. t ~fIJ~

a le ~HotU
a:t!::I Flow s..mn.y
atIII Flow SettroQs
~ Flow ElIpsed 1m.
a le FIowlOQ

•• ::J~IIo~
·' a:Jftl:er
. 821 AsseoTtier
. i9D TIfMQ AI'Ie/y: ...

I $ ~Aeport·f1oIoS\.flWMOY

s
O_IIV",~

ReWsianN
TocHrveI Entiy tl_

' ... 0_
T riIg r-4 ode1c
Mel: ~ leqt..irenwnt,
loWlogic~.

ToWl~~u

,<taI~

'oIaI ... lwI~

Succeul,j. Sill M~ 1318;0.:35 2006
5.0BuId l'illWl2GI2OO5SJ ruiVer--.,
""'"' H
E~&72C6 -H,

1,4G1 /J3.216 (22 l::) .. "
Z17/ (711(tSr.)

i Ol1ll11'OelnClY be. 1%:J68 I'SJ.8A£) (Z1 :q
E~Io4""~eIeonetU 8/70111,",
ToWPU... 2"(5O%J

:v trig: RNdP~~f>refel""""-~onobIe....n:osetlIcDOS"'obo~~~ ... ~,~r6q,.eMbIe'l.

,

~ IN\!; Seb4>a.;kll ""11 01 ~.-I"'pn'<H~doiDT ,,.",pat.dctSJ'. \-c>..\..celJ./OiI
{J h~.,. H"":hlach 32l:i1)! .wAlOailedw!ch!WI'd!t...cIq'r fwionpc;t'dct~T, 'qJu~c~LttIJI
'{-'Intt!: »'riQ' hSyV"'"'tlmgV'8lfoe¥i.:wloiOORIDORHORAM)oI~",."".w.UI·dct_,<y"""c""'lllel'
~~ trl", ~ h~op;...,e W~ "'I"'S~..", ~CII'I 01 othet DDRIOOR2S0RAM M~~ V_1tII'I'I you ~ hwe rI)'OU ~0i"CI . .v h1l0' E~ of fe/act'" -..to_ve"IY_dO'_\mn) 1dwa'J IIUOCfIntU
J/IrIQ· QwrL!C ~ FIA~_'~DOIIIOIf.1712~

i J~em Pux:euirla A r.lralrlo AlrtGAW..noogJ\O.Uil:c.lW..-.g I\JIrOI!
Illol~II.DoImt 10 ~ !

1'00 Het>. Dlest FJ

Figure C.2 Quartus II sample compilation screen.

_ a x

-

47

C.4 Nios II IDE

Altera Nios II IDE (Integrated Development Environment) was used for software

development purposes. This IDE provides usual features found in traditional IDEs, such

as compiling, building, debugging, and running the code. Figure C.3 shows the user

interface of the Nios II IDE.

fill fell N.wiQ4U: SoowdI R.Wl Ptojllct Tools 'M'dow Hdp

l ~ . 0 Ill! I ~ . ., • <\ . \!tJ '" '':;:' ~ • tt 8.
I!! ~CjC++P ... tl »\ ""t:l I~ ~~L.C

e&! _ ~ ~ . I :;~
• !6 CO\tttJ"'\S"O'
• 1.::5 C1lOIlIjIo'wyJft'db[fht
• i& 0Mql1
• id ~l_f)'tltbr""....20SJ
• !z::! Cle$qILO.cpul
; vJ. ~IO_qlOJUyslib (itet
' 1d ~IO_qcl
• 0 1:l1t!qlIo_q:ou,Z..>ysIb(std.
. ",
• tcl ~~(kAJOSl
-0~IJPUI

• 0 BiNrlei · """'" . «> -
., ~ pr«es«lfl .(

tR*«ion.~
t§ ~.txt

• ~ ~""I)I_(, •. lL _sysAb{«d
~ l"j C>esq\2OI _ctu2

.. O~s

"""'" · «> "'""
' ![) ~fO'2.c

~.stf

lSi IIt4.indxl.

t , tJ ~U:pJ2.mib{\td
. \J ~I""""'"

51' '".
'"
'03

'" '" '"
so,
50'

'" '" '" ,,.
'" '" '" '" '" , ..

, .
H I ClOItIp[1] >- Nl

c:xadJlv1ndex+1J .. e xsdHvllldexj + tqr"'lIh->xadj{1H] - f"coph-) x$ClHl) -t- l oo)[l,jp
1.or " " :Qul ph->xod) [tl;) < tgcaph-> xadJ (1+11; J++)

U :lsdJooyl:)J !"' (Vlndex+NIJ ,
c:lldj nc}'(ad)lndnl .. adJnep(J l :
eadj_qt{adJlndcx] .. tgl.'"ap h->atlJvgt{J];
adlil\dexH;

Lor (j"loolc:up (lCadj_ but:ter, liIIlIec h { i] ,-1) I j< lookup (xadj_bu.t'ter, ech(tJ , 11; j ++) ,
11 (adjnc:v_bu.t'ferOI ! . (v~ nd"lC+NI I ,

1".· (rf9ul ph- >xadJ (q; le <t9raph-> lCadJ (1+1); Ie)
l .t (ad)ncy[lc:) •• aclJncy_buUerfll)

11 (! repeated) ,
c adjl'lCv[ad)indexl • adJI'lCV_bll.:Uerfl) ;
cadj "(!c [ad.) index] .. adj.qt _ buU.,r [)] ;

• tJ DHiI;n2OI...-w..>ysIb($tt
~ t.J Oesign3.coul

~ t:! Oesign3. cpuIJY$Ib [itd.".2
.. t.J 0esign3.$P1Z

111121 1 2 11111

1300000

debuq(O] .. 0 d .,buq(DI '" debug-[O} " B
buq(O) .. 15

.. lJ ~_qJU2_O)I$Ib(.td..2
,,' (J~~
.. 0 Deso:14Jerie1JYS6b [.td"; Ilv tx2 " 5

.. ~ ~:_(pJ~ ~ltod~2 .. ""

< "

Figure C.3 Nios II IDE user interface.

debuq[OI .. 11 debuq[O) .. 13

The available compiler provides great support for the C programming language

and its standard libraries, but provides limited support to the C++ programming language

and its libraries. For example, it does not support C++ classes or C++ style dynamic

memory allocation.

•

48

The IDE provides three main types of running the compiled C code. The first one

is running it on the actual hardware. The second is running it on Nios II instruction set

simulator. The third is running the code on Nios II Modelsim.

Using the IDE, the developer can specify the memory to be used for the five

sections of a program (text, read-only data, read-write data, heap, and stack). Altera

online documentation provides more details about using the Nios II IDE.

APPENDIXD

SOURCE CODE

The following listing is the graph partitioning code for processor 2 (processor 1 code is

similar):

#include <stdlib.h>
#include <stdio.h>
#include "system.h"

#define N 800 	 // half number of vertices
#define M 3120 	 // half number of edges
#define L 40 	 // the value in LxL graph grid

typedef struct

{
short nvtxs;
short nedges;
short ncolors;
short ninterfaces;

short* xadj;
short* adjncy;
short* vwgt;
short* adjwgt;

short* interface;
short* color;
short* cmap;
short* part;

short* ID;
short* ED;

short edgecut;
short* pwgt;

short ninter2;
short* interl;
short* inter2;

void* cgraph;
void* fgraph;

} Graph;

void initGraph(Graph* graph, short nvtxs, short nedges)

{
graph->nvtxs = nvtxs;
graph->nedges = nedges;
graph->ncolors = 0;

49

graph->ninterfaces = 0;

graph->xadj = (short*)malloc((nvtxs+1) * sizeof(short));
graph->adjncy = (short*)malloc(nedges * sizeof(short));
graph->vwgt = (short*)malloc(nvtxs * sizeof(short));
graph->adjwgt = (short*)malloc(nedges * sizeof(short));

graph->interface = (short*)malloc(nvtxs * sizeof(short));
graph->color = (short*)malloc(nvtxs * sizeof(short));
graph->cmap = (short*)malloc(nvtxs * sizeof(short));
graph->part = (short*)malloc(nvtxs * sizeof(short));

graph->ID = (short*)malloc(nvtxs * sizeof(short));
graph->ED = (short*)malloc(nvtxs * sizeof(short));
graph->pwgt = (short*)malloc(2 * sizeof(short));

graph->cgraph = NULL;
graph->f graph = NULL;

)

void synchronize()
{
short* lock = (short*)LOCKS_MEM_BASE;
*lock = 1;
while(*lock);

)

short lookup(short* buffer, short vertex, short offset)

short i=0;
while(buffer[i] != vertex)

i = i + 2;
return buffer[i+offset];

}

short getIndex(short* buffer, short vertex)

{
short i=0;
while(buffer[i] != vertex)

return i;

}

void pre(Graph* graph)

{
short* meml = (short*)MEMl_BASE;
short* mem2 = (short*)MEM2_BASE;

short* inter_buffer = meml + 1;
short* inter_buffer2 = mem2 + 1;

short i, j;

for(i=0; i<graph->nvtxs; i++)

graph->interface[i] = 0;
for(j=graph->xadj[i]; j<graph->xadj[i+1]; j++)

50

if(graph->adjncy[j] < N && !graph->interface[i])

graph->interface[i] = 1;
graph->ninterfaces++;

graph->interl = (short*)malloc(graph->ninterfaces * sizeof(short));

mem2[0] = graph->ninterfaces;
j=0;
for(i=0; i<graph->nvtxs; i++)

if(graph->interface[i])

graph->interl[j] = i+N;
inter_buffer2[j] = i+N;
j++;

synchronize(); // always after sendinq

graph->inter2 = (short*)malloc(meml[0] * sizeof(short));
graph->ninter2 = meml[0];
for(i=0; i<meml[0]; i++)
graph->inter2[i] = inter_buffer[i];

void color(Graph* graph)

{
short* meml = (short*)MEMl_BASE;
short* mem2 = (short*)MEM2_BASE;
//sh=:k dob-ag - m=1 . 100;

short i, j, k, max;
short nColored = 0;
short currentColor = 0;

short* rnd = (short*)malloc(graph->nvtxs*sizeof(short));
for(i=0; i<graph->nvtxs; i++)

rnd[i] = (rand()+1) & 32767;

for(i=0; i<graph->nvtxs; i++)
graph->color[i] = -1;

short* color_lock = (short*)LOCKS_MEM_BASE + sizeof(short);
*color_lock = 1;
while(*color_lock)

for (i=0; i<graph->ninterfaces; i++)

mem2[j] = rnd[graph->interl[i]-N];

synchronize();

51

for(i=0; i<graph->nvtxs; i++)

if(graph->color[i] == -1)

{

max = rnd[i];

for(j=graph->xadj[i]; j<graph->xadj[i+1]; j++)

{
if(graph->adjncy[j] < N)

{
k = meml[getIndex(graph->inter2, graph->adjncy[j])];
if(k >= max)

max = k;
break;

else

if(rnd[graph->adjncy[j]-N] >= max)

max = rnd[graph->adjncy[j]-N];
break;

if(max == rnd[i] && max != -1)

{
graph->color[i] = currentColor;
nColored++;

currentColor++;
for(i=0; i<graph->nvtxs; i++)

if(graph->color[i] != -1) rnd[i] = -1;

synchronize();

graph->ncolors = currentColor;
free(rnd);

}

void coarsen(Graph* fgraph, Graph* cgraph)

{
short* meml = (short*)MEMl_BASE;
short* mem2 = (short*)MEM2_BASE;

short* cmap_buffer = meml. + 3*(fgraph->ninterfaces)*sizeof(short);
short* xadj_buffer = meml + 6*(fgraph->ninterfaces)*sizeof(short);
short* adjncy_buffer = xadj_buffer + 3*(fgraph-

>ninterfaces)*sizeof(short);
short* adjwgt_buffer = adjncy_buffer + 5*(fgraph-

>ninterfaces)*sizeof(short);
short* cmap_buffer2 = mem2 + 3*(fgraph->ninterfaces)*sizeof(short);

52

short* xadj_buffer2 = mem2 + 6*(fgraph->ninterfaces)*sizeof(short);
short* adjncy_buffer2 = xadj_buffer2 + 3*(fgraph-

>ninterfaces)*sizeof(short);
short* adjwgt_buffer2 = adjncy_buffer2 + 5*(fgraph-

>ninterfaces)*sizeof(short);

short i, j, k, myMatch;
short cnvtxs = N;
short* match = (short*)malloc((fgraph->nvtXs) * sizeof(short));
short* cmap = (short*)malloc((fgraph->nvtxs) * sizeof(short));
for(i=0; i<fgraph->nvtxs; i++)
match[i] = -1;

short index;
for(k=0; k<fgraph->ncolors; k++)

for (i=0; i<fgraph->ninterfaces; i++)

mem2[i] = match[fgraph->interl[i]-N];

synchronize();

for(i=0; i<(fgraph->ninter2); i++)

{
if(meml[i] >= N)

if(match[meml[i]-N] == -1 II match[meml[i]-N] == fgraph-
>inter2[i])

match[meml[i]-N] = fgraph->inter2[i];

else

meml[i] = fgraph->inter2[i];

synchronize(); // newly added -- should be added before

for(i=0; i<fgraph->ninterfaces; i++)
if(fgraph->interl[i] == mem2[i])
match[fgraph->interl[i]-N] = mem2[i];

for(i=0; i<fgraph->nvtxs; i++)

if(fgraph->color[i] == k)

if(match[i] == -1)

myMatch = i + N;
for(j=fgraph->xadj[i]; j<fgraph->xadj[i+1]; j++)

if(fgraph->adjncy[j] >= N)

if(match[fgraph->adjncy[j] - N] == -1)

53

54

myMatch = fgraph->adjncy[j];
break;

else

if(meml[getIndex(fgraph->inter2, fgraph->adjncy[j])] == -
1)

myMatch = fgraph->adjncy[j];
break;

= crta;D_nyE,-,t?h = cnvtxs++;
match[i] = myMatch;
if(myMatch >= N) match[myMatch - N] = i + N;

for(i=0; i<fgraph->ninterfaces; i++)

mem2[i] = match[fgraph->inter1[i]-N];

synchronize();

for(i=0; i<(fgraph->ninter2); i++)

if(meml[i] >= N)

{
if(match[meml[i]-N] == -1 I I match [meml [i] -N] == fgraph-

>inter2 [i])

match[meml[i]-N] = fgraph->inter2[i];

else

meml[i] = fgraph->inter2[i];

////////////////be careful when match = -1
for(i=0; i<fgraph->nytxs; i++)

if(match[i] == -1)
match[i] = i+N;

synchronize(); // I added this just for testing

for(i=0; i<fgraph->nytxs; i++)
cmap[i] = -1;

j=0;

for(i=0; i<fgraph->nvtxs; i++)
if(cmap[i] == -1)

if(match[i] < N)

if(match[i]%2 == 0)

cmap[i] = cnvtxs;
cnvtxs++;
cmap_buffer2[j] = match [i];
j++;
cmap_buffer2[j] = cmap[i];
j++;

)
)
else

cmap[i] = cmap[match[i] - N] = cnvtxs;
cnvtxs++;

)
}
synchronize(); // added after sending messages

j=0;
for(i=0; i<N; i++)

if(match[i] < N)

if(match[i]%2 == 1)

cmap[cmap_buffer[j]-N] = cmap_buffer[j+1];
j=j+2;

)
}

j=0;
for(i=0; i<fgraph->ninterfaces; i++)

cmap_buffer2[j] = fgraph->interl[i];
j ++;
cmap_buffer2[j] = cmap[fgraph->interl[i]-N];
j++;

)

synchronize();

short* cxadj = (short*)malloc((N+1) * sizeof(short));
short* cvwgt = (short*)malloc(N* sizeof(short));
short* cadjncy = (short*)malloc(M * sizeof(short));
short* cadjwgt = (short*)malloc(M * sizeof(short));
cxadj[0] = 0;

for(i=0; i<fgraph->nvtxs; i++)
cvwgt[i] = 0;

j=0;

55

for(i=0; i<fgraph->nvtxs; i++)

if(cmap[i] >= N)
cvwgt[cmap[i]-N] += fgraph->vwgt[i];

else

{
xadj_buffer2[j] = cmap[i];
j++;
xadj_buffer2[j] = fgraph->vwgt[i];
j++;

xadj_buffer2[i] = -1;

synchronize(); // alway after sending

j=0;
while(xadj_buffer[j] != -1)

cvwgt[xadj_buffer[j]-N] += xadj_buffer[j+1];
j = j+2;

short* visited = (short*)malloc((fgraph->nvtxs) * sizeof(short));
for(i=0; i<fgraph->nvtxs; i++)
visited[i] = 0;

short vindex = 0;
short adj index = 0;
short repeated = 0;

short* adjncy = (short*)malloc((fgraph->nedges) * sizeof(short));

for(i=0; i<fgraph->nedges; i++)
if(fgraph->adjncy[i] < N)

{
adjncy[i] = lookup(cmap_buffer, fgraph->adjncy[i], 1);

else
adjncy[i] = cmap[fgraph->adjncy[i]-N];

xadj_buffer[0] = -1;
xadj_buffer[1] = 0;

j=2;
for(i=0; i<fgraph->ninterfaces; i++)

{
xadj_buffer2[j] = fgraph->interl[i];
j++;
xadj_buffer2[j] = fgraph->xadj[fgraph->interl[i]-N+1] - fgraph-

>xadj[fgraph->interl[i]-N];
j++;

56

synchronize(); 1/ always after sending

for(i=2; i<(fgraph->ninterfaces)+2; i++)

xadj_buffer[2*i+1] += xadj_buffer[2*i-1];

k=0;
for(i=0; i<fgraph->ninterfaces; i++)

{
for(j=fgraph->xadj[fgraph->interl[i]-N]; j<fgraph->xadj[fgraph-

>interl[i]-N+1]; j++)

adjncy_buffer2[k] = adjncy[j];
adjwgt_buffer2[k] = fgraph->adjwgt[j];
k++;

synchronize(); // always after sending

for(i=0; i<fgraph->nytxs; i++)

if(!visited[i])

visited[i] = 1;

if(match[i] == (i+N))

{
cxadj[vindex+1] = cxadj[vindex] + fgraph->xadj[i+1] - fgraph-

>xadj[i];
for(j=fgraph->xadj[i]; j<fgraph->xadj[i+1]; j++)

{
for(k=cxadj[vindex]; k<adjindex; k++)

if(adjncy[j] == cadjncy[k])

{
cxadj[vindex+1]--;
cadjwgt[k] += fgraph->adjwgt[j];
repeated = 1;
break;

if(!repeated)

{
cadjncy[adjindex] = adjncy[j];
cadjwgt[adjindex] = fgraph->adjwgt[i];
adjindex++;

repeated = 0;

vindex++;

else if(match[i] >= N)

{
visited[match[i]-N] = 1;

57

58

cxadj[vindex+1] = cxadj[vindex] + fgraph->xadj[i+1] - fgraph-
>xadj[i] + fgraph->xadj[match[i]+1-N] - fgraph->xadj[match[i]-N] - 2;

for(j=fgraph->xadj[i]; j<fgraph->xadj[i+1]; j++)

if(adjncy[j] != (vindex+N))

cadjncy[adjindex] = adjncy[j];
cadjwgt[adjindex] = fgraph->adjwgt[j];
adjindex++;

for(j=fgraph->xadj[match[i]-N]; j<fgraph->xadj[match[i]+1-N];
j++)

if(adjncy[j] != (vindex+N))

for(k=fgraph->xadj[i]; k<fgraph->xadj[i+1]; k++)
if(adjncy[k] == adjncy[j])

repeated = 1;
if(!repeated)

cadjncy[adjindex] = adjncy[j];
cadjwgt[adjindex] = fgraph->adjwgt[j];
adjindex++;

else

{
cxadj[vindex+1]--;
k=cxadj[vindex];
while(cadjncy[k] != adjncy[j])

k++;
cadjwgt[k] += fgraph->adjwgt[j];

repeated = 0;

vindex++;

else

{
if(cmap[i] >= N)

cxadj[vindex+1] = cxadj[vindex] + fgraph->xadj[i+1] - fgraph-
>xadj[i] + lookup(xadj_buffer, match[i], 1) - lookup(xadj_buffer,
match[i], -1) - 2;

for(j=fgraph->xadj[i]; j<fgraph->xadj[i+1]; j++)

{

if(adjncy[j] != (vindex+N))

cadjncy[adjindex] = adjncy[j];
cadjwgt[adjindex] = fgraph->adjwgt[j];
adjindex++;

for(j=lookup(xadj_buffer,match[i],-1);
j<lookup(xadj_buffer,match[i],1); j++)

{
if(adjncy_buffer[j] != (vindex+N))

for(k=fgraph->xadj[i]; k<fgraph->xadj[i+1]; k++)
if(adjncy[k] == adjncy_buffer[j])

repeated = 1;
if(!repeated)

{
cadjncy[adjindex] = adjncy_buffer[j];
cadjwgt[adjindex] = adjwgt_buffer[j];
adjindex++;

else

cxadj[vindex+1]--;
k=cxadj[vindex];
while(cadjncy[k] != adjncy[j])

k++;
cadjwgt[k] += fgraph->adjwgt[j];

repeated = 0;

vindex++;

initGraph(cgraph, vindex, cxadj[vindex]);
for(i=0; i<=cnvtxs; i++)

{
cgraph->xadj[i] = cxadj[i];
debug[N+1+i] = cxadj[i];

for(i=0; i<cgraph->nedges; i++)
cgraph->adjncy[i] = cadjncy[i];

for(i=0; i<cgraph->nedges; i++)

cgraph->adjwgt[i] = cadjwgt[i];
//memlli: 	 cgrapi-_ - >adjwqtli:;

for(i=0; i<cnvtxs; i++)
cgraph->vwgt[i] = cvwgt[i];

for(i=0; i<fgraph->nvtxs; i++)
fgraph->cmap[i] = cmap[i];

for(i=0; i<cgraph->nedges; i++)

{
meml [i] = cadjwgt[i];
cgraph->adjwgt[i] = meml[i];

59

fgraph->cgraph = cgraph;
cgraph->fgraph = fgraph;

synchronize(); // for 7ost±,ng

free (match);
free(cmap);
free(cxadj);
free(cvwgt);
free(adjncy);
free(cadjncy);
free(cadjwgt);

synchronize(); // for zest

void GrowBisection(Graph* graph)

short* xadj2 = (short*)MEMl_BASE;
short* adjncy2 = xadj2 + 1000;
short* vwgt2 = adjncy2 + 5000;
short* adjwgt2 = (short*)MEM2_BASE;
short* nvtxs2 = adjwgt2 + 5000;
short* edgecut2 = nvtxs2 + 1;
short* part2 = edgecut2 + 1;
short* pwgt2 = part2 + 1000;

short i;

for(i=0; i<=graph->nvtxs; i++)

xadj2[i] = graph->xadj[i];
debug[0] = graph->xadj[4];

}

for(i=0; i<graph->nvtxs; i++)
vwgt2[i] = graph->vwgt[i];

for(i=0; i<graph->nedges; i++)
adjncy2[i] = graph->adjncy[i];

for(i=0; i<graph->nedges; i++)
adjwgt2[i] = graph->adjwgt[i];

nvtxs2[0] = graph->nvtxs;

synchronize();

synchronize();

for(i=0; i<graph->nvtxs; i++)
graph->part[i] = part2[i];

graph->edgecut = edgecut2[0];
graph->pwgt[0] = pwgt2[0];
graph->pwgt[1] = pwgt2[1];

60

61

void uncoarsen(Graph* fgraph, Graph* cgraph)

short i, j;

fgraph->edgecut = cgraph->edgecut;
fgraph->pwgt[0] = cgraph->pwgt[0];
fgraph->pwgt[1] = cgraph->pwgt[1];

short* cmap_buffer = (short*)MEMl_BASE;
short* cmap_buffer2 = (short*)MEM2_BASE;

j=0;
for(i=0; i<fgraph->ninterfaces; i++)

if(fgraph->cmap[fgraph->interl[i]-N] >= N)

cmap_buffer2[j] = fgraph->cmap[fgraph->interl[i]-N];
j++;
cmap_buffer2[j] = cgraph->part[fgraph->cmap[fgraph->interl[i]-N]-

N];
j++;

synchronize(); // always after sending

for(i=0; i<fgraph->nytxs; i++)

if(fgraph->cmap[i] >= N)
fgraph->part[i] = cgraph->part[fgraph->cmap[i]-N];

else
fgraph->part[i] = lookup(cmap_buffer, fgraph->cmap[i], 1);

synchronize(); // just in case

void GreedyRefine(Graph* graph)

short i, j, k;
short myPart;

short* delta_pwgt = (short*)MEMl_BASE;
short* part_buffer = delta_pwgt + 2;

short* delta_edgecut = (short*)MEM2BASE;
short* delta_pwgt2 = delta_edgecut + 1;
short* part_buffer2 = delta_pwgt2 + 2;

*delta_edgecut = 0;
delta_pwgt2[0] = 0;
delta_pwgt2[1] = 0;

for(i=0; i<graph->ncolors; i++)

//debug[0]
for (k=0; k<graph->ninterfaces; k++)

part_buffer2[k] = graph->part[graph->interl[k]-N];

}

synchronize(); // always after sending

graph->pwgt[0] += delta_pwgt[0];
graph->pwgt[1] += delta_pwgt[1];

synchronize(); // just to be sure previous value is read

delta_pwgt2[0] = 0;
delta_pwgt2[1] = 0;

for(j=0; j<graph->nvtxs; j++)

graph->ID[j] = 0;
graph->ED[j] = 0;

myPart = graph->part[j];
for(k=graph->xadj[j]; k<graph->xadj[j+1]; k++)

{
if(graph->adjncy[k] >= N)

if(graph->part[graph->adjncy[k]-N] == myPart)
graph->ID[j] += graph->adjwgt[k];

else graph->ED[j] += graph->adjwgt[k];

)
else

{
if(part_buffer[getIndex(graph->inter2, graph->adjncy[k])] ==

myPart)
graph->ID[j] += graph->adjwgt[k];
else graph->ED[j] += graph->adjwgt[k];

}
)

}
for(j=0; j<graph->nvtxs; j++)

{
if(graph->color[j] == i)

myPart = graph->part[j];
if(graph->ED[j] - graph->ID[j] == 0)

if(graph->pwgt[myPart] > N)

graph->part[j] = 1 - graph->part[j];
graph->pwgt[myPart] -= graph->vwgt[j];
graph->pwgt[1-myPart] += graph->vwgt[j];
delta_pwgt2[myPart] -= graph->vwgt[j];
delta_pwgt2[1-myPart] += graph->vwgt[j];

)

62

else if((graph->ED[j] - graph->ID[j] > 0) && (graph-
>pwgt[myPart] - graph->vwgt[j] > N - N/4))

{
graph->part[j] = 1 - graph->part[j];
*delta_edgecut -= graph->ED[j] - graph->ID[j];
graph->pwgt[myPart] -= graph->vwgt[j];
graph->pwgt[1-myPart] += graph->vwgt[j];
delta_pwgt2[myPart] -= graph->vwgt[j];
delta_pwgt2[1-myPart] += graph->vwgt[j];

synchronize();
graph->pwgt[0] += delta_pwgt[0];
graph->pwgt[1] += delta_pwgt[1];

void post (Graph* graph)
{
short* part_buffer = (short*)MEM2_BASE;
int i;
for(i=0; i<graph->nvtxs; i++)
part_buffer[i] = graph->part[i];

synchronize();

int main()

{

Graph fgraph, cgraph;
initGraph(&fgraph, N, M);

short i,j;

pre(&fgraph);

color(&fgraph);

coarsen(&fgraph, &cgraph);

GrowBisection(&cgraph);

uncoarsen(&fgraph, &cgraph);

GreedyRefine(&fgraph);

//pcst6v.Hrapl-,;

return 0;

}

63

REFERENCES

1. Schloegel, K., Karypis, G., & Kumar, V. (2000). Graph partitioning for high
performance scientific simulations. Morgan Kaufmann.

2. Kernighan, B., Lin, S. (1969). An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal.

3. Karypis, G., Kumar, V. (1998). Multilevel k-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed Computing.

4. Pellerin, D., Thibault, S. (2005). Practical FPGA programming in C. Prentice Hall.

5. Compton, K., Hauck, S. (2002). Reconfigurable computing: A survey of systems and
software. ACM Computing Surveys.

6. Wolf, W. (2004). FPGA-based system design. Prentice Hall.

7. Altera Corporation. (2005). Nios development board Cyclone II edition reference
manual. www.altera.com

8. Karypis, G., Kumar, V. (1998). A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing.

9. Karypis, G., Kumar, V. (1998). A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering. Journal of Parallel and Distributed Computing.

10. Walshaw, C., Cross, M. (1999). Parallel optimization algorithms for multilevel mesh
partitioning. Technical Report.

11. Karypis, G., Kumar, V. (1998). Parallel multilevel k-way partitioning scheme for
irregular graphs. SIAM Journal on Scientific Computing.

12. Karypis, G., Kumar, V. (1997). A coarse-grain parallel formulation of multilevel k-
way graph partitioning algorithm. SIAM Conference on Parallel Processing for
Scientific Computing.

13. Altera Corporation. (2005). Nios II processor reference handbook. www.altera.com .

14. Altera Corporation. (2005). Quartus II handbook. Volume 5: Altera embedded
peripherals. www.altera.com

15. Karypis, G., Kumar, V. (1998). METIS: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing orderings
of sparse matrices. Technical Report.

64

65

16. Hendrickson, B., Leland, R. (1995). The Chaco User's Guide version 2.0. Technical
Report.

17. Alter Corporation. (2005). Quartus II 5.0 software handbook, volume 4: SOPC
Builder. Technical Report.

18. Karpinski, M., Rytter, W. (1998). Fast parallel algorithms for graph matching
problems. Oxford Science Publications.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Graph Partitioning
	Chapter 2: FPGA Technology
	Chapter 3: Hardware Architecture
	Chapter 4: Software Design
	Chapter 5: Performance Measures
	Appendix A: Graph Input and Output File Formats
	Appendix B: Graph Generator Program
	Appendix C: Altera Development Environment
	Appendix D: Source Code
	References

	List of Tables
	List of Figures

