

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

DEM SIMULATED FLOOR PRESSURE INDUCED
BY A GRANULAR COLUMN

by
Shawn A. Chester

At the end of the 19th century, H. A. Janssen discovered that the bottom floor pressure in

a cylindrical container of granular material asymptotes exponentially to a value less than

the weight of the material i.e., the pressure becomes independent of the fill height of the

column. This phenomenon is investigated using discrete element simulations of inelastic,

frictional spheres in a cylindrical vessel having a particle-to-cylinder diameter ratio at

approximately 13.3 or 26.6, with varying bed heights in both cases. The axial pressure

profile and the load experienced by a piston that is supporting the granular column are

computed. In order to activate frictional forces at the wall contacts either the piston (or

equivalently the cylinder wall), is slowly displaced at a rate so as to maintain quasi-static

conditions. Various combinations of wall and inter-particle friction coefficients are

examined. The simulated behavior of the load vs. fill level was found to fit well to the

functional form of Janssen's theory. Moreover, quantitative comparisons are in

agreement with experimental measurements from the literature. Results are critically

discussed in the framework of the assumptions implicit in Janssen's theory.

DEM SIMULATED FLOOR PRESSURE INDUCED
BY A GRANULAR COLUMN

by
Shawn A. Chester

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering

Department of Mechanical Engineering

August 2006

APPROVAL PAGE

DEM SIMULATED FLOOR PRESSURE INDUCED
BY A GRANULAR COLUMN

Shawn A. Chester

Dr. Anthony Rosato, Thesis Advisor 	 Date
Professor of Mechanical Engineering, NJIT

Dr. Pushpendra Singh, Committee Member 	 Date
Professor of Mechanical Engineering, NJIT

Dr. Ian Fischer, Committee Member	 Date
Professor of Mechanical Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Shawn A. Chester

Degree: 	 Master of Science

Date: 	 August 2006

Undergraduate and Graduate Education:

• Master of Science in Mechanical Engineering
New Jersey Institute of Technology, Newark, NJ, 2006

• Bacholor of Science in Mechanical Engineering
New Jersey Institute of Technology, Newark, NJ, 2005

Major: 	 Mechanical Engineering

Presentations and Publications:

Shawn A. Chester, Anthony D. Rosato, Otis R. Walton,
"Discrete Element Simulations of Floor Pressure due to a Granular Material in a
Cylindrical Vessel", the 5 th World Congress on Particle Technology, Orlando FL,
USA, 2006.

Shawn A. Chester, Anthony D. Rosato,
"Discrete Element Simulations of Floor Pressure of a Granular Material In a
Cylindrical Vessel", the Second Conference on Frontiers in Applied and
Computational Mathematics, Newark, NJ, USA, 2005.

Shawn A. Chester, Anthony D. Rosato,
"Discrete Element Simulations of Floor Pressure of a Granular Material In a
Cylindrical Vessel", the Sigma Xi Annual Meeting and Student Research
Conference, Montreal, Quebec, Canada, 2004.

iv

To my parents.

v

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my advisor Dr. Anthony Rosato, for

guidance and support throughout this research. Special thanks are given to Dr.

Pushpendra Singh and Dr. Ian Fischer for their active participation in my thesis

committee. The author is also thankful to Dr. Otis Walton for helpful discussions, along

with Dr. David Horntrop and Dr. Dennis Blackmore for helpful comments.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION AND LITERATURE SURVEY 	 1

1.1 Overview 	 1

1.2 Janssen's Theory 	 2

1.3 Review of Published Literature 	 7

1.4 Objective 	 17

1.5 Thesis Outline 	 17

2 DISCRIPTION OF THE DISCRETE ELEMENT METHOD SIMULATION 	 18

2.1 Background 	 18

2.2 Overview 	 18

2.3 Description of Subroutines 	 21

2.4 Contact Detection and the Linked List 	 23

2.5 Force Model 	 23

2.6 Integration Method and Time Step 	 27

2.7 Diagnostic Computations 	 28

2.7.1 Solids Fraction 	 28

2.7.2 Piston Force Extraction 	 31

2.7.3 Stress Tensor 	 32

2.7.4 Particle Rotations 	 36

3 SIMULATION RESULTS AND ANALYSIS 	 38

3.1 Dimensionless Quantities 	 38

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.2 Static Simulations 	 38

3.3 Dynamic Simulations 	 42

3.3.1 Comparison Between Piston and Cylinder Translation 	 44

3.3.2 Particle Rolling and Effect of Friction Coefficient 	 46

3.3.3 Piston Load 	 52

3.3.4 Comparison with Experiments from Literature 	 64

4 CONCLUSIONS AND FURTHER WORK 	 66

4.1 Conclusions 	 66

4.2 Further Work 	 68

APPENDIX A MODIFICATIONS TO THE DEM CODE 	 69

APPENDIX B MATLAB CODE FOR PISTON FORCE EXTRACTION 	 95

APPENDIX C MATLAB CODE FOR PARTICLE ROTATION 	 98

APPENDIX D SAMPLE INPUT FILE 	 112

APPENDIX E VOLUME.F SUBROUTINE 	 114

APPENDIX F MATLAB CODE TO REDRAW FIGURES FROM LITERATURE 	 117

APPENDIX G MATLAB CODE TO PROCESS STATIC DATA 	 120

APPENDIX H MATLAB CODE TO PROCESS DYNAMIC DATA 	 125

APPENDIX I SCRIPT FILES IMPLEMENTED ON LEMIEUX.PSC.EDU 	 141

REFERENCES 	 148

viii

LIST OF TABLES

Table Page

1.1 Overview of Selected Published Material 	 8

3.1 Parameters Used in the Various Cases for Static Simulations 	 39

3.2 Parameters Used for Dynamic Simulations 	 42

3.3 Parameters Used for Dynamic Simulations (Continued) 	 43

ix

TABLE OF FIGURES

Figure	 Page

1.1	 Geometry of the simulated system. 	 3

1.2	 Forces acting on a horizontal differential slice of thickness dz at a
depth z below the surface of the packed bed	 3

1.3	 Mohr's circle for the stresses in the active state. 	 6

1.4	 Apparent mass Ma as a function of the filling mass M for a packing
fraction 0.585 ± 0.005. The straight dotted line indicates a
hydrostatic behavior; the dashed curve is a fit with Janssen's
prediction; the solid curve is a fit with the two parameter model.
Redrawn from [13] 10

1.5	 Apparent mass Mapp as a function of the total mass M for a cylinder
velocity of 0.2mm/sec (redrawn from [4]) . 	 13

1.6	 Experimental results reported by Walton verifying the functional
form of Janssen's model (redrawn from [17]). 	 15

1.7	 Experimental results reported by Walton invalidating the constitutive
assumption in Janssen's model (redrawn from [17]). 	 16

2.1	 Partially latching spring force model. 	 24

2.2	 Bulk solids fraction v as a function of the dimensionless distance h
from the piston. 	 28

2.3	 Representation of a particle intersected by an annular region. 	 29

2.4	 Representation of the method used to compute the included sphere
volume 	 30

2.5	 Sample data of the evolution of the dimensionless load F on the
piston as a percent of the total fill weight in the cylinder. The
symbols represent every 50th data point from the simulation, while

the solid line is the least squares fit to P(0= A+ Be-c t

Fluctuations are highlighted in the insert. 	 32

2.6	 Geometry used in the computation of c 	 34

x

TABLE OF FIGURES
(Continued)

Figure	 Page

2.7	 Definition of the unit vector in the radial direction er 	 35

3.1	 Piston load for static simulations Si — S8 (o), and S17 — S24 (o).
The hydrostatic curve is given by the dashed black line. 	 40

3.2	 Piston load for simulations S9 — S12 (o), and S13 — S16 (0). The
hydrostatic curve is given by the dashed black line. 	 41

3.3	 Results comparing translating the piston or the wall to activate
friction. D52 (+), D53 (o), D54 (0), the dash-dot red line is a fit of
D52 — D54 to Equation (3.1). D49 (*), D50 (*), D51 (V), and
lastly the dotted blue line is a fit of D49 — D51 to Equation (3 1) 44

3.4	 Results comparing translating the piston or the wall to activate
friction with more data points. D52 (+), D53 (o), D54 (0), D55 (o),
and the dash-dot red line is a fit of D52 — D55 to Equation (3.1).
D49 (*), D50 (c), D51 (V), and lastly the dotted blue line is a fit of
D49 — D51 to Equation (3.1) 45

3.5	 Effect of time step on angular velocity. In all cases the friction
coefficients ,u„, = ,up = 0.4 with a diameter ratio 0 = 7.5 and a fill

height (H/D) = 1.317. Results are shown for a time step of
At = 5 x 10 seconds (+), At =1 x 10 seconds (o), At = 5 x10 -7

seconds (0). 47

3.6	 lo)/ ωl versus 1r / RI for the case of ,u 	 pp =0.1 and 0 =13.33.

H/D = 1.499 (o), H/D = 1.687 (0), H/D = 1.875 (o), and H/D = 1.499

(+)	 48

3.7	 lo)/o)p l versus 1r / RI for the case of p.=0.8, pp =0.1 and 0 =13.33.

H/D = 1.499 (o), H/D = 1.687 (0), H/D = 1.875 (o), and H/D = 1.499
(+)	 49

3.8	 I a) / cop l versus Ir / RI for the case of pi, =0.4, pp =0.4 and 0 =13.33.

. H/D = 1.499 (o), H/D = 1.687 (0), and H/D = 1.499 (+). 	 50

xi

TABLE OF FIGURES
(Continued)

Figure	 Page

3.9	 lw /cop ' versus lr / RI for the case of p. =0.8, pp =0.8 and 0 =13.33.

. H/D = 1.499 (o), H/D = 1.687 (0), H/D = 1.875 (❑), and H/D =
1.499 (+) 51

3.10 Simulated results for D1 (+), D2 (❑), D3 (0), D4 (o). The solid red
line corresponds to a fit of D1 — D4 to the functional form of
Equation (3.1). The solid black line represents the hydrostatic curve. 53

3.11 Simulated results for D5 (+), D6 (❑), D7 (0), D8 (o). The solid red
line corresponds to a fit of D5 — D8 to the functional form of
Equation (3.1). The solid black line represents the hydrostatic curve. 54

3.12 Simulated results for D9 (+), D10 (❑), Dll (0), D12 (o). The solid
red line corresponds to a fit of D9 — D12 to the functional form of
Equation (3.1). The solid black line represents the hydrostatic curve. 55

3.13 Simulated results for D13 (+), D14 (❑), D15 (0), D16 (o). The solid
red line corresponds to a fit of D13 — D16 to the functional form of
Equation (3.1). The solid black line represents the hydrostatic curve. 56

3.14 Simulated results for D17 (+), D18 (❑), D19 (0), D20 (o), D21 (x),
D22 D23 (V), D24 (*). The solid red line corresponds to a fit
of D17 — D24 to the functional form of Equation (3.1). The solid
black line represents the hydrostatic curve. 57

3.15 Simulated results for D25 (+), D26 (❑), D27 (0), D28 (o). The solid
red line corresponds to a fit of D25 — D28 to the functional form of
Equation (3.1). The solid black line represents the hydrostatic curve. 58

3.16 Simulated results for D29 (+), D30 (❑), D31 (0), D32 (o). The solid
red line corresponds to a fit of D29 — D32 to the functional form of
Equation (3.1). The solid black line represents the hydrostatic curve. 59

3.17 Simulated results for D33 (+), D34 (❑), D35 (0), D36 (o), D37 (x),
D38 (0), D39 (V), D40 (*). The solid red line corresponds to a fit
of D33 — D40 to the functional form of Equation (3.1). The solid
black line represents the hydrostatic curve. 60

xii

TABLE OF FIGURES
(Continued)

Figure	 Page

3.18 Simulated results for D41 (+), D42 (❑), D43 (0), D44 (o), D45 (x),
D46 (A), D47 (V), D48 (*). The solid red line corresponds to a fit
of D41 — D48 to the functional form of Equation (3.1). The solid
black line represents the hydrostatic curve. 61

3.19 Simulated results for D49 (+), D50 (❑), D51 (0). The solid red line
corresponds to a fit of D49 — D51 to the functional form of Equation
(3.1). The solid black line represents the hydrostatic curve. 62

3.20 Simulated results for D52 (+), D53 (❑), D54 (0), D55 (o). The solid
red line corresponds to a fit of D52 — D55 to the functional form of
Equation (3.1). The solid black line represents the hydrostatic curve. 63

3.21 Comparison of simulated results to experimental results from
literature. The solid magenta line corresponds to the hydrostatic
curve. Experiments from Walton [17] are given by (❑), and the solid
black line is a fit of the experimental data [17] to Equation (3.1).
Simulated results from D33 — D40 are given by (+), and the dashed
red line is a fit of D33 — D40 to the functional form of Equation (3.1)
. Simulated results from D49 — D51 are given by (o), and the dashed
blue line is a fit of D49 — D51 to the functional form of Equation
(3.1). Simulated results from D41 — D48 are given by (0), and the
dashed green line is a fit of D41 — D48 to the functional form of
Equation (3.1). 65

LIST OF SYMBOLS

d 	 Particle diameter

D Cylinder diameter

0 Dld, Diameter ratio

v 	 Solids fraction

Err 	Radial stress

azz	 Vertical stress

r„	 Wall shear stress

K Janssen constant

Limiting wall-particle friction coefficient

pp 	 Limiting particle-particle friction coefficient

p 	 Particle mass density

Height, measured from piston upward

Normalized measure of height in particle diameters

FN 	Normal contact force vector

FT 	Tangential contact force vector

Ki 	Normal loading stiffness

K2 	Normal unloading stiffness

a 	 Relative overlap between contacting bodies

x, 	 Position vector of particle i

At 	 Time step

xiv

Fy	 Net force vector acting on particle i due to particle j

er 	Unit vector from cylinder axis to contact point of two particles

P 	 Stress tensor

Pzz	 Axial component of the stress tensor

Prr	 Radial component of the stress tensor

KA	 Janssen's constant for the active case

Kp	 Janssen's constant for the passive case

Fz	 Actual computed piston load in Newton's

F * 	F* =
 6filz

, Piston force normalized by a single particle weight
pggc1 3

P = 	 z Piston force as a fraction of the material weight
Mtotal g

xv

CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Overview

Near the end of the 19 th century, H.A. Janssen [1, 2] proposed a model to predict the

vertical stress profile in a container of granular materials. A feature of his prediction is

that the stress on the floor asymptotes to a value that is less than the weight of the

confined material. Despite the fact that some of the assumptions in the model are not

valid in practical situations, Janssen's model is heavily used in industry to design silos,

bunkers, and other storage containment vessels because the general trends of Janssen's

predictions have been corroborated for appropriately initialized granular beds. It is well

known that under dynamic unloading, in converging hoppers, and for asymmetric flows,

stresses can exceed the values predicted by Janssen's theory by large factors. Thus real

silo designs require appropriate modifications at specific locations.

As a consequence, there has been renewed interest in Janssen's theory [2-14] and

also in applications where the direction of the wall motion is opposite to the assumptions

of Janssen (i.e., a piston pushing a granular material up a vertical column) [7, 8]. The

underlying motivation in many of the recent studies reported in the literature [3-9, 11-14]

has been to identify which of Janssen's assumptions may not be valid so that an improved

model can be developed. Clearly, differences between predictions of the theory and

experimental measurements can occur under conditions where assumptions of the theory

do not represent the real distribution of stress in the material. Unfortunately, the

evolution of stress in a slowly deformed granular material is extremely complex and not

1

2

well-understood. In an attempt to bridge the knowledge gap here, simulations have been

done that involve the numerical solution of the equations of motion of systems of

interacting, dissipative particles (eg., discrete element simulations) under various loading

conditions. However, discrepancies between discrete element simulation results and the

measured behavior of real materials can occur when simplifying assumptions used in the

simulations inadvertently neglect important features of the particle-scale physics. In this

thesis, extensive discrete element simulation studies are done to model the pressure

distribution in a column of granular material, with an emphasis on the load on the

supporting floor. The results, which are presented within the context of Janssen's theory,

show good general agreement of the numerical data with the theoretical predictions and

experiments in the literature.

1.2	 Janssen's Theory

The physical geometry of the cylinder having a diameter D is depicted in Figure 1.1,

where the origin is at the top with the z-coordinate positive downward. Janssen's model

is based on the following assumptions [2]:

1. Frictional forces are fully 'activated' at the wall.

2. The material is cohesionless and the bulk solids fraction v is uniform throughout
the bed.

3. The radial a, and vertical azz stresses are principal and exhibit a constant ratio,
such that_

4. The stressed are uniform across any horizontal cross section.

3

To begin, consider a granular fill consisting of uniform spheres of mass density p

whose limiting (i.e., Coulomb) wall friction coefficient is denoted by ,u,,. Following the

method of Janssen, the governing differential equation is easily derived from a force

balance on a differential slice of thickness dz, whose midplane lies at z below the surface

of the packed bed. The forces acting on this slice are shown in Figure 1.2.

Figure 1.1 Geometry of the simulated system.

Figure 1.2 Forces acting on a horizontal differential slice of thickness dz at a depth z
below the surface of the packed bed.

4

In Figure 1.2 the wall shear stress is shown acting upwards since the downward

movement of the piston, or upward motion of the wall, causes the material to slide in the

positive z-direction. A force balance in the z-direction yields Equation (1.2).

By applying the assumptions that the friction at the wall is fully mobilized at the

Coulomb limit ,u„ , and the proportionality Err Kcrzz between the stresses, the

differential equation governing the pressure a 	 given by,

(1.3)

The latter first-order ordinary differential equation is solved for o using standard

methods to yield,

where 13 = 4,uK D . Upon setting z = H (the fill height of the material) in Equation (1.4)

and multiplying the result by the piston area, the normal force on the piston is given by,

Equation (1.5) predicts that F(H) asymptotes to a value that is less than the actual weight

of the material in the cylinder — a behavior that is quite different from ordinary fluids.

5

In the case where the piston is moving upwards, a similar equation can be derived

following the procedure outlined above, with the only difference being the direction of

the wall shear stress, i.e.,

However, the prediction is quite different as the piston load increases exponentially with

H. Although the focus of this thesis is the phenomenon described by Equation (1.5),

preliminary simulations had been done for the case when the piston is displaced upwards

(i.e., Equation (1.6)). Here, very large force fluctuations in the simulated piston load

were found so that results were not definitive. Unfortunately, the additional simulations

needed to obtain consistent behavior could not be carried out within a reasonable time

frame on the university's computing systems.

A derivation for Janssen's constant K is easily produced via a Mohr-Coulomb

failure analysis. A brief sketch is given here for completeness, while further details can

be found in [2]. The Coulomb yield criterion for a cohesionless material takes the

form r = po- + c , where r is the shear stress, p is the coefficient of friction, o- is the

normal stress, and c is the cohesion. This criterion imposes a limit on the shear stress that

can exist within a granular material. Used in conjunction with Mohr's circle, it provides

the basis for the Mohr-Coulomb failure analysis. Two cases arise with Mohr's circle, the

active case and the passive case. In the active case the axial stress is greater than the

radial stress, while in the passive case the radial stress is larger than the axial stress.

Mohr's circle for the active state, along with the Coulomb yield criterion, denoted by IYL

(Internal Yield Locus), is shown in Figure 1.3 below.

6

Figure 1.3 Mohr's circle for the stresses in the active state.

For the case shown in Figure 1.3 a geometrical analysis from Mohr's circle will

show that the radial and axial stresses are given in Equation (1.7) and Equation (1.8),

respectively, where tit is the internal angle of friction (v = tan - ' p), and c is the

cohesion.

Additionally, from Mohr's circle, one can find that R = 4- sin {it . Then by

eliminating and R by combining the equations for the axial and radial stress, and

assuming a cohesionless material (i.e., c -4 0), one will arrive at Equation (1.9), which

relates the radial and axial stresses.

7

1— sin tit
Thus, for the active case Janssen's constant is found to be K^ 	 . A similar

1+ sin yt

analysis will show that for the passive case (in which o > o 	 one finds that

1.3 Review of Published Literature

H.A. Janssen [1] (English translation is given by [15]) provided the first theoretical

model to predict the vertical pressure profile in a granular column. Since 1895, many

investigations have attempted to further understand this phenomenon, and in fact, more

than 330 published papers have cited Janssen since 1980 [15]. Table 1.1 below gives a

brief overview the literature that is most relevant to this thesis.

In his treatment of Janssen's equation, Nedderman [2] points out two questionable

assumptions of the theory. The first is that the axial a zz and radial an- stresses are

principal stresses as depicted on Figure 1.3, and proportional according to Equation (1.1).

It can be shown very easily that this assumption is incorrect because there is no shear

stress acting on a principal stress plane, which contradicts another of Janssen's model

assumptions, i.e., that frictional forces are fully activated at the wall so that r ,u„6„,..

The second assumption is that the stresses across any horizontal cross section are

uniform. The analysis here is much more complex and the reader is referred to [2] for the

details.

8

Table 1.1 Overview of Selected Published Material

First Author Year Methods

Nedderman [2] 1992 Analytical

Kolb [16] 1999 Experiment

Vanel [13] 1999 Experiment

Vanel [14] 2000 Experiment

Marconi [9] 2000 Analytical

Ovarlez [12] 2001 Experiment

Ovarlez [11] 2003 Experiment

Landry [8] 2003 Simulation

Bertho [4] 2003 Experiment

Arroyo-Cetto [3] 2003 Experiment

Landry [7] 2004 Simulation

Landry [6] 2004 Simulation

Walton [17] 2004 Experiment

Bratberg [5] 2005 Experiment

In 1999, Kolb et al. [16] performed a series of experiments on pushing a two-

dimensional granular column upwards with a piston. They reported on the resistance

force encountered by the piston for a wide range of parameters such as the piston

velocity, and the particular granular fill material used. The main conclusions drawn

concerns the variability of the results and the complex features depending on the

experimental conditions. The authors were unable to provide a clear description of a

mechanism for the rather large fluctuations in the measured piston force.

9

In 1999, Vanel et al. [13] reported on the static pressure at the bottom of a

granular column. Two types of experiments were performed. The first is referred to as a

"descent experiment", and the second is referred to as a "tapping experiment". A descent

experiment is intended to probe the effect of a series of downward motions of the piston.

A tapping experiment is designed to probe the effect of a changing granular density.

They report that for every set of data, the Janssen model systematically underestimated

the results from the experiments. The authors propose a two parameter model to account

for a hydrostatic-like region located at the top of the column, while the remainder of the

column behaves according to Janssen's model. Their two-parameter model equations for

the apparent mass Ma, expressed in units of fill mass M, are

where the fitting parameter Mo represents the mass of the hydrostatic zone at the top of

the column. Figure 1.4 depicts the parameters of the model. In Equation (1.10), M. 9c is a

fitting parameter that represents the difference between the 'saturation mass' and Mo.

10

Figure 1.4 Apparent mass Ma as a function of the filling mass M for a packing fraction
0.585 ± 0.005. The straight dotted line indicates a hydrostatic behavior; the dashed curve
is a fit with Janssen's prediction; the solid curve is a fit with the two parameter model.
Redrawn from [13].

In 2000, Vanel et al. [14] performed experiments to measure the mean pressure at

the bottom of a column of cohesionless granular material. Here, Janssen's form was

found to be satisfactory and in accordance to their earlier experiments [13]. In addition,

they carried out separate experiments by placing an overload on the top surface of the

packed bed. Fore this case, the data could not be fit to Janssen's model. Rather, a simple

hyperbolic form having two fitting parameters was able to reproduce the experimentally

measured stress response of the material.

11

In 2000, Marconi et al. [9] analytically studied the mechanisms underpinning

Janssen's law. They consider a q-model [18] for an assembly of particles on a two-

dimensional lattice which simply verified the coupling between the vertical and lateral

forces as a necessary feature for Janssen's model. However, this simply restates the

constitutive assumption that axial pressure is transferred into the lateral (or radial)

direction in a granular material. However, their model did suggest that a non-uniform

pressure profile across a horizontal plane results in a deviation from Janssen's model.

In 2001, Ovarlez et al. [12] reported on the rheology of a granular material slowly

driven in a cylindrical container. They observed blocking enhancement, aging, and

dynamical hardening effects at slow driving velocities. Their analysis showed that the

properties exhibited are due to the solid on solid friction at the particle to wall contacts.

However, a quantitative analysis in the context of Janssen's model indicated that the

dynamical restructuring effects in the bulk cannot be excluded. Additionally, they report

a very strong dependence on the relative humidity. In a subsequent paper, the authors

[11] report on extended experiments with the same configuration. Here, the piston was

translated downward at a constant velocity Vo = 1.5 ,um I s . The fill material consisted of

monodisperse particles of diameter d =1.5mm and thus this corresponded to a non-

dimensional piston velocity Vo = 0.001 d I s (particle diameters per second). Results

conformed with Janssen's model. However, when an overload was placed on the top of

the packed bed, Janssen's model failed, as was also found in [14].

12

Landry et al. [8] reported on discrete element simulations of static granular

packings confined to a cylindrical container, in which the vertical stress profile along the

height of the granular fill, and the distribution of forces within the static column are

computed. They found that the majority of the particle - wall contact forces were at or

near the Coulomb failure limit, while particle - particle contact forces in the bulk were far

from this limit. Their results confirm the experimental findings of Vane! et al. [13]

regarding the hydrostatic region at the top of bed. They further demonstrate from their

simulated data that this hydrostatic region is principally due to the forces at the wall

being far from the Coulomb yield criteria.

In 2003, Berth() et al. [4] reports on experiments measuring the apparent mass of a

granular packing inside of a cylinder that was translated upward. Using a diameter

ratio 0 =15 (0 is the ratio of the cylinder to particle diameter), they found that Janssen's

model was valid for a broad range of velocities, up to several centimeters per second.

This is shown in Figure 1.5, in which Bertho's original data is redrawn. Most interesting,

is that measurements taken after the cylinder motion was halted contained more

dispersion, thereby yielding a poorer fit to Janssen's model. The authors further report

that the average solids fraction of the packing remained fairly constant during the piston

motion.

13

Figure 1.5 Apparent mass Mapp as a function of the total mass M for a cylinder velocity
of 0.2mm/sec (redrawn from [4]).

Arroyo-Cetto et al. [3] described their experiments measuring the force required

to push a granular column upwards within a cylinder. To do this, the piston was fixed

and the cylinder walls were translated downwards. They reported that this force rapidly

increased with fill height, in accordance with Janssen's theory as per the form of

Equation (1.6). In addition they found that the force also increases with the velocity of

the cylindrical container. However, large fluctuations in the measurements were

observed (see Figure 2 in [3]) analogous to what was seen in the experiments of Kolb

[16].

14

Recently, Landry et al. [7] reported on discrete element simulations for both two

dimensional and three dimensional static systems. For the two dimensional simulations,

they found a clear hydrostatic region at the top of the packing followed by a region not

well described by Janssen's functional form. More significantly, their results indicate

that a full three dimensional model is needed to reproduce Janssen's prediction. In a

sequent paper, the authors [6] present simulation results in which the cylinder is

translated upward at a uniform velocity. Computations of the vertical stress profile, the

Coulomb criterion at the walls (i.e., the value of the wall friction force against the

Coulomb limit), and the packing structure are described. As in experiments [13], the

initial 'poured' configuration exhibited a hydrostatic region at the top of the packing that

then crosses over to a Janssen like behavior. As the cylinder is moved upward the

vertical pressure rapidly changes, and then reaches a steady state value until the motion is

stopped. The system was then allowed to relax (or equilibrate) and the vertical pressure

computed and fit to Janssen's model. For slower cylinder velocities, the agreement of the

static (relaxed) pressure profiles deviated from the model predictions. This was attributed

to a reduction in the number of particle-particle and particle-wall contacts at the Coulomb

limit. However, it is not clear if this is the case since their force model applies friction to

the center of the particle rather than the contact surface.

Walton carried our a series of experiments using 3 mm glass beads in a 4 cm

acrylic tube with a diameter ratio 0 =13.3. The results, reported in [17], verified the

exponential functional forms of Janssen's model (see Equations (1.5) and (1.6)) for the

piston force versus fill height. Figure 1.6 summarizes the main findings of the

experiments. The most interesting aspect of the work, shown graphically in Figure 1.7, is

15

the linear variation of the product ,ua, (i.e., force required to move the cylinder) against

applied axial stress azz . However, the line does not intersect the origin in accordance with

Janssen's constitutive assumption given by Equation (1.1).

Figure 1.6 Experimental results reported by Walton verifying the functional form of
Janssen's model (redrawn from [17]).

16

Figure 1.7 Experimental results reported by Walton invalidating the constitutive
assumption in Janssen's model (redrawn from [17]).

In 2005, Bratberg et al. [5] performed a series of experiments with small cylinder

aspect ratios to test the validity of Janssen's model in this configuration. They used ratios

between 0 =1.9 and 0 = 3.5 that were well below what had been done previously. The

apparent mass and the height of the granular fill was measured for both dynamic and

static situations. They reported that for an upward motion of the piston, the apparent mass

increased monotonically until a slip-stick regime was reached. Additionally, for a

downward motion of the piston, a steady state apparent mass was achieved after an

almost linear decrease in the apparent mass. However, Janssen's model did not

satisfactory fit the results with only a single parameter. More importantly they observed

17

that the exponential decay characteristic of Janssen's model was not observed for a

column so narrow that each particle had only two near neighbors. This was attributed to

the coupled rotations of the particles in this configuration, an effect which is sited as

contrary to a necessary 'rotational frustration' to produce the exponential decay.

1.4 Objective

In this thesis, the results of a particle-level numerical investigation of the load on a piston

supporting a monodisperse granular material consisting of frictional, inelastic spheres of

diameter d, within a cylindrical vessel of diameter D is presented. This is done via

discrete element simulations where wall friction in activated by moving the piston down

very slowly or displacing the cylinder upwards. A review of the literature indicated that

computer simulated investigations have considered diameter-ratios ranging

from 20 to 40 with wall friction activated by the motion of the cylinder walls. In

comparison, relatively small diameter-ratios (i.e. 0 =13.3 and 0 = 26.6) are selected with

the goal of comparing results with experiments and Janssen's model predictions. Results

are discussed within the framework of the assumptions implicit in Janssen's theory.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the simulation

method and its application. Chapter 3 presents the simulated results and a discussion of

their significance in the context of Janssen's theory. Chapter 4 contains the conclusions

and recommendations for further work.

CHAPTER 2

DISCRIPTION OF THE DISCRETE ELEMENT METHOD SIMULATION

2.1	 Background

The discrete element method is a computational scheme in which the equations of motion

of a system of dissipative, interacting particles are numerically integrated to determine

the phase space (i.e., positions and velocities). The technique was introduced by Cudall

and Strack in the 1970's [19] and has been employed extensively for granular flows (see

for example [20-34]). The numerical methods are identical to those used by molecular

dynamics simulations. However, engineering mechanics models of contact forces are

used in place of intermolecular force relations.

2.2	 Overview

The DEM code used in this thesis employs the inelastic, frictional soft sphere models of

Walton and Braun [33]. This code was first developed for the purpose of simulating

granular shear. Since its inception, the DEM code has undergone many modifications.

The specific DEM code used was previously designed for a rectangular geometry with an

oscillating floor. Therefore, significant modifications were required to obtain a

cylindrical geometry with a moving piston and moving cylinder wall. The reader is

referred to Appendix A for details on the modifications to the DEM code. In Appendix A

the reader will find excerpts from the code along with a description of the purpose,

variables, etc. for that section of code.

18

19

General flow of the DEM code:

1. Read the input file, initialize simulation parameters

2. Assign particle positions

3. Update linked list of near neighbors

4. Compute inter-particle forces

5. Integrate to obtain the positions and velocities of the particles

6. Repeat from step 3 until the simulation is finished

Initially, the code will read the input file, i3ds (Sample input file shown in

Appendix D), using the subroutine datainf (All subroutines are described in section 2.3

below). If specified in the input file that the simulation is a continuation of a previous

simulation, the subroutine dumpread.f will read the dumpfile, d3ds1000, from the

previous simulation. The dumpfile, d3ds1000, is just like an input file, except that it

contains information such as particle coordinates and velocities from where the previous

simulation left off.

Following the input of simulations parameters, the subroutine init.f will initialize

the simulation by assigning initial coordinates to all of the particles. In addition init.f will

call the subroutine bound.f to initialize the boundaries of the simulation. For this thesis,

the boundary conditions consist of a cylindrical container of infinite length with a floor,

i.e., the piston. In this thesis, both the piston and the cylindrical container posses the

ability to translate along the direction of the cylindrical axis. Furthermore, all particle

initial positions are randomly generated in this thesis. The subroutine findradf is then

used to assign the particles a dimension. An overlap detection routine is used to confirm

20

that none of the simulation particles are overlapping each other or a boundary when the

simulation starts. Lastly, initf will call two more subroutines, initcuml .f and initcum2.f

both of which will initialize the short and long term cumulative averages, respectively.

After the particle positions and boundaries are initialized, the simulation can

begin to loop. Subsequently, the subroutine updatef will create the linked list of near

neighbors. The subroutine updatel is called henceforth only when the cumulative

maximum displacement of a particle from each time step is greater than half the search

radius for near neighbors. In addition each time update.f is called another subroutine

deletem.f is called to remove particles from the linked list that have traveled outside of

the search radius for that particle. More information on the linked list is given in Section

2.4 below.

The next step in the simulation loop is in preparation of the integration routines.

The subroutine initstep.f is called to initialize parameters for the subroutines that compute

the inter-particle forces and the integration routines. Subsequently, the subroutine

forces.f computes the inter-particle forces due to contacts using the force model described

in Section 2.5 below. Following the computation of the contact forces, the subroutine

integl .f computes the velocities at the current time step. Next the subroutine diagnos2.f

computes the diagnostics such as the potential component of the stress tensor at the

current time step for the simulation. At this point a test for writing data to file is

performed. Data is written to file at user input time intervals dtout. If the change in time

since the previous output is at or just above the value of dtout, then the subroutine

datasav2 f is called to perform the write to file. Lastly, the subroutine integ2.f computes

the velocity at the next half time step and the position at the next half time step, and also

21

increments the time step to march the simulation forward in time. Then the process

begins all over again from the start of the integration routine.

The remaining Sections of Chapter 2 are as follows: Section 2.3 Description of

Subroutines, 2.4 Contact Detection and the Linked List, 2.5 Force Model, 2.6 Integration

Method and Time Step, and lastly 2.7 Diagnostic Computations.

2.3	 Description of Subroutines

The following subroutines are the building blocks for the DEM code.

• boundf

boundf initializes the boundary particles used in the simulation.

• datainf

datainf reads the input file.

• datasav2.f

datasav2.f writes the output to a corresponding output file at a user
defined frequency dtout.

• deletem.f

deletem.f removes particle j from the linked list of particle i, if particle j
has moved beyond a specified distance of particle i.

• diagnos2.f

diagnos2.fis used to compute the simulation diagnostics.

• dumpread.f

dumpreadf is used when restarting the simulation. All the information
required to restart the simulation from a previous simulation is read in by
this subroutine.

22

• findradf

findradfis used to assign the particle radii.

• forces.f

forces.f computes the inter-particle forces, along with the potential
components of the stress tensor.

• initf

init.f initializes the simulation, i.e., time step, boundary dimensions, initial
particle positions, particle masses, etc are initialized.

• initcuml.f

initcuml finitializes the short term variables.

• initcum2.f

initcum2finitializes the long term variables.

• initstep.f

initstep.finitializes the variables used in the numerical integration.

• integl .f

integl Iperforms the numerical integration at the current time step.

• integ2.f

integ2.f computes the coordinates of the particles at the end of the time
step, along with the velocities at that same time.

• update.f

update.f loops through all particles to create, or update, the linked list for
particle i. Only those particles that fall within a specified distance of
particle i are added to the list.

23

2.4 Contact Detection and the Linked List

Contact detection is a very simple process in which the geometry and position of particles

are checked against each other. In essence, if the distance between two particle centers is

greater than the sum of the particle radii, then no contact. If on the other hand, the

distance between the particle centers is less than or equal to the sum of the particle radii,

then the pair is contacting.

The detection of contacting pairs of particles is very important in the DEM

simulations. However, the process is extremely expensive computationally to check for

contact between all pairs in the simulation. Thus, a linked list is implemented to reduce

the time required to check for contacts throughout the simulation. The linked list keeps

track of all particles that fall within a near neighbor radius, also known as the search

radius, of the particle under consideration. Therefore, when checking for contacting

pairs, the algorithm only needs to check the particles that belong to the linked list of the

particular particle, and not check all particles in the system. More detailed information

about the linked list can be found in [35].

2.5 Force Model

A soft sphere approach is used in which collisions occur over a finite length of time. The

contacting particles are allowed to slightly overlap and a linear stiffness in the force

model computes a contact force in proportion to the amount of overlap. Any single

particle may be contacting many other particles at the same time. The net force on the

particle is simply the vector sum of all the forces applied to the particle.

24

Figure 2.1 Partially latching spring force model.

The force model implemented is the partially latching spring model developed by

Walton and Braun [33, 36-38] for an elastic-plastic material and shown pictorially in

Figure 2.1. The normal force model operates by incorporating different normal stiffness

for loading and unloading, K1 and K2, respectively as shown in Figure 2.1. As shown in

Figure 2.1 the normal force between colliding particles is a function of the relative

overlap a. The magnitude of the normal force is given by Equation (2.1). Where ao is

the remaining overlap at which point the unloading force goes to zero due to plastic

deformation of the contact. Additionally, the normal force acts along line connecting the

particle centers. Further details are presented in [33, 36-38].

(2.1)

25

This model leads to a constant coefficient of restitution e, which can be shown [39] to be

given by Equation (2.2) for the partially latching spring model.

(2.2)

Additionally, it can be shown through a Hertzian contact analysis [39] that a good

estimate of the normal loading stiffness is given by Equation (2.3). In this equation, E is

the elastic modulus, and v is the Poisson ratio of the material. In addition, d is the

diameter, m is the mass of a particle, and v in. is the maximum estimated impact velocity.

The tangential force model also developed by Walton and Braun [33, 36-38] is

patterned after Mindlin's theory [40] via a contact stiffness KT that decreases with

displacement until full sliding occurs at the friction limit. The tangential force is applied

at the contact, thus allowing particles to rotate. The effective tangential stiffness KT is

given by Equation (2.4). Where FT is the total tangential force, 11 is the coefficient of

friction, N is the total normal force, y is a fixed parameter set to 1/3, and F; is the

loading reversal value. The loading reversal value is initially set to zero, and then

subsequently set to the value of the total tangential force whenever the rate of change in

magnitude changes from increasing to decreasing, or vice versa.

(2.4)

26

The value of Ko is given by Equation (2.5) below, where i is the ratio of normal to

tangential stiffness, in this case set to 0.8.

The tangential force F7, is then computed according to Equation (2.8). The

tangential force is given as the sum of perpendicular and parallel components as shown in

Equation (2.6) and Equation (2.7), respectively. Where AS 1 is the amount of relative

surface displacement in the direction perpendicular to the old tangential force, and ASII is

the amount of relative surface displacement in the direction parallel to the old tangential

force. The model assumes that the relative displacements between time steps are

relatively small. Lastly, the total tangential force is checked against the friction limit

The net force Fu on particle i due to collision with particle j simply is the vector

sum of the normal and tangential contact forces descried above. Therefore the net

contact force, acting on the contact location, is given by,

27

2.6 Integration Method and Time Step

Time in the simulations is stepped forward by discrete time steps on the order of

At 3.7 x10 -5 seconds. The time step is computed via Equation (2.10) which is derived

from the finite contact time in the soft sphere model. Where e is the coefficient of

restitution, K 1 is the normal loading stiffness, m is the mass of a particle, and n is the

number of time steps per single collision. More detail on the derivation of the time step

can be found in [33, 37, 38].

A Verlet leap-frog algorithm is used to numerically integrate the equations of

motion for the particles. The translational equations of motion are shown below in

Equation (2.11), where the superscripts refer to the time step. More details on the

integration method derivation and algorithm can be found in [35]. The rotational

equations of motion are analogous.

28

2.7 	 Diagnostic Computations

2.7.1 Solids Fraction

The solids fraction is defined as the volume ratio of solid particles to the total volume the

particles are enclosed within. The solids fraction is computed in two forms, the first form

is as a solids fraction averaged over the entire computational volume. The second form is

as a series of local solids fraction to give the solids fraction in control volumes. A typical

result in Figure 2.2 shows v versus dimensionless distance h, measured in particle

diameters from the piston. Typically, the bulk solids fraction is v 0.6 . Monitoring the

solids fraction indicates no significant change over the duration of the simulation.

Figure 2.2 Bulk solids fraction v as a function of the dimensionless distance h from the
piston.

29

The computation of the bulk solids fraction is fairly simple and given by Equation

(2.12) below. Where Vp is the volume of particles inside the computational volume V.

Several cases can arise when computing the solids fraction in control volumes. In one

case the particle can be sliced by a plane, and in another case the particle can be sliced by

a cylindrical surface. In the first case of the particle being intersected by a plane several

sub-cases arise which are described in great detail in [41].

In the second case when the particle is intersected by a cylindrical surface the

approach is much more complex. This method approximates a double integral with a

double summation. The geometry of the problem is defined by local annular volumes.

Each volume has an inner and outer radius, along with a z thickness as shown in Figure

2.3. Beginning at the minimum z coordinate of a specific control volume a series of arc

lengths (shown as bold lines) are computed at increasing radii with a step size 8r as

shown in Figure 2.4.

Figure 2.3 Representation of a particle intersected by an annular region.

30

Figure 2.4 Representation of the method used to compute the included sphere volume.

These arc lengths are multiplied by the step size 6r and summed together to yield

an area at that specific z coordinate. Similarly, this process is repeated along the axial

direction at a step size Oz. The summation of the step size 6z multiplied by the areas

yield the volume of a single particle inside of the control volume. This process is then

repeated for all particles inside of the control volume to obtain a solids fraction for that

control volume. The implementation of this process is via a subroutine volume.f. The

FORTRAN code for the subroutine volume.falong with a more detailed description of the

method is given in Appendix E.

31

2.7.2 Piston Force Extraction

The computation of the piston load in the DEM simulation is fairly straightforward. The

individual particle contact force axial component that is computed in the forces.f

subroutine is summed over all of the particles. This value is computed every time step

and saved when the subroutine datasav2.f is called. This computed load is also stored

and used in a time average; however the time averaged piston load is used only for cases

with no relative translations between the granular material and the cylinder wall.

The force experienced by the piston rapidly decays and then fluctuates as it moves

downwards. Consequently, it was necessary to allow the system to equilibrate for

approximately 2000 seconds (or a total displacement of —2 particle diameters of the

piston) in order to compute a value for the load. The load is extracted from the data using

two methods that yielded statistically equivalent values (i.e., in most cases to within three

significant digits). In the first method, short and long term averages of the actual force

Fz are computed until their values are the same to within a tolerance of 10 4. The second

method finds the parameters A, B, and C through a least squares fit of the data to the form

of Equation (2.13) below.

Where F is simply the piston load as a fraction of the fill weight in the cylinder. The

limit as t —> co yields the equilibrium value A of the normalized load P . Figure 2.5 is a

representative plot offr , where the functional form is shown as the solid line.

Fluctuations are underscored in the inset of the figure. The value computed from the

curve fit agreed to within three significant digits with the statistical average. For the case

32

shown, the normalized piston load was determined to be 0.607±0.0011. Appendix B

contains the MATLAB code that does the post-processing.

Figure 2.5 Sample data of the evolution of the dimensionless load F on the piston as a
percent of the total fill weight in the cylinder. The symbols represent every 50 th data

point from the simulation, while the solid line is the least squares fit to F(t) = A+ Be-c t
Fluctuations are highlighted in the insert.

2.7.3 Stress Tensor

In granular materials the stress tensor is composed of two components. The first

component is an inertial component, also known as the kinetic component, and the

second term is a collisional component, also known as the potential component. The

stress tensor averaged over a volume V in Cartesian coordinates is given by Equation

(2.14) [33].

33

Where u, is the mean velocity field, Fy is the inter-particle contact force, and Ry is the

vector connecting particle centers. The first term in Equation (2.14) is the kinetic

contribution to the stress tensor and it depends on velocity fluctuations about the mean

velocity field. In this thesis, the motion is quasi-static, and therefore the kinetic

component of the stress tensor is negligible. The second term is the potential

contribution, which is dominant for the quasi-static system considered in this thesis.

Therefore, the computation of the stress tensor in Cartesian coordinates can be computed

as,

The calculation of the radial stress Pr,. is needed in order to validate one of the

main assumptions of the Janssen' theory, namely that, Err = Kazz . To do this, it is

necessary to compute the radial stress as a function of the axial coordinate and radial

distance from the center of the cylinder. A text on molecular dynamics simulations [42]

gives a thorough introduction to the derivation of the stress calculation. In order to

compute Pr„ the contact force between particles i and j in the radial direction Fry needs

to be determined. Beginning with the Cartesian components of the known net contact

force Fy ,

one can find Fry as follows. The vector connecting the centers of particles i and j is given

by as

34

Because the particles are monodisperse, the vector starting from the origin of the

coordinate system, and ending at the contact location of particles i and j, denoted by c is

shown in Figure 2.6, and given by,

Figure 2.6 Geometry used in the computation of c .

In the usual manner, the unit vector ec in the c direction is,

(2.19)

35

Then the unit vector in the radial direction (i.e., no z-component) that starts at the

cylindrical axis and ends at the contact point of particles i and j is shown in Figure 2.7

and given by,

Figure 2.7 Definition of the unit vector in the radial direction er .

The radial force acting between colliding particles i and j is simply the projection of F;

onto the radial direction, i.e.,

36

Let gu be the radial distance between the centers of the colliding particles i and j, is given

by,

Then the computation of the P, component of the stress tensor is completed via Equation

(2.23), where V is the control volume over which averaging takes place.

2.7.4 Particle Rotations

It was suspected that at larger wall friction coefficients particles in contact with the wall

may be rolling. Thus, the load on the piston would be greater than expected if only

sliding took place. This hypothesis is supported by other simulations and measurements

of granular material deformation behavior, which have demonstrated that the angle of

repose is less sensitive to inter-particle friction as the friction coefficient increases. This

behavior has been attributed to the larger fraction of rolling contacts that exist in

assemblies with high inter-particle friction [43-45].

To test this hypothesis some simulations were run and the magnitudes of the

angular velocity of the particles were analyzed. The magnitudes of the angular velocity

of the particles were then normalized against the maximum angular velocity possible due

to the translation of either the piston or the cylinder wall, cop . The normalized values are

then plotted against radial location and trends may be spotted. If the particles contacting

the wall have an Ict) / cop at or near 1, then the particles are rolling and the piston load is

37

greater than expected. If the value of 1°)/(°P1 is low then, the particles are sliding and

rolling. On the other hand if the value of Ico 1 c o p l is zero, Janssen's assumption that

friction is fully activated at the walls would be confirmed.

The computation of co p is fairly simple. The angular velocity in a single direction

is given by co = (2v) 1 d . Assuming that the maximum velocity is due to the translation of

the piston of the cylinder wall, the maximum angular velocity then

becomes co = (2v p) 1 d . Where vp is the translational velocity of the piston or the cylinder

wall. Then, for all three coordinate directions the maximum angular velocity due to the

translation of the piston or cylinder wall cop is given by,

The results for the normalized angular velocity co / co p l are spatially averaged in

annular zones. The annular zones are defined in a post-processing MATLAB code.

Appendix C contains the MATLAB code to compute the spatial average, and impose the

restriction that I w/ cop 1.

CHAPTER 3

SIMULATION RESULTS AND ANALYSIS

3.1	 Dimensionless Quantities

It is convenient to represent the results of the simulations in terms of dimensionless

.,
quantities. The dimensionless force F* = 6J 	is simply the force on the piston

pyrd 3

normalized by the weight of a single particle that has a mass density p, and a diameter d.

The normalized height H/D is the amount of filling material in the cylinder of diameter

D. Janssen's model (Equation (1.5)) is easily expressed in terms of F * and HID as

3.2 Static Simulations

A comprehensive set of static simulations were performed in which neither the piston nor

the cylindrical wall was translated. Therefore, in the static simulations the frictional

force is not activated. The parameters of those simulations, called static simulations, are

shown in Table 3.1 below.

38

39

Table 3.1 Parameters Used in the Various Cases for Static Simulations

Case H/D ii. Pp 0

S1 0.750 0.1 0.1 13.33
S2 0.937 0.1 0.1 13.33
S3 1.125 0.1 _ 0.1 13.33
S4 1.312 0.1 0.1 13.33
S5 1.499 0.1 0.1 13.33
S6 1.687 0.1 0.1 13.33
S7 1.875 0.1 0.1 13.33
S8 2.062 0.1 0.1 13.33
S9 0.375 0.1 0.1 26.66

S10 0.422 0.1 0.1 26.66
Si! 0.469 0.1 0.1 26.66
S12 0.515 0.1 0.1 26.66
S13 0.375 0.4 0.4 26.66
S14 0.422 0.4 0.4 26.66
S15 0.469 0.4 0.4 26.66
S16 0.515 0.4 0.4 26.66
S17 0.750 0.4 0.1 13.33
S18 0.937 0.4 0.1 13.33
S19 1.125 0.4 0.1 13.33
S20 1.312 0.4 0.1 13.33
S21 1.499 0.4 0.1 13.33
S22 1.687 0.4 0.1 13.33
S23 1.875 0.4 0.1 13.33
S24 2.062 0.4 0.1 13.33

The piston load was computed for simulations Si - S24. Cases Si - S8 were

conducted at a diameter ratio 0 of 13.33, an inter-particle friction coefficient ,up of 0.1,

and a wall friction coefficient of 0.1. The results of simulations S1 - S8 are shown in

Figure 3.1 below. Cases S9 - S16 were done using a larger diameter ratio 0 = 26.66 .

Here, the inter-particle friction coefficient ,up = 0.1, and a wall friction coefficient ,u,„ of

0.1. For S13 - S16, pp = 0.4 , and ,u,„ = 0.4 of 0.4. The results of cases S9 - S16 are

presented in Figure 3.2 below.

hydrostatic curve is given by the dashed black line.

41

Figure 3.2 Piston load for simulations S9 — S12 (o), and S13 — S16 (0). The hydrostatic
curve is given by the dashed black line.

As seen from both Figure 3.1 and Figure 3.2, the load vs. fill height behavior

mimics that of a hydrostatic material. A comparison of results Si - S8 against S1 — S24,

where the only difference is in the wall friction coefficient, shows no change in the

behavior. This suggests that for the assemblies in the static simulations, wall friction

must be activated to eliminate a hydrostatic behavioral region. That is, contacts of

particles with the walls must be at the Coulomb limit and this situation occurs only when

there is some motion of the assembly relative to the cylinder. In Subsection 0 it is shown

that for the same values of HID and similar simulation parameters, a Janssen behavior is

clearly evident for the dynamic case, when friction is activated However, for a static case

42

a Janssen behavior will follow a hydrostatic region [8] for sufficiently large values of the

fill depth HID.

3.3 	 Dynamic Simulations

A comprehensive set of dynamic simulations were performed in which the piston was

translated in the positive z- direction, or the wall translated in the negative z-direction.

The parameters of these simulations are shown in Table 3.2, and Table 3.3. For all

dynamic cases, the velocity of either the piston or the cylinder wall was

v = 0.001 diameters per second. This rate was identified by performing a series of

simulated test studies over a wide range of piston velocities. Subsequent to doing this, it

was found that value was consistent with that in other studies reported in the literature [6]

so that dynamic/inertial effects were not present.

Table 3.2 Parameters Used for Dynamic Simulations

Case H/D P. Pp 0
D1 1.499 0.4 0.4 13.33
D2 1.687 0.4 0.4 13.33
D3 1.875 0.4 0.4 13.33
D4 2.062 0.4 0.4 13.33
D5 1.499 0.8 0.8 13.33
D6 1.687 0.8 0.8 13.33
D7 1.875 0.8 0.8 13.33
D8 2.062 0.8 0.8 13.33
D9 0.375 0.4 0.4 26.66

D10 0.422 0.4 0.4 26.66
Dll 0.469 0.4 0.4 26.66
D12 0.515 0.4 0.4 26.66
D13 1.499 0.1 1.0 13.33
D14 1.687 0.1 1.0 13.33
D15 1.875 0.1 1.0 13.33

Table 3.3 Parameters Used for Dynamic Simulations (Continued)

Case H/D P. lip 0

D16 2.062 0.1 1.0 13.33
D17 0.750 0 0.1 13.33
D18 1.125 0 0.1 13.33
D19 1.500 0 0.1 13.33
D20 1.875 0 0.1 13.33
D21 2.250 0 0.1 13.33
D22 2.625 0 0.1 13.33
D23 3.000 0 0.1 13.33
D24 3.375 0 0.1 13.33
D25 0.749 1.2 0.1 13.33
D26 1.125 1.2 0.1 13.33
D27 1.500 1.2 0.1 13.33
D28 1.875 1.2 0.1 13.33
D29 0.094 0.8 0.1 26.66
D30 0.141 0.8 0.1 26.66
D31 0.234 0.8 0.1 26.66
D32 0.187 0.8 0.1 26.66
D33 0.187 0.12 0.1 13.33
D34 0.375 0.12 0.1 13.33
D35 0.750 0.12 0.1 13.33
D36 1.125 0.12 0.1 13.33
D37 1.500 0.12 0.1 13.33
D38 1.875 0.12 0.1 13.33
D39 2.250 0.12 0.1 13.33
D40 2.812 0.12 0.1 13.33
D41 0.187 0.4 0.1 13.33
D42 0.375 0.4 0.1 13.33
D43 0.750 0.4 0.1 13.33
D44 1.125 0.4 0.1 13.33
D45 1.500 0.4 0.1 13.33
D46 1.875 0.4 0.1 13.33
D47 2.250 0.4 0.1 13.33
D48 2.812 0.4 0.1 13.33
D49 0.375 0.8 0.1 13.33
D50 0.750 0.8 0.1 13.33
D51 1.125 0.8 0.1 13.33
D52 0.375 0.8 0.1 13.33
D53 0.750 0.8 0.1 13.33
D54 1.125 0.8 0.1 13.33
D55 1.500 0.8 0.1 13.33

43

44

3.3.1 Comparison Between Piston and Cylinder Translation

Simulations D49 — D55 are used to compare the difference between translating the piston

down or moving the cylinder wall upwards. In simulations D49, D50, and D51, the

piston was translated downward in the positive z-direction. In simulations D52, D53,

D54, and D55, the cylinder wall was translated upward in the negative z-direction. The

compiled results for these cases (Figure 3.3) indicate no significant difference in the

dimensionless piston load F * versus HID (i.e., the least squares curve fits to the data are

almost the same). However, simulation D55 was also performed moving the cylinder

wall, and the additional data point is included in Figure 3.4.

Figure 3.3 Results comparing translating the piston or the wall to activate friction. D52
(+), D53 (a), D54 (0), the dash-dot red line is a fit of D52 — D54 to Equation (3.1). D49
(*), D50 (*), D51 (V), and lastly the dotted blue line is a fit of D49 — D51 to Equation
(3.1).

45

Figure 3.4 Results comparing translating the piston or the wall to activate friction with
more data points. D52 (+), D53 (D), D54 (0), D55 (o), and the dash-dot red line is a fit of
D52 — D55 to Equation (3.1). D49 (*), D50 (*), D51 (7), and lastly the dotted blue line
is a fit of D49 — D51 to Equation (3.1).

It is observed that the single additional point produces a greater discrepancy

between the least square fits. This could be a consequence of the regression numerics

rather than a real difference in the physical behavior (i.e.., piston motion versus cylinder

wall motion). The only way to test this is to carry out extended cases at larger HID

values. However, the system sizes to validate this hypothesis would require significantly

greater computing resources than was available.

46

3.3.2 Particle Rolling and Effect of Friction Coefficient

Janssen's theory assumes that the frictional force is fully activated. To test this

assumption the normalized angular velocity lo / cop I was analyzed to determine if the

particles contacting the wall were rolling rather than sliding as Janssen's theory assumes.

A preliminary analysis indicated that an isolated few particles in the system were

spinning at rates 3 orders of magnitude larger than expected. A closer examination

revealed that the tangential force is more sensitive to the time step At in some cases than

the normal force. Figure 3.5 below shows Ico/ cop I plotted against 1r / RI for several

identical simulations, run at different time steps, where fr / RI is the radial distance

normalized by the cylinder radius R.

It is evident from Figure 3.5 that decreasing the time step would allow the angular

velocities of all the particles to become more stable. However, since each simulation is

comprised of thousands of particles and the high angular velocity was noted for only a

few particles, those few outliers are omitted from the data presented hereafter. Only

values of lc° / cop l that satisfy the condition Ict)/ copl 1 are used. To run the simulations at

a smaller time step would have been computationally unfeasible with the resources at the

time.

47

Figure 3.5 Effect of time step on angular velocity. In all cases the friction coefficients
= ,u p = 0.4 with a diameter ratio 0 = 7.5 and a fill height (H/D) = 1.317. Results are

shown for a time step of At = 5 x10 -6 seconds (+), At =1x10 -6 seconds (o), At = 5x 10-7

seconds (0).

48

The wall friction coefficient was set to 0.4, and the inter-particle friction coefficient was

set to 0.1. As seen from Figure 3.6, the average normalized angular velocity is far from

the condition of maximum rolling. Thus, the particles near the wall and throughout the

bulk for friction coefficients typical of those used here are not fully rolling. The particles

in the packed bed are sliding and rolling.

49

Figure 3.7 col cop versus r / RI for the case of pw =0.8, pr =0.1 and 0 =13.33. H/D =

1.499 (o), H/D = 1.687 (0), H/D = 1.875 (o), and H/D = 1.499 (+).

Figure 3.7 shows co/cor plotted against 1r /RI for several different fill heights.

The wall friction coefficient was set to 0.8, and the inter-particle friction coefficient was

set to 0.1. As seen from Figure 3.7, the average normalized angular velocity is far from

the condition of maximum rolling. Thus, the particles near the wall and throughout the

bulk for friction coefficients typical of those used here are not fully rolling. The particles

in the packed bed are sliding and rolling. It is noted that the results shown in Figure 3.7

indicate a larger value of Ico/ co rd than the results shown in Figure 3.6. These results

50

indicate that an increase in the wall friction coefficient increased the normalized angular

velocity.

The wall friction coefficient was set to 0.4, and the inter-particle friction coefficient was

set to 0.4. As seen from Figure 3.8, the average normalized angular velocity is far from

the condition of maximum rolling. Thus, the particles near the wall and throughout the

bulk for friction coefficients typical of those used here are not fully rolling. The particles

in the packed bed are sliding and rolling. It is interesting to note that for different fill

levels the amount of particle rotation increases with fill height.

51

The wall friction coefficient was set to 0.8, and the inter-particle friction coefficient was

set to 0.8. As seen from Figure 3.9, the average normalized angular velocity is far from

the condition of maximum rolling. Thus, the particles near the wall and throughout the

bulk for friction coefficients typical of those used here are not fully rolling. The particles

in the packed bed are sliding and rolling.

As seen from the results above particles are rolling in the simulated assembly,

both at the wall and in the bulk of the granular material. If Janssen's assumption were

true particles would not roll, however simply slide at the friction limit. Therefore, the

52

simulated normalized angular velocity behavior indicates a violation of Janssen's

assumption that frictional forces are fully activated in the assembly

In the simulated data increasing the wall friction coefficient simply caused the

frictional force to create a larger torque, and therefore larger angular velocity onto the

particle. The resistance to the linear motion was not increased. A closer examination of

the data shows that as the wall friction coefficient increases the normalized angular

velocity of the particles increases. This result is consistent with experiments [43] that

show an increase in the friction coefficient may not increase the shear strength of the

granular material. Also, the additional particle rolling causes the particles at the wall to

act like lubrication, and therefore the piston load is larger than expected. The effect of

the wall friction coefficient on the piston load is most evident in Figure 3.21. In the

figure, it is observed that the difference between asymptotic piston loads for

pw = 0.12 and ,u,„ = 0.4 is large, while the difference between pH, = 0.4 and pH, = 0.8 is

much smaller. Indicating that a change from pw = 0.4 to ,u„, = 0.8 did not increase the

shear strength of the granular material, however the particle rolling acted as a sort of

lubrication.

3.3.3 Piston Load

The piston load was computed for all dynamic simulations. The results are shown in

Figure 3.10 through Figure 3.20 below, for a range of input parameters such as the wall

and inter-particle friction coefficients and fill levels. In all the plots, the load vs. fill level

data is fit to the functional form of Equation (3.1).

53

Figure 3.10 shows the results for simulations D1 — D4. In these simulations, the

inter-particle and wall friction coefficients were set to 0.4. Additionally, the diameter

ratio 0 was set to 13.33, and in these simulations the piston was translated to activate

friction. As seen from the plot, the data is a good fit to the functional form of Janssen's

model.

Figure 3.10 Simulated results for D1 (+), D2 (o), D3 (0), D4 (o). The solid red line
corresponds to a fit of D1 — D4 to the functional form of Equation (3.1). The solid black
line represents the hydrostatic curve.

54

Figure 3.11 Simulated results for D5 (+), D6 (o), D7 (0), D8 (o). The solid red line
corresponds to a fit of D5 — D8 to the functional form of Equation (3.1). The solid black
line represents the hydrostatic curve.

Figure 3.11 shows the results for simulations D5 — D8. In these simulations, the

inter-particle and wall friction coefficients were set to 0.8, the diameter ratio 0 was set to

13.33, and in these simulations the piston was translated to activate friction. As seen

from the plot, the data is not a very good fit to the functional form of Janssen's model.

The apparent discrepancy with the simulated data and Janssen's theory may be attributed

to particles rolling at the increased friction coefficients as discussed in Subsection 3.3.2.

55

Figure 3.12 Simulated results for D9 (+), D10 (❑), Dll (0), D12 (o). The solid red line
corresponds to a fit of D9 — D12 to the functional form of Equation (3.1). The solid black
line represents the hydrostatic curve.

Figure 3.12 shows the results for simulations D9 — D12. In these simulations, the

inter-particle and wall friction coefficients were set to 0.4, the diameter ratio 0 was set to

26.66, and in these simulations the piston was translated to activate friction. As seen

from the plot, the data is a good fit to the functional form of Janssen's model.

56

Figure 3.13 Simulated results for D13 (+), D14 (o), D15 (0), D16 (o). The solid red line
corresponds to a fit of D13 — D16 to the functional form of Equation (3.1). The solid
black line represents the hydrostatic curve.

Figure 3.13 shows the results for simulations D13 — D16. In these simulations,

the inter-particle friction coefficient was set to 1.0, and wall friction coefficient was set to

0.1, and the diameter ratio 0 was set to 13.33. Also, in these simulations the piston was

translated to activate friction. As seen from the plot, the data is a good fit to the

functional form of Janssen's model.

57

Figure 3.14 Simulated results for D17 (+), D18 (D), D19 (0), D20 (o), D21 (x), D22
(A), D23 (V), D24 (*). The solid red line corresponds to a fit of D17 — D24 to the
functional form of Equation (3.1). The solid black line represents the hydrostatic curve.

Figure 3.14 shows the results for simulations D17 — D24. In these simulations,

the wall friction coefficient ,u,,,, was set to zero. The inter-particle friction

coefficient ,up was set to 0.1, the diameter ratio was set to 13.33. Also, in these

simulations the piston was translated to activate friction. The corresponding data points

are clearly along the hydrostatic curve. These results unmistakably indicate that the wall

friction is the primary mechanism that creates the Janssen effect. Additionally, it is noted

that the force fluctuations on the piston as discussed in Subsection 2.7.2 (Figure 2.5) were

58

not present in this simulation. Therefore, the fluctuations in the simulated piston force

are caused by restructuring within the packed bed due to interactions with the wall.

Figure 3.15 Simulated results for D25 (+), D26 (❑), D27 (0), D28 (o). The solid red line
corresponds to a fit of D25 — D28 to the functional form of Equation (3.1). The solid
black line represents the hydrostatic curve.

Figure 3.15 shows the results for simulations D25 — D28. In these simulations,

the wall friction coefficient 1uw was set to 1.2 while the inter-particle friction

coefficient ,up was set to 0.1. Additionally, the diameter ratio 0 was set to 13.33, and in

these simulations the piston was translated to activate friction. As seen from the plot, the

data is a good fit to the functional form of Janssen's model.

59

Figure 3.16 Simulated results for D29 (+), D30 (o), D31 (0), D32 (o). The solid red line
corresponds to a fit of D29 — D32 to the functional form of Equation (3.1). The solid
black line represents the hydrostatic curve.

Figure 3.16 shows the results for simulations D29 — D32. In these simulations,

the wall friction coefficient ,u,,,, was set to 0.8, while the inter-particle friction

coefficient pr was set to 0.1. Additionally, the diameter ratio 0 was set to 26.66, and in

these simulations the piston was translated to activate friction. The relatively small

values of H/D show the need for more simulations at larger values of H/D to obtain a

better fit of the data.

60

Figure 3.17 Simulated results for D33 (+), D34 (E), D35 (0), D36 (o), D37 (x), D38
(A), D39 (7), D40 (*). The solid red line corresponds to a fit of D33 — D40 to the
functional form of Equation (3.1). The solid black line represents the hydrostatic curve.

Figure 3.17 shows the results for simulations D33 — D40. In these simulations,

the wall friction coefficient,uW was set to 0.12, while the inter-particle friction

coefficient ,up was set to 0.1. Additionally, the diameter ratio 0 was set to 13.33, and in

these simulations the piston was translated to activate friction. As seen from the plot, the

data is a good fit to the functional form of Janssen's model

61

Figure 3.18 Simulated results for D41 (+), D42 (o), D43 (0), D44 (o), D45 (x), D46
(A), D47 (V), D48 (*). The solid red line corresponds to a fit of D41 — D48 to the
functional form of Equation (3.1). The solid black line represents the hydrostatic curve.

Figure 3.18 shows the results for simulations D41 — D48. In these simulations,

the wall friction coefficient pH, was set to 0.4, while the inter-particle friction

coefficient ,up was set to 0.1. Additionally, the diameter ratio 0 was set to 13.33, and in

these simulations the piston was translated to activate friction. As seen from the plot, the

data is a good fit to the functional form of Janssen's model.

62

Figure 3.19 Simulated results for D49 (+), D50 (o), D51 (0). The solid red line
corresponds to a fit of D49 — D51 to the functional form of Equation (3.1). The solid
black line represents the hydrostatic curve.

Figure 3.19 shows the results for simulations D49 — D51. In these simulations,

the wall friction coefficient 1u., was set to 0.8, while the inter-particle friction

coefficient pp was set to 0.1. Additionally, the diameter ratio 0 was set to 13.33, and in

these simulations the piston was translated to activate friction. As seen from the plot, the

data is a good fit to the functional form of Janssen's model.

63

Figure 3.20 Simulated results for D52 (+), D53 (s), D54 (0), D55 (o). The solid red line
corresponds to a fit of D52 — D55 to the functional form of Equation (3.1). The solid
black line represents the hydrostatic curve.

Figure 3.20 shows the results for simulations D52 — D55. In these simulations,

the wall friction coefficient ,uw was set to 0.8, while the inter-particle friction

coefficient pp was set to 0.1. Additionally, the diameter ratio 0 was set to 13.33, and in

these simulations the cylinder wall was translated to activate friction. As seen from the

plot, the data is a good fit to the functional form of Janssen's model.

64

3.3.4 Comparison with Experiments from Literature

As mentioned before in Section 1.3 (Review of Published Literature), Walton [17]

presents preliminary results for experiments that verify the exponential form of the piston

vs. fill height relationship of Equations (1.5) and (1.6). The experiments were performed

with 3mm glass beads in a 4cm acrylic tube, note that the diameter ratio used in these

experiments is 0 =13.3, the same as used in most of the simulations performed. Figure

3.21 shows a comparison of the simulated data from D33 — D51 against experimental

data from Walton [17]. Simulations D33 — D40, D41 — D48, and D49 — D51 differ only

with respect to one parameter„ u. . It is easily observed from Figure 3.21 that with the

careful selection of friction coefficients quantitatively accurate results may be obtained.

Additionally, as discussed in Subsection 3.3.2, Figure 3.21 also highlights the effect of

the friction coefficient.

65

Figure 3.21 Comparison of simulated results to experimental results from literature.
The solid magenta line corresponds to the hydrostatic curve. Experiments from Walton
[17] are given by (❑), and the solid black line is a fit of the experimental data [17] to
Equation (3.1). Simulated results from D33 — D40 are given by (+), and the dashed red
line is a fit of D33 — D40 to the functional form of Equation (3.1). Simulated results from
D49 — D51 are given by (o), and the dashed blue line is a fit of D49 — D51 to the
functional form of Equation (3.1). Simulated results from D41 — D48 are given by (0),
and the dashed green line is a fit of D41 — D48 to the functional form of Equation (3.1).

CHAPTER 4

CONCLUSIONS AND FURTHER WORK

4.1 Conclusions

Discrete element simulations were performed to measure the load on a piston supporting

a monodisperse granular material of frictional inelastic spheres of diameter d, within a

cylindrical vessel of diameter D. The diameter ratio 4) was set to either 13.33 or 26.66 for

the simulations. Both the inter-particle friction coefficient p and the wall friction

coefficient pw were used as simulation parameters and range from 0.0 to 1.2 in the

simulations. Piston load values were extracted by performing careful statistical averaging

over long duration runs.

Static simulations were performed in which frictional forces at the wall were not

activated. For these simulations the load vs. fill height behavior was found to be

hydrostatic in nature for values of H/D less than approximately 2. The behavior for

values of H/D larger than approximately 2 is speculated to follow a Janssen type behavior

as reported in the literature [13].

Dynamic simulations were performed in which the wall friction was activated by

a relative displacement between the cylinder wall and the packed bed. The piston load

vs. fill height behavior, the difference between translating the cylinder wall or the piston

to activate wall frictional forces, and the effect of the wall friction coefficient and particle

rotations were analyzed.

66

67

The simulated behavior of the piston load vs. fill level was found to fit well with

the functional form of Janssen's theory for the diameter ratios simulated. Additionally,

the simulated fill levels at which the loads asymptotes and the associated loads compare

well with physical experiments reported in the literature [17]. Thus, indicating that the

proper selection of friction coefficients will yield quantitatively accurate results.

Simulations were carried out with the intent of comparing results to test the

differences in activating wall friction by either translation of the cylinder wall, or

translation of the piston. With the exception of translating the piston, or the cylinder

wall, the simulations are performed using the same simulation parameters. As mentioned

previously the addition of more data is required for a more accurate comparison.

However, it is speculated that a translation of either the floor piston or the cylinder wall

to activate frictional forces will not affect the simulated load vs. fill height behavior.

The effect of a tangential force applied to the surface of the particles at the contact

point rather than the center of the particle is also analyzed. As shown previously the

tangential force causes a torque on the particle, which in consequently causes a rotation

of the particle. The rate of rotation is proportionate to the wall friction coefficient. It was

shown that an increase in the wall friction coefficient may not increase the resistance to

sliding. However, the increase in wall friction coefficient causes a higher particle angular

velocity. These rotations cause a violation of Janssen's assumption that frictional forces

are fully activated.

Janssen's assumption that the lateral stress is a fixed fraction of the axial stress

may not be true for the assemblies simulated in this thesis. A linear elastic solid would

exhibit such behavior, as well as a granular assembly failing at the Coulomb failure limit.

68

There is no reason to expect the bulk material modeled behaves like either of these

special cases. Additionally, the stress distribution across a horizontal layer may not be

uniform in a granular assembly.

4.2 Further Work

The work from this thesis provides some direction for further work to better understand

the assumptions of Janssen's theory. Listed below are some of the areas of most interest.

1. Simulations to compute the radial stress and axial stresses as a function of both

radial and axial location so that the radial and axial stresses can be compared

against Janssen's assumption. Additionally, Janssen's assumption that the

stresses across any horizontal layer are uniform may also be verified through this

computation. This type of simulation may prove extremely useful since physical

experiments cannot measure the stresses in the bulk of the material.

2. Overload simulations to compare with experiments will provide another test of

the Janssen model to predict the loads associated with a granular material.

APPENDIX A

MODIFICATIONS TO THE DEM CODE

This appendix details many of the changes the DEM code has undergone throughout this
thesis. Changes are described by a brief header that indicates the subroutine the
modification took place, the lines within that subroutine, and a concise outline of the
purpose of the modification.

Main Program 3dshear.f Lines 213 — 217
The following lines of code open the new output files required for a simulation. The file
zfloorforce contains the current value of the piston load, the long term time average of the
piston load, and the current time. The file zprr contains the radial pressure.

open(38,file='zfloorforce',status='unknown')
open(39,file='zprr',status='unknown')
open(40,file='zprrcell',status='unknown')
open(41,file='zcylforce',status='unknown')
open(42,file='zrolling',status='unknown')

Main Program 3dshearfLines 239 — 249
The following lines of code initialize parameters for the restarted run. The old values of
tmax, istart, tstart, nout, dsump, dtdump, nrun, vamp, and frq are replaced by the new
values. These variables are the only ones allowed to change during a restart.

initalize parameters for new run
tmax = tmaxl
istart 	 istartl
tstart = tstartl
nout = noutl
dtout = dtoutl
ndump = ndumpl
dtdump = dtdumpl
nrun = nrunl
vamp =vampl
frq = frql

Main Program 3dshearf Lines 293 — 294
The following lines of code are used to create the column headings for the output files
zfloorforce and zcylforce. This section of code is located here so that it only writes once
at the beginning of the simulation to make a column header, not every time step. This
makes it easier for data analysis.

write(38,*) ' 	 force 	 , time avg 	 , 	 time'
write(41,*) ' radforce , time avg 	 , 	 time'

69

70

Subroutine datain.f Lines 21 —35
The following lines of code refer to the namelist. The namelist is a way of reading data
from the input file. If you want to add another variable to the input file, it must also be
added here. Variables added for a cylindrical boundary include: nzcyl, nycyl, ncomp,
compforce, t2move,t2stop,vyfloor

namelist /var/ np,bdry,nxby0,nzby0,nxbyl,nzbyl
+ ,nxbz0,nybz0,nxbz1,nybzl,nybx0,nzbx0,nybxl,nzbx1
+ ,nfix,nzcyl,nycyl,ncomp,ncmax,nout
+ ,nczero,ntcol,nvel,ndump,nyzone,mzcell,nycell,itervm
1 ,icoord,itty,ixyz,istart,ialtk
2 ,tmax,tpour,dt,dtout,dtdump,tzero,pack
+ ,vave,vxzero,vyzero,vzzero,vseed
3 ,sknl,elast,slope,ratk,fmu,power,tstart,rmassz
4 ,xcell,ycell,zcell,xyrat,zyrat,gravx,gravy,gravz
5 ,vxby0,vxbyl,vyby0,vybyl,t2move,t2stop,vyfloor
6 ,search,xmax,draddt,ystart,ystop,compforce
7 ,radz,number,radius,x,y,z,sknlb,elastb,slopeb
8 ,fmub,vx,vy,vz,wx,wy,wz
9 ,vamp,frq
+ ,finis

Subroutine datain.f Lines 109 — 126
The following lines of code refer to the new variables nzcyl, nycyl, and ncomp. The
values from the input file will override the values in datain.f ncomp can be used to set a
particle on top of the packed bed (y-cylinder only) that will exert an axial compression of
compforce onto the bed.

c 	 number of cylinders parallel to the z axis
c 	 if nzcyl is "1" and rad(indlcz) is negative, then assume
c 	 that this zcylinder is the outer boundary. Note: Cannot have
c 	 both z-cylinders and y-cylinders.

nzcyl = 0
c
c 	 added by Shawn Chester, NJIT***************************
c 	
c 	 number of cylinders parallel to the y axis
c 	 if nycyl is "1" and rad(indlcy) is negitive, then assume
c 	 that this y-cylinder is the outer boundry. Note: Cannot have
c 	 both z-cylinder and y-cylinder.

nycyl = 0
c 	
c
c 	 number of particles used for axial compression
c 	 this should only be one

ncomp = 0

71

Subroutine datainf Lines 311 — 321
The following lines of code refer to the new variables t2move, t2stop, vyfloor. The
values are overwritten by what is specified in the input file These variables can be used
to move either the floor or the cylinder. More details in the integl .f and integ2.f
subroutines.

c 	 t2move = the time at which the floor will move with the
c 	 velocity vyfloor

t2move = 0.0
c
c 	 t2stop = the time at which the floor will stop moving

t2stop = 0.0
c
c 	 vyfloor= the velocity in which the floor will move vertically
c 	 after the time is greater than t2move
c 	 note: positive moves the floor up, negitive down

vyfloor = 0.0

Subroutine datain.fLines 343 — 345
The following lines of code refer to the new variable compforce, which will provide the
amount of force to exert on the top of the packed bed.

c 	 compforce = force applied to the top of the packing
c 	 to provide an axial compression of the packed bed

compforce = 0.0

Subroutine datainfLines 365 — 370
The following lines of code ensure initialization of the particle locations and velocities.
(minor modification)

x(i) 	 = 0.
y(i) 	 = 0.
z(i) 	 = 0.
vx(i) 	 = 0.
vy(i) 	 = 0.
vz(i) 	 = 0.

Subroutine datainf Line 394
The following line of code ensures that the simulation dosent have both a z, and y
cylinder. A simple error check.

if((nzcyl.ge.1).and.(nycyl.ge.1)) go to 996

72

Subroutine datasav2fLine 11
The following line of code initializes the variables needed to compute the CPU time used
in the simulation. The time is added cumulatively.

real etime,timearray(2),tarray(2)

Subroutine datasav2.fLines 30 — 33
The following line of code computes the CPU time used in the simulation. The time is
added cumulatively.

c 	 CPU Time
cputime=etime(timearray)
cputime=timearray(1)+timearray(2)
write (3, 304) t, cputime

Subroutine datasav2fLines 80 — 81
The following lines of code add a counter for long term time averaging.

c--modified by shawn chester
savet = savet + 1

Subroutine datasav2.fLines 108 —111
The following lines of code add the current value of the stress to the running time
averaged value. For all 9 components of the stress tensor.

do 5 j=1,9
pnnkt(j) = pnnkt(j) + pnnk(j)
pnnpt(j) = pnnpt(j) + pnnp(j)

5 	 continue

Subroutine datasav2fLines 202 — 214
The following lines of code in loop '25' add the current value of the stress to the running
time averaged value, for all 9 components of the stress tensor in the y-zones. The lines of
code in loop '26' do the same for the radial stress (Both kinetic and potential
components). The line of code after loop '26' adds the current potential components of
the radial stress to the old value for computing a long term average.

do 25 j=1,9
do 25 i=1,nyzone

ypnnkt(i,j) = ypnnkt(i,j) + ypnnk(i,j)
ypnnpt(i,j) = ypnnpt(i,j) + ypnnp(i,j)

25	 continue
c
c--modification by shawn chester for radial stress

do 26 i=1,nyzone
yprrpt(i) = yprrpt(i) + yprrp(i)

26 	 continue
c

prrpt = prrpt + prrp

73

Subroutine datasav2.f Lines 374 — 382
The first line of code below writes the particle coordinates to file 13, zposition. The lines
of code in loop '109' keep the long term average of the particle angular velocity. The
lines of code following loop '109' write the values of the angular velocity to file zrolling.
The radial location raddist is printed, along with the current value of the particle angular
velocity angvel, and the long term time average angvelt.

write(13,312) (i,x(i),y(i),z(i),i=1,np)
c----print the angular velocity and radial location

do 109 i=1,np
angvel(i) = angvel(i) + dangvel(i)
angvelt(i) = angvelt(i) + angvel(i)

109 continue
write(42,202) (i,raddist(i),angvel(i),angvelt(i)*saveti,i=1,np)

202 format(/,4x,"i",4x,"raddist(i)",6x,"angvel(i)",5x,"angvelt(i)",
1 	 1p,/,(1x,i4,3e15.7))

Subroutine datasav2fLine 385
The line of code below calls the subroutine packfrac.fto compute the packing fraction as
a function of height. The line is commented out to save computational time.

c 	 call packfrac

Subroutine datasav2fLines 401 — 412
The lines of code in loop '85' write the potential component of the stress tensor to the file
ztensor. The next few lines of code write the radial component of the potential
component of the stress in the y-zones to file. The last lines of code write the radial
stress to file for the entire computational cell.

do 85 j=1,9
write(15,320) (j,labz(i),ypnnp(i,j),ypnnpt(i,j)*saveti

1 	 ,i=1,nyzone)
write(15,320) j,labcell,pnnp(j),pnnpt*saveti

85 	 continue
c

write(39,200) (i,labz(i),yprrp(i),yprrpt(i)*saveti
1 	 ,i=1,nyzone)

200 format(lx,"stress : pot. (",i4,") 	 ", a8, " = ",1p,2e12.4)
c

write(40,201) pnnp,pnnpt*saveti
201 format (lx,"radial stress for entire cell = ",lp,2e12.4)

74

Subroutine datasav2fLines 415 — 418
The following lines of code are used to obtain the piston force. pywall is the current
value of the load on the piston, and pywalt is the long term average load on the piston.
The values of the current piston load, the long term time averaged piston load, and the
time are written to file.

pywall = pywall + dpywal
pywalt = pywalt + pywall

write(38,199) pywall,pywalt*saveti,t
199 	 format(e12.5," ,",e12.5," ,",e12.5)

Subroutine datasav2fLines 420 — 423
The following lines of code are used to obtain the force exerted on the cylindrical
boundary. prcyl is the current value of the load on the wall, and prcylt is the long term
average load on the wall. The values of the current wall load, the long term time
averaged wall load, and the time are written to file.

prcyl = prcyl + dprcyl
prcylt = prcylt + prcyl
write(41,198) prcyl,prcylt*saveti,t

198 	 format(e12.5," ,",e12.5," ,",e12.5)

75

Subroutine deletem.fLines 37 — 38
The following lines of code are used to modify collision detection for the cylindrical
boundary.

rsum = abs(rad(i)) + abs(rad(j))
if((j.ge.indlcy).and.(j.le.ind2cy)) rsum = rad(i)

Subroutine deletem.f Lines 47 — 69
The lines of code below are used to determine the vector connecting the contacting
particle centers. In the case of a free particle contacting the cylinder the modifications
are as follows. The y component of the vector is set to zero to create the cylinder wall.
Then contact forces are directed along the vector from the center of the cylinder to the
particle, however opposite direction, such that particles are contained within the cylinder.

c 	 z cylinders
if((j.ge.indlcz).and.(j.le.ind2cz)) rz = O.

c 	
c 	 added by Shawn Chester 2003, NJIT ******************************
c 	
c 	 y cylinders

if((j.ge.indlcy).and.(j.le.ind2cy)) then
ry = 0.0

c 	 see forces.f for an explaination of the statements below
contactangle = atan(z(i)/x(i))
xcp = sign(rad(j)*cos(contactangle),x(i))
zcp = sign(rad(j)*sin(contactangle),z(i))
if(z(i).eq.0) then

xcp = sign(rad(j),x(i))
zcp = 0.0

endif
if(x(i).eq.0) then

xcp = 0.0
zcp = sign(rad(j),z(i))

endif
rx = xcp - x(i)
rz = zcp - z(i)

endif

Subroutine deletem.fLines 89 — 92
The lines of code below are used to determine the vector connecting the contacting
particle centers. In the case of a free particle contacting the particle used for axial
compression the modifications are as follows. The x and z components are set to zero so
that the contact is perfectly in the axial direction. This particle will act as a wall on the
top of the packed bed.

elseif((j.eq.indcomp).and.(ncomp.eq.1)) then
rx = 0.0
rz = 0.0

endif

76

Subroutine diagnos2fLines 346 — 349
The lines of code below are used to compute the radial distance from the cylinder axis to
the center of a particle. Then the magnitude of the angular velocity of that particle is
calculated. This is used for particle rotations as discussed in Section 2.7.4.

do 151 i=1,np
raddist(i) = sqrt(x(i)*x(i) + z(i)*z(i))
dangvel(i) = sqrt(wx(i)*wx(i) + wy(i)*wy(i) + wz(i)*wz(i))

151 continue

Subroutine diagnos2.f Lines 352 — 354
The lines of code below are used in the computation of the radial stress in the y zones.
The current value of the potential component of the radial stress is computed.

do 155 i=1,nyzone
yprrp(i) = yprrp(i) + dyprrp(i)*voyzoni(i)

155 continue

Subroutine diagnos2.f Lines 356
The line of code below is used in the computation of the radial stress in the entire
computational cell. The current value of the potential component of the radial stress is
computed.

prrp = prrp + dprrp*vcelli

Subroutine diagnos2.f Lines 359 — 363
The lines of code below are used in the computation of the radial stress in the annular
zones. The annular zones have an index for radial zone and an index for y zone.

do 180 n=1,nrzone
do 181 m=1,nyzone

anprrp (n,m) = anprrp (n,m) + danprrp (n,m) *vanzone (n,m)
181 continue
180 continue

77

Subroutineforces.fLine 73
The line of code below is used with the cylindrical boundary contact detection.

if((j.ge.indlcy).and.(j.le.ind2cy)) rsum = rad(i)

Subroutine forces.f Lines 87 — 113
The following lines of code deal with computing the vector the contact force lies along
between a free particle and the cylinder wall. See modifications from subroutine
deletem.ffor a description.

if((j.ge.indlcz).and.(j.le.ind2cz)) rz = 0.
c 	
c 	 added by Shawn Chester 2003, NJIT *******************************
c 	
c 	 y cylinders

if((j.ge.indlcy).and.(j.le.ind2cy)) then
ry = 0.0

c 	 the contactanle variable is the angle at which the free particle
” i .

c 	 is going to hit the cylinder boundary. In other words it is
used to
c 	 find the x and y coordinate of the contact point, xcp and zcp,
c 	 on the cylinder where the particle will contact.
c

contactangle=atan(abs(z(i)/x(i)))
xcp = sign(rad(j)*cos(contactangle),x(i))
zcp = sign(rad(j)*sin(contactangle),z(i))

if(z(i).eq.0) then
xcp = sign(rad(j),x(i))
zcp = 0.0

endif
if(x(i).eq.0) then

xcp = 0.0
zcp = sign(rad(j),z(i))

endif
rx = xcp - x(i)
rz = zcp - z(i)

endif

Subroutine forcesfLines 136 — 139
The following lines of code deal with computing the vector the contact force lies along
for the case of the axial compression particle contacting a free particle. The axial
compression particle has only an axial component of force, i.e., it acts like a wall.

elseif((j.eq.indcomp).and.(ncomp.eq.1)) then
rx = 0.0
ry = 0.0

endif

78

Subroutine forcesf Lines 193 — 195
The following lines of code compute the square of the distance between particle centers
for the case of a free particle contacting the cylinder wall. The distance squared is
computed as the radial distance to the particle center subtracted from the cylinder radius
quantity squared.

if((j.ge.ind1cy).and.(j.le.ind2cy)) then
rijsq = (abs(rad(j)) - sqrt(x(i)**2 + z(i)**2))**2

endif

Subroutine forcesf Lines 498 — 546
The following lines of code compute the potential component of the radial stress
component. Note that neither the piston, nor the particle used for axial compression adds
to the radial stress. The radial distance from the center of the cylinder to the center of the
particle is computed for each contacting pair. Then the difference is found as raddistij.
xc, yc, and zc are the x,y, and z coordinates of the contact point between particles i and j.
That location is used to compute the radial distance to the contact point. xck, and zck are
the components of the unit vector that determines the direction of the radial force
between contacting pairs. The magnitude of the radial force is then computed by
projecting the contact force onto this vector. Then the stress increment can be computed.
The last few lines of code increment the radial stress component in the y zones.

c--if floor or compression particle -> no effect on prr
if((j.eq.indly0).or.(j.eq.indcomp)) goto 60

c
if(j.eq.indlcy) goto 61

raddistj = sqrt((x(j)*x(j))+(z(j)*z(j)))
raddisti = sqrt((x(i)*x(i))+(z(i)*z(i)))
raddistij = raddistj - raddisti

c 	 fix this later for checking **************
c 	 if(radjsq.eq.radisq) goto 60
c

xc = (x(j) + x(i))/2
zc = (z(j) + z(i))/2
yc = (y(j) + y(i))/2

contrad = sqrt((xc*xc)+(zc*zc)+(yc*yc))
c
c--then calculate the unit vectors for the radial direction
c---using the x and z directions to do this
c

xck = xc/contrad
zck = zc/contrad

c
c--calculate the force in radial direction
c

radfx = ftotx*xck
radfz 	 ftotz*zck
radialforce = sqrt((radfx*radfx)+(radfz*radfz))

79

c--stress increment

rrfr = radialforce*raddistij
61 	 continue

if(j.eq.indlcy) then
just a test to see about ignoring the wall effect

rrfr = 0.0
rrfr = fnij*rad(i)

endif
c
c--increment the radial stress for cell (not useful, or good)

dprrp = dprrp + rrfr
c--increment the radial stress (potential part) for the y zones

dyprrp(npos(i)) = dyprrp(npos(i)) + half*rpos (i) *rrfr
dyprrp(nmid(i)) = dyprrp(nmid(i)) + half*rmid(i)*rrfr
dyprrp(nneg(i)) = dyprrp(nneg(i)) + half*rneg(i)*rrfr
dyprrp(npos(j)) = dyprrp(npos(j)) + half*rpos(i)*rrfr
dyprrp(nmid(j)) = dyprrp(nmid(j)) + half*rmid(i) *rrfr
dyprrp(nneg(j)) = dyprrp(nneg(j)) + half*rneg(i)*rrfr

Subroutine forces.f Lines 548 — 554
The following lines of code are used to compute the radial stress increment used for the
annular zones. The stress increment is mass weighted such that the fraction of the mass
of particle "i" in a zone is the fraction of the stress increment for that zone. This part of
the code is only partially complete.

c 	 radial stress increments in the annular zones
do 28 n=1,nrzone

do 29 m=1,nyzone
danprrp(rzone,yzone) = vfrac(n,m,i)*rrfr

29 	 continue
28 	 continue

Subroutine forces.f Lines 565 — 572
The following lines of code are used to increment the potential components of the stress
tensor for the y zones.

c 	 increment stress tensor components (potential) for y zones
dypnnp(npos(i),k) = dypnnp(npos(i),k) + half*rpos(i)*rnfn(k)
dypnnp(nmid(i),k) = dypnnp(nmid(i),k) + half*rmid(i)*rnfn(k)
dypnnp(nneg(i),k) = dypnnp(nneg(i),k) + half*rneg(i)*rnfn(k)
dypnnp(npos(j),k) = dypnnp(npos(j),k) + half*rpos(j)*rnfn(k)
dypnnp(nmid(j),k) = dypnnp(nmid(j),k) + half*rmid(j)*rnfn(k)
dypnnp(nneg(j),k) = dypnnp(nneg(j),k) + half*rneg(j)*rnfn(k)

30 	 continue

Subroutine forces.f Lines 574 — 579
The following lines of code are used to increment the force on the lower boundaries. In
this thesis only the lower y boundary (piston) is considered.

c 	 increment wall forces on lower y-boundary particles

80

if((j.ge.indly0).and.(j.le.ind2y0)) then
dpxwal = dpxwal + ftotx
dpywal = dpywal + ftoty
dpzwal = dpzwal + ftotz

endif

Subroutine forces.f Lines 582 — 590
The following lines of code are used to increment the radial force on the cylinder wall. In
this thesis only the total radial force on the wall is considered.

if(j.eq.indlcy) then
dprcyl = dprcyl + radialforce

c--for the y-zones
c do 31 i=1,nyzone
c dyprcyl(npos(i)) = dyprcyl(npos(i)) + rpos(i)*radialforce
c dyprcyl(nmid(i)) = dyprcyl(nmid(i)) + rmid(i)*radialforce
c
c 31

dyprcyl(nneg(i))
continue

endif

= dyprcyl(nneg(i)) + rneg(i)*radialforce

81

SubroutineinitfLines 145— 147
The following lines of code are used to find the free particle indices. The free particles
arefromind/ until ind2.

indl = 1
ind2 = np - nby0 - nbyl - nbz0 - nbzl - nbx0 - nbxl - nfix

+ - nzcyl - nycyl - ncomp

Subroutine init.fLines 235 — 242
The following lines of code are to index the z cylinder particle. The z cylinder particles
are from indl cz until ind2cz.

if(nzcyl.ge.1) then
indlcz = max(ind2, ind2y0, ind2yl, ind2x0

+ , ind2xl, ind2z0, ind2zl, ind2fx) + 1
ind2cz = indlcz + nzcyl - 1
else
indlcz = 0
ind2cz = 0

endif

Subroutine init.fLines 248 — 255
The following lines of code are to index the y cylinder particle. The y cylinder particles
are from indlcy until ind2cy.

if(nycyl.ge.1) then
indlcy = max(ind2, ind2y0, ind2yl, ind2x0

+ , ind2xl, ind2z0, ind2zl, ind2fx, ind2cz) + 1
ind2cy = indlcy + nycyl - 1
else
indlcy = 0
ind2cy = 0

endif

Subroutine init.fLines 258 — 261
The following lines of code are to index the axial compression particle. The axial
compression particle is indcomp.

if(ncomp.eq.1.) then
indcomp = max(ind2, ind2y0, ind2yl, ind2x0

+ , ind2xl, ind2z0, ind2zl, ind2fx, ind2cz, ind2cy) + 1
endif

Subroutine init.f Lines 319 — 320
The following lines of code are used to compute the volume of the z and y cylinders.

if((i.ge.indlcz).and.(i.lt.indlcy)) vol(i)=pi*radz(i)^2*zcell
if(i.ge.indlcy) vol(i) = pi*radz(i)*radz(i)*ycell

82

Subroutine init.f Lines 354 — 359
The following lines of code are used to compute the mass of the particle used for axial
compression from the user input axial force.

if(ncomp.ge.1) then
pmass(indcomp) = compforce / 9.81
if(pmass(indcomp).1e.0.0) pmass(indcomp) = trifle
rmass(indcomp) = compforce / 9.81
if(rmass(indcomp).1e.0.0) rmass(indcomp) = trifle

endif

Subroutine init.f Lines 478 — 486
The following lines of code are used to convert the negative radius flag on the cylinder
boundary to a positive value rycyl used in computations.

c 	 If wanted boundry is a cylinder in the y direction
c 	 you need to have one y-cylinder with a negitive radius
c 	 the following converts it into a positive radius
c 	 added by Shawn Chester 2003, NJIT ******************************
c 	

if((nycyl.eq.1).and.(radz(indlcy).1t.0)) then
rycyl = abs(radz(indlcy))

endif

Subroutine init.f Line 504
The following line of code is used to initialize the velocity of the axial compression
particle.

if(ncomp.eq.1) vy(indcomp) = 0.0

Subroutine init.f Lines 524 — 538
The following lines of code are used to randomly place the free particles inside the
cylinder.

IF((nycyl.eq.1).and.(radz(indlcy).1t.0)) then
delr = rycyl - radz(i)
xminp = x(indlcy) - delr
xmaxp = x(indlcy) + delr
zminp = z(indlcy) - delr
zmaxp = z(indlcy) + delr
x(i) = xminp + rand(0.)*(xmaxp - xminp)
z(i) = zminp + rand(0.)*(zmaxp - zminp)
delx = x(i) - x(indlcy)
deli = z(i) - z(indlcy)
if((nby0.gt.1).or.(nbyl.gt.1)) then

yminp = radz(i)
ymaxp = ycell - radz(i)

endif
y(i) = yminp + rand(0.)*(ymaxp - yminp)

83

Subroutine init.f Lines 588 — 592
The following lines of code are used to place the axial compression particle atop the
packed bed.

if(ncomp.eq.1) then
x(indcomp) = 0.0
z(indcomp) = 0.0
y(indcomp) = ymaxp + rad(indcomp)

endif

Subroutine initf Lines 611 — 615
The following lines of code are used to check for particle overlap during the random
placement of free particles with the cylinder.

if((j.ge.indlcy).and.(j.le.ind2cy)) then
ry = 0.0
rx = abs(rad(j)) - x(i)
rz = abs(rad(j)) - z(i)

endif

Subroutine init.f Lines 635 — 638
The following lines of code are used to check for particle overlap during the random
placement of free particles with the axial compression particle.

elseif((j.eq.indcomp).and.(ncomp.eq.1)) then
rx = 0.0
rz = 0.0

endif

Subroutine init.f Lines 722 — 726
The following lines of code are used to initialize the particle sizes for boundary and other,
non-free particles.

if((nfix.gt.0).or.(nycyl.gt.0).or.(ncomp.eq.1)) then
do 29 i=indlfx, indcomp

rad(i) = radz(i)
29 	 continue

endif

Subroutine init.f Lines 742 — 745
The following lines of code are used to initialize the cell volume for a cylindrical
boundary.

if((np.ge.ind1cy).and.(rad(indlcy).1t.0)) then
vcell = vol(indlcy)
vcelli = 1.0/vcell

endif

84

Subroutine init.f Line 750
The following line of code computes the width of the annular zones. This portion of the
code is partially complete.

drzone = rycyl/nrzone

Subroutine initf Lines 750 — 834
The following lines of code are used to compute the volume in the y zones.

if((nycyl.eq.1).and.(rad(indlcy).1t.0.)) then
voyzone(1) = rycyl*rycyl*pi*dyzone - vbound
voyzoni(1) = 1./voyzone(1)
do 37 i=2,nyzone

voyzone(i) = rycyl*rycyl*pi*dyzone
voyzoni(i) = 1./voyzone(i)

37 	 continue
endif

85

Subroutine initcuml.f Lines 47 — 56
The following lines of code initialize the current values of the stress tensor and the
potential component of the radial stress.

do 5 j=1,9
pnnk(j) = 0.
pnnp(j) = 0.

5 	 continue
prrp = 0.

Subroutine initcuml.f Lines 62 — 64
The following lines of code initialize the current value of the magnitude of the angular
velocity of each particle.

do 17 i=1,np
angvel(i) = 0.

17 	 continue

Subroutine initcuml.f Lines 105 — 115
The following lines of code initialize the current values of the stress tensor and the
potential component of the radial stress for the y zones.

do 15 j=1,9
do 15 i=1,nyzone

ypnnk(i,j) = 0.
ypnnp(i,j) = 0.

15 	 continue
c
c 	 modification by shaven chester for the radial stress
c

do 16 i=1,nyzone
yprrp(i) 	 0.

16 	 continue

86

Subroutine initcum2.f Lines 47 — 54
The following lines of code initialize the long term time averaged values of the stress
tensor and the potential component of the radial stress.

do 5 j=1,9
pnnkt(j) = 0.
pnnpt(j) = 0.

5	 continue
c
c--modification by shawn chester for the radial stress
c

prrpt = 0.

Subroutine initcum2fLines 57 — 59
The following lines of code initialize the long term time averaged value of the magnitude
of the angular velocity of each particle.

do 17 i=1,np
angvelt(i) = 0.

17 	 continue

Subroutine initcum2fLines 98 — 107
The following lines of code initialize the long term time averaged values of the stress
tensor and the potential component of the radial stress for the y zones.

do 15 j-1,9
do 15 i=1,nyzone

ypnnkt(i,j) = 0.
ypnnpt(i,j) = 0.

15 	 continue
c
c--modification by shawn chester for radial stress

do 16 i=1,nyzone
yprrpt(i) = 0.

16 	 continue

Subroutine initcum2fLines 113 — 115
The following lines of code initialize the long term time averaged values of the lower
boundary forces.

pxwalt = 0.
pywalt = 0.
pzwalt = 0.

87

Subroutine initstep.f Lines 43 — 46
The following lines of code initialize the increment values of the stress tensor.

do 5 j=1,9
dpnnk(j) = 0.
dpnnp(j) = 0.

5 	 continue

Subroutine initstep.f Lines 75 — 79
The following lines of code initialize the increment values of the stress tensor in the y
zones.

do 15 j=1,9
do 15 i=1,nyzone

dypnnk(i,j) = 0.
dypnnp(i,j) = 0.

15 	 continue

Subroutine initstep2.f Lines 113 — 115
The following lines of code initialize the increment values of the lower boundary forces.

dpxwal = 0.
dpywal = 0.
dpzwal = 0.

Subroutine initstep.f Lines 89 — 91
The following lines of code initialize the increment value of the magnitude of the angular
velocity of each particle.

do 16 i=1,np
dangvel(i) = 0.

16 	 continue

Subroutine initstep.f Lines 94 — 97
The following lines of code initialize the increment value of the radial stress potnetial
component.

dprrp = 0.
do 17 i=1,nyzone

dyprrp(i) = 0.
17 	 continue

88

Subroutineinteg/fLines95-101
The following lines of code are implemented to give the cylinder wall an axial velocity.
The wall will start to move with a user input velocity vyfloor, at a user input t2move, and
stop at user input t2stop.

if((t.ge.t2move).and.(t.le.t2stop)) then
vy(indlcy) = vyfloor
dvy(indlcy) = 0.0

else
vy(indlcy) = 0.0
dvy(indlcy) = 0.0

endif

Alternate code to move the piston

if((t.ge.t2move).and.(t.le.t2stop)) then
vy(indlcy) = vyfloor
dvy(indlcy) = 0.0

else
vy(indlcy) = 0.0
dvy(indlcy) = 0.0

endif

Subroutine integl.fLines 106 — 117
The following lines of code are implemented to give the axial compression particle the
ability to move under gravity. This will ensure that the axial force is always applied to
the top of the packed bed.

if(ncomp.eq.l) then
dvy(indcomp) = (fy(indcomp)*rmasi + gravy)*dt

if(t.le.0.) then
c 	 first time step
c 	 trans. velocities at half time step before time zero

vhy(indcomp) = vy(indcomp) - half*dvy(indcomp)
else

c 	 other than first time step
c 	 trans. velocities at start of current time step

vy(indcomp) = vhy(indcomp) + half*dvy(indcomp)
endif

endif

89

Subroutine integ2fLine 23
The following line of code is used to allow the computation of the position and velocity
of the particles in the simulation. By changing the upper limit in this loop the
compression particle along with the piston particle are included in this calculation. This
allows those particles to translate.

do 30 i=indl,indcomp

Subroutine integ2.fLines 93 — 101
The following lines of code are implemented to solve for the new position of the cylinder
wall under translation, and the velocity of the wall.

if(vy(indlcy).ne.0.) then
dy(indlcy) = vyfloor*dt
y(indlcy) = y(indlcy) + dy(indlcy)
vy(indlcy) = vyfloor

endif

90

Subroutine packfracf
The following subroutine computes the packing via the plane growth method. This code
was modified from a standalone code and integrated into the main program.

C 	 Packing volume fraction by plane growth method
C

C
C 	 Variables
C
C 	 height height of the box
C 	 rad 	 radius of the sphere
C 	 tvol 	 Volume of the container
C 	 svol 	 Volume of the spheres
C 	 zvol 	 zone volume inside the cointainer
C psvol partial volume of the spheres in the current partial volume
C 	 top 	 top plane of the zone
C 	 bottom bottom plane of the zone
C 	 inc 	 amount of distance to increment the top plane
C ninc 	 number of times to increment the top plane, this value must
C 	 be an integer value
C

C 	 This modification will calculate the packing volume fraction for
C 	 a cylindrical boundry and not a rectangular boundry. In addition
c 	 the packing fraction is calculated in zones.
C

C 	 Beginning of Program
C

C
subroutine packfrac
include 's3dscmm'

c
integer nu,n1,n2,n3,n4,n5,n6,ninc
double precision inc,top,zvol,psvol,dzone,radcy,test

c
Pi = 3.141592653589798
radcy = abs(rad(indlcy))

c
top = 0.0D0
bottom = y(indly0)
dzone = 5*rmin
height = (2.*rmax*rmax*rmax*ind2)/

•. 	 (0.6*radcy*radcy)
tpsvol = 0.0D0
test = height/dzone
ninc = dnint(test)

c
write(53,201) t

201 format(/,/,"Time = ",e12.4)
C
C----begins loop of slicing the packing volume
c

91

DO 1 i = 1, ninc
c

top = (y(indly0)+rad(indly0))+(dzone*i)
bottom = (y(indly0)+rad(indly0))+(dzone*(i-1))
nu = 0
nl = 0
n2 = 0
n3 = 0
n4 = 0
n5 = 0
n6 = 0
vl = 0.0D0
v2 = 0.0D0
v3 = 0.0D0
v4 = 0.0D0
v5 = 0.0D0
v6 = 0.0D0
psvol = 0.0D0

C
C----begins loop of particle volume calculation
c

DO 4 k = indl, ind2
C
c---case 1) when the particle lies totally out of the zone
c

IF((y(k).gt.(top+rad(k))).or.
1 	 (y(k).1t.(bottom-rad(k)))) GOTO 4

c
C---case 2) when the center of the sphere is above the zone, but
c 	 a little of the sphere inside of the zone
c

IF ((y(k).1e.(top+rad(k))).and.
1 	 (y(k).gt.top)) THEN

c
n2 = n2 + 1
h = top + rad(k) - y(k)
v2 = v2 + ((1.0D0/3.0D0)*Pi*h*h*(3*rad(k)-h))

c
C---case 3) when the center of the sphere is below the top, but
c	 a little of the sphere is above the zone
c

ELSE IF ((y(k).le.top).and.
1 	 (y(k).gt.(top - rad(k)))) THEN

c
n3 = n3 + 1
h = y(k)+rad(k)-top
v3=v3+((4.0D0/3.0D0)*Pi*rad(k)*rad(k)*rad(k)

1	 -((1.0D0/3.0D0)*Pi*h*h*(3*rad(k)-h)))
c
C---case 4) when all of the sphere is inside sample element
c

ELSE IF ((y(k).1e.(top-rad(k))).and.
1 	 (y(k).gt.(bottom+rad(k)))) THEN

c
n4 = n4 + 1
v4 = v4+((4.0D0/3.0D0)*Pi*rad(k)*rad(k)*rad(k))

C---case 5) when the center of the sphere is just above the bottom,
c 	 and a little of the sphere is outside the zone
c

ELSE IF ((y(k).gt.bottom).and.
1 	 (y(k).1e.(bottom+rad(k)))) THEN

n5 = n5 + 1
h = bottom + rad(k) - y(k)
v5 = v5 + ((4.0D0/3.0D0)*Pi*rad(k)*rad(k)*

1 	 rad(k)-(1.0D0/3.0D0)*Pi*h*h*(3*rad(k)-h))
c
C---case 6) when the center of the sphere is just below the bottom,
c 	 but some of the sphere is inside the zone
c

ELSE IF ((y(k).le.bottom).and.
1 	 (y(k).gt.(bottom-rad(k)))) THEN

c
n6 = n6 + 1
h = y(k) + rad(k) - bottom
v6 = v6 + ((1.0D0/3.0D0)*Pi*h*h*(3*rad(k)-h))

c

ENDIF
c
4 	 CONTINUE

c
nl = ind2 - n2 - n3 - n4 - n5 - n6
nu = n3 + n4 + n5

c
zvol = radcy*radcy*Pi*dzone
psvol = v2 + v3 + v4 + v5 + v6
tpsvol = tpsvol + psvol
pd = psvol/zvol

c
write(53,210) i

210 format("Zone",i3,/,8x,"n1",3x,"n2",3x,"n3",3x,"n4",
3x,"n5",3x,"n6", 5x,"nu")

write(53,211) nl,n2,n3,n4,n5,n6,nu
211 format(7x,i3,2x,i3,2x,i3,2x,i3,2x,i3,2x,i3,2x,i5)

write(53,212)
212 format(6x,"v1",11x,"v2",11x,"v3",10x,"v4",10x,"v5",10x,"vol")

write(53,213) vl, v2, v3, v4, v5, psvol
213 format(e12.4,1x,e12.4,1x,e12.4,1x,e12.4,1x,e12.4,1x,e12.4)

c
write(53,222) top,bottom,zvol,psvol,pd

c
222 	 format("The top of the zone = ",e12.4,/,

"The bottom of the zone = ",e12.4,/,
"Volume of zone = ",e12.4,/,"Particle Volume= ",e12.4,/,

: 	 "Packing Fraction= ",e12.4,/)
c

	

1 	 CONTINUE
c

	

c 	 tvol = xlength * height * width

	

c 	 vol = (4.0D0/3.0D0)*Pi*ra*ra*ra

	

c 	 write(6,*)"Volume of 1 particle",vol," Radius=",ra
c

	

c 	 svol = np * vol

92

93

c	 pd 	 svol/tvol
c 	 write(6,*)"tpsvol=",tpsvol," svol=",svol
C
c 	 write(53,333) tvol, svol, pd
333 	 format("Total Volume-",e12.4,/,"Total Particle Volume="

: ,e12.4,/,"Total Packing Fraction=",e12.4)
c

RETURN
END

C 	 End of Program
C

94

Subroutine update.f Lines 33 —35
The following lines of code are used for contact detection with the cylindrical boundary.

if((j.ge.indlcy).and.(j.le.ind2cy)) then
rsum = rad(i)

endif

Subroutine update.f Lines 50 — 66
The following lines of code are described in the modifications to deltem.f.

if((j.ge.indlcy).and.(j.le.ind2cy)) then
ry = 0.0

c 	 see forces.f for an explaination of the below statements
contactangle = atan(z(i)/x(i))
xcp = sign(rad(j)*cos(contactangle),x(i))
zcp = sign(rad(j)*sin(contactangle),z(i))

if(z(i).eq.0) then
xcp = sign(rad(j),x(i))
zcp = 0.0

endif
if(x(i).eq.0) then

xcp = 0.0
zcp = sign(rad(j),z(i))

endif
rx = xcp - x(i)
rz = zcp - z(i)

endif

Subroutine update.f Lines 84 — 87
The following lines of code are used for collision detection with the axial compression
particle.

elseif((j.eq.indcomp).and.(ncomp.eq.1)) then
rx = 0.0
rz = 0.0

endif

APPENDIX B

MATLAB CODE FOR PISTON FORCE EXTRACTION

This appendix gives the MATLAB code for extracting the piston load as described in
Section 2.7.2.

%---This code will solve for the average force
% a method of comparing long term averages with short term
% averages is used. Along with a limit method.

savg=short term average
lavg=long term average

input some parameters
total_particles=input('Input the total number of free particles: ');
radius=input('Inmput the radius of the free particles: ');
weight=total_particles*106840.71*radius^3;

% import the raw data file, the path must be set in MATLAB so
% that the data file is found by the program

%extract the data from the raw data
force=abs(data(:,1))/weight;
t=data(:,2);
inc=input('Input the interval between outputs: ');

% dx is the number of points to include in the short term average
% dx must be a positive integer, but a double data type
range=input('Enter the number of sections to break the data into: ');
dx=(length(t)/range);
d=uint32(dx);
dx=double(d);

%--neglect starting force fluctuations
zero=input('At what integer time is the data useful: ');
start=uint32(zero/inc);
start=double(start);

%Input the tolerance in which the value is good
tol=input('What percent difference is acceptable: ');
if(tol > 1)%convert to decimal if incorrect input

tol=tol/100;
end
%--stop looking once you are at the end of the data
stop=length(t);

%plot the normalized force as a function of time
figure(1)
plot(t,force,'o')
xlim([2.5 max(t)])
set(gca,'YGrid','on')
xlabel('Time (s)')

95

96

ylabel('Force Normalized by Total Weight')
%
% 	 begin the process
g=1;
for i=start:dx:stop-dx

halt=i+dx;
lsum=0;
for j=start:1:halt

lsum=lsum+force(j);
end
lavg=lsum/(halt-start);
ssum=0;
for k=i:1:halt-1

ssum=ssum+force(k);
end
savg=ssum/(halt-i);

diff=abs(lavg-savg)/lavg;
%--if the percent difference is less than tol than save that value

if(diff <= tol)
forcel(g)=savg;
g=g+1;

end
end
r=1;
%--if the values are the close they must be the value
for q=2:1:g-1

if(abs(forcel(q-1)-forcel(q)) <= 0.1)
avg_force(r)-(forcel(q)+forcel(q-1))/2;
r=r+1;

end
end
%output the results to the screen
if (r > 1)

value=mean(avg_force)
plus=max(avg_force)-mean(avg_force)
minus=mean(avg_force)-min(avg_force)

else
'****** No values found *******'

end
%what if I could find the curve fit and then find the limit of that
curve?
%%%
%%%%%
%code to find the curve fit and then find the limit as time -> infinity
%
%the first 200 data points are deleted because I only want the curve
that
%is in the form A+[Bexp(-Ct)]
j=1;
startl=5/inc;
for i=start1:1:length(t)

time(j)=t(i);
forcel(j)=force(i);
j=j+1;

end
0

Starting=rand(1,2,3);
options=optimset('Display','iter', 1 TolX 1 ,1E- 4);
Estimates=fminsearch('fit_function',Starting,options,time,forcel);
o

figure(2)
plot(time,forcel,'o','MarkerSize',3)
hold on;
fplot(icurve_function',[0
(max(time)+10)],[],[],'k',Estimates(1),Estimates(2),Estimates(3))

syms q %allows the symbolic limit calculation below
limit force=limit(Estimates(1)+(Estimates(2)*exp(-

Estimates(3)*q)),q,inf,'left');
limitforce=double(limit_force)

function G=fit_function(params,Input,Actual_Output)
A=params(1);
B=params(2);
C=params(3);
Fitted_Curve=(A)+(B*exp(-Input*C));
Error_Vector=Fitted_Curve - Actual_Output;
G=sum(Error_Vector.^2);

function R=curve_function (t,A, B, C)
R=A+(B*exp(-C*t));

97

APPENDIX C

MATLAB CODE FOR PARTICLE ROTATION

This appendix gives the MATLAB code for processing the rotations of the particles
described in Section 2.7.4.

%this will get the data for the rolling test of wall touching particles
%nodel0 -> fmub=0.4,fmu=0.1,phi=13.33
%nodell -> fmub=0.8,fmu=0.1,phi=13.33
%nodel2 -> fmub=fmu=0.4,phi=13.33
%nodel3 -> fmub=fmu=0.8,phi=13.33
%nodel5 -> fmub=fmu=0.4,phi=7.5
% 	 15.0 - dt=le-6 sec
% 	 15.1 - dt=5e-7 sec
% 	 15.2 - dt=7.5e-7 sec
% 	 15.3 - dt=5e-6 sec
%
r = .05; 	 %particle radius
R = .6667; %cylinder radius
R15 = .375;
%w_p = (.0001/.05); %w p = pistion velocity / particle radius
wp = sqrt(3)*(.0001/.05); %pistion velocity / particle radius 3-
directions
%
%the data files (modified zrolling) needs to be placed into the correct
%matlab working folder to obtain the angular velocity as a function of
%radial distance
nodelO_Odata = dlmread(inodelO_Odata.txt');
node10_1data = dlmread('node10_1data.txt');
node10_2data = dlmread(Inode10_2data.txtv);
node10_3data = dlmread('node10_3data.txt');
nodell_Odata = dlmread('nodell_Odata.txt');
nodell_ldata = dlmread(inodell_ldata.txt');
nodell_2data = dlmread(inodell_2data.txt');
nodell_3data = dlmread('nodell_3data.txt');
node12_0data = dlmread(Tnode12_0data.txt v);
node12_1data = dlmread(lnode12_1data.txt');
node12_2data = dlmread('node12_2data.txt');
node12_3data = dlmread('node12_3data.txt');
node13_0data = dlmread('node13_0data.txt');
node13_1data = dlmread('node13_1data.txt');
node13_2data = dlmread(lnode13_2data.txt');
node13_3data = dlmread(inode13_3data.txt');
node15_0data = dlmread('node15_0data.txt');
node15_1data = dlmread('node15_1data.txt');
node15_2data = dlmread('node15_2data.txt');
nodel5 3data = dlmreadYnodel5 3data.txt');
%
%get the data into workable arrays
%normalize by respective parameters
r10_0 = node10_0data(:,2)/R;
w10 0 = nodel0 Odata(:,3)/w p;

98

r10_1 = node10_1data(:,2)/R;
w10_1 = nodel0 ldata(:,3)/wp;
r10_2 = nodel0 2data(:,2)/R;
w10_2 = node10-2data(:,3)/wp;
r103 3 = nodel0 3data(:,2)/R;
w10:3 	 node103data(:,3)/wp;
r11_0 = nodell Odata(:,2)/R;
w11_0 = nodell Odata(:,3)/w p;
r11_1 = nodell_ldata(:,2)/R;
will = nodell ldata(:,3)/wp;
r11_2 = nodell_2data(:,2)/R;
w11_2 = nodell 2data(:,3)/wp;
rll 3 = nodell 3data(:,2)/R;
w11_3
r120
w12:0

=
=
=

nodell_3data(:,3)/w p;
nodel2 	 Odata(:,2)/R;
node12_0data(:,3)/wp;

r12_1 = nodel2 ldata(:,2)/R;
w12_1 = nodel2 ldata(:,3)/wp;
r12_2 = nodel2 2data(:,2)/R;
w12_2 = nodel2 2data(:,3)/w p;
r12_3 = node12_3data(:,2)/R;
w12_3 = nodel2 3data(:,3)/w p;
r13_0 = nodel3 Odata(:,2)/R;
w13_0 = nodel3 	 Odata(:,3)/w p;
r131 = node13-1data(:,2)/R;
w13:1 = node13_1data(:,3)/wp;
r13_2 = nodel3 2data(:,2)/R;
w13_2 = nodel3 2data(:,3)/wp;
r13_3 = node13-3data(:,2)/R;
w13_3 = nodel3 3data(:,3)/w p;
r15_0 = nodel5 Odata(:,2)/R15;
w15_0 = nodel5 Odata(:,3)/w p;
r15_ 1 = nodel5 ldata(:,2)/R15;
w15_1 = nodel5 	 ldata(:,3)/w p;
r15_2 = node15-2data(:,2)/R15;
w15_2 = nodel5 2data(:,3)/w p;
r15_3 - nodel5 3data(:,2)/R15;
w15 3 = nodel5 3data(:,3)/w p;

%node 10 results
figure(1)
plot(r10_0,w10_0, 1 ro');
hold on;
plot(r10_1,w10_1,'kd');
hold on;
plot(r10_2,w10_2, 1 gs');
hold on;
plot(r10_3,w10_3,'b+');
ylim([0 20]);
title('Results from node 10');
xlabel('Ir/R1');
ylabel('I\omega / \omega_pI');
hold off;

%node 11 results
figure(2)
plot(r11 0,w11 0,'ro');

99

hold on;
plot(r11_1,w11_1, 1 kd');
hold on;
plot(r11_2,w11_2,'gs‘);
hold on;
plot(r113,w11_3,'b+');
ylim([0 20]);
title('Results from node 11');
xlabel('Ir/RI');
ylabel('I\omega / \omega_pI');
hold off;

%node 12 results
figure(3)
plot(r12_0,w12_0,'ro');
hold on;
plot(r12_1,w12_1,Jkd');
hold on;
plot(r12_2,w12_2,‘gs');
hold on;
plot(r123,w12_3,'b+');
ylim([0 20]);
title('Results from node 12');
xlabel('Ir/R1');
ylabel('I\omega / \omega_pI');
hold off;

%node 13 results
figure(4)
plot(r13_0,w13_0,'rov);
hold on;
plot(r13_1,w13_1,'kd');
hold on;
plot(r13_2,w13_2,'gs');
hold on;
plot(rI3_3,w13_3,'b+');
ylim([0 20]);
title('Results from node 13');
xlabel('Ir/R1');
ylabel('I\omega / \omega_pI');
hold off;

%node 15 results
figure(5)
plot(r15_0,w15_0,'ro');
hold on;
plot(r151,w15 1,'kd');
hold on;
plot(r15_2,w15_2,'gs');
hold on;
plot(r15_3,w15_3,'b+');
ylim([0 20]);
title('Results from node 15');
xlabel('Ir/R1');
ylabel('I\omega / \omega_pI');
hold off;

100

101

%%%
%%%
%The code form here down will take an average over a band at different
r/R
%
n bands = 20; %the number of bands to average over
bandwidth = ((R-r)/R)/n_bands; %length of the band over r/R the first

%term takes into account wall effect
n bands15 = 15;
bandwidth15 = ((R15-r)/R15)/n_bands15;
%
%%%
%%%%
% for the first data set 10.0
counter = 0;
start = 0.0;
%
for j=1:1:nbands

w10 Ot(j) = 0;
counter(j) = 0;
finish = j*bandwidth; %set the finish location
position10 0(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r10_0)

if(r100(i)>=start && r100(i)<finish && w10 0(i)<15) %into the
avg

w10 Ot(j) = w10 _Ot(j) + w10 0(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

w10_0avg(k) = w10_0t(k)/counter(k);
end
%
%
%again for the next data set 10.1
counter = 0;
start = 0.0;
%
for j=1:1:n bands

w10 lt(j) = 0;
counter(j) = 0;
finish = j*band width; %set the finish location
position101(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r10_1)

if(r101(i)>=start && r101(i)<finish && w10 1(i)<15) %into the
avg

w10 lt(j) = w10 lt(j) + w10 1(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

102

w10_1avg(k) = w10_1t(k)/counter(k);
end
%
%
%again for the next data set 10.2
counter = 0;
start = 0.0;
%
for j=1:1:nbands

w10 2t(j) = 0;
counter(j) = 0;
finish = j*band_width; %set the finish location
position102(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r10_2)

if(r102(i)>=start && r102(i)<finish && w10 2(i)<15) %into the
avg

w10 2t(j) = w10 2t(j) + w10 2(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

w10_2avg(k) = w10_2t(k)/counter(k);
end
%
%
%again for the next data set 10.3
counter = 0;
start = 0.0;
%
for j=1:1:nbands

w10 3t(j) = 0;
counter(j) = 0;
finish = j*band_width; %set the finish location
position10 3(j) - (finish+start)/2; %locate the center of averaged

area
for 1=1:1:length(r10_3)

if(r103(i)>=start && r103(i)<finish && w10 3(i)<15) %into the
avg

w10 _ 3t(j) = w10 _3t(j) + w10 3(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

w10_3avg(k) = w10_3t(k)/counter(k);
end
%%%
%%%%
% for the first data set 11.0
counter = 0;
start = 0.0;
%
for j=1:l:n bands

103

wll Ot(j) = 0;
counter(j) = 0;
finish = j*band_width; %set the finish location
positionll 0(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r11_0)

if(r110(i)>--start && r110(i)<finish && wll 0(i)<15) %into the
avg

wll Ot(j) = wll Ot(j) + wll 0(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=-1:1:n_bands %get the average value for each band

w11_0avg(k) = w11_0t(k)/counter(k);
end

%again for the next data set 11.1
counter = 0;
start = 0.0;

for j=1:1:nbands
wll lt(j) = 0;
counter(j) = 0;
finish = j*band_width; %set the finish location
positionll 1(j) = (finish+start)/2; %locate the center of averaged

area
for i--1:1:length(r11_1)

if(r111(i)>=start && r111(i)<finish && w11 1(i)<15) %into the
avg

wll lt(j) = wll lt (j) + will(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

wll_lavg(k) = wll_lt(k)/counter(k);
end

%again for the next data set 11.2
counter = 0;
start = 0.0;

for j=1:1:nbands
wll 2t(j) = 0;
counter(j) = 0;
finish = j*band_width; %set the finish location
positionll 2(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r11_2)

if(r112(i)>=start && r112(i)<finish && w11 2(i)<15) %into the
avg

wll 2t(j) 	 wll 2t(j) + wll 2(i);

104

counter(j) = counter(j) + 1;
end

end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

w11_2avg(k) 	 w11_2t(k)/counter(k);
end

%again for the next data set 11.3
counter = 0;
start = 0.0;

for j=1:l:n bands
wll 3t(j) 	 0;
counter(j) = 0;
finish = j*band_width; %set the finish location
positionll 3(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r11_3)

if(r113(i)>=start && r113(i)<finish && w11 3(i)<15) %into the
avg

wll 3t(j) = wll 3t(j) + wll 3(i);
counter(j) 	 counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

w11_3avg(k) = w11_3t(k)/counter(k);
end

%%%
%%%%
% for the first data set 12.0
counter = 0;
start = 0.0;

for j=1:1:n bands
w12 Ot(j) = 0;
counter(j) = 0;
finish = j*band_width; %set the finish location
position12 0(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r12_0)

if(r120(i)>=start && r12 0(i)<finish && w12 0(i)<15) %into the
avg

w12 Ot(j) = w12 Ot(j) + w12 0(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

w12_0avg(k) = w12_0t(k)/counter(k);

105

end
%
%
%again for the next data set 12.1
counter = 0;
start = 0.0;
%
for j=1:1:n bands

w12 lt(j) = 0;
counter(j) = 0;
finish = j*band_width; %set the finish location
position12 1(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r12_1)

if(r121(i)>=start && r12 1(i)<finish && w12 1(i)<15) %into the
avg

w12 lt(j) = w12 lt(j) + w12 1(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

w12_1avg(k) = w12_1t(k)/counter(k);
end
%
%
%again for the next data set 12.2
counter = 0;
start = 0.0;
%
for j=1:1:nbands

w12 2t(j) = 0;
counter(j) = 0;
finish = j*band_width; %set the finish location
position12 2(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r12_2)

if(r122(i)>=start && r12 2(i)<finish && w12 2(i)<15) %into the
avg

w12 _2t(j) = w12 2t(j) + w12 2(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

w12_2avg(k) = w12_2t(k)/counter(k);
end
%
%
%again for the next data set 12.3
counter = 0;
start = 0.0;
%
for j=1:1:nbands

w12 3t(j) = 0;

106

counter(j) = 0;
finish = j*band_width; %set the finish location
position12 3(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r12_3)

if(r123(i)>=start && r12 3(i)<finish && w12 3(i)<15) %into the
avg

w12 3t(j) = w12 3t(j) + w12 3(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

w12_3avg(k) = w12_3t(k)/counter(k);
end
%
%
%%%
%%%%
% for the first data set 13.0
counter = 0;
start = 0.0;
%
for j=1:1:n bands

w13 _Ot(j) = 0;
counter(j) = 0;
finish = j*band_width; %set the finish location
position130(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r13_0)

if(r13 0(i)>=start && r13 0(i)<finish && w13_0(i)<15) %into the
avg

w13 _Ot(j) = w13 Ot(j) + w13 0(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

w13_0avg(k) = w13_0t(k)/counter(k);
end
%
%
%again for the next data set 13.1
counter = 0;
start = 0.0;
%
for j=1:1:n bands

w13 lt(j) = 0;
counter(j) = 0;
finish = j*band_width; %set the finish location
position13 1(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r13_1)

if(r13_1(i)>=start && r13 1(i)<finish && w13_1(i)<15) %into the
avg

107

w13 lt(j) = w13 lt(j) + w13 1(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

w13_1avg(k) = w13_1t(k)/counter(k);
end
%
%
%again for the next data set 13.2
counter = 0;
start = 0.0;
%
for j=1:1:nbands

w13 2t(j) = 0;
counter(j) = 0;
finish = j*band_width; %set the finish location
position13 2(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r13_2)

if(r132(i)>=start && r132(i)<finish && w13 2(i)<15) %into the
avg

w13 _2t(j) = w13 2t(j) + w13 2(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

w13_2avg(k) = w13_2t(k)/counter(k);
end
%
%
%again for the next data set 13.3
counter = 0;
start = 0.0;
%
for j=1:1:nbands

w13 _3t(j) = 0;
counter(j) = 0;
finish = j*band_width; %set the finish location
position13 3(j) - (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r13_3)

if(r133(i)>=start && r133(i)<finish && w13 3(i)<15) %into the
avg

w13 3t(j) = w13 _3t(j) + w13 3(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands %get the average value for each band

w13 _3avg(k) = w13 3t(k)/counter(k);
end

108

%%%
%%%%
% for the first data set 15.0
counter = 0;
start = 0.0;

for j=1:1:nbands15
w15 Ot(j) = 0;
counter(j) = 0;
finish = j*band_width15; %set the finish location
position15 0(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r15_0)

if(r150(i)>=start && r150(i)<finish) %element goes into the
avg

w15 Ot(j) 	 w15 Ot(j) + w15 0(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands15 %get the average value for each band

w15_0avg(k) = w15_0t(k)/counter(k);
end

%again for the next data set 15.1
counter = 0;
start = 0.0;

for j=1:1:nbands15
w15 lt(j) = 0;
counter(j) 	 0;
finish = j*band_width15; %set the finish location
position15 1(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r15_1)

if(r151(i)>=start && r151(i)<finish) %element goes into the
avg

w15 lt(j) = w15 lt(j) + w15 1(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands15 %get the average value for each band

w15_lavg(k) = w15_1t(k)/counter(k);
end

%again for the next data set 15.2
counter = 0;
start = 0.0;

for j=1:1:n_bands15

109

w15 2t(j) 	 0;
counter(j) = 0;
finish = j*band_width15; %set the finish location
position15 2(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r15_2)

if(r152(i)>=start && r152(i)<finish) %element goes into the
avg

w15 2t(j) = w15 2t(j) + w15 2(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands15 %get the average value for each band

w15_2avg(k) = w15_2t(k)/counter(k);
end

%again for the next data set 15.3
counter = 0;
start = 0.0;

for j=1:1:nbands15
w15 3t(j) = 0;
counter(j) = 0;
finish = j*band_width15; %set the finish location
position15 3(j) = (finish+start)/2; %locate the center of averaged

area
for i=1:1:length(r15_3)

if(r153(i)>=start && r153(i)<finish) %element goes into the
avg

w15 3t(j) = w15 3t(j) + w15 3(i);
counter(j) = counter(j) + 1;

end
end
start = finish; %reset the starting location

end
for k=1:1:n_bands15 %get the average value for each band

w15_3avg(k) = w15_3t(k)/counter(k);
end

%%%%%%%%%%%% plots of results
%%%

%nodel0 -> fmub=0.4,fmu=0.1,phi=13.33
%nodell -> fmub=0.8,fmu=0.1,phi=13.33
%nodel2 -> fmub=fmu=0.4,phi=13.33
%nodel3 -> fmub=fmu=0.8,phi=13.33

figure(6)
plot(position10_0,w10_0avg,'rol)
hold on;
plot(position10_1,w10_1avg,'kd')
hold on;
plot(position10_2,w10_2avg,'gs')
hold on;

plot(position10_3,w10_3avg,'b+')
xlim([0 1]);
ylim([0 .5]);
xlabel('Ir/RI');
ylabel('I\omega / \omega pl');
legend('H/D=1.499','H/D=1.687','H/D=1.875','H/D=2.062'...

,'Location','northwest')
hold off;
%
figure(7)
plot(position11_0,w11_0avg,iro')
hold on;
plot(position11_1,w11_1avg,'kd')
hold on;
plot(position11_2,w11_2avg,'gs')
hold on;
plot(position11_3,w11_3avg,'b+')
xlim([0 1]);
ylim([0 .5]);
xlabel('Ir/RI');
ylabel('I\omega / \omega pl');
legend('H/D=1.499','H/D=1.687','H/D=1.875','H/D=2.062'...

,'Location','northwest')
hold off;
%
figure(8)
plot(position12_0,w12_0avg,lrol)
hold on;
plot(position12_1,w12_1avg,'kd')
hold on;
%plot(position12_2,w12_2avg,'gs')
%hold on;
plot(position12_3,w12_3avg,'b+')
xlim([0 1]);
ylim([0 .5]);
xlabel('Ir/RI');
ylabel('I\omega / \omega p1');
legend('H/D=1.499 1 , 1 H/D=1.687 1 ,'H/D=2.062'...

,'Location','northwest')
hold off;
%
figure(9)
plot(position13_0,w13_0avg,iro')
hold on;
plot(position13_1,w13_1avg,Ykd')
hold on;
plot(position13_2,w13_2avg,'gs')
hold on;
plot(position13_3,w13_3avg,'b+')
xlim([0 1]);
ylim([0 .5]);
xlabel('Ir/RI');
ylabel('I\omega / \omega pl');
legend('H/D=1.499','H/D=1.687','H/D=1.875 1 , 1 H/D=2.062'..,

,'Location','northwest')
hold off;
0

110

figure(10)
plot(position15_3,w15_3avg,'b+')
hold on;
plot(position15_0,w15_0avg,'ro')
hold on;
plot(position15_1,w15_1avg,'kd')
hold on;
%plot(position15_2,w15_2avg,lgs')
%hold on;
fplot(inline('1'),[0,1],'b:')
xlim([0 1]);
xlabel('Ir/RI');
ylabel('I\omega / \omega_pI');
legend('\Deltat=5E-6','\Deltat=1E-6','\Deltat=5E-7'..

,'Location','southeast')
hold off;

111

APPENDIX D

SAMPLE INPUT FILE

This appendix gives a sample input file.

$var np =	 3203 $Total number of particles in cell
$var bdry =	 1	 $flag for boundry type (1;cubic, 2;tringular)
$var nxby0 =	 1	 $No of boundary particles in x-dir. at y = 0
$var nzby0 =	 1	 $No of boundary particles in y-dir. at y = 0
$var nxbyl =	 0 $No of boundary particles in x-dir. at ycell
$var nzbyl =	 0 $No of boundary particles in x-dir. at ycell
$var nxbz0 =	 0 $
$var nybz0 =	 0 $
$var nxbzl =	 0 $
$var nybzl =	 0 $
$var nybx0 =	 0 $No of boundary particles in y-dir. at x = 0
$var nzbx0 =	 0 $No of boundary particles in z-dir. at x = 0
$var nybxl =	 0 $No of boundary particles in y-dir. at xcell
$var nzbxl =	 0 $No of boundary particles in z-dir. at xcell
$var nfix =	 0 $ number of fixed particles
$var nzcyl =	 0 $ number of fixed cylinders parallel to z-axis
$var nycyl =	 1	 $ number of fixed cylinders parallel to y-axis
$var ncomp =	 1	 $ the particle used for axial compression
$var ncmax =	 0 $number of collisions during entire run
$var nout =	 0 $No. of time to print out results
$var nczero =	 0 $number of collisions before start cum. ave.
$var ntcol = 40	 $number of time steps during a collision
$var nvel =	 20	 $number of intervals for vel. distrib.
$var nyzone = 5	 $number of y zones
$var mzcell = 4	 $number of z cells
$var nycell = 1	 $numner of y cells
$var itervm =	 1	 $max iterations per time step
$var icoord = 0	 $flag for coordinates print out
$var itty =	 0	 $flag for tty interaction
$var ixyz =	 0	 $flag to read init coords of fxd & bnd particles
$var istart = 0	 $to restart the code rename d3ds to d3ds1000 and set istart=1000
$var tmax = 30.00	 $max time for calculation
$var tpour = 0.5	 $time for pouring
$var dt = 0.	 $time step
$var dtout = 0.5	 $time interval for printing out results
$var dtdump = 30.0	 $time interval for dumping
$var tzero = 10.0	 $restart long-term cum. ave.
$var search = 0.05	 $search distance for near neighbors

112

113

$var ycell = 3.00	 $cell height (m)
$var xyrat = 100.0	 $ratio used to compute xcell
$var zyrat = 100.0	 $ratio used to compute zcell
$var vave = 0.0	 $average deviatoric transl. velocity
$var vseed = 0.9	 $seed for random initial particle velocities
$var vxzero = 0.0	 $initial velocity in the x-direction (ave)
$var vyzero = 0.0	 $initial velocity in y-direction (ave)
$var vzzero = 0.0	 $loading stiffness K1
$var sknl = 2.8e+06 $normal force coefficient
$var elast = 0.971	 $coefficient of restitution
$var slope = 0.	 $alternative parameter for unloading
$var ratk = 0.8	 $ratio of tangential/normal stiffness
$var fmu = 0.1	 $coefficient of friction
$var fmub = 0.00	 $friction for boundary and fixed particles
$var power = 0.3333333 $tangential force exponent
$var rmassz = 10891	 $mass of unit sphere
$var tstart= 0.1	 $time to initialize long term averages
$var gravx = 0.0	 $acceleration of gravity in x direction
$var gravy = -9.81	 $acceleration of gravity in y direction
$var gravz = 0.0	 $acceleration of gravity in z direction
$var vxby0 = 0.0	 $x velocity of real boundary at y = zero
$var vxbyl = 0.0	 $x velocity of real boundary at y = ycell
$var vyby0 = 0.0	 $y velocity of real boundary at y = zero
$var vybyl = 0.0	 $y velocity of real boundary at y = ycell
$var t2move = 70.0	 $time to start moving the floor/wall
$var t2stop = 2000.0	 $time to stop the floor from moving
$var vyfloor = 0.0001	 $velocity of the floor/wall when moving
$var draddt = 20. 	 $rate of increase of particle radii
$var compforce = 0.00001 $axial force to be applied (N)
$var number(1) = 3200 $number of particles in group 1
$var radius(1) = 0.05 	 $particle radii for group 1
$var number(2) = 1	 $number of particles in group
$var radius(2) = 0.05	 $radius of particles in group
$var number(3) = 1	 $number of particles in group
$var radius(3) = -0.6667 $radius of cylindrical boundry
$var number(4) = 1	 $number of particles in group
$var radius(4) = 0.05 	 $radius of large particle
$var sknlb = 2.8e+06	 $
$var elastb= 0.83	 $
$var slopeb= 0.	 $
$var vamp = 0.	 $velocity amplitude of boundary
$var frq = 0	 $boundary frequency
$var finis = 1. 	 $end

APPENDIX E

VOLUME.F SUBROUTINE

This appendix gives the FORTRAN code to compute the volume of a sphere inside of a
control volume. The control volume has a planar bottom and top, specified by the y-
zone. And the inner and outer radii are specified by the radial zone.

c subroutine volume.f that will calculate the volume of a sphere inside
c an annular layer created 6/30/06 by s chester
c

subroutine volume
include 's3dscmm'
integer*4 iter
real*8 deltar,deltay,area,ylocation,rady,rp,r,p

c
c
c ref. this paper:
c 	 C.R.A. Abreu, A Monte Carlo simulation of the packing and
c 	 segregation of spheres in cylinders. Brazilian Journal of
c 	 chemical engineering. volume 16 issue 4, 1999
c
c 	 ref. any calculus book for the volumes by cross section
c
c%%%
c

iter = 500
c
c

do 10 n=1,nrzone
rstart = (n-1)*drzone
rstop = n*drzone

c
do 11 m=1,nyzone
ybot = (m-1)*dyzone
ytop = m*dyzone

c
vanzone(n,m) = pi*((rstop*rstop)-(rstart*rstart))*dyzone

c
deltar = (rstop - rstart)/iter
deltay = (ytop - ybot)/iter

c
do 1 i=indl,ind2

c
c 	 initialize values for particle i

area = 0.0
volume(i) = 0.0
p = 0.0
totv(i) = 4*third*pi*rad(i)*rad(i)*rad(i)

c
c 	 compute the radial distance to the particle center

rp = sqrt(x(i)*x(i) + z(i)*z(i))

114

115

c
c

	

	 first check to see if particle i is in this zone
if(((y(i).gt.ytop+rad(i)).and.(y(i).1t.ybot-rad(i))).and.

1 	 ((rp.gt.rstop+rad(i)).and.(rp.lt.rstart+rad(i)))) goto 1
c

	

	 second check if the particle is totally inside the zone
if((((y(i).gt.ybot+rad(i)).and.(y(i).1t.ytop-rad(i))).and.

1 	 ((rp.gt.rstart+rad(i)).and.(rp.lt.rstop-rad(i))))) then
volume(i) = 4*third*pi*rad(i)*rad(i)*rad(i)
goto 1

endif
c
c 	 loop thru all the acive particles,
c 	 first 'integrate' along the radial direction to get an area at a
specific y
c 	 then 'integrate' along the axial direction to get volume
c

do 2 j=1,iter
c

c
c 	
this y

ylocation = ybot + (j*deltay)
volume(i) = volume(i) + area*deltay
area = 0.0

compute the radius of the circle cut into the sphere at

rady=sqrt(rad(i)*rad(i)-(ylocation-y(i))*(ylocation-y(i)))
c

do 3 k=1,iter
c

r = rstart + (k*deltar)
c
c
c 	 begin testing for what case of intersection this is
c

if(r+rady.le.rp) then
c 	 type a

thetal = 0.0
theta2 = 0.0

elseif((r.gt.rady).and.(r-rady.ge.rp)) then
c 	 type b

thetal = 0.0
theta2 = 0.0

elseif((r.lt.rady).and.(rady-r.ge.rp)) then
c 	 type c

thetal = 0.0
theta2 = 2*pi

elseif((rp-rady.gt.r).and.(rp+rady.lt.r)) then
c 	 type d

delta = ((r-rady)*(r-rady) - (x(i)+z(i))*(x(i)+z(i))*
1 	 ((x(i)+z(i))*(x(i)+z(i))-(r+rady)*(r+rady)))

numl = 2*z(i)*r - sqrt(delta)
num2 = 2*z(i)*r + sqrt(delta)
dem = y(i)*y(i) - rady*rady + (x(i)+r)*(x(i)+r)
thetal = 2*arctan(numl/dem)
theta2 = 2*arctan(num2/dem)
if(r.lt.rady) then

c 	 type e,f
thetam = (thetal + theta2)/2

116

	delta2	 sqrt((x(i)-r*cos(thetam))*(x(i)-
r*cos(thetam))

1 	 + (z(i)-r*sin(thetam))*(z(i)-r*sin(thetam)))
endif

endif

theta = theta2 - thetal
p = min(theta*r,(2*pi-theta)*r)
if(delta2.1t.r) then

p = theta*r
elseif(delta2.gt.r) then

p = (2*pi-theta)*r
endif

area = area + p*deltar

3	 continue
2 	 continue

c
vfrac(n,m,i) = volume(i) / totv(i)

c
1 	 continue
11 	 continue
10 	 continue

c$$$
c$$$
c$$$ END OF SUBROUTINE
c$$$
c$$$

return
end

APPENDIX F

MATLAB CODE TO REDRAW FIGURES FROM LITERATURE

This appendix gives the MATLAB code to redraw figures from literature. The data that
was taken from literature is given in each case and referenced.

%Redraw figures from literature
Starting=rand(2); %starting 'guess' = random number
starting=rand(1);
options=optimset('Display',Iiter','TolX 1 ,1E-12,'MaxIter',500); %set
options
%Walton experiments 2004
length = [10 20 30];
forcedown = [.798 1.025 0.908];
forceup = [11.5 90.5 825.8];
figure(1)
semilogy(length,forceup,'ko')
hold on;
semilogy(length,forcedown,'kd')
xlim([0 35])
ylim([0 1000])
xlabel('Slug Length (cm)')
ylabel('Base Piston Force (N)')

hold on;
fplot(inline('.16027*x'),[0 35],'k-.')
hold on;

esta =
fminsearch ('find janssenwaltonexpl ',Starting, options, length, forceup);
estb =
fminsearch ('find janssenwaltonexp2',Starting, options, length, forcedown

fplot('curve_fit_walton_expl',[0 35],[],[],'k-',esta(1),esta(2))
hold on;
fplot('curve_fit_walton_exp2',[0 35],[],[],'k:',estb(1),estb(2))
hold off;

legend('Piston Up','Piston Down','Material Weight','Janssen - Wall
Down',...

'Janssen - Wall Up','Location','Northwest')

sz = [2.366469 2.366469 4.901404 11.2048 20.9418];
msr 	 [0.924403 0.827188 1.046684 2.289523 2.926684];
figure(2)
plot(sz,msr,'ko')
hold on;
fplot(inline('0.12*x + 0.63'),[0 30],'k')

117

118

text('Interpreter','latex','String',...
'$$\mu\sigma_r = A\sigma_z+B,\ where\ B\neq0$$',...

'Position',[10 1],'FontSize',12)

xlim([0 30])
ylim([0 3.5])
ylabel(1 \mu\sigma_r 1)
xlabel('\sigma_z')
hold off;
%%%
%%%%
%
%
%Bertho Experiments 2003
ma = [10 20 30 33.33];
m = [12 31 70 200];
figure(3)
plot(m,ma,'ko')
hold on;
fplot(inline('x'),[0 210],'k')
xlim([0 210])
ylim([0 35])
ylabel(PM_a_p_p (g)')
xlabel('M (g)')
estl = fminsearch('find_janssen_bertho_exp',starting,options,m,ma);
fplot('curve_fit_bertho_exp',[0 210],[],[],'k:',estl)
label = PM\infty \approx ',num2str(int8(estl))];
legend('v = 0.2 mm/sec','Hydrostatic',1abel,'Location','Southeast')
text('Interpreter','latex','String',...

1 $$M_a_p_p=M_\infty]}$$',...
'Position',[50 20],'FontSize',12)

text('Interpreter','latex','String',...
'$$M_\infty=\rholcl\lambda\pi{D}^{2}/4$$',...

'Position',[50 15],'FontSize',12)
hold off;
%
%
%%%%% vanel 1999
experiments %%%%%
mfill = [10 20 30 40 50 55 60 75 100 150 200 300 380];
mapp = [9.5 18.5 25 32 37.5 39.5 42 45 48 51.5 54 53 52];
figure(4)
fplot(inline('x'),[0 210],'k:')
hold on;
plot(mfill,mapp,'ko')
hold on;
%plot the two parameter fit
fplot(inline('53*(1-exp(-x/53))'),[0 400],'k--')
hold on;
fplot(inline('x'),[0 13.4],'k')
hold on;
fplot(inline('13.4+(39.6*(1-exp(-(x-13.4)/39.6)))'),[13.4 400],'k')
%end the two parameter fit
label2 = [TM_\infty = 53g'];
label3 = ['M 0 = 13.4g, M \infty^{C} = 36.9g'];

119

%label the single parameter fit
text('Interpreter','latex','String',...

'$$M_a_p_p=M_\inftyl[1-e^{-M/M_\infty}11$$',...
'Position',[40 10],'FontSize',12)

text('Interpreter','latex','String',...
'$$M_\infty=\rhofcl\lambda\pi{D}^{2}/4$$',...

'Position',[40 5],'FontSize',12)
%label the two parameter fit
text('Interpreter','latex','String',...

'$$for M \leq M_O , M_a_p_p=MW,...
'Position',[75 30],'FontSize',12)

text('Interpreter','latex','String',...
'$$for M > M_O , M_a_p_p=M_O+M_\infty^{C}\left[1-e^{\left(\frac{ -M-

M_0}{M_\infty^{C}}\right)1\right]$$',...
'Position',[75 27],'FontSize',12)

%
legend('Hydrostatic','\nu =
0.585',1abe12,1abe13,'Location','Southeast')
xlim([0 400])
ylim([0 60])
ylabel('M a (g)')
xlabel('M (g)')
hold off;

APPENDIX G

MATLAB CODE TO PROCESS STATIC DATA

This appendix gives the MATLAB code to create the figures used in the static simulation
cases.

%this MATLAB code will process the data for the static simulations
%node5 -> fmub=fmu=0.1,phi=13.33
%node6 -> fmub=fmu=0.4,phi=13.33
%node7 -> fmub=fmu=0.1,phi=26.66
%node8 -> fmub=fmu=0.4,phi=26.66
%nodel6-> fmub=fmu=0.1,phi=13.33

d = 2*.05;
Dl 	 2*.6667;
D2 = 4*.6667;
density = 2600;
weight = 9.81*density*(pi/6)*d^3;
norm = weight/(d^2);
%
np_node5 = 	 [3200 3600 4000 4400];
np_node6 = 	 [3200 3600 4000 4400];
np_node7 = 	 [6400 7200 8000 8800];
np_node8 = 	 [6400 7200 8000 8800];
np_nodel6 = 	 [1600 2000 2400 2800
%

3200 3600 4000 	 4400];

force_node5 = 	 [.45234E5 	 .49620E5 .52952E5 .56792E5];
force_node6 = 	 [.47108E5 	 .45991E5 .45481E5 .46991E5];
force_node7 = 	 [.85493E5 	 .96465E5 .10681E6 .11745E6];
force_node8 = 	 [.84474E5 	 .94974E5 .10694E6 .11733E6];
force nodel6 = 	 [.21448E5 	 .26860E5 .32370E5 .38094E5 	 ..

.43077E5 .48670E5 .53096E5 .56791E5];

%some post processing to get H/D and F*
H_over_D_node5 = (np_node5*(d^3))/(.9*(D1^3));
H_over_D_node6 = (np_node6*(d^3))/(.9*(D1^3));
H_over_D_node7 	 (np_node7*(d^3))/(.9*(D2^3));
H_over_D_node8 = (np_node8*(d^3))/(.9*(D2^3));
HoverDnodel6 = (npnode16*(d^3))/(.9*(D1^3));

fstar_node5 = force_node5/weight;
fstar_node6 = force_node6/weight;
fstar_node7 = force_node7/weight;
fstar_node8 = force_node8/weight;
fstar_nodel6 = force_nodel6/weight;
fstar_nodel7 = force_nodel6/weight;
o

%some processing on the axial stress profile
stress_nodel6a0 = [3.6233E6 2.8026E7 5.9989E7 9.3035E7 1.2514E8 ..

1.5786E8 1.9059E8]/norm;
height_node16a0 = (1.25/(D1*8))*[.5 1.5 2.5 3.5 4.5 5.5 6.5];
stress nodel6al = [2.2617E6 2.3470E7 5.3853E7 8.6407E7 1.1768E8 ..

120

1.4998E8 1.7969E8 2.09442E8 2.4461E8]/norm;
height_nodel6a1 = (1.5/(D1*10))*[.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5];
stress_nodel6a2 = [2.1213E6 2.1982E7 5.1743E7 8.2437E7 1.1319E8 ...

1.4313E8 1.7388E8 2.038E8 2.3656E8 2.6253E8 2.9667E8]/norm;
height_nodel6a2 = (1.75/(D1*12))*[.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 ...

8.5 9.5 10.5];
stress_nodel6a3 = [3.1060E6 2.6246E7 5.7424E7 9.0554E7 1.2297E8 ...

1.5565E+08 1.8678E+08 2.2022E+08 2.5232E+08 ...
2.8531E+08 3.0985E+08 3.5316E+08]/norm;

height_nodel6a3 = (2.0/(D1*13))*[.5 1.5 2.5 3.5 4.5 5.5 ...
6.5 7.5 8.5 9.5 10.5 11.5];

stress_nodel6b0 = [2.3649E+06 2.3618E+07 5.4863E+07 8.5812E+07 ...
1.1851E+08 1.5007E+08 1.8113E+08 2.1235E+08 2.4445E+08 ...
2.7555E+08 3.0802E+08 3.3949E+08 3.6523E+08 4.0019E+08]/norm;

height_nodel6b0 = (2.25/(D1*15))*[.5 1.5 2.5 3.5 4.5 5.5 ...
6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5];

stress_nodel6b1 = [1.8162E+06 2.1233E+07 5.1785E+07 8.2267E+07 ...
1.1309E+08 1.4551E+08 1.7564E+08 2.0730E+08 2.3582E+08 2.7027E+08

...
3.0122E+08 3.3455E+08 3.6339E+08 3.9458E+08 4.1964E+08 ...
4.5324E+08]/norm;

height_nodel6b1 = (2.5/(D1*17))*[.5 1.5 2.5 3.5 4.5 5.5 ...
6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5];

stress_nodel6b2 = [2.3049E+06 2.4014E+07 5.5409E+07 8.7534E+07 ...
1.2036E+08 1.5172E+08 1.8311E+08 2.1645E+08 2.4904E+08 2.8123E+08

...
3.1544E+08 3.4720E+08 3.7660E+08 4.0996E+08 4.3234E+08 4.6365E+08

...
4.9740E+08]/norm;

height_nodel6b2 = (2.75/(D1*18))*[.5 1.5 2.5 3.5 4.5 5.5 ...
6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5];

stress_nodel6b3 = [2.2863E+06 2.3328E+07 5.4311E+07 8.6168E+07 ...
1.1783E+08 1.4974E+08 1.8213E+08 2.1439E+08 2.4505E+08 2.7965E+08

...
3.0949E+08 3.4036E+08 3.6620E+08 3.9649E+08 4.2205E+08 4.5234E+08

...
4.7604E+08 4.9814E+08 5.3229E+08]/norm;

height_nodel6b3 = (3.0/(D1*20))*[.5 1.5 2.5 3.5 4.5 5.5 ...
6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5];

%
labela0 = PH/D-',num2str(H_over_D_node16(1))];
labelal = PH/D=',num2str(H_over_D_nodel6(2))];
labela2 = [TH/D=',num2str(H_over_D_nodel6(3))];
labela3 = PH/D=',num2str(H_over_D_nodel6(4))];
labelb0 = PH/D- 1 ,num2str(H_over_D_nodel6(5))];
labelbl = PH/D=',num2str(H_over_D_nodel6(6))];
labelb2 = PH/D- 1 ,num2str(H_over_D_nodel6(7))];
labelb3 = PH/D= 1 ,num2str(H_over_D_nodel6(8))];
%
%%%%%%%%%%%%%%%%%%%% Plots of Results
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%plot the piston load results for phi=13.33
figure(1)
%plot(H_over_D_node5,fstar_node5,'r+');
%hold on;
%plot(H_over_D_node6,fstar_node6,Tgd');
%hold on;

121

122

plot(H_over_D_node16,fstar_node16,'ko');
hold on;
fplot(inline('(36/40)*(13.33^3)*x 1),[0 2.5],'k:')%plot weight=f(H/D1)
ylim([0 5E3]);
xlabel('\it{H/D}')
ylabel('F*')
legend('\mu_w=\mu_p=0.1','Hydrostatic','Location','northwest')
hold off;
%
%plot the piston load resutls for phi=26.66
figure(2)
plot(H_over_D_node7,fstar_node7, 1 bov);
hold on;
plot(H_over_D_node8,fstar_node8, 1 kd');
hold on;
fplot(inline(v(36/40)*(26.66^3)*xl),[0 2.5],'k:')%plot weight=f(H/D2)
ylim([0 10E3]);
xlim([0 1.0]);
xlabel('\it{H/D}')
ylabel('F*')
legend(1 \muw=\mu_p=0.1', 1 \mu_w=\mu_p=0.4','Hydrostatic'...

,'Location','northeast')
hold off;
%
%plot stress results for all of node 16
figure(3)
plot(height_nodel6a0,stress_nodel6a0,'ko')
hold on;
plot(height_nodel6al,stress_nodel6a1,'r+')
hold on;
plot(height_nodel6a2,stress_nodel6a2,'bs')
hold on;
plot(height_nodel6a3,stress_nodel6a3,'gd')
hold on;
plot(height_node16b0,stress_nodel6b0,'m*')
hold on;
plot(height_nodel6b1,stress_nodel6b1,'ype)
hold on;
plot(height_nodel6b2,stress_nodel6b2,'ch')
hold on;
plot(height_node16b3,stress_nodel6b3,Irx')
hold on;
fplot(inline('0.6*2600*9.81*x 1),[0 3],'k:')
legend(labela0,1abelal,labela2,1abela3,1abelb0,1abelbl,labelb2,1abelb3,
...

'Location','northwest')
%ylim([0 6E5]);
%xlim([0 2.5]);
xlabel('\it{z/D}');
ylabel(v\sigma_z_z"');
hold off;
%
%plot the results for node 16a.0
figure(4)
plot(height_nodel6a0,stress_nodel6a0,'ko-')
ylim([0 6E5]);
xlim([0 2.5]);

xlabel('\it{z/D}');
ylabel('\sigma_z_zA* 1);
%legend(labela0,'Location','northwest')
hold off;
%
%plot the results for node 16a.1
figure (5)
plot(height_nodel6al,stress_nodel6a1,'ko-')
ylim([0 6E5]);
xlim([0 2.5]);
xlabel('\it{z/D}');
ylabel(v\sigma_z_z"');
%legend(labelal,'Location','northwest')
hold off;
%
%plot the results for node 16a.2
figure(7)
plot(height_nodel6a2,stress_nodel6a2,'ko-')
ylim([0 6E5]);
xlim([0 2.5]);
xlabel('\it{z/D}');
ylabel(1 \sigma_z_z"');
%legend(labela2,'Location','northwest')
hold off;
%
%plot the results for node 16a.3
figure(8)
plot(height_nodel6a3,stress_nodel6a3,'ko-')
ylim([0 6E5]);
xlim([0 2.5]);
xlabel('\it{z/D}');
ylabel('\sigma_z_z"');
%legend(labela3,'Location','northwest')
hold off;
%
%plot the results for node 16b.0
figure(8)
plot(height_nodel6b0,stress_nodel6b0, 1 ko-')
ylim([0 6E5]);
xlim([0 2.5]);
xlabel('\it{z/D}');
ylabel('\sigma_z_z"');
%legend(labelb0,'Location','northwest')
hold off;
%
%plot the results for node 16b.1
figure (9)
plot(height_nodel6b1,stress_nodel6b1,Tko-')
ylim([0 6E5]);
xlim([0 2.5]);
xlabel('\it{z/D}');
ylabel('\sigma_z_z^");
%legend(labelbl,'Location','northwest')
hold off;
%
%plot the results for node 16b.2
figure(10)

123

plot(height_nodel6b2,stress_nodel6b2,'ko-')
ylim([0 6E5]);
xlim([0 2.5]);
xlabel('\it{z/D}');
ylabel(1 \sigma_z_z"');
%legend(labelb2,'Location','northwest')
hold off;
%
%plot the results for node 16b.3
figure (11)
plot(height_nodel6b3,stress_nodel6b3,'ko-')
ylim([0 6E5]);
xlim([0 2.5]);
xlabel('\it{z/D}');
ylabel(1 \sigma_z_z"');
%legend(labelb3,'Location','northwest')
hold off;

124

APPENDIX H

MATLAB CODE TO PROCESS DYNAMIC DATA

This appendix gives the MATLAB code to create the figures used in the dynamic
simulation cases.

%%%
%%%%
%Post processing code for the results of dynamic simulations
%%%
%%%%
%
%nodel -> fmub=fmu=0.4,phi-13.33
%node2 -> fmub=fmu=0.8,phi=13.33
%node3 -> fmub=fmu=0.4,phi-26.66
%node4 -> fmub=0.1,fmu=1.0,phi=13.33
%
%and of course the old data (prior to Lemieux.psc.edu) which
%can be found in the WCPT5 paper
%
r = .05;
d = 2*r;
R1 = .6667;
D1 = 2*R1;
R2 = 2*R1;
D2 = 2*R2;
weight = (pi/6)*2600*9.81*d^3;
%
%%%%%%%%%%%%%%% data from lemieux.psc.edu
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fhatl = [.4952 .4716 .4285 .4080];
fhat2 = [.3997 .3768 .3490 .3394];
fhat3 = [.8067 .7841 .7809 .7477];
fhat4 = [.7931 .7551 .7399 .7389];
%
npl = [3200 3600 4000 4400];
np2 = [3200 3600 4000 4400];
np3 = [6400 7200 8000 8800];
np4 = [3200 3600 4000 4400];
%
weightl = npl*weight;
weight2 = np2*weight;
weight3 = np3*weight;
weight4 = np4*weight;
%
H_by_D_1 = .00046868*npl;
H_by_D_2 = .00046868*np2;
H_by_D_3 = ((d^3)/(.9*D2^3))*np3;
HbyD4 = .00046868*np4;
%
Fl=fhatl.*weightl;
F2=fhat2.*weight2;

125

F3=fhat3.*weight3;
F4-fhat4.*weight4;
%
Fstarl = Fl./weight;
Fstar2 = F2./weight;
Fstar3 = F3./weight;
Fstar4 = F4./weight;
%%%%%%%%%%%%%%%%%%%%% 	 end of lemieux.psc.edu data
%%%%%%%%%%%%%%%%%%%%%
%
%%%%%%%%%%%%%%%%%%%%%%% start of old data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
npl2old = [400 800 1600 2400 3200 4000 5000 6000];
np4old = [400 800 1600 2400 3200 4000 5000 6000];
np8old = [800 2400 3200];
%np8wallold = [1600 2400 3200];%for 3 data points
np8wallold = [1600 2400 3200 4000];%for 4 data points
%
weightl2old = weight*npl2old;
weight4old = weight*np4old;
weight8old = weight*np8old;
weight8wallold = weight*np8wallold;
%
H_by_D_12old = npl2old*((d^3)/(0.9*D1^3));
H_by_D_4old = np4old*((d^3)/(0.9*D1^3));
H_by_D_8old = np8old*((d^3)/(0.9*D1^3));
HbyD8wallold = np8wallold*((d^3)/(0.9*D1^3));
%
F 12old = [3996.39 7626.45 13962.7 19524.4 24228.3 27839.1 30900.5
35683.8];
F_4old = [.9379 .8967 .79 .6959 .6514 0.5858 0.51 0.4429].*weight4old;
F 8old = [0.863 0.685 0.598].*weight8old;
%F 8wallold = [0.765 0.679 0.61].*weight8wallold;%for 3 data points
F_8wallold = [0.765 0.679 0.61 0.569].*weight8wallold;%for 4 data
points
%
Fstarl2old = F 12old/weight;
Fstar4old = F_4old/weight;
Fstar8old = F_8old/weight;
Fstar8wallold = F8wallold/weight;
%
%%%%%%%%%%%%%%%%%%%%%%%%%% 	 end of of data
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%%%%%%%%%%%%%%%%%%%%%%% start of "floor-down" data
%%%%%%%%%%%%%%%%%%%%%%
npfd2thru9 = [1600 2400 3200 4000 4800 5600 6400 7200];
npfdlOthrul3 = [1600 2400 3200 4000];
npfdl4thrul7 = [1600 2400 3200 4000];
%
weight_fd2thru9 = weight*npfd2thru9;
weight_fdl0thrul3 = weight*npfdlOthrul3;
weight fdl4thrul7 = weight*npfdl4thrul7;
%
F_fd2thru9 = [1.0 	 1.0 1.0 1.0 	 1.0 	 1.0 	 1.0 	 1.0].*weight_fd2thru9;
F fdl0thrul3 = 	 [.745 .672 .608 	 .533].*weight 	 fdlOthrul3;

126

127

F fdl4thrul7 = [.959 .944 .921 .931].*weight fdl4thrul7;
%-
HbyD_fd2thru9 = npfd2thru9*((d^3)/(0.9*D1^3));
HbyD_fdlOthrul3 - npfdlOthru13*((d^3)/(0.9*D1^3));
HbyD_fdl4thrul7 = npfdl4thru17*((d^3)/(0.9*D2^3));
%
Fstar_fd2thru9 = F_fd2thru9/weight;
Fstar_fdlOthrul3 = F_fdlOthru13/weight;
Fstar fdl4thrul7 = F fdl4thru17/weight;
%
%%%
%%%%
%the next area of code finds the least squares fit of the data to the
%Janssen model. Estimates is the value of the fitting parameter.
%
Starting=rand(1); %starting 'guess' = random number
options=optimset('Display','iter', 1 To1X',1E-12,'MaxIter',500); %set
options
%
%find fitting parameter for lemieux data
Estimatesl =
fminsearch('find_janssen_13 1 ,Starting,options,H_by_D_1,Fstarl);
Estimates2 =
fminsearch('find_janssen_13',Starting,options,H_by_D_2,Fstar2);
Estimates3 =
fminsearch('find_janssen_26',Starting,options,H_by_D_3,Fstar3);
Estimates4 =
fminsearch('find_janssen_13',Starting,options,H_by_D_4,Fstar4);
%find fitting parameter for old data
Estimatesl2old = fminsearch('find_janssen_13',Starting,options,...

H_by_D_12old,Fstarl2old);
Estimates4old = fminsearch('find_janssen_13',Starting,options,...

H_by_D_4old,Fstar4old);
Estimates8old = fminsearch('find_janssen_13',Starting,options,...

H_by_D_8old,Fstar8old);
Estimates8wallold = fminsearch('find_janssen_13',Starting,options,...

H_by_D8wallold,Fstar8wallold);
%find fitting parameter for 'floor-down' data
Estimates_fd2thru9 = fminsearch('find_janssen_13',Starting,options,...

HbyD_fd2thru9,Fstar_fd2thru9);
Estimates_fdlOthrul3 =
fminsearch('find_janssen_13',Starting,options,...

HbyD_fdlOthru13,Fstar_fdlOthrul3);
Estimates_fdl4thrul7 =
fminsearch('find_janssen_26',Starting,options,...

HbyD_fdl4thru17,Fstarfdl4thrul7);
%%%%%%%%%%%%%%%%%%%%%%%%%_%%%
%%%%
%
%The next section of code plots the results.
%
%%%
%%%%
figure(1) %plot of all the data
plot(H_by_D_1,Fstarl,'ro')
hold on;
plot(H_by_D_2,Fstar2,'bd')

128

hold on;
plot(H_by_D_3,Fstar3, 1 gs')
hold on;
plot(H_by_D_4,Fstar4,'m+')
hold on;
fplot(inline('x*(36/40)*(13.33)^3 1),[0 10],'k.-') %plot the
weight=f (H/D1)
hold on;
fplot(inlineYx*(36/40)*(26.66)^3 1),[0 10],'ko-'); %plot the
weight=f(H/D2)
hold on;
fplot(lcurve_fit_13',[0 10],[],[], 1 r',Estimates1); %plot a curve fit
hold on;
fplot(icurve_fit_13',[0 10],[],[],'b-.',Estimates2); %plot a curve fit
hold on;
fplot(Tcurve_fit_26',[0 10],[],[],'g:',Estimates3); %plot a curve fit
hold on;
fplot(lcurve_fit_13',[0 10],[],[],'m--',Estimates4); %plot a curve fit
%
% 	 these are plots of the old data
plot(H_by_D_12old,Fstarl2old,'bd')
hold on;
fplot('curve_fit_13',[0 10],[],[],'b-',Estimates12old)
hold on;
plot(H_by_D_4old,Fstar4old,Tbs')
hold on;
fplot('curve_fit_13',[0 10],[],[],'b-',Estimates4old)
hold on;
plot(H_by_D_8old,Fstar8old,'bol)
hold on;
fplot(icurve_fit_13',[0 10],[],[],'b-',Estimates8old)
hold on;
plot(H_by_D_8wallold,Fstar8wallold,'b+')
hold on;
fplot('curve_fit_13',[0 10],[],[],'b-',Estimates8wallold)
hold on;
%$$
$$$$
% bertho experiments at phi = 15
exph = [.3694 .963 2.22 3.1 6.2];
expf = [943.3 1886.5 2829.8 2994.8 3143.9];
estl = fminsearch('find_janssen_15',Starting,options,exph,expf);
plot(exph,expf,'g*')
hold on;
fplot('curve_fit_15',[0 10],[],[],'g-',estl)
hold on;
% walton experiments at phi = 13.33
exphh = [2.5 5 7.5];
expff - [2565 2850 2850];
est2 = fminsearch('find_janssen_13',Starting,options,exphh,expff);
plot(exphh,expff,'g*')
hold on;
fplot('curve_fit_13',[0 10],[],[],'g-',est2)
hold on;
%$$
$$$$
0

129

ylim([0 1E4]) %set the y-axis limits
xlim([0 3])
ylabel('F*')
xlabel('H/D')
labell = ['\lambda=',num2str(Estimatesl)];
label2 = ['\lambda=',num2str(Estimates2)];
label3 = ['\lambda=',num2str(Estimates3)];
label4 = ['\lambda=',num2str(Estimates4)];
labell2old = ['\lambda=',num2str(Estimatesl2old)];
label4old = ['\lambda=',num2str(Estimates4old)];
label8old = ['\lambda=',num2str(Estimates8old)];
label8wallold = ['\lambda=',num2str(Estimates8wallold)];
label_fd2thru9 = ['\lambda=',num2str(Estimates_fd2thru9)];
label_fdl0thrul3 = ['\lambda=',num2str(Estimates_fdl0thrul3)];
label_fdl4thrul7 = ['\lambda=',num2str(Estimates_fdl4thrul7)];
%
legend('nodel \phi-13.33 1 , 1 node2 \phi=13.33','node3 \phi=26.66'...

,'node4 \phi=13.33','weight \phi-13.33','weight \phi=26.66'...
,labell,labe12,1abe13,1abel4)

text('Interpreter','latex','String',...
'$$F^{*}=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{-

\lambdal(H/D)11]}$$ 1 ,...
'Position',[.5 5000],'FontSize',12)

text('Interpreter','latex','String',...
'$${\lambda}={\beta}D=4{\mu}K$$',...

'Position',[.5 4000],'FontSize',12)
text('Interpreter','latex','String',...

'$$F^I*1=\frac{1.5\nu\phi^{3}11\lambdalf[1-e ^ { -
\lambda{(H/D)}1]}$$ 1 ,...

'Position',[.5 5000],'FontSize',12)
text('Interpreter','latex','String',...

'$$f\lambdal=f\betalD=4{\mu}KW,...
'Position',[.5 4000],'FontSize',12)

hold off;
%
%
%
figure(2) %plot of node 1 data
fplot(inline('x*(36/40)*(13.33)^3'),[0 10],'k-') %plot the
weight=f(H/D1)
hold on;
plot(H_by_D_1(1),Fstarl(1),'k+')
hold on;
plot(H_by_D_1(2),Fstarl(2),'ks')
hold on;
plot(H_by_D_1(3),Fstarl(3), 1 kd')
hold on;
plot(H_by_D_1(4),Fstarl(4),'ko')
hold on;
fplot('curve fit_13',[0 10],[],[],'r',Estimates1);
ylim([0 3E3]) %set the y-axis limits
xlim([0 10])
ylabel('F*')
xlabel('H/D')
legend('W* = f(H/D)','D1','D2','D3','D4',1abell,'Location','southeast')
text('Interpreter','latex','String',...

130

'$$F^I*1=\frac{1.5\nu\phi^{3}}1\lambdalf[1-e^{-
\lambdaf(H/D)11]}$$',...

'Position',[1 800],'FontSize',12)
text('Interpreter','latex','String',...

1 $$1\lambdal=f\betalD=41\mulKW,...
'Position',[1.25 500],'FontSize',12)

text('Interpreter','latex','String',...
'$$1\phi=13.331\hspace{12pt}f\nu\approx0.61$$',...

'Position',[3 2500],'FontSize',12)
text('Interpreter','latex','String',...

'$$F^I*1=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{-
\lambdaf(H/D)11]}$$',...

'Position',[1 800],'FontSize',12)
text('Interpreter','latex','String',...

'$$1\lambdal=f\betalD=4{\mu}KW,...
'Position',[1.25 500],'FontSize',12)

text('Interpreter','latex','String',...
1 $$1\phi=13.331\hspacell2ptlf\nu\approx0.61W,...

'Position',[3 2500],'FontSize',12)
hold off;
%
%
%
figure(3) %plot of node 2 data
fplot(inline(tx*(36/40)*(13.33)^3'),[0 10],'k-') %plot the
weight=f(H/D1)
hold on;
plot(H_by_D_2(1),Fstar2(1),'k+')
hold on;
plot(H_by_D_2(2),Fstar2(2),'ks')
hold on;
plot(H_by_D_2(3),Fstar2(3),Tkd')
hold on;
plot(H_by_D_2(4),Fstar2(4),'ko')
hold on;
fplot(ecurve_fit_13',[0 10],[],[],'r',Estimates2);
ylim([0 3E3]) %set the y-axis limits
xlim([0 10])
ylabel('F*')
xlabel('H/D')
legend('W* = f(H/D)','D5','D6','D7','D8',1abe12,'Location','southeast')
text('Interpreter','latex','String',...

1 $$F^{*}=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{-
\lambdal(H/D)11]}$$',...

'Position',[1 800],'FontSize',12)
text('Interpreter','latex','String',...

'$${\lambda}=1\betalD=4{\mu}KW,...
'Position',[1.25 500],'FontSize',12)

text('Interpreter','latex','String',...
1 $${\phi=13.33}\hspace{12pt}l\nu\approx0.61$$',...

'Position',[3 2500],'FontSize',12)
text('Interpreter','latex','String',...

1 $$F^I*1=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{-
\lambdal(H/D)11]}$$',...

'Position',[1 800],'FontSize',12)
text('Interpreter','latex','String',...

'$${\lambda}=f\betalD=41\mulKW,...

'Position',[1.25 500],'FontSize',12)
text('Interpreter','latex','String',...

'$$f\phi=13.331\hspacell2ptlf\nu\approx0.61$$',...
'Position',[3 2500],'FontSize',12)

hold off;

figure(4) %plot of node 3 data
fplot(inline('x*(36/40)*(26.66)^3'),[0 10],'k-') %plot the
weight=f(H/D2)
hold on;
plot(H_by_D_3(1),Fstar3(1),'k+ 1)
hold on;
plot(H_by_D_3(2),Fstar3(2),'ks')
hold on;
plot(H_by_D_3(3),Fstar3(3),'kd')
hold on;
plot(H_by_D_3(4),Fstar3(4),'ko')
hold on;
fplot('curve fit26',[0 10],[],[],'r',Estimates3);
ylim([0 20E3]) %set the y-axis limits
xlim([0 10])
ylabel('F*')
xlabel('H/D')
legend('W* =
f(H/D)','D9','D10', 7 D11','D12',1abe13,'Location','southeast')
text('Interpreter','latex','String',...

'$$F^{*}=\frac{1.5\nu\phi^{3}1{\lambda}{[1-e^{-
\lambda{(H/D)}}]}$$ 1 ,...

'Position',[2 6000],'FontSize',12)
text('Interpreter','latex','String',...

'$${\lambda}={\beta}D=4{\mu}K$$',...
'Position',[2.5 4000],'FontSize',12)

text('Interpreter','latex','String',...
'$${\phi=26.66}\hspace{12pt}{\nu\approx0.6}W,...

'Position',[3 10000],'FontSize',12)
text('Interpreter','latex','String',...

'$$F^{*}=\frac{1.5\nu\phi^{3}1{\lambda}{[1-e^{ -

\lambda{(H/D)}1]}$$',...
'Position',[2 6000],'FontSize',12)

text('Interpreter','latex','String',...
'$${\lambda}={\beta}D=4{\mu}K$$',...

'Position',[2.5 4000],'FontSize',12)
text('Interpreter','latex','String',...

'$$f\phi=26.661\hspace{12pt}f\nu\approx0.61$$',...
'Position',[3 10000],'FontSize',12)

hold off;

figure(5) %plot of node 4 data
fplot(inline(Tx*(36/40)*(13.33)^3 1),[0 10],'k-') %plot the
weight=f(H/D1)
hold on;
plot(H_by_D_4(1),Fstar4(1),'k+')
hold on;

131

plot(H_by_D_4(2),Fstar4(2),'ks')
hold on;
plot(H_by_D_4(3),Fstar4(3),'kd')
hold on;
plot(H_by_D_4(4),Fstar4(4), 1 ko')
hold on;
fplot('curve_fit_13',[0 10],[],[],'r',Estimates4);
ylim([0 7E3]) %set the y-axis limits
xlim([0 10])
ylabel('F*')
xlabel('H/D')
legend('W* ---
f(H/D) 1 , 1 D13','D14','D15','D16',1abe14, 7 Location','southeast')
text('Interpreter','latex','String',...

'$$F^{*}=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{-
\lambda{(H/D)}}]}$$',...

'Position',[1.25 1400],'FontSize',12)
text('Interpreter','latex','String',...

1 $$1\lambdal=f\betalD=4{\mu}KW,...
'Position',[2 700],'FontSize',12)

text('Interpreter','latex','String',...
'$$1\phi=13.331\hspace{12pt}f\nu\approx0.6}$$',...

'Position',[3 2500],'FontSize',12)
text('Interpreter','latex','String',...

1 $$F^I*1=\frac{1.5\nu\phi^{3}1{\lambda}f[1-e^{-
\lambdal(H/D)11]}$$',...

'Position',[1.25 1400],'FontSize',12)
text('Interpreter','latex','String',...

'$$1\lambdal={\beta}D=4{\mu}KW,...
'Position',[2 700],'FontSize',12)

text('Interpreter','latex','String',...
'$$1\phi=13.331\hspace{12pt}{\nu\approx0.6}$$',...

'Position',[3 2500],'FontSize',12)
hold off;

figure(6) %plot of fmub=0.12, fmu=0.1
fplot(inline('x*(36/40)*(13.33)^3'),[0 10],'k-') %plot the
weight=f(H/D1)
hold on;
plot(H_by_D_12old(1),Fstarl2old(1),'k+')
hold on;
plot(H_by_D 12old(2),Fstarl2old(2),'ks')
hold on;
plot(H_by_D_12old(3),Fstarl2old(3), 1 kd')
hold on;
plot(H_by_D_12old(4),Fstarl2old(4),'ko')
hold on;
plot(H_by_D_12old(5),Fstarl2old(5),'kx')
hold on;
plot(H_by_D_12old(6),Fstarl2old(6),'k^')
hold on;
plot(H_by_D_12old(7),Fstarl2old(7),'kv')
hold on;
plot(H_by_D_12old(8),Fstarl2old(8),'k*')
hold on;

132

fplot('curve_fit_13',[0 10],[],[],'r-',Estimates12old)
ylim([0 7E3]) %set the y-axis limits
xlim([0 10])
ylabel('F*')
xlabel('H/D')
legend('W* = f(H/D)','D33','D34','D35','D36','D37','D38','D39',...

'D40',1abell2old,'Location','northeast')
text('Interpreter','latex','String',...

'$$F^I*1=\frac{1.5\nu\phi^{3}1{\lambda}f[1-e^{-
\lambda{(H/D)}1]}$$',...

'Position',[4 1400],'FontSize',12)
text('Interpreter','latex','String',...

'$$1\lambdal=f\betalD=4{\mu}KW,...
'Position',[4.5 700],'FontSize',12)

text('Interpreter','latex','String',...
1 $${\phi-13.33}\hspace{12pt}f\nu\approx0.61$$',...

'Position',[3 4000],'FontSize',12)
text('Interpreter','latex','String',...

'$$F^{*}=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{-
\lambdaf(H/D)11]}$$',...

'Position',[4 1400],'FontSize',12)
text('Interpreter','latex','String',...

1 $$f\lambdal={\beta}D=4{\mu}KW,...
'Position',[4.5 700],'FontSize',12)

text('Interpreter','latex','String',...
1 $${\phi=13.33}\hspace{12pt}f\nu\approx0.61$$',...

'Position',[3 4000],'FontSize',12)
hold off;

figure(7) %plot of fmub=0.4, fmu=0.1
fplot(inline('x*(36/40)*(13.33)^3'),[0 10],'k-') %plot the
weight=f(H/D1)
hold on;
plot(H_by_D_4old(1),Fstar4old(1),'k+')
hold on;
plot(H_by_D_4old(2),Fstar4old(2),'ks')
hold on;
plot(H_by_D_4old(3),Fstar4old(3),'kd')
hold on;
plot(H_by_D_4old(4),Fstar4old(4),'ko')
hold on;
plot(H_by_D_4old(5),Fstar4old(5),'kx')
hold on;
plot(H_by_D_4old(6),Fstar4old(6),'k^')
hold on;
plot(H_by_D_4old(7),Fstar4old(7), 1 kv')
hold on;
plot(H_by_D_4old(8),Fstar4old(8), 1 k*')
hold on;
fplot('curve_fit_13',[0 10],[],[],'r-',Estimates4old)
ylim([0 7E3]) %set the y-axis limits
xlim([0 10])
ylabel('F*')
xlabel('H/D')
legend('W* 	 f(H/D)','D41','D42','D43','D44','D45','D46','D47',...

133

'D48',1abel4old,'Location','northeast')
text('Interpreter','latex','String',...

1 $$F^{*}=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{ -

\lambdal(H/D)11]}$$',...
'Position',[4 1400],'FontSize',12)

text('Interpreter','latex','String',...
'$$f\lambdal=f\betalD=4{\mu}KW,...

'Position',[4.5 700],'FontSize',12)
text('Interpreter','latex','String',...

'$${\phi=13.33}\hspace{l2pt}{\nu\approx0.6}$$',...
'Position',[3 4000],'FontSize',12)

text('Interpreter','latex','String',...
'$$F^{*}=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{ -

\lambda{(H/D)}}]}$$ 1 ,...
'Position',[4 1400],'FontSize',12)

text('Interpreter','latex','String',...
1 $${\lambda}=f\betalD=4{\mu}KW,...

'Position',[4.5 700],'FontSize',12)
text('Interpreter','latex','String',...

'$${\phi=13.33}\hspace{l2pt}{\nu\approx0.6}$$',...
'Position',[3 4000],'FontSize',12)

hold off;
%
%
%
figure(8) %plot of fmub=0.8, fmu=0.1
fplot(inline(Tx*(36/40)*(13.33)^3'),[0 10],'k-') %plot the
weight=f(H/D1)
hold on;
plot(H_by_D_8old(1),Fstar8old(1),'k+')
hold on;
plot(H_by_D_8old(2),Fstar8old(2),'ks')
hold on;
plot(H_by_D_8old(3),Fstar8old(3),'kd')
hold on;
fplot('curve fit_13',[0 10],[],[],'r-',Estimates8old)
ylim([0 7E3]) %set the y-axis limits
xlim([0 10])
ylabel('F*')
xlabel('H/D')
legend('W* =
f(H/D) 1 ,'D49','D50', 1 D51',1abel8old,'Location','northeast')
text('Interpreter','latex','String',...

1 $$F^I*1=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{ -

\lambda{(H/D)}1]}$$',...
'Position',[4 1400],'FontSize',12)

text('Interpreter','latex','String',...
1 $$1\lambdal={\beta}D=41\mulKW,...

'Position',[4.5 700],'FontSize',12)
text('Interpreter','latex','String',...

'$${\phi=13.33}\hspace{l2pt}{\nu\approx0.6}$$',...
'Position',[3 4000],'FontSize',12)

text('Interpreter','latex','String',...
'$$F^{*}=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{ -

\lambda{(H/D)}1]}$$ 1 ,...
'Position',[4 1400],'FontSize',12)

text('Interpreter','latex','String',...

134

1 $$1\lambdal={\beta}D=4{\mu}KW,...
'Position',[4.5 700],'FontSize',12)

text('Interpreter','latex','String',...
'$$f\phi=13.331\hspacell2ptlf\nu\approx0.61W,...

'Position',[3 4000],'FontSize',12)
hold off;

figure(9) %plot of fmub=0.8, fmu=0.1, wall move
fplot(inline(yx*(36/40)*(13.33)^3'),[0 10],'k-') %plot the
weight=f(H/D1)
hold on;
plot(H_by_D_8wallold(1),Fstar8wallold(1),'k+')
hold on;
plot(H_by_D_8wallold(2),Fstar8wallold(2),'ks')
hold on;
plot(H_by_D_8wallold(3),Fstar8wallold(3),'kd')
hold on;
plot(H_by_D_8wallold(4),Fstar8wallold(4),'ko')
hold on;
fplot('curve_fit_13',[0 10],[],[],'r-',Estimates8wallold)
ylim([0 7E3]) %set the y-axis limits
xlim([0 10])
ylabel('F*')
xlabel('H/D')
legend('W* -
f(H/D)','D52','D53 1 ,'D54','D55 1 ,1abel8wallold,'Location','northeast')
text('Interpreter','latex','String',...

'$$F^{*}=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{-
\lambda{(H/D)}}]}$$',...

'Position',[4 1400],'FontSize',12)
text('Interpreter','latex','String',...

1 $${\lambda}={\beta}D=4{\mu}KW,...
'Position',[4.5 700],'FontSize',12)

text('Interpreter','latex','String',...
'$$f\phi=13.331\hspacell2ptlf\nu\approx0.61$$',...

'Position',[3 4000],'FontSize',12)
text('Interpreter','latex','String',...

'$$F^{*}=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{-
\lambda{(H/D)}}]}$$',...

'Position',[4 1400],'FontSize',12)
text('Interpreter','latex','String',...

'$$1\lambdal={\beta}D=4{\mu}KW,...
'Position',[4.5 700],'FontSize',12)

text('Interpreter','latex','String',...
'$${\phi=13.33}\hspace{l2pt}{\nu\approx0.6}$$',...

'Position',[3 4000],'FontSize',12)
hold off;

%plot floor-down2 thru 9 data
figure(10)
fplot(inline(Tx*(36/40)*(13.33)^3 1),[0 10],'k-') %plot the
weight=f(H/D1)
hold on;

135

plot(HbyD_fd2thru9(1),Fstar_fd2thru9(1),'k+')
hold on;
plot(HbyD_fd2thru9(2),Fstar_fd2thru9(2),'ks')
hold on;
plot(HbyD_fd2thru9(3),Fstar_fd2thru9(3),'kd')
hold on;
plot(HbyD_fd2thru9(4),Fstar_fd2thru9(4),'ko')
hold on;
plot(HbyD_fd2thru9(5),Fstar_fd2thru9(5),Ikx 1)
hold on;
plot(HbyD_fd2thru9(6),Fstar_fd2thru9(6),'k^')
hold on;
plot(HbyD_fd2thru9(7),Fstar_fd2thru9(7),'kv 1)
hold on;
plot(HbyD_fd2thru9(8),Fstar_fd2thru9(8),'k*')
hold on;
fplot('curve_fit_13',[0 10],[],[],'r-',Estimates_fd2thru9)
ylim([0 8E3]) %set the y-axis limits
xlim([0 10])
ylabel('F*')
xlabel('H/D')
legend('W* =
f(H/D)','D17','D18','D19','D20','D21','D22','D23','D24',...

label_fd2thru9,'Location','northeast')
text('Interpreter','latex','String',...

1 $$F^{*}=\frac{1.5\nu\phi^{3}}{\lambda}{[1-e^{-
\lambdaf(H/D)1}]1$$ 1 ,...

'Position',[4 1400],'FontSize',12)
text('Interpreter','latex','String',...

'$${\lambda}={\beta}D=4{\mu}KW,...
'Position',[4.5 700],'FontSize',12)

text('Interpreter','latex','String',...
1 $$1\phi=13.331\hspace{12pt}f\nu\approx0.61$$ 1 ,...

'Position',[3 4000],'FontSize',12)
text('Interpreter','latex','String',...

'$$F^I*1=\frac{1.5\nu\phi^{3}11\lambdalf[1-e^{-
\lambda{(H/D)}1]}$$',...

'Position',[4 1400],'FontSize',12)
text('Interpreter','latex','String',...

'$${\lambda}=f\betalD=41\mulKW,...
'Position',[4.5 700],'FontSize',12)

text('Interpreter','latex','String',...
7 $$1\phi=13.331\hspace{12pt}{\nu\approx0.6}$$',...

'Position',[3 4000],'FontSize',12)
hold off;

%plot floor-downl0 thru 13 data
figure (11)
fplot(inline('x*(36/40)*(13.33)^3'),[0 10],'k-') %plot the
weight=f(H/D1)
hold on;
plot(HbyD_fdl0thrul3(1),Fstar_fdl0thrul3(1),'k+')
hold on;
plot(HbyD_fdl0thrul3(2),Fstar_fdlOthrul3(2),'ks')
hold on;

136

plot(HbyD_fdl0thrul3(3),Fstar_fdl0thrul3(3),'kd')
hold on;
plot(HbyD_fdl0thrul3(4),Fstar_fdl0thrul3(4),'ko')
hold on;
fplot('curve_fit_13',[0 10],[1,[1,'r-',Estimates_fdl0thrul3)
ylim([0 7E3]) %set the y-axis limits
xlim([0 10])
ylabel('F*')
xlabel('H/D')
legend('W* = f(H/D)','D25','D26','D27','D28',...

label_fdlOthru13,'Location','northeast')
text('Interpreter','latex','String',...

'$$F^I*1=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{ -

\lambdal(H/D)11]}$$',...
'Position', [4 1400],'FontSize',12)

text('Interpreter','latex','String',...
'$$1\lambdal=f\betalD=4{\mu}KW,...

'Position',[4.5 700],'FontSize',12)
text('Interpreter','latex','String',...

'$$1\phi=13.331\hspacell2ptlf\nu\approx0.61$$',...
'Position',[3 4000],'FontSize',12)

text('Interpreter','latex','String',...
'$$F^I*1=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{-

\lambdaf(H/D)11]}$$',...
'Position',[4 1400],'FontSize',12)

text('Interpreter','latex','String',...
'$$I\lambdal=1\betalD=4{\mu}KW,...

'Position',[4.5 700],'FontSize',12)
text('Interpreter','latex','String',...

'$$i\phi=13.331\hspace{12pt}f\nu\approx0.6}W,...
'Position',[3 4000],'FontSize',12)

hold off;
%
%
%
%plot floor-downl4 thru 17 data
figure(12)
fplot(inline(tx*(36/40)*(26.66)^3'),[0 10],'k-') %plot the
weight=f(H/D1)
hold on;
plot(HbyD_fdl4thrul7(1),Fstar_fdl4thrul7(1),'k+')
hold on;
plot(HbyD_fdl4thrul7(2),Fstar_fdl4thrul7(2),Tks')
hold on;
plot(HbyD_fdl4thrul7(3),Fstar_fdl4thrul7(3),ekd')
hold on;
plot(HbyD_fdl4thrul7(4),Fstar_fdl4thrul7(4),'ko')
hold on;
fplot('curve_fit_26',[0 10],[],[],'r-',Estimates_fdl4thrul7)
ylim([0 7E3]) %set the y-axis limits
xlim([0 10])
ylabel('F*')
xlabel('H/D')
legend('W* = f(H/D)','D29','D30','D31','D32',...

label_fdl4thru17,'Location','northeast')
text('Interpreter','latex','String',...

137

138

1 $$F^{*}=\frac{1.5\nu\phi^{3}1{\lambda}f[1-e ^ { -
\lambdaf(H/D)11]}$$',...

'Position',[4 1400],'FontSize',12)
text('Interpreter','latex','String',...

'$$1\lambdal=f\betalD=4{\mu}KW,...
'Position',[4.5 700],'FontSize',12)

text('Interpreter','latex','String',...
'$$f\phi=26.661\hspace{12pt}f\nu\approx0.61W,...

'Position',[3 4000],'FontSize',12)
text('Interpreter','latex','String',...

'$$F^{*}=\frac{1.5\nu\phi^{3}1{\lambda}f[1-e^{ -

\lambdaf(H/D)11]}$$',...
'Position',[4 1400],'FontSize',12)

text('Interpreter','latex','String',...
'$${\lambda}=1\betalD=4{\mu}KW,...

'Position',[4.5 700],'FontSize',12)
text('Interpreter','latex','String',...

'$$1\phi=26.661\hspace{12pt}f\nu\approx0.61$$ 1 ,...
'Position',[3 4000],'FontSize',12)

hold off;

%comparision between moving the floor or the wall
figure(13)
fplot(inline('x*(36/40)*(13.33)^3'),[0 10],'k-') %plot the
weight=f(H/D1)
hold on;
plot(H_by_D_8wallold(1),Fstar8wallold(1),'k+')
hold on;
plot(H_by_D_8wallold(2),Fstar8wallold(2),'ks')
hold on;
plot(H_by_D_8wallold(3),Fstar8wallold(3),'kd')
hold on;
plot(H_by_D_8wallold(4),Fstar8wallold(4),'ko')
hold on;
fplot('curve_fit_13',[0 10],[],[],'r-.',Estimates8wallold)
hold on;
plot(H_by_D_8old(1),Fstar8old(1),'k*')
hold on;
plot(H_by_D_8old(2),Fstar8old(2),'kp')
hold on;
plot(H_by_D_8old(3),Fstar8old(3), 1 kv 1)
hold on;
fplot('curve fit_13',[0 10],[],[], 7 b:',Estimates8old)
ylim([0 7E3]) %set the y-axis limits
xlim([0 10])
ylabel('F*')
xlabel('H/D')
walllabel=[label8wallold,' (Wall Move)'];
pistonlabel=[label8old,' (Piston Move)'];
legend('W* =
f(H/D)','D52','D53','D54','D55',walllabel,'D49','D50','D51',pistonlabel
,'Location','northwest')
text('Interpreter','latex','String',...

'$$F^I*1=\frac{1.5\nu\phi^{3}1{\lambda}l[1 - e ^ { -
\lambdaf(H/D)11]}$$',...

139

'Position',[4 1400],'FontSize',12)
text('Interpreter','latex','String',...

'$$I\lambdal={\beta}D=4{\mu}KW,...
'Position',[4.5 700],'FontSize',12)

text('Interpreter','latex','String',...
'$${\phi=13.33}\hspace{l2pt}{\nu\approx0.6}$$',...

'Position',[4 2000],'FontSize',12)
text('Interpreter','latex','String',...

'$$F^I*1=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{ -

\lambda{(H/D)}}]}$$',...
'Position',[4 1400],'FontSize',12)

text('Interpreter','latex','String',...
'$$1\lambdal={\beta}D=4{\mu}KW,...

'Position',[4.5 700],'FontSize',12)
text('Interpreter','latex','String',...

'$$f\phi=13.331\hspacell2ptlf\nu\approx0.61$$',...
'Position',[4 2000],'FontSize',12)

hold off;

%comparision between walton experiments and simulated data
figure(14)
%weight
fplot(inline(tx*(36/40)*(13.33)^3'),[0 10],'m-') %plot the
weight=f(H/D1)
hold on;
%walton experiments
plot(exphh,expff,ikse)
hold on;
fplot('curve_fit_13',[0 10],[],[],'k-',est2)
hold on;
%simulated data set 1
plot(H_by_D_12old,Fstarl2old,'r+')
hold on;
fplot('curve_fit_13',[0 10],[],[],'r--',Estimates12old)
hold on;
%simulated data set 2
plot(H_by_D_8old,Fstar8old,'bo')
hold on;
fplot('curve_fit_13',[0 10],[1,[1, 1 13:',Estimates8old)
hold on;
%simulated data set 3
plot(H_by_D 4old,Fstar4old,'gd')
hold on;
fplot('curve_fit_13',[0 10],[],[],'g-. 1 ,Estimates4old)
ylim([0 4E3])
xlim([0 10])
ylabel('F*')
xlabel('H/D')
explabel=['\lambda=',num2str(est2)];
legend('Hydrostatic','Walton Experiments',explabel,'D33 -
D40',1abell2old,...

'D49 - D51 1 ,1abel8old,'D41 - D48',1abel4old,'Location','southeast')
text('Interpreter','latex','String',...

'$$F^{*}=\frac{1.5\nu\phi^{3}}{\lambda}f[1-e^{ -

\lambda{(H/D)}}]}$$ 1 ,...
'Position',[1.25 1000],'FontSize',12)

140

text('Interpreter','latex','String',...
'$$1\lambdal={\beta}D=4{\mu}KW,...

'Position',[2 600],'FontSize',12)
text('Interpreter','latex','String',...

'$${\phi=13.33}\hspacell2ptIl\nu\approx0.61$$',...
'Position',[2 1400],'FontSize',12)

text('Interpreter','latex','String',...
1 $$F^{*}=\frac{1.5\nu\phi^{3}1{\lambda}{[1-e^{-

\lambda{(H/D)}1]}$$',...
'Position',[1.25 1000],'FontSize',12)

text('Interpreter','latex','String',...
1 $$1\lambdal={\beta}D=4{\mu}KW,...

'Position',[2 600],'FontSize',12)
text('Interpreter','latex','String',...

1 $$f\phi=13.331\hspace{l2pt}{\nu\approx0.6}W,...
'Position',[2 1400],'FontSize',12)

hold off;
%%%
%%%%
% 	 END OF PROGRAM
%%%
%%%%

APPENDIX I

SCRIPT FILES IMPLEMENTED ON LEMIEUX.PSC.EDU

This appendix gives the script files needed to run simulations on lemieux.psc.edu .

A combination of schester.sh and msims.sh are used to run four jobs on the four
processors of a node on lemieux.psc.edu

Script file schester.sh
This script is the main script that is submitted to the queue via the qsub command. It
contains information required by lemieux.psc.edu such as an 18 hour wall time, one node
with four processors, combined output and error files. The body of the script begins by
changing the current directory to $SCRATCH, and then using one node and four
processors running another script msims.sh (described below).

#!/bin/csh
#PBS -1 walltime=18:00:00
#PBS -1 rmsnodes=1:4
#PBS -j oe
cd $SCRATCH
prun -N ${RMSNODES} -n ${RMSPROCS} ./msims.sh

Script file msims.sh
This script file is called by schester.sh. The ${RMS_RANK} command lets the user run
on a specific processor of a node. When called this script will loop through all the
processors on the node the schester.sh will run on. When called the script will change the
directory to SCRATCH/1.${RMS_RANK}. Where RMS_RANK is the processor
number, it will then run the executable file schesterfpe in the directory
SCRATCH/1.${RMS RANK }.

#!/bin/csh
cd $SCRATCH/1.${RMS RANK}
./schesterfpe

141

II(Y,n):

142

Script file copy.sh
This script file is here primarily as an example of another type of script available in the
csh shell. This script was used to create a backup of important information in the
$HOME directory from the original, but volatile data in the $SCRATCH directory. To
run this script type "csh copy.sh" at the command prompt.

#! /bin/csh

echo -n "What node do you want to backup files in? "
set node = $<

echo -n "Backup files in node ${node}
set modfiles = $<
switch ($modfiles)

case y:
echo "Files in node ${node} will get copied"
breaksw

default:
echo "Script stopped"
goto error
breaksw

endsw
switch ($node)

case 1:
cd $SCRATCH/1.0
cp i3ds d3ds1000 floorforce $HOME/1.0/.
cd $SCRATCH/1.1
cp i3ds d3ds1000 floorforce $HOME/1.1/.
cd $SCRATCH/1.2
cp i3ds d3ds1000 floorforce $HOME/1.2/.
cd $SCRATCH/1.3
cp i3ds d3ds1000 floorforce $HOME/1.3/.
echo 'node 1 backed up'
breaksw

case 2:
cd $SCRATCH/2.0
cp i3ds d3ds1000 floorforce160 $HOME/2.0/.
cd $SCRATCH/2.1
cp i3ds d3ds1000 floorforce160 $HOME/2.1/.
cd $SCRATCH/2.2
cp i3ds d3ds1000 floorforce160 $HOME/2.2/.
cd $SCRATCH/2.3
cp i3ds d3ds1000 floorforce160 $HOME/2.3/.
echo 'node 2 backed up'
breaksw

case 3:
cd $SCRATCH/3.0
cp i3ds d3ds1000 floorforce $HOME/3.0/.
cd $SCRATCH/3.1
cp i3ds d3ds1000 floorforce $HOME/3.1/.
cd $SCRATCH/3.2
cp i3ds d3ds1000 floorforce $HOME/3.2/.
cd $SCRATCH/3.3
cp i3ds d3ds1000 floorforce $HOME/3.3/.
echo 'node 3 backed up'
breaksw

case 4:
cd $SCRATCH/4.0
cp i3ds d3ds1000 floorforce $HOME/4.0/.
cd $SCRATCH/4.1
cp i3ds d3ds1000 floorforce $HOME/4.1/.
cd $SCRATCH/4.2
cp i3ds d3ds1000 floorforce $HOME/4.2/.
cd $SCRATCH/4.3
cp i3ds d3ds1000 floorforce $HOME/4.3/.
echo 'node 4 backed up'
breaksw

case 5:
cd $SCRATCH/5.0
cp i3ds d3ds1000 floorforce $HOME/5.0/.
cd $SCRATCH/5.1
cp i3ds d3ds1000 floorforce $HOME/5.1/.
cd $SCRATCH/5.2
cp i3ds d3ds1000 floorforce $HOME/5.2/.
cd $SCRATCH/5.3
cp i3ds d3ds1000 floorforce $HOME/5.3/.
echo 'node 5 backed up'
breaksw

case 6:
cd $SCRATCH/6.0
cp i3ds d3ds1000 floorforce $HOME/6.0/.
cd $SCRATCH/6.1
cp i3ds d3ds1000 floorforce $HOME/6.1/.
cd $SCRATCH/6.2
cp i3ds d3ds1000 floorforce $HOME/6.2/.
cd $SCRATCH/6.3
cp i3ds d3ds1000 floorforce $HOME/6.3/.
echo 'node 6 backed up'
breaksw

case 7:
cd $SCRATCH/7.0
cp i3ds d3ds1000 floorforce $HOME/7.0/.
cd $SCRATCH/7.1
cp i3ds d3ds1000 floorforce $HOME/7.1/.
cd $SCRATCH/7.2
cp i3ds d3ds1000 floorforce $HOME/7.2/.
cd $SCRATCH/7.3
cp i3ds d3ds1000 floorforce $HOME/7.3/.
echo 'node 7 backed up'
breaksw

case 8:
cd $SCRATCH/8.0
cp i3ds d3ds1000 floorforce $HOME/8.0/.
cd $SCRATCH/8.1
cp i3ds d3ds1000 floorforce $HOME/8.1/.
cd $SCRATCH/8.2
cp i3ds d3ds1000 floorforce $HOME/8.2/.
cd $SCRATCH/8.3
cp i3ds d3ds1000 floorforce $HOME/8.3/.
echo 'node 8 backed up'
breaks

case 10:
cd $SCRATCH/10.0

143

cp i3ds d3ds1000 rolling $HOME/10.0/.
cd $SCRATCH/10.1
cp i3ds d3ds1000 rolling $HOME/10.1/.
cd $SCRATCH/10.2
cp i3ds d3ds1000 rolling $HOME/10.2/.
cd $SCRATCH/10.3
cp i3ds d3ds1000 rolling $HOME/10.3/.
echo 'node 10 backed up'
breaksw

case 11:
cd $SCRATCH/11.0
cp i3ds d3ds1000 rolling $HOME/11.0/.
cd $SCRATCH/11.1
cp i3ds d3ds1000 rolling $HOME/11.1/.
cd $SCRATCH/11.2
cp i3ds d3ds1000 rolling $HOME/11.2/.
cd $SCRATCH/11.3
cp i3ds d3ds1000 rolling $HOME/11.3/.
echo 'node 11 backed up'
breaksw

case 12:
cd $SCRATCH/12.0
cp i3ds d3ds1000 rolling $HOME/12.0/.
cd $SCRATCH/12.1
cp i3ds d3ds1000 rolling $HOME/12.1/.
cd $SCRATCH/12.2
cp i3ds d3ds1000 rolling $HOME/12.2/.
cd $SCRATCH/12.3
cp i3ds d3ds1000 rolling $HOME/12.3/.
echo 'node 12 backed up'
breaksw

case 13:
cd $SCRATCH/13.0
cp i3ds d3ds1000 rolling position $HOME/13.0/.
cd $SCRATCH/13.1
cp i3ds d3ds1000 rolling position $HOME/13.1/.
cd $SCRATCH/13.2
cp i3ds d3ds1000 rolling position $HOME/13.2/.
cd $SCRATCH/13.3
cp i3ds d3ds1000 rolling position $HOME/13.3/.
echo 'node 13 backed up'
breaksw

case 14:
cd $SCRATCH/14.0
cp i3ds d3ds1000 rolling position $HOME/14.0/.
cd $SCRATCH/14.1
cp i3ds d3ds1000 rolling position $HOME/14.1/.
cd $SCRATCH/14.2
cp i3ds d3ds1000 rolling position $HOME/14.2/.
cd $SCRATCH/14.3
cp i3ds d3ds1000 rolling position $HOME/14.3/.
echo 'node 14 backed up'
breaksw

case 15:
cd $SCRATCH/15.0
cp i3ds d3ds1000 rolling position $HOME/15.0/.
cd $SCRATCH/15.1

144

cp i3ds d3ds1000 rolling position $HOME/15.1/.
cd $SCRATCH/15.2
cp i3ds d3ds1000 rolling position $HOME/15.2/.
cd $SCRATCH/15.3
cp i3ds d3ds1000 rolling position $HOME/15.3/.
echo 'node 15 backed up'
breaksw

case 16a:
cd $SCRATCH/16a.0
cp i3ds d3ds1000 floorforce tensor $HOME/16a.0/.
cd $SCRATCH/16a.1
cp i3ds d3ds1000 floorforce tensor $HOME/16a.1/.
cd $SCRATCH/16a.2
cp i3ds d3ds1000 floorforce tensor $HOME/16a.2/.
cd $SCRATCH/16a.3
cp i3ds d3ds1000 floorforce tensor $HOME/16a.3/.
echo 'node 16a backed up'
breaksw

case 16b:
cd $SCRATCH/16b.0
cp i3ds d3ds1000 floorforce tensor $HOME/16b.0/.
cd $SCRATCH/16b.1
cp i3ds d3ds1000 floorforce tensor $HOME/16b.1/.
cd $SCRATCH/16b.2
cp i3ds d3ds1000 floorforce tensor $HOME/16b.2/.
cd $SCRATCH/16b.3
cp i3ds d3ds1000 floorforce tensor $HOME/16b.3/.
echo 'node 16b backed up'
breaksw

case 17a:
cd $SCRATCH/17a.0
cp i3ds d3ds1000 floorforce tensor $HOME/17a.0/.
cd $SCRATCH/17a.1
cp i3ds d3ds1000 floorforce tensor $HOME/17a.1/.
cd $SCRATCH/17a.2
cp i3ds d3ds1000 floorforce tensor $HOME/17a.2/.
cd $SCRATCH/17a.3
cp i3ds d3ds1000 floorforce tensor $HOME/17a.3/.
echo 'node 17a backed up'
breaksw

case 17b:
cd $SCRATCH/17b.0
cp i3ds d3ds1000 floorforce tensor $HOME/17b.0/.
cd $SCRATCH/17b.1
cp i3ds d3ds1000 floorforce tensor $HOME/17b.1/.
cd $SCRATCH/17b.2
cp i3ds d3ds1000 floorforce tensor $HOME/17b.2/.
cd $SCRATCH/17b.3
cp i3ds d3ds1000 floorforce tensor $HOME/17b.3/.
echo 'node 17b backed up'
breaksw

default:
echo 'script stopped'
goto error

endsw

error:

145

146

Script file d3dsmv.sh
This script file is here primarily as an example of a script available in the bash shell. To
run this script type "bash d3dsmv.sh" at the command prompt.

#! /bin/bash

user must input the node to modifiy files in
this script will not change the input files

echo -n "What node do you want to modify files in (1,2,3,4): "
set node = $<

test that the input is in range
if ($node < 1 II $node > 4) then

echo "Script stopped"
goto error

endif

make sure you want to do this

echo -n "Modify files in node ${node} (y,n): "
set modfiles 	 $<
switch ($modfiles)

case y:
echo "Files in node ${node} will get modified"
breaksw

default:
echo "Script stopped"
goto error
breaksw

endsw

if everything is good then

switch ($node)
case 1:

cd $SCRATCH/1.0
my d3ds d3ds1000
rm z* *-
cd $SCRATCH/1.1
my d3ds d3ds1000
rm z* *-
cd $SCRATCH/1.2
my d3ds d3ds1000
rm z* *-
cd $SCRATCH/1.3
my d3ds d3ds1000
rm z* *-
breaksw

case 2:
cd $SCRATCH/2.0
my d3ds d3ds1000
rm z* *-
cd $SCRATCH/2.1
my d3ds d3ds1000
rm z* *-

cd $SCRATCH/2.2
my d3ds d3ds1000
rm z* *-
cd $SCRATCH/2.3
my d3ds d3ds1000
rm z* *-
breaksw

case 3:
cd $SCRATCH/3.0
my d3ds d3ds1000
rm z* *-
cd $SCRATCH/3.1
my d3ds d3ds1000
rm z* *-
cd $SCRATCH/3.2
my d3ds d3ds1000
rm z* *-
cd $SCRATCH/3.3
my d3ds d3ds1000
rm z* *-
breaksw

case 4:
cd $SCRATCH/4.0
my d3ds d3ds1000
rm z* *-
cd $SCRATCH/4.1
my d3ds d3ds1000
rm z* *-
cd $SCRATCH/4.2
my d3ds d3ds1000
rm z* *-
cd $SCRATCH/4.3
my d3ds d3ds1000
rm z* *-
breaksw

default:
echo "Script stopped"
goto error

endsw

error:

147

REFERENCES

1	 Janssen, H. A. and Z. Vereins, Deutsh Eng., 1895. 39: p. 1045.

2	 Nedderman, R.M., Statics and Kinematics of Granular Materials. 1992,
Cambridge, U.K.: Cambridge University Press. 352.

3	 Arroyo-Cetto, D., et al., Commpaction force in a confined granular column.
Physical Review E, 2003. 68: p. 051301.

4	 Bertho, Y., F. Giorgiutti-Dauphine, and J.-P. Hulin, Dynamic Janssen effect on
granular packing with moving walls. Physical Review Letters, 2003. 90: p.
144301.

5	 Bratberg, I., K.J. Maloy, and A. Hansen, Validity of the Janssen law in narrow
granular columns. European Physical Journal E, 2005. 18: pp. 245-252.

6	 Landry, J.W. and G.S. Grest, Granular packings with moving side walls. Physical
Review E, 2004. 69: p. 031303.

7	 Landry, J.W., G.S. Grest, and J. Plimpton, Discrete element simulations of stress
distribution in silos: crossover from two to three dimensions. Powder
Technology, 2004. 138: pp. 233-239.

8	 Landry, J.W., et al., Confined granular packings: structure, stress and forces.
Physical Review E, 2003. 67: p. 041303.

9	 Marconi, U.M.B., A. Petri, and A. Vulpiani, Janssen's law and stress fluctuations
in confined dry granular materials. Physica A, 2000. 280: pp. 279-288.

10	 Ovarlez, G. and E. Clement, Elastic medium confined in a column versus the
Janssen experiment. European Physical Journal E, 2005. 16: pp. 421-438.

11	 Ovarlez, G., C. Fond, and E. Clement, Overshoot effect in the Janssen granular
column: A crucial test for granular mechanics. Physical Review E, 2003. 67:
p. 060302.

12	 Ovarlez, G., E. Kolb, and E. Clement, Rheology of a confined granular material.
Physical Review E, 2001. 64: p. 060302.

13	 Vanel, L. and E. Clement, Pressure screening and fluctuations at the bottom of a
granular column. European Physical Journal B, 1999. 11: pp. 525-533.

14	 Vanel, L., et al., Stresses in silos: Comparison between theoretical models and
new experiments. Physical Review Letters, 2000. 84: pp. 1439-1442.

148

149

15	 Sperl, M., experiments on corn pressure in silo cells - translation and comment of
Janssen's paper from 1895. Granular Matter, 2006. 8(2): pp. 59-65.

16	 Klob, E., T. Mazozi, and E.C. Duran, Force fluctuations in a vertically pushed
granular column. European Physical Journal B, 1999. 8: pp. 483-491.

17	 Walton, O.R., Potential discrete element simulation applications ranging from
airborne fines to pellet beds. SAE 2004 Transactions: J. Aerospace, 2004.
2004-01-2329: pp. 1-14.

18	 Coppersmith, S.N., et al., Model for force fluctuations in bead packs. Physical
Review E, 1996. 53(5): p. 4673.

19	 Cundall, P.A. and O.D.L. Strack, A discrete numerical model for granular
assemblies. Geotechnique, 1979. 29(1): pp. 47-65.

20	 Campbell, C.S., Self-diffusion in granular shear flows. J. Fluid Mech., 1997. 348:
pp. 85-101.

21	 Gallas, J.A.C., et al., Molecular dynamics simulation of size segregation in three
dimensions. J. Stat. Phys., 1996. 82(1/2): pp. 443-450.

22	 Goldhirsch, I., M.L. Tan, and G. Zanetti, Molecular dynamical studies of
granular fluids I: The unforced granular gas in two dimensions. J. Scientific
Computing, 1993. 8: pp. 1-40.

23	 Kondic, L. and R.P. Behringer, Elastic energy, fluctuations and temperature for
granular materials. Europhysics Letters, 2004. 67(2): pp. 205-211.

24	 Lan, Y. and A.D. Rosato, Convection related phenomena in vibrated granular
beds. Physics of Fluids, 1997. 9(12): pp. 3615-3624.

25	 Liffman, K., et al., A segregation mechanisms in vertically shaken bed. Granular
Matter, 2001. 3: pp. 205-214.

26	 Louge, M.Y., J.T. Jenkins, and M.A. Hopkins, Computer simulations of rapid
granular shear flows between parallel bumpy boundaries. Physics of Fluids
A, 1990. 2(6): pp. 1042-1044.

27	 Luding, S., Granular materials under vibration: simulations of rotating spheres.
Physical Review E, 1995. 52(4): pp. 4442-4457.

28	 Lun, C.K.K., Granular dynamics of inelastic spheres in Couette flow. Phys.
fluids, 1996. 8(11): pp. 2868-2883.

29	 McCarthy, J.J. and J.M. Ottino, Particle dynamics simulation: a hybrid technique
applied to granular mixing. Powder Technology, 1998. 97: pp. 91-99.

150

30	 Poschel, T. and H.J. Herrmann, Size segregation and convection. Europhysics
Letters, 1995. 29(2): pp. 123-128.

31	 Rosato, A., et al., Experimental, simulation and nonlinear dynamics analysis of
Galton's board. Int. J. Nonlin. Sci. and Num. Simulation, 2004. 5: pp. 289-
312.

32	 Savage, S.B., Numerical simulations of Couette flow of granular materials:
spatio-temporal coherence and 1/f noise, in Physics of Granular Media, J.
Dodds and D. Bideau, Editors. 1991, Nova Scientific Publishers: New York.
pp. 343-362.

33	 Walton, O.R., Numerical simulation of inelastic, frictional particle particle
interactions, in Particulate Two-Phase Flow, M.C. Roco, Editor. 1992,
Butterworths: Boston. pp. 884-911.

34	 Wassgren, C.R., et al., Dilute granular flow around an immersed cylinder.
Physics of Fluids, 2003. 15(11): pp. 1-13.

35	 Sweetman, M., Addition of a chain-cell search method and a van der Waals force
model to a particle dynamics code, in Mechanical Engineering. 2003, New
Jersey Institute of Technology: Newark, NJ.

36	 Walton, O.R. Numerical simulation of inclined chute flows of monodisperse,
inelastic, frictional spheres. in Second US.-Japan Seminar on
Micromechanics of Granular Materials. 1991. Potsdam, NY: Elsevier.

37	 Walton, O.R. and R.L. Braun, Viscosity and temperature calculations for
assemblies of inelastic, frictional disks. Journal of Rheology, 1986. 30(5): pp.
949-980.

38	 Walton, O.R. and R.L. Braun, Stress calculations for assemblies of inelastic
spheres in uniform shear. Acta Mechanica, 1986. 63: pp. 73-86.

39	 Lan, Y., Particle dynamics modeling of vibrating granular beds, in Mechanical
Engineering Department. 1994, New Jersey Institute of Technology: Newark.

40	 Mindlin, R.D. and H. Deresiewicz, Elastic spheres in contact under varying
oblique forces. J. Appl. Mech., 1953. 20: p. 327.

41	 Kim, H.J., Particle Dynamics Modeling of Boundary Effects in Granular Couette
Flow, in Mechanical Engineering. 1992, New Jersey Institute of Technology:
Newark, NJ.

42	 Haile, J.M., Molecular Dynamics Simulation: Elementary Methods. 1992: J.
Wiley and Sons. 489.

151

43	 Skinner, A.E., A note on the influence of interparticulate friction on the shearing
strength of a random assembly of spherical particles. Geotechnique, 1969.
19(1): pp. 150- 157.

44 	 Thornton, C., Numerical simulations of deviatoric shear deformation of granular
media. Geotechnique, 2000. 0: pp. 43 -53.

45 	 Thornton, C. and S.J. Antony, Quasi-static deformation of particulate media.
Phil. Trans. Roy. Soc. London A, 1998. 356: pp. 2763-2782.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment Page
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction And Literature Survey

	Chapter 2: Discription of The Discrete Element Method Simulation

	Chapter 3: Simulation Results And Analysis
	Chapter 4: Conclusions And Further Work
	Appendix A: Modifications To The DEM Code

	Appendix B: Matlab Code For Piston Force Extraction

	Appendix C: Matlab Code For Particle Rotation

	Appendix D: Sample Input File
	Appendix E: Volume.F Subroutine
	Appendix F: Matlab Code To Redraw Figures From Literature

	Appendix G: Matlab Code To Process Static Data
	Appendix H: Matlab Code To Process Dynamic Data
	Appendix I: Script Files Implemented On Lemieux.Psc.Edu
	References

	List of Tables

	Table of Figures (1 of 4)
	Table of Figures (2 of 4)
	Table of Figures (3 of 4)
	Table of Figures (4 of 4)

	List of Symbols (1 of 2)
	List of Symbols (2 of 2)

