

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

H-SIMD MACHINE: CONFIGURABLE PARALLEL COMPUTING FOR
DATA-INTENSIVE APPLICATIONS

by
Xizhen Xu

This dissertation presents a hierarchical single-instruction multiple-data (H-SIMD)

configurable computing architecture to facilitate the efficient execution of data-intensive

applications on field-programmable gate arrays (FPGAs). H-SIMD targets data-intensive

applications for FPGA-based system designs. The H-SIMD machine is associated with a

hierarchical instruction set architecture (HISA) which is developed for each application.

The main objectives of this work are to facilitate ease of program development and high

performance through ease of scheduling operations and overlapping communications with

computations.

The H-SIMD machine is composed of the host, FPGA and nano-processor layers.

They execute host SIMD instructions (HSIs), FPGA SIMD instructions (FSIs) and

nano-processor instructions (NPIs), respectively. A distinction between communication

and computation instructions is intended for all the HISA layers. The H-SIMD machine

also employs a memory switching scheme to bridge the omnipresent large bandwidth

gaps in configurable systems. To showcase the proposed high-performance approach,

the conditions to fully overlap communications with computations are investigated

for important applications. The building blocks in the H-SIMD machine, such as

high-performance and area-efficient register files, are presented in detail. The H-SIMD

machine hierarchy is implemented on a host Dell workstation and the Annapolis Wildstar

II FPGA board. Significant speedups have been achieved for matrix multiplication

(MM), 2-dimensional discrete cosine transform (2D DCT) and 2-dimensional fast Fourier

transform (2D FN 1') which are used widely in science and engineering.

In another FPGA-based programming paradigm, a high-level language (here ANSI

C) can be used to program the FPGAs in a mode similar to that of the H-SIMD machine

in terms of trying to minimize the effect of overheads. More specifically, a multi-threaded

overlapping scheme is proposed to reduce as much as possible, or even completely

hide, runtime FPGA reconfiguration overheads. Nevertheless, although the HLL-enabled

reconfigurable machine allows software developers to customize FPGA functions easily,

special architecture techniques are needed to achieve high-performance without significant

penalty on area and clock frequency. Two important high-performance applications,

matrix multiplication and image edge detection, are tested on the SRC-6 reconfigurable

machine. The implemented algorithms are able to exploit the available data parallelism

with independent functional units and application-specific cache support. Relevant

performance and design tradeoffs are analyzed.

H-SIMD MACHINE: CONFIGURABLE PARALLEL COMPUTING FOR
DATA-INTENSIVE APPLICATIONS

by
Xizhen Xu

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Department of Electrical and Computer Engineering

May 2006

Copyright © 2006 by Xizhen Xu

ALL RIGHTS RESERVED

APPROVAL PAGE

H-SIMD MACHINE: CONFIGURABLE PARALLEL COMPUTING FOR
DATA-INTENSIVE APPLICATIONS

Xizhen Xu

Dr. Sotirios G. Ziavras, Dissertation Advisor 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Jie Hu, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Roberto Rojas-Cessa, 'Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Alexandros V. Gerbessiotis, Committee Member 	 Date
Associate Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Xizhen Xu

Degree: 	 Doctor of Philosophy

Date: 	 May 2006

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering
New Jersey Institute of Technology, Newark, NJ, 2006

• Master of Science in Electrical Engineering
Northwestern Polytechnic University, Xi' an, China, 1996

• Bachelor of Science in Electrical Engineering
Northwestern Polytechnic University, Xi' an, China, 1993

Major: 	 Electrical Engineering

Presentations and Publications:

X. Xu and S. G. Ziavras, "A Coarse-Grain Hierarchical Technique for 2-Dimensional FFT
on Configurable Parallel Computers," IEICE Trans. on Information and Systems,
Special Issue on Parallel/Distributed Computing and Networking , vol. E89-D, no.
2, pp. 639-646, Feb. 2006.

X. Xu, S. G. Ziavras, and T.-G. Chang, "An FPGA-Based Parallel Accelerator for Matrix
Multiplications in the Newton-Raphson Method," IFIP International Conference on
Embedded and Ubiquitous Computing, Nagasaki, Japan, pp. 458-468, Dec. 2005.

X. Xu and S. G. Ziavras, "H-SIMD Machine: Configurable Parallel Computing for Matrix
Multiplication," IEEE International Conference on Computer Design, San Jose,
CA, pp. 671-676, Oct. 2005.

X. Xu and S. G. Ziavras, "A Hierarchically-controlled SIMD Machine for 2D DCT on
FPGAs," IEEE International Conference on Systems-on-Chip, Herndon, VA, pp.
276-279, Sept. 2005.

X. Xu and S. G. Ziavras, "A Configurable and Scalable SIMD Machine for Computation-
Intensive Applications," WSEAS Trans. on Computers, vol. 2, no. 4, pp. 1021-1029,
Oct. 2003 (invited paper).

iv

X. Xu and S. G. Ziavras, "Iterative Methods for Solving Linear Systems of Equations on
FPGA-Based Machines," 18th International Conference on Computers and Their
Applications, Honolulu, Hawaii, pp. 472-475, Mar. 2003.

v

to Yun & Andy
for all the love you gave to me

vi

ACKNOWLEDGMENT

First of all, I own my deepest gratitude to my advisor, Dr. Sotirios G. Ziavras, for his

visionary guidance and endless encouragement through my PhD study at NJIT. Greatest

appreciation gives to his motivation, creativity, and rich knowledge that always inspire me

to move forward in my dissertation research. His strong support and invaluable advisement

were always there for me whenever I needed. Greatest thanks give to his enduring patience.

From his answer to each of my question to his suggestion to every writing improvement in

my dissertation, what I learned is not just a technical concept or an English word; I learned

important personal characters as an excellent professor that will continue to guide me in

the future.

I also would like to thank Dr. Jie Hu for his technical guidance and insightful

comments to this dissertation and for serving on my dissertation committee. My thanks

also extend to Dr. Alexandros V. Gerbessiotis, Dr. Edwin Hou and Dr. Roberto Rojas-Cessa

for their technical suggestions and for serving on my dissertation committee. I would like

to thank the Hashimoto family and fellowship program. Their generosity allowed me to

receive a Hashimoto Fellowship for the 2005-2006 academic year. My sincere thanks go

to all my friends and colleagues in the CAPPL lab for the help you gave and the friendship

we shared. I wish everybody from CAPPL great achievements in the future.

The love, support and encouragement from my family was essential in completing

this dissertation. I am extremely grateful for all the sacrifices my parents made to raise

me up. My deep thanks to my beloved wife, Yun Teng, for her support, encouragement,

tolerance, and patience from anywhere I needed. Without your love and understanding, I

would not be here today.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 	 1

1.1 Research Background and Problem Statement 	 1

1.1.1 	 Research Background 	 1

1.1.2 	 Motivation and Problem Statement 	 4

1.2 Research Objectives 	 5

1.3 Organization of the Dissertation 	 7

2 CSOC PLATFORMS 	 8

2.1 COTS FPGA Technology 	 8

2.1.1 	 On-chip Memory 	 9

2.1.2 	 Clock Tree Distribution and Management 	 10

2.1.3 	 1/0 Technology 	 12

2.1.4 	 Multiplier 	 13

2.1.5 	 Configurable Logic Blocks 	 13

2.2 COTS FPGA-Based Computing Systems 	 13

2.3 Custom CSOC Studies 	 16

2.3.1 	 MorphoSys 	 16

2.3.2 	 PipeRench 	 16

2.3.3 	 MATRIX 	 18

2.3.4 	 RAW 	 18

2.3.5 	 Garp 	 19

3 THE H-SIMD MACHINE 	 21

3.1 The H-SIMD Machine 	 21

3.1.1 	 H-SIMD Architecture 	 22

3.1.2 	 Memory Switching Schemes 	 23

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.1.3 	 H-SIMD Machine Features 	 27

	

3.2 	 Size-Adjustable Register File Design 	 29

4 CASE STUDIES ON THE H-SIMD MACHINE 	 32

	

4.1 	 Example 1: Matrix Multiplication 	 32

4.1.1 HSIs, FSIs, and NPIs for MM [1] 	 32

4.1.2 General-purpose Nano-processor ISA 	 34

4.1.3 Assembler Design and Data Initialization 	 35

4.1.4 Task Partitioning Analysis for Matrix Multiplication 	 37

4.1.5 Matrix Multiplication: Implementation and Test Results 	 40

4.2 Example 2: 2D Fast Fourier Transform 	 43

4.2.1 HISA for 2D T,1-1 [2] 	 43

4.2.2 Task Partitioning in 2D FFT: Performance Analysis 	 45

4.2.3 Implementation Results for 2D FFT 	 47

4.3 Example 3: 2D Discrete Cosine Transform 	 50

4.3.1 HISA ISA for DCT2 [3] 	 50

4.3.2 Task Partitioning for DCT2: Performance Analysis 	 52

4.3.3 DCT2: Implementation and Test Results 	 53

5 HLL-SUPPORTED RECONFIGURABLE COMPUTING 	 62

5.1 SRC-6 General Purpose Reconfigurable Computer 	 62

5.1.1 Hardware Architecture 	 62

5.1.2 SRC Programming Model 	 64

5.2 Case Studies 	 65

5.2.1 Matrix Multiplication 	 65

5.2.2 Image Edge Detection 	 70

5.2.3 Operation Overlapping via Multithreading 	 74

ix

TABLE OF CONTENTS
(Continued)

Chapter	 Page

6 CONCLUSIONS AND FUTURE RESEARCH 	 78

REFERENCES 	 80

x

LIST OF TABLES

Table 	 Page

1.1 Relationship Summary of ASICs, Microprocessors and FPGAs 	 3

2.1 Comparison of Configurable Systems 	 20

3.1 FPGA Resource Consumption for Different Types of Register File Designs 	 31

4.1 General-Purpose NPIs 	 36

4.2 Characteristics of the Quixilica FPU and H-SIMD MAC 	 41

4.3 Execution Time of MM for Various Test Cases 	 42

4.4 Performance Comparison between H-SIMD and Other Works 	 43

4.5 Performance Comparison of the H-SIMD Machine and a 2.8GHz Xeon
Workstation for 2D FFT 	 49

4.6 Cost-Performance Comparison of the H-SIMD Machine and the Xeon Processor 50

4.7 Frame Rates for Various Frame and Matrix Block Sizes 	 54

4.8 Performance Comparison for the 1024 x 1024-point DCT2 	 54

5.1 Experimental MM Results on a Dual-FPGA MAP Processor for Single-
precision and Double-precision Floating-point Implementations (Square
Matrices) 69

5.2 The MAP FPGA Resource Utilization Results on XC2VP100 	 70

5.3 Comparison with Other MM Approaches on FPGAs 	 71

5.4 FPGA Resource Utilization for Prewitt Edge Detection 	 73

5.5 MAP Performance for Prewitt Edge Detection 	 74

5.6 Performance Comparison for 512 x 512 Prewitt Edge Detection 	 75

5.7 Workload Characteristics of the T1 and T2 tasks 	 77

5.8 Overlapped Task Execution Time for Multithreading-based MM 	 77

xi

LIST OF FIGURES

Figure Page

2.1 Virtex II on-chip block SelectRAM memory. 	 10

2.2 Configuration of DCM and BUFG for the clock deskew and current driving. . 11

2.3 Virtex-II IOB diagram. 	 12

2.4 Xilinx Virtex-II CLB 	 14

2.5 SPLASH-2 computing platform (adapted from [4]). 	 15

2.6 Components of MorphoSys implementations (adapted from [5]) 	 17

3.1 H-SIMD machine architecture. 	 24

3.2 The HISA ISA for the H-SIMD architecture. 	 25

3.3 HC-level memory switching in H-SIMD 	 26

3.4 Nano-processor datapath and control unit. 	 27

3.5 Dual-port BRAM-based size-adjustable register file. 	 30

4.1 General-purpose NP instruction format. 	 37

4.2 Execution times of the computation and communication HSIs as a function of
Nh, p and q. 	 39

4.3 Execution times of the computation and communication FSIs as a function of
Nf, p, and Nbank 	 55

4.4 1024 x 1024 MM execution time as a function of Nh. 	 56

4.5 Execution time vs. number of FPGAs (2048 x2048 MM). 	 56

4.6 Nano-processor 1-4, 1 datapath. 	 57

4.7 Computation and I/0 communication times with (a) host PCI bandwidth and
(b) SRAM bandwidth. 	 58

4.8 Execution time breakdown of 2D 1+1' on (a) 16-bit complex numbers and (b)
IEEE754 single-precision floating-point numbers. 	 59

4.9 8 x 8-point 2D DCT engine's simulation result and its latency 	 60

4.10 Computation vs T/0 communication times as a function of Nh and p 	 60

4.11 Execution time breakdown of DCT2 for six input frames. 	 61

xii

LIST OF FIGURES
(Continued)

Figure	 Page

5.1 The architecture of the MAP processor in the SRC-6 machine [6]. 	 63

5.2 SRC-6 high end configuration with SNAP and a Hi-Bar switch. 	 64

5.3 Carte compilation process. 	 65

5.4 Illustration of MM computations and data movements 	 67

5.5 Run time schedule. 	 68

5.6 Convolution masks for Prewitt edge detection. (a) X gradient; (b) Y gradient. 	 70

5.7 Applying 3 x 3 sliding window on SRC with delay queue support. (a) the
startup latency; (b) the first, (c) the second, and (d) the third processing cycles. 72

5.8 Multithreading-based operation overlapping scheme 	 76

5.9 Thread relationship with R/W lock 	 77

CHAPTER 1

INTRODUCTION

1.1 Research Background and Problem Statement

This section presents a research background for this dissertation as it stems from

current mainstream computing paradigms. It involves general-purpose microprocessors,

application-specific integrated circuits (ASICs) and configurable systems implemented

with FPGAs. The motivations for this dissertation are also stated.

1.1.1 Research Background

Conventionally, custom ASICs and general-purpose microprocessors are the two primary

hardware technologies used to implement application algorithms [7] [8]. The choice

of the specific technology is based on a tradeoff between the contradictory design

forces of generalization and specialization. With temporal computing, general-purpose

microprocessors can provide adequate performance, reasonable efficiency and reduced

costs for many applications but often fail to meet the most demanding performance

requirements. ASICs can provide excellent performance by carrying out spatial computing

but at the cost of greater non-recurring engineering (NRE) expenses and inflexibility.

Obviously, neither ASICs nor general-purpose microprocessors can provide a very good

balance among performance, flexibility and cost.

In order to meet these challenges, configurable computing emerged in the past

decade as a significant computing paradigm [9]. It attempts to combine the advantages

of both ASICs and general-purpose microprocessors. The relationship among ASICs,

microprocessors and FPGAs is shown in Table 1.1. Specifically, a configurable computer

is characterized by hardware programmability which is not available in other computing

paradigms.

1

2

The idea of configurable computing was first proposed in 1960 by the computer

pioneer Gerald Estrin [10], and yet the technology to realize Estrin's configurable computer

did not exist at that time. However, the vision was kept intact and has recently become

possible with the development of new-generation FPGA technology. Implemented with

programmable logic that can be organized and structured to fit the natural dataflow of an

application, configurable computing refers to customizing the system logic functionality

and interconnect connectivity through post-fabrication and user-defined configuration once

before an application is run. This definition can be further extended to also include run-

time configurable computing (run-time reconfiguration, on-line reconfiguration or adaptive

computing) by which the functionality of the configurable hardware can be modified during

application execution, as needed to fit the latter. The run-time configurable computer

can better exploit underutilized hardware and properly partition a large application into

the limited set of configurable resources. However, the run-time configuration overhead

still remains a big challenge for this computing paradigm to be accepted in mainstream

configurable computing.

Configurable computers, such as SPLASH-2 [4], RENCO [11], PAM [12],

Chimaera [13], PRISM [14] and DISC [15], have proven to be capable of speeding up a

wide variety of applications, such as data encryption [16] [17], system acquisition [18],

image processing [19] and artificial intelligence [20] [21]. Typically, a configurable

computer consists of the host and the configurable system-on-a-chip (CSOC) components.

The host performs the operations that cannot be done efficiently on the CSOC, such as

data-dependent control and variable-length loops, while the computation-intensive parts

of the application are mapped to the CSOC(s). The FPGAs are the most widely deployed

CSOC hardware because of their configurability, ease of application development and

recently rich resource provision, making them increasingly popular.

High-performance parallel computers have been the driving force throughout

the computing history and have accomplished a great deal of success in solving

3

Table 1.1 Relationship Summary of ASICs, Microprocessors and FPGAs

ASICs Microprocessor FPGAs

Programmability
Software No Yes No

Hardware No No Yes

Spatial computing Yes No Yes

Temporal computing No Yes No

computation-intensive problems. To distinguish among different types, we can first

classify computers as follows according to Flynn's notions of the instruction and data

streams [22]: 1) SISD (single instruction stream over a single data stream); 2) SIMD (single

instruction stream over multiple data streams); 3) MIMD (multiple instruction streams

over multiple data streams); 4) MISD (multiple instruction streams over a single data

stream). The SISD computer is the most widely used computer model corresponding to

serial machines. The other three classes represent parallel-processing types of computers.

The SIMD architecture involves multiple processors simultaneously executing the same

instruction on different data. "General-purpose" parallel computers are generally reserved

for MIMD machines in which each processor fetches its own instruction and operates

on its own data. The MISD architecture is often deemed impractical and may represent

systolic arrays. The SIMD computing paradigm for distributed-memory parallel machines

is well-known for its scalability, data parallelism and high throughput [23] [24] [25] [26].

It will be employed as the underlying architecture for the proposed configurable computing

system. Nevertheless, the further development of supercomputers has been recently

affected adversely by high prices, long development cycles, difficulties in programming

and high maintenance costs [27]. Thus, system architects have been motivated to consider

alternatives. An effective approach to this problem is to implement the high-performance

computing architecture by employing one or more configurable components because of

4

a significant cost reduction in prototyping and rather efficient execution on the CSOCs.

Particularly this is true for platform FPGAs that have capacity of up to 10 million system

gates with 90nm VLSI technologies [28].

1.1.2 Motivation and Problem Statement

Currently most of the FPGA design tools use a design methodology which fits into the

ASIC development model. First, they implement the design using a Hardware Description

Language (HDL) and carry out functional simulations; then, logic optimization is

employed for logic synthesis and technology mapping; finally, the synthesized design is

placed and routed for the vendor's FPGA architecture. Although the ability to program

the configurable hardware in such a manner gives the user access to more functionality,

it discourages the acceptance of configurable computing platforms due to more arduous

design efforts that only a few application designers can deal with. Prior work has taken on

this challenge and made some progress. The Garp [29], System C [30], Handle-C [31] and

Streams C [32] languages made efforts to extract the hardware realization from a high-level

behavioral specification presented in a HLL (such as C/C++). However, the corresponding

compilers often require manual hardware/software partitioning which may deteriorate the

quality of the results in terms of area, power and system frequency [33]. JBits [34] and

JHDL [35] exploit the Java language to facilitate FPGA application development at the

hardware level and do not enable high-level synthesis. Additionally, all these tools are

difficult to use in exploring the data parallelism inherent in application algorithms.

Another challenge is to bridge bandwidth gaps between the various levels in

configurable systems. Generally, there are three types of connections between a host and

the CSOCs. First, like the Altera Nios SOPC [36] embedded systems, the CSOCs can serve

as functional units tightly coupled with the host processor data path. They could implement

an extension of the host processor's ISA (Instruction Set Architecture), such as custom

instructions [37] [38]. Second, the CSOCs may be used as coprocessors [29] [39] [40] [41]

5

which can be larger than a functional unit and less tightly interfaced to the host. They can

then provide more resources to take advantage of the existing parallelism in applications.

Third, the CSOCs can be used as attached processing units that communicate with the

loosely connected host through I/O interfaces [4] [42] [43]. Each scheme has its own

pros and cons. The tighter the integration is, the more efficient the communications

and yet the fewer the available programmable hardware resources. On the other hand,

a more loosely coupled style allows for greater parallelism while it may suffer from

higher communication overheads. Extrapolating from Amdahl's Law, the speedup benefits

gained from a CSOC implementation can be significantly reduced or even removed if a

bandwidth bottleneck exists. Recent work [4] [44] [45] [46] acknowledges the bandwidth

bottlenecks in configurable machines, however, without taking them into account in a

solution. Usually, either a complete SOC or a reduction in the host access frequency

can be employed to solve this problem, but at the expense of lower overall performance.

The former solution embeds the host in the CSOC(s), thus increasing tremendously the

required configurable resources. The latter can not be applied to applications that require

very frequent host accesses.

1.2 Research Objectives

In order to meet the above challenges, the objectives in this dissertation are as follows:

• The notion of a Hierarchical SIMD (H-SIMD) architecture is proposed to facilitate

the efficient execution of data-intensive applications on a configurable computer.

The target is data-parallel applications. The application is partitioned into

different granularities corresponding to the layers in the H-SIMD machine. The

enabling SIMD architecture exploits the inherent data parallelism at the application

implementation layer. An ISA is to be developed for each application area to

facilitate ease of program development and data communication overlapping with

6

computation operations. This is similar to a technique proposed in [47] for PC

clusters.

• The bandwidth bottleneck in the configurable computer is put into perspective.

Taking advantage of the hierarchical program coding for H-SIMD, as described

above, a memory switching scheme is employed to overlap communications with

computations as much as possible. The conditions to achieve a complete overlap

are studied for applications running on the H-SIMD machine. This scheme can be

applied at run-time, where part of the memory is loaded with new operands while

another part is used at that time to run the application.

• An innovative large-sized register file is designed to take advantage of the FPGA

on-chip memory with minimal resource consumption. Thus, more functional units

can fit in a single CSOC as compared to a conventional approach.

• Typical data-intensive applications are implemented on the target Annapolis

Wildstar II FPGA board that resides in our laboratory, in order to evaluate the

performance of the H-SIMD design methodology. These applications are used

widely in engineering and science. The computation time, the consumed FPGA

resources and the performance of the H-SIMD machine are measured to facilitate

performance comparisons with other computing platforms.

• A HLL-enabled reconfigurable machine is finally used to exploit the available data

parallelism in programs with independent functional units and application-specific

cache support. The purpose is to demonstrate that the overlapping technique can also

be applied to reduce the effect of runtime reconfiguration. For this purpose, a multi-

threaded overlapping scheme is proposed to reduce as much as possible, or even

completely hide, runtime FPGA reconfiguration. High-performance can be achieved

7

without significant penalty on area and clock frequency. Relevant performance and

design tradeoffs are analyzed.

1.3 Organization of the Dissertation

Chapter 2 examines state-of-the-art CSOC platforms in detail. Their features and

shortcomings for configurable system development are analyzed. Commercial-off-the-

Shelf (COTS) platform FPGAs are the chosen research platforms in this dissertation.

Chapter 3 presents the H-SIMD machine and the philosophy for the development

of the associated Hierarchical Instruction Set architecture (HISA). Each layer in this

hierarchy is studied according to its function and granularity. A memory switching scheme

is discussed to overlap communications with computations as much as possible.

Chapter 4 implements three applications on the H-SIMD machine for the purpose of

performance evaluation. The three applications are matrix multiplication, 2-dimensional

fast Fourier transform and 2-dimensional discrete cosine transform. Test results are

presented and analyzed to verify the effectiveness of the proposed H-SIMD machine.

Chapter 5 employs the HLL-enabled SRC-6 reconfigurable machine to exploit the

available data parallelism with independent functional units and application-specific cache

support. Two important high-performance applications, matrix multiplication and image

edge detection, are tested on the SRC-6 machine. The implemented algorithms are able

to achieve high-performance without significant penalty on area and clock frequency.

Relevant performance and design tradeoffs are analyzed. A multi-threaded overlapping

scheme is also proposed to reduce as much as possible, or even completely hide, runtime

FPGA reconfiguration.

Chapter 6 draws conclusions and presents future directions.

CHAPTER 2

CSOC PLATFORMS

Configurable-System-on-a-Chip (CSOC) platforms are the workhorse behind configurable

computers. Many projects have been launched to study high-performance architectures

for CSOCs. The core technology of CSOCs is generally classified into two categories:

COTS FPGAs and custom FPGAs. The former are widely deployed because of their

rich resources, low cost and standard development process. Mainstream products in

this category are made by leading FPGA companies such as Actel, Altera, Lattice and

Xilinx. Although a wide variety of COTS FPGA-based computing platforms have been

constructed and reported in the literature, two such systems stand out to exemplify what

can be achieved: SPLASH-2 [4] and DECPeRLE [12]. Custom FPGA-based configurable

systems are mainly developed in research institutions to customize FPGA techniques

for specific applications. Prominent projects in this category include MorphoSys [5],

PipeRench [48], MATRIX [49], RAW [50], and Garp [29]. Each of these projects proposes

a distinctive framework for configurable hardware/software development.

2.1 COTS FPGA Technology

The FPGA technology was invented in the mid 1980's by Xilinx Inc. and developed rapidly

into a mainstream technology. It has evolved from logic glue devices to heterogeneous

coarse-grain platform FPGAs. The implementation of IEEE single precision floating-point

multipliers on a single FPGA was even impratical in 1994 [51] whereas current state-of-

the-art FPGAs can easily implement 32 such functional units in parallel [52]. Since FPGAs

were initially designed as bit-level fine-grain devices, a large consumption of logic and

routing resources may be required for high bandwidth applications. In order to make up for

these disadvantages, platform FPGAs have recently become the focus in this field. These

8

9

advanced devices feature coarse-grain components such as built-in hardwired processors

(e.g., the IBM PowerPC or ARM core), substantial amount of on-chip SRAM, digital clock

management (DCM), and support for some of the latest I/O signaling techniques [28]. This

section presents the coarse-grain components which are embedded into Xilinx platform

FPGAs, the target of our implementations.

2.1.1 On-chip Memory

There are two types of on-chip memory in Xilinx platform FPGAs: distributed SelectRAM

and block SelectRAM. According to the Xilinx Virtex-II datasheet [28], there are four slices

in each configurable logic block (CLB) and each slice contains two 4-input LUTs (Look-Up

Tables), carry logic, arithmetic logic gates, multiplexers, and two flip-flops. LUTs are also

referred to as function generators because they can be configured as a 4-inpt LUT, 16 bits

of distributed SelectRAM memory, or a 16-bit variable-tap shift register element. The LUT

elements within a CLB can be configured to implement memory modules of up to 128 bits.

However, the implementation of the distributed SelectRAMs is extremely LUT-consuming

because it is done at the fine-grain level. In order to get bigger capacity for on-chip memory

without consuming the precious LUT and routing resources, FPGA manufacturers embed

coarse-grain block SelectRAMs in platform FPGAs which can be used for large memory

storage with the help of a few LUT and routing resources. Xilinx Virtex-II devices, for

example, incorporate a large amount of block SelectRAMs containing up to 4704Kbits.

These block RAMs supplement the distributed SelectRAMs that consume lots of LUT

resources.

Additionally, each Virtex-II block SelectRAM is a true dual-port RAM with two

independently clocked and independently controlled synchronous ports that access a

common storage area. Both ports are functionally identical. The block SelectRAM

diagram is shown in Figure 2.1. The read operation is fully synchronous: the stored data

in the given address is loaded into the output register when the rising or falling edge takes

10

place (depending on the configuration of the clock polarity). A write operation carries

out a simultaneous read operation which is performed in one of three configurations [28]:

WRITE_FIRST, READ_FIRST, or NO_CHANGE. The WRITE_FIRST option is a

transparent mode; the input data is written into the memory and also transferred into the

output register on the same clock edge. The READ_FIRST option is used to push the prior

content of the memory cell to the output register and write the input data into the memory

cell on the same clock edge. The NO_CHANGE option maintains the content of the output

register regardless of the write operation. During the NO_CHANGE mode, only the read

operation can change the output register.

Figure 2.1 Virtex II on-chip block SelectRAM memory.

2.1.2 Clock Tree Distribution and Management

All platform FPGAs have their own well-designed clock trees, which are used to drive

the synchronous components within the chip. Xilinx Virtex-II devices have 16 clock input

pins. Eight clock pins are in the upper part of the device while the other eight are located

in the lower part. Each Xilinx Virtex-II device is divided into four quadrants: North-West,

11

South-West, North-East, and South-East. The clock distribution is based on a scheme of

eight clock trees per quadrant [28].

Clock skew and current driving become major issues due to the long latencies in the

clock tree. Correspondingly, platform FPGAs contain a clock buffer and embedded digital

clock management modules (DCMs). The clock buffer, such as BUFG, can generate the

global clock signal whenever an input signal drives a clock signal or whenever an internal

clock signal reaches a certain fanout.

Figure 2.2 Configuration of DCM and BUFG for the clock deskew and current driving.

DCM is another multi-functional clock resource in a platform FPGA [28]. It features

de-skew, frequency synthesis and phase shifting functions. The de-skewed clock tree is

essential to the functions of all digital circuit designs. Frequency synthesis provides great

design flexibility. The phase shifting function is especially useful for multi-chip DDR

SRAM burst reading operations. A typical configuration of DCM and BUFG is shown in

Figure 2.2. CLKO is the clock source which is first routed through DCM and then amplified

by BUFG. The BUFG output is used to drive the synchronous design inside the FPGAs as

well as feed back the DCM component to keep CLKO and CLK in phase.

12

2.1.3 I/O Technology

In order to meet a wide variety of I/O standards and speed challenges, each user pin on

platform FPGAs is programmable for all the frequently-used single-ended or differential-

ended I/O standards. In the Xilinx Virtex-II platform FPGA family, 19 single-ended and 6

differential-ended I/O standards are supported such as LVTTL, LVCMOS33, LVCMOS15,

LVDS, SSTL, HSTL, GTL+, etc. All these programmable I/O blocks greatly facilitate

interface designs. For example, low voltage differential signaling (LVDS) with a double

data rate (DDR) register is capable of delivering 840Mbps performance. Each IOB (input-

output block) includes six storage elements, as shown in Figure 2.3 [28]. Each storage

element can be configured either as an edge-triggered D-type flip-flop or as a level-sensitive

latch. On the input, output, and 3-state path, one or two DDR registers are available. The

double data rate is directly accomplished by the two registers on each path, clocked by

the rising edges (or falling edges) from two different clock nets. The two clock signals

are generated by the DCM and must be 180 degrees out of phase. The DDR register

splitter/merger is very useful for high-speed data transmission and conserves FPGA pin

usage.

Figure 2.3 Virtex-II IOB diagram.

13

2.1.4 Multiplier

Multiplication is a common arithmetic operation in scientific applications. If

conventionally implemented with fine-grain LUTs, a high bandwidth multiplier will

consume too many FPGA resources. To avoid this problem, platform FPGA devices

feature a large number of embedded high-bandwidth multipliers. For example, there

are 144 two's-complement embedded multipliers in Xilinx Virtex-II FPGA devices [28].

These embedded multipliers offer fast, efficient means to create multiplication products

for 18-bit signed inputs. Also, cascading the multipliers with additional logic resources

can yield larger multipliers of higher bandwidth.

2.1.5 Configurable Logic Blocks

The backbone of Xilinx FPGA devices is an array of configurable logic blocks (CLBs).

They are used to build combinatorial and synchronous logic designs. Each CLB element is

tied to a switch matrix to access the general routing framework and contains four similar

slices with fast local feedback within the CLB as shown in Figure 2.4. Each slice includes

two 4-input LUTs, carry logic, arithmetic logic gates, multiplexers, and two flip-flops.

Each 4-input LUT can be programmed as a 4-input LUT, 16 bits of distributed SelectRAM

memory, or a 16-bit variable-tap shift register.

From the above analysis of state-of-the-art programmable technology, the clear trend

for COTS CSOCs can be observed: from fine-grain PLDs (Programmable Logic Devices)

to heterogeneous coarse-grain platform configurable devices.

2.2 COTS FPGA-Based Computing Systems

There is a wide variety of COTS FPGA-based computing systems that have been reported

in the literature. TM-2 is based on Altera FPGAs running as an attached functional unit

to a SUN workstation [53]. Researchers at Brown University have developed PRISM [54].

Chameleon is based on Algotronix CAL FPGAs [55]. BORG and BORG II are built with

14

Figure 2.4 Xilinx Virtex-II CLB.

Xilinx FPGAs [56]. SPYDER and RENCO are designed for run-time configuration [11].

Here, the focus is put on SPLASH-2 [4], an exemplary configurable computing system

built at the Supercomputer Research Center for defense analysis. The SPLASH-2 system

connects Xilinx 4010 FPGAs in a linear systolic array. Figure 2.5 shows a system-level

view of the SPLASH-2 architecture. SPLASH-2 is designed as an attached functional

unit to the host processor, which is typically a SUN SPARC-II. It is connected to the host

through an interface board that extends the address and data buses. The SUN host can

access memories and memory-mapped control registers via these buses. Each SPLASH-2

processing board contains 16 Xilinx FPGAs as processing elements (PEs), say X1 - X16.

In addition, the 17th Xilinx FPGA (X0) controls the data flow into the processor board.

Each PE has 256K 16-bit memory that is also mapped into the address space of the host

processor. The PEs are connected through a crossbar that is programmed by X0. The

SPLASH-2 system supports several models of computation, including PEs running in the

SIMD mode or MIMD mode. SPLASH-2 uses commercial VHDL synthesis tools for

15

application development. A VHDL model of the complete system is provided that includes

all board-level interconnects, memories, and the host interface. Applications are manually

partitioned into blocks for each used FPGA. Each block is designed individually, and the

integration of the results of all the blocks gives the solution for the application running on

SPLASH-2. Significant speedups have been reported for a wide variety of applications,

such as image processing [57] [58] and genetic programming [59]. SPLASH-2 has been

partially commercialized by Annapolis Micro Systems.

Figure 2.5 SPLASH-2 computing platform (adapted from [4]).

16

2.3 Custom CSOC Studies

Many research projects have proposed uncommon architectures for FPGAs. Most of

them have demonstrated performance success for specific applications and favor run-time

configurability. Broadly speaking, custom CSOCs can be classified as either coarse-grain

or fine-grain. For example, MATRIX [49], PipeRench [48], MorphoSys [5], and RAW [50]

are coarse-grain prototypes of configurable computing systems whereas Garp [29] features

fine granularity.

2.3.1 MorphoSys

Morph°Sys is a novel model for configurable computing targeting applications with

inherent data parallelism and high regularity, and high throughput requirements. Examples

of such applications are video compression, graphics and image processing, data

encryption, and DSP transforms. The MorphoSys architecture is composed of a CSOC,

a general-purpose processor, and a high-bandwidth memory interface, as shown in

Figure 2.6. Given the nature of the target applications, the configurable component is

organized in the SIMD fashion as an array of reconfigurable cells (RCs). Since most of the

target applications possess word-level granularity, the RCs are also coarse-grain. The core

(RISC) processor controls the operation of the configurable cell array. The high-bandwidth

data interface consists of a specialized streaming buffer to handle data transfers between

the external memory and the configurable cell array. The intent of the MorphoSys project

is to study the viability of the integrated configurable computing model in satisfying the

increasing demand for low cost stream or frame data processing needed for data-intensive

applications.

2.3.2 PipeRench

PipeRench has a striped FPGA architecture suitable for run-time configuration. The striped

FPGA differs from traditional FPGAs in two ways. First, PipeRench is configured at a

granularity that corresponds to the chosen basic unit of configuration, the pipeline stage. An

17

Figure 2.6 Components of MorphoSys implementations (adapted from [5]).

on-chip configuration cache allows pipeline stages to be loaded into FPGA cells at a very

high speed. Second, the striped FPGA has special interconnects for the implementation

of pipelined applications. The most important idea behind this striped architecture is to

virtualize an application with v virtual pipeline stages on a device with a capacity of p

physical stages (p < v) . An FPGA stripe can be configured in one clock cycle from the

data stored in a wide, on-chip configuration cache. This provides high speed configuration

and allows the unused configuration information to be stored in a single, large on-chip

RAM. Modification of the configuration cache can take place concurrently with execution,

so there is no hardware constraints to the amount of virtual hardware that can be emulated.

This greatly eases compiler development. The compiler begins by reading a description

of the architecture from a dataflow intermediate language (DIL) input. PipeRench claims

18

that its compiler will run two or three orders of magnitude faster than commercial tools

because of its deterministic, linear-time, greedy place-and-route algorithm. Yet, designed

as an attached coprocessor, PipeRench has limited bandwidth between the main memory

and the processor. This places significant limitations on the types of applications that can

realize a speedup.

2.3.3 MATRIX

The MATRIX architecture proposes the design of a basic functional unit (BFU) for a

configurable system. MATRIX is composed of an array of identical, 8-bit BFUs overlaid

with a configurable network. The coarse-grain 8-bit BFUs contain a 256 x 8 memory,

an 8-bit ALU and reduction control logic including a 20 x 8bit NOR plane. The BFUs

assume a three-level interconnection network and may be configured for operation in the

VLIW (Very Long Instruction Word) or SIMD fashion. The configurable network is a

hierarchical collection of 8-bit busses for both data and instruction distribution. Unlike

traditional FPGA interconnects, MATRIX has the option to dynamically switch the network

connections. The MATRIX port configuration is one of the keys to the architecture's

flexibility. Each port in MATRIX can be configured in one of three modes: the static

value mode, static source mode, and dynamic source mode. These modes are useful for

dataflow or control flow to BFUs. The 100MHz frequency was estimated for the prototype

MATRIX chip since a complete system organization based on the BFU is not available yet.

The MATRIX approach is too generic and at least one potential problem is the complexity

and overhead of the BFU control unit.

2.3.4 RAW

This design implements a highly parallel architecture in the form of a Reconfigurable

Architecture Workstation (RAW). The architecture is organized in the MIMD manner with

multiple instruction streams. It has multiple RISC processors, each having fine-grain

19

logic as the configurable component. RAW exposes wire delays at the ISA level. This

allows the compiler to explicitly manage gates in a scalable fashion. RAW provides a

direct, parallel interface to all of the chip resources: gates, wires, and pins. However,

the architecture has a distributed nature and the RISC processors do not exhibit the close

coupling present in the RC Array elements. This may have an adverse effect on the

performance for high-throughput applications that involve many data exchanges.

2.3.5 Garp

Garp is the architecture of a general-purpose processor tightly coupled with a configurable

array. The loading and execution of configurations on the configurable array is always

under the control of a program running on the main processor. The main processor is

a modified MIPS-II processor whose floating-point unit is replaced with a configurable

array. Garp's goal is to execute data-intensive operations on the configurable array and

leave general-purpose operations to the processor. Garp's configurable array is composed

of entities called blocks. One block on each row is known as a control block. The rest

of the blocks in the array are logic blocks that correspond roughly to the CLBs of the

Xilinx Virtex series. Software tools have been created that make it possible to write C

programs for Garp and then simulate them with approximate clock-cycle accuracy. The

major constraint on Garp is the limited amount of configurable resources that can only

speedup the application by implementing custom instructions. Table 2.1 summarizes the

characteristics of the CSOCs described in this section.

Table 2.1 Comparison of Configurable Systems

COTS Granularity Contexts Run-time configuration

Commercial FPGA Yes Fine Single Dynamic/static

MorphoSys No Coarse Multiple Dynamic

MATRIX No Coarse Multiple Dynamic

PipeRench No Coarse Multiple Dynamic

RAW No Coarse Single Static

Garp No Fine Multiple Static

20

CHAPTER 3

THE H-SIMD MACHINE

Several applications that became mainstream in the last decade are characterized by their

need for high throughput and data-intensive computations. Such examples are automatic

target recognition [5], power-flow solution [60], digital processing [61], and image

processing [19]. For this reason, mainstream computer architecture designs have become

performance-driven. Many such tasks that are data-intensive can be performed efficiently

on SIMD architectures. This trend can be seen even in the Intel Pentium series processors,

and Motorola's MPC7400 and Sony's Playstation2 [62]. Additionally, VLSI technology

has made such big progress that systems involving dozens of boards a few decades ago can

now fit in a single chip. On the other hand, the NRE cost of SOC solutions is so prohibitive

that many designs need to hedge the risks [63]. As COTS FPGAs continue to grow in

size and complexity, they provide an ideal configurable and cost-efficient solution for

prototyping, and even implementing custom parallel computing architectures. This chapter

presents the H-SIMD hierarchical architecture and its building blocks for data-intensive

applications.

3.1 The H-SIMD Machine

The H-SIMD machine is designed to aid in the task of programming applications targeting

configurable systems and attempting to fully overlap communications with computations.

Therefore, ease of programming and high performance can be achieved.

H-SIMD consists of two parts: the host PC and the CSOC array. The former is in

charge of task partitioning and is programmed with high-level languages such as C/C++

while the latter is designed to speed up the computation-intensive parts in the applications.

21

22

The SIMD architecture exploits the inherent data parallelism in the corresponding

algorithms.

3.1.1 H-SIMD Architecture

The H-SIMD control hierarchy is composed of three layers, as shown in Figure 3.1. It

comprises the host controller (HC), the FPGA controllers (FCs), and the nano-processor

controllers (NPCs). The HC lies in the host machine and controls all the FPGA chips in

the SIMD mode. Inside each FPGA, an FC is designed to run all the on-chip NPCs in the

SIMD mode as well. The NPCs control the execution of machine-level code. Similar to the

approach for PC clusters in [47], an effective instruction set architecture (ISA) needs to be

developed at each layer for each application domain. Therefore, a hierarchical instruction

set architecture (HISA) is created to facilitate the logical interconnection of the three layers.

This allows to logically partition the application into the HC, FC, and NPC layers that can

be handled efficiently at run time to balance the pipeline running from the host down to

the on-chip nano-processors. Task scheduling and the coarse-grain dataflow control of the

application are left to the HC.

HISA instructions are classified into communication instructions and computation

instructions. The former are executed by the local controller while the latter are issued

to the lower level. As shown in Figure 3.2, the HC runs the coarse-grain host SIMD

instructions (HSIs) which are classified into host-FPGA communication HSIs and time-

consuming computation HSIs. The HC executes the communication HSIs only and issues

the computation HSIs to the FCs to execute. Inside each FPGA, the FC further decomposes

the received computation HSIs into a sequence of medium-grain FPGA SIMD instructions

(FSIs). The FC runs them in a manner similar to the HC: executing the communication

FSIs and issuing the computation FSIs to the nano-processor array. The NPCs finally

decode the received computation FSIs into fine-grain nano-processor instructions (NPIs)

23

and then sequence them for execution. Additionally, the HC, the FCs, and the NPCs run at

different frequencies. The HC is the slowest component while the NPCs are the fastest.

The H-SIMD machine configures one of the FPGA chips as the master FPGA

which is responsible for sending an interrupt signal back to the HC once the previously

executed HSI has been completed at the FPGA level. Similarly, one NP within each

FPGA is configured as the master NP that sends an interrupt signal back to its FC so that

a new FSI can be issued. The combination of the HC and FCs, however, is different from

the conventional SIMD controller scheme because the former does not actually monitor

the execution. Decentralized control in the H-SIMD machine allows the execution of

instructions at one layer to be transparent to higher layer(s). On the contrary, centralized

control requires the handling of pipeline stalls and exceptions. It is one of the most

complex parts in the design and is very hard to be scalable. To summarize, the control flow

in the H-SIMD machine is two-way asynchronous instead of the conventional one-way

synchronous.

3.1.2 Memory Switching Schemes

The communication overhead between the host and the FPGA cluster is very high due

to the nature of the non-preemptive operating system on the host. Based on tests in our

laboratory, the one-time interrupt latency for a Windows-XP installed Dell Precision 650

host workstation running the PCI bus at 66MHz is about 5 ms. This penalty is intolerable

in high-performance computing because, for example, 60 x 60 floating-point matrix

multiplication takes about 1.3 ms on a single MAC (multiply accumulator) running at 160

MHz (which is within range of current FPGA technology) [64] [65]. If the host frequently

intervenes in FPGA operations, the speedup benefits gained from the parallel FPGA

implementation can be significantly reduced or even removed. Thus, a design objective

of the H-SIMD machine is to hide host communication latencies. Yet, given the system

configuration of the host machine, the latency is fixed and cannot be reduced unless a

24

Figure 3.1 H-SIMD machine architecture.

preemptive operating system or special PCI hardware interface are enlisted. In order to

overcome the latency problem, a data prefetching scheme involving memory switching is

designed for the H-SIMD machine to overlap communications with computations as much

as possible.

The HC-level memory switching scheme is shown in Figure 3.3. The SRAM banks

on the FPGA board are organized into two functional memory units: the execution data

memory (EDM) and the loaded data memory (LDM). Both the EDMs and LDMs are

functionally interchangeable. At one time, the FCs access the EDMs to fetch operands

for the execution of received computation HSIs while the LDMs are referenced by the host

for the execution of communication HSIs. When the FCs finish their current computation

25

Figure 3.2 The HISA ISA for the H-SIMD architecture.

HSI, they will switch between the EDM and LDM to begin a new iteration. The FC is a

finite-state machine responsible for the execution of the computation HSI. The FCs have

access to the NP array over a modified LAD (M-LAD) bus. The LAD bus was originally

developed by the Annapolis company and used for on-chip memory references [42]. The

M-LAD bus controller is changed from the PCI controller to the FCs. The HSI counter is

used to calculate the number of finished computation HSIs. The SRAM address generator

(SAG) is used to calculate the SRAM load/store addresses for the EDM banks. The FC

is pipelined and sequentially traverses the states LL (Load LRFs), IF (Instruction Fetch),

ID (Instruction Decode), and EX (Execute). The transition condition from EX to LL is

triggered by the master NP's interrupt signal. The interrupt request/response latency is one

cycle only as opposed to the tens of thousands of cycles between the host and FPGAs, thus

enhancing the H-SIMD's performance.

The nano-processors (NPs) form the execution units of the H-SIMD machine

datapath. Their functionality can be customized according to the application. The NPs

reside at the lowest layer of the H-SIMD machine hierarchy. Each nano-processor has

26

two large-sized register files: the load register file (LRF) and the execution register file

(ERF) as shown in Figure 3.4. Both register files work in a "memory" switching capacity,

similarly to the LDMs and EDMs; i.e., they alternate the execution of FSIs with data

loading from the FCs. After the nano-processor finishes data processing with the ERF, its

datapath will configure another LRF as an ERF and will then begin a new program flow.

At the same time, the just switched-out ERFs will be configured as LRFs to be loaded with

new operands from the EDMs controlled by the FCs; these operands will then be ready to

be processed. The benefits are obvious here: the "memory" switching scheme involving

the register files and the SRAM modules can be used to highly or completely overlap

communications with computations. Additionally, the large-sized register file reduces

significantly the frequency of nano-processor load/store operations and can get rid of a

nano-processor's local data memory. This way, higher performance and the conservation

of hardware resources can be achieved.

Figure 3.3 HC-level memory switching in H-SIMD.

27

Figure 3.4 Nano-processor datapath and control unit.

3.1.3 H-SIMD Machine Features

The H-SIMD machine's programming capabilities are based on the HISA hierarchy. Much

research has shown the big challenges in bridging bandwidth gaps for loosely coupled

configurable computing systems [29] [41] [66]. [66] presented a hybrid system architecture

model for bridging such gaps in configurable computing systems; it is a heterogeneous

system-on-chip platform. [29] demonstrated the usefulness and effectiveness of tightly

coupled processing between the microprocessor and the configurable logic array. The

H-SIMD machine is designed to meet such challenges in loosely coupled host-CSOC

systems.

Based on Amdahl's Law, the overall speedup gained by employing a configurable

computing system diminishes if the bandwidth between the host and the configurable

computing system becomes a bottleneck. The H-SIMD machine assumes a conventional

host and a CSOC array; the latter is implemented with FPGAs. In general, this model

28

consists of a general-purpose host, a configurable logic array, on-chip memory, off-chip

memory, and an interconnection network. At each level, significant speedups are only

achieved with configurations where the time to execute the computation instructions is

relatively large compared to the overhead required for the communication instructions. To

quantify this relative measure, one must consider the following equations:

where TH_exe and TF_exe are the execution times for the host and the FPGAs, respectively;

TH_comp and TF _comp are the times spent for computations by the host and the FPGAs,

respectively; TH_comm and TF_comm represent the times for communication instructions

running on the host and the FPGAs, respectively; αH and αF are assumed to represent

the overlap factors for such instructions involving the host and the FPGA levels,

respectively. The overlap factors indicate the degree of overlap between computations and

communications, and their range is 0 < αH < 1 and 0 < αF < 1. The speedup on the

H-SIMD machine over a traditional software implementation is expressed as:

where Tsoft is the time to execute the function in software running on the host.

Equations 3.1, 3.2, 3.3 and 3.4 imply that the following condition must be met for any

speedup (> 1) to occur on the H-SIMD machine:

29

The first fraction represents the inverse of the ideal speedup without any overheads;

the second and third terms are indicative of the percentage of communication overheads that

diminish the speedup. The sum of the three fractions is indicative of the overall speedup:

the smaller this sum, the larger the overall speedup for a particular application on the H-

SIMD machine. The potential overlaps discussed earlier for program execution on the

H-SIMD machine can improve the overall speedup as confirmed by Amdahl's Law: if an

enhancement is only usable for a fraction of an application, we cannot expect a speedup by

more than the reciprocal of 1 minus that fraction [67].

3.2 Size-Adjustable Register File Design

The H-SIMD machine is implemented on the Xilinx Virtex-II FPGAs in the target

Annapolis Wildstar II FPGA board [42]. The number of nano-processors (NPs) in the

H-SIMD machine is determined each time by the available FPGA resources for the running

application. Each NP's datapath is comprised of the register file, custom datapath, and data

memory I/O interface. In a conventional way, the register file is designed with HDL and

mapped onto FPGA LUTs. A 32-bit register, however, is inefficiently mapped onto LUTs.

Test results are shown in Table 3.1. 0.5% of the LUT resources are used for 32 registers.

29% of the LUTs are used by the 512-register configuration, and thus it is impossible to

deploy more than three such register files in one FPGA chip. In the H-SIMD machine,

however, a large-sized register file is preferred in order to reduce the number of load/store

operations and simultaneously fit many functional units.

Here, a size-adjustable register file is designed with even less consumption of LUT

resources. In fact, the number of registers is scalable ranging from 16 to 512. This range

meets the requirements of various applications. This design exploits the dual-port block

SelectRAMs and the DCM inside the platform FPGA upon which the NP register file is

built. In the Xilinx Virtex-II FPGA devices [28], there are 144 18Kbit dual-port BlockRAM

(BRAM) cells which are customized as coarse-grain components. The designed register file

30

Figure 3.5 Dual-port BRAM-based size-adjustable register file.

diagram is shown in Figure 3.5. One port of the BRAM is used as the writeback port from

the NP datapath; the other is used as the output to furnish two operands to the FPU in each

cycle. Generally, one port of the BRAM can load one addressed item into the output register

in each cycle. But the FPU input requires two operands in each cycle. In order to solve this

problem, the register file design takes advantage of the double-speed synchronous clock

from the DCM. Two synchronous clocks are used to drive each port. The clock for driving

the output operands to the FPU is twice as fast as the one for writing back data which is also

identical to the system clock. Once the serialized operands are available on the output port,

they are split into two operand streams for datapath execution. With this register file design,

one data result from the datapath can be written into the register file and two operands can

be read out within one system cycle. Additionally, the write mode of the BRAM cell for

the register file is configured as "Write First" (or "Read after Write"), that is, the write data

is loaded simultaneously into the output port as well as written into the addressed storage

cell. If one port attempts a read of a memory cell while the other one simultaneously writes

into that cell, and the clocks of the two ports violate the clock-to-clock setup requirement,

then a location conflict occurs and the following policy takes effect [28]:

31

• The write succeeds.

• The data out on the writing port accurately reflects the data written.

• The data out on the reading port is invalid.

• Conflicts do not cause any physical damage.

The above conflict resolution may result in a Read-After-Write (RAW) data hazard, which

has been taken care of by the pipeline forward unit. As shown in Table 3.1, the dual-clock

register file design results in a large-sized register file with the smallest LUT consumption.

Table 3.1 FPGA Resource Consumption for Different Types of Register File Designs

Size BlockRAM LUTs*

Case 1 (conventional) 32 0 392(0.5%)

Case 2 (conventional) 512 0 19663(29%)

Case 3 (Dual-Clock) 512 1 80(0.1%)

*Total LUTs: 67584

CHAPTER 4

CASE STUDIES ON THE H-SIMD MACHINE

Case studies are shown in this chapter for the purpose of performance evaluation. The

implementation and related experimental results are described for matrix multiplication

(MM), 2-dimensional fast Fourier transform (2D FFT), and 2-dimensional discrete cosine

transform (2D DCT). These applications are representative of data-intensive computations

and are used widely in engineering and science.

4.1 Example 1: Matrix Multiplication

Matrix multiplication (MM) is used widely in scientific and engineering computations

where matrix operations are rich [68]. In this section, the development of MM on the

H-SIMD machine is presented.

4.1.1 HSIs, FSIs, and NPIs for MM [1]

The HC is programmed using the host API functions for the FPGA board. They are to

set up the board, configure the FPGAs, reference the on-board/on-chip memory resources,

and handle interrupts [42]. The tailoring of the HSIs for the block-based MM algorithm

is presented here. Assume the problem C = A * B, where A, B, and C are N x N

square matrices. When N becomes large, block matrix multiplication is used to divide

the matrix into smaller blocks to exploit data reusability. Then, the multiplication of these

smaller matrix blocks is performed on the FPGA array. In the H-SIMD machine, only a

single FPGA or NP is employed to multiply and accumulate the results of one block of the

product matrix at the HC and FC levels, respectively. Coarse-grain workloads can keep the

NPs busy on MM computations while the HC and FCs load operands into the FPGAs and

NPs sequentially. This simplifies the design of the hierarchical architecture and eliminates

the need for inter-FPGA and inter-NP communications at the expense of extra memory

32

33

reference time. According to the H-SIMD architecture, the HC issues Nh x Nh sub-matrix

blocks to all the FPGAs to multiply. Nh is the block matrix size for the HSIs. Three HSIs

are designed:

• host_matrix_load(i, SLDM, Nh): Through the PCI bus, this HSI will load an Nh X
Nh matrix block into the LDM of FPGA i with the starting address SLDM in the host
memory (host-based DMA control is applied).

• host_matrix_store(i, SLDM, Nh): The computation results in the LDM of FPGA
i can be retrieved by the host through the PCI bus when the computation is done.
host_matrix _load I store are communication HSIs executed on the host.

• host_matrix_muL_accum(H A , HB, Hc , Nh): For matrix multiplication of size Nh x
Nh, HA, HB and Hc are the starting addresses of source matrix A, source matrix B
and product accumulation matrix C, respectively. This computation HSI is coded in
32 bits, issued by the HC and executed by the FCs.

The FC is in charge of executing the computation HSIs. It will decompose the

operation corresponding to host_matrix_muL_accum for size Nh x Nh into FSIs for size

Nf x Nf, where Nf is the sub-block matrix size for the FSIs. Enlisted is the same block

matrix multiplication algorithm as the one for the HC. The host_matrix_mul_accum code

is pre-programmed in the form of FSIs and is stored into the FC instruction memory. The

FSIs are 32-bit instructions with mnemonics as follows:

• F PG A_matrix _load(i, SLRF, Nf): the FC will execute this instruction by loading
the LRF of NP i with a matrix of size Nf x Nf. SLRF is the starting address in the
EDM.

• F PG A_MatriX_Store(i, SARF, N1): The NP computation results are stored into
the accumulation register file (ARF) and retrieved into the FPGA's EDM at
starting address SARF when the accumulation of the partial products is done.
F PG A_matrix _load I store are communication FSIs executed by the FCs.

• F PGA_matrix _mul_accum(Fa , Fb, Fc , A T 1): For matrix multiplication of size Nf x
Nf, Fa, Fb and Fe are the starting addresses of source matrix a, source matrix b and
product accumulation matrix c, respectively. This computation FSI is issued by the
FCs and executed by the NPCs.

34

The NPIs are designed for the execution of the computation FSI FPGA_matrix_mul

_accum. The code for F PG A_matrix _mul _accum is pre-programmed by the NPIs and

stored into the NPC instruction memory. There is only one NPI to be implemented for

MM, corresponding to floating-point multiply accumulation: NP_MAC(Rs1, R52, Rd),

where R51, R52, and Rd are registers for the function Rd = R51 * R52 + Rd. The NPI

code for the computation FSIs needs to be scheduled carefully to avoid data hazards. They

occur when operands are delayed in the addition pipeline with latency Ladder. Thus, the

condition to avoid data hazards is N2 > Ladder.

4.1.2 General-purpose Nano-processor ISA

In order to exploit the configurability of the FPGAs, additional general-purpose NPIs

are developed to augment the general-purpose scientific computations on the H-SIMD

machine. Their implementation is based on a tradeoff between application demands and

FPGA resource consumption. All these instructions are listed in Table 4.1.

Arithmetic Instructions The arithmetic instructions NP_MAC/ADD/SUB/PSUB/

MU L / DIV include MAC, addition, subtraction, absolute value subtraction, multiplication,

and division. They are executed on the SIMD NP array. Division is very expensive not

only in execution cycles but also in FPGA resource consumption. If the division operation

is very rare in the application algorithms, only one NP is configured with a divider circuit.

Routing Instructions The SIMD nano-processor array needs to communicate values

between the NPs. Based on the NEWS grid interconnection [46], the data needed by an

NP can be routed from its north/east/west/south neighbors by using an NR/ER/WR/SR

instruction.

Mask Instruction The same operation is normally applied to all the NPs simultaneously

in the SIMD architecture. There are ways to nullify the effects of an instruction on the

35

selected NPs. The mask instruction can be used to load a masking pattern into each NP's

mask bit in order to enable/disable the NP.

Branch Instruction There are two branch instructions: conditional and unconditional.

BR_P is a conditional branch instruction which puts a new instruction address into the

Program Counter (PC) if the content of the source register is greater than zero. JMP is an

unconditional branch instruction that puts a new value directly into the PC.

Compare Instruction It is a common operation to compare the values of two operands

for magnitude. Conventionally, this operation will be done with three other instructions.

The COMP instruction is designed as a general-purpose NPI to speed up the comparison

between the two operands.

General-Purpose NP Instruction Format There are 32 bits in the instruction register

which is exactly the same number as the length of the 32-bit data output from the Xilinx

Virtex-II dual-port RAM. The fields in the instruction encoding are shown in Figure 4.1.

The instruction opcode uses bits 31 to 27. In Figure 4.1(a), bits 26 to 18, 17 to 9 and 8 to

0 are used to represent the source register rs1, source register rs2 , and destination register

rd, respectively, for MAC/arithmetic/compare/routing instructions. In Figure 4.1(b), bits

26 to 18 and bits 17 to 5 are used for the base register and the new PC instruction address,

respectively. The masking pattern in Figure 4.1(c) is included in bits 17 to 0, corresponding

to NP17 to NPO. If the mask bit is ' 1 ', the corresponding NP is enabled; otherwise, it is

disabled. Bits 26 to 18 are reserved for future extension.

4.1.3 Assembler Design and Data Initialization

The assembler and data initialization software are developed using the C programming

language. The assembler is responsible for the conversion of mnemonics into machine

code for SIMD machine execution. The data initialization software can greatly facilitate

Table 4.1 General-Purpose NPIs

36

37

Figure 4.1 General-purpose NP instruction format.

application development and output the data initialization file which is consistent with the

Xilinx Core Generator format. Some other utilities for register file initialization are also

developed to bridge the gap between Xilinx EDA tools and the application mapping file in

the H-SIMD machine. All of these form the preliminary software development platform

for the H-SIMD machine.

4.1.4 Task Partitioning Analysis for Matrix Multiplication

The H-SIMD machine targets applications of high data parallelism. The input matrices for

MM are pre-partitioned into blocks of size Nh x Nh, where Nh is the matrix size at the

HC layer. The FCs further decompose Nh x Nh MMs into Nf x Nf MMs which can be

38

run on the nano-processor arrays in parallel. The block-based MM algorithm for dense

matrices is employed. After issuing i-Nh/Nf FSIs for N1 x N1 MMs, the FCs execute

FPGA_matrix_store to retrieve the final products from the LRFs and store them back

into the SRAM EDM blocks. Besides issuing the FSIs, the FC also keeps loading data

from the EDMs into the LRFs. Once the N1 x Nf MMs are done on each nano-processor,

the FCs respond to interrupt requests by first initiating another N1 x Nf MM for the nano-

processors and then loading new data into the LRFs. All these steps are done within the

FPGAs without host intervention. This greatly speeds up nano-processor execution, and

the interaction between the FC and the nano-processor arrays.

The bandwidth of the communication channels in the H-SIMD machine varies

greatly. Basically, there are two interfaces in the H-SIMD machine: a PCI bus of

bandwidth Bpci between the host and the FPGAs; the SRAM bus of bandwidth Bsram

between the off-chip memory and the on-chip nano-processor array. The HSI parameter

Nh is chosen in such a manner that the execution time Thost_compute of the HSI computation

instruction host_matrix_mul_accum is greater than Thost_i/0 which is the sum of the

execution times THsi_comm of all the communication HSIs (host_matrix_load/ store)

and the master FPGA interrupt overhead Tfpga_int . If so, the communication and interrupt

overheads can be hidden. Assume that there are q FPGAs of p nano-processors each.

Specifically, the following lower/upper bounds should hold for matrix multiplication:

where T is the nano-processor cycle time and b is the width in bits of each I/O reference.

Simulation results in Figure 4.2 show that the HSI computation and I/O communication

times vary with Nh, p, and q, for b = 64 and 'T = 7ns. With increases in the block size for

the HSIs, the computation time grows in a cubic manner and yet the I/O communication

time grows only quadratically, which is exploited by the H-SIMD machine. This means

39

that the host may load several LDMs sequentially while all the FPGAs run the issued HSI

Figure 4.2 Execution times of the computation and communication HSIs as a function of
Nh, p and q.

For FC-level Nf x N1 block MM, tweaking Nf can overlap the execution time

TFpGA_compute of the FSI computation instruction FPGA_matrix_muL_accum with the

sum TFpGA_i/o of the execution times TNp_i/0 of all the communication FSIs and the NP

interrupt overheads TNp_int. The following upper/lower bounds should hold:

Nbank is the number of available SRAM banks in each FPGA. Simulation results

in Figure 4.3 show that the computation FSI takes more execution time than the

40

communication FSIs with an increase in Nf . More SRAM banks can provide a higher

aggregate bandwidth to reduce the execution times of the communication FSIs. Using

the above analysis of the execution time, the design space is explored for a lower bound

on Nh and N1 , respectively. On the other hand, the capacity of the off-chip and on-chip

memories defines the upper bounds on Nh and Nf. For each FPGA for MM operations:

4*r*Nh2*b< Csram * Nbank and 4 *r*Nf2 * b < Con—chip, where Csram represents

the capacity of one on-board SRAM bank; Con-chip represents the on-chip memory

capacity of one FPGA; r stands for the redundancy of the memory system, so r = 2

for the memory switching scheme. In summary, the upper bounds of Nh and N1 are

4.1.5 Matrix Multiplication: Implementation and Test Results

The H-SIMD machine was implemented on the Annapolis Wildstar II PCI board

containing two Xilinx Virtex-II 6000 FPGAs [27]. The Quixilica FPU [69] is employed to

build up the NP's floating-point MAC. Table 4.2 gives the characteristics of the Quixilica

FPU and MAC for the 64-bit IEEE double-precision format. In the design environment,

ModelSim5.8 and ISE6.2 are enlisted as development tools. The Virtex-II 6000 can hold

up to 16 NPs running at 148MHz. Broadcasting the FSIs to the nano-processor array

is pipelined so that the critical path lies in the MAC datapath. The 1024 x 1024 MM

operation is tested. The block size Nf of the FSIs is set to 8. The test results break down

into computation HSIs, host interrupt overhead, PCI reference time, and initialization and

NP interrupt overhead, as shown in Figure 4.4. The performance of the H-SIMD machine

depends on the block size Nh. When Nh is set to 64, the frequent interrupt requests to the

host contribute to the performance penalty. When Nh is set to 128, the computation time of

the coarse-grain HSI does not increase long enough to overlap the sum of the host interrupt

overhead and the PCI sequential reference overhead. If Nh is set to 512, there is a long

enough computation time to overlap the host interrupt. However, the memory switching

41

Table 4.2 Characteristics of the Quixilica FPU and H-SIMD MAC

fpAdder fpMultiplier MAC

Pipeline Stages 12 11 24

Slice Usages 815 923 1802

Clock Speed(MHz) 153 150 148

scheme between the EDMs and LDMs does not work effectively because of the limited

capacity of the SRAM banks, which results in penalties from both host interrupts and PCI

references. If Nh is set to 256, the H-SIMD pipeline is balanced along the hierarchy such

that the total execution time is very close to the peak performance 2 * p * q * freq, where

all the nano-processors work in parallel. The H-SIMD machine can sustain 9.1 GFLOPS,

which is 95% of the peak performance. The execution overhead on the H-SIMD machine

comes from LDM and LRF initialization, and nano-processor interrupts to the FCs.

For an arbitrary size of square MM operations, a padding technique is employed to

align the size of the input matrices to multiples of Nf because F PG A_matrix_mul_accum

works on Nf x N1 matrices. N1 is set to 8 during the test. Let A and B be square matrices

of size N x N. If N is not a multiple of eight, then both the A and B input matrices

are padded up to the nearest multiples of eight by the ceiling function. The padded zeros

will definitely increase the H-SIMD's computation overhead and lower its performance.

Table 4.3 presents test results for different cases. For matrices of size less than 512, the

H-SIMD machine is not fully exploited and does not sustain high performance. For the

large matrix (N > 512), the H-SIMD machine with two FPGAs can achieve about 8.9

GFLOPS on average. In fact, the H-SIMD machine can be built with multiple FPGAs

because no inter-FPGA communications are needed. Figure 4.5 shows the relationship

between the execution time of 2048 x 2048 MM and the number q of FPGAs. There exists

a saturation point, beyond which the number of FPGAs does not affect the performance

42

Table 4.3 Execution Time of MM for Various Test Cases

Matrix size H-SIMD machine(ms) GFLOPS

200 7 2.28

397 18 6.952

601 47 8.683

999 225 8.849

2001 1720 9.039

3999 13882 9.027

significantly. For the case study of block matrix multiplication, seven Virtex II 6000 FPGAs

can be enlisted to achieve 31.85 GFLOPS for MM based on the 64-bit IEEE floating-point

format.

Table 4.4 compares the performance of the H-SIMD machine with that of previous

works on FPGA-based floating-point matrix multiplication [70] [71]. Their designs were

implemented on Virtex II Pro125 FPGAS (55,616 slices) as opposed to the Virtex II 6000

(33,792 slices). The H-SIMD performance is scaled to match the Virtex II Pro125. It

is estimated that 26 NPs can fit into one Virtex II Pro125 running at 180MHz and can

achieve a peak performance of 9.36GFLOPS. The H-SIMD running frequency can be

further increased if optimized MACs are used. [70] [71] presented systolic arrays to achieve

8.3 GFLOPS and 15.6 GFLOPS on a single Xilinx Virtex II Pro XC2VP125, respectively.

However, the H-SIMD machine can be used as a computing accelerator for the workstation,

thus providing tremendous flexibility [68]. The systolic array approach does not fit well into

this paradigm because of the specialized approach, significant interrupt overhead, FPGA

configuration overheads, and large size of configuration files.

43

Table 4.4 Performance Comparison between H-SIMD and Other Works

H-SIMD [70] [71]

Frequency 180 500 200

Number of PEs 26 24 39

GFLOPS 9.36 8.3 15.6

Hide interrupt overhead Yes No No

configuration file size(MB/100 cases) 5 500 500

4.2 Example 2: 2D Fast Fourier Transform

The two-dimensional fast Fourier transform (2D 141,1) is a popular algorithm used widely

in signal processing. It is taken as an example to show the effectiveness of the H-SIMD

machine.

4.2.1 HISA for 2D FFT [2]

FFT is an efficient algorithm to compute the discrete Fourier transform (DFT). FFT can

reduce the computation complexity of the N-point DFT from 0(N2) to 0(Nlog N). For a

discrete-time sequence x (n), where n = 0„ N — 1, its 1D DFT is defined as [72]:

where the twiddle factors e-j n k2π I N can be pre-computed and stored in the on-chip memory

of the FPGAs. The 2D FFT can be carried out by applying 1D 1414"1' in parallel to all the

rows and then in parallel to all the columns, or vice versa. As already mentioned, the

H-SIMD machine can fit a wide variety of applications characterized by data parallelism.

Three HSIs at the topmost layer are needed for 2D FFT as follows:

44

• host_f ft2_load(LDMi ,Nh): This HSI will load each FPGA's LDMi memory
sequentially via the host PCI bus (host-based DMA control is used);

• host_f ft2_retrieve(LDMi ,Nh): The final results are stored in the switched-out
LDMi and can be retrieved by the host sequentially using DMA through the PCI
bus when the last issued HSI is done. host_f ft2_load/retrieve are communication
HSIs for 2D 14T4-1';

• host_f ft2(HA,HB,Nh): HA is the input matrix of size Nh x Nh and
HB = f ft2(HA). This is the computation HSI issued for the FPGA executions.

The FSIs in the middle of the HISA hierarchy run on the FPGA hardware. Assume

that there are q FPGAs with p nano-processors each. There are four FSIs:

• FPGA_f ft_load(Fa ,LRFi,Nh): There are two register files in nano-processor i,
LRFi and ERFi . FC will execute this instruction by loading each nano-processor's
LRF with a row vector of size Nh from matrix Fa of size Nh /q x Nh. Fa is the
starting addresses of the input;

• FPGA_f ft(Fa , Fb, Nh): matrix Fb of size Nh /q x Nh is produced by applying 1D
FFT to each row of the input matrix Fa ;

• FPGA_f ft_transpose(Fa , Fb, Nh): matrix Fa of size Nh /q x Nh is transposed
and stored into the FPGA's communication data memory (CDM) via the high-speed
SRAM interface with source starting address Fa and destination starting address Fb.
CDM stores the nano-processor computation results which can be transmitted via the
8Gbytes/s LVDS connection to other FPGA chips;

• FPGA_lvds_comm(Fa ,Nh): matrix Fa of size Nh/q x Nh within one FPGA is
transmitted by a LVDS connection to neighbor FPGAs.

The NPIs constitute three instructions: N P_load(Ra , Nh), N P _retrieve(Ra , Nh),

and 1D Nh-point NP_f ft(Ra ,Nh). The last instruction can be produced by the

Annapolis CoreFire libraries [73]. The customized 14F1' nano-processor is shown in

Figure 4.6. The input data in the experiments is a vector Ra of Nh = 64, 256, or 1024-point

values represented as 16-bit complex or IEEE754 single-precision floating-point numbers.

Ra is the starting address of the vector residing in the ERF memory of each nano-processor.

The input matrices for 2D 1414"1' have size Nh x Nh, where Nh < 1024 in the current

implementation due to the recent CoreFire6.2.03 release by Annapolis Micro Systems and

45

the capacity constraints of the on-board SRAMs. Each FPGA is assigned Nh/q vectors of

size Nh, where q is the number of FPGAs in the H-SIMD machine. For each FPGA chip,

the FC issues FPGA_f ft(Fa , Fb, Nh) to carry out Nh /q Nh-point 1D FFts which can be

run on the nano-processor arrays in parallel. After finishing the FFTs of the first dimension

vectors, the FCs execute FPGA_f ft_transpose(Fa , Fb, Nh) to transpose the results and

write back into the CDMs. Then, FPGA_lvds_comm(Fb ,Nh) is invoked to broadcast the

results from CDM to the neighbor FPGAs' EDMs in the ring network. The inter-FPGA

communication cost is negligible due to the high-speed 8Gbytes/s LVDS connections

between FPGAs. After that, FC issues another FPGA_f f t(Fa , Fb, Nh) to transform the

second dimension vectors. The FCs also respond to nano-processor interrupt requests by

first initiating a new FFT execution for the nano-processors and then loading new data into

the LRFs. All these steps are done within the FPGAs without host intervention.

4.2.2 Task Partitioning in 2D FFT: Performance Analysis

The bandwidth of the communication channels in the H-SIMD machine varies greatly.

Basically, there are three interfaces in H-SIMD: the PCI bus with a bandwidth Bpci of

133MHz x 64 bits, the SRAM bus with a bandwidth Bsram of 960Mbytes/s, and the

LVDS inter-FPGA connections with a bandwidth Blvds of 8Gbytes/s. In the case of

2D 14F1' on an Nh x Nh matrix, assume that Nh /q x Nh sub-matrices of an Nh x Nh

matrix are uniformly distributed among the q FPGAs, with p nano-processors each.

The host_f ft2(HA ,HB ,Nh) HSI consists of three operations on the input matrix

HA, i.e., the Fa sub-matrix of size Nh/q x Nh from matrix HA will go through

1D FFTs on its rows and transposed columns, sub-matrix transpose and inter-FPGA

communications. The execution time of the three operations is denoted as T1D_f ft, Ttrans,

and Tfpga_ fpga , respectively. The total computation time for host_f ft2(HA, HB, Nh) is

Tcompute(host_f ft2) = 2 * Nh / (q * p) * T1D_fft 	 Ttrans 	 Tfpga— fpga 	 Tinitialize_fft.

On the other hand, the communication time Ti/o_pci of host_f ft2_load/retrieve

46

depends on the available PCI I/O bandwidth and the interrupt latency Thos t_int, i.e.,

T/04,6 = 2* b* Nh2Bpci +Thost_int , where b is the width in bits of each transaction. Pipeline

balancing is guaranteed if Tcompute is greater than or equal to Ti/o_pci , and the computations

fully overlap I/O communications. Specifically, the following approximations hold for 2D

where 7 is the nano-processor cycle time. For the configuration p = 6, Bpci =

133MHz x 64bits ,Thost_int = 3.5ms, b = 32 and 'r = 1 lns on 16-bit complex numbers,

the simulation results in Figure 4.7(a) show that the computation time varies with the size

Nh of the matrix and the number q of FPGAs. The communication time is independent

of the number of FPGAs because the data traffic on the PCI bus, given a problem size

Nh, is fixed and the input vectors from the host are uniformly distributed among all the

FPGAs. With increases in the matrix size for 2D FFT, the computation time grows faster

than the I/O communication time, which is exploited by H-SIMD to implement host-level

memory switching (the FPGAs waste no time to wait for data loads/retrievals). This

47

condition is easier met for applications with high computation load (e.g., floating_point

matrix multiplication) rather than with low computation load (e.g., integer FFT). In fact, a

full overlap is achieved when the input matrix has size greater than 896 and there are two

FPGAs. If more FPGAs are enlisted, H_SIMD is difficult to fully overlap communications

with computations for 2D FFT on 16-bit complex numbers.

At the FC level, FPGA_f ft(Fa , Fb, Nh) is carried out on all the nano-processors

while vectors of size Nh are loaded into LRF at the same time. For effective

nano-processor-level memory switching, the execution time TNpi-f ft of the 1D Nh-point

FFT NPL-f ft(Ra,Nh) must be greater than p times the register file reference time

TNp_load, i.e., TNPL-f ft > p * TNP-load, where TNpI-f ft = Nh * T and TNp_load =

Nh / (Bsram * Nbank)• Nbank is the number of the SRAM banks available to each FPGA.

In fact, this condition can be easily met when Bsram = 960Mbytes/s,p = 6, 7- = 1 lns

and Nbank = 6, as shown in Figure 4.7(b). If computations do not overlap fully

communications at the FC level, more SRAM banks can be employed to provide higher

aggregate bandwidth.

4.2.3 Implementation Results for 2D FFT

The 2D WI' is also implemented on a host PC workstation and an Annapolis FPGA

board containing two Xilinx Virtex-II 6000 FPGAs. The host is given a program of 2D

transformation H f ft2(Nh, Nh) = f f t2(HA), where HA and Hf ft2 are matrices of size

Nh x Nh. Nh /q vectors of size Nh are assigned to each FPGA for 1D Nh-point FF1', where

Nh is the size of the HC-level matrix. Two kinds of nano-processors are implemented on

the H-SIMD machine with 16-bit complex numbers and IEEE754 single-precision floating-

point numbers, respectively. The CoreFire Design Suite is a dataflow-based application

package that provides end-users with a large collection of cores, including host access

cores. A 32-bit counter is embedded inside the FPGAs to count the elapsed cycles between

the initiation of the first HSI and the completion of the last HSI. After Xilinx ISE6.2 Place &

48

Route, six 89MHz nano-processors can fit in one FPGA for 16-bit complex numbers while

only one 80MHz nano-processor for single-precision floating-point numbers. 2D FFTs on

64 x 64, 256 x 256 and 1024 x 1024 matrices were tested. The results were compared

with results produced by Matlab. The H-SIMD machine has precision 10 -5 if the Matlab

results are assumed as the benchmark. The timing results break down into inter-FPGA

communication, interrupt overhead, PCI reference time and 1D FFT/transpose computation

time, as shown in Figure 4.8. The performance depends heavily on the interrupt overhead,

1D FFT/transpose computation time and host-PCI reference time. All the other factors

contribute little to the total execution time, which is desirable for the H-SIMD design.

When Nh is set to 64, the frequent interrupt requests to the host contribute excessively to the

performance penalty. When Nh is set to 256, the computation time does not increase long

enough to overlap fully the sum of the costs for host interrupts and PCI-SRAM memory

sequential references. If Nh is set to 1024, the designed overlap is so good that the interrupt

and communication overheads are hidden, and all the nano-processors work in parallel.

Only arithmetic operations are counted for the input 16-bit complex numbers. The

million-operations-per-second (MOPS) metric is used for the purpose of benchmarking.

The operation count is consistent with the one in [74]. For complex-data and real-data

FFTs, the number of operations is 5 * N * log2 N and 2.5 * N * log2N, respectively.

Based on the same 2D FFT problem, results are compared in Table 4.5 for H-SIMD

MOPS with 16-bit complex numbers and MFLOPS for IEEE 754 single-precision numbers

and the performance of a 2.8GHz Xeon processor as presented in [75]. The H-SIMD

machine suffers a great deal of performance loss due to frequent host interventions when

the application does not have enough parallelism to exploit. However, it can outperform

the powerful Xeon processor when applications show enough parallelism. This proves that

H-SIMD fits well the data-intensive applications.

A cost-performance analysis of the H-SIMD machine and a Xeon processor is in

order now. The ten million system gates in the Virtex II FPGA consume about 250 million

49

Table 4.5 Performance Comparison of the H-SIMD Machine and a 2.8GHz Xeon
Workstation for 2D FFT

Matrix

size

H-SIMD on

16-bit complex

numbers

(MOPS)

H-SIMD on

IEEE754 single

precision real

numbers

(MFLOPS)

2.8 GHz Xeon

on IEEE754

single precisions

(MFLOPS)

64 68.8 33 2700

256 1796 557 3100

1024 7643 2630 2300

transistors [76]. The H-SIMD machine built on the Annapolis board contains two Virtex

II FPGAs. The current implementation employs roughly 500 million transistors. On

the other hand, a 2.8GHz Xeon processor contains about 300 million transistors [77].

For 1024 x 1024 FFT on IEEE-754 single-precision numbers, it takes 23 ms on a Xeon

processor as opposed to 20 ms on the H-SIMD machine. According to a widely used

VLSI complexity model, the cost C of implementing an algorithm is defined as C =

ATN , where A is the chip area, T is the execution time and N is the exponential weight.

The chip area is directly proportional to the number of transistors, so the latter can be

substituted for the former in the cost equation. Here, N is chosen as 3 to showcase the

performance gain in the computation cost because of the slogan "silicon is free". The VLSI

cost and speedup results in Table 4.6 are normalized with respect to the Xeon processor.

The H-SIMD machine provides a speedup of 15% while its VLSI cost increase is only

9%. The cost-efficiency of the H-SIMD machine can be further increased by employing

faster FPGAs than the Virtex II 6000 (90MHz). [71] reported 210MHz for floating-point

operations on the Virtex2Pro. For recent FPGAs, like Virtex 4 and Stratix II, both Xilinx

and Altera claim clock frequencies of 500MHz [64] [65]. Unlike gigahertz microprocessors

50

Table 4.6 Cost-Performance Comparison of the H-SIMD Machine and the Xeon
Processor

System

Transis-

tors

(millions)

Execution

Time(ms)

VLSI Cost

(normalized)

Speedup

(normalized)

2.8GHz

Xeon
286 23 1 1

H-SIMD

(Virtex-II)
700 20 1.85 1.15

with power problems, state-of-the-art FPGAs still have much room to grow their clock

speed. It is expected to achieve a dramatic cost reduction in the near future with steady

advances in FPGA technologies.

4.3 Example 3: 2D Discrete Cosine Transform

The two-dimensional discrete cosine transform (2D DCT or DCT2) is a popular algorithm

widely used in image compression. Here, it is mapped onto the H-SIMD machine for

performance evaluation.

4.3.1 HISA ISA for DCT2 [3]

DCT2 is a technique widely used in image processing and adopted by several compression

standards such as H.261, H.263, and MPEG-4. For an input image s of size N x N, the

2D DCT is computed in a simple way: the 1D DCT is applied to each row of s and then to

each column of the result or vice versa. Thus the transform is given by:

51

where Cu = C, = V1/2 for u = v = 0 and Cu = Cv = 1 otherwise; u, v = 0, . . . , N — 1.

The basis vectors of cos (2x +1)uπ/2n can be pre-computed and stored in the on-chip memory

of the FPGA for better performance. Assume large images are divided into blocks of size

8 x 8. These blocks are transformed via an 8 x 8 forward DCT2. Here, the HISA tailoring

is shown for DCT2 with the H-SIMD design methodology.

Three HSIs are needed for DCT2. They are programmed with the software API

library for the target Annapolis FPGA Wildstar II board.

• host_dct2_load(LDM, Nh): This HSI loads the FPGA's LDM memory with an input
matrix of size Nh x Nh via the host PCI bus;

• hoSt_dct2(H A, HB, Nh): HA is the input image of size Nh x Nh and HB =

dct2(H A);

• host_dct2_retrieve(LDM, Nh): The final results are stored in the switched-out
LDM and can be retrieved by the host through the PCI bus.

The FSIs in the middle of the HISA hierarchy run on the FPGA hardware. Assume

that there are p nano-processors in each FPGA chip. There are two FSIs:

• F PG A_dct2_load(Fa , LRFi , N1): FC will execute this instruction by loading each
nano-processor's LRF with a block matrix of size Nf x N1 from matrix Fa of size

Nf2xp. Fais the starting address of the input;

• F PG A_dct2(Fa , Fb, Nf): matrix Fb of size 	 x p is stored into EDM and produced
by applying DCT2 to the input matrix Fa .

The NPIs constitute only one customized instruction: 8 x 8 point DCT2,

N P _dct2(Ra , Nf). Its datapath is produced by the Xilinx CoreGenerator [76] and targets

image blocks of size 8 x 8, i.e., Nf = 8. The input data in our experiments is stored in a

vector Ra of size 64 represented as 8-bit signed integer numbers. Ra is the starting address

of the vector residing in the ERF memory of each nano-processor.

52

4.3.2 Task Partitioning for DCT2: Performance Analysis

DCT2 also uses the two interfaces in H-SIMD: the PCI bus with a bandwidth B pci =

133MHz x 64 bits and the SRAM bus with a bandwidth B,„„,,, = 960Mbytes / s. In the

case of DCT2 on an Nh x Nh matrix, assume that N/64 block matrices of size 8 x 8 are

uniformly distributed among p nano-processors. The HDL simulation results in Figure 4.9

show that the CoreGenerator-produced 8 x 8-point DCT2 has a latency Ldct2 = 117cycles.

For the total computation time Tcomp_host.s_dct2 of hoSt_dct2(H A, 11.131 Nh):

where TNP_dct2_8 x 8 is the nano-processor execution time of DCT2 on a block matrix of

size 8 x 8 and Nframe is the number of input image frames. On the other hand, the

communication time Ti/opci of host_dct2_load/retrieve depends on the available PCI I/O

bandwidth and the interrupt latency:

where b is the width in bits of each transaction. Pipeline balancing is guaranteed

if Tcomp_hosts_dct2 is greater than or equal to Ti /o_pci , and the computations fully

overlap I/O communications. For p = 2, 4 or 8, Bpci = 133MHz x 64bits,

Thost_int = 1.8772S, b = 8, Nframe = 6 and T = 8ns for 8-bit signed integer numbers,

the simulation results in Figure 4.10 show that the computation time varies with two

parameters: Nh and p. By tweaking these parameters, the computation time grows faster

than the I/O communication time.

For effective nano-processor-level memory switching, the execution time

TN P_dct2_8 x 8 of an 8 x 8-point DCT2 NP_dct2(Ra, 8) must be greater than p times

the register file reference time TN p_load. In fact, this condition can be easily met when

Bsram = 960MbyteS / S,p = 8, 7- = 8ns.

53

4.3.3 DCT2: Implementation and Test Results

DCT2 is also implemented on a host PC workstation and an Annapolis FPGA board. The

host is assigned the DCT2 transform Hdct2(Nh, Nh) = dCt2(H A), where HA and H dct2 are

matrices of size Nh x Nh.

The DCT2 cores were generated by the Xilinx CoreGenerator [76] and were

configured for 8_bit input data, 16_bit coefficients, internal data and output results. After

Xilinx ISE6.2 Place&Route, eight 126MHz nano-processors fit in each FPGA. DCT2

was tested on matrices of size 128 x 128, 256 x 256, 512 x 512 and 1024 x 1024. The

timing results break down into the interrupt overhead, PCI reference time and DCT2

computation time, as shown in Figure 4.11 when Nh is set to 128, the frequent interrupts

to the host contribute excessively to the performance penalty. When Nh is 256 or 512,

the computation time does not increase long enough to fully overlap the sum of the host

interrupt and PCI-SRAM sequential reference overheads. If Nh = 1024, the designed

overlap scheme is so good that the interrupt and communication overheads are hidden and

all the nano-processors work in parallel.

Denote by tB the DCT2 time for one HSI-level Nh x Nh matrix. If the frame size

is N x N, then the time for DCT2 on a frame is t frame = N2 /N * tB and the frame rate

is R = 1/t frame. The frame rates are shown for various frames and HSI matrix blocks in

Table 4.7. Nh = 1024 scores the highest frame rate. This is due to the combination of

HISA and the memory overlap scheme.

Table 4.8 compares the performance of the implementation on one Virtex II 6000

FPGA to the performance of a 2GHz Pentium processor as presented in [78]. If MMX

and streaming SIMD instructions are enabled on the latter, H-SIMD yields a speedup of

about 6% ~ 18%; otherwise, the speedup is about four. This shows the effectiveness of the

H-SIMD architecture on data-intensive applications.

Table 4.7 Frame Rates for Various Frame and Matrix Block Sizes

HSI Matrix
Size 128 256 512 1024

Frame Size

1024 x 1024 45 129 243 516

2048 x 2048 11 32 60 129

4096 x 4096 3 8 15 32

8192 x 8192 0.7 2 3 8

54

Table 4.8 Performance Comparison for the 1024 x 1024-point DCT2

Execution time (ms)

2GHz Pentium

Integration implementation 7.9

MMX instructions 2.29

MMX and streaming SIMD 2.05

H-SIMD machine 1.93

55

Figure 4.3 Execution times of the computation and communication FSIs as a function of
Nf, p, and Nbank.

0 HSI computation instructions m host interrupt
❑ PCI access 	 ❑ initialization&NP interrupts

56

Figure 4.4 1024 x 1024 MM execution time as a function of N11 .

Figure 4.5 Execution time vs. number of FPGAs (2048 x 2048 MM).

Figure 4.6 Nano-processor FFT datapath.

57

58

Figure 4.7 Computation and T/0 communication times with (a) host PCI bandwidth and
(b) SRAM bandwidth.

59

Figure 4.8 Execution time breakdown of 2D FFT on (a) 16-bit complex numbers and (b)
IEEE754 single-precision floating-point numbers.

Figure 4.9 8 x 8-point 2D DCT engine's simulation result and its latency.

60

Figure 4.10 Computation vs 1/0 communication times as a function of Nh and p.

Figure 4.11 Execution time breakdown of DCT2 for six input frames.

61

CHAPTER 5

HLL-SUPPORTED RECONFIGURABLE COMPUTING

In previous chapters, a high-performance H-SIMD machine is investigated. Although

it is designed to facilitate ease of application development, the hardware description

language is employed to customize the logic functions at the FPGA and nanoprocessor

layers. The HDL programming is very different from the algorithmic programming

languages that are typically used by software developers. This chapter studies the SRC-6

reconfigurable machine that can use a high level algorithmic language, like the ANSI C

language, to program the FPGA devices. Two important high-performance applications,

matrix multiplication and image edge detection, are tested on the SRC-6 machine. The

implemented algorithms are able to exploit the exposed data parallelism with independent

functional units and application-specific cache support. Relevant performance and design

tradeoffs are analyzed. A multi-threaded overlapping scheme is also proposed to reduce as

much as possible, or even completely hide, runtime FPGA reconfiguration overheads.

5.1 SRC-6 General Purpose Reconfigurable Computer

5.1.1 Hardware Architecture

The SRC-6 architecture is a scalable, hybrid workstation-FPGA platform capable of

supporting a combination of up to 512 Intel microprocessors and 256 MAP processors with

common shared memory. The MAP processor consists of two user-programmable Xilinx

FPGA devices, six 4MB banks of DMA-enabled On-Board Memory (OBM), and a control

FPGA [6]. Figure 5.1 shows the architecture of the SRC MAP processor. It is designed to

expose the data parallelism in applications. The SRC-6 machine is also known for its high

bandwidth interconnections. A system-level SRC-6 machine can be configured as a cluster

of MAP processors interconnected via patented high-bandwidth interconnections: SNAP

62

63

and the Hi-Bar switch, as shown in Figure 5.2. A host microprocessor is connected to a

MAP processor via a SNAP interface. The SNAP interface can be plugged directly into

the microprocessor's DIMM slot, allowing SRC systems to sustain higher interconnection

bandwidths than other PCI-based reconfigurable machines [42]. SNAP uses separate input

and output ports, with each port currently sustaining a data payload bandwidth of 1.4GB/s.

The SRC-patented Hi-Bar interconnection is characterized as a scalable, high-bandwidth

and low-latency switch. Microprocessors, MAPs and common memory nodes can all be

connected to Hi-Bar. Each I/O port can sustain a data payload of 1.4 GB/s for an aggregate

bisection data bandwidth of 22.4 GB/s per 16 ports.

Figure 5.1 The architecture of the MAP processor in the SRC-6 machine [6].

64

Figure 5.2 SRC-6 high end configuration with SNAP and a Hi-Bar switch.

5.1.2 SRC Programming Model

The SRC programming model, named Carte, uses a similar compilation process with

conventional microprocessor-based computing systems. The C syntax can be applied to

program MAP processors as well as host microprocessors [79]. Two types of application

source files must be compiled for the Intel processor and the MAP processor, respectively.

This is shown in Figure 5.3. Source files of the first type intended for execution on the

Intel host are compiled using the Intel C Compiler (ICC). Source files of the second type

that invoke FPGA macros are compiled with the MAP compiler to be executed on the MAP

processor. Here, a macro is defined as a piece of digital logic designed to implement certain

functions. SRC provides a standard built-in macro library for the implementation of DMA

controllers, accumulators, counters, floating-point units and so on. Since users often wish

to extend the existing set of macro operations, the Carte compiler allows users to integrate

65

their own custom macros into the compilation process for higher speedups achieved via

custom hardware.

Figure 5.3 Carte compilation process.

5.2 Case Studies

5.2.1 Matrix Multiplication

The matrix multiplication kernel is a widely used computation engine for many scientific

applications. The implemented algorithm employs an array of independent MACs and

an array-based cache to exploit the exposed data parallelism. The data independence of

the MACs allows the MAP processor to maximize the available data parallelism without

data/structural hazards. The array-based cache, built with on-chip memory, is used to store

rows of the input matrix. In order to efficiently provide computations with communicated

input data, the number of cached rows is equal to the number of independent MACs. We

instantiate P independent MACs. The block-based MM algorithm is described as follows:

1) Use DMA to transfer the input matrix blocks A and B from the host memory to the

OBM banks A and B, respectively.

66

2) Cache P rows of matrix A and one column of matrix B from the OBM banks to the

on-chip array-based cache.

3) Initiate P independent MAC computations in parallel; the results are the corresponding

column parts of the product matrix C and are stored into the OBM bank C.

4) Cache the next column of matrix B and repeat Step 3 until all the columns of matrix B

are processed.

5) Go to Step 2 until all the rows of matrix A have been processed.

An illustration of this algorithm is demonstrated in Figure 5.4, where the product of

A(4 x N) multiplied by B(N x 4) is C(4 x 4); i.e., C = A x B. N represents the number

of elements in a row of matrix A or in a column of matrix B. The parameters P and N

depend on the available FPGA resources and the specific implementation. According to our

tests on the SRC-6 machine, up to 30 and 60 independent MACs can be implemented on

a single MAP processor for IEEE 754 double-precision and single-precision floating-point

operations, respectively. The timing reports show that the system can run at 100 MHz. This

algorithm has a peak performance of 2 * P * f FLOPS (f is the running clock frequency)

since each MAC performs two operations per cycle. Our scalable approach that can always

take advantage of additional FPGA resources ensures that the data parallelism in MM can

be fully exploited by the independent MACs.

Execution of an algorithm on the MAP processor generally goes through four steps:

1) the included FPGA devices are first configured with custom hardware logic; 2) input

data are loaded from the host memory into the OBM banks; 3) data manipulation; 4) after

data processing, the results are transferred from the OBM banks back to the host memory.

The standard timing schedule is shown in Figure 5.5. Thus, the overall execution time for

any application on the SRC-6 machine consists of three parts: the computation time TMAP

defined as the time spent within the MAP processor; the input and output times Ti/ c, and

Ti'/o defined as the communication times (via DMA) to/from the MAP processor; and the

67

Figure 5.4 Illustration of MM computations and data movements.

FPGA (re)configuration overhead Tconfig • We define the actual execution time Tex, as the

sum of TMAP, Tito , and Ti1/0 only, i.e.,

The overall execution time of an algorithm is defined as:

Table 5.1 presents MM experimental results for single_precision and double-precision

floating-point implementations, respectively. All the timing results reported here

are measured by the SRC-provided macro read_timer () and the Linux system call

gettimeofday 0. The matrices were dense and square, and were produced by ANSI C

random functions.

68

Figure 5.5 Run time schedule.

For matrices of size less than 800 x 800 (for simplicity, N = 800, from now on),

the available data parallelism in the SRC-6 machine is not fully exploited, so it does not

sustain very high performance. For a large matrix (i.e., N > 800), we can sustain 9.86

and 5.03 GFLOPS for the IEEE 754 single-precision and double-precision floating-point

implementations, respectively. This is about 82.5% of the peak performance. Due

to the exposed data parallelism, the sophisticated SRC interconnections and the data

independence of the MACs, this performance can scale up easily with an increase in the

number of MAP processors. In the SRC-6 machine, each MAP contains two XC2VP100

FPGA devices for user logic functions. The FPGA resource utilization results are shown

in Table 5.2.

Although the implementation is restricted in performance by the Carte HLL

environment, Table 5.3 compares the performance of our design with previous works on

FPGA-based platforms for IEEE double-precision floating-point MM [70] [71] [1]. All of

these implementations employ MACs as their underlying building blocks to gain hardware

speedups. [70] [71] [1] build their architectures with processing elements (PEs) that also

contain control logic. The specialized design in [70] is exclusive to MM and uses a MAC

block optimized for the highest throughput per unit area. In [71], each PE comprises data

registers, FIFOs, one MAC unit and control logics. All the PEs are connected as a linear

69

Table 5.1 Experimental MM Results on a Dual-FPGA MAP Processor for Single-
precision and Double-precision Floating-point Implementations (Square Matrices)

Matrix Size Texe(ms)
Sustained

GFLOPS

Peak

Performance

Single-

precision

(P = 60)

200 2.72 5.89 49%

400 16.2 7.9 65%

600 48.43 8.92 74%

800 107.44 9.53 79%

1000 202.78 9.86 82%

Double-

precision

(P = 30)

200 5.21 3.07 51%

400 31.89 4.01 66%

600 94.45 4.57 76%

800 210.15 4.87 81%

1000 397.39 5.03 83%

array to run in the SPMD (Single-Program Multiple-Data) mode. [1] designed the PE

with the concepts of primitive nanoprocessors and register-level data switching. These

designs were evaluated on XC2VP125 FPGAs (containing 55,616 slices) as opposed to the

XC2VP100 devices in MAP (with 44,096 slices). With extrapolation, we can estimate that

20 independent double-precision MACs can fit into a single XC2VP125 FPGA running at

150 MHz and thus one MAP processor can achieve a peak performance of 12 GFLOPS.

However, the MAP processor doubles the FPGAs in other solutions. Hence, we use "peak

GFLOPS/10000 slices" as one of the benchmarking metrics, which indicates that the

HLL-programmed reconfigurable machine may speed up the application development and

yet incur more penalties on area and system frequency than other solutions.

70

Table 5.2 The MAP FPGA Resource Utilization Results on XC2VP100

IEEE floating-point

format
BRAMs Slices Mults

single-precision 13% 91% 27%

double-precision 12% 93% 50%

5.2.2 Image Edge Detection

The Prewitt algorithm is a well-known edge-detection algorithm used in many image

processing applications [80]. The algorithm employs the convolution of an image with two

3 x 3 constant masks shown in Figure 5.6; one is for detecting the X image gradient and

the other for detecting the Y image gradient. The strength of the edge at any given image

location is then the square root of the sum of the squares of these two gradients. This

fundamental operation is performed over the entire image, with the result being another

two-dimensional array of the same size called the gradient array.

Figure 5.6 Convolution masks for Prewitt edge detection. (a) X gradient; (b) Y gradient.

The computation with mask-based operations involves a high degree of operand

reuse. On a cache-based general-purpose processor, a typical 9-point mask will most

often have at least 8 cache hits, thus needing only one true memory load operation; in

contrast, the FPGA can load a single operand per cycle from one memory bank. In order

71

Table 5.3 Comparison with Other MM Approaches on FPGAs

Our

approach
[1] [70] [71]

Frequency 150 180 200 200

Number of MACs 40 26 24 39

Peak GFLOPS 12 9.36 8.3 15.6

peak GFLOPS/10000

slices
1.0788 1.6830 1.4924 2.8049

HDL Support Yes Yes Yes Yes

HLL Support Yes No No No

Hide interrupt

overhead
No Yes No No

to overcome the I/O-bound bottleneck, we can employ on SRC-6 streaming data and

delay-queue techniques to build up an FIFO-based cache architecture suitable for image

convolution [81]. Streaming data enable the MAP processor to take two 64-bit words in

each clock cycle. This avoids the need to buffer the input data before processing and

eliminates the delay associated with data buffering. The data movement in the convolution

cache system is illustrated with the sliding window in Figure 5.7. After the initial latency of

queuing the first two rows of the input image, the edge detector can approach the theoretical

limit of one clock cycle per pixel per sliding window.

Multiple sliding windows can enhance the performance. However, there is a tradeoff

for the number of sliding windows because more sliding windows do not always guarantee

higher performance. Given the input image of size M x N (M and N represent the image

width and length, respectively), let us denote by W the number sliding windows of size

S x S. The startup latency Tstartup is required to fill up the FIFO-based cache using the

72

Figure 5.7 Applying 3 x 3 sliding window on SRC with delay queue support. (a) the
startup latency; (b) the first, (c) the second, and (d) the third processing cycles.

interconnection bandwidth B. Then, the running time Tslide for the application of a sliding

window on the assigned image partition contains two factors: the computation time Tcomp

and the streaming data I/O time Tstream . If Tcomp is greater than Tstream, then the application

is computation-bound. Otherwise, it is communication bound. The total execution time

T„, is the sum of Ts lide and Tstartup . Specifically, the following equations hold:

73

Hence,

The objective here is to minimize the execution time Texe. From the above analysis,

we can tell that W will make two opposing contributions to Texe. A bigger W can reduce

the computation time and yet increase the I/O complexity. More sliding windows may

consume up the available bandwidth in either delay queue initialization or pixel transfers.

Hence, W is constrained not only by the available FPGA resources but also by the image

size and the data movement bandwidth. Based on the current FPGA technology and

standard image sizes, Tstartup can be ignored since the image size can be considered

relatively large to the available FPGA resources. W is chosen such that the FPGAs run

the computation at the rate that data can be delivered. The streaming input on the MAP

processor is for two 64-bit words with each clock cycle. Therefore, the optimal W is

16 for 8-bit pixels. Based upon our tests, this number is not constrained by the FPGA

resources. However, we implemented 8 sliding windows in our final experimentation

to reduce the design complexity of both the implementation and the pixel layout in the

memory. FPGA resource utilization results are shown in Table 5.4 for 8 and 16 sliding

windows, respectively.

Table 5.4 FPGA Resource Utilization for Prewitt Edge Detection

Number of sliding

windows
BRAMs Slices

Multiplier

Blocks

8 3% 52% 16%

16 7% 98% 33%

74

Table 5.5 shows the experimental results for 8 sliding windows and various image

sizes. The system frequency is 100MHz. The execution time is counted similar to MM;

i.e., it is the sum of the MAP computation and communication times. Ideally, each sliding

window can process one pixel per cycle. The peak performance represents the processing

of W pixels per cycle. We can see that the MAP can achieve on the average about 93% of

the peak performance.

Table 5.5 MAP Performance for Prewitt Edge Detection

Input Image

MAP

Execution

(ms)

Peak

Execution

(ms)

Peak

Percentage

256 x 256 0.0879 0.0819 93.18%

512 x 512 0.3530 0.3277 92.82%

640 x 480 0.4045 0.3840 94.94%

1024 x 1024 1.3946 1.3107 93.98%

We also compared the performance of SRC-6 with other computing platforms,

namely SA-C [80] and the Pentium Processor [82]. [80] reported an implementation of

the 512 x 512 Prewitt algorithm in 1.9 ms at 42 MHz. Its performance will double if the

running clock frequency is doubled. Comparison results are shown in Table 5.6. Both of

the FPGA implementations easily outperform the general-purpose processor because of

their capability to exploit the data parallelism in the algorithm. The SRC implementation

further gains a factor of 2 speedup over the SA-C solution.

5.2.3 Operation Overlapping via Multithreading

The FPGA configuration overhead may be a major contributing factor to the overall

execution time of an application since more configuration bits are needed for high-density

platform FPGAs. Based on tests in our laboratory, the overhead to reconfigure a user

75

Table 5.6 Performance Comparison for 512 x 512 Prewitt Edge Detection

Pentium SA-C SRC

Frequency (MHz) 2000 100 100

Execution Time (ms) 1.5 0.8 0.35

FPGA in MAP, shown in Figure 5.1, is about 105ms; this was obtained by averaging

the timing results from the SRC-provided macro read_timer () and the Linux system

call gettimeofday (). This penalty is intolerable in high-performance computing because,

for example, 600 x 600 single_precision floating_point matrix multiplication and edge

detection for 50 1024 x 1024 frames take about 48 ms and 70 ms on a dual-FPGA MAP

processor; the configuration overhead is about 210 ms for the two FPGAs. Thus, a

design objective here is to reduce the configuration overhead. Our multithreading-based

scheme is designed to overlap an application's computation time with another application's

configuration time as much as possible, assuming multiple FPGAs. This scheme is shown

in Figure 5.8. The master thread detects available FPGAs and loads the configuration bits

for new applications while other FPGAs are busy on their computations. It enables FPGA

configuration_data preloading to overlap computations, thus reducing or eliminating the

impact of configuration overheads.

When multiple threads of control are initiated, Reader/Writer (R/W) locks are used

for the purpose of thread synchronization. R/W locks are similar to mutexes (i.e., mutual

exclusion objects), except that they allow for higher degree of parallelism. Three states

are possible with a R/W lock: locked in read mode, locked in write mode, and unlocked.

Only one thread at a time can hold a given lock in the write mode to run an application on

the FPGAs while many threads can concurrently hold a lock in the read mode. In order to

showcase the effect of the proposed overlapping scheme, the two user FPGAs in our SRC-6

machine were configured with two different tasks T1 and T2. They are designed for IEEE

76

Figure 5.8 Multithreading-based operation overlapping scheme.

754 single-precision and double-precision floating-point MM, respectively. Their workload

characteristics are shown in Table 5.7. The last column shows the task execution time Tex,

with a single FPGA. Tex, is defined in Equation 5.1. Without a loss of generality, we chose

the task workloads to be around the FPGA configuration overhead with Tex,(T1) < Tcon fig

and Tex, (T2) > Tconfig for the purpose of enhancing the effect of overlapping. The thread

relationship is shown in Figure 5.9. Each thread needs the R/W lock to access the FPGAs.

Two test cases were studied: T1 is set to run prior to T2, denoted by T1 --> T2; in the other

case T2 runs prior to Ti (i.e., T2 —> T1). The test results in Table 5.8 shows the achieved

speedup for the overlapped task in each test case. The sequential mode means that a task

is prepared and runs in a single thread sequentially, starting with FPGA configuration and

continuing with execution. In both cases, we can gain a performance boost of 83% on the

average.

Table 5.7 Workload Characteristics of the T1 and T2 tasks

Type
Matrix

Size

Execution

Time

Tex, (ms)

Ti
IEEE single-precision

floating-point MM
600 x 600 98.63

T2
IEEE double_precision

floating-point MM
510 x 510 128.16

77

Figure 5.9 Thread relationship with R/W lock.

Table 5.8 Overlapped Task Execution Time for Multithreading-based MM

Exe Mode

Test Case

Sequential

(ms)

Multithreading

(ms)
Speedup

T1 (T2--->T1) 203.87 104.4 1.95

T2 (T1-->T2) 234.40 137.04 1.71

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation, a hierarchical SIMD computing architecture was presented. The

H-SIMD machine is designed to facilitate ease of application development and reduction

in channel bandwidth gaps associated with configurable computers controlled by a host.

The H-SIMD machine is paired each time with an appropriate HISA instruction set to

realize these objectives. This hierarchy makes the low-level HDL design flow transparent

to the application designers and enables the reuse of pre-defined IP cores at the FPGA layer.

A main idea behind the H-SIMD machine is to gain speedups by separating communication

and computation instructions at each level, and then attempting to highly overlap the

implementation of the former with the latter. This hierarchical classification of instructions

is the enabling factor to combine the flexibility of general-purpose microprocessors with

the efficiency of customized hardware to achieve significant speedups at reasonable cost

compared to other computing paradigms. An innovative register file design based on

the dual-clocked BlockRAMs of Xilinx FPGAs is employed to overcome the native

shortcomings of conventional register files that may consume too many FPGA resources.

A memory switching scheme is applied at run time to address the bandwidth

bottlenecks that may otherwise reduce or even remove speedups possible with configurable

computing. It is designed to overlap communications with computations as much as

possible. The conditions to achieve full overlaps of communications are extensively

studied and applied to applications running on the H-SIMD machine. The exploration of

the H-SIMD design space can be used to choose the proper task granularity at each layer

to meet these conditions.

The H-SIMD machine sufficiently explores the parallelism in data-intensive

applications. Its effectiveness was proved on matrix multiplication, 2D DCT, and 2D FFT.

78

79

Significant performance speedups are obtained compared to other computing paradigms.

Aspects concerning area-efficiency, expandability, and generalization of the H-SIMD

machine were also studied.

The HLL_enabled SRC-6 reconfigurable machine was used as well to exploit

the available data parallelism by implementing independent functional units and

application-specific cache support. Relevant performance and design tradeoffs were

analyzed. Two important high-performance applications, matrix multiplication and image

edge detection, were tested on the SRC-6 machine. The implemented algorithms are able

to achieve high-performance without significant penalty on area and clock frequency. A

multi-threaded overlapping scheme was proposed as well to reduce as much as possible,

or even completely hide, runtime FPGA reconfiguration overheads.

Future research includes porting more applications to the H-SIMD machine to

support a library of functional units for the FPGAs. This can further relieve application

developers from the need for low-level hardware descriptions. More investigation is needed

on resource utilization of the H_SIMD machine. Compared with a traditional FPGA tool

chain, the H-SIMD machine tends to consume more configurable resources. Developing

high-density functional units is one way that could improve the H-SIMD's resource

efficiency in the future. Additionally, a performance estimation for the H-SIMD machine

should be taken into account as early as possible in the design process, for example, prior

to logic synthesis or technology layout. In order to do so, an accurate computation model

for the H-SIMD machine is necessary. For an HLL-enabled reconfigurable machine, more

exposed data parallelism can be exploited by efficiently scheduling data computations and

communications between the FPGA and high bandwidth interconnections. System-level

workload partitioning can also be used to take advantage of any available data parallelism

at the algorithmic level, thus improving the application performance.

REFERENCES

[1] X. Xu and S. G. Ziavras, "H-SIMD machine: configurable parallel computing for matrix
multiplication," in Proc. IEEE Int. Conf on Computer Design, Oct. 2005, pp. 671-676.

[2] X. Xu and S. G. Ziavras, "A coarse-grain hierarchical technique for 2-Dimensional 1 41-1' on
configurable parallel computers," IEICE Trans. on Information and Systems, Special
Issue on Parallel/Distributed Computing and Networking, vol. E89-D, no. 2, Feb.
2006.

[3] X. Xu and S. G. Ziavras, "A hierarchically-controlled SIMD machine for 2D DCT on
FPGAs," in Proc. IEEE Int. Conf on Systems-on-Chip, Sept. 2005, pp. 276-279.

[4] J. Arnold, D. Buell, and E. Davis, "SPLASH 2," in Proc. The Fourth ACM Symp. of Parallel
Algorithms and Architectures, June 1992, pp. 316-322.

[5] H. Singh, M. H. Lee, G. M. Lu, F J. Kurdahi, N. Bagherzadeh, and E. M. C. Filho,
"MorphoSys: an integrated reconfigurable system for data-parallel and computation-
intensive applications," IEEE Trans. on Computers, vol. 49, no. 5, pp. 465-481, May
2000.

[6] D. Poznanovic, "Application defined processors," Linux Journal, vol. 2005, no. 129, Jan.
2005.

[7] K. Compton and S. Hauck, "Reconfigurable computing: a survey of systems and software,"
ACM Computing Surveys, vol. 34, no. 2, pp. 171-210, June 2002.

[8] R. Tessier and W. Burleson, "Reconfigurable computing for digital signal processing: a
survey," Journal of VLSI Signal Processing, vol. 28, no. 1-2, pp. 7-27, May 2001.

[9] J. Villasenor and W. H. Mangione-Smith, "Configurable computing," Scientific American,
vol. 276, no. 6, June 1997.

[10] G. Estrin, "Organization of computer systems-the fixed plus variable structure computer,"
in Proc. Western Joint Computer Conf, New York, 1960, pp. 33-40.

[11] E. Sanchez, M. Sipper, J.-O. Haenni, J.-L. Beuchat, A. Stauffer, and A. Perez-Uribe, "Static
and dynamic configurable systems," IEEE Trans. on Computers, vol. 48, no. 6, pp.
556-564, June 1999.

[12] J. Vuillemin, P. Benin, D. Roncin, M. Shand, H. Touati, and P. Boucard, "Programmable
active memories: reconfigurable systems come of age," IEEE Trans. on VLSI Systems,
vol. 4, no. 1, pp. 56-69, Mar. 1996.

[13] S. Hauck, T. W. Fry, M. M. Hosler, and J. Kao, "The Chimaera reconfigurable functional
unit," in Proc. IEEE Symp. on Field-Programmable Custom Computing Machines,
Apr. 1997, pp. 87-96.

80

81

[14] P. M. Athanas and H. F. Silverman, "Processor reconfiguration through instruction-set
metamorphosis," Computer, vol. 26, no. 3, pp. 11-18, Mar. 1993.

[15] M. J. Wirthlin and B. L. Hutchings, "A dynamic instruction set computer," in Proc. IEEE
Symp. on Field-Programmable Custom Computing Machines, Apr. 1995, pp. 99-107.

[16] A. J. Elbirt and C. Paar, "An FPGA implementation and performance evaluation of the
Serpent block cipher," in Proc. ACM/SIGDA Int. Symp. on Field Programmable Gate
Arrays, Feb. 2000, pp. 33-40.

[17] H. J. Kim and W. H. Mangione-Smith, "Factoring large numbers with programmable
hardware," in Proc. ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays,
Feb. 2000, pp. 41-48.

[18] G. Farquharson, W. Junek, A. Ramanathan, S. Frasier, R. Tessier, D. McLaughlin,
M. Sletten, and J. Toporkov, "A pod-based dual-beam InSAR," IEEE Trans. on
Geoscience and Remote Sensing Letters, vol. 1, no. 2, pp. 62-65, Apr. 2004.

[19] N. K. Ratha and A. K. Jain, "Computer vision algorithms on reconfigurable logic arrays,"
IEEE Trans. on Parallel and Distributed Systems, vol. 10, no. 1, pp. 29-43, Jan. 1999.

[20] P. Zhong, M. Martonosi, P. Ashar, and S. Malik, "Accelerating boolean satisfiability
with configurable hardware," in Proc. IEEE Symp. on Field-Programmable Custom
Computing Machines, Apr. 1998, pp. 186-195.

[21] K. H. Leung, K. W. Ma, W. K. Wong, P. H. W. Leong, and N. T. Shatin, "FPGA
implementation of a microcoded elliptic curve cryptographic processor," in Proc.
IEEE Symp. on Field-Programmable Custom Computing Machines, Apr. 2000, pp.
68-76.

[22] M. J. Flynn, "Some computer organizations and their effectiveness," IEEE Trans. on
Computers, vol. 21, no. 9, pp. 948-960, Sept. 1972.

[23] M. C. Herbordt, "Array control for high-performance SIMD systems," Journal of Parallel
and Distributed Computing, vol. 64, no. 3, pp. 400-413, Mar. 2004.

[24] K. Suzuki, K. Suzuki, M. Daito, T. Inoue, K. Nadehara, M. Nomura, M. Mizuno, T. lima,
S. Sato, T. Fukuda, T. Arai, I. Kuroda, and M. Yamashina, "A 2000-MOPS embedded
RISC processor with a Rambus DRAM controller," IEEE Journal of Solid-State
Circuits, vol. 34, no. 7, pp. 1010-1021, July 1999.

[25] A. Kowalczyk, V. Adler, C. Amir, F. Chiu, C. P. Chang, W. J. D. Lange, Y. Ge,
S. Ghosh, T. C. Hoang, B. Huang, S. Kant, Y. S. Kao, C. Khieu, S. Kumar, L. Lee,
A. Liebermensch, X. Liu, N. G. Malur, A. A. Martin, H. Ngo, S. Oh, I. Orginos,
L. Shih, B. Sur, M. Tremblay, A. Tzeng, D. Vo, S. Zambare, and J. Zong, "The first
MAJC microprocessor: a dual CPU system-on-a-chip," IEEE Journal of Solid-State
Circuits, vol. 36, no. 11, pp. 1609-1616, Nov. 2001.

82

[26] C. Chakrabarti and M. Vishwanath, "Efficient realizations of the discrete and continuous
wavelet transforms: from single chip implementations to mappings on SIMD array
computers," IEEE Trans. on Signal Processing, vol. 43, no. 3, pp. 759-772, Mar. 1995.

[27] R. Duncan, "A survey of parallel computer architectures," IEEE Trans. on Signal
Processing, vol. 23, no. 2, pp. 5-16, Feb. 1990.

[28] Xilinx Inc. (2006, Mar.) Xilinx Virtex II Platform FPGA User Guide. [Online]. Available:
http://www.xilinx.com

[29] J. R. Hauser and J. Wawrzynek, "Garp: A MIPS processor with a reconfigurable
coprocessor," in Proc. IEEE Symp. on Field-Programmable Custom Computing
Machines, Apr. 1997, pp. 12-21.

[30] System C Group. (2006, Mar.). [Online]. Available: http://www.systemc.org

[31] I. Damaj, J. Hawkins, and A. Abdallah, "Mapping high level algorithms onto massively
parallel reconfigurable hardware," in Proc. ACS/IEEE Mt. Conf. on Computer Systems
and Applications, July 2003.

[32] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski, "Stream-oriented FPGA computing
in the Streams-C high level language," in Proc. IEEE Symp. on Field-Programmable
Custom Computing Machines, Apr. 2000, pp. 49-56.

[33] D. Andrews, D. Niehaus, and P. Ashenden, "Programming models for hybrid CPU/FPGA
chips," Computer, vol. 37, no. 1, pp. 118-120, Jan. 2004.

[34] C. Patterson and S. Guccione, "JBits design abstractions," in Proc. IEEE Symp. on Field-
programmable Custom-Computing Machines, 2001, pp. 251-252.

[35] P. Bellows and B. Hutchings, "JHDL: an HDL for reconfigurable systems," in Proc. IEEE
Symp. on Field-programmable Custom-Computing Machines, 1998, pp. 175-184.

[36] Altera Inc. (2006, Mar.) SOPC Builder User Guide. [Online]. Available: http:
//www.altera.com

[37] X. Wang and S. G. Ziavras, "Parallel LU factorization of sparse matrices on FPGA-based
configurable computing engines," Concurrency and Computation: Practice and
Experience, vol. 16, no. 4, pp. 319_343, Apr. 2004.

[38] Altera Inc. (2006, Mar.) Custom Instructions for the Nios Embedded Processor. [Online].
Available: http://www.altera.com

[39] T. Miyamori and U. Olukotun, "A quantitative analysis of reconfigurable coprocessors
for multimedia applications," in Proc. IEEE Symp. on Field-Programmable Custom
Computing Machines, Apr. 1998, pp. 2-11.

[40] C. R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. M. Arnold, and
M. Gokhale, "The NAPA adaptive processing architecture," in Proc. IEEE Symp. on
Field-Programmable Custom Computing Machines, Apr. 1998, pp. 28-37.

83

[41] R. D. Wittig and P. Chow, "OneChip: an FPGA processor with reconfigurable logic," in
Proc. IEEE Symp. on Field-Programmable Custom Computing Machines, Apr. 1996,
pp. 126-135.

[42] Annapolis Micro Systems Inc. (2004) Wildstar II Hardware Reference Manual.

[43] R. Laufer, R. Taylor, and H. Schmit, "PCI-PipeRench and the SwordAPI: a system
for stream-based reconfigurable computing," in Proc. IEEE Symp. on Field-
Programmable Custom Computing Machines, Apr. 1999, pp. 200-208.

[44] B. Mei, A. Lambrechts, J. Mignolet, D. Verkest, and R. Lauwereins, "Architecture
exploration for a reconfigurable architecture template," IEEE Design & Test of
Computers, pp. 90-101, Mar. 2005.

[45] C. Chang, J. Wawrzynek, and R. Brodersen, "BEE2: a high-end reconfigurable computing
system," IEEE Design & Test of Computers, pp. 90-101, Mar. 2005.

[46] P. H. W. Leong, C. W. Sham, W. C. Wong, H. Y. Wong, W. S. Yuen, and M. P. Leong,
"A bitstream reconfigurable FPGA implementation of the WSAT algorithm," IEEE
Trans. on VLSI Systems, vol. 9, no. 1, Feb. 2001.

[47] D. Jin and S. G. Ziavras, "A super-programming approach for mining association rules in
parallel on PC clusters," IEEE Trans. on Parallel and Distributed Systems, vol. 15,
no. 9, pp. 783-794, Sept. 2004.

[48] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor, and R. Laufer,
"PipeRench: a coprocessor for streaming multimedia acceleration," in Proc. Int. Symp.
on Computer Architecture, May 1999, pp. 28-39.

[49] E. Mirsky and A. DeHon, "MATRIX: a reconfigurable computing architecture with
configurable instruction distribution and deployable resources," in Proc. IEEE Symp.
on Field-Programmable Custom Computing Machines, Apr. 1996, pp. 157-166.

[50] J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua, M. Taylor, J. Kim, and
A. A. S. Devabhaktuni, "The RAW benchmark suite: Computation structures for
general purpose computing," in Proc. IEEE Symp. on Field-Programmable Custom
Computing Machines, Apr. 1997, pp. 134-143.

[51] B. Fagin and C. Renard, "Field programmable gate arrays and floating point arithmetic,"
IEEE Trans. on VLSI Systems, vol. 2, no. 3, pp. 365-367, Sept. 1994.

[52] K. Underwood, "FPGA vs. CPUs: trends in peak floating-point performance," in
ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays, Feb. 2002, pp. 171-180.

[53] D. Galloway, "The Transmogrifier C hardware description language and compiler for
FPGAs," in Proc. IEEE Symp. on Field-Programmable Custom Computing Machines,
Apr. 1995, pp. 136-144.

84

[54] P. M. Athanas and H. Silverman, "Processor reconfiguration through instruction_set
metamorphosis," Computer, vol. 26, no. 3, pp. 11-18, Mar. 1993.

[55] Chameleon Systems. (2006, Mar.). [Online]. Available: http://www.chameleonsystems.
com

[56] P. K. Chan, A Field-Programmable Prototyping Board: XC4000 User Guide, 1st ed.
University of California, Santa Cruz, 1994.

[57] A. Abbott, P. Athanas, L. Chen, and R. Elliott, "Finding lines and building pyramids
with SPLASH 2," in Proc. IEEE Symp. on Field-Programmable Custom Computing
Machines, Apr. 1994, pp. 155-161.

[58] P. Athanas and A. Abbott, "Real-time image processing on a custom computing platform,"
Computer, vol. 28, no. 2, pp. 16-24, Feb. 1995.

[59] Graham and B. Nelson, "Genetic algorithms in software and in hardware: a performance
analysis of workstation and custom computing machine implementations," in Proc.
IEEE Symp. on Field-Programmable Custom Computing Machines, Apr. 1996, pp.
216-225.

[60] X. Xu and S. G. Ziavras, "Iterative methods for solving linear systems of equations
on FPGA-based machines," in Proc. 18th Int. Conf. on Computers and Their
Applications, Mar. 2003, pp. 26-28.

[61] C. Kozyrakis, "Scalable vector media-processors for embedded systems," PhD dissertation,
Univ. of California, Berkeley, May 2002.

[62] M. Mittal, A. Peleg, and U. Weiser, "MMXTm technology architecture overview," Intel
Technology Journal, no. 3, 1997.

[63] D. C. Chen and J. M. Rbaey, "A reconfigurable multiprocessor IC for rapid prototyping
of algorithmic-specific high-speed DSP data paths," IEEE Journal of Solid-State
Circuits, vol. 27, no. 12, pp. 1895-1904, Dec. 1992.

[64] Xilinx Inc. (2006, Mar.). [Online]. Available: http://www.xilinx.com

[65] Altera Inc. (2006, Mar.). [Online]. Available: http://www.altera.com

[66] K. Bondalapati and V. K. Prasanna, "Reconfigurable computing systems," Proceedings of
IEEE, vol. 90, no. 7, July 2002.

[67] J. L. Hennessy and D. A. Patterson, Computer Architecture: a Quantitative Approach,
3rd ed. Morgan Kaufmann, 2003.

[68] X. Xu, S. G. Ziavras, and T.-G. Chang, "An FPGA-based parallel accelerator for
matrix multiplications in the Newton-Raphson method," in Proc. IFIP Int. Conf on
Embedded and Ubiquitous Computing, Dec. 2005, pp. 458-468.

[69] QinetiQ Ltd. (2004) Quixilica floating point FPGA cores datasheet.

85

[70] L. Zhuo and V. K. Prasanna, "Scalable and modular algorithms for floating-point matrix
multiplication on FPGAs," in Proc. 18th Int. Parallel and Distributed Processing
Symp. (IPDPS'04), Apr. 2004.

[71] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev, "64-bit floating-point fpga
matrix multiplication," in Proc. ACM/SIGDA Int. Symp. on Field Programmable Gate
Arrays, Feb. 2005.

[72] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, 1st ed.
Prentice-Hall Inc., 1975.

[73] Annapolis Microsystems, Inc. (2004) Corefire design suite.

[74] M. Frigo and S. Johnson, "The design and implementation of 1 41-41W3," Proceedings of
IEEE, vol. 93, no. 2, pp. 216-231, 2005.

[75] FFTW Group. (2006, Mar.). [Online]. Available: http://www.fftw.org

[76] Xilinx Inc. (2006, Mar.) Xilinx IP Center. [Online]. Available: http://www.xilinx.com/
ipcenter

[77] Intel Inc. (2006, Mar.) Microprocessor Quick Reference. [Online]. Available: http:
//www.intel.com/pressroom/kits/quickreffam.htm#Xeon

[78] Intel Corp., "A fast precise implementation of 8 x 8 discrete cosine transform using the
streaming SIMD extensions and MMXTM instructions, Tech. Rep. AP-528.

[79] SRC Computers, Inc. (2003) SRC-6E C-programming environment guide.

[80] W. A. Najjar, W. Bohm, B. A. Draper, J. Hammes, R. Rinker, J. R. Beveridge,
M. Chawathe, and C. Ross, "High-level language abstraction for reconfigurable
computing," Computer, vol. 36, no. 8, pp. 63-69, Aug. 2003.

[81] D. S. Poznanovic, "Application development on the SRC computers," in Proc. 19th Mt.
Parallel and Distributed Processing Symp. (IPDPS'05), Apr. 2005.

[82] S. J. Dillen and B. Cockburn, "Parallel filtering and thresholding of images on the SIMD
DSP-RAM architecture," in Proc. IEEE Canadian Conf on Electrical and Computer
Engineering, May 2002, pp. 995-1000.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication Page
	Acknowledgment Page
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction

	Chapter 2: Csoc Platforms

	Chapter 3: The H-Simd Machine

	Chapter 4: Case Studies On The H-Simd Machine

	Chapter 5: Hll-Supported Reconfigurable Computing

	Chapter 6: Conclusions And Future Research

	References

	List of Tables

	List of Figures (1 of 2)
	List of Figures (2 of 2)

