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ABSTRACT

CROSS-LAYER DESIGN FOR WIRELESS SENSOR RELAY NETWORKS

by
Lichuan Liu

In recent years, the idea of wireless sensor networks has gathered a great deal of attention.

A distributed wireless sensor network may have hundreds of small sensor nodes. Each

individual sensor contains both processing and communication elements and is designed

in some degree to monitor the environmental events specified by the end user of the

network. Information about the environment is gathered by sensors and delivered to a

remote collector.

This research conducts an investigation with respect to the energy efficiency and the

cross-layer design in wireless sensor networks. Motivated by the multipath utilization and

transmit diversity capability of space-time block codes (STBC), a new energy efficient

cooperative routing algorithm using the STBC is proposed. Furthermore, the steady state

performance of the network is analyzed via a Markov chain model. The proposed approach

in this dissertation can significantly reduce the energy consumption and improve the power

efficiency.

This work also studies the application of differential STBC for wireless multi-hop

sensor networks over fading channels. Using differential STBC, multiple sensors are

selected acting as parallel relay nodes to receive and relay collected data. The proposed

technique offers low complexity, since it does not need to track or estimate the time-varying

channel coefficients. Analysis and simulation results show that the new approach can

improve the system performance.

This dissertation models the cooperative relay method for sensor networks using

a Markov chain and an M/G/1 queuing system. The analytical and simulation results

indicate system improvements in terms of throughput and end-to-end delay. Moreover, the

impact of network resource constraints on the performance of multi-hop sensor networks



with cooperative relay is also investigated. The system performance under assumptions of

infinite buffer or finite buffer sizes is studied, the go through delay and the packet drop

probability are improved compared to traditional single relay method.

Moreover, a packet collision model for crucial nodes in wireless sensor networks is

introduced. Using such a model, a space and network diversity combining (SNDC) method

is designed to separate the collision at the collector. The network performance in terms of

throughput, delay, energy consumption and efficiency are analyzed and evaluated.
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CHAPTER 1

INTRODUCTION

With the development of the information society, the task for monitoring and sensing the

physical world is becoming more complicated and diversified. The task changes over from

sensing single parameter to multiple parameters, from a point to an interested area, from

one sensor to a set of sensors. Meanwhile, the advances in wireless communications and

electronics have enabled the development of small low-cost, low-power, multi-functional

sensor nodes. These tiny nodes consist of sensing, data processing and communicating

components. Networking these small sensors for a large sensing task leverages the concept

of sensor networks. Sensor networks represent a significant improvement over traditional

sensors and have many potential applications, such as system and space monitoring [1],

target detection and tracking [2] [3], location sensing, and biomedical applications [4] [5].

A sensor network is composed of a large number of sensor nodes that are deployed

either inside or very close to an interested area. The position of sensor nodes need not to be

engineered or predetermined. This allows random deployment in inaccessible terrains or

disaster relief operations. On the other hand, this also means that sensor network protocols

and algorithms must possess self-organizing capabilities. Another unique feature of sensor

networks is the cooperative effort of sensor nodes. Sensor nodes are fitted with onboard

processors. Instead of sending the raw data to the remote receiver or collector directly, they

use their processing abilities to locally carry out simple computations and transmit only

required and partially processed data.

1.1 Protocol Stack for Sensor Networks

To reduce the design complexity, most networks are organized as a series of layers or levels,

each one built upon the one below it [6]. The number of layers, the contents of each layer,

1
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and the function of each layer differ from network to network. However, the purpose of

each layer is to provide certain services to the higher layers. The rules and conventions

used in layer 71 are collectively known as the layer T1 protocol. A list of protocols used by

a certain system, one protocol per layer, is called a protocol stack. The protocol stack of a

sensor network consists of the physical layer, data link layer, network layer, transmission

layer and application layer, as shown in Figure 1.1 . The physical layer is in charge of

modulation, transmission and receiving techniques. As in many other shared-medium

networks, the medium access control (MAC) protocol is able to minimize collision with

the neighbor nodes. The data link layer is responsible for error control, data framing and

multiplexing of data stream. The network layer addresses the needs of routing the data.

The transport layer takes care of data flow maintenance. There are different applications

depending on the sensing task in the application layer.

Figure 1.1 The sensor networks protocol stack and cross layer design
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1.2 Architecture

According to the communication mechanism for collecting the sensing data, there are

different type of architectures of sensor networks, as shown in Figure 1.2. The simplest

one is direct connected, where each sensor directly sends information to the remote

receiver/collector independent of each other [7]. It is energy-inefficient and impossible

in many cases due to the large number of sensor nodes and limited transmission range.

The second approach is multi-hop routing. Because of the battery capacity limitation

of sensor nodes, multi-hop but short range transmission usually consumes less average

power than one-hop long distance transmission for a given pair of source and destination.

The third approach is cluster-based multi-hop, where sensors form clusters with

neighboring sensors. One sensor will be elected as the cluster head according to some

rules. Collected information will be transmitted to the cluster head first, then relayed to the

remote receiver/collector. This approach localizes the traffic and can be scalable. It may

reduce the overall data transmission when local data fusion and classification techniques

are used. The disadvantage of this approach is that the energy consumption at cluster heads

is much more than other approaches.

1.3 Design Challenges and Motivation

The general research challenges for real-time communication and coordination in sensor

networks arise primarily due to the large number of constraints, many of them are new,

that must be simultaneously satisfied. For example, large distributed computer systems

(the Internet) have existed for a long time. However, solutions for communication and

coordination in those systems did not have to address small capacities in memory, limited

CPU execution speeds, and scarce communication bandwidth. Further, many classical

solutions did not address minimization power, interacting with real world events through

sensors and actuators. Some distributed embedded systems such as those that exist on

submarines or in factories do deal with sensors and actuators, real-time constraints, cost,
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Figure 1.2 The three types of architecture of sensor networks.

and other issues, but they do not have solutions for many of the key issues such as

those dealing with wireless communication, large scale, power management and unreliable

devices. [8]

Unlike traditional wired or wireless networks, sensor networks poss certain

characteristics with warrant their treatment as a special class of ad-hoc network.

Data-centric: sensor networks are largely data-centric, with the objective of

delivering time sensitive data, in a timely fashion, to the required destination.

Application-oriented: While traditional wired and wireless networks are expected

to cater to a variety of user applications, a sensor network is usually deployed to perform

specific tasks. This property makes it possible to enable nodes to respond in an application-

aware fashion. Data can be collected, appropriately aggregated with consideration of the

requirement of the applications, and then acted on locally and/or forwarded to a higher

level controller node (rather than simple end-to end data transfer).
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Wireless sensor networks will have different challenges and design constrains than

exiting wireless networks (such as: cellular networks and wireless LANs).

• Resource constraints

The main resources in short supply are: power, CPU execution speed, memory,

cost and communication bandwidth. For example, sensor networks run on small

batteries and often need to operate for a long time, power conservation is a key

issue in sensor networks. Because applications involving wireless sensor networks

require long system lifetime and fault tolerance, energy usage must be carefully

monitored. Furthermore, since the networks can be deployed in inaccessible or

hostile environments, replacing the batteries that power the individual nodes is

undesirable, if not impossible. Recent studies have shown that radio communication

is the dominant consumer of energy in sensor networks [9]. Reducing energy

consumption to extend lifetime is a primary concern in wireless sensor networks.

Thus, protocol and algorithm should be designed with saving energy in mind.

Moreover, not only these specific problems should be solved, but also the tradeoff

is need to be considered.

• Unpredictability

The sensor network is deployed in an uncontrollable environment; the wireless

communication channel is subject to noise, interference and multipath fading; a

single node is not reliable; the connectivity is time varying; old nodes may die or

be removed from the network and new nodes may join in.

• Large-scale

Since the number of sensors will be large, node densities will be high and large

amount of data will be produced. Thus, large scale management techniques will

be needed. This large scale network with large amount of nodes which deployed
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in a wide area faces many uncertainties and noise, so such a system must be self

operating, self maintaining and self stabilizing.

• Paradigm shift

Unlike traditional wireless cellular or Ad hoc networks, a single node is not important

any more in a sensor network, and the collector or the end user is interested in the

area/location based data content. For example, a user may want to know how many

people in a particular room of a building or he may want to know that what room

has people more than a certain number; he cares about the data themselves instead of

which sensor responds the request.

• Real time

A sensor network is used to monitor or sense the real world, it may has real time

requirement. For example, when the temperature reach a dangerous level, it should

be sensed and report to the controller in a short time.

1.4 Related Work

Due to recent advances in integrated circuit and MEMS technology, the small, low power

sensing devices will be ready to be deployed in sensor networks in the near future.

Network protocols for wireless sensor networks, such as directed diffusion [10]

and LEACH [11] [7], are also proposed. In directed diffusion, routes are dynamically

formed as data are sensed. Initially, routes called gradients that link sources to sink are

formed. Through data aggregation techniques, catching, and reinforcement message, the

appropriate link is dynamically selected from the candidates. Links are created only when

data of interest are sensed. Therefore, less energy will be used by using this protocol.

LEACH is a protocol that uses hierarchy to reduce the data collected by sensors before

sending it on to a central base station. Reducing the data that needs to be sent helps make

LEACH more energy efficient.
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Although research about energy efficiency for wireless sensor network is relatively

new, many energy-efficient network protocols for ad hoc networks have been presented.

In [12] [13], techniques to evaluate and design energy efficient routing and MAC

protocols for wireless networks are presented. Energy efficient protocols that adapt

transmit output power and/or error correction control parameters have been explored

extensively by a number of researchers. In [14], the author designed an adaptive radio for

wireless multimedia communications over ATM. Frame length and forward error correction

parameters are adapted to lower energy consumption and improve throughput as conditions

of the channel change. A similar study is performed by [15] in context of a cellular-style

network, but the output transmit power is also considered. In [16], an energy-efficient

protocol that just both RF transmit power and error control strategy is examined for 802.11

wireless LANs.

Cross-layer optimization has recently gathered a lot of attention in wireless

communication [17]. It is a new definition of the overall design strategies for wireless

communication system, and it breaks the classical open systems interconnection (OSI)

model [18]. Traditionally each layer has ignored the other layers and this consideration

can simplify protocol design and treatment, however it is suboptimal for wireless

communication systems. In wireless communication systems, multiple users intend to get

access the medium and transmit their information, and such medium inherently vary in both

the time and frequency domain. Although a variety of different layer schemes have been

designed for wireless systems in order to efficiently mange the scarce radio resources and

provide certain QoS requirements to mobile users, the performance of such systems can be

optimized by considering some vertical coupling between layers. Among all the possible

combinations of layers involved in this interlayer interaction, the inherent variability of

the physical layer in wireless system makes this the most suitable layer for participating

in such kind of mechanisms. Indeed, systems components such as medium access control

(MAC) protocols, radio link control mechanism, radio resource management schemes, and
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routing algorithms can benefit from some degree of awareness of the time and frequency

varying characteristics of the radio channel. System performance could arise from some

communications between different layers, considering certain smart interactions between

them in the system design [19] [20] [21].

1.5 Contribution and Outline of the Dissertation

The dissertation emphasizes on the energy efficient cross-layer design and multiple

diversity combination in wireless sensor networks. At first, the issue of developing an

energy-efficient cooperative routing protocol using space time block codes (STBCs) of a

multi-hop sensor network is considered [22]. The modelling of steady state of the system

is established. Then the network performance and the energy efficiency are analyzed.

In Chapter 3, since the overhead of the packets is also an important energy waste

source and the channel estimating based on the pilot which is a kind of overhead is complex,

the non-coherent communication and STBC should be considered. The differential STBC

method is developed in Chapter 3 in order to combat the multipath fading and the radio

interference [23]. The proposed method can reduce the calculation complexity for channel

estimation and reduce the overhead at the same time.

Furthermore, a skip free negative process and an M/G/1 queueing system are used to

model the system from the source to the destination [24]. The network performance, such

as throughput and delay are analyzed. The more practical situation is considered, and the

constraints of the network resources on the performance the network are studied, the drop

probability and go through delay are also discussed [25].

In Chapter 5, this resaerch introduce the concept of crucial nodes in wireless sensor

networks, and then the definition of the network lifetime is given [26]. In order to extending

the lifetime of the crucial nodes as well as the whole network lifetime, a space and network

diversity combining (SNDC) methods is presented to separate the packets collision [27]

which is the major source of energy waste in wireless network. The network performance,
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such as throughput and delay, is analyzed and evaluated. The average energy consumption

of the crucial nodes is also investigated.

Finally Chapter 6 concludes the dissertation, and present current and future research

work.



CHAPTER 2

SPACE-TIME BLOCK CODING FOR COOPERATIVE RELAYS IN WIRELESS

SENSOR NETWORKS

2.1 Motivation

In wireless sensor networks, radio interference and multipath fading make wireless

transmission unreliable [28]. Using diversity is an effective approach to combating

multipath fading, it is also able to enhance transmission power efficiency. In cooperative

diversity, several nodes form a kind of coalition to assist each other with packet

transmission [29]. The nodes jointly act like a multi-antenna transmitting array, and the

destinations act like a multi-antenna receiving array through interchange of messages.

The STBC is an effective solution to enhance transmission power efficiency and

reduce the effect of multipath fading. The challenge for implementing the STBC at a

single node is that multiple transmitting and/or receiving antennas are required. Although

the low-cost and small size sensor nodes can not satisfy such a requirement, suitably chosen

cooperative nodes can provide transmission diversity. The user cooperative diversity

utilizing distributed antennas belonging to multiple users, creates a "virtual array" by

sharing their resources. The amplify-and forward [30] and decode-and forward [31]

algorithms for information relay have been developed. In this chapter, a new scheme

is proposed for multi-hop sensor networks, where each data packet is transmitted by the

chosen multiple sensors simultaneously, and at the sink, the received data is combined with

the data stored and forwarded from the chosen neighbor node, the Transmitting/Receiving

(Tx/Rx) space diversity is built up. In contrast, only one sensor is selected to perform

transmission or relay per hop per routing path in traditional schemes. The new scheme

utilizes two transmitting and two receiving sensors with the Alamouti STBC [32] to achieve

the full rate full diversity measure.

10
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2.2 Link Quality Based Cooperative Data Dissemination

Consider a multi-hop wireless sensor network, shown in Figure 2.1. Where a sink node

sends queries and collects sensing information from sensors [33]. Usually, a sensing event

is initiated by a sink or injected to a sink by a human operator. Such event is also called

interest. A interest is directed to the sink's neighbors via broadcasting and eventually

reaches an appropriate node whose function is to perform this query. During the broadcast

stage, each node also knows the link quality of one hop toward the node initiating the

interest. Upon receiving the query, a sensor replies to the interest by sending the sensing

data backward to the sink.

To utilize multipath diversity for the data transmission between a sensor and a sink,

the sensor will select two links with best quality. For next hop, the two nodes will

respectively select a distinct link with best quality. For the two nodes who are only one

hop away from the sink, they select an additional node (doorway node) [34] who is also

one hop neighbor of the sink. The purpose of a doorway node is to get additional copies

of transmitted packets. It caches the packets and send them to the sink during the final

transmission period. Therefore, the sink has multiple copies of original sensing data. Due

to the multipath diversity, the average transmission power at each node, then, is expected

to be reduced significantly while achieving the same bit error rate. This power efficient

feature is critical to sensor networks.

Figure 2.1 New transmission and diversity combining scheme for wireless sensor
networks a) Interest propagation (b) Link quality setup (c) Data delivery along cooperative
path
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2.3 Cooperative Diversity with STBC

Consider a wireless sensor network with multiple sensors, where a sensor (source) wants

to transmit packets to the destination via cooperative routing. In the first hop, multiple

nodes receive the packets from the source sensor. In the conventional single transmission

scheme, only one of these nodes is chosen to relay the packets to the second hop. In the

proposed scheme, 2 nodes with the best link quality are chosen to relay the message with

STBC code [35], as shown in Tab. 2.1.

nodel

Figure 2.2 Transmission and diversity combining scheme

T

The source sends two consecutive data, s = ,,1 s2• The ith relay node receives

corrupted versions of s, i. e.

where h i is the normalized channel coefficient between the source and the ith relay node,

[ Thi ~ CN(0, I), and the noise vector w i = wi1 wi2 	r•-, CN(0, (wI).

The two relay nodes (node 1 and node 2) re-order and forward the received data

according to the Alamouti code.
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The received data at the sink (node 3) is,

where gi,s ~ CN(0, 1) is the fading factor between ith relay node and the sink, and

vnode3 ~  C N (0 , CT ,21) is the noise vector.

Table 2.1 Transmission and Relay Scheme
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Note that the coefficient matrix Hnode3 is unitary, and the noise term nnode3 is white

with variance g11 20.w+.0 The received packet can be decoded and detected using standard

ML method. The received packet is stored and will be combined with relay packet from

doorway node. Similarly, the received signal in the doorway node (node 4) is

where gi ,d	 CN(0,1) is the fading factor between the ith relay node and the doorway

node, vnode4 CN(0,o-2v1) is the noise vector. Re-arranging v node4 has the form

The doorway node then forwards the data in (2.3) to the sink,

where f is the channel coefficient between the doorway node and the sink. Combining

(2.2), (2.3) and (2.4), leads to the standard formulation of the Alamouti STBC with 2

transmitting and 2 receiving antennas. That is,

(2.5)
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Due to the unitarity of Hnode3 and Hnode4, the traditional STBC combining algorithm with

multiple receiving antennas can be used [36] to decode the information at the destination.

The combination of the transmission, relay, receiving and decoding from the source to the

sink appears to higher layers as a virtual bit pipe with a bit error rate (Pe). The role of Pe

in the expression of throughput and delay will be shown later.

2.4 Energy Consumption and Protocol Efficiency

Assume that nodes communicate over a slow fading channel with additive white Gaussian

noise. Consider that one node transmits data to another over such a channel. The energy

per bit over noise at the receiver is [2]

where Pt is the transmission power, P108.9 is the large scale path loss, a is the average

attenuation factor due to fading, W is the signal bandwidth, Nth is the thermal noise and

Nrx is the noise at the receiver known as the noise figure. In general, P10.98 a 1/4πdk, 2 <

k < 4.

The transmit power Pt can be written as

(2.8)

Assume N nodes are selected to transmit the data packet to the sink. The average

energy consumption per bit is
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where Ei is the energy required at node i to transmit data, and

where Pt (i) is the transmission power and Ti is the duration of the data transmission.

In order to achieve an optimal operating point with respect to energy consumption of

a wireless sensor network, the RF transmission power and MAC retransmission should be

trade-off. If there is no bit errors, no collision and no protocol overhead occur in a system,

the energy Eideal required to transmit data is

where Pt is the mean transmitted power and T is the average transmission time.

The energy to transmit data is higher in reality because of protocol overhead and

retransmission (bit error and collision). Therefore, define the protocol efficiency ri pe as the

number of successful transmitted data bits B8 88 over the number of overall transmitted bits

Ban

where Ball includes MAC layer control packets, successful and retransmitted data bits and

MAC + PHY packet header and trailer. ripe indicates the protocol efficiency during the data

transmission.

2.5 Simulation Results

2.5.1 Error Performance Simulation

It is assumed that the amplitudes of fading from each transmitting antenna to receiving

antenna are mutually uncorrelated Rayleigh distribution and that the average signal power

at each receiving antenna is the same. Future, assume that the receiver has perfect

knowledge of the channel. Figure 2.4 shows the probability of the packet successful
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transmission of uncoded coherent BPSK for conventional method (no diversity) and

space-time schemes (transmitting diversity only and tranmitting/receiving diversity) in

Rayleigh fading. The performance of the new scheme is better than the conventional

scheme and the transmission diversity methods. The diversity gain of the new scheme

at BER of 10 -3 is about 7 dB better than transmitting diversity only scheme and 18 dB

better than the traditional method.

Figure 2.3 BER performance comparison of BPSK in Rayleigh fading

2.5.2 Throughput and Delay Simulation

Consider that the buffer size is infinite and then finite K, the packet arrival is a Poisson

process.

Figure 2.5 Figure 2.6 shows the throughput versus traffic load for different

approaches. The cooperative diversity approach with 2 transmitting cooperative nodes

and 2 receiving cooperative nodes has the best performance. The delay performance is

shown in Figure 2.7 and Figure 2.8 as a function of the traffic load. The simulation results



Figure 2.4 Probability of packet successfully transmission vs. SNR

demonstrate that the new scheme is better than transmitting diversity only approach and the

single relay method.

2.5.3 Energy Efficiency Simulation

Assume the  ,P lossa is about 70 dB, the signal bandwidth is W = 1Mhz,R =1Mbit/s,

Nth = —174dBm and Nrx r-:,- 10dB, Figure 5.10 shows the simulation result for BER vs.

transmitting power. It is important to note, the higher the transmission power, the lower the

BER for the same method. To achieve the same BER, the new scheme needs the lowest

transmission power. Figure 5.11 shows the average energy vs. BER. The new scheme can

provide the best energy efficiency.

Figure 2.18 shows the protocol efficiency dependence on the transmission power

used. The graph shows, that the protocol efficiency is very small for a relatively low

transmission power for each transmission scheme. The primary reason are corrupted

packets, which have to be retransmitted by the MAC protocol. By increasing the

18
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Figure 2.5 Throughput performance vs. traffic load comparison of BPSK in Rayleigh
fading

Figure 2.6 Throughput performance vs. traffic load comparison of BPSK in Rayleigh
fading, analytical results



Figure 2.7 Delay performance vs. traffic load comparison of BPSK in Rayleigh fading
(SNR= 1 5dB)

20

Figure 2.8 Delay performance vs. traffic load comparison of BPSK in Rayleigh fading
(SNR=25dB)
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Figure 2.9 Delay performance (analytical and simulation Results) in Rayleigh
fading(SNR= 1 5 dB)

Figure 2.10 Drop probability vs. buffer size, analytical results (SNR=10dB, a = 0.5,
/ono < μstbc < 0 < μ2t2r)
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Figure 2.11 Drop probability vs. buffer size, analytical results (SNR=20dB, a = 0.8,
μno < 0 < μstbc < μ2t2r)

Figure 2.12 Drop probability vs. buffer size, analytical results (SNR=25dB, a = 0.6,
0 < μno < [tsar < μ2t2r)
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Figure 2.13 Go through delay vs. buffer size, analytical results (SNR=10dB, a = 0.5,
μno < μstbc < 0 < μ2t2r)

Figure 2.14 Go through delay vs. buffer size, analytical results (SNR=20dB, a = 0.8,
//no < 0 < μstbc < μ2t2r)



Figure 2.15 Go through delay vs. Buffer size, analytical results (SNR=20dB, a = 0.5,
0 < 	 < μstbc < μ2t2r)
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Figure 2.16 Bit error rate vs. transmission power using various of transmission methods



Figure 2.17 The energy per bit vs. bit error rate using various of transmission methods

Figure 2.18 The protocol efficiency ape vs. mean transmission power for 64 byte packets
using various of transmission methods



Figure 2.19 The protocol efficiency ripe vs. packet size for various transmission power

26

Figure 2.20 The protocol efficiency ripe vs. packet size for various BER
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transmission power, the protocol efficiency increases relatively fast up to a certain

level, which depends on the transmission method chosen in the network. An increased

transmission power is equivalent to a smaller BER, which result in a better protocol

efficiency. Further more, it is important to note that if the transmission power reach a

certain level (approximately -1 dBm, 5 dBm and 31 dBm for the new scheme, transmission

diversity method and the traditional approach for 512 Byte packets) , only a marginal

increases of protocol efficiency is reported. One can observe that the protocol efficiency

remains smaller for 64 Byte packets and a little higher using 2048 Byte packets For the

same protocol efficiency, the new scheme has the lowest transmission power level.

In Figure 2.19, the protocol efficiency ηpe vs. packet length is shown for different

transmission schemes. At the same transmission power level, the new scheme provide the

highest protocol efficiency. The figure clearly shows that there is an optimal packet size

providing the highest protocol efficiency for different transmission schemes. In Figure

2.20, the protocol efficiency curve indicates for the higher BER, which is equivalent to low

transmission power, that smaller packets have the better performance; for low BER, the

larger packets have the best efficiency. For example, when the BER is 10 -5 , the optimal

packet size is about 500 Bytes. First, The protocol efficiency is mainly influenced by the

MAC (hearder, trailer and control packet) for small packet case. For long packets the MAC

plays a minor role, but long packets will be corrupted with high probability, resulting in

retransmissions.

2.6 Conclusions

In this chapter,the cooperative space-time coding and quality-based cooperative routing for

cross layer design in multi-hop wireless sensor networks is introduced. Selected multiple

nodes according to the link quality act as the transmitting and receiving antenna array.

The linear space-time code is used to provide transmission diversity, and the sink uses a

maximum ratio combining (MRC) together with its neighbors to make symbol decision.
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One can find that the new scheme is beneficial for overcoming the mutilpath fading and

reducing the interference (lower power for same BER requirement). The results indicate

that the cooperative scheme is energy efficient. The protocol harmonization scheme is

used to reduce energy consumption for signal transmitting. It is demonstrated that data

link layer and physical layer correlate. An inappropriately chosen transmission power may

result in energy waste. The results show that there is an optimal transmission power for

each packet size and different transmission schemes. The new scheme provide the best

protocol efficiency at the same transmission power level. Furthermore, the result indicate,

that packets should be as large as possible to save energy for low BERs. This mechanism

would be extremely useful for non real time data.



CHAPTER 3

DIFFERENTIAL SPACE-TIME BLOCK CODING FOR COOPERATIVE

RELAYS IN SENSOR NETWORKS

3.1 Motivation

Wireless sensor networks can efficiently provide environment monitoring for many civil

and military applications. Traditionally, in wireless data routing, the routing protocols do

not penetrate into the physical layer, and the physical layer research ignores some degree of

design freedom avoidable at the networking layer. Recently, parallel wireless relay schemes

have been introduced into wireless sensor networks [29] [37]. The parallel relays, using

space-time modulation and cross-layer design, are the contender against the traditional

routing protocol.

In a typical sensor network, information collected by sensors needs to be transmitted

to a remote processor center (the collector). If the collector is far away, the information

may first be transmitted to a relay node, then multi-hop routing will be used to forward

the information to its final destination, as shown in Figure 3.1. Assuming a source can be

heard by the multiple neighbor nodes simultaneously, this method can select several nodes

as the relay nodes to bring cooperative diversity into the routing process. In doing so,

each relay node receives the signal transmitted from the source and retransmit the signal in

parallel via STBC to the next hop. After several hops of relay, the destination receives a

superimposed version of the transmitted symbols. With the space diversity provided by the

relay nodes, the destination is then able to detect the original symbol sequence transmitted

from the source.

Various STBC communication approaches have been proposed [28] [36]. The

achievable throughput on wireless fading channel can be systematically increased by using

multiple transmitting and/or receiving antennas. However coherent detection method

29
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needs to estimate and track the time-varying channel, resulting in the increasing system

complexity as the number of the parallel relays grows [38]. Huges [39] and Hochwald

and Sweldens [40] independently proposed differential unitary space-time modulation

(DUSTM). Differential STBC communications avoid the tracking complexity through the

use of noncoherent detection over the block fading channel [41].

Figure 3.1 A multihop sensor network with cooperative relays.

3.2 Differential Space-Time Block Codes for Wireless Relays

In this work, consider a multi-hop wireless sensor network over a block fading channel,

where the channel coefficients between the source node and the relay nodes are statistically

independent, but remain unchanged within T symbol periods. The source node sends a set

of data d, a T x 1 vector over multiple time-slots using a differential scheme. Specifically,
T

for T = 2, given s0 ,0 = 1 0 	 as the initial symbol, the sequential differential coded

symbols are generated as s o.t = Do.t so.t-1, where

contains data d.

At the first hop, 2 nodes (Node 1 , 1 and Node 1 ,2) are chosen that act as the relay nodes,

as shown in Figure 3.1. The relay nodes selection is based on the link quality [34] over T
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symbol interval. The received signal corrupted by channel and noise is contained in a T x 2

matrix, i.e.

where p2 is the signal to noise ratio, h 1 is the 2 x 1 channel coefficient vector between

source node and the first hop relay nodes, the T x 2 noise matrix W 1 is normalized complex

gaussian distributed (with i.i.d. elements). Specifically, for one step differential STBC, two

consecutive received signal matrices at these relay nodes are used to recover the information

matrix Dt at each time block. Assume that the channel remains unchanged within T = 2 x 2

symbol periods, then the received data matrices are,

From (3.2), one obtains that

Because the noise matrices at different time blocks are independent and have i.i.d. entries,

one can get

where W' is a 2 x 2 equivalent noise matrix whose elements are complex Gaussian with

mean 0 and variance 0.5 per dimension. In this differential receiver equation, X1, t_1 can be

treated as the known channel matrix for the system transmitting Do, t with noise variance 2.

Ignoring the dependence of the noise on the transmitted signal, the sub-optimal differential

decoder is
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These relay nodes, after decoding the received signals and get d, according the

estimated data, relay their data to the second hop relay nodes in a differential way. That

is, an identity matrix is sent by these relay nodes to initialize the transmission. The data

matrices are then differentially encoded and sent. The transmitted signal matrices can be

written as

where D1, t = Do,t . The received data at the second hop relay nodes (Node2,1 and Node2,2)

are

where H12 is the channel coefficient matrix between the first hop relay nodes and the second

hop relay nodes.

Similar to the first hop, these relay nodes generate their transmitted matrix

where

then relay their data to the next hop

(3.7)
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This process is repeated until the transmitted signals finally reach the destination. For

a relay system with L hops, the received data at the destination is

where hL_1,3 is the 2 x 1 channel vector between the (L — 1)th hop relay nodes and the

destination.

The differential decoder follows the decision rule,

The orthogonal structure of STBC, leads to data symbols decoupling, hence the above

suboptimal differential decoder has linear complexity [42].

At the sink node, write the received signal as: Yt-1 = [ yt-i(1) yt_1(2) } T and

Yt = [ yt(l) yt (2) F Thus,

and

The detector then selects the constellation vector that is closest to (1Z, 1 1Z2 ). The

combination of the transmission, relay, receiving and decoding from the source to the

destination appears to higher layers as a virtual bit pipe with a bit error rate (Pe).
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3.3 Energy Consumption

At a sensor node, use Es to denote the energy needed to sense data (one bit), Ep to denote

the energy needed for data processing (one bit), and ER,/ETx to denote the energy needed

for receiving and transmitting the one bit data, respectively.

Assume the Es , Ep are the same for all methods. This section will focus on the ERx

and ETx. The energy needed to receive a bit ERx accounts for the receiver electronics

energy dissipation. The energy needed to transmit a bit ETx consists of two parts: the

energy dissipation of the transmitter electronics Etxe, and the the RF transmit energy ERF,

assume that Etxe = ER,

The energy per bit to noise ratio at the receiver is [2]

where PRF is the RF transmission power, P1 is the large scale path loss, a is the average

attenuation factor due to fading, W is the signal bandwidth, N t is the thermal noise and N,

is the noise at the receiver known as the noise figure. In general, P1 a 471, 1„, 2 < k < 4.

The transmit power PRF can be written as

The RF energy needed for transmitting a bit is

where PRF is the transmission power and T = W/R is the duration of the data transmission.

The assumed parameters are given in table 3.1.

The total energy consumption for a single node is
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Table 3.1 Assumed Parameter for Multihop Relay Sensor Networks

Parameter Value

Fade margin and Pass loss Pia

Thermal noise at collector Nt

Receiver noise at collector Nr

Signal bandwidth W

Data rate R

70dB

-174dBm

10dB

1MHz

1Mbps

Since E, and Ep are needed only at the source node, assume the Es and E„ are the same

for different relay methods, so E, and Ep can be ignored. The the total energy used for

data transmitted and relayed in the whole network are:

3.4 Simulation Results

To observe the performance of the differential STBC for cooperative relays method, this

chapter compared it with the single relay method through simulations. In the simulation

system, the channel model is assumed to be a block flat Rayleigh fading. Each packet

contains Len = 128 symbol periods. Assume there are L = 3 hops from the source to

the destination, and at each hop, two nodes are selected for packets relay. The source

node's buffer with infinite capacity is feeded by Poisson sources with density A, the system

simulation time equals to 10000 T.

Figure 3.2 compares the performance of the above two relay methods in terms of

bit error probability. The data symbol is BPSK. In the figure, the results show that the

cooperative relays can provide lower BER than the traditional single relay method.
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Figure 3.2 Performance of single relay and cooperative relays with BPSK data symbols.

Figure 3.3 shows the probability of packet successful transmission vs. SNR. The

diversity gain of the cooperative relays at PST of 0.9 is about 9 dB better than a single relay

scheme.

Figure 3.4 shows versus the traffic load when SNR=24dB, the value of decreases

while the traffic load increases. The system is stable as long as μ > 0. Figure 3.5 shows the

throughput versus the traffic load for different approaches. The cooperative relay approach

has a better performance than the single relay one. If > 0, the throughput equals to the

traffic load; if < 0, the carried load (throughput) equals the capacity of the system. The

delay performance is shown in Figure 3.6 as a function of the traffic load. The simulation

results demonstrate that the new scheme outperforms the traditional one. It is also observed

that when ea is greater than zero, they both can deliver packets and the cooperative one can

provide smaller delay because of pc is greater than μs . When the traffic load increases to

a certain level, say about 0.9, the cooperative one still works, but the traditional one walks

with disaster (the delay increases to infinity).
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Figure 3.3 Probability of packet successfully transmission vs. SNR.

Figure 3.4 p vs. tra•cload
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Figure 3.5 Throughput vs. traffic load, simulation results

Figure 3.6 Delay vs. traffic load, analytical and simulation results (SNR=24dB)
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The go through delay performance is shown in Figure 3.7 to Figure 3.9 as a function

of the buffer size. When ',L s < < 0, the go through delay increases when buffer size

increases, they both go to infinity, and cooperative one has the better performance. When

< 0 < pc, go through delay increases when buffer size increases, the delay of single

method goes to infinity, and the cooperative one goes to a constant value. When 0 < <

,ac, the go through probability increases when buffer size increases, and both of them go to

a finite value. The cooperative one has the smaller go through delay.

Figure 3.10 to Figure 3.12 show the drop probability versus buffer size. When ,u, <

< 0, the probability of drop decreases when buffer size increases, they both drop to

a certain level, and cooperative one has the better performance. When μs < 0 < pc ,

cooperative method drops to 0 and single method drops to a certain level. When 0 < <

pc, both of them drop to 0, but cooperative drops much faster than the single one. The

simulation results demonstrate that the proposed scheme has smaller drop probability than

the traditional one.

Figure 3.7 Go through delay vs. buffer size, analytical and simulation results
(SNR=18dB, a = 1, IL, < < 0)
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Figure 3.8 Go through delay vs. buffer size, analytical and simulation results
(SNR=21dB, a = 0.8, μs <0 < /l)

Figure 3.13 show the BER vs. RF transmitting power for different relay methods. It

is shown that to achieve the same BER, cooperative one need less RF transmitting power,

that is because the diversity provided by DSTBC can overcome the fading.

The RF energy vs. BER is shown in Figure 3.14, and Figure 3.15 shows the total

energy needed vs. BER. There is a threshold or a critical point, when total energy is

higher than that point (the blue curve is above the red curve), the cooperative relay method

has lower BER, and the probability of successful transmission is higher. Therefore the

cooperative method has better performance. When the total energy is lower than that point

(the blue curve is under the red curve), the single relay method can provide lower BER,

and then the better performance.

Figure 3.16 shows the delay and throughput performance vs. the traffic load

when total energy is higher than the point, both methods use the same total energy, and

cooperative method has better performance (higher throughput and lower delay). Figure
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Figure 3.9 Go through delay vs. buffer size, analytical and simulation results
(SNR=24dB, a = 0.8, 0 < μs < μc)

Figure 3.10 Drop probability vs. buffer size, simulation and analytical results
(SNR=18dB, a = 1, μs < pc < 0)
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Figure 3.11 Drop probability vs. buffer size, simulation and analytical results
(SNR=21dB, a = 0.8, μs < 0 <

Figure 3.12 Drop probability vs.	 buffer size,simulation and analytical results
(SNR=24dB, a = 0.8, 0 < < μc)



Figure 3.13 BER vs. RF transmitting power
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Figure 3.14 BER vs. RF transmitting energy



Figure 3.15 BER vs. total energy used

3.17 shows the delay and throughput performance vs. the traffic load when total energy is

lower than the point, both methods use the same total energy, and single relay method has

better performance (higher throughput and lower delay). Since the throughput are pretty

low, both of them are unacceptable in high traffic load case.

When both method use the same amount of total RF power (RF energy), the

cooperative method is better. When the same total energy consumption is consided, since

more nodes participate the data relay, more receiving energy and transmitting energy used

for cooperative method, to keep the same total amount of energy, the cooperative scheme

should decrease the RF power of cooperative method, it introduce some BER loss. Since

the BER curves are not parallel to each other, the cooperative one decrease much faster, the

BER performance is also better even after the loss, therefore the cooperative one has better

performance.



Figure 3.16 Delay and throughput vs. traffic load (Etotal,s = Etotal,c = 3.0 x 10 -7J)
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Figure 3.17 Delay and throughput vs. traffic load (Etotal,s = Etotal,c = 1.7 x 10 -7J)



46

3.5 Conclusions

This chapter introduce the differential space-time coding with cross layer design for

cooperative relay in multi-hop wireless sensor networks. The proposed method can

effectively overcome the multipath fading without channel tracking. The analytical and

simulation results indicate significant system improvements in terms of bit error rate and

the packet successful transmission probability. Consequently, the network throughput and

the end-to-end delay are also improved considering the traditional method. Moreover, the

new approach leads to lower computation complexity for sensor nodes.



CHAPTER 4

IMPACT OF NETWORK RESOURCE CONSTRAINTS ON THE

PERFORMANCE OF WIRELESS RELAY SENSOR NETWORKS

4.1 Motivation

One of the most important performance measures of a data network is the average delay

required to deliver a packet from original to destination. Furthermore, delay consideration

strongly influence the choice and performance of network algorithms, such as routing and

flow control. For these reasons, it is important to understand the nature and mechanism of

delay, and the manner in which it depends on the characteristics of the network. Throughput

is another important performance.

Queueing theory is the primary methodological framework for analyzing network

delay and throughput. It often uses required simplifying assumptions since more realistic

assumption make meaningful analysis extremely difficult. For this reason, it is sometimes

impossible to obtain accurate quantitative delay predication on the basis of queueing

models. These models often provide a basis for adequate delay approximations, as well

as valuable qualitative results and worthwhile insight.

Since all service facilities have finite resources, a system with finite buffer size is

more practical than one with infinite buffer size. Moreover, the network resources of a tiny

sensor node in sensor network is limited by the node's small size and low cost. For example,

a node has limited power and energy due to the battery, limited computation ability due to

the micro processor utilized, limited buffer size due to the small memory. The impact of

the buffer size on the network performance is also should be carefully considered. When

buffer size of a node is limited, some of the new arrival will be blocked when the buffer is

full, so the drop probability (block probability) is a important performance to measure such

47



48

a network system. Therefore, the end-to-end delay of the users which really come in the

system is another major performance measure, and is called go through delay.

4.2 Performance Analysis Using Markov Chain Model and Skip Free Negative

Process

The performance of system is analyzed from the view point of the network. In considering

the packet pass through the network via the virtual bit pipe from the source to the sink, the

system model is constructed via a Markov chain. Then the system throughput and delay

are analyzed.

4.2.1 Markov Chain and Steady State Model

Consider a queueing system where packets arrive at random times for service. Define the

system state as the number of data packets, which equals the packets waiting in queue

(waiting in the buffer of the source node) plus packets undergoing service (transmission

through the bit pipe), in the system. Define the transmission period for one packet as T.

The traffic load follows the Poisson distribution with rate A, N(t) is the number of new

packets arriving in the interval (0, t].

The probability that there are k data packets coming into the buffer during time r is:

where a = AT is the average number of packet arrivals during transmission period T.

Assume that there is a buffer of infinite capacity for waiting packets [24]. Later a similar

technique can be used in case of a finite buffer. The transition probability Pk (from i to

i + k, except i = 0, k = 0) is
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where PST = (1 pe)L" is the probability for successful transmission, Len is the length

of the packet, and PFT = 1 — PST is the probability of the packet transmission failure.

The transition probability P_ 1 and P0 are

The transition probability from state 0 to 0 is P0,0 = P-1 + Po.

The system can be modeled as a Markov chain with states (0, 1, 2, • • • ) and transition

probabilities Pk, as shown in Fig. 4.1.

Figure 4.1 Markov chain model for packet transmission at given node

The corresponding transition probability matrix is

and it is a skip free negative process [43]. Denote the stationary probability distribution of

the whole system as 7r = [70 7r1 • • • ] T . Then



In the case of a finite buffer (space for K — 1 waiting packets, K packets in the

Concentrate on case of infinite buffer, define the generating function

Let i = k — r, rewrite the previous equation
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Following the definition of p,, we observe: common sense indicates that the system

with infinite buffer has a stationary distribution if and only if μ > 0. In fact, the buffer

content process is positive recurrent if μ > 0, null recurrent if μ = 0, and transient if
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So, the expression of p can be gotten

The condition that /2 > 0 therefore is that PST > a , which is "intuitively obvious".

(When there are packets waiting, the probability of success must be greater than the average

number of new arrivals).

In the case of an infinite buffer, (4.6) and (4.7) show that

which confirms that the system needs μ > 0, and then

The method above works only in the case of an infinite buffer. If the buffer is finite,

say has space for only K packets, the system is always stationary, whether μ > 0, μ, = 0 or

< 0. In this case the stationarity distribution can be found as follows:

Choose 70 > 0, further arbitrary, say 70 = 1. Compute 7r1 , 72, • • , irk iteratively

from the last two formulas in (4.8). Then renormalize to get the sum of the probabilities

πo + π1+ • • • + πk = 1.

4.2.2 Throughput and Delay Analysis

In case of an infinite buffer the results in subsection A above lead to closed form results

for throughput and delay. Define the throughput as the average number of the successfully

transmitted data packets per period,
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The average packet delay equals the average of waiting time of each packet. The

probability of the buffer is empty is gyro .

The average number of packets in system is

and the first part is



Note that

So, we can find that

The average number of packets in buffer is

and the average delay time of each packet is

4.2.3 System Stability Analysis

In a skip free negative process, the condition that the system is stable is the probability that

the state transfers from right to left equals to the probability that the state transfers from

left to right, using global balance equation

54
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it can be rewritten as:

Rewritten the previous equation, get

Let

and one can get

divided by Cxk at both sides of the previous equation,

Find the n solutions of equation 4.16 x 1 , x2, . , xn , then find C1, C2, . , Cn , and

the stationary probabilities are

Since 0 < 7rk < 1, lxkl > 1, that is the Markov chain is recurrent and the system is

stable.

In another way, using the detailed balance equation for state k

and the probability of state k + 1 is
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In the unlimited buffer size situation,

From the definition of u, common sense indicates that the system with infinite buffer has

a stationary distribution if and only if p > 0. In fact, the buffer content process is positive

recurrent if p, > 0, null recurrent if μ = 0, and transient if μ < 0.

From 4.17, similar to equation 4.15,

Let irk = Cxk and rewrite it

Find the n solutions of equation 4.16 x 1 , x2, . . . , xn, then find C1, C2, . . . , Cn, and the

stationary probabilities are

SO,
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It is impossible to find 0 < lxk I < ∞  making 0 < Irk <1, the markov chain is transit

and the system is unstable.

4.2.4 Drop Probability and Go Through Delay Analysis

In case of a finite buffer size [25], the new arrival will be dropped when the buffer is full.

The probability of packet be dropped is

Moreover, define delay as the delay of the packets that actually get through. The

average number of packets in system is

The average number of packets in buffer is

and the average go through delay of each packet is

If the buffer size increases, the fraction of customers that get dropped decreases and

the average go through delay increase. If p, > 0, buffer size gets large (to infinite), drop

probability goes to zero, while average delay goes to some constant. If p < 0, buffer gets

large, drop probability goes to 1 P aST and delay goes to infinite, as fast as 1-5,/ . If p, = 0,

buffer gets large, drop probability goes to zero, and delay goes to infinite, as fast as 1K
2 PST •
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4.3 Performance Analysis Using M/G/1 Queueing Model

Consider a queueing system immediately after a customer has departed and service is

about to commence on the next customer in queue, with service times assumed to be

independently and identically distributed random variables with an arbitrary probability

distribution. Denote the service time by b, and the cumulative distribution function by

B(t). The arrival process is Poisson with parameter A. The imbedded stochastic process

X(ti ), where X denotes the number of customs in the system and t i is the completion time

of the ith customer, can be shown to be Markovian as follows [45].

4.3.1 Delay Performance Analysis

The performance of such a system is analyzed from the network aspect. In considering

the packet passing through the network via the virtual bit pipe from the source to the sink.

Consider a queueing system where packets arrive at random times for service. Define the

transmission period for one packet as T. The traffic load follows the Poisson distribution

with rate A,

A given packet transmitted might be retransmit due to errors (see Figure 4.2) .

It follows that the time interval between the start of the first transmission and the last

transmission of a given packet is kr with probability PsTPk-1ft• The transmitter queue

behaves like an M/G/1 queue with service time distribution given by

where P PFT = 1 — PST is the probability of the packet transmission failure, PST =

(1 — Pe ) Len is the successful transmission probability , Len is the length of the packet and

Pe is the bit error rate.
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(The sums are obtained by differential Using these formulas in

The first two moments of the service time are
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the equation for b and b2 above, one can obtain

The P-K formula gives the average packet time in queue

We observe that, the average service time is constant (depends on P), the average

waiting time increase while the packets arrival rate increase, when the packet arrival rate

increase close to the service rate, the average waiting time goes to infinity. So, the system

is stable when (1 — Ab) > 0, that is A < b(the packet arrival rate is less than the average



service rate). The average delay time of each packet is
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Figure 4.2 Illustraction of the effective service time of packet in the system. For example,
packet 1 has an effective service time of 4 because there were 3 errors in the first three
times attempt to transmit it, but no error in the forth attempt.

4.3.2 Departure-Point Steady-State System-Size Probability

Let 77,, represent the probability of n in the system at a departure point (a point of time just

slightly after a customer has completed service) after steady state is reached. The imbedded

stochastic process at departure points is a Markov chain. Denote the transition probability

matrix by

where

pij = Pr{system size immediately after a departure point is ji

system size after previous departure was

Simplification results on defining



so that pig can be seen to equal kj_i+1 and
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Assume steady state is achievable, the steady-state probability vector 7r = {πn}, can

be found as the solution to the stationary equation

This yields

Now define the generating functions

Then multiplying (4.24) by zi, summing over i, and solving for II(z)

Using the fact II(1) = 1, along with L'Hôpital's rule, and realizing that K(1) = 1

and K1 (1) =
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Hence

Define the throughput as the average number of the successfully transmitted data

packets per period,

4.3.3 Finite M/G/1 Queues

In this section, the finite buffer size is studied. The M/G/1 queueing system with finite-

capacity is denoted by M/G/1/K system, where K is the capacity of a system such that

1 < K < ∞ , as shown in Figure 4.3. Two major performance measures in the M/G/1/K

system are the go through delay D (mean response time [46]) of a message that is accepted

in the system, and the drop probability Pd (blocking probability) that an arrival message is

droped/blocked because the system is full when it arrivals. The throughput R of the system,

that is, the mean number of messages that actually served per unit time, is

Figure 4.3 An M/G/1/K queueing system.

Define p = λb as the traffic load (offered load) of the system, where b is mean for the

service time of a message. The carried load of the system is p' = 76 = p(1 — Pd), which
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is the fraction of the time that the service is busy. From Little's theorem applied to those

message accepted in the system,

The analysis of the finite-capacity M/G/1/K queue proceeds in a similar way to that

of the infinite buffer size case. The PK formulas will not hold because the expected number

of arrival during a service period must be conditioned on the system size. The single-step

transition matrix must here be truncated at K — 1, so that,

implies that the stationary equation is

Equation 4.29 provide K independent equations for K unknowns (irk 0 < k < K — 1).

An efficient algorithm for computing irk can be given in terms of [47]
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It is easy to see form 4.29 that {ir;,; 0 < k < K — 1} can be recursively calculated as

follows:

Thus we get Irk from 4.30. The computational complexity of this algorithm is of

order 0(k 2). Note that the above form for the set of linear equations for 7r;, is called an

upper Hessenberg matrix, and is suitable for numerical computation [48]. Furthermore,

it is note that the probability distribution for the system size encountered by an arrival

will be different form Irk, 0 < k < K. Let q;, then denote the probability that an arrival

message (whether is joins the queue or not) finds k message in the system, and let

Pk, (k = 0, 1, 2, ... , K) be the probability that there are k packets presents in the system at

an arbitrary time. From the theorem that Poisson arrivals see time averages (PASTA) [49],

and

Compare the previous two equations,



65

where c is a proportional constant.

We also have that

Note that

Obtain the relation PK = 1 - 	 and c =  +P

Thus, the probability of k packet in the system is

(4.34)

The mean of the number of packets in the system at an arbitrary time is thus given by

From 4.27, the go through delay is



CHAPTER 5

EXTENDING LIFETIME OF THE NETWORK AND CRUCIAL NODE BY

MULTIPLE DIVERSITY COMBINING

5.1 Motivation

The cross-layer design in wireless sensor networks has received much attention

among researchers both in physical layer and network layer. The cross-layer design

facilitates efficient and collaborative utilization of network resources in protocol based

communication systems. Traditionally, in wired networks, the MAC layer is designed

using a simple collision avoidance model. Most of the conventional random access

protocols assume that the failure of reception is caused by collisions and the channel

is noiseless. Therefore, collided packets are destroyed and retransmission must be

made later. Simple random access protocols of ALOHA type 'resolve' collisions by

randomizing retransmission to improve system performance [44]. Carrier sensing multiple

access (CSMA) and collision detection mechanism are also employed to improve the

throughput performance by collision detection in wired networks. The emphases in the

random access mechanisms have been mostly on retransmission schemes that minimizing

future collisions [6]. However, the collided packets are typically discarded when a

collision does occur, and no information is exploited from them. In cellular data networks,

data sensing multiple access (DSMA) is usually implemented. The base station detects

collisions and continuously broadcasts a busy/idle signal through a control channel to

all users. In a wireless network, users share a common unreliable wireless channel due

to fading, interference and background noise. The receiver at a given node is designed

to extract from data the signals of interested users. Better approaches to resolving and

separating collisions improve the throughput and performance of the system. The key to

successful signal separation is the transmission and/or receiving diversity embedded in the

66
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received data packages. Diversity can be introduced both at the transmitter and at the

receiver. The transmit diversity introduces redundance into the transmitted data package

using modulation, coding, and spreading techniques. The spatial diversity is another

technique for reliable signal reception and separation [50]. The use of antenna arrays

provides additional degrees of freedom in multi-packet reception and separation [51]. The

framework of multiuser detection [52] is the essence of many signal separation methods.

The transmit diversity, receiver diversity, and multiuser detection are mainly implemented

in physical layer. In addition, recent research also uses network resources to provide

diversity through selective retransmission [53].

The goal of this chapter is to combine the diversities provided by different protocol

layers for multi-packet reception in random access wireless networks. In this approach,

employing antenna arrays at collector allows the separation of multiple transmitting at

the same time when the number of active sensor nodes is less than the number of the

antennas. However, with the increase of the active nodes, the collector can not extract the

data by the space diversity only. Then the received packets that have collided are stored

in memory. They are later combined with future retransmission in order to extract all the

collided information.

5.2 Crucial Nodes

In wireless sensor network, the sensor nodes are usually scattered in a sensor field as

shown in Figure 5.1. These nodes collect data and route data to the collector, the collector

communicates with the process center.

In non-mission-critical application, the definition of lifetime is the cumulative active

time of the network (i.e. whenever the network is active its lifetime clock is ticking,

otherwise not.) In mission-critical applications, lifetime is defined as the cumulative active

time of network until the first loss of coverage or quality failure [54]. In this dissertation the

network lifetime is defined as the time interval between the time that sensor network starts
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its operation and the time that the collector losses communication with all sensor nodes.

In most cases, when all the nodes that can communicate with the collector directly expire,

the sensor network is completely 'dead'. Therefore, these nodes with one hop away from

the collector are called crucial nodes because their lifetime are more important than other

nodes for the network lifetime.

Assume that a sensor network consists of a total of N total randomly deployed nodes.

Denote the sensor node set S = {Si, s2, • • S Ntotal} IS I = Ntotal, where'. I is the cardinal

number of a set [26]. Define C = {s i lri < dmax, si E S}, ICI = J where ri is the distance

between node s i and the collector, and dmax is the maximum transmission range of a node,

as the set of crucial sensors and the collector can only receive the packets from/through one

node in this set. Therefore, the lifetime of the whole network is determined by the lifetime

of set C which depends on the traffic generated and relayed by these nodes. In order to

extend the network lifetime, we try to minimize the average energy consumption at these

crucial nodes.

To achieve the goal of energy efficiency, it is necessary to identify the main sources

that waste energy. The major sources of energy waste in sensor networks are: collision,

overhearing, control packet overhead and idle listening. Due to the high traffic load at

these crucial nodes, collision is the primary energy waste source and increases the latency

as well.

5.3 System Model

Let us consider a wireless sensor network with K active transmitting nodes, each using a

slotted random access scheme [27]. Specially, node k transmits a length-N data packet,

dk(n) = [ dk,i(n), • • • , dk,N(n) 	 9 during the n-th time slot. Assume that the

collector (receiving node) uses an antenna array of M sensors. Within the n-th time slot,



Figure 5.1 Crucial nodes in a multi-hop sensor networks.

the data vector received by the m-th antenna can be modeled as,

where akm (n) denotes the channel gain (a real-valued Gaussian random variable) between

the k-th transmitter (node) and the m-th antenna, vector v m,(n) is the real-valued addictive

white Gaussian noise at the m-th antenna.

The total received data from all M antennas within the n-th time slot, collected in a

N x M matrix, can be modelled as

69
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[

where A(n) is a K x M mixing matrix with akt(n) = ak,1 (n), • • • , ak ,m (n) ,k =

[

1, 2, . . . , K as its rows; the N x K matrix D(n) = d i (n) . . . dk  (n) contains K

[

collided packages; V(n) = v i (n) • • • vm (n) is the noise matrix.

In a simple network using random access protocols, when a collision is detected,

the received packets Y(n) are discarded and the system initiates a retransmission schedule.

However, from (5.2) we know that the data matrix Y (n) contains information of all collided

packets, hence, it should be exploited with the help of additional data transmission for

collision resolution. We notice the fact that the reception diversity from the M-element

receiving antenna array provides M copies of the transmitted packages D(n), each being

scaled by a different channel gain vector (the m-th column of matrix A(n)). Hence, we can

resolve K transmission nodes' packages as long as M > K. Based on this observation, it

is possible to propose a collaborative approach to combining the spatial diversity with the

network assisted diversity to separate and extract information from received data packages

in collision.

Figure 5.2 A random access, slotted wireless system with receiving antennas.

5.4 Collision Resolution through Signal Separation

5.4.1 Network Assisted Diversity Multiple Access

In principle, collision resolution is equivalent to signal separation. The network assisted

diversity multiple access (NDMA) approach can be used for this purpose [53].
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Let us consider the case when K transmission nodes collide in a given time slot n.

The receiver has only one receive antenna. Therefore the received data vector y(n) consists

of a mixture of K packages from different sources. That is,

where the information D (n) 	 = 	 [ d i (n) • • • dK (n) 	 and a(n)

[ a i (n), • • • , aK(n) 	 • Apparently, at least an additional (K — 1) snapshots of

N x 1 data vector are needed to resolve the N x K information matrix D(n). From a

signal processing perspective, this problem may be solved if there is a method to create a

F branch diversity with r > K and collect r independent mixtures of the signals d k (n).

With the network layer knowledge, all transmission nodes are aware of the fact that a

collision with multiplicity K occurred during the time slot n. Therefore, each of the K

nodes will retransmit its packets K — 1 more times in the next K — 1 time slots. No

other node will initiate a new transmission during these K — 1 slots. With this collision

detection and retransmission protocol, the receiver will receive a total K copies of the

If the mixing matrix A(n) of full rank is known or can be estimated, a simple linear

inverse filtering solution can be used for data package separation,
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Since only K time slots are required to construct a full rank mixing matrix A(n) for

separating K collided packets, no slot is wasted and no throughput penalties incurred by

the technique.

5.4.2 Space and Network Assisted Diversity Multiple Combining Access

Consider the similar case as in Section 5.4.1, but the receiver now is equipped with an

array with M receiving antennas. Using the similar protocol, each of the K nodes will

retransmit its information packet L — 1 more times in the next L — 1 slots (i.e. slots n + 1,

• • • , n + L — 1). An example of this protocol for a collision of 3 nodes and 2 receive

antennas is shown in the Figure 5.3.

No other nodes will transmit a new packet in the next L — 1 slots. Assume that no

other nodes will transmit a new packet in the next L — 1 slots. The proposed approach can

resolve the packet collision during L time slots. Thus it is M times faster than NDMA to

resolve colliding packets. The assumption holds when other nodes are notified by using a

busy tone signal as stated in subsection 5.4.3. Only the colliding nodes will retransmit their

packets in the next L — 1 slots according to the in-band busy signal while the other nodes

will remain deferred within the L — 1 slots. Considering that both NDMA and proposed

approach assume that no other active users transmit packets during the resolution period,

the new approach is able to provide more opportunities for other deferred nodes to access

channels in the next time slots. Since they are less likely to enter the back off waiting stage,

the proposed approach achieves higher throughput and fairness than NDMA. The receiver

will receive a total L x M copies of the collided packets with these conventions.
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where data Y(n) is N x (ML) matrix, the channel gain A(n) is K x (ML) matrix and

noise V (n) is N x (ML) matrix,

Equation (5.6) represents a classical source separation problem. If the mixing matrix

A(n) is known or can be estimated, the maximum likelihood estimation of the transmitted

packets is

where 11'11F represents the Frobenius norm, and D takes all possible finite values. Since

ML > K, the rank (A(n)) > K. The ZF and MMSE solution for the desired data [55]

can be gotten.
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Figure 5.3 Packet collision and retransmission with 3 transmission nodes and 1 to 2
receiving antennas. With spatial diversity at reception, only 2 transmissions are required to
resolve collision among 3 transmission nodes in (b).

5.4.3 The Signal Separation

Generally, a guard period is needed at the beginning of each slot in a slotted network [56].

Every node listens to the carrier during this guard period, and transmits its data after this

period. One can use such a guard period to inform nodes of the collision with a busy

signal. The receiver has to discriminate all the active transmitting nodes. There are 2 J

different possibilities in a J-transmitting-node system. A unique ID sequence for each

node contained in the packet is required in order to enable the receiver to uniquely identify

all the active transmitting nodes. Assume that the first Q symbols of each packet of node k

is the ID sequence, that is dk = pk(n)]i:o. The corresponding received data is,

where ym(n ) a [ym(n)]1,Q, and Vm(n) a- [vm (n)] 1 , Q . From (5.10), the estimation of

akm(n) from the received data y(n) is related to a least square (LS) problem. Assume that

the ID sequences are orthogonal to each other.
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the matched-filter output zk,m(n) associated with dk is

Therefore vector zm (n) 	 [zi ,m (n), • • • , Z ,m (n)iT forms the sufficient statistic for

estimating the node gain am (n) = [ai,m (n), 	 , ax,m (n)] 7' for the mth antenna.

5.5 Goodput and Delay Analysis

5.5.1 Goodput Analysis

It is instructive for us to view the traffic in the channel as a flow of collision resolution

periods or epochs. An epoch includes one or several consecutive channel slots that are

dedicated for the transmission (including the initial transmission and retransmissions) of

the data packets from the nodes who are active at the beginning of the epoch. The idle

slots, during which no data are transmitted, also compose epochs called idle epochs, which

only include one slot. Correspondingly, we call those epochs, during which some packets

are under transmission, busy epochs. The length of a busy epoch is the number of time

slots the channel takes to serve the currently active transmission nodes.

The epoch length is a random variable depending on the number of the active

transmission nodes at the beginning of the epoch. If denote by Pemp the probability of

a transmission node's buffer being empty at the beginning of an epoch, then binomial

expressions for probability of the length / epoch busy or idle can be obatained,
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where k = 1, 2, • • • , J is the number of active transmission nodes and J is the total

number of transmission nodes in the network.

Let us define the goodput as

where Pe (k) is the bit error rate for active transmission node k.

5.5.2 Delay Analysis

From the viewpoint of a particular transmission node, two types of epochs (see Figure

5.4) can be distinguished: relevant epochs, in which a data packet belonging to this node

is being transmitted, and irrelevant epochs, in which no packet belonging to this node is

being transmitted. The lengths of two types of epochs, denoted by /, and / i , obey different

distributions,

where L = K in NDMA scheme, and for space and network combining approach L is

chosen according to (5.5).
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Denote qm as the number of data packets in the buffer of a user at the beginning of

the mth epoch. The sequence constitutes an Markov chain.

where v(qm) be the number of data packets arriving during the mth epoch.

The probability generating function of qn, is

and the steady state of Qm(z) is Q(z) = lim,„,,, Qm,(z).

If the buffer is fed by a Poisson source with rate A, the steady-state probability

generating function Q(z) is

and

Let z = 1 in equation 5.19, we can find the relationship between P emp and A, Pemp is

the unique solution in [0, 1] of the equation



78

A transmission node's buffer can also be modeled as an M/G/1 queue with vacation,

in which the relevant epoch and irrelevant epoch play the role of the service time and

vacation time respectively. According to the property of the M/G/1 queue with vacation,

the average system delay (including the waiting time in the buffer and the transmission time

in the channel) for a data packet can be expressed as

- - - 	 -where packet arrival is a Poisson process with packet arrival rate λ, 1 r , lr , /, and /2 are the

first and second moments of the relevant epoch and irrelevant epoch, respectively, and can

be computed from their distribution.

Figure 5.4 Epoch flow and types of epochs (busy epoch and idle epoch; relevant epoch
and irrelevant epoch

5.6 Energy Consumption and Lifetime of the Network

For a crucial sensor node s i E C, use Ei , init to denote the initial energy of the node,

to denote the energy needed to sense data (one bit), E i ,p to denote the energy needed for

data processing (one bit), and Ei ,Rx /Ei ,Tx to denote the energy needed for receiving and

transmitting the one bit data, respectively.

Since different collision separation methods are utilized in the collector, assume the

Ei ,p are the same for all methods. The energy needed to receive a bit Ei , Rx accounts
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Table 5.1 Assumed Parameter for Crucial Nodes at Sensor
Parameter Value

Fade margin and Pass loss Pl a

Thermal noise at collector Nt

Receiver noise at collector Nr

Signal bandwidth W

Data rate R

70dB

-174dBm

10dB

1MHz

1Mbps

for the receiver electronics energy dissipation. The energy needed to transmit a bit Ei,Tx

consists of two parts: the energy dissipation of the transmitter electronics Ei ,txe , and the

the RF transmit energy Ei,RF.

The energy per bit to noise ratio at the receiver is [2]

where PRF is the RF transmission power, Pl is the large scale path loss, a is the average

attenuation factor due to fading, W is the signal bandwidth, Nt is the thermal noise and 1V,

is the noise at the receiver known as the noise figure. In general, Pi a 47--7--F, 2 < k < 4.

The transmit power Pi,RF can be written as

The assumed parameters are given in table 5.1.

In the sensor network, collision happens when the number of the active crucial nodes

is greater than the number of the antennas at the collector (K > M at antenna array scheme

and K > 1 at single antenna scheme), collided packets will be retransmitted for collision

separation, and the retransmission time depends on K. The average RF energy required to

transmit a bit for each node is a function of the number of the active nodes, one defines it
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(5.23)

where Tk = KT in NDMA scheme, and for SNDC approach Tk = LT. Then

Define the probability of a node's buffer being empty at the beginning of an epoch as

Penn, [27], the probability of that K nodes are active is Pa (K)

The average energy consumption for transmitting per bit per node is

Assume the average traffic rate in the sensor network is A, Ag and Are are the rate of

traffic generated and relayed by s i , the traffic generated by the crucial node is assumed to

be the same for all nodes in the network and Ag = A, the traffic relayed by the crucial node

is

The power of node s i is
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The bound of the lifetime for node s i is

The lifetime of the network is

5.7 Simulation Results

To observe the performance of the space and network assisted diversity multiple access

method, it is compared with the pure NDMA method through simulation. Consider a

slotted data communication system, the total number of node in the network is Ntotal

200, the number of crucial nodes is J = 32, and the nodes' ID sequences gold code with

code length Q = 31. The number of the receive antenna is M = 2. The transmission

packets are fixed length of N = 424 bits (equal to the length of an ATM cell).

5.7.1 Error Performance Simulation

Two groups of experiments are carried out. In the first, the number of active transmission

nodes is fixed K = 5, the SNR change for different approach. In the second, the simulation

are carried under four SNR cases:

• 5 dB;

• 10 dB;

• 20 dB;

• 30 dB;

Under each scenario, the number of the active transmission nodes in the system

changes. Figure 5.5 shows the simulation result of bit error rate versus signal to noise
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ratio. In this case, it is observed that with MMSE separation and the space and network

diversity approach has the best performance.

Figure 5.5 Performance comparison (BER versus SNR) between different collision
resolution approaches. System parameters: J = 32, M = 2, and the number of active
transmission nodes K = 5.

5.7.2 Goodput and Delay Performance Simulation

The analytical results and simulation results of goodput versus total traffic load according to

(5.15) are shown in Figure 5.6 and Figure 5.7. Figure 5.6 and Figure 5.7 show the goodput

versus total traffic load AJ corresponding to SNR from 5dB to 30dB. We present two

results: the SNDC and the NDMA. The performance the of SNDC is better than NDMA

only, especially in low SNR. From the comparison between the analytical and simulation

results, the simulation results are in good agreement with the analytical expressions.

The delay performance is shown in Figure 5.8 and Figure 5.9 as a function of the

traffic load. The analytical and simulation results demonstrate that the delay performance

of the NDMA and space and network combining is much better than TDMA and pure
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Figure 5.6 Analytical result: goodput vs. traffic load with between different collision
resolution approaches. System parameters: J = 32, M = 2 (a) 5dB (b) 10dB (c) 20 dB (d)
30 dB
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Figure 5.7 Simulation result: goodput vs. traffic load with between different collision
resolution approaches. System parameters: J = 32, M = 2 (a) 5dB (b) 10dB (c) 20 dB (d)
30 dB
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ALOHA. We may see the lowest latency property of the space and network combining

approach comparing with other approaches.

Figure 5.8 Performance comparison (delay vs. traffic load) among different approaches.
(analytical results)

5.7.3 Energy Consumption and Network Lifetime

Let us assume The initial energy at each crucial node Einit = 6J [57]. Figure 5.10 and

Figure 5.12 show the simulation result for BER vs. transmitting power. It is important to

note, the higher the transmission power, the lower the BER for the same method. To achieve

the same BER, the MMSE and diversity combining scheme needs the lowest transmission

power, especially under large active user number scenario.

Figure 5.11 and Figure 5.13 show the average energy consumption for transmitting

a bit vs. BER when active nodes number is fixed. It is shown that more energy is needed

to obtain the better BER performance for each approach, and the SNDC with MMSE

separation scheme consumes the least energy.
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Figure 5.9 Performance comparison (delay vs. traffic load) among different approaches.
(simulation results)

Figure 5.10 Bit error rate vs. transmission power using various of transmission methods
(active user number=5)
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Figure 5.11 The energy per bit vs. bit error rate using various of transmission methods
(active user number=5)

Figure 5.12 Bit error rate vs. transmission power using various of transmission methods
(active user number=3 1)
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Figure 5.13 The energy per bit vs. bit error rate using various of transmission methods
(active user number=31)

In Figure 5.14 and 5.16, one can see the energy consumption (transmission and

receiving) increase with the traffic load, and energy consumption of the SNDC with MMSE

separation method is much smaller than the others, especially when the lower BER is want

to be achieved.

Figure 5.15 and 5.17 show the simulation results of the network lifetime vs. traffic

load. The lifetime decrease when traffic load increase, and the lifetime of the SNDC with

MMSE separation method is much larger than the others, especially when the lower BER

is want to be achieved.

5.8 Conclusions

A new cross-layer design approach for network diversity is presented in this chapter. The

proposed collision resolution scheme to multiple access in wireless sensor network is based

on the combination of space and network assisted diversity. The diversity is fully exploited



Figure 5.14 The energy consumption vs. traffic load using various of transmission
methods (BER=10 -3)
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Figure 5.15 The lifetime vs. traffic load using various of transmission methods
(BER=10-3)



Figure 5.16 The energy consumption vs. traffic load using various of transmission
methods (BER=10-4)
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Figure 5.17 The lifetime vs. traffic load using various of transmission methods
(BER=10-4)
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by the receiver for collision resolving and package separation. It is demonstrated that

this approach can extract the useful information from collided packets. Compared the the

network-only assisted diversity approach with proposed space and network diversity, the

latter improves the BER performance. The space and network combining approach also

provides higher goodput and smaller delay.



CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary

Sensor network is a new challenging research area with many potential applications:

smart space, environment sensing and monitoring, military and civilian applications,

and entertainment. However, wireless sensor networks is fundamentally different from

traditional wireless networks (cellular network, wireless LAN and wireless Ad hoc).

Because of the constraints of hardware, energy, cost and computational ability, sensor

networks present various design, implementation and deployment challenges. In this

dissertation, several issues associated with the energy efficient and cross-layer design for

sensor networks were investigated.

Chapter 2 introduces the cooperative space-time coding and the energy-efficient

cooperative routing for cross layer design in multi-hop wireless sensor networks. Selected

multiple nodes according to the link quality act as the transmitting and receiving antenna

arrays. The orthogonal space-time code block is used to provide transmission diversity,

and the sink uses a maximum ratio combining (MRC) together with its neighbors to make

symbol decision. This research finds that the new scheme is capable of overcoming the

multipath fading and reducing the interference. It is also demonstrated that the cooperative

scheme is energy efficient and robust.

In Chapter 3, the dissertation introduces the differential space-time coding and the

cooperative relay for cross layer design in multi-hop wireless sensor networks. The

differential space-time code block is used to provide transmission diversity and avoid

system complexity for channel tracking, the sink then uses a differential decoder to make

symbol decision. The research finds that the new scheme is capable of overcoming the

92
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multipath fading and reducing the interference while improving the throughput and delay

performance significantly.

Further more, the impact of network resource constraints on the performance of

multi-hop sensor networks with cooperative relay is investigated. This dissertation models

the cooperative relay method for sensor networks using a Markov chain and an M/G/1

queuing system, and studies the system performance when infinite buffer and finite buffer

are used. The analytical and simulation results indicate significant system improvements in

terms of system capacity. Moreover, the go through delay and the packet drop probability

are also improved compared to traditional single relay method.

A new cross-layer design approach for network diversity is presented in Chapter

5. The proposed collision resolution scheme to multiple access in wireless network

is based on the combination of space and network assisted diversity. The diversity

is fully exploited by the receiver for collision resolving and package separation. It is

demonstrated that this approach can extract the useful information from collided packets.

Compared the network-only assisted diversity approach with proposed space and network

diversity, the later method improves the BER performance. The energy consumption for

collision separation with SNDC assisted diversity in wireless network is analyzed and its

performance is compared with NDMA method. The simulation results show that the new

scheme can reduce the transmission power and the energy consumption.

6.2 Current and Future Work

The following issues are interesting and challenging design relevant to future research and

practical implementation.

1. Timing constrains are important, since sensor networks operate in the real world. In

this proposal, the cooperative relay bare are selected on the link quality only, and it is

difficult to guarantee real-time properties. The routing algorithm for choosing loop

free multipath routing based on time constrain should be researched in the future.



94

2. The differential STBC technique can provide spacial diversity and the receiver can

detect the desired signal without the channel information. The data receiving and

relay based on the two by two STBC matrix at each hop, however it is hardly to find

such perfect route in practical environment. The adaptive relay scheme based on the

real network topology should be studied in future research.

3. The SNDC method can separate the collided packets and get the desired signal. In

the energy consumption and lifetime analysis, it is assumed that the crucial nodes

are dissipate the same transmission energy. The more practical energy consumption

model based on the position of each crucial nodes and the distance between the

crucial nodes and the collector should be considered in the future research.
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