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ABSTRACT

MEDIUM ACCESS CONTROL DESIGN FOR ALL-IP
AND AD HOC WIRELESS NETWORK

by
Zaihan Jiang

Medium Access Control (MAC) protocol in a wireless network controls the access of

wireless medium by mobile terminals, in order to achieve its fair and efficient sharing. It

plays an important role in resource management and QoS support for applications. All-IP

wireless WAN is fully IP protocol-based and it is a strong candidate beyond 3G (Third

Generation Wireless Network). Ad hoc wireless network has recently been the topic of

extensive research due to its ability to work properly without fixed infrastructure.

This dissertation is composed of two main parts. The first part pursues a

Prioritized Parallel Transmission MAC (PPTM) design for All-IP Wireless WAN. Two

stages are used and each packet is with a priority level in PPTM. In stage 1, a pre-

transmission probability is calculated according to the continuous observation of the

channel load for a certain period of time. In stage 2, a packet is prioritized and

transmitted accordingly. It is modeled and analyzed as a nonpreemptive

Head-Of-the-Line prioritized queueing system with Poisson arrival traffic pattern. Its performance is

analyzed under three other traffic patterns, which are Constant Bit Rate, Exponential

On/Off, and Pareto On/Off, by using a NS-2 simulator, and compared with that of

Modified Channel Load Sensing Protocol. PPTM supports dynamic spread code

allocation mechanism. A mobile terminal can apply for a spreading code according to the

current channel condition.



To use the idea of dynamic bandwidth allocation in PPTM for adhoc wireless network, a

Dynamic-Rate-with-Collision-Avoidance (DRCA) MAC protocol is proposed in the

second part of the dissertation. DRCA is based on spread spectrum technology. In

DRCA, a terminal sets the spreading factor for a packet according to the activity level of

neighboring nodes. If the total number of usable spreading codes with this spreading

factor is less than the total number of mobile terminals in the network, to avoid collision,

the spreading code id is broadcast such that other terminals can avoid using it when the

packet is being transmitted. The performance of DRCA is theoretically analyzed in a

slotted, single-hop, multi-user environment. To evaluate DRCA's performance in an

environment closed to a real one, a simulator that supports multi-hop, random mobility

pattern is created with OPNET. Both theoretical and simulation results show that DRCA

outperforms MACA/CT (Multiple Access with Collision Avoidance with Common

Transmitter-based) in case if there are more than one communication pair and the ratio of

inactive mobile terminals to active ones is high.
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CHAPTER 1

INTRODUCTION

1.1 Objectives

This research intends to propose proper Medium Access Control (MAC) designs for All-

IP wireless WAN (Wide Area Network) and ad hoc wireless network, and analyze the

performance of these designs. The specific objects are:

1) To investigate the MAC requirements for All-IP wireless WAN and then to

propose a MAC design that works properly in an All-IP wireless WAN;

2) To analyze the performance of this MAC design in an All-IP wireless WAN and

compare it with that of Modified Channel Load Sensing Protocol (MCLSP);

3) To investigate the new challenges brought by ad hoc wireless network and then to

propose a MAC design that uses bandwidth efficiently in an ad hoc wireless

network; and,

4) To analyze the performance of this MAC protocol in an ad hoc wireless network;

compare it with that of MACA/CT (Multiple Access with Collision Avoidance/

Common Transmitter-based).

1.2 Statement of Problems

MAC protocols in a wireless network are created to control mobile terminals (MTs) to

access the physical medium. They play an important role in resource allocation, Quality

of Service (QoS) support and security management. They intend to keep balance among
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three objects: efficiency, QoS and fairness. Design a proper MAC protocol is critical for

the operation of a wireless network.

All-IP wireless WAN deploys IP technology as common service platform for

different types of service and the unified transport platform. It is a strong candidate

beyond 3G cellular networks. MAC design for an All-IP wireless WAN faces some new

challenges, e.g., how to support different QoS requirements from applications, how to

achieve high throughput, how to use spectrum efficiently, and how to work properly in a

high mobility and wide area coverage environment? A good MAC design should resolve

these problems properly.

Ad hoc wireless networks attract many research interests in recent years due to

its capacity to work properly without any infrastructure network. It becomes extremely

useful in some scenarios that infrastructure network is too expensive or impossible to be

built, like military operations, emergency relief, and wireless sensor networks. However,

controlling mobile terminals to access the physical medium is more difficult than that in

infrastructure-depend networks. The support of real-time applications and resolution of

hidden and exposed terminal issues are other two major challenges.

Spread Spectrum (SS) technology has been used successfully in cellular

networks. It has some advantages like high capacity, robust performance with

interference and jamming. However, four related issues, which are spread code allocation,

collision avoidance, bandwidth efficiency and high peak rate achievement, prevent SS

technology from being widely accepted in ad hoc wireless networks. An SS-based MAC

design should resolve these issues and all other challenges brought by the distributed,

self-organized nature of ad hoc wireless networks.
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1.3 Motivation

All-IP wireless WAN is a strong candidate beyond 3G cellular network. A MAC design

for All-IP wireless WAN should work properly in a WAN environment and support

services range from voice, streaming video, web browser, email, ftp, etc, with different

QoS requirement. The existing MAC protocols are either improper or need some

significant modifications to be used for an All-IP wireless WAN.

Carrier Sensing Multiple Access (CSMA) based MAC protocols are mainly used

in a Local Area Network (LAN). Even combined with other mechanisms like

handshaking, token passing and polling, a CSMA-based protocol is hard to work properly

in a wireless WAN due to two reasons. First, the high mobility of MTs in WAN brings a

severe fading channel condition. Carrier sensing may be inaccurate in it. Second, CSMA-

based protocol cannot apply its measurement in time because of the long propagation

time delay caused by the wide area coverage. Serious consequence can be brought

because of that. On the other hand, the polling-based protocols lack the flexibility and

efficiency required by wireless WAN MAC design.

Channel Load Sensing Protocol (CLSP) is very sensitive to propagation time

delay caused by the big coverage radius. Thus, it is not a good candidate for WAN.

Modified CLSP (MCLSP) achieves robust performance in the case of long propagation

time delay. However, MCLSP does not distinguish packets according to their importance

and QoS requirement. A more important packet is transmitted with the same opportunity

as a less important one. MCLSP is proposed mainly for usage in a voice service wireless

network, in which the difference of importance levels and QoS requirements is
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insignificant among packets. But situations become completely different in an All-IP

wireless network that has to support many types of service, e.g., voice, video, database

access, email, and web browser. The importance levels and QoS requirements can be

much different among packets. Obviously, a more important packet or a time-delay

sensitive packet should be transmitted faster than a less important packet or a time-delay

non-sensitive packet.

Ad hoc wireless networks have recently been the topic of extensive research due

to their ability to work properly without any fixed infrastructure. It becomes extremely

useful in scenarios where such infrastructure is infeasible or expensive to be built. On the

other hand, without the help of a centralized controller like a base station, it is hard for an

ad hoc wireless network terminal to obtain the network-wide states of queues and

channels at any given time instant. It is one of the fundamental challenges impacting

various design issues in ad hoc wireless networks. Controlling terminals to access the

medium in an efficient and effective way then becomes a difficult task.

Due to its superior characteristics, Spread Spectrum [44] is used as one of the

basic access technologies in cellular systems, including 2G, e.g., IS-95 [51] and recently

deployed 3G systems, e.g. CDMA2000 [52] and WCDMA [53]. It is natural to consider

SS-based MAC for ad hoc wireless networks to achieve higher capacity, more flexibility

and robust resistance to interference. However, four pending issues, i.e., code assignment,

collision avoidance, bandwidth efficiency and high peak rate, limit the popularity of SS-

based MAC protocols. An SS-based MAC protocol for ad hoc wireless network should

solve these issues properly.
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1.4 Background

1.4.1 Medium Access Control Protocols

Wireless medium is different from wired medium in the following aspects:

1) the channel condition is unstable;

2) the channel as a resource is often shared among many users; and,

3) the available radio spectrum is very limited.

MAC protocols, which control MTs to access medium, play an important role in resource

allocation, QoS support and security management in a wireless network.

Because of the limited radio spectrum in a wireless network, the bandwidth

available for communication is also limited. Access to the shared medium should be

controlled in such a manner that all nodes in the network receive a fair share of the

available bandwidth and the bandwidth is efficiently utilized. Due to the fact that

wireless medium is different from wired medium, a different set of protocols is required

for controlling access to the shared medium in wireless networks.

The existing MAC protocols for wireless networks are classified into two

categories: Serial Transmission MAC Protocol (STMP) and Parallel Transmission MAC

Protocol (PTMP) [2]. STMP statistically multiplexes traffic over a single channel and at

any time point the channel can transmit a packet of one MT. It is called a Single Channel

MAC protocol, too. PTMP divides available bandwidth into several parts and data can be

transmitted on each one in parallel. It is also termed as Multi-Channel MAC protocol.

Figure 1.1 illustrates the difference between PTMP and STMP.



Figure 1.1 STMP vs. PTMP.

MAC protocols based on CSMA or Polling belong to STMP. Because of the

popularity of Ethernet, a CSMA-based MAC protocol is attractive to many researchers

and manufactures. A CSMA-based MAC protocol uses a carrier sense mechanism to

determine when an MT transmits a packet. One typical example is IEEE 802.11 MAC

Distributed Coordination Function (DCF) [1], which uses CSMA/CA (CSMA with

6
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Collision-Avoidance). It is a distributed MAC protocol, too. A CSMA based MAC

protocol works properly in a Wireless Local Area Network (WLAN) environment and is

usually efficient and flexible. To fight against the hidden and exposed terminal issues, a

RTS-CTS dialogue is introduced in IEEE 802.11 DCF and many other CSMA-based

MAC designs, which can cause considerable signaling overhead [58]. Besides, carrier-

sensing should be accurate in a CSMA-based MAC. Otherwise, serious consequence may

be brought. In a WAN environment, due to the severe fading caused by high mobility and

long propagation time delay caused by large coverage area radius, the accuracy of carrier-

sensing degrades drastically. Accordingly, it is not recommended to use a CSMA-based

MAC protocol for wireless WAN.

On the other hand, MAC protocols based on polling are usually centralized MAC

protocols. Polling means that a central station polls all mobile terminals and finds out

which one is ready to transmit a packet. It is one kind of coordinated-packet transmission

methods. The simplest polling scheme is that an access point polls every mobile terminal

in sequence and checks if it has a packet to transmit. It leads to very low efficiency when

just a few mobile terminals among many have packets to transmit. RAP (random access

polling) [7] and GRAP (group random access polling) [7] are two typical examples of

polling MAC designs. In RAP, every active MT within an access point's coverage area

produces and transmits a random number and the access point polls these terminals

according to the number. Hence, only active MTs' information is needed. System

capacity increase is achieved by dividing active MTs into different groups in GRAP. The

advantages of polling are two folds. First, it can achieve high reliability. Second, some

benefits can be gained in the physical layer. For example, it allows antenna elements to
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direct toward the transmitting MT to overcome fading and interference problems. The

biggest disadvantage of such polling MAC protocols is their low efficiency.

Typical examples of PTMP include Channel Load Sensing Protocol (CLSP) [8,

70, 71, 72, 9, 73], Improved Channel Load Sensing Protocol (ICLSP) [15], and modified

one (MCLSP) [10, 74, 75].

CLSP is proposed for CDMA-ALOHA systems since it can improve system

throughput. It is a centrally-controlled access protocol in which the access point sets a

channel load threshold and controls the admission of a packet. If it senses the channel

load above the threshold, it denies further packet access until it detects below-the-

threshold channel load. The scheme of CLSP is exemplified in Figure 1.2.

Figure 1.2 Scheme of CLSP.

CLSP requires immediate channel load information, which is hard to achieve in a

real situation. It is found that as the propagation time delay increases, the offered load
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increases and throughput performance decreases significantly [9]. For small delay, CLSP

can be expected to maintain the throughput performance well. But for large delay, the

throughput degrades even with small offered load. Figure 1.3 gives the performance of

CLSP in a CDMA ALOHA system with different access time delays T O [10], which is

defined as the sum of propagation time delay and process time delay. From the figure it

is found that the maximum throughput of CDMA ALOHA system with CLSP can reach

almost 1.5 times of the maximum throughput of a conventional CDMA ALOHA system,

if there is no access timing delay. However, when the access timing delay is no longer

negligible, the performance degrades. As shown in the figure, even with the case of small

access timing delay, say T O = 0.2 time units, the performance degrades. Such

performance degrading is especially severe in the large offered load. For the case of To =

5.0 time units, it is seen that its performance is worse than that of CDMA ALOHA

without employing CLSP.

To mitigate the effect of long propagation time delay, MCLSP is proposed by

controlling packet access based on estimated average offered load [10]. The access point

first keeps observing the channel load for a certain period of time. It then calculates and

broadcasts a probability Ptr with which each MT transmits a packet based on the

observation. An MT that has a packet to transmit sends it with probability Ps,. and does

not send it with 1-P tr. MCLSP is an experiential CLSP and its performance is stable. It

assumes that the mobile transmission is a smooth random process. Figure 1.4 shows a

wireless network with MCLSP.
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Figure 1.3 CLSP performance with different access time delay [10].

ICLSP [47] controls channel access on both ongoing transmission and average

channel load. The central controller calculates a pre-transmission probability with the

channel load and makes access decision according to the number of ongoing

transmissions and a certain threshold. It has been shown that ICLSP performs a little bit

better than MCLSP in case of small propagation time delay. However, it is found that its

performance is worse than that of MCLSP when propagation time delay becomes large. It

is because ICLSP uses ongoing transmissions as one criterion to control physical medium

access and this information is usually inaccurate with an environment of long propagation

time delay.
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Figure 1.4 A Network using MCLSP.

Compared with an STMP MAC protocol, PTMP MAC has several advantages.

Although the bandwidth of a channel is not increased, the capacity of the network

improves because simultaneous communications can take place on different channels in

the same space. The utilization of multiple channels is one approach for reducing the

probability of collision since the multi-channel protocols may mitigate the problems

caused by intruders [13] and normalized propagation time per channel can be decreased

[19, 20]. QoS support is easier by using multiple channels than a single-channel in MAC

protocols. Finally, the network becomes more flexible since a node can switch from one

channel to another dynamically.

Despite the advantages of a PTMP MAC, much of the current work on MAC

still focuses on STMP MAC protocols. One reason is the easy implementation of STMP

MAC. For example, IEEE 802.11 DCF is CSMA-based and it is an STMP. It is easier to
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be realized in a distributed system like WLAN than a centrally-controlled MAC. Another

reason is that an STMP MAC protocol can easily support high peak rate while a multiple

channel protocol is hard to do so unless dynamical channel allocation mechanism is

deployed. In many PTMP protocols, bandwidth is divided statically and cannot be

changed per node's request. Regarding the whole bandwidth as a big "pipe", multiple

channel protocols create many thinner pipes. If the size of each thinner pipe is fixed, a

special user cannot achieve high peak bit rate as that in an STMP protocol.

MAC protocols can also be classified as centralized MAC and distributed one.

The central controller in a centralized MAC plays a key role in determining which mobile

terminal to access physical resource. Mobile terminals can either be polled or compete for

resource allocation and the central controller makes the final decision. For example, in a

cellular network, a Base Station (BS) decides which mobile terminal to use a channel. It

avoids signaling overhead like RTS (Request-To-Send)-CTS (Clear-To-Send) dialog in

IEEE 802.11 DCF. However, a mobile terminal does not play any important role in

resource allocation. It can ask for more bandwidth. However, it is the central controller

who makes the decision, based on a few factors. Comparing with a centralized MAC,

there is no central controller in a distributed one. Usually, each mobile terminal competes

for physical medium access. It is flexible to re-allocate resource according to the status of

each mobile terminal. On the other hand, signal overhead like RTS-CTS sometimes

takes a considerable percentage of available bandwidth. One typical example of

distributed MAC protocol is IEEE 802.11 DCF for both WLAN and ad hoc wireless

network.
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MAC can be also divided as contention-based MAC and non-contention-based

one. In contention-based MAC, mobile stations compete for medium access. This kind of

method is often deployed in a distributed system. For example, the IEEE 802.11 DCF is

used in WLAN or ad hoc wireless systems. A system with a central controller can use

contention-based MAC, too. For example, the contention mechanism is used for Non-

real-time Polling Services (nrtPS) in IEEE 802.16e. However, these kinds of MAC

usually do not give QoS support for real-time applications. In a non-contention-based

MAC, a mobile terminal accesses medium either by being polled or using reserved time

slot/bandwidth such that there is no competition among terminals. It is usually deployed

in a centrally-controlled system. One typical example is IEEE 802.11 PCF. Compared

with contention-based MAC, non-contention-based one can usually support real-time

applications.

In summary, MAC protocols are classified into STMP and PTMP. MAC

protocols can also been classified as centralized MAC and distributed one. They can be

divided as contention-based MAC and non-contention-based one.

1.4.2 All-IP Wireless WAN

Internet Protocol (IP) provides a universal network-layer protocol for wireline packet

networks, and it is an attractive candidate to play the same role in wireless systems. IP

provides a globally successful open infrastructure for creating and providing services and

applications. An wireless network could be more robust, scalable, and cost

effective by deploying IP technology [100]. It will also enable the abundant applications

and software technologies developed for wired IP networks to be used over wireless

networks. Today's many different wireless systems are not compatible with each other,
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making it difficult for a user to roam front one wireless system to another. With W as the

common ne:work layer protocol, an 1P-based mobile device could roam among different

wireless systems.

With the explosive growth of the Interne: subscriber population, it is a trend to

support Internet service, for example. Voice over IP (VolP). Some Non-All-IP mobile

networks, like GSM, use VolP signaling protocols to support this kind of service. Switch

or Gateway are often deployed to connect a Non-All-IP mobile networks with IP network,

as exemplified in Figure 1.5 [101].

To integrate IP and wireless technologies, UNITS all-IP architecture is proposed

by the 3GPP [101, 104, 1051. There are two options for a UNITS all-IP network. Option I

architecture suppers Packet-Switch domain multimedia and data services. However, the

Circuit-Switch domain still supports voice application. Option 2 architecture supports all
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The two architectures arckinds of services over a packet-switched core network.

exemplified in Figures 1.6 and 13.

Figure 1.6 Option 1: UMTS All-IP network architecture..

It is clear that the next generation wireless network beyond 3G must support

very high throughput, low access time delay, seamless transmission, and applications

with different QoS requirements. Meanwhile, low cost for the infrastructure is required.

The present trend is to use Internet Protocol [11, 12. 13, 141. Ali-IP wireless WAN,

which deploys IP technology as common service platform for different types of service

and the unified transport platform, is a strong candidate beyond 3G.
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Figure 1.7 Option 2: LIMTS All-I? network architecture.

This dissertation defines All-IP wireless WAN as a fully IP protocol-based

wireless network with wide-area-coverage and high-mobility support. The architecture of

an All-IP wireless WAN is described in Figure LS and used in this dissertation. The

backbone is IP-based as well. Internet Access Point (IAP) connects the backbone with

Internet Mobile Terminals (IMT).

The architecture of this All-IP wireless WAN is simple and easy to he

implemented. It has only three kinds of component: Internet Backbone, IAP and LMT.

Since all of them support 113 . transformation components like gateway and switch

centers, become unnecessary. The existing Internet backbone can be re-used so that the

infrastructure cost can be drastically reduced. This architecture is defined mainly for

academic research purpose. It requires much more detail to be commercially viable.

The selection of a MAC protocol is a critical issue for an All-IP wireless WAN.

MAC protocol in a wireless network controls the access of the medium by mobile
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terminals, in order to achieve fair and efficient share of a physical resource. The

requirements of MAC for All-IP wireless WAN are as follows:

Figure 1.8 Architecture of an All-IP wireless WAN.

First, it is flexible and highly efficient. There are two meanings of flexibility. The

first one is that not only an IAP, but also an IMT, plays a role in the resource allocation

decision. An IAP knows more of the system level information; an IMT knows more of

itself and its surrounding environment. Both should play their roles in the MAC. The

second meaning is that a physical resource is allocated according to the importance and

QoS requirements of the applications and the current channel load condition. It can be

easily re-allocated if the condition changes. Efficiency means that the physical

bandwidth is utilized as efficiently as possible. To be efficient, the signaling overhead
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should be kept small and the bandwidth waste should be avoided. Flexibility and

efficiency are closely related. A MAC design that lacks flexibility to re-allocate

bandwidth is usually inefficient.

Second, it achieves high throughput; "Throughput" is defined as data that are

successfully transmitted and received per time unit within the system. The unit is bit per

second.

Third, it supports high mobility and works properly with long propagation time

delay. In a WAN environment, due to the large radius of the coverage area, it takes

longer time for a transmitting signal to be received or sensed than that in a LAN. High

mobility can cause severe fading in wireless medium. A MAC design should handle both

fading and long propagation time delay.

Forth, it transmits certain packets with low time delay, especially for packets of

real time applications, e.g., voice call, video call and control information. At last, it gives

varying level QoS support for varying priority level services. QoS offered to applications

is described in terms of loss, delay, and reliability. This dissertation focuses on their

delay characteristics.

Since most applications in IP network are packet-based, a packet switch-based

MAC protocol is definitely needed for an All-IP wireless WAN. Obviously, the

traditional circuit switch-based access control protocol, which has been used mainly for

voice service, cannot satisfy the above criteria.

It seems that a MAC protocol must also be a compromise between centralized and

distributed protocols to enjoy the advantages of both protocols without suffering from
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their primary disadvantages. That is, the signaling overhead is kept low as a centralized

MAC protocol does; meanwhile it has some kinds of flexibility as a distributed one does.

Additionally, high mobility and long propagation time delay become two issues

that need to be resolved in a WAN environment. It is expected that a mobile terminal can

move at very high speed, for example, 100 mile/hour. Such speed can cause severe fading.

The radius of a coverage area is much bigger than a WLAN environment, e.g., 2

kilometers, which can cause considerable propagation time delay. A MAC protocol for

All-IP wireless WAN should work properly with the fading and longer propagation time

delay situations.

In summary, All-IP wireless WAN is a strong candidate beyond a 3G cellular

network. Its architectures are given in this section. The requirements of MAC design for

the All-IP wireless WAN is analyzed. A MAC design for All-IP wireless WAN should

adjust to the new challenges brought by the All-IP wireless WAN.

1.4.3 Ad Hoc Wireless Networks

Within the last few years, there has been a surge of interest in mobile ad hoc networks.

Ad hoc wireless network is defined as one that uses multi-hop radio relaying for message

transmission and is capable of operation without the support of any fixed infrastructure or

centralized administration. An ad hoc network is shown in Figure 1.9. The current

cellular wireless network is classified as the infrastructure dependent networks. Its

example is given in Figure 1.10.

Due to the distributed nature of ad hoc wireless network, MAC design is different

from that of the traditional cellular network. Without the help from a central controller

like base stations in a cellular network, it is hard for a node in ad hoc network to know



Figure 1.9 An ad hoe wireless network.

20

Figure 1.10 A traditional cellular network.
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network-wide information. Arranging nodes to access the medium in an efficient and

effective way is a great challenge.

An ad hoc wireless network often uses multi-hops to deliever packets from

source to destination because of the limitation of each node's transmission range. Power

efficiency is important for a node. Hidden and exposed terminal problems are common in

an ad hoc wireless network [281 As shown in Figure 1.11, a node "H" is a hidden node to

"S" since it is far away from the sending node "S" but close to a sink node "D". It does

not detect "S". Collision may happen if "H" sends a packet to "D" when "S" is

transmitting. Node "E" is an exposed node to "S". Its transmission to "R" is blocked by

the transmission from "S" to "D" since it is close to "S" and believes that it should not

interfere with the on-going transmission.

Figure 1.11 Hidden and exposed terminals.

Real-time applications, like voice and video, are often required in ad hoc network.

On the other hand, QoS support and guarantee for delay sensitive traffic become

extremely challenging in ad hoc wireless networks with a contention-based distributed
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MAC layer [29]. The fundamental reason is that without a central controller, it is hard to

obtain a network-wide distribution of the state of queues and the channels at a node at

any given instant. Beside, random back-off techniques are usually implemented in many

of those contention-based MAC protocols, e.g., IEEE 802.11 Distributed Coordination

Function (DCF), and MACA (Multiple Access with Collision Avoidance) [15]. The

random back-off techniques prevent them from providing deterministic upper bounds on

channel access delays [21].

Based on the above analyses, it is concluded that the requirements for ad hoc

wireless network MAC are:

• It must be capable of giving each user equal access to physical medium with the
minimum amount of interference and collision in the absence of a central
coordinator;

• It should make the efficient usage of bandwidth and achieve high throughput;

• It must solve the hidden and exposed terminal problems; and

• It can give QoS support for delay-sensitive traffic in real-time applications.

1.4.4 MAC Designs for ad hoc wireless network

Because of its distributed nature, and the absence of any central controller, MAC

design for an ad hoc wireless network is different from that of the traditional cellular

network. The existing MAC protocols for ad hoc wireless network can also be classified

into two categories: single and multi-channel MAC.

Single channel MAC uses all the available bandwidth as one channel and the

channel is shared by a number of communication nodes located in close proximity [17].

Typical examples include 802.11 DCF, MACA (Medium Access/Collision Avoidance),

MACAW (MACA-Wireless) [15], MARCH (Multiple Access with ReduCed Handshake)
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[16], FAMA (Floor Acquisition Multiple Access) [18] and MACA-BI (MACA By

Invitation) [19]. Due to the increasing contention and collision, their performance

decreases quickly with the number of mobile hosts.

MACA uses a sequence of three messages: RTS, CTS and DATA. Binary

exponential backoff algorithm is used to resolve collisions. It is found that the

throughput is not high under imperfect channel condition. MACAW is proposed to

improve MACA [15]. The RTS-CTS dialogue is the same as that of MACA. But the data

part is different. First, the data is preceded by a short Data Send message to inform

neighboring terminals about the immediate transmission of the packet. The neighboring

terminals will then refrain from transmission to avoid collision. An ACK message is sent

by the receiver to ensure reliability.

MARCH is proposed for a multi-hop ad hoc wireless network [16]. A RTS-CTS

dialogue is used only by the first hop of a route to forward data packets while for the rest

it utilizes a new CTS-only message. Since fewer control packets are transmitted, the

probability of packet collision is reduced and therefore channel throughput is increased.

FAMA is a family of MAC protocols with both carrier sensing and a collision —

avoidance dialogue between a source and the intended receiver [18]. It is required that a

station that has a data packet to send to acquire the control of the channel (Floor

Acquisition) before sending it and to ensure that no data packet collides with any other

packet. MACA and MACAW belong to this category if RTS and CTS last long enough.

FAMA-NTR (Non-persistent Transmit Request) works as follows [18]: when a station

has one or multiple packets to deliver, it first listens to the channel. In case of a busy

channel, the station goes to backoff and tries to re-transmit later. If the channel is clear, it
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sends an RTS message. The sender listens to the channel for one round-trip time plus the

time needed for the receiver to send a CTS message. If the CTS message is corrupted or

not received, the sender goes into backoff and re-tries later. Otherwise, it begins to

transmit data message. The time is limited to the transmission time of a maximum

number of data packets. The sending station must release the channel after the

transmission or when the time limitation is reached.

MACA-BI is a simplified version of MACA [19]. It is proposed to reduce the

overhead caused by the RTS-CTS dialogue. It has only two-way handshake. A station

ready to transmit, instead of "acquiring" the floor, waits for an invitation of the receiver

with a control message called RTR (Ready to Receive). However, it needs accurate

predication of traffic. It performs well in steady-traffic environments, e.g., ATM

(Asynchronous Transfer Mode ) VBR (Variable Bit Rate) and CBR (Constant Bit Rate).

Its performance degrades if traffic pattern becomes hard to predicate.

CSMA/CP (CSMA with collision prevention) has been proposed to decrease

collision [20]. Its innovation is to employ the binary countdown mechanism to achieve

100% collision-free transmissions. In such protocols, the collision of data packets is

usually caused by failed negotiation/announcements in the control channel. Hence, the

central idea for CSMA/CP to achieve 100% collision-free operation is to prevent

collision in the control channel.

Multi-channel MAC divides bandwidth into several parts and can transmit data on

each one simultaneously. For example, BTMA (Busy Tone Multiple Access) [21],

DBTMA (Dual BTMA) [17], and MMAC (Multi-channel MAC) [22] belong to this

category. In MMAC, there is no dedicated control channel. It uses multiple channels for
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data transmission. N channels that have enough spectral separation between each other

are available for data transmission. Channels are classified into three types according to

their usage status. It needs only one transceiver and can achieve higher throughput than

IEEE 802.11 DCF does when the network load is high. But it needs synchronization

among all nodes in the network, which is hard to achieve.

In Multichannel CSMA MAC Protocol [34], total available bandwidth is divided

into N non-overlapping channels. A node with a packet to be transmitted selects an idle

channel randomly from the idle channel list. A node prefers to choose the channel used in

its last successful transmission. When N is sufficiently large, each node tends to reserve a

channel for itself. By doing so, collision can be reduced greatly. But this protocol has

high hardware cost and does not attempt to resolve the hidden-terminal problem due to

lack of the RTS/CTS-like mechanism.

SNDR (Sequenced Neighbor Double Reservation) uses a neighbor-sequenced

method to avoid contention and a double reservation method to improve total throughput

[35]. But the transmission delay is high because of its large frame size. Besides, the

throughput is reduced due to the waiting time of senders.

DCA (Dynamic Channel Assignment) [5] does not need global synchronization

among mobile nodes. It dynamically assigns channels to mobile hosts in an "on-

demand" manner. Whenever a host needs a channel, it goes through an RTS/CTS/RES

(REServation) dialogue to grab a channel. Once it completes its transmission, the channel

is released. The number of channels given to the network is fixed and is independent of

the network size, topology, and degree. However, each channel should be allocated

beforehand and the bandwidth of each channel cannot be changed.
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To incorporate explicit support for real-time applications, such mechanisms as

prioritized transmission, scheduling and reservation are often used. Prioritized

transmission protocols like PS-DCF (Priority Scheme-DCF) [3] have been proposed for

real-time applications. In PS-DCF, a forward backup algorithm is used in which packet

priority plays a key role. Reservation is another mechanism. Nodes with real-time

applications have higher priority to reserve bandwidth over those transmitting non-real-

time applications.	 In some reservation protocols [30, 31, 32], global time

synchronization among all nodes is required. Asynchronous protocols such as RTMAC

(Real Time MAC) [33] do not need global synchronization. In scheduling-based

protocols, packets are scheduled at nodes and nodes are scheduled to access the channel.

For example, in DPS (Distributed based Priority Scheduling scheme) [29], a node's

priority tag is piggybacked on the control and data packets. By retrieving information

from such packets, a node builds a scheduling table. It then knows its rank to access

medium from the table. These protocols can provide QoS support for real-time

applications.

1.4.5 Issues of Using Spread Spectrum Technology in Ad Hoc Wireless Networks

Spread Spectrum (SS) [44] has been used as one of the basic access technologies

in cellular systems, including 2G, e.g., IS-95 [51], and recently deployed 3G systems, e.g.,

CDMA2000 [52] and WCDMA [53] due to its superior characteristics. There are

basically three types of SS technology, which includes Direct Sequence Spread Spectrum

(DSSS), Frequency Hopping Spread Spectrum (FHSS) and Time Hopping Spread

Spectrum (THSS) [54]. Since the first one has more desirable properties than the other

two technologies, it has been used more often in the recent wireless standards. It is thus
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the focus of this dissertation. In the remainder of the dissertation, until explicitly

indicated, the term "spread spectrum" is used to indicate DSSS only.

The major advantages of SS technology can be concluded as follows:

First of all, SS technology can achieve concurrent transmissions in one channel

without either accurate time scheduling like Time Division Multiple Access (TDMA) or

individual allocation to specified frequency bands as in Frequency Division Multiple

Access (FDMA). By contrast, conventional radio signals from uncoordinated sources

cannot co-exist in the same frequency channel. SS has been shown to provide up to six

times the capacity compared with TDMA and FDMA in cellular systems [55] and is

flexible to switch from signal to signal for a transmitter or receiver. Second, SS signals

are very effective against jamming, multipath interference and generally, any interference

that appears deterministic [44].

It is natural to consider SS-based MAC for ad hoc wireless networks to achieve

higher capacity, more flexibility and robust resistance to interference. However, most

proposed MAC protocols for ad hoc wireless network are not SS-based [28]. The

difficult issues, related to code assignment, collision avoidance, bandwidth efficiency and

high peak rate, have limited the popularity of SS-based MAC protocols.

Code assignment means allocating spreading codes to network terminals in the

system. The purposes of code assignment are to avoid packet collisions as much as

possible such that high system throughput is achieved; and to react dynamically to the

network topology changes. A code assignment strategy is needed to avoid primary

collision by guaranteeing that all neighbors of a terminal have different PN codes. It is

trivial when the number of mobile terminals in the network is small. However, when the
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number grows, it becomes inefficient to assign a unique code to each mobile terminal,

especially for a large network in which the available PN codes are less than the number

of total mobile terminals and spatial PN code reusing is necessary. Several code

assignment protocols have been proposed [63, 64, 65]. In [64], a distributed algorithm is

given for assigning codes in a dynamic, multi-hop wireless radio network. It does not

need any form of synchronization and no collision occurs after the convergence of the

algorithm. In [9], a two-phase algorithm is proposed to assign codes to transmitters,

receivers and to pairs of stations in a large dynamic Packet Radio Network (PRN). How

to assign orthogonal codes to mobile stations to eliminate hidden terminal interference is

investigated in [63].

A spreading-code protocol is also needed to decide which codes to transmit a

packet and to monitor the channel in anticipation of a packet reception [46]. Spread-code

protocols can be classified into four categories:

1) Common-code: a single spreading code is used by all terminals to transmit some
types of signal. DRCA protocol to be proposed in this chapter uses common code
to transmit control signals like RTS, CTS and ACK message.

2) Receiver-based: A transmitter spreads its data packets using the code of its
receiver and all idle terminals keep monitoring the channel by its own code. It
simplifies the receiver's circuitry since each receiver just needs to monitor only
one code. The essential drawback is the un-avoidance of primary collision at the
receiver if two or more terminals are trying to send signal to the same receiver.
Another disadvantage is the difficulty to broadcast since each receiver has
different codes

3) Transmitter-based: A transmitter spreads a packet with its own code and its
receiver de-spreads the packet with the transmitter's code. Primary-collision is
avoided completely since transmitting signals are with distinct codes and will not
collide with each others. Broadcast is easy now due to the fact that all receivers
just need to turn to the transmitting code to receive it. However, each receiver
could be very complex since it should be able to de-spread any of the transmitters'
codes and needs to monitor all of them.



29

4) Hybrid: Various combinations of the above three mechanisms. For example, in
the common-transmitter-based protocol and receiver-transmitter-based protocol
proposed in [46] by E. Sousa and J. Silverster, the packet header that contains the
source and destination addresses are spread by either common code or receiver's
code and the message part is spread by the transmitter's code. An idle terminal
monitors the channel by either common code or its own receiving code,
respectively. In [79], a combination of transmitter-based code, TDMA and
reservation schemes is used.

Collisions often happen and collision-avoidance is one of the most important

research topics in an SS system. Collision can be further classified into two categories:

primary collision and secondary one. Primary collision is caused by two or more signals

with the same spread code being received at the same receiver. Primary collision can

completely destroy a transmitting message and it should be avoided in a good SS MAC

protocol. Secondary collision is defined as the collision between two or more

transmissions that use different spread codes. It is caused by multi-access interference

induced by the nonzero cross-correlations between different spreading codes [66]. It

becomes un-avoidable in time-asynchronous systems like ad hoc wireless networks and

the system throughput is reduced due to its existence.

The efficient usage of bandwidth is important for SS. Sometimes the goal is in

conflict with the goal of code assignment and collision-avoidance. To make code

assignment and collision-avoidance easy to implement and maintain, a static code

assignment strategy is widely accepted and used. Each terminal has a district spread code

and a terminal knows other terminal's code so that collision can be easily avoided.

Unfortunately, much of available bandwidth is wasted if a certain percentage of terminals

are inactive in the network. Consider the following scenario in Figure 1.12. There are

four terminals T1-4 in the network. Each terminal is allocated with a unique PN code as

C1-4 respectively to transmit with the same spreading factor, say 100, which means 1
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percentage of the chip rate. During the operation, T3 and T4 become idle. Ti and T2

could not increase their transmission rate during the time of operation due to the

restriction of the static code assignment method. Half of the usable bandwidth is therefore

wasted.

The high peak rate for a terminal can be achieved in such contention-based MAC

protocols as IEEE 802.11 DCF if this terminal is given higher priority than others.

However, with a static PN code assignment SS MAC protocol, it is hard to predict which

terminal may need more bandwidth before the operation. Hence, it is not easy to allocate

a proper rate to a terminal. Even worse is that a terminal could not ask to increase its

transmitting rate since the PN code allocated to it cannot be changed. Accordingly, it is

hard for a terminal to achieve as high peak rate as that in a CSMA-based MAC protocol.

Figure 1.12 An example of bandwidth waste in static code allocation case.

There is much research to address those four issues. Some fundamental concepts

are discussed and two hybrid spread code protocols, Common-Transmitter (CT) and

Receiver-Transmitter (RT), are proposed in [46]. Their performance is analyzed and two

limiting throughput results are given. To address the hidden and exposed terminal

problems, the combinations of Multiple Access with Collision Avoidance (MACA) [67]

with CT (MACA/CT) and MACA with RT (MACA/RT) are proposed and their
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throughput is analyzed [24]. In [68], a CDMA-based power controlled MAC design is

proposed to address the secondary-collision issue. All the above protocols use static code

allocation mechanism and hence, the transmission rate of each terminal cannot be

changed during the operation. A rate-adaptive MAC design is given for low-power ultra-

wide band ad hoc network [69]. However, it can change only channel coding rate but not

spread code. This means only raw data rate but not the transmission rate can be changed.

It does not consider collision-avoidance issue either.

1.4.6 MAC Designs in 802.11 and 802.16 Standards

802.11 MAC is the de facto MAC protocol for Wireless LAN (WLAN) and ad hoc

wireless network. There are mainly two accessing methods in 802.11 standards. The first

is Distributed Coordination Function (DCF). It is a contention-based method and it is

similar to IEEE 802.3 Ethernet. It uses CSMA/CA as the basic medium access

mechanism. By default, all 802.11-complaint stations operate using the DCF. It suffices

in most cases.

Point Coordination Function (PDF) is the second method. It is contention-free

access protocol usable on infrastructure network configurations containing a controller

called a point coordinator with the access points. The point coordinator uses the polling

mechanism to choose a station for transferring a packet. It is priority-based and used for

processing time-critical information transfers. Both DCF and PCF can operate

concurrently with the same Basic Service Set (BSS) to provide alternating contention and

contention-free periods [61].



32

CSMA/CA is the basic medium access method in 802.11. Combination of OFDM

(Orthogonal Frequency Division Multiplexing) [62] and CSMA/CA is used in IEEE

802.11e.

IEEE standard 802.16 defines the air interface specification for wireless

Metropolitan Area Network (MAN) [59]. It is designed primarily for broadband wireless

access industry, which provides high-rate network connections to stationary or slow-

moving sites. The MAC protocol of 802.16 addresses the need for very high bit rates, at

both uplink and downlink. It provides a wide range of service types, including voice and

data, IP connectivity and packetized voice over IP (VoIP). These services expect to be

assigned QoS in keeping with the traffic types [60]. While extensive bandwidth

allocation and QoS mechanisms are provided, the details of scheduling and reservation

management are left un-standardized and thus allow vendors to differentiate their

equipments.

In general, the 802.16 MAC is designed to support a point-to-multipoint

architecture with a central BS handling multiple independent sectors simultaneously. On

the downlink, data to subscribers are multiplexed in Time Division Multiplexing (TDM )

fashion. The uplink is shared between subscribers in TDMA fashion.

IEEE 802.16 MAC is connection-oriented. This means every service must have a

connection associated with it. All services are mapped to a connection and the

connection requests bandwidth and associates QoS and traffic parameters.

There are five types of QoS requirements are supported in IEEE 802.16, which

are [60]:
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1. Unsolicited Grant Services (UGS). It is for CBR or CBR-like service flows.

2. Real-time Polling Services (rtPS). It is for VBR-like service such as MPEG (Moving
Picture Experts Group) video.

3. Extended rtPS (ertPS): This service class combines UGS and rtPS classes, can be used
for variable rate with delay dependent application.

4. Non-real-time Polling Services (nrtPS). It is for non-real-time with better than best
effort service such as bandwidth-intensive file transfer.

5. Best Effort (BE). It is for best-effort traffic.

IEEE 802.16 MAC uses both Time Division Duplexing (TDD) and Frequency

Division Duplexing (FDD) to divide uplink and downlink. Time Division Multiple

Access (TDMA), Frequency Division Multiple Access (FDMA) and Orthogonal

Frequency Division Multiple Access (OFDMA) are deployed to access the physical

medium. Combinations of OFDM-TDMA and OFDMA-OFDM with a form of FDMA

are used.

IEEE 802.16 MAC is also a centralized MAC design. A base station allocates

resource for both uplink and downlink. Both polling and contention mechanisms are

implemented to allocate bandwidth. The way to allocate bandwidth differs from one

service class to another. Table 1.1 gives the bandwidth allocation methods for each

service classes.

IEEE 802.16 MAC is designed primarily for point-to-multipoint architecture.

However, it has been extended to support mesh network architectures. Both centralized

and distributed scheduling mechanisms are proposed to support this mesh architecture

[83].
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Table 1.1 Bandwidth Allocation for Service Classes in 802.16

Service Class Bandwidth Allocation Methods

UGS 1. Periodic	 fixed	 bandwidth	 allocation	 to	 meet	 real	 time
constraints;

2. Polling if requested by MSS (Mobile Subscriber Station)

rtPS 1. Periodic bandwidth allocation (polling) to send bandwidth
requests;

2. No Contention based bandwidth requests.

ertPS 1. Periodic variable bandwidth allocation to meet real time
constraints;

2. MSS may request change in bandwidth.

nrtPS 1. Bandwidth allocation (polling) to send bandwidth requests;

2. Contention based bandwidth requests.

Best Effort Contention based bandwidth
requests only

1.5 Technique Approach

Based on the requirement analysis and literature review, PPTM is proposed for All-IP

wireless WAN in the first part of the research. Its performance is analyzed by both

theoretical and simulation methods. PPTM is modeled as a nonpreemptive Head-Of-the-

Line prioritized queueing system. Three important variables: transmission time delay

(TTD), throughput and average number of packets in the queue are derived with this

model. To evaluate its performance in an All-IP wireless WAN, a simulator is created
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with NS-2. Its performance is evaluated and compared with that of the benchmark

MCLSP under four different traffic patterns, which are Poisson arrival, CBR, Exponential

On/Off, and Pareto On/Off.

The second part of the research proposes a MAC design named DRCA based on

the requirement analysis and literature review of exciting MAC designs of ad hoc

wireless network. It is modeled as a Markov chain and its throughput is derived in a

slotted, single-hop environment. To evaluate its performance in an environment that is

close to real network, a simulator that supports multi-hops and random mobility pattern is

created with OPNET. The throughput of DRCA in a multi-hops, multi-users environment

with mobility is derived by simulation and compared with that of the benchmark

MACA/CT.

1.6 Significance

PPTM is proposed for All-IP wireless WAN in the first part of the research. It always

gives higher priority packets more chance to be transmitted. Consequently, time-sensitive

packets reach their destination faster and time non-sensitive packets suffer from longer

time delay compared with MCLSP. From the QoS point of view, it performs much better

than MCLSP does.

PPTM is modeled as a nonpreemptive HOL prioritized queueing system with

Poisson arrival traffic pattern. Transmission-Time-Delay and number of packets in the

queue are derived under this model and verified by simulation. Its performance is

compared with MCLSP under four different traffic patterns, which are Poisson arrival,
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CBR, Exponential On/Off, and Pareto On/Off. The simulation results verify that the

prioritized transmission is important to support different QoS requirements.

The second part of the research proposes a MAC protocol named DRCA for

small and medium scale ad hoc wireless networks. In DRCA, a terminal sets the

spreading factor for a packet according to the activity level of neighboring nodes. If the

total number of usable spreading codes with this spreading factor is less than the total

number of mobile terminals in the network, to avoid collision, the spread code id is

broadcast such that other terminals avoid using it when the packet is being transmitted.

DRCA uses bandwidth more efficiently and thus achieves higher throughput compared

with MACA/CT.

DRCA is modeled as a Markov chain and the number of communication pairs is

used as the state in a slotted, single-hop environment. To evaluate its performance and

compared it with that of benchmark MACA/CT, a simulator is created with OPNET. The

simulation results verify that DRCA achieves higher throughput when there are inactive

mobile terminals. However, the throughput difference between DRCA and MACA/CT is

insignificant if most of the mobile terminals are active.

1.7 Organization

Chapter 1 gives of objectives, motivations, background, literature review and significance

of this research. Chapter 2 proposes Prioritized Parallel Transmission MAC protocol for

All-IP wireless WAN. Chapter 3 analyzes its performance. Chapter 4 proposes Dynamic-

Rate-with-Collision-Avoidance MAC protocol for ad hoc wireless networks. Chapter 5

presents its performance analysis results. Both analytical and simulation results are
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included in this chapter. Finally, Chapter 6 concludes this dissertation by presenting its

contributions, the limitations of the present work, and future research directions.



CHAPTER 2

PRIORITIZED PARALLEL TRANSMISSION MAC
PROTOCOL FOR ALL-IP WIRELESS WAN

PPTM (Prioritized Parallel Transmission MAC) belongs to the category of PTMP

(Parallel Transmission MAC Protocol). It uses a two-stage scheme, which includes pre-

transmission decision and prioritized transmission stages. A pre-transmission probability

is set according to the observation of the channel load for a certain period of time and a

packet is passed to the next stage with this probability in stage 1. In the prioritized

transmission stage, a packet is transmitted according to its priority level. PPTM is

derived from CLSP (Channel Load Sensing Protocol) and MCLSP (Modified CLSP).

However, CLSP performance degrades in wide area network due to the long propagation

time delay. Compared with it, MCLSP performs robustly in case of large time delay.

Thus, MCLSP is chosen as the benchmark protocol to compare with the proposed PPTM.

2.1 System Model

All-IP wireless WAN is fully IP protocol-based, which means not only the IP layer but

also the layers below and above the IP layer should meet the requirements of IP network

[20]. An All-IP wireless WAN architecture is defined in Figure 1.8, Chapter 1 in this

dissertation. In this figure, an Internet Access Point (IAP) is connected with Internet

Backbone and its coverage area, which has radius up to 2000 meters. This value is set

according to the UMTS cell radius, which ranges from 0 to 2000 meters [99]. Within an

IAP's coverage area there can be many Internet Mobile Terminals (IMTs), each of which

can move with a speed up to 180km/h. The architecture looks similar to that of wireless

38
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LAN at the first look. However, it supports high mobility services and offers wide area

coverage. Compared with it, a WLAN supports stationary or low speed moving terminals

and local area coverage with a much smaller coverage area radius.

The selection of a MAC protocol is a critical issue for an All-IP wireless WAN.

Chapter 1 concludes the MAC design requirements for All-IP wireless WAN as follows:

• It is flexible and highly efficient;

• It achieves high throughput;

• It supports high mobility and works properly with long propagation time delay;

• It transmits packets with low time delay, especially for real time application
packets;

• Control overhead is low; and,

• It gives Qualify of Service (QoS) support for different priority level services.

Prioritized Parallel Transmission MAC can meet all these requirements. It can

thus become a proper MAC design for an All-IP wireless WAN.

2.2 Prioritized Parallel Transmission MAC

There are two ideas behind PPTM protocol. This first one is channel load sensing and the

second one is prioritized transmission. Direct Sequence CDMA technology [44] is used

and each IMT is assigned with a distinct spread code to spread its data packets. It is

composed of two stages. In stage 1, probability Ppt is set by IAP according to its

continuous observation of the channel load condition. A packet proceeds to stage 2 with

this probability and is denied with probability 1-Ppt. In stage 2, packets are transmitted to
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physical medium according to their priority level. The procedure of access control is as

Figure 2.1 Prioritized Parallel Transmission MAC Scheme.

• The Internal Access Point (IAP) calculates and broadcasts a pre-transmission
probability Ppt according to its continuous observation of the channel;

• An Internet Mobile Terminal (IMT) that has a packet to transmit passes it to the
next stage with probability Ppt as the pre-transmission decision;

• Each packet is connected with a priority index. The index indicates its priority
level. All the packets are thus prioritized and transmitted to medium accordingly.
The index can be an x-bit width, representing one of the up to 2' priority levels.

Additionally, the flexible allocation of bandwidth mechanism is used in PPTM.

That is, the processing gain of each IMT can change in PPTM. For example, an IMT' s

previous processing gain is 32 and its bit rate is 500kbps. If the IMP needs to increase its

transmission rate to 1Mbps, it can apply for a new processing gain, e.g., 16. If IAP

approves it, the IMP changes its processing gain to 16. This mechanism is important for

the efficient usage of bandwidth.
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In this dissertation, the rules of prioritized transmission are defined as follows:

1. A packet that is being transmitted cannot be interrupted;

2. A higher priority packet is always transmitted before a lower priority
packet if it has not been transmitted yet; and,

3. Packets with the same priority level are transmitted according to FIFO
(First In First Outcome).

The advantages of PPTM are as follows:

■ A more important packet is always digitized with a higher priority level and is
transmitted with more chances. By doing so, the overall system performance is
improved since higher priority packets carry more important information and
should be transmitted first;

■ The processing gain of each IMP can change so that bandwidth is used more
efficiently compared with CLSP and MCLSP and the high peak rate can be
achieved by an IMP;

■ The advantages of both centralized and distributed MAC designs are taken with
simple communications between IAP and IMTs. The central controller in IAP
calculates and broadcasts a pre-transmission Ps,- and approves processing gain
change applications form IMTs. On the other hand, an IMT transmits its packets
according to the packet priority.

Additionally, PPTM works properly in high mobility and long propagation time

delay scenarios, which are common in wireless WAN environment. PPTM uses Spread

Spectrum technology that is very effective against fading caused by high speed

movement. An IMT uses the time-average channel load information to set the pre-

transmission probability in stage 1. Even if the propagation delay is large, it does not

affect much of the accuracy of the channel load information it observes. Therefore, the

performance of PPTM does not degrade much. Besides, PPTM is easy to be implemented

in hardware and the computations is simple.
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PPTM satisfies the requirements of All-IP wireless WAN. It is flexible because of

its distributed nature. In other words, an IMT makes prioritized transmission decisions. It

is efficient, since it does not require complex signaling between an IAP and IMTs and

therefore, the signaling overhead is small. It is fair because it allows a packet to access to

the medium according to its priority while packets with the same priority level are

transmitted via FIFO.

PPTM controls packet transmission more effectively and reasonably because of

two mechanisms: flexible allocation of bandwidth and prioritized transmission. First, it

can support the flexible allocation of bandwidth for each IMT dynamically, according to

the request from IMTs and the system load condition [9]. Second, it supports prioritized

transmission. Each packet is connected with a priority index and is thus transmitted

accordingly.

2.3 Comparison among PPTM, CLSP and MCLSP

PPTM is based on the idea of channel load sensing. CLSP and MCLSP are two

predecessors of PPTM. However, two special characters distinguish PPTM from CLSP

and MCLSP. The first is service differentiation. Each packet carries a priority index,

which is set according to the importance and QoS requirement of the application. PPTM

transmits each packet according to its priority. Neither CLSP nor MCLSP can do so. Both

of them are used for voice-dominant application and service differentiation is not

required. Another advantage of PPTM is that bandwidth can be allocated dynamically

according to an IMP's request to achieve the maximum utilization of the available

physical resource. Table 2.1 gives the difference among PPTM, CLSP and MCLSP.
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Table 2.1 Differences between PPTM, CLSP and MCLSP

CLSP MCLSP PPTM

Time	 delay
sensitivity

Need	 immediate
channel	 load
information. Highly
sensitive to time
delay

Robust
performance;
insensitive	 to	 time
delay.

Robust
performance;
insensitive	 to	 time
delay.

Resource allocation Centralized control Centralized control Centralized-based.
But allowing each
IMT	 compete	 for
more resource.

Applications Voice service only Voice service only Voice,	 streaming
video,	 email,	 ftp,
web browser, etc.

Multiple	 access
method

CDMA with fixed
code assignment

CDMA with fixed
code assignment

CDMA with fixed
code; but allowing
dynamic code
assignment

Signaling overhead Low Low Low

In conclusion, PPTM is proposed for All-IP wireless WAN and it can work as a

proper MAC design in an All-IP WAN environment. In another words, it is designed to

support different service classes with different QoS requirements. It functions properly

with fading caused by IMT movement and long propagation time delay caused by large

coverage. It has some advantages that both CLSP and MCLSP do not have for an All-IP

WAN.
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2.4 Potential Applications of PPTM in Industry and Standards

PPTM is proposed for All-IP wireless WAN, which is a strong candidate beyond 3G

wireless networks. PPTM can also be deployed in any CDMA-based wireless network

with slight modifications. Some of its superior characteristics, like capacity improvement,

flexible bandwidth allocation, differentiated services, support for high mobility, and wide

area coverage, are attractive and competitive. It has some good opportunity to be chosen

by industry for a wireless WAN or similar environment that needs to support applications

with different QoS requirements. Compared with benchmark MCLSP, the hardware cost

is slightly higher since there are two stages of operation in PPTM and MCLSP just needs

one. It is hard to know the real cost of the hardware before it is implemented. However,

it will show in Chapter 3 that the performance of PPTM is significantly increased

compared with that of MCSLP from the QoS point of view.

IEEE 802.16 standard was proposed for wireless Metropolitan Area Network

(MAN) [59, 60]. It is primarily designed for broadband wireless access industry, which

provides high-rate network connections to stationary or slow-moving sites. However,

IEEE 802.16 is recently extended to support fast-moving subscribers. The physical layer

is OFDM-based.

IEEE 802.16 chooses OFDM as the physical layer technology based on two

main reasons. First, it is robust to frequency-selective fading. Second, the implementation

is not complex, i.e., it does not require an equalizer and the complexity is determined by

the FFT (Fast Fourier Transfer). However, it is found that OFDM has some

disadvantages such as difficulty in subcarrier synchronization and sensitivity to frequency

offset and nonlinear amplification, which result from the fact that it is composed of many
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subcarriers with their overlapping power spectra and exhibits a non-constant nature in its

envelope. Compared with it, CDMA technology is quite robust to frequency offsets and

nonlinear distortion. Beside, CDMA has advantages in interference average and soft

handover [62].

There are a great deal of research and discussions to deploy CDMA or Multi-

Carrier CDMA (the combination of CDMA scheme with OFDM signaling) [86, 87, 88]

to a broadband MAN system [62]. If IEEE 802.16 decides to choose CDMA-based

technology as an option for its physical layer, PPTM then has the potential to be accepted

by the extension of the standard. There are many similarities between the principles of

MAC in IEEE 802.16 and PPTM, e.g., differentiated service, and combination of central-

control and distributed MAC characteristics. PPTM can become a strong candidate as a

proper MAC design to work in a high mobility MAN environment if CDMA-based

technology is accepted in the future IEEE standards.



CHAPTER 3

PERFORMANCE ANALYSIS OF PPTM

Chapter 2 proposes PPTM for All-IP wireless WAN. This chapter gives mathematical

model of PPTM and analyzes its performance in the context of Poisson arrival traffic.

Numerical results are presented with four different traffic patterns, which are Poisson

arrival, CBR, Exponential On/Off, and Pareto On/Off, respectively. MCLSP is the

benchmark to compare with PPTM. It is chosen because PPTM is derived from MCLSP

and MCLSP works properly in an environment with high mobility and long propagation

time delay.

3.1 Mathematical Model of PPTM

3.1.1 Poisson Arrival Traffic

Assuming that a packet arrival process follows a Poisson process, PPTM can be depicted

with the mathematical model as shown in Figure 3.1 [45],

The following assumptions are made for this system:

• Packet arrival is a Poisson process with rate il.A.

• There are K priority levels for those packets, with 1 being the highest priority
level, K the lowest priority level. Within priority level i, packet size is
arbitrarily distributed with mean value n i, 1 __i __K.

• For simplicity, it is assumed that the only relationship between stages 1 and
2 is that the output of stage 1 is the input to stage 2. Hence, stage 2 is driven
by a Poisson process, too. The input rate to stage 2 is A, with A = P pt/1A.

• Since the processing time spent in stage 1 is much less than that in stage 2,

46



it is omitted for simplicity; and,

•	 Each IMP has unlimited space to save packets.

47

Figure 3.1 Mathematical mode of PPTM in Poisson arrival traffic pattern.

Thus PPTM can be decomposed stage by stage and each stage can be analyzed

independently according to the above assumptions. Since the packet arrival rate is .1,4 in

stage 1, Ppt is given by [37]:

in which, Gina, is the channel load threshold set beforehand. G is the average channel load

that IAP has observed for a certain period of time.

Based on the model and the way of prioritized transmission, stage 2 can be

modeled as an M/G/1/∞  nonpreemptive Head-Of-the-Line (HOL) priority queueing

system [38]. Obviously, it becomes an M/G/l/∞ queueing system with FIFO if there is no

priority difference among packets.
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3.1.2 Other Traffic Patterns

Compared with 2G cellular network, 3G and beyond 3G networks need to support not

only voice service, but also high speed packet data. Correspondingly, the traffic arrival

pattern can be much different from a Poisson distribution. It is important to know the

accurate characteristics of the heterogeneous traffic such that the physical medium and

network resource can be shared among users efficiently.

It is shown in [91, 92] that packet data traffic burst can be represented well by

Pareto distribution. [93] models traffic as an On-Off source using the Pareto distribution.

The work of [90] by Sunary, Tekinay and Ozer uses a similar traffic model to represent

the traffic pattern of a CDMA based wireless packet data system. Based on study of the

impact of the burstiness of the packet data traffic on the conventional circuit and packet

switching techniques, it proposes an alternative burst switching techniques. In this

technique, it allocates radio resource to users for the duration of data bursts rather than an

entire session or a single packet and releases them at the end of the burst. It is shown that

it is an efficient radio resource allocation scheme for a CDMA based 3G system that

provides high speed packet data services.

If the packet arrival pattern is different from a Poisson process, which is common

in real situation, the system becomes a G/G/l/co HOL priority queueing system. For

simplification, it is assumed that the packet size is exponentially distributed. Hence, it can

be expressed as a G/M/1/oo HOL priority queueing system. An example system will be

simulated under three different traffic patterns: Constant Bit Rate (CBR), Exponential

On/Off, and Pareto On/Off. By investigating the performance of PPTM under these
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traffic patterns and comparing with that of the MCLSP, this work shows the superiority

of PPTM over MCLSP under real network conditions.

3.2 Performance Analysis of PPTM in Poisson Arrival Case

To simplify the analysis, it is assumed that packet size is exponentially distributed with

identical average length. The system becomes an M/M/1/00 nonpreemptive HOL

queueing system in the Poisson arrival case. This section analyzes three important

variables: transmission time delay (TTD), throughput and average number of packets

in the queue.

3.2.1 Transmission Time Delay

Transmission time delay is defined as the time period from the moment when MAC layer

receives a packet from the higher layer to when the packet reaches the physical medium.

According to the assumptions made in Section 3.1, the processing time in stage 1 is too

small to count. Hence, it is just needed to analyze the transmission time delay in stage 2.

Stage 2 can be represented by a nonpreemptive HOL priority queueing system

with packet arrival rate 2 = PptilA. It is assumed that the average service rate of stage 2 is

,u. The unit of both arrival rate and service rate is packet/s. Assume that there are K

different priority groups. The input rate of group r is Ar, and the service rate is pr. Air = P

if the service time is linear to the packet size. The utilization factor of group r is pr =

2,/,ur. If the input rate of group r to stage 1 is 2Ar, then pr = Ppt.lAr/pr, where Ppt is given by

Equation (3.1).

For a packet with priority level r, the waiting time Wr is determined by three

factors.
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1. Waiting time To, to finish the service that is already in the server;

2. Waiting time 7,n , with l_rn.r, to finish the service of packets that already in the
queue when packet r arrives; and

3. Waiting time T„, with l_n<r, to service packets with priority level less than r during
Tr .

Therefore,

Similar to that in [38], the expected value of Wr is obtained as follows:

Hence, Tr, the average transmission time delay of a packet with priority level r is given

by:

Here, E(To) is the average time to finish transmitting a packet that is already in service

when the packet we are interested in arrives. It can be expressed as:

where E(?) is the second moment of the service time distribution and is given by:

(3.2)

(3.3)

where Q2 is the variance of the service-time distribution. Finally, traffic intensity p is

defined as:
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(3.7)

3.2.2 Throughput of PPTM

The throughput in this chapter is defined as the number of packets per second

transmitted without error. For an M/M/1/0o queueing system, the blocking probability PB

is zero. Hence, the throughput S of an IMT with PPTM can be expressed as:

where Ps is the mean rate of successful transmission of the IMT when the packet arrival

rate is AA, and pre-transmission rate is Ppt. Ps is determined by Signal to Interference and

Noise Ratio (SNIR) of the physical channel during the transmission time. Since the

packet size is exponentially distributed with the same average value and the same average

transmission power is used to transmit packets among all priority groups, P, has the same

value with or without prioritized transmission. That is, the throughput of PPTM S is the

same as the one of MCLSP.

3.2.3 Number of Packets in the Queue

From Little's Formula [41], the average number of packets in the queue from priority

group / is:

Hence, the average number of packets in the queue from all groups can be expressed as:
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3.3 Numerical Results under Four Traffic Patterns

The performance of PPTM is evaluated in a simplified All-LP wireless WAN based on the

architecture presented in Chapter 1. Network simulation tool NS2 [42] is used in the

evaluation. The system details are shown in Table 3.1. Transmission time delay is the

main concern in the simulation, since the real difference between PPTM and MCLSP is

that the first one divides packets into different priority classes and transmits them

accordingly, while the second one give packets the equal chance to be transmitted. There

are six priority levels and each packet belongs to one of them. Packet Priority Level 1

corresponds to the highest priority index, and 6 corresponds to the lowest one. PPTM is

proposed as a potential candidate that could be accepted into IEEE 802.16 standard.

There are five different services in IEEE 802.16. The simulation uses six priority levels to

represent the priority of control signal and the five services in the standard.

Table 3.1 Simulation Parameters

Parameter Value
IAP Number 2
IMT Number 20
IMT Speed (m/s) 0-50
Wired Node Number 2
Coverage Radius (m) 1600
Packet Priority Level 1 2 3 4 5 6
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Without the loss of generality, the evaluation focuses on the performance of one IMT.

The queue size is set to be 100000 packets in simulation so it is large enough. Packet

size is exponentially distributed in simulation. For simplification, packet arrival rate and

average packet size are set the same for each priority. The default value of Pp, =1. If IAP

finds that the average number of packets is more than 1000 (Gm ) in the channel during

10ms time period, it will broadcast Ppt according to Equation (3.1). The delay

requirement of each priority class is set in Table 3.2 [103]. The numerical results

are shown in Figures 3.2 — 3.7.

Table 3.2 Delay Requirement for Each Priority Class

Priority level 1 2 3 4 5 6

Delay requirement 50ms 100ms 150ms 200 ms 400ms 800ms

3.3.1 Simulation Results with Poisson Arrival Traffic Pattern

Figure 3.2 shows the average packet TTD for each priority level. From Figure 3.2, it is

found that the simulation result matches with Equation (3.4) closely with average offset

less than 5%. The offset can be caused by some simplifications in analysis, e.g., the

assumption that time delay in stage 1 is too small to count and processing time is linear

with the packet size.
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Figure 3.2 PPTM performance with Poisson arrival traffic pattern.

Figure 3.3 represents the number of packets in the queue with PPTM versus the

traffic intensity. This figure shows that the number of packets in the queue increases with

p, the traffic intensity. Most of these are lower priority packets. Higher priority packets

are transmitted with much less TTD than lower priority packets. Therefore, there are

fewer high priority packets in the queue than low priority packets.



Figure 3.3 Number of packets in queue with Poisson arrival traffic pattern.

Figure 3.4 depicts the TTD results under PPTM vs. MCLSP. From Figure 3.4, it

is seen that as traffic intensity p increases (meaning that packet arrival rate increases)

from 0.1 to 5.5, average TTD of priority level 1 and 2 packets increases slightly and is

kept at very low level, i.e., under 0.3 and 0.7, respectively. TTD of priority levels 3 and 4

packets does not change much when p is less than 1. Average TTD of priority levels 5

and 6 packets increases to large values when p is close to 0.8. Compared with PPTM,

average packet TTD in MCLSP becomes large when p is close to 0.8, almost the same as

priority levels 5 and 6 packets do in PPTM.
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Figure 3.4 PPTM vs. MCLSP with Poisson arrival traffic pattern.

After the delay requirement is checked for each priority class, it is found that

PTTM performs much better than MCLSP. In PPTM, packets can all meet their delay

requirements when p is less than 1. Packets belonging to priority level 1 can even meet

the requirement when p is as big as 2.6. Priority 2 packets meet their requirement when p

is as big as 2.0. Compared with that, in MCLSP, when p >0.9, priority level 1 packets

could not meet the delay requirement. All packets miss their requirements when p >1.

From the QoS point of view, it is easy to conclude that the performance of PPTM is

significantly improved from that of MCLSP.

Table 3.3 gives the average, maximum and minimum TTD difference between

PPTM and MCLSP when 0.1<p<0.9. The difference is calculated based on MCLSP.
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Positive value means the improvement of PPTM from MCLSP. Negative value means the

degradation of PPTM from MCSLP. The table shows that for priority levels 1,2,3 and 4

packets, TTD in PPTM is less than that in MCLSP, especially for priority levels 1,2, and

3 packets. TTD for priority levels 5 and 6 in PPTM is slightly longer than that in MCLSP.

Hence, it is concluded that PPTM can guarantee that higher priority packets be

transmitted in significantly shorter time; meanwhile, lower priority packets suffer from

longer TTD compared with that in MCLSP.

Table 3.3 TTD Difference between PPTM and MCLSP in Poisson Arrival Case

Priority index Average TTD
difference

Maximum TTD
difference

Minimum TTD
difference

1 36.28% 79.17% 4.62%
2 30.86% 74.87% 4.62%
3 23.30% 68.16% 1.54%
4 13.19% 51.64% 0%
5 -5.50% -15.93% 6.71%
6 -70.49% -271.94% -1.54%

It is found that the theoretical results match the simulation results for the Poisson

arrival case. The simulation results validate the suitability of the proposed theoretical

model under the Poisson traffic conditions.

3.3.3 Simulation with other Traffic Patterns

It has been shown that traffic burst represents packet data traffic more accurately [91, 92,

93]. Pareto distribution is often used to describe such traffic. To illustrate the superiority

of PPTM to MCLSP, three other different traffic patterns are used in the simulation,

although there is no close form of TTD under these traffic patterns. The first one is CBR



58

traffic pattern [42]. The second one is Exponential On/Off traffic pattern [42], in which,

burst time is 30ms, idle time is 30ms too, and average rate during burst time is changed

from 400 to 1800 packet/s. The last one is Pareto On/Off traffic pattern [43]. Burst time

and idle time are both 30ms and average rate during burst time varies from 400 to 1800

packet/s.

Figure 3.5 PPTM vs. MCLSP with CBR traffic pattern.

From Figures 3.5 to 3.7, the simulation result shows that in PPTM, average TTD

of higher priority packets (priority 1, 2, 3) is always low even when packet arrival rate is

pretty high. Lowest priority packet has very high average TTD (more than 2) when input

rate is above 200 in CBR traffic pattern, or above 600 in Exponential On/Off traffic

pattern, or above 600 in Pareto On/Off traffic pattern. Meanwhile, with MCLSP, packet
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average TTD becomes very high when input rate is more than 300 in CBR, or more than

700 in Exponential On/Off case, or more than 800 in Pareto On/Off case.

After the delay requirement is checked, with Pareto On/Off traffic pattern, packets

belonging to priority levels 1, 2, and 3 meet their requirement when packet arrive rate is

less or equal to 1800 packet/s. Priority level 4 packets miss it only when arrival rate

equals to or bigger than 1800 packet/s. Priority level 5 packets miss it if arrival rate is

equal to or above 1400 packet/s. Priority level 6 packets miss it when arrival rate is above

600 packet/s. Compared with PPTM, MCLSP performs much worse. All packets miss

their delay requirements when packet arrival rate become equal to or bigger than 800

packet/s. Table 3.4 gives the performance difference between PPTM and MCLSP with

Pareto On/Off traffic pattern. "Y" stands for "meet" and "N" means "miss" the delay

requirement; "P" stands for PPTM and "M" stands for MCLSP in the table. Since this

pattern is close to the real traffic burst, it verifies that PPTM is a much better MAC

design than MCLSP for an All-IP wireless WAN.

The simulation verifies the necessity of prioritized transmission in All-IP wireless

WAN. More important and time-delay sensitive packets should be transmitted more

quickly than less important and time-delay non-sensitive packets. By dividing packets

into different priority levels according to their importance and QoS requirement, and

prioritized-transmitting a packet accordingly, PPTM gives good QoS differentiation to

different kinds of services in an wireless WAN. It guarantees the fast transmission

of more important and time-delay sensitive packets. Meanwhile, less important and time-

delay non-sensitive packets are transmitted with longer time delay. Hence, with the same
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channel condition, PPTM reaches the same throughput but improves the overall system

performance significantly compared with MCLSP.

Table 3.4 PPTM and MCLSP Performance Comparison
with Pareto On/Off Traffic Pattern

Priority

Rate

1 2 3 4 5 6

P MP MP MP MP MP M

400 Y Y Y Y Y Y Y Y Y Y Y Y

600 Y Y Y Y Y Y Y Y Y Y Y Y

800 Y N Y N Y N Y N Y N N N

1000 Y N Y N Y N Y N Y N N N

1200 Y N Y N Y N Y N Y N N N

1400 Y N Y N Y N Y N Y N N N

1600 Y N Y N Y N Y N N N N N

1800 Y N Y N Y N N N N N N N



Figure 3.6 PPTM vs. MCLSP with exponential on/off traffic pattern.
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Figure 3.7 PPTM vs. MCLSP with Pareto on/off traffic pattern.



CHAPTER 4

DYNAMIC-RATE-WITH-COLLISION-AVOIDANCE
MAC DESIGN FOR AD HOC WIRELESS NETWORK

Ad hoc wireless networks are very useful when infrastructure network is too hard or

expensive to be built. Potential users of ad hoc wireless networks include public safety,

the military, homeland security and commercial wireless organizations. However,

available bandwidth for ad hoc wireless networks is very limited [97]. Ad hoc networks

for military operation and applications in rural area may be allocated unlimited

bandwidth, and thus bandwidth efficiency is not a major concern. In contrast, users like

public safety, homeland security and commercial wireless organizations, often have their

operations in population-intense areas like metropolitan areas, available spectrum is

extremely limited and should be used very carefully. In [97], Dynamic Frequency

Selection in 5230-5350 MHz and 5470-5725 MHz is recommended to use for ad hoc

wireless networks.

ISM (Industrial, Scientific, and Medical) is license-free frequency band and three

frequency ranges are authorized by FCC. The three frequency bands are: 902-928 MHz,

2.4-2.4835 GHz, and 5.725-5.850 GHz. However, only Spread Spectrum (SS) RF

transmissions are currently allowed in ISM bands. There are many research efforts to

investigate how to use the license-free ISM bands [89]. It is natural to consider using SS

transmission in an ad hoc wireless network with ISM bands.

Compared with single channel MAC protocols, multi-channel MAC design can

62
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achieve higher capacity, less collision and more flexibility. But many multi-channel

MAC protocols are static-bandwidth-allocation-based. In other words, the total available

bandwidth is divided among mobile terminals and each mobile terminal receives a fixed

amount of bandwidth. Consequently, bandwidth is wasted when some mobile terminals

are inactive. The high peak rate is hard to achieve for a particular mobile terminal. A

dynamic bandwidth allocation strategy is needed for the efficient usage of bandwidth and

the realization of a high peak rate. Dynamic-Rate-with-Collision-Avoidance (DRCA)

MAC design is SS transmission-based and it is proposed as a multi-channel design with a

dynamic bandwidth allocation mechanism.

4.1 Dynamic-Rate-with-Collision-Avoidance

Dynamic-Rate-with-Collision-Avoidance (DRCA) MAC protocol for ad hoc wireless

network is based on SS technology. In SS with fixed chip rate, the transmission rate of a

channel is determined by the spread code for the channel; to be more explicitly, by the

spreading factor of the spread code. For example, if the spreading factor is 4, a quarter of

the whole available rate is allocated to the channel. In case if the spreading factor is 16,

the channel receives one sixteenth of the total rate [98, 44]. In DRCA, transmission rate is

allocated dynamically to a terminal by choosing a spread code with a proper spreading

factor.

There are two ways to select a spread code for a mobile terminal.

1) When the number of mobile terminals in the network is not bigger than the
number of usable spread codes with a spreading factor, then a spread code
is allocated to a mobile terminal beforehand and does not change during
the operation. The only thing that the mobile terminal needs to decide is
which spreading factor to use. For example, if there are total ten mobile
terminals, and the available spread codes with spreading factor 8 is thirty,
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more than ten, terminal 1 is allocated with spread code 1, terminal 2 is
with spread code 2, etc. If terminal 1 decides to use spreading factor 8 to
transmit a packet, it uses spread code 1 with spreading factor 8 to transmit
the packet.

2) When the number of mobile terminals in the network is bigger than the
number of usable spread codes with a spreading factor, then spread codes
should be allocated dynamically during the operation. For example, if
there are ten terminals, and the available spread code with spreading factor
4 is less than ten; if terminal 1 decides to use spreading factor 4, a spread
code is allocated to this terminal in the run and the spread code is taken
back after terminal 1 finishes the transmission. To fulfill the spread code
allocation and avoid collision, each terminal maintains a look-up table of
available spread codes with these spreading factors. The data stored in the
table can be changed during the operation. If a terminal needs to transmit a
packet with a spreading factor in the table, it picks up a spread code with
this spreading factor from the table. The selection algorithm guarantees
that with this spreading factor, the packet is transmitted with a rate that is
as large as possible; meanwhile, the received signal can still reach the
required quality..

The size of the look-up table should not be too big. It just stores the available

spread codes with a small spreading factor if the number of usable spread codes with this

spreading factor is smaller than the number of mobile terminals in the network. The

following is an example. There are ten mobile terminals, and the numbers of usable

spread codes with spreading factors 1, 2, 3, 4, and 5 are one, two, four, eight, sixteen,

respectively. The look-up table needs to store spread codes with spreading factor 1, 2, 3,

and 4, since under these spreading factors there are not enough spread codes. It needs to

store fifteen spread codes at most.

To combat the effect of secondary collision, large processing gain is needed for

concurrent transmissions, which means the spreading factor cannot be too small. On the

other hand, throughput decreases with a large spreading factor. The selection of a

spreading factor is closely related to the total number of transmitting terminals. It is

assumed that the channel condition is ideal, i.e., white Gaussian noise channel, and with
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ideal power control, i.e., a receiver receives equal power from each transmitter. If the

received signal quality target is set as bit error rate of 10 -6 , SNR is required to be 10.5 dB

without FEC (Forward Error Correction) coding [80]. If there is just one pair of

communication terminals, signal can be sent without spreading (spreading factor equals

1). However, if there are 10 pairs of communication terminals, the spreading factor

should be at least 101 to reach the required quality. Table 4.1 gives the selection of

spreading factor with the number of pairs of communication terminals if the required

signal quality is set as BER = 10-6 under the ideal channel condition. With a fading

channel condition, the required SNR is much higher than the ideal one with the same

received signal quality. Correspondingly, the spreading factor can be much higher, i.e.,

the transmission rate is much smaller. For example, if with the Rayleigh fading channel

condition, even with two independent fading replicas, if required BER is 10 -6 , the SNR at

a receiver should be at least 20 dB [81] and the spreading factor is at least 7149 when

there are ten communication pairs. Table 4.2 gives the minimum spreading factor vs. the

number of communication pairs under the Rayleigh fading channel condition with two

independent fading replicas.

Table 4.1 Spreading Factor vs. Number of Pairs under Ideal Channel

# of communication pairs 1 2 3 4 5 6 7 8 9 10

Spreading factor 1 12 23 34 45 57 68 79 89 101
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Table 4.2 Spreading Factor vs. Number of Pairs under Rayleigh Fading Channel

#	 of	 communication

pairs

1 2 3 4 5 6 7 8 9 10

Spreading factor 1 795 1589 2383 3178 3972 4766 5561 6355 7149

Prioritized transmission is used in DRCA for real time applications. A packet with

higher priority is always put in front of a lower priority one such that it is transmitted at

the earlier time.

All control messages, including RTS, CTS and ACK, are transmitted with

common codes, which are codes CR, Cc, and CA, respectively. Short message (SM) is

with CR. All idle terminals turn to CR (common code for RTS and SM) to receive RTS

and SM messages. The message format of RTS/CTS/SM/ACK is shown in Figure 4.1.

An RTS message is sent to apply for a spread code. It contains Message ID, Receiver ID,

Transmitter ID and the chosen spread code ID. A CTS message answers the application.

The second part of a CTS message is one bit to indicate "Yes" or "No". The last part is a

suggested code ID if "No" is presented in the second part or is blank in case of "Yes". An

SM message is to broadcast the code ID to other terminals so that they know either the

code is being used or can be re-used, depending on D/A indication. Note that D means

"delete the code from your code-look-up table", and A means "add the code to your code-

look-up table". It is designed to be with very small length (two to four bytes) to keep the

possibility of collision with RTS message low. An ACK message contains the

information whether a date message is received properly (Good/Bad indication).



D/
A

Message
ID

Code
ID

Message
ID

Good/
Bad

Yes/No Code
ID

Message
ID

67

Message Receiver Transmitter Code
ID ID ID ID

RTS format CTS format SM format	 ACK format

Figure 4.1 Control message format.

The protocol can be depicted as the following procedure and illustrated in Figure

4.2 assuming that terminal A has a packet to send to terminal B:

Figure 4.2 Operation of DRCA — successful transmission.

1) Terminal A chooses a spread code i from its code-look-up table according to the
number of currently transmitting terminals and the length of the packet. The
number is known by counting the available codes in the table. The code ID is
contained at the end of its RTS message.

2) Terminal A sends an RTS message out and then turns to Cc to receive a CTS
message from terminal B.

3) 	 Terminal B sends a CTS message with "Yes" decision and then turns to code i to
receive a data packet from terminal A if it agrees with the spread code requested
by terminal A. Otherwise, it sends the CTS message with "No" decision to ask
for a different code and attaches a code ID it believes proper. If so, terminal A
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re-chooses a code from its code-look-up table and steps 1-3 are repeated till the
code is accepted by terminal B.

4) If the spread code needs to be re-used, terminal A broadcasts an SM with CR to all
terminals in the network to inform that code i is being used. Eventually, all idle
terminals receive the message and take the code off from their own code-look-up
tables. By doing so, an idle terminal will not use the code so that primary collision
can be avoided. If the spread code does not need to be re-used, step 4 is skipped.

5) Terminal A sends a data packet with code i. After that, it turns to CA to receive
ACK. Terminal B de-spreads the code and receives the packet. If B receives the
packet properly, ACK with good indication is sent out with CA. Otherwise it asks
for packet re-transmission from A with a negative indication in ACK. Step 5 is
repeated till the packet is correctly received.

6)	 Terminal A receives the ACK message and broadcasts an SM with CR to ask all
idle terminals in the network to update their code-look-up tables. The code can
then be reused. If the spread code does not need to be re-used, terminal does not
need to broadcast the SM in step 6.

Compared with MACA/CT (Multiple Access with Collision Avoidance/Common

Transmitter based) and MACA/RT (Multiple Access with Collision Avoidance/Common

Receiver based), DRCA uses bandwidth more efficiently when the ratio of inactive

terminals to active ones exceeds a threshold, especially when this ratio is high. The

reason is that an active terminal can ask for a higher transmission rate in DRCA but

neither MACA/CT nor MACA/RT can do so. In addition to that, the prioritized-

transmission mechanism in DRCA gives real-time application packets higher probability

to access the channel. MACA/CT and MACA/RT do not have this kind of functionality.

However, collision may occur due to the dynamical nature of DRCA. Collisions are

classified into two categories: control message collision and data message collision. The

first one can be further divided as:

a) RTS message collision, which is caused by two or more RTS concurrent
transmissions;
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b) CTS message collision, caused by more than one CTS concurrent transmission;

c) ACK message collision, caused by more than one ACK concurrent transmission; and,

d) SM/RTS message collision, caused by concurrent transmission of SM and RTS
messages.

Since the size of RTS/CTS/SM message is much smaller than that of data packets,

this kind of collision has very little negative effect on channel throughput. Data message

collision is caused by two concurrent data transmissions with the same spread code.

Although the "Do-No-Use" code broadcast mechanism is used to avoid it from happening,

it can still occur with combination of the following five conditions as illustrated in Figure

5.3:

1) A terminal C is busy and misses an SM message when the SM of another
terminal, e.g., A, is transmitting;

2) The terminal becomes idle and then needs to send a data packet;

3) It chooses the code contained in the previous SM message;

4) The receiver terminal, e.g., D is busy when the SM in 1) is transmitting and it
misses the message, too; and,

5)	 The sending terminal C sends out the data packet to D. Meanwhile, terminal A is
still transmitting its data message to terminal B.

From the above analysis, it is concluded that the possibility of data message

collision is very low and its effect to the overall system throughput is small.
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Figure 4.3 A data collision scenario of DRCA.

Beside bandwidth efficiency and collision-avoidance. DRCA has other

advantages as:

a) The spread code strategy is a hybrid one composed of common. receiver-based
and transmitter-based protocols. It uses common codes to transmit
RTS!CTS(ACKJSM messages and all idle terminals turn to C x to monitor RTS or
SM message so that broadcast becomes easy. The spread code is determined by
both transmitter and receiver thus collision caused by using the same code is
reduced to the minimum. A receiver, ust needs to monitor one spread code to
receive the data message since it knows which code the transmitter is using. Thus
the circuitry of the receiver is simple.

b) The computational procedure is simple. Each terminal just needs to maintain a
code-look-up table and executes a simple algorithm to choose a proper spread
code.

c) It does not need any transmission power increase to achieve the same receiving
quality compared with static code allocation protocols.

DRCA satisfies all the requirements for ad hoc wireless network MAC design

presented in Chapter I. At first, bandwidth is efficiently used because of its dynamical
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rate allocation strategy. Second, minimum interference and collision avoidance are

achieved since any terminal in the network tries not to use the same spread code which is

being used by another terminal. Additionally, it uses CTS/RTS dialog such that the

hidden and exposed terminal problem can be solved properly. Finally, the prioritized

transmission mechanism supports QoS for time-sensitive traffic in real-time applications.

Therefore, it is concluded that DRCA is a proper MAC design.

4.2 Comparison of DRCA with MACA/CT and MACA/RT

In DRCA, bandwidth is allocated dynamically and collision avoidance is achieved by the

"Do-Not-Use" code broadcasting mechanism. Compared with it, both MACA/CT and

MACA/RT use static bandwidth allocation. Collision only happens when more than one

RTS-CTS exchange exist simultaneously within the same region in MACA/CT and when

more than one mobile terminal send RTS messages to the same mobile terminal in

MACA/RT.

If the ratio of inactive mobile terminals to active ones exceeds a threshold, it is

obvious that DRCA can use bandwidth more efficiently than both MACA/CT and

MACA/RT. A prioritized transmission strategy in DRCA guarantees the QoS

requirement of real-time application packets. On the other hand, neither MACA/CT nor

MACA/RT distinguishes priority level of a packet and does not supports real time

application if real-time and non real-time applications are run simultaneously.

DRCA is easy to be implemented with low hardware cost. Compared with

MACA/RT, it needs SNIR (Signal to Noise and Interference Ratio) measurement

functionality and allocates spread codes according to SNIR and priority information.
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Since spread codes are assigned beforehand in both MACA/CT and MACA/RT,

signaling overhead is very small. Compared with it, periodic broadcast in DRCA takes

some bandwidth. Collision can happen in a specific scenario when a mobile terminal that

does not receive the broadcast information in time and happens to move to the region of a

mobile terminal transmitting with the same spread code.

The advantages of DRCA are concluded as follows:

• It is a multiple channel protocol and has all the advantages as other multi-channel
protocols do;

• It uses dynamic allocation of bandwidth such that a peak high rate can be reached
and bandwidth can be used efficiently. If a mobile terminal needs more bandwidth
to reach the peak bit rate, it can do so if it finds that SNIR is low, which means
neighing mobile terminals are not using much bandwidth;

• It reduces collision by not using the same spread code such that the throughput
can be improved;

• It uses prioritized transmission such that the QoS for real time applications can be
supported; and,

• It is easy to be implemented and hardware cost is low.

DRCA satisfies all the requirements for ad hoc wireless network MAC design

concluded in Chapter 1. At first, minimum interference and collision avoidance are

achieved since mobile terminals avoid using the same spread code and each mobile

terminal accesses channel with equal chance. Second, bandwidth is used efficiently

because of a dynamic spread code allocation strategy. Third, high throughput is reached

due to the collision avoidance mechanism. Additionally, it uses CTS/RTS dialog so that

the hidden and exposed terminal problem can be solved properly. Finally, the prioritized

transmission mechanism gives QoS support for time-sensitive traffic in real-time
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applications. Hence, it is concluded that DRCA is a proper MAC design for ad hoc

wireless network.

4.3 Potential Usage of DRCA in Industry and Standards

Due to the advantages concluded in the above section, DRCA has a good chance to be

chosen by industry for a distributed wireless network like ad hoc wireless networks or

mesh wireless networks [84]. A mesh network is a network that employs one of two

connection arrangements, i.e., full and partial mesh topologies. In the full mesh topology,

each pair of node is directly connected. In the partial mesh topology, only some nodes are

directly connected but not each pair of nodes. Industry has expressed intense interest in

both ad hoc wireless network and mesh network [84, 85]. Compared with some existing

MAC designs for ad hoc wireless networks, DRCA is attractive and competitive in terms

of bandwidth efficiency, support for real-time applications, and low cost of

implementation. Compared with the benchmark MACA/CT, the computation is more

complex and the hardware cost is a little bit higher since it needs to pick up a spreading

factor in the run and maintain a code look-up table. The performance of DRCA is much

better than MACA/CT when there are many inactive mobile terminals. However, the

performance is not significant when most mobile terminals are active. It is recommended

to use MACA/CT when all or most mobile terminals are active and use DRCA when

there are many inactive mobile terminals from time to time.

The default MAC protocol for an ad hoc wireless network is IEEE 802.11 DCF.

It uses SS technology in physical layer to mitigate the harsh channel environment.

However, only one common code is used due to the difficulty to assign distinct spread
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codes in a distributed system. If this issue and other three related ones mentioned in

Section 1.4.5, which are collision avoidance, bandwidth efficiency and high peak rate

realization, are resolved properly, an SS-based MAC for ad hoc wireless network or mesh

network can be accepted into IEEE 802.11 standard with a good chance. The proposed

DRCA uses dynamic spread code allocation mechanism with collision avoidance. It

provides a reasonable and practical solution to those difficult issues. Hence, it has a good

opportunity to be accepted into the IEEE 802.11 standard as an optional MAC for a

distributed wireless network like ad hoc wireless network.



CHAPTER 5

PERFORMANCE ANALYSIS OF DRCA

Chapter 4 proposes DCRA for ad hoc wireless network. This chapter gives the analysis of

the performance of DRCA and compares it with that of MACAICT. The performance

analysis of a Spread Spectrum ad hoc wireless network system is an extremely complex

task because the system is driven by a set of uncoordinated users that interfere with each

other to various levels. There are usually two ways to analyze such system. The first

method uses communication theory while the second one is communication network

analysis method. A communication theory method analyzes signal at the bit level; and bit

error analysis plays a key role. But it cannot account for realistic traffic models. By

contrast, a communication network method takes the random pairs of terminals as

transmitter/receiver pairs and investigates the probability of packet success by analyzing

transmitter/receiver conflicts. However, it does not account for the system behavior at the

bit level. Both methods are necessary for the analysis of an ad hoc wireless system.

However, it is difficult to combine two together in one model. It has been shown that a

model attempting to account for the two methods simultaneously is intractable [46].

In this chapter, it is focused on the use of a communication network analysis

method to investigate how the proposed DRCA protocol impacts the system throughput

and a communication network analysis method is used. To avoid involving into the

details of bit error analysis as well as to achieve the desired accuracy of the analysis

results, it is ensured that the processing gain is so large that a message is received with

75
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very low bit error rate or bit error rate is negligible.

In the landmark work of Spread Spectrum for wireless distributed network [46],

the authors assume ideal channel condition and perfect power control to obtain the

throughput of the system. In the work of the benchmark MACA/CT [24], the same

channel condition and power control method are used. To compare the performance of

DRCA with the benchmark MACA/CT with the same condition, the analysis of this

research makes the same assumptions, i.e., white Gaussian channel and a receiver

receives the same power from each transmitter.

There is mcuh work on determining the capacity of an ad hoc wireless network

recently. The landmark work by Gupta and Kumar [94] gives the lower and upper bounds

on the throughput of each node of ad hoc wireless networks, with the conditions that

nodes are randomly located, a node randomly chooses a destination, and a

noninterference protocol is used. Splitting the channel into several subchannels does not

change any of the results. In another milestone work by Toumpis and Goldsmith [95]

the set of achievable rate combinations between all source-destination pairs under

different transmission strategies are investigated. It shows that multi-hop routing, spatial

reuse and successful interference cancellation increase the capacity significantly but the

capacity does not gain much from power control unless variable-rate transmission is used.

The work of Grossglauser and Tse [96] finds that per-user throughput can increase

dramatically when nodes are mobile rather than fixed with random source-destination

pairs.

This research has more interest in the system overall performance rather than a

single-user's performance. Hence, it focuses on the overall system throughput analysis.
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The throughput in this work is defined as the number of bits per second that could be

received correctly by destinations in the whole network. The definition is also used in

[46, 241. The benchmark protocol is MACA/CT.

The first part of this chapter derives the throughput of DRCA in a slotted, single-

hop without mobility environment; in the second part of the chapter, it compares the

throughput of DRCA with MACA/CT in a single-hop, mobility-free environment by

simulation. The third part of the chapter gives the simulation results under a multi-hop,

multi-terminal environment.

5.1 Throughput Analysis of DRCA

For the purpose of simplicity, the following assumptions are made in the analysis:

1) There are N terminals in the system.

2) Each terminal is directly connected, i.e., only one-hop connection and under
perfect power control, i.e., a receiver receives the same power from each
transmitter;

3) Each terminal's position is fixed without mobility;

4) The system is slotted and the slot time t is chosen to accomplish an RTS-CTS
dialogue;

5) 	 An idle terminal generates a packet with probability p in a given slot.

It is assumed that an RTS-CTS dialogue is completed within one slot since the

size of RTS and CTS messages is small and the propagation time delay within the

network is very short. Assume that a terminal generates a packet with length L, spreading

factor for this packet is ke, kmin ke kmax , in which kmin and kmax are the minimum and

maximum spreading factors, respectively. Chip rate after spreading is m chips per second

(cps), which is a constant for all terminals. Correspondingly, the channel transmission bit
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rate is mike bits per second (bps). The packet transmission time is Lke/m second, meaning

that the packet lasts for L' = —
Lk, 

slots, where t is the slot time. L' is called the quantized
mt

length and assumed that it is geometrically distributed with probability q(ke). That is,

P(Lt= 1') = (1– q(ke))q(ke)1 . To simplify the problem, it is assumed that q(ke) =q for

all ke, k k kmax.

Since the geometrical distribution is memoryless and the number of transmitting

terminals is always the same as the number of receiving terminals in DRCA, the number

of communication terminal pairs a is used as a system state. Thus the system can be

modeled as a discrete Markov chain.

Since an RTS message is transmitted with common code CR, multiple RTS

packets collide even if they are intended to different receivers. An RTS-CTS dialogue is

successful if and only if there is one RTS-CTS transmission in this slot.

The dissertation defines Pab as the transition probability from state a to b, i.e.,

from a communication pairs to b pairs. The transition probability is conditioned on i, the

number of communication pairs that become idle from busy status at the beginning of slot

f. Since the system state at slot f-1 is a, the number of terminals that are available to

communicate is N'= N-2a+2i. Assume that the number of successful RTS-CTS dialogues

in slot f is d, the author then has: d+a-i = b. Hence, d = b-a+i. Let c be the number of

RTS transmissions at the beginning of slot f The number of failed RTS transmissions

thus is d'= c-d.

Let H be the event that a transition from state a to b happens; A be the event that

exactly one transmission occurs and it is addressed to an idle terminal; B be the event that
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one transmission occurs and it is addressed to a busy terminal; C be the event that zero or

more than one transmission occur; B1 is the event that i pairs of terminals become idle

from busy status at the beginning of slot f. Thus:
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(5.7)

Given the transition probability matrix, the steady state distribution Sa is given by:

SP = S (5.8)

Since the above Markov chain is ergodic, the throughput in bits per second for DRCA

is:

where CRS is the channel rate of terminal j, krj is the spreading factor for terminal j when

there are r communication pairs, and Sr is the steady probability of r communication pairs.

With the static code allocation strategy like MACA/CT, spread code is assigned

just once with the worst case consideration, which means that bandwidth is allocated

according to N/2, the total pair of terminals; not r, the current pair of transmission

terminals. Thus:

To maintain good signal quality, the received packet BER (Bit Error Rate) is

equal to or less than 10-g, which requires that the receiving SNR (Signal to Noise Ratio)

be at least u dB. Under the ideal channel condition (white Gaussian noise channel,

without fading) and with binary signal, u = Q-1 (10 g)/2, where Q(x) is the Q-function [81].

To simplify the analysis, it is further assumed that a receiver receives equal power from

each transmitter. Hence, it has:

and,
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The equality exists when the received packet BER = 10 -g.	 In case of

By contrast, bandwidth is allocated according to real channel condition in DRCA.

That is, krj is a function of r. If it is assumed that each terminal chooses a proper spread

code and do not consider the collision affect, with the same received signal quality, it has:

when r >1 . Assume that k 1 krj if r >/, where k] is the spreading factor when there is

only one communication pair. This assumption is true in real situation. Equation (5.9)

then becomes:
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Similarly, the equality exists when the received packet BER = 10 -g. In case of

By comparing Equation (5.13) with (5.15), when either's equality holds, i.e.,

when the received signal BER =10 -g, since r- .N- / 2 , it is easily concluded that

Collision effect on throughput in DRCA is hard to be estimated accurately.

However, the problem can be simplified with the assumption that each communication

pair takes the same bandwidth for re-transmission due to collision and the value is m s bps.

Collision only happens when there are more than one communication pairs. Equation

(5.15) then can be modified as:

(5.16)

If ms is small enough compared with m, it is concluded that y D >.- ys when N/2 >1 with

the same received signal quality. When N/2 = 1, ID =Is . Note that the number of

terminals in any real system is far greater than 2. Hence, DRCA's throughput is certainly

better than any protocol with a static code allocation strategy like MACA/CT. The next

two sections present the simulation results to confirm the conclusion. With the ideal

channel and perfect power assumptions, the results are upper bound of the performance.

In a real situation, the channel condition can be much worse and power control could not
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be such good. In another word, the performance of both DRCA and MACA/CT decreases

in a real environment.

5.2 Simulation in a Single-Hop Environment

To evaluate the performance of DRCA and compare it with static code allocation strategy,

a simulator is created for a single-hop environment with Matlab [82]. The purpose of the

simulation work is to see how the proposed DRCA protocol affects system level

performance. The network throughput is mainly investigated. To simplify the simulation

and avoid details of bit level error analysis, ideal channel condition is used in the

simulator. In other words, our simulation concentrates on MAC layer instead of physical

layer. To guarantee the quality of the received signal, the spread code is properly chosen

with some restrictions such that the processing gain is big enough when there are

concurrent transmissions. It is assumed that each packet is correctly received if no

primary collision happens. Beside, the effect of mobility is not considered and only

single-hop is used in the simulator in this section.

5.2.1 Simulation Setup

Table 6.1 gives the details of parameters of the simulation. Two different sets of the

received signal quality target are used in the simulation. One is 10 -5 and the other one is

10-6. The corresponding minimum required SNR values are 9.5 dB and 10.5 dB,

respectively. The slot time is defined as the transmission time of an RTS-CTS dialogue

and set as 1.2 ms, which is slightly bigger than the sum of a RTS and a CTS message

transmission time. The total simulation time is set to be 120 s for each set of parameters,

i.e., p, q and N. The total number of terminals N is ranged from 2 to 20 in the simulation.
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Table 5.1 Parameters Used in the Simulation

Parameter Value
Chip rate 6.0Mbps

Number of terminals in the network N = 2-20
Received signal quality target (bit error
rate)

BER = 10 -5/10-6

Required minimum SNR 9.5 dB/10.5 dB
Slot time 1.2 ms

Simulation time 120 s

P 0.1-0.3

q 0.7-0.9

5.2.2 Simulation Results

The network running for 120 seconds is simulated for each set of parameters. The

throughput of each time slot is recorded. The system throughput is the average

throughput of all the time slots.

Figures 5.1 and 5.2 compare the throughputs of DRCA with those of the static

code allocation strategy. The received signal quality target is set as 10 -6 . From both

figures, it is found that DRCA reaches much higher throughput than the static strategy

when N/2>1. The difference is especially large with a big N/2 value. When there is just

one pair of communication terminals, i.e., N/2 =1, both DRCA and the static strategy

have the same throughput.
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Figure 5.1 Throughput when p=0.15, q varies from 0.7 to 0.9 and BER is 10 -6 .

Figure 5.1 shows the effect of q and N on the throughput. In this figure, p is fixed

at 0.15, the value of q is from 0.7 to 0.9 and N/2 changes from 1 to 10. When N/2 >6, the

throughput of DRCA increases when q becomes bigger. The bigger q is, the smaller the

average packet length is. It means that when there are enough mobile terminals (like N/2

>6), DRCA achieves higher throughput when a mobile terminal produces a packet with

smaller length.
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Figure 5.2 Throughput when q=0.9, p varies from 0.1 to 0.3 and BER is 10 -6 .

Figure 5.2 compares the throughput of DRCA with that of a static code allocation

method when q is fixed. In this scenario, q is set as 0.9, p changes from 0.1 to 0.3 and N/2

is from 1 to 10. It is noticed that when N/2 >5, the throughput of DRCA becomes higher

with lower p. In other words, when the total number of mobile terminal exceeds a

threshold, e.g., N/2 >5, DRCA achieves higher throughput if each mobile terminal

produces a packet with lower possibility. This is caused by the RTS-CTS dialogue

collision. When there are many mobile terminals and each one has a high probability to

produce a packet in a certain slot, then the possibility of RTS-CTS dialogue collision

becomes high, which refrains a new packet from being transmitted in the slot. Finally, the

system throughput is degraded. Compared with it, when N/2 <4, the throughput of DRCA
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decreases with p. In other words, when the total number of mobile terminals is small, the

overall system throughput decreases if each mobile terminal produces a packet with

lower probability. It is because the probability of RTS-CTS dialogue collision becomes

small if there are few mobile terminals in the system. The system throughput is then

mainly affected by the number of data packets. If a mobile terminal produces a packet

with lower probability, obviously the system throughput suffers.

Figure 5.3 Throughput when p=0.15, q varies from 0.7 to 0.9 and BER is 10 -5 .

Figures 5.3 and 5.4 compare the throughputs of DRCA and static code allocation

design when receiving signal quality target is 10-5 . The trend of throughput with p, q and

N is similar to that in Figures 5.5 and 5.6. It is noticed that the throughput of DRCA is a

little bit higher than that in Figures 5.3-5.4. It is because with a lower required signal
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quality, a mobile terminal can transmit data with higher transmission rate. Although the

BER is a little bit higher, the overall throughput still increases.

Figure 5.4 Throughput when q=0.9, p varies from 0.1 to 0.3 and BER is 10 -5 .

It is concluded that if the ratio of active terminals is low, DRCA performs much

better than a static method. Otherwise, the difference is smaller. This conclusion matches

with the intuition of DRCA.
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5.3 Simulation Results in a Multi-Hop Environment

5.3.1 Simulation Setup

To evaluate the performance of DRCA in an environment that is as close as possible to a

real network scenario, a simulator in OPNET [56] is created. There are total 50 mobile

terminals in the simulator. Multi-hop is used for delivering packets. AODV (Ad-hoc on

demand Distance Vector) [50] routing protocol is utilized. Four different kinds of

applications, i.e., voice call, video call, FTP (File Transfer Protocol) and IP Unicast, are

deployed during the simulation. The detailed parameters in the simulation are given in

Table 5.2.

Table 5.2 Simulation Parameters in a Multi-Hop Environment

Parameter Value

Number of mobile terminals N = 50

Mobility Random Waypoint

Routing Protocol AODV

Traffic Patterns

1. Voice call

2. Video Call

3. FTP

4. IP Unicast

Network Layout Size 100x100 meter

Chip Rate 2.2 M cps

Received signal quality target (bit error rate) BER = 10-6
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Two spread code allocation methods, i.e., DRCA and MACACT, the static cede

allocation mechanism, are implemented in the simulator. The performance data of each

method in the network are collected and compared.

Figure 5.5 Network layout of the simulator.
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During the simulation, each mobile terminals moves with a random mobility

pattern profile. With this kind of mobility pattern, a mobile terminal moves randomly

inside the network. When it reaches the boundary of network, it stops. Then the mobile

terminal is "reflected" back and moves again. The speed of a mobile terminal is uniform

distributed from 0-10 meter/second. Figure 5.5 gives the initial location of each mobile

terminal in the network. Figure 5.6 shows the location of each mobile terminal after

30second. Figure 5.7 displays the location of each mobile terminal after the network

running for 150 second. It is found that each mobile terminal keeps moving randomly

inside the network during the simulation.

Four traffic patterns are used in the simulation. They are voice call, video call,

FTP and IP Unicast, respectively. These traffic patterns are based on OPNET existing

traffic models with some modifications. There are two types of traffic models in OPNET.

The first one is simple source traffic, which can be described by packet size and packet

inter-arrival time. IP Unicast belongs to this category. The second one is application

traffic, which is represented by inter-request distribution, or file size distribution, or call

duration. There is no single mathematical formula that can represent this kind of traffic as

it does for simple source traffic. FTP, voice call and video call belong to the second

category [56]. Although FTP, voice call and video call are session-oriented, they are set

as discrete traffic and each packet from these services still goes through the RTS-CTS

dialogue. The details of these traffic patterns are exemplified in Table 5.3-5.6.



Figure 5.6 Locations of each mobile terminal after 30 second.

Table 5.3 FTP Traffic Parameters in the Simulation

Traffic
 Pattern

Type of
Service

File Size Inter-request
time

Traffic
Start time

Traffic
Duration

FTP Excellent
Effort

Constant/50000 Exponential/1720 Uniform/
(100-110)

End of
Simulation
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Table 5.5 Video Call Parameters in the Simulation

Traffic
Pattern

Type of
Service

Frame size Frame inter-
time

Traffic Start
time

Traffic
Duration

Video Call Streaming
Multimedia

128x240
bytes

15 frames/s Uniform/
(100-110)

End of
Simulation

Table 5.6 IP Unicast Traffic Parameters in the Simulation

Traffic
Pattern

Type of
Service

Data
Rate

Packet size
(distribution/averag
e)

Inter-
arrival
time

Traffic
Start
time

Traffic
Duration

IP Unicast Best
effort

100
packet
/s

Exponential/1200 constant 180 s 3600 s

In the simulation, MT 23 is set as the server of FTP application, MT 22 is the

source of the FTP application. MT 1 is the source of the voice call, MT 0 is the

destination of the call. MT2 is the source of video call; and MT 3 is the destination of the

call. All other MTs are either connected one by one randomly as an IP Unicast traffic pair

or keep inactive during the simulation.

5.3.2 Simulation Results

The simulation duration time is set as 3000 seconds, i.e., it simulates fifty minute running

of the network. The number of active mobile terminals in the network is changed for each

running. The simulation results are shown in Figures 5.9 - 5.11.

From the figures, it is found that from the beginning of the simulation till the start

of traffic, since there is no generated traffic, the throughput of both DRCA and static

code allocation methods are both zero. From the time point when traffic begins to be
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generated to the end of the simulation, the DRCA always performs better than the static

bandwidth allocation method. Table 5.7 exemplifies the average throughput difference

between DRCA and the static spread code allocation method. The difference is calculated

based on the static spread code allocation method. Positive value means the throughput

improvement of DRCA compared with the static method. It is shown that DRCA

achieves 9.48% higher throughput than the static method when there are 25 pairs of

active MTs; 21.09% higher throughput if there are 21 pairs of active MTs; 40.57% higher

when there are 16 pairs of active MTs; and 63.32% higher when there are 12 pairs of

active MTs.

Figure 5.8 Throughput comparison between DRCA and static code allocation
method: 25 pairs of active mobile terminals.
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Figure 5.8 shows the throughput comparison between DRCA and static code

allocation method when there are 25 pairs of active mobile terminals (one is in voice call,

one is in video conference, one is with FTP; and the 22 pairs MTs are in IP Unicast).

Figure 5.9 shows the comparison when there are 21 pairs of active mobile terminals.

Figure 5.9 Throughput comparison between DRCA and static code allocation
method: 21 pairs of active mobile terminals.

Figures 5.10 and 5.11 are with 12 and 16 pairs of active mobile terminals, respectively.

From them, it is shown that the throughput difference between DRCA and MACA/CT

increases when the number of active mobile terminals deceases. In other words, the lower

the ratio of active MTs to inactive ones is, the better DRCA performs than a static code

allocation method. It is because DRCA dynamically allocates rates according to the

activity status of neighbors such that the available bandwidth is used more efficiently.
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Compared with it, the static code allocation method allocates codes just once and cannot

adjust the allocation even if neighbors' activity status changes. Therefore, if there are

many inactive mobile terminals, for example, 52% of inactive mobile terminals, DRCA

achieves 63% higher throughput than that of the static code allocation method, e.g.,

MACA/CT. However, if most of the mobile terminals are active, as shown in Figure 5.8,

the performance difference between DRCA and MACA/CT is minor.

Figure 5.10 Throughput comparison between DRCA and static code allocation method:
16 pairs of active mobile terminals.

The simulation results verify that DRCA uses bandwidth more efficiently and can

achieve better performance than the static code allocation method does in a multi-hop,

multi-user environment with mobility. when there are many inactive mobile terminals in
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the network. The results also show that when most of the mobile terminals are active,

DRCA's performance does not improve significantly from MACA/CT. Considering the

higher implementation and computation cost of DRCA, it is recommended that DRCA is

only used for environment when there are many inactive mobile terminals from time to

time. If all or most of the mobile terminals are active, MACA/CT is preferred. It is also

recommend that use MACA/CT for a large scale ad hoc wireless network due to the

difficult to dynamically allocate spread codes in a large network.

Table 5.7 Throughput Difference between DRCA and Static Code Allocation Method

Number of active MT pairs Average Throughput Difference

25 9.48%

21 21.09%

16 40.57%

12 63.32%
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Figure 5.11 Throughput comparison between DRCA and static code allocation method:
12 pairs of active mobile terminals.



CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

This research proposes PPTM for All-IP wireless WAN and DRCA for ad hoc wireless

networks. The contributions and limitations of the research are concluded in the

following two sections.

6.1.1 Summary of Contributions

The first part of the research proposes PPTM as a proper MAC design for All-IP wireless

WAN. All-IP wireless WAN is a strong candidate beyond 3G. It is IP protocol-based, and

it supports wide-area-coverage and high-mobility. Various kinds of service need to be

supported. They bear different importance and pose various QoS requirements. The

important levels or QoS requirements can be digitized and represented by transmission

priority levels. Packets can then be allocated into different priority groups and a higher

priority packet always carries more important information or more time sensitive than a

lower priority one does.

The proposed PPTM is composed of two stages. A pre-transmission probability is

calculated in stage 1 based on continuous observation of the channel load for a certain

period of time. Packets are transmitted according to their priority in stage 2. PPTM has

the advantages of both centralized and distributed MAC design and its control overhead

is low.

To analyze its performance, PPTM is modeled as a nonpreemptive prioritized

queueing system when packet arrival pattern is a Poisson process. Packet transmission

100
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time delay, throughput and average number of packets in the queue have been derived.

The numerical results are obtained via simulating a simplified All-IP wireless WAN

environment and find that the theoretical formulae match closely with them. Numerical

results are derived under the assumption of other traffic patterns, which are CBR,

Exponential On/Off and Pareto On/Off, too. From the numerical results, it is found that in

PPTM, a higher priority packet achieves much less average TTD than a lower priority

packet does. There are in general much fewer higher priority packets than lower priority

packets in the queue. In PPTM, a more important packet always has higher priority than

a less-important one does. By giving more important packets more transmission

opportunity, more important information is transmitted with the same channel condition.

A time-sensitive packet should be transmitted faster than a time non-sensitive packet.

PPTM can do so but MCLSP (Modified Channel Load Sensing Protocol) cannot.

Although the system throughput is the same, PPTM performs much better than MCLSP

does from the QoS view point. With PPTM, it is much easier for a packet to meet its

delay requirement than with MCLSP. The latter does not support prioritized transmission.

In other words, MCLSP transmits all packets equally. Our simulation results verify that

good QoS differentiation and support of prioritized transmission is very important and

necessary in All-IP wireless WAN. PPTM satisfies the important transmission principle.

In the second part of the research, a MAC design called DRCA is proposed for ad

hoc wireless network. Ad hoc wireless networks are found to be very useful in many

areas when an infrastructure network is hard or unnecessary to be built. The areas include

certain military applications, emergency operations, wireless sensor networks, and

distributed computing, etc. Designing an effective, efficient and QoS supported MAC
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protocol for ad hoc wireless network is difficult without the help of a central coordinator,

though. Based on the review of the existing MAC protocols and the analysis of design

goals of MAC for ad hoc wireless network, DRCA is proposed as an efficient and reliable

MAC design. DRCA allows the dynamical allocation of spread codes to achieve efficient

bandwidth usage. The spreading factor of a code is set according to the neighboring

nodes' activity level and the priority level of a packet to be transmitted. By doing so, it

can take back bandwidth from inactive neighboring nodes and give more resource to an

active node that needs it. Collision avoidance is achieved by broadcasting the spread

code id that is being used so that other terminals avoid using it. Throughput performance

is improved due to the collision avoidance mechanism. Its prioritized transmission

mechanism gives QoS support for time-sensitive real time applications.

The throughput of DRCA is analyzed in a single-hop network without mobility

for the purpose of simplifying and comparing it with static spread code allocation

strategy. It is found that the throughput of DRCA is higher when there is more than one

pair of communicating nodes. It verifies that DRCA uses bandwidth much more

efficiently than static code allocation mechanism as MACA/CT. Simulation results from

both single-hop and multi-hop environments verify that DRCA always achieves higher

throughput than a static spread code allocation method does in an ad hoc wireless

network. The difference becomes more significant if the ratio of active mobile terminals

in the network decreases. It also finds that the difference between DRCA and MACA/CT

is minor when most of mobile terminals are active. Take into account the higher

implementation and computation cost of DCRA, it is preferred to deploy DRCA only

when there are many inactive mobile terminals from time to time in the network and use
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MACA/CT when all or most mobile terminals are active.

6.1.2 Limitations

This research has following limitations:

1) This research only considers HOL priority scheme for PPTM protocol. More
kinds of priority scheme can be used in real implementation;

2) This research assumes an IMP has unlimited space to save packets in the
theoretic analysis for the performance of PPTM. In real environment, an IMP
cannot have unlimited space. Loss of packets could occurs;

3) Flexible code allocation method is not used in the performance analysis of
PPTM;

4) The performance analysis of DRCA does not consider the prioritized
transmission mechanism;

5) The performance analysis of DRCA assumes ideal channel condition and
perfect power control, which is impossible to realize in real situation. The
present analysis is thus the upper bound of the performance; and,

6) The performance of DRCA in multi-hop environment is given with simulation
only. Theoretic analysis in a multi-hop environment is not performed.

6.2 Future Work

6.2.1 Future Work of PPTM Protocol

Further simulation work is needed to analyze the performance of PPTM. In the present

simulation, the analysis is simplified by taking the processing time delay in state 1 as zero.

In the future research, the effect of the processing time delays should be investigated.

Packet length is set with only exponential distribution in the simulation. Other kinds of

length distribution should be used in the future and the results need to be compared for

the proposed PPTM and other protocols. More research is needed about the throughput,

which is mostly physical layer related. Flexible bandwidth allocation for each IMT is an



104

important mechanism in PPTM. It will be used in the future simulation work. The

distribution of TTD and number of packets in the queue is also interesting to be further

studied. Finally, the potential usage of PPTM for other wireless systems, for example

robotic wireless communications, should be investigated.

There is some opportunity that PPTM can be accepted by industry or standards.

Further research and effort will be exploited for its acceptance by industrial standards or

its commercialization.

6.2.2 Future Work for DRCA

The further investigation of the impact of secondary collision onto the throughput

performance is needed. In the performance analysis, it makes two assumptions - ideal

channel condition and perfect power control. In real situations, the channel condition can

be much worse and the power control cannot be so good. The effect of the fading channel

condition onto the performance of DRCA still remains unknown. In the deep fading

channel condition, the performance of DRCA could be worse than the static spread code

allocation method like MACA/CT. Under DRCA, a mobile terminal can choose an

improper spread code such that the received signal quality is very bad and needs to re-

transmit the packet. It needs more research efforts to investigate the performance of

DRCA under fading channel conditions with non-perfect power control.

In the performance analysis of DRCA, it is assumed that each communication pair

takes the same bandwidth for re-transmission due to collision. It is just an approximation

and it is not accurate in real situation. More research is required to investigate the

collision effect. Signaling overhead is another interesting issue. Signaling messages take
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some bandwidth and it is interesting to know if there is a better way to reduce the

overhead.

More theoretical analysis is necessary to derive the DRCA performance in a

multi-hop environment with mobility. The results need to be verified with the simulation

results. New simulation schemes need to be developed so that they can achieve good

accuracy results with less computation. It is possible that DRCA is accepted by industry

and IEEE standard due to some of its superior characteristics. More efforts and research

are required for the acceptance of DRCA by industry and standards body.

Finally, further investigation should be exploited to know whether DRCA can

reach the real time applications' QoS requirement. The transmission time delay will be

measured as QoS reference for real time applications.
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