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ABSTRACT

THE EFFECTS OF LIMITED REBUILD BUFFER AND
TRACK BUFFERS ON REBUILD TIME IN RAIDS

by
Chintan Shah

Redundant Arrays of Independent Disks (RAID) are very popular for creating large,

reliable storage systems. A RAID array consists of multiple independent disks that

achieve fault tolerance by parity coding. The contents on a failed disk can be

reconstructed on demand by reading and exclusive-ORing the corresponding blocks on

surviving disks. Upon disk failure, the array enters rebuild mode when it begins to

systematically reconstruct the data of the failed disk on a spare disk, provided one is

available. The fundamental element of rebuild is the Rebuild Unit (RU).

Surviving disks engaged in rebuild, process user requests at a higher priority.

Since, not all RUs are available at the same time, available RUs must be stored in a

buffer, called the rebuild buffer, which is a part of the disk array controller cache. Most

studies assume that this buffer is infinite. However, with the advent of large sized disks, it

is increasingly difficult to provide buffers large enough that do not prove to be

bottlenecks. This work studies the effect of a limited rebuild buffer on the rebuild time in

an effort to estimate its effect on the Mean Time to Data Loss (MTTDL) of the array.

Finally, this work studies the idea of using "track buffers" which aim to improve

the rebuild time by reducing the number of times a track has to be read in order to be

completely rebuilt.
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CHAPTER 1

INTRODUCTION

1.1 Objectiveective

As user requirements for storage increase, newer models for storage systems have been

designed, to provide higher reliability along with greater quantities of storage. RAIDS

(Redundant Array of Independent Disks, level 5) has been a particularly successful

model. This 1-DFT (Disk Fault Tolerant) model possesses the capacity to rebuild the data

on a failed disk provided a hot spare is available.

The basic unit of rebuild is a Rebuild Unit (RU). As RUs are read from

corresponding disks, they are Exclusive-ORed (XOR) with each other. Once RUs from

all surviving disks have been XORed, the resulting data is written onto the spare disk as

the reconstructed RU. However, since RUs from all disks may not be immediately and

simultaneously available, they are stored in a "rebuild buffer," which is a part of the disk

array controller cache

While quite a few studies have been done on the performance of rebuild in

RAIDS systems, most of these assume an infinite rebuild buffer. These studies were

viable since disks available in the market needed small buffer sizes (-128 MB) to be

considered infinite. With the advent of faster and larger disks, however, the size of the

buffer is increasingly proving to be a bottleneck. A detailed study of the effects of limited

rebuild buffer size is presented in this work.

Secondly, most techniques used for the improving rebuild times involve a trade-

off with the user response time. While these may speed up the rebuild, improve the

1
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reliability of the array and ultimately allow for longer disk deployment periods, it also

brings about considerable frustration for the user due to longer response times during

rebuild.

This document also explains how the "track buffer," which is used for caching

rebuild reads, reduces the rebuild time without negatively impacting the user response

times. A detailed study reveals the possible potential of this technique, especially on

larger capacity drives.

All performance analyses presented in this work have been done using the Disk

Array Simulator (DASim) developed at the Integrated Systems Lab at NJIT. Disk

characteristics, needed for these studies, have been obtained from the website of the

Parallel Data Lab at Carnegie Mellon University.

1.2 Basic Information

This section provides the basic information required to understand the functioning of

RAID arrays in general and RAIDS in particular.

Amdahl's law illustrates that the performance of computer systems is limited by

the performance of the I/O subsystem [5]. It is further evident from the rate at which CPU

performance has been increasing as compared to storage performance. To utilize the

improved the CPU performance, there is a need for parallelism in the I/O subsystem. A

RAID array provides not just large capacity and greater reliability, but also provides a

fair degree of parallelism.



3

1.2.1 RAID Array Structure

A RAID array consists of multiple independent disks arranged in an array. These disks

are connected via busses to an Array Controller which is an abstraction layer for the

RAID system. The host computer treats the entire array as a very large disk.

Figure 1.1 shows the architecture of a typical RAID array. Each disk is

independent is connected to the array. These disks are "pluggable," which means that

they can be removed and attached to their position. This facilitates replacement of failed

disks. The Array Controller is connected to the host computer through high bandwidth

busses. [7]

Figure 1.1 RAID Array Architecture.
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The array controller performs system-related operations such as controlling

individual disks; maintain address mapping and redundant information, and recovering

from disk failures by rebuilding.

1.2.2 Stripe Units

The array controller also breaks down the contiguous data into units of constant size

called "Stripe Units." [13, 14]. These stripe units are assigned to consecutive disks. This

provides load balancing in case of concurrent workloads and increased bandwidth for the

sequential transfer of large amounts of data by a single process.

The Figure 1.2 depicts a RAID level 0 non-redundant disk array. In this

organization, data is striped, but has no duplication. It results in improved throughput.

However, since the reliability of each disk must be multiplied with that of the other, it

results in very poor reliability.

Figure 1.2 RAID Level 0 — Striping.

The obvious advantage of using Striping is that it allows for parallelism.

Contiguous data can now be accessed through different disks rather than from the same
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disk. This can speed up data access, specifically for requests of large amounts of

contiguous data.

Description of all RAID levels is given in [13].

1.2.3 Rebuild Units

A rebuild unit (RU) is the basic unit of rebuild. It may be the same size or a fraction of a

stripe unit (SU). RUs used during simulations in this study are typically of 256KB each.

They are usually constant, but may be different for different zones in zoned disks.

1.3 RAID Level 5

1.3.1 RAID5 Organization

RAIDS uses rotated block-interleaved parity. This means that all parity blocks are not

located on a single disk like RAID4. These are distributed across all the disks. This

avoids making the parity disk a bottleneck during rebuild.

The RAIDS design considered here has a "left symmetric organization." [9]. In a

left symmetric organization, the parity blocks are placed across the diagonal and the

consecutive data stripe units are placed on the consecutive disks at the lowest available

offsets. Parity is computed over a group of disks, called a "parity group." This

organization is illustrated in Figure 1.3
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Figure 1.3 RAID Level 5 (Rotated Block Parity).

1.3.2 RAID5 Reliability

One of the main purposes of employing disk arrays is to increase reliability. The

reliability of single-disk fault tolerant arrays can be measured as the "mean time to data

loss" (MTTDL) which is given in [14

Where:

MTTDL = Mean Time To Data Loss

MTTF = Mean Time To Failure of a component disk

N = Number of disks in the array

MTTRdisk = Mean Time To Repair a disk

The MTTF for a disk is typically one million hours and the MTTRdisk is a few

hours. It is the same as the rebuild time.
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Based on the above equation, any improvement in the rebuild time will thus bring

about the improvement in the MTTDL and ultimately allow the increase in the disk array

deployment period which is usually five years.



CHAPTER 2

REBUILD PROCESSING

2.1 Introduction to Rebuild Processing

Rebuild processing is the systematic reconstruction of data on the failed disk, on a hot

spare. It is begun as soon as a hot spare is available and continues till all the data on the

failed disk is rematerialized onto the spare. The smallest unit that is rebuilt as a whole is

called the "Rebuild Unit" (RU).

The time taken to rebuild the failed disk Trebuild (p), and the response time for user

requests Tresponse (p)nse 	 (p)

parameters to measure system performance. After a disk failure, the RAIDS array

operates at a higher disk utilization p' = 2p when all requests are read requests.

There are two kinds of rebuild — Stripe oriented and Disk oriented. In a stripe

oriented rebuild, a new process is spawned for each RU to be rebuilt. It reads the RUs

from the surviving disks, XORs them and writes the resulting RU on the spare disk. Disk

oriented rebuild on the other hand dedicates one process for each disk that reads RUs

from the surviving disks asynchronously and puts them into a buffer which successively

XORs the RUs as they become available. Disk oriented rebuild has been shown to

outperform stripe oriented rebuild in [6]. All results presented in this study, thus use disk

oriented rebuild only.

Rebuild Requests can be processed in one of two ways: The Permanent Customer

Model (PCM) processes rebuild requests at the same priority level as that of user

where p is the disk utilization in the normal mode are the two main

8
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requests. However, only one rebuild request is inserted in the queue at a time — a new

rebuild request is inserted at the end of the queue only when the previous one is served.

The Vacationing Server Model (VSM) on the other hand processes user requests

at a higher priority level than rebuild requests. Thus, rebuild requests are served by the

array only when no user requests exist in the queue i.e when the array is vacationing.

However, no preemption is allowed, meaning that once a rebuild request has been

accepted by the system, a user request will be served only after its completion.

Performance comparisons of VSM and PCM models have been done in [2]. It is

shown that VSM gives lower rebuild and response times. Hence, this rebuild strategy has

been used in this study.

Other strategies such as piggybacking [3] and rebuild request pre-emption [14]

exist. However, these are not considered in this study.

2.2 Rebuild in RAIDS

As soon as a disk failure occurs in the RAIDS array, the system enters the degraded mode

of operation. If a hot spare is available, the array then immediately enters into a rebuild

mode in which the data on the failed disk starts materializing on the spare disk.

Consider that disk 4 as shown in Figure 1.3 fails. Data on this disk can be rebuilt

as follows:

And so on.
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Thus a read request to any part of a failed disk is served by initiating a fork-join

request to all the surviving disks during degraded and rebuild mode. This causes the disk

utilization in rebuild mode or degraded mode to double as compared to the normal mode

utilization (U).

In the rebuild mode, the array must serve two types of requests:

1. User Requests: Requests for data by the user application are called as user
requests

2. Rebuild Requests: For rebuilding, every RU on the failed disk is rebuilt by
reading the corresponding RUs on all the surviving disks and XORing them.

Figure 2.1 Change in User Response Time following a disk failure (N = 21, B = 256
MB, RU = 256 KB).

User response time increases significantly upon a disk failure and stays above

normal for the period of the rebuild. However, it continues to reduce as more and more
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data is rebuilt on the spare disk and can be served directly from there instead of by a fork-

join request. Figure 2.1 shows the trend in user response time after a failure for a RAIDS

for 19 disks using FCFS scheduling and VSM strategy for disk rebuild.

2.3 Disk Scheduling Policies

Scheduling refers to the policy by which the disk decides which of the requests on the

queue it must serve next. While this may not be directly related to rebuilding, the order in

which requests are processed still affects the rebuild time.

Two scheduling policies are used frequently — First Come First Served (FCFS)

and Shortest Access Time First (SATF). FCFS policy involves serving the requests in the

order that they arrived. SATF policy involves serving requests in the order of their access

times.

Figure 2.2 shows the rebuild times for different arrival rates for a RAIDS array of

21 disks using FCFS and SATF scheduling with a RU size of 256 KB. The rebuild time

increases progressively with higher arrival rates and the rebuild time for FCFS scheduling

is higher than that for SATF scheduling at a given arrival rate.

It must also be noted that for a given arrival rate, the disk utilization for SATF is

either equal to, or less than, that for FCFS scheduling. This can be seen from Figure 2.3



Figure 2.2 Rebuild Time vs. Normal Mode Arrival Rate (N = 21).
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Figure 2.3 Disk utilization for a RAIDS system at different arrival rates with FCFS and
SATF (N = 21).
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This difference in the disk utilization is due to the fact that SATF policy is geared

toward reducing access times and thus is more efficient at processing requests in a given

amount of time.

The major drawback of SATF policy is that it can lead to "starvation." Since the

policy dictates that the request that requires the minimum access time must be processed

next, without any consideration of when the request arrived, a request that is waiting in

queue but has a large access time may never be served. Most disk drives that use SATF

scheduling today use some mechanism of "ageing" to address this problem. These are

given in [17].

2.4 Factors Affecting Rebuild Time

Rebuild time is an important measure of the performance of disk arrays. This section

details different factors that directly affect rebuild time.

The factors that affect rebuild time are:

1. Rebuild Unit Size (RU size)

2. Rebuild policy (VSM or PCM)

3. Number of disks (N)

4. Disk Utilization (U)

5. Rebuild Buffer Size (B)
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2.4.1 Effect of Rebuild Unit Size on Rebuild Time

The RU size dictates the smallest unit that must be rebuilt before the next user request

must be served. Consequently a small RU size would mean long rebuild times and short

user response times while a large RU size would mean short rebuild times and long user

response times. Figure 2.4 shows how RU size affects the rebuild time at different

utilizations.

Figure 2.4 Rebuild Time vs. Disk Utilization for different RU sizes (N = 21, B = 256
MB).

The graph in Figure 2.4 shows that for a given utilization, rebuild time is lower

for larger RU sizes. Change in RU sizes has a greater impact for higher utilizations since

more user requests have to be served.

Detailed work has been done in [1].



15

2.4.2 Effect of Rebuild Policy on Rebuild Time

Section 2.1 contains a brief description of two rebuild policies -- VSM and PCM that have

been studied extensively in [3, 18, 19]. It has been determined that VSM is a superior

policy to PCM since it has better rebuild and response times.

Figure 2.5 Rebuild and Response Times for VSM and PCM rebuild policies [2].

Figure 2.5 shows the rebuild time and response time for VSM and PCM for a

RAIDS array of 21 disks using FCFS scheduling for a RU size of 256 KB. Detailed

analytical study is given in [15, 16].
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2.4.3 Effect of Number of Disks on Rebuild Time

It can be empirically proven, through multiple simulations that the number of disks does

not significantly affect the rebuild time. Figure 2.6 shows that rebuild time does not

change too significantly at utilization of 0.45 at buffer sizes of 32 MB, 64 MB and 128

MB (which may be considered infinite for the purpose of the disk used for simulation.)

Figure 2.6 Rebuild time vs. Number of disks (B = 256 MB, RU = 256 KB, U = 0.45).

As seen from the above graph, while the buffer size impacts the rebuild time

fairly significantly, the lines on the graph above are almost flat. The maximum amount of

difference occurs from small buffer sizes. In the case of a 16 MB buffer, the rebuild time

varies from 3,264 sec for N = 11 to 3,303 sec for N = 41. This represents an increase of

only 0.7%. This change of 39 seconds can be considered negligible, given that the entire
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rebuild operation takes more than 3,200 sec. It is also worthwhile to note that for disk

arrays larger than 41 disks, RAIDS would be bad option and RAID6, which is a 2 Disk

Fault Tolerant array, would be preferred. Thus, studying this trend for values of N > 41

would only be academic and would have no practical use.

2.4.4 Effect of Disk Utilization on Rebuild Time

The effect of disk utilization has been extensively studied in [2]. It proposes an empirical

formula suggesting that for a RAIDS array with an infinite rebuild buffer, Treb (u) = Treb

(0) / (1 — au), where a was experimentally calculated to be 1.75. This result was obtained

as a result of curve-fitting.

Figure 2.7 shows the effect of disk utilization on rebuild time for a RAIDS array

of 21 disks with a RU size of 256 KB and an infinite rebuild buffer.

2.4.5 Effect of Rebuild Buffer Size on Rebuild Time

This is studied in detail in the next chapter.
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Figure 2.7 Rebuild Time vs. Disk Utilization (N = 21, RU = 256KB, B = 256 MB).



CHAPTER 3

IMPACT OF LIMITED REBUILD BUFFER

3.1 Limited Buffer

Rebuild involves the reading of data from the surviving disks, XORing the data and

recreating the data that must be materialized on the spare disk. However, since not all

disks rotate at the same speed and small amounts of inconsistencies exist, the data read

from each disk is first stored on a buffer. Once XORed, the rebuilt data is written onto the

spare disk.

Figure 3.1 Rebuild Buffer.

Figure 3.1 shows the schematic of the rebuild buffer. As RUs from each disk

become available they are successively XORed with the content of the mapped buffer

slot. Once all RUs have been XORed, this data is written onto the spare disk as the

rematerialized rebuild unit.

19



20

So far, most studies assume an infinite buffer thus ensuring that this does not

prove to be a bottleneck. In this chapter, the impact of a limited buffer is presented.

Previous work on this topic has been done in [2, 3]. The readings in Table 3.1 and the

Figure 3.2 emphasize the impact.

These studies have been done for a RAIDS system consisting of N = 21 disks at a

normal mode utilization of 0.45 (Rebuild Mode Utilization of 0.9). Unless otherwise

mentioned, the RU size is 256 KB (i.e 64 blocks of size 4KB each) for all studies in this

chapter.

Table 3.1 Impact of Buffer Size on Rebuild and Response Time

Buffer Size (MB) Rebuild Time (sec) Response Time (ms)

16 3287 44.23

32 3179 44.75

64 3157 44.77

128 3155 44.79

256 3154 44.79

512 3154 44.75

As seen from the table and the chart, it is clear that while rebuild times are

significantly affected by limited buffer size, the response time is almost same. For further

observations in this chapter, the effect on response time is neglected. The only

worthwhile observation concerning response time is that as the buffer size decreases, user

response time decreases too as disks have to stop processing rebuild requests while buffer

utilization is lowered.
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Figure 3.2 Impact of buffer size of rebuild and response time (N = 21, U 0.45, RU =
256KB).

From the above results it can be observed that there is a great deal of sensitivity

when the buffer size is lower than 128 MB. This region is closely examined in Figure 3.3.

3.2 Analysis of Rebuild Time Trends

From the Table 3.2 and Figure 3.4, the following trends emerge: The change in rebuild

time is significant for buffer sizes below 128 MB. As the size of the buffer is increased

above 128 MB, no significant improvement is seen. This leads to the inference that for

practical purposes, a 128 MB buffer may be considered infinite for a disk with 7,200

RPM.
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As the buffer size is reduced below 64 MB, the rebuild time increases

significantly. In Tables 3.2 and 3.3 and corresponding Figures 3.4 and 3.5, the impact of

buffer sizes on RAID5 systems with 11 and 21 disks at normal mode utilizations of 0.3

and 0.45 is studied.

Figure 3.3 Rebuild Time for Buffer size < 128 MB (N = 21, U = 0.45, RU = 256 KB).

Table 3.2 Impact of Buffer Size on Rebuild Time for RAIDS at U=0.3

Buffer Size (MB) Treb for 11 disks (sec) Tree for 21 disks (sec)

8 1759 1776

16 1688 1706

24 1622 1642

32 1581 1601

48 1531 1545

64 1516 1523

128 1494 1499
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Table 3.3 Impact of Buffer Size on Rebuild Time for RAIDS at U=0.45

Buffer Size (MB) Tree for 11 disks (sec) Tree for 21 disks (sec)

8 3468 3476

16 3264 3287

24 3186 3201

32 3159 3179

48 3128 3151

64 3113 3131

128 3109 3128

Figure 3.4 Impact of buffer size on rebuild time at U = 0.3 (RU = 256 KB).



24

Figure 3.5 Impact of buffer size on rebuild time at U=0.45 (RU = 256KB).

Another observation that can be readily made from the above graphs is that as the

utilization increases, the effect of limited buffer size becomes progressively less

pronounced.

The next study presents the effect of disk utilization with respect to the buffer

utilization. Buffer utilization is the average percentage of buffer slots that are occupied by

valid data over the time period when rebuilding is being done. This is measured as the

percentage of the total buffer being utilized.

An experimental study of buffer utilization vs. buffer size reveals that buffer

utilization drops progressively as the buffer size is increased. It can also be seen that the

buffer utilization varies widely with disk utilization. It can also be observed that for a

buffer size smaller than 128 MB, the buffer utilization is greater than 60% for
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intermediate disk utilizations. This suggests that the disks must stop many times since

buffer utilization goes above 100% periodically. This trend is shown in Figure 3.6

Figure 3.6 Buffer utilization for different buffer sizes (RU = 256 KB, N = 21).

As mentioned above, the buffer utilization varies widely with disk utilization.

Theory dictates that for low normal mode disk utilizations, i.e less than 0.15, the buffer

utilization would be very low since all disks can work in synchronization without being

interrupted by user requests too often. For example, if no user requests arrive, the buffer

utilization should be almost zero since the maximum discrepancy would be 1 track.

In a similar manner, for very high disk utilizations, the buffer would also be

underutilized, since most of the time would be spent by disks serving user requests.

However, buffer utilization in this case would still be higher than buffer utilization at low

disk utilization since the disks would tend to read the RU's only when it gets a little time
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from serving user requests. This would also lead to the disks idling for a longer time,

though the number of stops would be small. The number of stops per disk and time per

stop are covered in the Disk Stopping section of this chapter.

The above inferences that can be drawn from theory are confirmed in Figure 3.7.

It shows the graph for buffer utilization vs. disk utilization at buffer sizes of 32 MB and

64MB. Close inspection of these graphs suggests a peak value of buffer utilization at

normal mode disk utilization of approximately 0.25. This graph starts flattening as the

buffer size is increased above 64 MB.

Figure 3.7 Buffer Utilization vs. Disk Utilization (N 21, RU = 256 KB).
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3.3 Disk Stopping

During the rebuilding process, as the buffer utilization reaches 100%, the disks serving

the rebuild requests (i.e., the surviving disks) must stop and wait for the buffer utilization

to be lowered. This can be done only when the data is taken out of the buffer and written

to the spare disk.

Since the VSM model is used for rebuilding, a rebuild request that is currently

being served must be halted while the RU is being written from the buffer onto the spare

disk. This halted rebuild request cannot even be pre-empted as dictated by the VSM

model [3, 14]. A study of the average number of stops per disk is presented below:

Figures 3.8 and 3.9 as well as tables 3.4 and 3.5 presents the average number of

stops and the time per stop in milliseconds, for an array of 11 disks at different normal

mode utilizations for a 32 MB and a 64 MB buffer.

Figure 3.8: Average number of stops and time per stop for Buffer size = 32MB (N = 11,
RU = 256 KB).



Table 3.4 Average Number of Stops per Disk and Time for Buffer Size = 32 MB

Utilization Avg Stops per disk Time per stop (ms)

0.30 1612 2

0.35 1411 3

0.40 1167 6

0.45 1143 7
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Figure 3.9 Average number of stops and time per stop for Buffer size = 64MB (N = 11,
RU = 256 KB).
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Table 3.5 Average Number of Stops per Disk and Time for Buffer Size = 64 MB

Utilization Avg Stops per disk Time per stop (ms)

0.3 513 2

0.35 347 3

0.4 253 6

0.45
-

241 7

From the above simulation results, the following trends emerge: As utilization

increases, for a given buffer size and a given number of disks in the array, the number of

stops decrease with increasing time/stop. Another critical observation is that the time per

stop for a given utilization is almost the same for different buffer sizes. These trends are

further confirmed in corresponding results taken with a RAIDS array of 21 disks.

Figure 3.10 Average number of stops and Time per stop for Buffer size = 32 MB (N =
21, RU = 256KB).
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Figure 3.11 Average number of stops and Time per stop for Buffer size = 64 MB (N =
21, RU = 256 KB).

The fewer but longer stops for higher utilizations in a RAIDS array with a given

number of disks is due to the fact that as more user requests arrive, the disk spends more

time serving them thus allowing the buffer to be utilized at a lower value as also shown in

Figures 3.10 and 3.11. Moreover, the stops are longer as it incorporates some of the time

required to serve the user request.

These trends also suggest that larger the number of disks, the flatter the curve.

This suggests that larger number of disks in the array would result in slow decrease in the

number of stops.



31

Finally the trend in the number of stops is studied when different buffer sizes are

used at a given utilization. Table 3.6 and Figure 3.12 show this trend for a RAIDS system

consisting of 11 disks and 21 disks at a normal mode utilization of 0.3.

Table 3.6 Number of Stops for Different Buffer Sizes at U = 0.3

Buffer Size (MB) RAIDS with 11 disks RAIDS with 21 disks

16 3448 12342

32 1612 7472

64 513 1197

128 0 0

Figure 3.12 Number of stops for different buffer sizes at U = 0.3 (RU = 256 KB).

As it can be seen from Figure 3.12, the number of stops is higher for disk arrays

consisting of more disks and lower for disk arrays consisting of fewer disks. However,
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from the previous simulation studies already discussed within this chapter, it is seen that

while the number of stops is lower, the time/stop in milliseconds is higher.

Another observation that merits attention is that the number of stops decreases

with the increase in buffer size. This explains the fall in rebuild time as the buffer size is

increased and inches closer to 128 MB. At buffer size of 128 MB, the average number of

stops is zero. While there are indeed a few stops, these are too few and justifies our

assumption that for the disk used, i.e., IBM 18ES, a 128 MB buffer may be considered

infinite resulting in maximum efficiency during rebuild.

These trends are further confirmed in Table 3.7 and Figure 3.13 which examines

the trend in the number of stops for N = 11 and N = 21 for a normal mode utilization of

0.45.

Table 3.7 Number of stops for Different Buffer Sizes at U = 0.45

Buffer Size (MB) RAID5 with 11 disks RAID5 with 21 disks

16 2965 9238

32 1143 5211

64 261 721

128 0 0
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Figure 3.13 Number of stops for different buffer sizes at U = 0.45 (RU = 256 KB).

3.4 Dependence of Rebuild Time on Rebuild Buffer Size

As this study clearly shows, the rebuild time of a disk array depends to a fair extent on

the size of the rebuild buffer. Other graphs in the above study also lead to the conclusion

that the rebuild time depends on other factors too. An overview of the dependence of

rebuild time on other factors is given in section 2.4 of this work.

The following two graphs lead to the conclusion that the rebuild time is a function

of both disk utilization (U) and buffer size (B). Note that rebuild time is also a function of

other factors including number of disks (N) but are not considered in the following

figures
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Figure 3.14 Rebuild Time vs. Disk Utilization at different buffer sizes (RU = 256 KB,
N = 21).

From Figure 3.14, it can be seen that while there is very little difference in the

rebuild time at disk utilization of 0, the difference opens up and is the highest at disk

utilization of 0.25 which also represents the peak buffer utilization as seen in Figure 3.7.

At this level, the difference between rebuild time with a buffer size of 128 MB (which

can be considered infinite) and that with a buffer size of 16 MB is a little above 13%.

This represents a sizeable difference and cannot be ignored in calculations. Figure 3.15

shows rebuild time vs. buffer size at different utilizations.

From this figure, a few observations can be made. These include that rebuild time

decreases with increase in disk utilization and an increase in buffer size. Observing the

change in the rebuild time also shows, higher the utilization, the greater the change in
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rebuild time as the buffer is varied. However, the percentage of change is the highest for

utilizations of 0.2 and 0.3 which is close to about 14%.

Figure 3.15 Rebuild Time vs. Buffer Size at different disk utilizations (N = 21, RU =
2561(13).

3.5 Conclusion

So far, a majority of studies conducted on rebuild strategies were done assuming that an

infinite rebuild buffer exists. The real buffer size on modern disks is not known as these

are classified as trade secrets by manufacturers.
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One of the most important conclusions from this study is that rebuild times and

other parameters start varying widely after the buffer size is reduced below 128 MB.

Since the disk used in these simulations (IBM 18 ES) rotates at 7,200 rpm, this size can

be considered infinite for these disks. However, as newer disks with 15,000 rpm enter the

market, the limited buffer will present a bottleneck to the rebuilding of disk arrays made

out of these. This study brings forth the various parameters to be considered when

designing disk arrays.

The following conclusions can be drawn from the detailed studies of limited

buffer sizes: The rebuild time increases exponentially when the buffer size is made

smaller than a cut-off level. In this case, the rebuild time increases appreciably after a

buffer size of 64 MB. This is the result of multiple stops that each disk is forced to make

as the buffer is full and cannot contain newer data that must be written to the spare disk

for rebuilding.

The buffer utilization, and consequently the number of stops for a given buffer

size, is low for low disk utilization levels and progressively increases and peaks between

normal mode disk utilizations of 0.25 and 0.3. Above this utilization, the buffer

utilization (and number of stops resp.) starts reducing again. This leads to the conclusion

that for disk arrays supporting applications that generate moderate disk utilization levels

(in the range of 0.2 to 0.4) need higher buffer sizes than those that generate low or high

disk utilization levels.



CHAPTER 4

TRACK BUFFER

4.1 Problem Statement

When a RAID5 array enters into the rebuild mode, each surviving disk must serve two

kinds of requests:

1. Rebuild requests — Data from these will be used to rebuild the data on the failed
disk

2. User requests — Data requested by the user

When the user requests data and the array is in degraded mode of operation, those

requests that require data from the failed disk are served by initiating a fork-join request

to all the surviving disks. The data read from all the surviving disks must be XORed to

obtain the data on the failed disk to satisfy the user request. This causes the load on the

surviving disks to double for read requests.

When a disk failure occurs and a hot spare is available, disk rebuild begins. Using

the VSM model, rebuild requests are issued and treated at a lower priority to user

requests. The smallest unit that is read, once a rebuild request is decided to be served, is a

Rebuild Unit (RU). Once this rebuild unit has been completely read, all the pending user

requests must be served before the next RU is read. Serving the user request may lead the

read/write head to jump to a different track on the disk. When all the user requests are

served, the disk head reaches the first track to read the subsequent RU.

37



38

However, the disk head may land on a different section of the track and may have

to wait till it reaches the first sector of the RU that must be read. The track buffer aims to

make this time that the disk wastes while waiting to reach the first sector of the next RU,

useful.

4.2 Track Buffer Concept

The track buffer is a small cache aboard each disk that buffers all the sectors starting with

the first sector on which the track head lands till the first sector from which the RU that is

to be served, begins. The concept is better explained in Figure 4.1

Figure 4.1 Schematic representation of a track containing 3 complete and 1 partial RU.

Figure 4.1 shows a particular track on a disk which contains 3 complete RUs (RU

1, 2 and 3) and a partial RU (RU 4). Assuming that the next rebuild request is to fetch RU

1. However, when the disk head reaches this track, it arrives at a sector pointed by the
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arrow, which is a part of RU 2. In the absence of the track buffer, the disk must wait till it

reaches the first sector of RU 1.

With the availability of the track buffer, the disk starts buffering all the sectors

beginning from the first sector on the track that it can read. It does this till the time it

reaches the first sector of RU 1. At this point, it starts sending out the RU 1 to the disk

array controller for rebuild processing. When the whole RU 1 is read and the track starts

processing RU 2, it needs to read only those sectors of RU 2 that haven't already been

read into the buffer. Once all those sectors are read, the remaining sectors of RU 2, all

sectors of RU 3 and all the sectors of RU 4 can directly be served from the buffer.

Ensuring that the RUs are read in strict order by the disk obviates the need of associating

RU numbers.

This technique does not affect the user response time as it utilizes the

unproductive time and does not interfere in the manner in which user requests are served.

It can be assumed that buffer read time is far lower than that of the disk. In this

manner, the use of a track buffer can lead to speeding up of rebuilding and result in lower

disk utilizations as well as faster rebuild times.

4.3 Buffer Parameters and Simulation Assumptions

The disk used in the simulations used to study this effect of the track buffer is the IBM

18ES. According to the disk specifications [8], this 9.17 GB, 7,200 rpm zoned disk has

11 zones and have between 247 and 390 sectors/track. Each sector is 512 bytes, which

makes the size of the largest sector equal to 390 sectors/track x 512 bytes/sector = 195

KB/track.
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As shown from the previous section, in the worst case, the buffer may be required

to store one full track. This means that the buffer size must be equal to the track with the

highest capacity. Each disk in the RAIDS disk array must have a 195KB buffer.

Other simulation parameters are:

1. RAID 5 system with 21 disks (unless otherwise mentioned)

2. FCFS scheduling

3. Vacationing Server Model [3] for rebuilding

4. Track Buffer Size of 256KB (greater than 195KB)

5. Poisson arrival of user requests

6. Read requests to 4KB blocks

7. Normal Mode Utilizations varied from 0 to 45%

4.4 Simulation Results

The rebuild unit size is one of the major factors that determine the rebuild time of a

RAID 5 arrays. Other factors were looked into in the previous chapter. Given that the

VSM model does not allow user requests to pre-empt rebuild requests, a very large RU

size will cause the disk to rebuild faster, but increase user response time. Meanwhile, a

very small RU size will speed up user response but increase the rebuild time.

It has been shown in [13] that the Mean Time To Data Loss (MTTDL) varies with

the Mean Time To Failure (MTTF) and the Mean Time To Repair (MTTR) of the disk.

This makes the rebuild times of disks very critical as it directly impacts the MTTDL.
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Figure 4.2 Rebuild Time vs. Disk Utilization at different RU sizes (N = 21, B = 256 MB)

The Figure 4.2 shows the variation of Rebuild Time with respect to Normal Mode

Disk Utilization (U) for different RU sizes. As it can be seen, the larger the RU size, the

faster is the rebuild. It can also be seen that the improvement in the rebuild time for larger

RU size is greater for higher utilizations. This can be explained by considering the fact

that for higher utilizations, a smaller RU allows greater user requests to be served while a

larger RU allows fewer requests.

When the disk starts reading the first track for rebuilding, it may be interrupted by

user requests and may have to serve that once the first RU has been read. The following

figures study the number of times the first track has to be revisited so that the whole track



42

can be read by rebuild requests. The first track has 390 sectors (195 KB) and only rebuild

requests are considered.

Figure 4.3 Number of times the first track is visited before it could be completely rebuilt
(N = 21).

Figure 4.3 shows that the track has to be visited a multiple number of times before

it can be completely rebuilt. It may be noted that for RU size = 256 KB, the track is read

only once since this is greater than the size of that track, which is 195 KB.

While the most common RU sizes for for this disk would probably be 64 KB, 128

KB and 256 KB, the RU sizes of 32 KB and 16 KB are also considered. Utilizing the

track buffer can bring down this number and thus improve rebuild time.



43

Figure 4.4 shows the time spent on the first track while it is being read. Note that

this is calculated only when the read/write head is reading the first track that has to be

rebuilt. It is very similar to Figure 4.3 as the number of visits to the track is directly

related to the amount of time spent reading it. This graph however, enables us to gain a

better measure of how much time is wasted and could be saved by the track buffer.

Figure 4.4 Amount of time spent on the first track to be rebuilt, to read the entire track
(N = 21).

A careful study of Figures 4.3 and 4.4 shows that there is a great deal of

inefficiency involved in reading the track.
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Figure 4.5 Number of times the first track is visited with and without track buffer (N =
21).

The Figure 4.5 shows the improvement in the number of times the first track had

to be visited when the track buffer is enabled. It must however be noted, that as the

rebuild progresses, the number of times a track has to be visited will change since some

of the requests may be served directly from the rebuilt disk. The number of times that a

track is visited also changes with the size of the track which is variable due to Zoning.

From this study, it can be seen that by the use of the track buffer, the number of

revisits is reduced by about 13% for a 32 KB RU size. This allows for the estimation of

the improvement that can be expected by implementation of this concept. However, it

must also be remembered that this number has been obtained for the first track, when
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rebuilding begins. Other tracks that are to be rebuilt are smaller than or equal to the size

of this track.

Table 4.1 Variation of the Response Time with Utilization for RU = 64 KB

Utilization Response Time (ms) without buffer Response Time (ms) with buffer

0.00 11.88 11.88

0.05 14.52 14.50

0.10 17.07 17.06

0.15 19.20 19.18

0.20 20.96 20.96

0.25 22.01 21.99

0.30 22.45 22.40

0.35 26.77 26.73

0.40 33.62 33.57

0.45 40.10 40.04

From the concept of the track buffer, it is clear that user response time is not

impacted by its implementation. Simulation results for the response time with and

without the track buffer confirm this. They are shown in the table 4.1. The table shows a

marginal improvement in the user response time which may be attributed to the fact that

with the enabling the buffer, the rebuild time reduces and to measuring inaccuracies.

Thus, implementation of the track buffer will not result in any visible changes to

the user response. It does however improve the rebuild time. This can be seen from the

results shown in Figure 4.6 and table 4.2.

These results show an improvement of 8.57% for an RU size of 32KB at peak

utilization. Other results for larger RU sizes show similar improvement.
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Figure 4.6 Effect of track buffer on the rebuild time for RU = 32 KB (N = 21, B = 256
MB).

Table 4.2 Rebuild Times for Different Utilizations for RU = 32 KB

Utilization (U) T r without buffer (sec) T r with buffer (sec) % Improvement

0.00 774 761 1.68

0.05 833 815 2.16

0.10 992 964 2.82

0.15 1124 1088 3.20

0.20 1348 1298 3.71

0.25 1578 1509 4.37

0.30 1897 1801 5.06

0.35 2266 2131 5.96

0.40 3187 2963 7.03

0.45 4469 4086 8.57



Similar trends are observed for RU = 64 KB and RU = 128 KB as follows:
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Figure 4.7 Effect of track buffer on the rebuild time for RU = 64 KB (N = 21, B = 256
MB).

Table 4.3 Rebuild Times for Different Utilizations for RU = 64 KB

Utilization (U) T r without buffer (sec) T r with buffer (sec) % Improvement

0.00 673 663 1.49

0.05 763 749 1.83

0.10 912 890 2.41

0.15 1024 994 2.93

0.20 1198 1159 3.26

0.25 1408 1354 3.84

0.30 1697 1619 4.60

0.35 1993 1886 5.37

0.40 2621 2457 6.26

0.45 3998 3712 7.15
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Figure 4.8 Effect of track buffer on the rebuild time for RU = 128 KB (N = 21, B = 256
MB).

Table 4.4 Rebuild Times for Different Utilizations for RU = 128 KB

Utilization (U) T r without buffer (sec) T r with buffer (sec) `)/0 Improvement

0.00 628 620 1.27

0.05 701 691 1.43

0.10 862 845 1.97

0.15 946 923 2.43

0.20 1088 1055 3.03

0.25 1298 1249 3.78

0.30 1509 1443 4.37

0.35 1875 1776 5.28

0.40 2461 2312 6.05

0.45 3828 3562 6.95
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These figures and tables show that the rebuild time can be improved with the

implementation of the track buffer. Some of the conclusions that can be drawn from these

results are as follows:

Higher the disk utilization, the greater is the improvement due to the use of the

track buffer. This can be explained by the fact that as more user requests have to be

served, the disks are more likely to be interrupted between reading successive RUs. As a

result, the reading head has to go to other tracks regularly and arrive at the same track

again to read the next RU. This will result in increased utilization of the track buffer.

As the size of the RU is increased, the improvement due to the use of the track

buffer decreases. As the size of the RU increases, more and more of the track will be read

at once since rebuild requests cannot be pre-empted. Thus, if a RU is greater than or

equal to the size of the track, the track will never be revisited twice for a rebuild request.

This means that the only time the track buffer is used is when the track head first arrives

on the track and can buffer a few sectors before it reaches the start of the RU on that

track. This reduces the use of the track buffer, rendering it ineffective.

The percentage of improvement is nearly linear after normal mode disk

utilizations of 0.15. This suggests a direct and constant variation with respect to disk

utilization.

While a lower RU size of 16 KB or even 8 KB will certainly yield more

improvement in user response time, it is pointless to discuss those as it would have no

practical use. Given that requests are for 4 KB blocks, having an RU of 8 KB would

mean a RU of 2 blocks. Moreover, many OLTP applications have block sizes of 16 KB.
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Figure 4.9 Improvement due to track buffer at different utilizations and RU sizes
(N = 21, B = 256 MB).

Finally, the Figure 4.9 shows the improvement due to the implementation of the

track buffer at different utilizations. It shows that the improvement holds steady for all

utilizations and follows the general trends, viz. Greater improvement for higher

utilizations and lower RU sizes.

It can also be seen from the same figure that as the RU size is increased, the

change in the improvement starts to become progressively insignificant.
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4.5 Conclusion

The detailed simulations above comprehensively prove that by using the track buffer

mechanism, an improvement can be made to the rebuild time. Moreover, it is also worthy

to note that this improvement does not come at the expense of the user response time.

As the figures above suggest, an impressive amount of improvement to the

rebuild time is not achieved. The improvement is around 7% for a 128 KB RU and a little

higher for smaller RU sizes.

Despite preliminary studies, regarding the number of visits to the first track and

the amount of time spent on the first track, given in Figures 4.3 and 4.4, showing a great

deal of inefficiency in the reading process at higher disk utilizations, the implementation

of the track buffer does not show the same amount of improvement. This suggests that

while the track buffer is successful in reducing the inefficiency, there may still be small

parts of the track that have never been read into the buffer causing the head to read the

same parts of the track multiple times.

While this may not be very impressive at the first glance, this technique may

become important for larger disks that are already available in the market. It must be

borne in mind that this simulation was conducted for a 9.17GB disk, while 100GB hard

drives are very common in the market as of this writing.

For such high capacity drives, the RU size may not have been proportionally

increased. This could result in an improvement of more than 10% for larger disks as the

RU may be a smaller fraction of each track. It was however not possible to conduct

simulation studies with newer disks as the detailed specifications for these are

unavailable from disk manufacturers. The simulator used for deriving the results quoted
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here uses disk specifications that are publicly available through the website of Parallel

Data Labs at Carnegie Mellon University. [8]

In the future, this experiment must be conducted with faster, higher capacity

drives and RU sizes that would be relevant to the applications of the time. Moreover,

since this method of Rebuild Time improvement does not result in deterioration of the

user response time, the only compromise to be made is the additional cost incurred in

fabricating the few hundred KB of cache memory on to each disk and modifying the disk

controllers to use the cache in the rebuild mode.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

The study presented in this work was aimed at presenting a complete and elaborate

insight into rebuild in RAIDS systems. As is evident from all the work presented, rebuild

is a complicated process — one which is influenced by several factors such as Rebuild

Unit Size which has already been investigated in previous studies.

The study of limited rebuild buffer assumes importance in view of the fact that

newer disk drives, which have higher capacities, will require larger rebuild buffer sizes to

function as predicted by studies which assume infinite buffers. A 128 MB rebuild buffer

is shown to be equivalent to infinite for a 7,200 rpm, 9.17GB disk. Providing larger

buffers to newer disks whose capacities exceed 100GB and rotation speed exceed 15,000

rpm may not be possible, meaning that the impact of buffer size on rebuild time will be

increasingly felt. It is seen that as the buffer size is reduced beyond a cut-off point, it

starts becoming a bottleneck during rebuild. RAID arrays of larger disks will have to

either provide larger rebuild buffer sizes or account for the loss of rebuild performance as

shown in this study.

Finally, this work also presented the concept of the track buffer and simulation

results that prove its effectiveness. This concept demonstrates a technique by which

rebuild time can be improved without any increase in user response time. While the

figures for improvement in rebuild time shown in this study may not be very impressive,

it must be noted that for larger disk drives an RU size of 256KB may be only a small
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percentage of a track. This would mean greater improvement in the rebuild time, Mean

Time to Data Loss (MTTDL) and ultimately reliability.

5.2 Future Work

While this study looks at a broad range of values, the typical values of many parameters

remain unknown since disk and disk array manufacturers refuse to release detailed data

that is required for accurate simulations. The Parallel Data Lab [8] at Carnegie Mellon

University has not released newer disk drive characteristics since 1998. There is no

certain answer as to what RU size, Striping Unit size, etc. is used in RAIDS arrays

available in the market today.

Most simulations were conducted on IBM18ES disk drive which is fairly

outdated. Detailed simulations could not be conducted on newer disks due to the non-

availability of specifications of such disks.

The results in this study are geared to provide trends that can be applied to newer

disks with reasonable accuracy. However, more detailed research must be done as and

when disk specifications and parameter values for newer disks become available.



APPENDIX

CONFIGURING DASIM FOR RAIDS SIMULATIONS

Disk Array Simulator (DASim), written in C/C++, has been developed at NJIT by Gang

Fu and Chunqi Han under the guidance of Dr. Alexander Thomasian. It is a detailed

simulator currently capable of simulating Single Disk, RAIDO, RAID1, Clustered RAIDS

(CRAID5) and Heterogeneous Disk Array (HDA) besides RAIDS.

The RAIDS module in DASim uses command line arguments to set up the

simulation environment. The normal and degraded mode is simulated in the file

RAID5Sim.h, and the rebuild mode in RAID5Sim2.h. The file RAID5Frame.h contains

definitions for the RAIDS controller which in turn use the definitions of the single disk

controller. These are defined in SDFrame.h. Each simulation generates 4 files in a folder

whose name can be specified directly into the main function.

The file of primary interest is rebuild.txt which gives the statistics for rebuild and

mean response times. The following parameters can be directly specified from the highest

level of access: buffer size, RU size, read redirection, model, model parameters, rebuild

type, request arrival rate, results folder name, name of the disk, scheduling policy

(FCFS/SATF), number of priority classes, threshold, number of disks (N), failed disk,

stripe unit size, read/write ratio, number of requests processed before rebuild, number of

requests processed after rebuild, and the cache size.
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