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ABSTRACT

NETWORK ACTIVITY ARISING FROM OPTIMAL DIAMETERS OF
NEURONAL PROCESSES

by
Juliane Gansert

Electrical coupling provides an important pathway for signal transmission between neurons.

In several regions of the mammalian brain electrical synapses have been detected, and their

role in the synchronization of neural networks and the generation of oscillations has been

studied theoretically. Recently, it has been found that the amplitude of the postsynaptic

potential is maximized for a specific diameter of the postsynaptic fiber.

In this thesis, the impact of the fiber's diameter on the success or failure of the

action potential initiation and propagation is studied theoretically. Systems of two coupled

neurons, as well as small networks, are investigated. The passive and voltage-dependent

properties of the neurons are implemented using compartment modeling. The results of

the simulations show that for neurons with non-branching dendrites an action potential

is initiated only for a specific, optimal diameter. In contrast, for neurons with branching

structures the signal transmission improves monotonically with increasing diameter. By

studying a model network with a ring architecture it is demonstrated that network activity

crucially depends on the diameter of the coupled fibers.
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CHAPTER 1

INTRODUCTION

Neurons, the primary units of the nervous system, are capable of responding to internal or

external stimuli by generating electrical signals. Neurons form interacting networks, which

enable them to spread signals over long distances and perform complex computations. It

is now accepted that signals between two neurons are conducted chemically as well as

electrically (Hormuzdi et al., 2004; LeBeau et al., 2003; Zoidl and Dermietzel, 2002).

In the human brain electrical synapses are prevalent in several regions, and it has

been shown that electrical coupling is crucial for network activity (Sharp, Abbott, and

Marder, 1992; LeBeau et al., 2003; Zhang and Poo, 2001; Zoidl and Dermietzel, 2002).

Due to its presumed importance in behavior, memory, sensory perception, motor activity,

and learning, electrical coupling has been studied experimentally and analytically (Traub

et al., 2003; Traub et al., 2001; Zoidl and Dermietzel, 2002; LeBeau et al., 2003; Hormuzdi

et al., 2004). It is fundamental to understand how the synaptic and intrinsic properties are

interrelated and produce the output that is observed.

The influence of the coupling strength has been examined, and it has been demon-

strated that weak electrical coupling can decrease synchronization and result in out-of-

phase firing (Sharp, Abbott, and Marder, 1992; Marder, 1998). Fukuda and Kosaka (2003)

studied the ultrastructural characteristics of gap junctions in the neocortex, proposed values

for the diameters of the connected fibers and the location of the gap junction, and estimated

its conductance. However, it is difficult to experimentally examine the consequences of

changes in the morphology of the neurons on the signal propagation. In a recent study,

Nadim and Golowasch (2006) showed analytically that the signal transmission across the

electrical synapse is maximized for an optimal diameter of the postsynaptic fiber.

This thesis demonstrates that in neurons without a branching structure an action

potential is initiated only if the dendrite has the specific, optimal diameter. In contrast,

an optimal diameter does not exist for neurons with several dendrites branching from
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one node. In the case of branching the signal transmission improves monotonically with

increasing diameter. Studying ring models of six or 10 neurons, it is shown that the

successful propagation of electrical signals requires a specific diameter of the coupled

fibers.

This thesis is organized in the following manner. Chapter 2 provides an introduction

to the anatomy of a neuron, addresses its electrical properties, and reviews the electrical

synapse. The passive characteristics of a neuron are modeled using linear cable theory

in Chapter 3. In addition, this chapter presents the concept of compartment modeling

and introduces the Hodgkin-Huxley model to represent membranes with voltage-dependent

properties. Chapter 4 is devoted to propose the investigated models and to present the

obtained results. The concluding chapter of this thesis summarizes the results and provides

suggestions for further studies.



CHAPTER 2

BIOLOGICAL BACKGROUND

Neurons are the fundamental units in the nervous system. This chapter is devoted to

provide a basic understanding of their characteristics. In Section 2.1 an introduction into the

anatomy of a neuron is given, in Section 2.2 the neuron's electrical properties are described,

which are integral for its role in signaling. The last section of this chapter addresses the

characteristics of electrical synapses, which are the objectives of this thesis.

2.1 The Neuron

Neurons are cells specialized in generating and propagating signals in response to chemical,

electrical, or other stimuli such as stretch or pressure. In the human nervous system about

1012 neurons can be found, showing extensive morphological and functional diversity.

As schematically illustrated in Figure 2.1, a neuron consists of a roughly spherical

cell body called the soma, which extends and branches to its neurites — an axon and one

or more dendrites. The soma contains the nucleus, as well as other intracellular organelles,

and is the place of protein synthesis. The soma of a typical cortical neuron in a mouse

is about 10-50μm in diameter (Dayan and Abbott, 2001). The dendrites form a treelike

structure and generally receive input from other neurons or the environment. These input

signals are propagated toward the soma. Every nerve cell has only a single axon which

can, however, branch extensively to target numerous cells. Axons vary greatly in length.

In the cortical cells of the mouse, the total length of the axon fibers of a single neuron is

estimated to be 40mm, approximately four times as much as the total length of the dendrites

(Dayan and Abbott, 2001). Some human motoneurons can be over a meter in length, and

those of large animals can even reach farther. Yet, some neurons have extensive dendritic

trees that contain up to 98% of the entire surface area of the neuron (Koch, 1999). The

part of the axon that is the closest to the soma is called the axon hillock. Having a huge

number of voltage-dependent sodium channels, it is the area of the neuron that is most

3
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Figure 2.1 Structure of a neuron, by courtesy of Young (no date).

easily depolarized. Here, action potentials are initiated to propagate along the length of

the axon to the terminals, where contact to other cells is made. Some axons are covered

with a myelin sheath formed by glial cells. By reducing the membrane capacitance and

increasing the membrane resistance, the sheath enables the cell to conduct impulses faster.

The myelin sheath is interspersed by gaps of less than 1 pm in length called the nodes of

Ranvier, where a large number of voltage-dependent sodium channels accumulate (Arroyo

and Scherer, 2000). Here, the action potential is refreshed by an inward sodium current

and flows passively down the myelin-covered sections to the next node. Since the signal

"jumps" from node to node, this way of signal transmission is called saltatory conduction.

It is much faster and metabolically less consuming than propagation in unmyelinated fibers,

where the impulse moves continuously down the axon.

Like every biological membrane, the cell membrane of a neuron consists of a semi-

permeable bilayer of phospholipid molecules and proteins. The 3-5nm thick cell membrane

isolates the external from the intracellular fluid (cytoplasm). The membrane is essentially

impermeable to most charged molecules and therefore acts like a capacitor by separating

ionic charges across the surfaces (Koch, 1999). Additionally, the membrane is spanned

by ion channels that are more or less specific for sodium (Na+), potassium (K+), chloride

(C1- ) and calcium (Ca2 F) ions. The ion channels are capable of gating the flow of ions
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across the cell membrane by opening and closing specifically in response to voltage changes

and to internal or external stimuli such as neurotransmitters. Therefore, ion channels

represent a varying resistance of the membrane to ionic flux. For example, if an incoming

stimulus depolarizes the membrane to a certain threshold, the conductance of the voltage-

gated ion channels quickly changes. The neuron fires an action potential, which is essential

for the transmission of electrical impulses over long distances. The ionic basis of the action

potential and its generation is described in Section 2.2.

Communication between a presynaptic axon terminal and a dendrite, the soma, or

less frequently, the axon of the target cell, occurs at specialized contact zones called syn-

apses. Each neuron in the mammalian brain makes about 1,000 connections to other

neurons and receives input from even more (Kandel, Schwartz, and Jesse11, 2000). At the

synapse, the communicated signal is either inhibitory or excitatory, leading to decreased

or increased activity in the postsynaptic cell. Additionally, there are two distinct ways of

transmission. A signal is conducted chemically or electrically. Two chemically coupled

neurons are separated by a synaptic cleft of about 20-40nm (Hormuzdi et al., 2004). An

action potential arriving at the axon terminal triggers the release of neurotransmitters from

the presynaptic membrane into the synaptic cleft. At the postsynaptic cell, these molecules

bind to specific receptors which in turn change the membrane conductance by either opening

or closing the ion channels. In contrast, the intracellular fluid of electrically coupled

neurons is connected directly by channel proteins, which allow the flow of ions and other

small molecules. Electrical synapses are found more frequently than has been conjectured

previously (Hormuzdi et al., 2004). This form of connection is discussed in detail in

Section 2.3.

A good part of today's knowledge about the signal transmission in neurons is a result

of studying the giant axon of the squid, which proves an ideal experimental preparation due

to its size — several centimeters long with a diameter of 0.5 to 1mm.
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2.2 Electrical Properties of Nerve Cells

Signaling in the nervous system is based on the potential difference across the cell membrane

of a neuron. The membrane potential is the result of the selective permeability of the

membrane and an uneven ion distribution inside and outside the cell. In Section 2.2.1 the

ionic basis of the resting potential is discussed, and in Section 2.2.2 the generation of the

action potential is addressed.

2.2.1 Ionic Distribution and the Membrane Resting Potential

The potential difference between the extracellular fluid and the cytoplasm is an intrinsic

property of all cells; however, in non-excitable cells the potential does not change appre-

ciably over time. In contrast, neuronal signaling is based on rapid changes of the membrane

potential.

By convention the extracellular fluid is grounded (0mV), and the membrane potential

V,, is measured as the difference between the internal and external voltage. At rest, when

the cell is in dynamic equilibrium, there is an accumulation of negative charge inside and

positive charge outside most cells. The cytoplasm is populated by many negatively charged,

large proteins and amino acids which cannot leave the cell because of their size. In most

animal cells the following holds true for the concentration of the major ions:

ionic distribution results in a negative resting potential Vrest of about -55mV to -70mV.

At rest, some of the potassium channels are open, allowing K+ ions to move across

the membrane. On the one hand, movement of potassium ions out of the cell is favored,

since the external concentration is much lower than the internal concentration. On the other

hand, the negative charge inside the cell, which increases as K+ ions leave the cell, pulls

them back in. When both forces on K+ ions — the concentration gradient and the electrical

gradient — are balanced, there is no net flux of potassium ions across the membrane and the

equilibrium potential for potassium is reached. For a membrane that can only be crossed

by a single ion species i, the equilibrium potential E i at which the net flux across the
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(2.1)

membrane is zero is given by the Nernst equation:

[i]out and Mir, are the extra- and intracellular concentrations of the ion i,Ris the thermo-

dynamic gas constant (R 8.31 K÷.1 ), T is the absolute temperature (K), z i is the valence

of the ion i, and F is the Faraday constant (F = 96, 485L). EK, the equilibrium potential

of potassium, lies typically between -70mV and -90mV; ENa =50mV, Eca =150mV and

EC1 =-65mV (Dayan and Abbott, 2001). 14,2 — Ei is called the electrochemical driving force

of the ion i, and is often compared to a battery. Since the direction of current flow changes

when the membrane potential Vm, passes through Ei , Ei is called the reversal potential. If

17m and Ei are equal, there is no net flux of the ion i across the membrane.

In general, the membrane is permeable to more than a single ion species, and a

potential that results in zero net flux does not simply imply that the current for each single

ion is balanced. Thus, the Nernst equation cannot be used to calculate the exact value of the

membrane potential at equilibrium. As a variation of the Nernst equation, the Goldman-

Hodgkin-Katz (GHK) equation approximates Vm  by taking into account all ionic currents

under the assumption of a constant electric field:

where Pi is the permeability of the ion i. A detailed derivation of the GHK equation can be

found in Keener and Sneyd (2001). In the resting state the permeability of the membrane

to potassium ions dominates the permeability to the other ions. Because of that, the resting

potential Vrest is close to the potassium equilibrium potential EK.

However, at rest some sodium channels are open, leading to a slow leak current of

sodium into the cell. This leak current is enforced by both the concentration gradient and

the electrical gradient. In turn, potassium ions can leave the cell more easily. Since this

would eventually eliminate the concentration gradient for potassium, the cell is equipped

with passive and active mechanisms in order to maintain the concentration gradients.
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The energy-dependent, electrogenic sodium-potassium-pump is the most important

ion transporter in neurons. It pumps three Na+ ions out, in exchange for two K+ ions in,

and is the main reason for the maintenance of the high internal concentration of potassium

and the high external concentration of sodium.

Additionally, K+ ions are attracted into the cell and Cl- ions are repelled because

of the large amount of negatively charged proteins in the cell and the principle of space-

charge neutrality. This results in a higher concentration of potassium inside than outside

and a high external chloride concentration.

Besides, numerous other passive processes as well as active pumps and transporter

molecules in the plasma membrane maintain the ion distribution and the negative resting

potential. A detailed description of these transport mechanisms can be found in Nicholls et

al. (2001).

2.2.2 The Action Potential

If a neuron is quickly depolarized by a stimulus to a certain threshold, it produces an

action potential. Bernstein (1902) hypothesized that an action potential is the result of a

breakdown of the membrane potential, leading to a voltage of OmV. Forty years later Curtis

and Cole (1942) and Hodgkin and Huxley (1945) refuted this hypothesis by showing that

the inside of the cell becomes positive with respect to the extracellular fluid.

A depolarizing stimulus triggers the voltage-gated sodium channels to open. Na+

ions enter the cell through the open channels, depolarize the cell further and, by positive

feedback, cause even more sodium channels to open. Once the membrane has been de-

polarized to a certain threshold, voltage-dependent potassium channels open and sodium

channels are inactivated. Potassium ions leaving the neuron as a result of their electro-

chemical gradient hyperpolarize the cell membrane before ion pumps restore the membrane

resting potential.

For a few milliseconds after an action potential, it is impossible to initiate another one

due to the inactivation of the sodium channels and the activation of the potassium channels.

This is called the absolute refractory period. During the relative refractory period which
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Figure 2.2 General characteristics of an action potential. Reprinted by permission under
the terms of the GNU Free Documentation License (No author, 2005).

follows, it is more difficult to initiate another action potential because the sodium channels

only slowly recover from inactivation.

Once a patch of membrane is depolarized by inward sodium current, the positive

charge diffuses laterally to the adjacent areas and depolarizes the membrane. In regions

which have not been excited before, the sodium channels are not inactive and therefore

open and restore the action potential. The action potential, once initiated, e.g. at the axon

hillock, travels down the axon at a speed of up to 1 cm/ms or higher (Koch, 1999). It

will never reverse, since the region just activated cannot be activated again because of the

refractory period.

For each single cell the action potential has a stereotypical shape that does not reflect

the type or duration of the input but is an all-or-nothing event. A variety of shapes can be

observed in different cell types, and the peak lasts one to two milliseconds, dependent on

the temperature (Koch, 1999). The time course of a typical action potential is shown in

Figure 2.2. Important to note is that the changes in concentration of potassium and sodium

ions in the external and internal solutions during the action potential are extremely small

(Hodgkin and Huxley, 1952).
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If the threshold is not reached, only a slight depolarization can be observed and the

membrane potential quickly returns to its resting value. The spread of a so called localized

graded potential depends on the passive properties of the nerve cell. The graded potential

usually does not travel far because it is not restored in amplitude.

2.3 Electrical Synapse

In the last section signal generation and transmission within a single neuron has been

discussed. However, neurons are not separate units but connect to one another by chemical

or electrical synapses in order to conduct electrical signals. The role of electrical synapses

was controversial for a long time but is now accepted to offer a second major pathway in

addition to chemical synapses in signal conductance (Hormuzdi et al., 2004; LeBeau et al.,

2003; Zoidl and Dermietzel, 2002).

Electrical synapses occur at gap junctions that connect the cytoplasm of two adjacent

neurons by intercellular channels. A few to over 10 5 channels contribute to a gap junction

(Simon and Goodenough, 1998). Each channel in the cluster has an internal pore of about

1.2nm in diameter, which allows ions, second messengers such as inositol triphosphate

(IP3) or cyclic adenosine monophosphate (CAMP), and other small molecules up to a

molecular weight of 1 kDa to pass from one cell to the other (Bennett and Zukin, 2004;

Hormuzdi et al., 2004). At the gap junction, the membranes of the two neurons are only

2-4nm apart (Hormuzdi et al., 2004).

The proteins forming the gap junction have been characterized on the molecular level.

For the gap junction each neuron contributes a 7nm long hemichannel (connexon), which

consists of six proteins called connexins in vertebrates. At least 20 different connexins

have been identified in the human genome (Zoidl and Dermietzel, 2002). Based on their

molecular weight in kDa, the connexins are called Cx36, Cx43, and so on. The connexins

differ in their permeability, their gating procedure, transcriptional regulation, and degra-

dation (Bennett and Zukin, 2004).
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In most cases, gap junctions are established between two neurons of one class, inter-

neurons, for example (LeBeau et al., 2003; Beierlein, Gibson, and Connors, 2000; Gibson,

Beierlein, and Connors, 1999). The location of the gap junction varies greatly: Dendro-

dendritic, dendro-somatic, and axo-axonal gap junctions have been identified (LeBeau et

al., 2003; Fukuda and Kosaka, 2003; Traub et al., 2001; Zoidl and Dermietzel, 2002; Traub

et al., 2003).

The ionic current between the two electrically coupled cells is a result of the electro-

chemical gradient and is mostly carried by potassium ions (Bennett and Zukin, 2004). In

the case of a symmetric gap junction, the current flows equally well in both directions.

In contrast, rectifying gap junctions gate the ionic flux dependent on the potential of the

cells. The symmetric gap junction acts as a low-pass filter, and the postsynaptic response

is attenuated relative to the presynaptic signal (Gibson, Beierlein, and Connors, 1999). If

the presynaptic cell is depolarized compared to the coupled cell, the current flows into the

coupled, postsynaptic cell and first charges the capacitor before changing the membrane

potential. When the presynaptic cell repolarizes the current reverses direction and damps

the postsynaptic potential.

In humans numerous electrical synapses have been detected in the neocortex, the

hippocampus, the locus coeruleus, the retina, and other parts of the brain (LeBeau et al.,

2003; Zhang and Poo, 2001). Cx36 is widely expressed, and it has been proven relevant

for the generation and mediation of widespread, synchronous inhibitory activity (Zoidl

and Dermietzel, 2002). Oscillations are assumed to be important in behavior, memory,

sensory perception, motor activity, and learning (LeBeau et al., 2003; Hormuzdi et al.,

2004). Traub et al. (2001) outlined the possible importance of axo-axonal gap junctions in

the generation of very fast oscillations before seizure onset in principal neurons. Besides,

axo-axonal gap junctions have been found to mediate high-frequency oscillations, and they

have been attributed to generate fast oscillations in pyramidal cells (Zoidl and Dermietzel,

2002; Traub et al., 2003).

For many years the high speed of transmission has been pronounced as the main

characteristic of electrical synapses. In contrast to chemical synapses, where it takes about
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1-5ms for the signal to arrive at the postsynaptic cell, the conductance at the electrical

synapse is almost instantaneous (Kandel, Schwartz, and Jessell, 2000). The detection of

electrical synapses in escape mechanisms, where quick responses are crucial, seems an

immediate consequence (Kandel, Schwartz, and Jessell, 2000). Considering that the higher

body temperature reduces the delay at chemical synapses, the speed of electrical signal

transmission in mammals is not as fundamental as in cold-blooded animals (Bennett and

Zukin, 2004). However, the temporal synchronization of action potentials is significant

in the heart, for example, where it ensures the coordinated contraction of the cardiac

myocytes (Simon and Goodenough, 1998). Synchronization is a result of both the electrical

coupling and the biochemical communication between the cells. Kandler and Katz (1998)

suggested that neuronal activity is coordinated partially by communication via second

messengers such as Ca2+. The coupling strength plays an important role in the degree of

synchronization. Marder (1998) found that weak coupling between neurons can decrease

synchrony resulting in out-of-phase firing.

Conducting subthreshold signals into the postsynaptic cell is characteristic of gap

junctions and is important for the network behavior (Beierlein, Gibson, and Connors,

2000). In the retina, the interaction of electrically coupled cells reduces the noise and

therefore improves the resolution (Bennett and Zukin, 2004; Hormuzdi et al., 2004).

In the developing central nervous system chemical synapses are not widely spread

and furthermore immature. Gap junctions are abundant and they are assumed to be important

for axonal guidance during the formation of neuronal circuits. Calcium ion flux between

two electrically coupled neurons is crucial since Ca 2+ transients are involved in modulating

nerve growth and stimulating differentiation of nerve cells (Zhang and Poo, 2001). The

number of gap junctions is reduced during adolescence and the persistent gap junctions are

refined (Hormuzdi et al., 2004).

In general, electrical and chemical synapses coexist and are sometimes interrelated in

form of "mixed synapses" (Mamiya, Manor, and Nadim, 2003). Fukuda and Kosaka (2003)

detected the chemical synapse in hippocampal neurons to generate oscillatory activity and

the electrical synapse to maintain synchrony.
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Until recently, electrical synapses have been assumed to lack plasticity. In contrast,

modulation of the absolute number of expressed channels as well as diversity with respect

to the conductance of single channels has been proven. Landisman and Connors (2005)

showed a temporal reduction of the electrical synapse's strength in mammalian neurons

experimentally, and assumed that long-term potentiation exists as well. Phosphorylation

of connexins and intracellular Ca 2+ levels may regulate and mediate coupling strength

(Bennett and Zukin, 2004; Koch, 1999). Some chemical agents affect gap junctions, and

acidic pH levels have been proven to uncouple cells (Kandel, Schwartz, and Jessell, 2000;

Nicholls et al., 2001; LeBeau et al., 2003; Hampson, Weiler, and Vaney, 1994; Zoidl and

Dermietzel, 2002).

The efficacy of the electrical synapses crucially depends on the properties of both

neurons, as well as the resistance of the gap junction. The impact of the coupling strength

has been examined by Sharp, Abbott, and Marder (1992) using an artificial electrical

synapse. In a theoretical study Nadim and Golowasch (2006) recently examined the effect

of the connected fibers' diameters and found that the amplitude of the postsynaptic potential

is maximized for a specific diameter in the postsynaptic cell. The optimal diameter arises

as a result of two opposing characteristics. On the one hand, the length constant increases

with diameter resulting in a decreased voltage attenuation along the neuronal process. On

the other hand, the gap junction acts as a current limiter which leads to a lower current

density in the coupled cell for a fiber of larger diameter. In this thesis, the influence of

the diameter on the initiation of an action potential and its propagation in two electrically

coupled neurons is examined, and the application to networks of neurons is demonstrated.



CHAPTER 3

MODELING THE NERVOUS SYSTEM

Theoretical and computational models of single or interconnected neurons provide a tool

to better understand the nervous system and how it functions. In situations where wet-

bench experiments are not feasible, effects of changing characteristics of the neurons or

their connectivity can be examined. Additionally, computer simulations help to confirm

results of experiments.

This chapter is dedicated to understanding how the properties of neurons discussed

in Chapter 2 can be modeled. The complexity of a neuronal model depends on the accuracy

of the geometrical and electrical representation and has to be adjusted to the needs of the

study. Here, the geometry of the neuron is approximated by a compartment model and the

membrane's complexity is reduced to the cases of passive and excitable Hodgkin-Huxley-

like membranes.

First, a continuous representation of the temporal and spatial potential distribution in

a thin, elongated neuronal structure with passive membrane properties is given, which is

based on the concepts of the linear cable theory. However, exact solutions of the partial

differential equation are restricted to the case of a membrane without voltage-dependent

characteristics. Therefore, compartmental modeling is introduced in Section 3.2. In this

approach, the neuronal structure is broken into discrete, isopotential segments. This trans-

forms the partial differential equation into a system of ordinary differential equations. In

order to include nonlinear, voltage-gated properties of excitable membranes, the Hodgkin-

Huxley model is discussed in Section 3.3 and incorporated into the compartment represen-

tation.

3.1 Linear Cable Theory

Cable theory describes the conductance of electrical signals along cables. This theory

can be applied to study signal transmission in neurons. The semipermeable membrane,

14
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which separates the extracellular fluid from the cytoplasm, acts as a capacitor, and ion

channels penetrating the membrane can be modeled by resistors. The electrochemical

gradients established by the selective permeability of the membrane and maintained by

ion pumps and transporter molecules can be compared to a battery. The cytoplasm and

the extracellular fluid are ionic solutions that conduct electrical current and can be repre-

sented by resistors. However, the intracellular fluid is about 10 7 times worse than a metal

wire in transmitting signals because the density of ions in the cytoplasm is much lower

than the density of free electrons in wires (Nicholls et al., 2001). Additionally, because

the membrane is not a perfect insulator, current is lost by outward leakage and signals are

attenuated quickly.

Modeling parts of a neuron as a passive cable, the membrane properties are assumed

to be constant and the channels to be independent of voltage, time, ligands or second

messengers. Obviously, this is a simplification, since not only axons but also dendrites

have been shown to exhibit voltage-dependent behavior (Saraga et al., 2003; Johnston et

al., 2003; Cook and Johnston, 1999). However, experimental data suggests that parts of

the neuron conduct signals indeed passively (Keener and Sneyd, 2001). Besides, the distri-

bution and density of active channels in dendrites is unknown. This motivates the work

on passive structures both as benchmark systems and as a step to understanding the more

complicated case of excitable membranes (Koch and Segev, 1998).

A simple geometric structure that represents parts of the axon or dendrite is a cylinder.

Using linear cable theory, it can be simulated how an electrical signal traveling down a

cable-like structure is delayed and distorted when it arrives at the soma.

3.1.1 Cable Equation

Dendrites are often assumed to behave like one-dimensional cables, transmitting incoming

impulses passively and only in the longitudinal direction. A dendrite modeled as a passive

cable can be approximated by an electrical circuit as shown in Figure 3.1, where each RC

circuit element represents an isopotential patch of membrane of length Ax. The membrane

is characterized by a capacitance c m (L) in parallel to a voltage-independent resistance
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Figure 3.1 Schematic diagram of the current flow in a passive, cylindrical dendrite and
the corresponding electrical circuit superimposed.

(C 2cm) and a battery Vrest• The cytoplasm and the extracellular fluid are represented

by a longitudinal intracellular resistance ri (Ω-cm) and an extracellular resistance r, (Ω/cm),

respectively.

The cable equation

(3.1)

describes the voltage distribution in a one-dimensional cable. V(x, t) is the transmembrane

potential which is defined relative to Vest as

is the length constant, and T = err, is the time constant of the cable.

Measuring x and t in units of the length and time constant,

Equation (3.1) is simplified to
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ri , rm and cm are values for one centimeter of cable. In order to compare the membrane

and intracellular properties of cells of different size and shape, the geometry independent

parameters Ri (1 cm), Rm (Ωcm2 ) and Cm (h), being the specific intracellular resistance,

the specific membrane resistance, and the specific membrane capacitance respectively, are

utilized. In relation to the cable parameters, they are defined as

where d is the diameter of the cable in centimeters. For the length and the time constant

(3.6)

follows.

Solutions of the cable equation are functions dependent on time and space. In order

to solve the equation for a special case, boundary conditions have to be specified. Here,

an analysis of the steady-state solution of the cable equation is performed. Although at

synapses input is transient, the steady-state solution often serves as an important reference

and, especially in the case of high-frequency input, approximates the solution well (Koch

and Segev, 1998).

In the steady-state, the voltage does not change with time, thus
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Figure 3.2 Relative potential attenuation along an infinite cable as a function of distance
x from the point of voltage clamp x = 0, for different length constants A.

In the following, two special cases of the steady-state solution are discussed. The case of

the infinite cable provides a physical interpretation of the length constant A and introduces

the input resistance Rim . A finite cable with leaky boundary conditions can be used to

model a passive dendrite that is gap junctionally coupled to a target neuron.

3.1.2 Infinite Cable

Clamping the voltage at V = Vo at the position X = 0 of the cable provides a boundary

condition for the case of an infinite cable. The solution of the cable equation for the infinite

cable is given by

The voltage decays exponentially with distance from the site of the voltage clamp, as illus-

trated in Figure 3.2. The length constant A describes the attenuation of the voltage: At

I xl = A the voltage has decreased to 37% of the initial value Vo (see Figure 3.2). As seen

in Equation (3.6), the length constant is proportional to the square root of the diameter.

Cables that are longer than three length constants are assumed to be infinite. A dendrite
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is usually about one length constant long. Therefore, the dendrite has to be modeled as a

finite cable, which is discussed in Section 3.1.3.

The current 10 , which has to be applied at x = 0 to maintain the voltage at its desired

value 1 0 , is dependent on the input resistance of the cable

The definition of the input resistance holds for cells of every shape and represents an

average resistance of the intracellular fluid and the membrane to the applied current. The

input resistance of an infinite cable is given by

In the case of a semi-infinite cable that is sealed at x 0, so that no current can flow to the

direction of decreasing x

follows for the input resistance R.

3.1.3 Finite Cable

Because neurons have an axon and dendrites of finite length that fall in the order of one

length constant, the cable equation for a cable of a finite length len is outlined in this

section.

Expressing len in units of the length constant, L = z , the voltage at position X can

be calculated as

where 	 is the input resistance of a semi-infinite cable, and RT represents the terminating

resistance of the finite cable. The input resistance of a finite cable is given by
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Modeling a finite cable with leaky end, the terminating resistance is set to the appropriate

value RT < 00. A sealed end at X = L corresponds to RT = 00. Using Equation (3.9)

one can simplify the solution to

For the input resistance follows Rin = Roo coth(L).

3.2 Compartmental Modeling

Representing the neuron by discrete, interconnected, isopotential compartments transforms

the partial differential equation for the potential into a system of ordinary differential

equations. Voltage-dependent membrane properties that cannot be modeled using linear

cable theory and nonuniform characteristics in different parts of the cell can be included

into the compartment model.

Dividing the neuron into several segments of short length (rule of thumb: < to it

is assumed that the compartments are isopotential and uniform in their properties (Koch

and Segev, 1998). The segments are interconnected by a resistor that resembles half of the

intracellular resistance of the adjacent cells. Differences in membrane properties, diameter,

or voltage occur between the compartments instead of within them. The so called "equiv-

alent cylinder" of a neuron similar to that in Figure 2.1 is shown in Figure 3.3.

For each segment j the incoming and outgoing currents have to balance

is the membrane current, ij_ 1 ,j is the current between segments j — 1 and j, and /ext

denotes a current applied to compartment j. Expressing the axial current in terms of the

difference in transmembrane voltage between the adjacent segments, and separating the

membrane current into its capacitive and ionic components, one gets
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Figure 3.3 (a) Equivalent cylinder representation of a neuron. Each segment is assumed
isopotential and exhibits uniform passive membrane properties. (b) Electrical circuit repre-
sentation for segment j. The extracellular resistance is taken as zero. The membrane
resistance is represented by the resistor rd ) and the membrane capacitance by c2) . The
membrane current im is the sum of the capacitive and the ionic current. The intracellular
resistance between segment j— 1 and segment j is r -12+r 3 . The longitudinal current through
this resistance is denoted

The ionic current h„ 3 across the membrane of segment j can be a linear leak current

as implied in Figure 3.3. However, this term can also describe complex nonlinear properties

of ion channels, which may be different from segment to segment. Channels controlled by

chemical agents such as second messengers or neurotransmitters, as well as time-dependent

behavior can be modeled. In the following section the Hodgkin-Huxley model, which

describes the properties of excitable membranes in terms of voltage-dependent ionic flux,

is introduced.

3.3 Hodgkin-Huxley Model

The mechanisms of action potential initiation and propagation have been studied by a

number of researchers. Using data derived from voltage clamp experiments on the squid

giant axon, Hodgkin and Huxley (1952) described the action potential generation in terms

of four differential equations that represent the ionic flux across the cell membrane through

selective, voltage-gated ion channels. Their research resulted in a shared Nobel Prize in

Physiology or Medicine in 1963. Duration and amplitude of the action potential, as well as

the conduction velocity, ionic movements and subthreshold phenomena fit the experimental
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data well. The form of the action potential is reconstructed except for the rise at the start of

the action potential (Hodgkin and Huxley, 1952). Throughout the model it is assumed that

the concentration of the extracellular fluid is constant and that the volume of the cell does

not change.

In a number of experiments, Hodgkin and Huxley (1952) identified potassium and

sodium currents to be the major currents in the generation of action potentials. The time-

and voltage-dependent conductance of the membrane to these ions, GK and GNa , is modeled

by dimensionless gating variables, which represent the fraction of open channels. The

transition between the open and closed states is assumed to follow first-order kinetics.

The gating variable for the potassium channel n = 	 t) solves the differential

equation

with the time constant riz (Vm ) and the steady-state activation curve n c,(Vm )

The total number of open K+ channels at a specific voltage and time is equivalent

to the product of n (Vm , t) 4 and the maximum conductance N. n(Vm , t) was raised to the

power of four in order to fit the data. However, one may assume that the movement of four

independent particles is required for the channel to change into its open state.

Hodgkin and Huxley (1952) discovered that the sodium conductance is characterized

by two independent processes, a rapid, almost instantaneous sigmoid activation and a

slower, exponential inactivation. The voltage-dependent gating variables Til = m(Vm , t)

for the activation, and h = h (Vm , t) for the inactivation are derived analogical to the gating

variable of the potassium current as

In order to fit the experimental data, m has to be raised to the power of three and multiplied

by h and Na , which is the maximal conductance of the sodium channels.
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Figure 3.4 Hodgkin-Huxley Model: Circuit representation of the current flow for a patch
of membrane.

The passive flux of chloride ions across the membrane, as well as currents carried by

ion pumps and transporters are represented by the time- and voltage-independent variable

ileak•

For a piece of membrane as illustrated in Figure 3.4, the membrane potential V, can

be calculated by solving the nonlinear differential equation

with rn, h, n defined by the linear first-order differential equations given above.

The membrane patch modeled here can be incorporated into the compartment model

described in Section 3.2 by replacing /ion 3 for each compartment j with the ionic current

given by the Hodgkin-Huxley equations. The time evolution of the compartmentalized

model can then be simulated by integrating the rate and voltage equations numerically.
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3.4 Modeling an Electrical Synapse

Studying a network of neurons means studying the impact of one neuron on its intercon-

nected neurons. Two neurons can either be connected by chemical or electrical synapses, of

which the latter is further examined in this thesis. As discussed in Section 2.3 ionic current

'gj between two neurons coupled by a symmetric gap junction depends on the potential

difference between the two cells

where Va, e and Vpost are the potentials of the pre- and the postsynaptic cell, respectively.

G gj, the conductance of the gap junction, may be influenced by several agents, but for

reasons of simplicity is assumed to be constant. In literature, the gap junction conductance

varies, but typically lies in the range 1-5nS (Fukuda and Kosaka, 2003; Gibson, Beierlein,

and Connors, 1999; Traub et al., 2003).

From the computational point of view, the gap junction between two neurons can be

modeled by simply connecting the two adjacent compartments of the cells with an axial

resistance Rgj = G91.

The voltage at the postsynaptic side of the gap junction Vpost_o depends on the voltage

at tips of the presynaptic fiber V-pre_L, the input resistance of the postsynaptic cell Rin_post

and the resistance of the gap junction Rgj. The current flux across the gap junction has to

be equal and opposite to the current flux into the postsynaptic cell:

For the voltage at the postsynaptic side of the gap junction

(3.10)



CHAPTER 4

OPTIMAL DIAMETER IN SIGNAL TRANSMISSION

For neurons connected by gap junctions, Nadim and Golowasch (2006) detected a so called

"optimal diameter" for which the postsynaptic potential (PSP) is maximal in amplitude.

The existence of an optimal diameter implies that an action potential in the postsynaptic

cell may only be initiated if the dendrite's diameter has the optimal value. The diameter of

the coupled fiber therefore may contribute to the success or failure of synchronization and

the generation of oscillations in neural networks.

Electrical coupling is prevalent in the mammalian brain, and dendro-dendritic gap

junctions have been shown, e.g. in hippocampal and cortical neurons (Fukuda and Kosaka,

2003; LeBeau et al., 2003).

In this thesis, compartment models were built for the purpose of studying the influence

of geometrical modifications on the signal transmission between two or more neurons

which are gap junctionally coupled at their dendrites. The membrane and the cable equations

were integrated numerically using the software Network, which is introduced in the following

section. In Section 4.2, the investigated models of pairs of neurons are discussed, followed

by a demonstration of the results in Section 4.3. Section 4.4 introduces models of a ring

architecture of up to 10 neuron, and Section 4.5 presents the findings for this network study.

4.1 The Software

Network (http: //cancer. rutgers .edu/software/index.htm) is a software

that can be utilized to compute the voltage in the different segments of a compartment

model. This command-line based simulation tool is implemented in C, and it was run

under Cygwin in MS Windows.

As in most other programs for simulating neuronal activity, the morphology and

the physical, chemical or electrical parameters are represented by two distinct data sets,

a configuration and a parameter file (Koch and Segev, 1998). To calculate the solution of

25
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the system of ordinary differential equations, a 4 th-order Runge-Kutta method with a time

step of 1µs was used.

4.2 Models of Two Coupled Neurons

A model reflecting the dendro-dendritic electrical coupling between two neurons was built.

In several simulations the geometry of the neurons was varied, and its influence on the

effectiveness of the signal transmission was examined. Of special interest was how the

success or failure of action potential initiation is affected by the variation of the diameters

of the coupled fibers.

First, the common features of the model-neurons are presented. Afterwards, each

single model is introduced. In the following sections, the terms distal and proximal are

used for locations on the neurites with the soma as a reference point.

4.2.1 General Assumptions about the Models

In order to approximate data from hippocampal basket cells, the passive properties of the

cells were uniformly assumed to be R, = 40 k1 cm 2 , Ri = 100 Ωcm, and Cm = 1 μF/cm2

(Saraga et al., 2003; Nadim and Golowasch, 2006). These choices resulted in

T = CmRm = 40ms.

The dendrites were assumed to be passive, leaky, 600μm long cables of different diameters,

which were compartmentalized and approximated by linked, discrete cylinders of length

/ = 100μm. The segments were indexed from left to right (0 to 5), and the jth compartment

of the dendrite of cell i was referred to as i_Dj.

To illustrate the calculations of the properties of the single compartments, a dendrite

of diameter 10μm is considered: For the length constant of the cylinder A = 3162.3μm

follows with Equation (3.6). Using Equations (3.3) - (3.5) the intracellular resistance 1- 2 ,

the membrane resistance rm , and the membrane capacitance 'd m for each cylinder of 100μm
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length and lOμm diameter compute to

where A, is the cross sectional area, and Am is the curved surface area of the cylinder,

which resembles the membrane. The conductance of the membrane to leak current, which

is the inverse of the membrane resistance, is " rn, = 0.785nS. Similarly, the conductance

between two segments is given by "j i = 785nS. The properties of the cylinders were

calculated for each diameter of the dendrites.

The soma of the cell was modeled by a sphere with a diameter of 20μ,m. Because

the soma was assumed isopotential, the intracellular conductance was fixed to a high value

(9'i = 200). The membrane conductance and the membrane capacitance were calculated

as above: .4m=0.314nS, em=12.6pF.

The voltage-dependent properties of the axon were approximated by a fast sodium

current with instantaneous activation and delayed inactivation, a slow potassium current,

and a leak current as described by the Hodgkin-Huxley kinetics (Section 3.3). The steady-

state activation curves and time constants of the gating variables used in the simulations are

given by

The leak current in the voltage-dependent sections was represented by the passive membrane

properties described above.
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Figure 4.1 Steady-state activation curves and time constants of the two-gated sodium
current and the single-gated potassium current. (a) m∞ is the steady-state activation curve
of the sodium current, h, corresponds to the inactivation of the sodium current, and
n∞  describes the steady-state activation curve of the potassium channels. (b) The time
constants for the inactivation of the sodium current (Th ) and the activation of the potassium
current (7-,) are shown. The sodium current activation was assumed to be instantaneous
(T, = 0). The altered voltage-dependence of the steady-state activation curves and the
time constants after reducing the threshold by 5mV is illustrated by the dash-dotted traces.

In all the simulations, the axon was 600μm long, had a diameter of 10μm , and was

compartmentalized into six segments of equal length. The jth compartment of the axon of

cell i was referred to as i_Aj, enumerating the segments from left to right.

Unless noted otherwise, two neurons were coupled at the tips of their dendrites via a

symmetric gap junction with a conductance of G gi = lOnS.

The results of Nadim and Golowasch (2006) suggest that an action potential in the

postsynaptic cell might be elicited only for an optimal diameter if the threshold is adequate.

In order to investigate this, the threshold was varied by translating the activation curves and

time constants of the sodium and potassium currents to lower values of the voltage. In

Figure 4.1, the solid lines illustrate the steady-state activation curves and the time constants

defined by Equations (4.1)-(4.3). The dash-dotted traces show the activation curves and

time constants when the threshold for activation and inactivation was reduced by 5mV. In

the following simulations, translating the activation curves and time constants of sodium

and potassium currents to lower values is simply referred to as "reducing the threshold".
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Figure 4.2 Schematic of the setup with a postsynaptic ball-and-stick neuron.

4.2.2 Postsynaptic Ball-and-Stick Neuron

The first model consisted of two neurons with different geometrical properties. Cell one

was built connecting a spiking axon to a passive soma. A dendrite of length 600μm and

diameter 10μm was connected to the soma. Cell two was designed as a 600//m long

dendrite with a variable diameter d ={0.2μm, 2.0μm, 5.0μm, 10.0μm},

which was connected to a soma (Fig. 4.2). Every simulation was run with a different

diameter of the dendrite of the postsynaptic ball-and-stick neuron. A similar model had

been studied by Nadim and Golowasch (2006).

At t=20ms a current of 30nA was applied for lms to the distal compartment of the

axon of cell one for the purpose of triggering an action potential.

4.2.3 Dendrite-and-Axon Model

In the second setup the previous ball-and-stick model of the postsynaptic cell was supple-

mented by an active, 600μm long axon with voltage-dependent properties (Fig. 4.3). The

Figure 4.3 Schematic of the dendrite-and-axon model. Every simulation was run with
one postsynaptic dendrite-and-axon neuron.
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Figure 4.4 Schematic of the multiple-dendrites model. Two cells with several dendrites
were gap junctionally coupled at the tips of one single pair of dendrites.

pre- and the postsynaptic dendrites' diameters were varied, and values in the range 0.1μm

to 12μm were explored. No other changes were made.

An action potential was triggered by applying a current of 30nA for lms to the distal

compartment of the presynaptic axon.

4.2.4 Multiple-Dendrites Model

In this more complex model two identical cells were generated, and each was made of an

active axon, a passive soma, and six passive dendrites, which emerged from a node close

to the soma. The dendrites had the diameters 0.2μm, 0.5μm, 5.0μm, and

10.0 pm, respectively. In each simulation run, the cells were gap junctionally coupled at

one pair of the dendrites that had the same diameter (Fig. 4.4).

At t=l0ms a current of amplitude 3nA was applied for 2ms to the distal compartment

of cell one, in order to initiate an action potential.

4.2.5 Partially-Active-Dendrites Model

In this scheme the presynaptic cell was simulated as a dendrite-and-axon neuron with a

dendrite of diameter 5μm. The postsynaptic cell had several dendrites of the diameters

d ={0.1μm 0.5μm, 1.0 ,m, 5.0μm}, a passive soma and an active axon. In

contrast to the previous setups in which the dendrites were modeled as passive cables, the

three proximal segments of the postsynaptic dendrites were equipped with voltage-gated
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Figure 4.5 Schematic of the partially-active-dendrites model. The postsynaptic dendrites
were equipped with voltage-gated properties in the proximal half, indicated by arrows.

ion channels (Fig. 4.5). In each simulation run the presynaptic dendrite was connected to

one postsynaptic dendrite.

A current of 4nA was injected for lms into the distal compartment of the presynaptic

axon for the purpose of triggering an action potential.

4.3 Results for Two Coupled Neurons

4.3.1 Postsynaptic Ball-and-Stick Neuron

The first goal was to assess the setup studied by Nadim and Golowasch (2006): Is spiking

indeed initiated only in case the dendrite has the optimal diameter, presuming the threshold

is apt?

The diameter of the postsynaptic dendrite was varied for all values indicated in

Section 4.2.2 for the purpose of determinating the optimal diameter for the signal trans-

mission. Figure 4.6a shows that a diameter of 2μm maximized the potential in the postsy-

naptic soma.

Subsequently, the soma was equipped with voltage-dependent properties to see if

after adapting the threshold, an action potential could be triggered for the cell expressing

the optimal diameter. Decreasing the threshold by I mV resulted in an action potential for

the neuron having a dendrite with the optimal diameter of 2μm. For a postsynaptic ball-

and-stick neuron with a diameter different from the optimal value no action potential was

initiated (Fig. 4.6b).
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Figure 4.6 (a) The postsynaptic potential was optimized for a diameter of 2μm.
(b) Making the postsynaptic soma active, and decreasing the threshold by lmV an action
potential was elicited when the dendrite had the optimal diameter.

4.3.2 Dendrite-and-Axon Model

Gap junctions are usually established between neurons of the same type (e.g. interneurons),

and hence neurons of similar morphology. Therefore, studying gap junctions between two

cells that are modeled symmetrically does not only simplify the model but is most of all

biologically relevant.

Using the dendrite-and-axon model, the goal was again to investigate if an action

potential is initiated only if the dendrite's diameter has the optimal value. Two different

cases were examined. First, the diameters of both dendrites were varied simultaneously.

Second, the diameter of only the postsynaptic dendrite was changed, while the diameter of

the presynaptic dendrite was fixed.

When the diameters of both dendrites were varied simultaneously, the postsynaptic

potential was maximized for d = 8μm (Fig. 4.7a). The optimal diameter was 2μm smaller

when only the postsynaptic dendrite's diameter was varied and the diameter of the presy-

naptic dendrite was fixed to 8μm (Fig. 4.7b). This is in agreement with the observations

made by Nadim and Golowasch (2006): A decreased voltage attenuation along the presy-

naptic dendrite decreases the optimal diameter. Since the length constant A increases with
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Figure 4.7 Peak voltage in the postsynaptic soma. (a) The diameters of both dendrites
were varied simultaneously. The optimal diameter in this setup was 8μm. (b) The diameter
of only the postsynaptic dendrite was varied. The potential was maximized for a diameter
of 6μm.

the square root of the diameter of the fiber, a signal is more attenuated for a dendrite of a

small diameter than for a thicker fiber.

Interestingly, when the threshold was decreased, the optimal diameter declined. A

reduced threshold results in a larger number of open channels in the resting state, thus

making the membrane more leaky. Nadim and Golowasch (2006) showed that the optimal

diameter is lower if the membrane resistance is decreased, which may explain the obser-

vation made here.

In the case of a simultaneous variation of the dendrites' diameters, the threshold

had to be reduced by at least 9.5mV in order to elicit an action potential. Translating the

activation curves and time constants by 9.5mV, an action potential was generated when

the diameter of the fibers was 5-6μm, thus smaller than the optimal diameter detected

beforehand (Fig. 4.8a). For a larger diameter and for smaller diameters in the range 2μm to

4μm no action potential was triggered. When the diameter was further decreased to values

smaller than or equal to 1µm, spontaneous spiking activity was observed (Fig. 4.8b).

When only the postsynaptic dendrite was varied, and when the threshold was reduced

by 8.8mV, an action potential was triggered for a cell with a dendrite of diameter 4μm
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Figure 4.8 When the diameters of the dendrites were varied symmetrically, the threshold
had to be reduced by 9.5mV in order to initiate an action potential. (a) An action potential
was initiated for the diameters of 5μm to 6μm. There was no action potential for thicker
dendrites, and for dendrites of a diameter of 2μm to 4μm (b) For dendrites with a diameter
d < lμm spontaneous spiking was observed.

Figure 4.9 (a) When the threshold was reduced by 8.8mV, an action potential was
triggered for a postsynaptic dendrite of diameter 4μm. For dendrites with a larger diameter
or a diameter of 2μm to 3μm, no action potential was initiated. (b) For dendrites of a
diameter d < spontaneous, small-amplitude activity was observed.
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Figure 4.10 (a) Effect of the current injection to the distal compartment of the axon on
the voltage in the axon and the voltage in the presynaptic soma. (b) Voltage measured at
the tips of the dendrites of the presynaptic cell.

(Fig. 4.9a). This was again a lower value than the optimal diameter for this model. For

dendrites with a larger diameter or a diameter of 2μm to 3μm, no action potential was

triggered. However, as can be seen in Figure 4.9b spontaneous spiking activity, although

small in amplitude, was prevalent for dendrites of diameters smaller than or equal to 11M.

4.3.3 Multiple-Dendrites Model

The motivation for introducing a model with several dendrites (Fig. 4.4) was to control the

spontaneous spiking activity of the model-neurons with dendrites of small diameter. The

morphology of both neurons was kept identical for all operated simulations, and only the

location of the gap junction was changed. This study resulted in the interesting observation

that branching eliminates the optimal diameter.

For the multiple-dendrites model, the applied current initiated an action potential in

the axon and caused a voltage of an amplitude of 60mV in the presynaptic soma (Fig. 4.10a).

Because the presynaptic axon and soma were loaded by the six dendrites that emerged from

a node close to the soma, the action potential lacked the undershot and the voltage in the

soma was damped. As expected from the increasing length constant A, the voltage atten-

uation along the dendrites of the presynaptic cell decreased with the diameter (Fig. 4.10b).

In contrast, the voltage drop across the gap junction increased with the diameter because
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Figure 4.11 Potential at different locations of the postsynaptic cell in two neurons with
several dendrites electrically coupled at the dendrites of diameter d.

the input resistance of the postsynaptic neuron decreased with the diameter of the postsy-

naptic fiber (see Equation (3.10)). These two opposing effects resulted in a potential of

maximal amplitude for d = 2/1m at the postsynaptic side of the gap junction, as illustrated

in Figure 4.1 I a.

In the two proximal compartments of the postsynaptic dendrite and in the soma

however, the voltage was damped, especially for the small diameters. This can be seen

in Figure 4.11 by comparing the voltage in the fifth compartment of the dendrite (b) to the

voltage in the sixth compartment (c) or the soma (d). In the last compartment and in the

soma, the potential was an increasing function of the dendrite's diameter.
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Figure 4.12 (a) Schematic of the modified setup of the multiple-dendrite model with the
soma and the axon removed from the postsynaptic cell. (b-d) PSP at different locations of
the dendrite and at the node of cell two, when a cell with several dendrites was electrically
coupled to a dendrite of diameter d. The potential for the first compartments of the postsy-
naptic dendrite was similar to that shown in Figure 4.11a.

In order to examine if the branching of the dendrite into several other dendrites at

the node eliminates the optimal diameter, the model was modified and the postsynaptic

soma and axon were removed (Fig. 4.12a). Although the voltage in the first compartment

of the postsynaptic dendrite was again maximal for d = 2μm, this optimal diameter disap-

peared from the fifth compartment on, where the potential was maximal for the largest

diameter. As expected from the preceding results, there was a sharp decline of the potential

for small diameters at the compartments close to the branching point and in the node itself

(Fig. 4.12b-d).
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Figure 4.13 (a) Schematic of the modified setup of the multiple-dendrite model with only
a single dendrite coupled to the presynaptic cell. (b-d) Potential at different locations of the
postsynaptic dendrite when coupled to a presynaptic cell with several dendrites of diameter
d.

In contrast, when the node was removed and only a single dendrite was coupled to

the presynaptic cell, an optimal diameter of d = 5μm existed (Fig. 4.13). However, in the

most distal compartment of the postsynaptic fiber the diameter for which the potential was

optimized was again d = 2μm.

Next it was studied if an optimal diameter existed when the postsynaptic cell was

represented by a ball-and-stick model (Fig. 4.14a). As in the case of a single dendrite, the

potential measured in the postsynaptic soma was optimal for d = 5μm (Fig. 4.14b).

Using the same setup but replacing the postsynaptic cell by an equivalent dendrite-

and-axon model as shown in Figure 4.15a, there was no optimal diameter (Fig. 4.15b).
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Figure 4.14 (a) Schematic of the modified setup of the multiple-dendrite model with the
postsynaptic cell represented by a ball-and-stick model. (b) PSP in the soma for different
diameters with the postsynaptic cell represented by a ball-and-stick model.

When changing the diameters of the pre- and postsynaptic dendrites to 4μm, 6μm, 8μm,

10μM, 12 μm, and 14μm, the potential in the postsynaptic soma was maximal in amplitude

for a diameter in the range 6μm to 10m (Fig. 4.16). The amplitude of the potential was

diminished for smaller or larger diameters.

In summary, the results of comparing the models with branching to the models

without branching imply that the branching seems indeed to cause the absence of the

optimal diameter.

4.3.4 Partially-Active-Dendrites Model

Studying the multiple-dendrite model revealed that signals transmitted by fibers of small

diameter were shunted when they arrived at a branching point where other fibers emerged.

Hence, an optimal diameter that existed at the other positions along the postsynaptic dendrite

could not be observed in the proximal compartment of the fiber or in the soma. The idea

of the model with partially active dendrites was to overcome voltage attenuation for the

dendrite with the optimal diameter by amplifying the potential prior to its arrival at the

node. It is now widely accepted that voltage-gated ion channels are expressed in parts of

the dendrites (Saraga et al., 2003; Johnston et al., 2003; Cook and Johnston, 1999). In the
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Figure 4.15 (a) Schematic of the the setup when the postsynaptic cell consisted of a
dendrite, a soma, and an axon. (b) The PSP measured in the soma.

Figure 4.16 PSP in the soma for different diameters with the postsynaptic cell represented
by a dendrite-and-axon model. The amplitude of the potential for the diameters in the
range 6-10μm was almost the same. However, for smaller and larger diameters the PSP
was smaller in amplitude.
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Figure 4.17 (a) Voltage versus time for the distal compartment of the postsynaptic
dendrite for different diameters. The potential was a decreasing function of the diameter.
(b) Peak voltage versus diameter for different locations on the postsynaptic neuron. There
was no optimal diameter for the soma.

model at hand it was supposed that the active properties accumulate at the proximal half of

the postsynaptic dendrite.

Using this model the optimal diameter was detected when the threshold was not

changed. Because the presynaptic neuron was fixed, the peak potential at the distal segment

of the presynaptic dendrite was almost the same, independent of the coupling to the postsy-

naptic cell. As a consequence of Equation (3.10) the potential at the first compartment of

the postsynaptic dendrite was only dependent on its input resistance and was therefore a

decreasing function of the diameter (Fig. 4.17a).

Except for the distal compartment, there existed an optimal diameter (d = 1μm)

for all positions of the postsynaptic dendrite (Fig. 4.17b). At the soma the load of the

other dendrites emerging from the node attenuated the signal and eliminated the optimal

diameter.

Reducing the threshold by 5.2m V, an action potential in the fourth compartment of

the postsynaptic dendrite was triggered for a diameter of 0.5μm (Fig. 4.18a). Reducing

the threshold led again to a decrease of the optimal diameter. Owing to the branching, the

signal was sharply attenuated when it arrived at the soma (Fig. 4.18b). Although an action

potential was initiated for d = 0.5μm, the amplitude of the potential at the soma was lower



Figure 4.18 Voltage in the postsynaptic neuron when the threshold was reduced by 5.2mV.
(a) Potential in the fourth compartment of the dendrite. An action potential was initiated
for d = 0.5μm. (b) Voltage in the postsynaptic soma. The signal was shunted for dendrites
of small diameter.

than the amplitude of the potential for d = 2μm or d = 5μm. The shunted action potential

for d = 0.5μm had a distinct shape in comparison to the graded potentials that traveled

passively toward the soma.

4.4 Models of Small Networks

In the last section it has been demonstrated that for ball-and-stick and dendrite-and-axon

neurons, the initiation of an action potential is linked to the diameter of the connected

fibers. An action potential is triggered only if the diameter of the postsynaptic dendrite has

the optimal value. The impact of these results on networks formed by dendrite-and-axon

neurons is addressed in the following sections. First, the investigated models are introduced

in Sections 4.4.1 and 4.4.2. Next, the results of the simulations are presented in Section 4.5.

4.4.1 Ring Model with Asymmetric Gap Junctions

In a ring model, six or 10 neurons, respectively, were alternately coupled by asymmetric

gap junctions, axon to axon, and dendrite to dendrite (Fig. 4.19a). The gap junctions

permitted clockwise current flow between two adjacent neurons and prohibited flux in the
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Figure 4.19 (a) Illustration of the ring model with six neurons coupled by asymmetric
gap junctions. Current flux is permitted only in the direction indicated by the arrows. (b)
Representation of the ring model with 10 neurons.

opposite direction. The neurons were resembled by the dendrite-and-axon model introduced

in Section 4.2.3.

A current of lOnA was applied for 2ms into the distal compartment of the axon of

neuron A in order to initiate an action potential.

4.4.2 Ring Model with Symmetric Gap Junctions

A ring of 10 neurons coupled by symmetric electrical synapses was built. The neurons

were represented by dendrite-and-axon models (Fig. 4.19b). The length of the neurites was

reduced by one-third to 400μm each, and they were compartmentalized into four segments

of equal length.

A current of 3nA was applied for 2ms into the proximal compartment of the axon of

neuron A for the purpose of initiating an action potential.

4.5 Results for Small Networks

4.5.1 Ring Model with Asymmetric Gap Junctions

In this model, the current was prohibited from flowing counterclockwise across the electrical

synapse. Presuming a threshold reduced by 9.4mV, an action potential was propagated

clockwise from neuron to neuron only if the dendrite's diameter was 5μm. As illustrated
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Figure 4.20 Ring model with six neurons. For cells with a dendrite of diameter 5μm,
network activity could be established.

in Figure 4.20, it took about two cycles to establish periodical activity. This activity was

self-sustained.

In order to demonstrate that this activity did not result from spontaneous firing of

the individual neurons, but was indeed established by the propagation of action potentials

from cell to cell, the ring was extended to a ring with 10 neurons. In Figure 4.21 the

action potential propagation for this network is shown, and it can be seen that every neuron

returned to its resting state before another action potential was triggered by the preceding

cell.

The pattern of the activity was a result of the anatomy of the network. Signal

conductance in the axons was faster than in the dendrites for the following reasons. First,

the axon was twice as large in diameter as the dendrite, and therefore served as the better

conductor. Second, the active properties of the axon counteracted the leak current and

maintained the gradient along the fiber. Therefore, the delay between the action potentials

in neurons coupled at the axons (e.g. B-C, D-E) was about half of the time lag between the

action potentials of neurons connected by dendro-dendritic gap junctions.

If the diameter of the dendrites differed significantly from 5μm, the action potential

was not propagated through the entire network. For diameters within two units of the

optimal value, an action potential in cell B was triggered that consequently led to an
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Figure 4.21 Action potential propagation in a ring model with 10 neurons; the dendrite's
diameter was 5μm. The cells returned to their resting state before another action potential
was initiated by the preceding neuron.

Figure 4.22 Potential versus time measured in the soma of the cells in a ring of six
neurons. The threshold was reduced by 9.4mV. (a) For dendrites of a diameter within
two units of the optimal value, the action potential was propagated into cells B and C (here:
d = 4μm). (b) For diameters more than two units smaller or larger than the optimal value,
the propagation of the action potential failed entirely (here for d=8μm).
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Figure 4.23 Action potential propagation and block by collision close to cell F in a ring
model with 10 neurons coupled by symmetric gap junctions. The voltage was measured in
the soma of the cells. The dendrite's diameter was 5μm, and the threshold was reduced by
9.5mV.

action potential in cell C because of axo-axonal coupling (Fig. 4.22a). Further increase

or decrease however, resulted in the failure of the action potential propagation into cell

B (Fig. 4.22b). In accordance with the observations made earlier, spontaneous spiking

occurred for dendrites of a small diameter (d < 0 .5 μm).

4.5.2 Ring Model with Symmetric Gap Junctions

In this model the gap junctions were symmetric, as in the studies on coupling between

two neurons discussed in Sections 4.2 and 4.3. The length of the neurites was decreased

in order to increase the amplitude of the potential to a value significantly higher than the

resting potential.

Presuming a threshold reduced by 9.5mV, an action potential initiated in the proximal

compartment of the axon of cell A failed to propagate through the entire ring if the diameter

of the dendrite was significantly different from 5μ,m. For neurons with dendrites of a

diameter of 5μ,m, one action potential was propagated clockwise and another one was

propagated counterclockwise until they collided near cell F. Since both adjacent cells were

in their refractory period, the action potential was not conducted further (Fig. 4.23).
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Figure 4.24 Potential versus time measured in the soma of the cells in the network. The
threshold was reduced by 9.5mV. (a) For a diameter within three units of the optimal
value, the action potential was not propagated further than two cells clockwise and one
cell counterclockwise (here: d = 8μm). (b) Decreasing or increasing the diameter further,
the action potential is only propagated into the axo-axonal coupled cell J (here: d = 9μm).

For diameters within three units of the optimal value, the action potential was propa-

gated only to the cells adjacent to the point of current injection, and from cell B to cell

C because of the axo-axonal coupling (Fig. 4.24a). For diameters smaller or larger, an

action potential was only triggered in cell J since its axon was connected to the axon of cell

A (Fig. 4.24b). For neurons with dendrites smaller than or equal to 0.5km, spontaneous

spiking activity was observed.



CHAPTER 5

CONCLUSION

In recent years, electrical coupling via gap junctions has been found to occur more frequent-

ly than previously conjectured. In the developing central nervous system, gap junctionally

coupled neurons form large, functional clusters, which are refined during adolescence

(Hormuzdi et al., 2004). To foster an understanding of the contribution of the neuron's

intrinsic characteristics on the network function, theoretical and computational methods

are necessary, because in most cases the direct experimental manipulation of the properties

of the neuron is not feasible.

In this thesis, the impact of the fiber's diameter on the efficacy of action potential

initiation and propagation has been studied theoretically using simulations. Pairs of electric-

ally coupled neurons as well as small, circular networks were investigated. Each neuron

was compartmentalized and the segments were equipped with passive properties or Hodgkin-

Huxley sodium and potassium currents, respectively.

For pairs of neurons represented by the ball-and-stick or the dendrite-and-axon model,

an action potential is initiated only for fibers of a specific, optimal diameter. In contrast,

for multiple-dendrite cells no optimal diameter exists. Instead, the signal transmission

improves as the diameter of the connected fibers increases. In the postsynaptic cell the

abrupt increase in membrane area to be charged results in a sharp attenuation of the signal,

which is comparable to a so called "conduction block" (Quan and Rudy, 1990).

The goal of this thesis was to examine whether network activity arises from an

optimal diameter of the coupled fibers. A small ring structure with neurons alternately

coupled either at the axons or dendrites was examined. It has been demonstrated that the

propagation of action potentials through the entire network is only successful for a specific

diameter of the dendrites. If the neurons are connected by an asymmetric gap junction, the

circular network exhibits self-sustained activity once an action potential is initiated by an

external stimulus. Since dendro-dendritic coupling is abundant in the mammalian brain, it
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should be examined whether the same network behavior also occurs for networks coupled

exclusively by dendro-dendritic gap junctions.

Extensive networks of electrically coupled interneurons form in different regions

of the brain, e.g. in the neocortex and the retina, and are assumed to be critical for the

generation of oscillations and synchronous activity (Amitai et al., 2002; Gibson, Beierlein,

and Connors, 1999). For small networks the impact of the fiber's diameter on signal propa-

gation has been demonstrated. However, the question if the activity in large networks arises

only for fibers of the optimal diameter remains to be answered and will be the subject of

future research in this area.
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