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ABSTRACT

OSTEOGENIC DIFFERENTIATION OF HUMAN MESENCHYMAL STEM
CELLS ON THIN FILM TYROSINE DERIVED POLYCARBONATES

by
Tamunotonye Briggs

Mesenchymal stem cells, harvested from adult bone marrow, are promising in the field of

regenerative medicine because of the vast differentiation potential into various cell lines

such as: osteoblasts, chondrocytes, adipocytes, and neurons. Osteogenic differentiation of

human mesenchymal stem cells (hMSC) could be an important tool in the treatment of

orthopedic deficiencies such as bone defects. The extent of in vitro human mesenchymal

stem cell growth, adhesion, motility and differentiation into osteoblasts is a function of

the material surface chemistry which is mediated by protein adsorption onto the surface.

A library of tyrosine derived polycarbonates allows the tailoring of material properties to

suit specific cell response by varying the structure of the polymer at the pendent chain

and the incorporation of PEG in the backbone. Increasing pendent chain length increases

the hydrophobicity of the surface which is hypothesized to support osteogenic

differentiation at a greater extent than hydrophilic surfaces. To determine the extent of

osteogenic differentiation on thin films, cell morphology, cell proliferation, biochemical

assays specific for osteoblasts, cytoskeletal arrangement and cell motility were assessed.

The results of this study show that increasing the pendent chain length does not cause

statistically significant changes in osteogenic differentiation, however the incorporation

of polyethylene glycol in the polycarbonate backbone had a profound affect on cell

morphology, proliferation and mineralization.



OSTEOGENIC DIFFERENTIATION OF HUMAN MESENCHYMAL STEM
CELLS ON THIN FILM TYROSINE DERIVED POLYCARBONATES

by
Tamunotonye Briggs

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Department of Biomedical Engineering

May 2006



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE

OSTEOGENIC DIFFERENTIATION OF HUMAN MESENCHYMAL STEM

CELLS ON THIN FILM TYROSINE DERIVED POLYCARBONATES

Tamunotonye Briggs

Dr. Treena Livingston Arinzeh, Thesis Advisor 	 Date
Professor, NJIT

Dr. Michael Jaffe, Committee Member 	 Date
Research Professor, NJIT

Dr. George Collins, Committee Member 	 Date
Research Professor, NJIT



BIOGRAPHICAL SKETCH

Author:	 Tamunotonye Briggs

Degree:	 Masters of Science

Date:	 May 2006

Undergraduate and Graduate Education:

• Master of Science in Biomedical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2006

• Bachelor of Science in Biomedical Engineering,
Case Western Reserve University, Cleveland, OH 1999

Major:	 Biomedical Engineering

Presentations and Publications:

Tonye Briggs and Treena Livingston Arinzeh
"Osteogenic Differentiation of Human Mesenchymal Stem Cells on Thin Film
Tyrosine Derived Polycarbonates", Society for Biomaterials Conference 2006,
Pittsburgh, PA

Sharon L. Bourke, Mohammad Al-Khalili, Tonye Briggs, Bozena B. Michniak, Joachim
Kohn, and Laura A. Poole-Warren

"A Photo-Crosslinked Poly(vinyl Alcohol) Hydrogel Growth Factor Release
Vehicle for Wound Healing Applications", American Association of
Pharmaceutical Scientists, volume 5, 4, article 33, 2003,
http://www.aapspharmsci.org/view.asp?art=ps050433

iv



"If you want it, you got it, you just got to believe, believe in yourself' [46]

Believe
Lenny Kravitz

v



ACKNOWLEDGMENT

I would like to extend my deepest gratitude to Dr. Treena Livingston Arinzeh,

who gave me the opportunity to work on this project. Her tireless guidance, advice and

support was instrumental in my success as a graduate student. I would also like to thank

Dr. George Collins and Dr. Michael Jaffe as serving as mentors and co-advisors on this

project.

I would like to thank Dr. Joachim Kohn of the NJ Center for Biomaterials who

gave me my first job out of college and was a major collaborator on this project. At the

NJ Center for Biomaterials, I would like to thank Dr. Paul Holmes for scientific guidance

and inspiring me to be positive in spite of it all. Thanks are extended to Dr. Das Bolikal

and Dr. Larisa Sheihet. I would also like to thank Matt Treiser who toiled in the early

morning hours to conduct motility experiments.

I would like to thank NIH grant supplement.

At NJIT, I would like to thank fellow graduate students: Yee-Shuan Lee, Shobana

Shanmugasundaram, and Christopher Elvin.

I would not have been able to withstand graduate school without the support of

my mother who has inspired me through her grace and love. Special thanks to my

mentor, Dr. Sharon Bourke who believed in me when I was just a technician who at one

time, had no ambition to go to graduate school. Special thanks to the rest of my friends

and family whom are too numerous to name individually. Through it all, I would have

not this experience without the guidance and grace of God.

vi



TABLE OF CONTENTS

Chapter	 Page

1 BACKGROUND 	 1

1.1 Bone Defects 	 1

1.2 Embryonic Stem Cells 	 3

1.3 Hematopoietic Stem Cells 	 4

1.4 Mesenchymal Stem Cells 	 5

1.4.1 Osteogenic Differentiation of Mesenchymal Stem Cells 	 8

1.5 Biomaterials 	 10

1.6 Polymers 	 11

1.7 Tyrosine Derived Polycarbonates 	 14

2 RESEARCH OBJECTIVE 	  21

3 EXPERIMENTAL METHODS 	  23

3.1 Polymer Processing 	 23

3.1.1 Solvent Casting 	 23

3.1.2 Spin Coating 	 24

3.2 Cell Culture 	 26

3.3 Biochemical Assay Experiment Design 	  27

3.3.1 Cell Morphology 	 27

3.3.2 Cell Proliferation 	 27

3.3.3 Alkaline Phosphatase 	 28

3.3.4 Calcium 	 28

3.4 96 Well Plate Experiment 	 29

vii



TABLE OF CONTENTS
(Continued)

Chapter

3.5 24 Well Plate Experiment 	

3.6 Cytoskeletal Staining 	

3.7 Q-CMD 	

3.8 Cell Motility 	

Page

29

30

31

32

4 RESULTS AND DISCUSSION 	 34

4.1 Contact Angle Measurements 	 34

4.2 Cell Morphology 	 35

4.2.1 96 Well Plate Experiment 	 36

4.2.2 24 Well Plate Experiment 	 38

4.3 Biochemical Assays: 96 Well Plate Experiment 	 40

4.3.1 Cell Proliferation 	 40

4.3.2 Alkaline Phosphatase 	 42

4.3.3 Calcium 	 44

4.4 Effect of PEG on Osteogenic Differentiation 	 46

4.4.1 Cell Morphology 	 46

4.4.2 Cell Proliferation 	 47

4.4.3 Alkaline Phosphatase 	 49

4.4.4 Calcium 	 50

4.5 24 Well Plate Experiment: 24 Well Plate Experiment 	 52

4.5.2 Alkaline Phosphatase 	 54

4.5.3 Calcium 	 55

4.6 Cytoskeleton Staining 	 57



TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.7 Q-CMD 	  62

4.8 Cell Motility 	 64

5 DISCUSSION AND FUTURE RESEARCH 	  67

APPENDIX A BIOCHEMICAL ASSAYS INCLUDING TCPS SAMPLES 	  75

A.1 Cell Proliferation on 96 Well Plates 	 75

A.2 Alkaline Phosphatase Activity on 96 Well Plates 	 76

A.3 Calcium Production on 96 Well Plates 	 77

A.4 Cell Proliferation on 24 Well Plates 	 78

A.5 Alkaline Phosphatase Activity on 24 Well Plates 	 79

A.6 Calcium on 24 Well Plates 	 80

A.7 Osteocalcin 	 81

A.7.1 Osteocalcin Results 	 82

APPENDIX B DONOR VARIABILITY 	  84

APPENDIX C SEM IMAGING 	  87

REFERENCES 	 89

ix



LIST OF TABLES

Table	 Page

4.1 Contact Angle Measurements 	 34



LIST OF FIGURES

Figure	 Page

1.1 Fibronectin-Integrin Binding 	 10

1.2 Tyrosine Derived Polycarbonates 	 16

1.3 Tyrosine Derived Polycarbonate PEG copolymer 	 18

4.1 Bright-field images of cells on poly(DTE carbonate)- 96 well plate 	 36

4.2 Bright-field images of cells on poly(DTE carbonate)- 96 well plate 	 36

4.3 Bright-field images of cells on poly(DTE co 5% PEG-1K carbonate) 	
96 well plate

37

4.4 Bright-field images of cells on TCPS- 96 well plate 	 37

4.5 Bright-field images of cells on poly(DTE carbonate)- 24 well plate 	 38

4.6 Bright-field images of cells on poly(DTO carbonate) - 24 well plate 	 38

4.7 Bright-field images of cells on poly(DTE co 5% PEG-1K carbonate) 	
24 well plate

39

4.8 Bright-field images of cells on TCPS- 24 well plate 	 39

4.9 Graph: Cell proliferation of hMSCs and OS cells - 96 well plate 	 41

4.10 Graph: Cell proliferation of OS cells- 96 well plate 	 42

4.11 Graph: Alkaline Phosphatase Activity graph of hMSCs and OS cells 	
96 well plate

43

4.12 Graph: Alkaline Phosphatase Activity of OS cells- 96 well plate 	 43

4.13 Graph: Calcium of hMSCs and OS cells- 96 well plate 	 44

4.14 Graph: Calcium of OS cells- 96 well plate 	 45

4.15 Graph: Calcium normalized to cell number, OS cells- 96 well plate 	 45

4.16 Bright-field image of cells on PEG containing polycarbonates 	 47

4.17 Graph: Cell proliferation of hMSCs and OS cells on PEG containing 	
polycarbonates

48

xi



LIST OF FIGURES
(Continued)

Figure	 Page

4.18 Graph: Cell proliferation of OS cells on PEG containing polycarbonates... 48

4.19 Graph: Alkaline Phosphatase activity of hMSCs and OS cells on PEG...... 49
containing polycarbonates

4.20 Graph: Alkaline Phosphatase activity of OS cells on PEG containing 	  50
polycarbonates

4.21 Graph: Calcium production of OS cells on PEG containing polycarbonates...51

4.22 Graph: Calcium production normalized to cell number of OS cells on PEG...51
containing polycarbonates

4.23 Graph: Cell proliferation of hMSCs and OS cells- 24 well plate   53

4.24 Graph: Cell proliferation of OS cells- 24 well plate  53

4.25 Graph: Alkaline Phosphatase activity of hMSCs and OS cells- 24 well plate..54

4.26 Graph: Alkaline Phosphatase activity of OS cells- 24 well plate 	  55

4.27 Graph: Calcium production of hMSCs and OS cells- 24 well plate 	  56

4.28 Graph: Calcium production of OS cells- 24 well plate 	 .56

4.29 Graph: Calcium production normalized to cell number- 24 well plate 	  57

4.30 Fluorescent images of cells on poly(DTE carbonate) 	  58

4.31 Fluorescent images of cells on poly(DTO carbonate) 	 59

4.32 Fluorescent images of cells on poly(DTE co 5% PEG-1K carbonate) 	 60

4.33 Fluorescent images of cells on TOPS 	 61

4.34 Graph: Voight thickness of 10% FBS on polycarbonates 	 63

4.35 Graph: Sauerbrey thickness of 10% FBS on polycarbonates 	  63

XI'



LIST OF FIGURES
(Continued)

Figure	 Page

4.36 Graph: Average velocity of cells on substrates 	  64

4.37 Graph: Persistence time of cells on substrates 	 65

4.38 Graph: Random motility coefficient of cells on substrates 	  65

4.39 Graph: Average velocity of cells on substrates (day 1 and day 11) 	  66

5.1	 Histology image of cancellous bone 	 73

A.1 Graph: Cell proliferation of OS cells with TCPS- 96 well plate 	  75

A.2 Graph: Alkaline Phosphatase activity of OS cells with TCPS- 96 well plate..76

A.3 Graph: Calcium production of OS cells with TCPS- 96 well plate 	  77

A.4 Graph: Calcium production normalized to cell number of OS cells with.... 77
TCPS- 96 well plate

A.5 Graph: Cell proliferation of OS cells with TCPS- 24 well plate 	  78

A.6 Graph: Alkaline Phosphatase activity of OS cells with TCPS- 24 well plate...79

A.7 Graph: Calcium production of OS cells with TCPS- 24 well plate 	  80

A.8	 Graph: Calcium production normalized to cell number, OS cells with 	  81
TCPS- 24 well plates

A.9 Graph: Osteocalcin production of OS cells with TCPS- 24 well plate 	  82

A.10 Graph:Osteocalcin production normalized to cell number, OS cells 	  83
with TCPS



LIST OF FIGURES
(Continued)

Figure	 Page

B.1	 Graph: Cell proliferation of OS cells-Donor variability   84

B.2	 Graph: Alkaline phosphatase activity of OS cells- Donor variability 	  85

B.3	 Graph: Calcium production of OS cells- Donor variability 	  86

B.4	 Graph: Calcium production normalized to cell number- Donor variability 86

C.1	 SEM image of poly(DTE carbonate) 	  87

C.2 SEM image of poly(DTE co 5% PEG-1K carbonate) 	  88

xiv



CHAPTER 1

BACKGROUND

1.1 Bone Defects

It is estimated that over 500,000 bone grafts are implanted into diseased and damaged

bone a year [2]. This is due to metabolic disease such as diabetes, traumatic injury and

bone cancers. The traditional approach to bone graft surgery is to use autografts,

allografts or biomaterials. Autografts, bone which is harvested from the patient's body,

usually the hip, is preferred in many cases because the lack of an immune response.

However, there is morbidity associated at the site of harvest due to infection or pain.

Allograft, acellular tissue harvested from a cadaver solves the issue of donor scarcity, yet

the risk of disease transmission as well as the lack of bone in-growth, limits the

widespread use of this product. Biomaterials, such as metals and ceramics have a long

history in orthopedic applications. Both metals and ceramics have been shown to be

bioinert in most cases, meaning that the extent of biological reactions to these materials is

limited. Titanium alloys were chosen in the design of orthopedic implants because of

their high mechanical properties such as high modulus and load bearing properties.

However, high load bearing implants impose a stress shielding effect on adjacent bone

and tissue which prevents proper healing of the defect. This can cause loosening of the

implant and subsequent invasive surgeries.

Tissue engineering is a field that integrates biological scaffolds such as the

extracellular matrix or synthetic biopolymer scaffolds with cells and/or growth factors,

for the purpose of restoring the function of a non-viable or damaged tissue or organ.

1
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Biological or synthetic scaffolds can provide spatial, chemical and mechanical cues that

guide or aid in the differentiation of cells in the area of defect. The tissue engineered

approach to bone graft substitutes is engineering a bone graft substitute that would

support bone ingrowth, be mechanically compatible to the host bone, and be

bioresorbable [27]. Metals are difficult to process into a porous scaffold. However,

ceramics and polymers could be processed into scaffolds. Bruder et al. reported that

human mesenchymal stem cells (hMSCs) on a fibronectin coated porous hollow cylinders

of 60% hydroxyapatite/40% tricalcium phosphate (HA/TCP) implanted in the femoral

gaps of Harlan Nude rats had higher bone integration, strength and stiffness values

compared to cell free implants at 12 weeks [13]. However, ceramics are not ideal in

treating bone defects because of their brittle mechanical behavior and lack of

bioresorbability. Bioresorbable polymer scaffolds would be the ideal substrates to induce

bone ingrowth while providing mechanical support through the degradation process.

The goal of regenerative biology is to restore the function of damaged tissue and

organs. The transplantation of whole viable organs and tissue is an example of

regenerative medicine, however, the shortage of viable organs in the various banks to

accommodate the vast majority of those suffering from diseases and afflictions is a major

concern. Therefore, the focus of regenerative medicine has been placed on stem cell

therapy [42]. The goal of allogenic or autologous stem cell transplantation is to either

repopulate cellular defects or secrete products such as extracellular matrix at the site of

damage such as segmental bone defects.
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Stem cells represent a vast population of undifferentiated cells that have the

ability to differentiate into more specialized cells under defined or random conditions as

well as have the ability to self-renew when undergoing cell divisions. There are a variety

of stem cells that differ in their differentiation potential as well as site of harvest. The

most common stem cells are: embryonic stem cells, hematopoietic stem cells, and

mesenchymal stem cells.

1.2 Embryonic Stem Cells

The most controversial of all stem cells are embryonic stem cells. Embryonic stem cells

have been at the forefront of the political debate in scientific research in this country

since August 9 th 2001, when limitations were placed on the funding of federal research to

a limited number of stem cell lines. Embryonic stem cells are harvested from the inner

cell mass of 5-day old blastocysts. These blastocysts are obtained from the unwanted

leftovers from fertilization treatments from in vitro fertilization banks. Currently, there

are 155 embryonic stem cell lines in the world. Of these only 78 cell lines had been

approved for federal research in the United States. In order to use these cell lines for

human applications, they must be devoid of animal-derived proteins, this reduces the

amount of cell lines to 22, for possible allogenic transplantation.

Embryonic stem cells are pluripotent, in that they can differentiate into cells that

form the three germ layers: ectoderm, mesoderm and endoderm [35]. Embryonic stem

cells have the potential for differentiating into liver, skeletal muscle, endothelial cells,

chondrocytes, cardiomyocytes, hematopoietic cells, neurons, pancreatic endocrine cells

and adipocytes. Despite the vast potential of these stem cells in research and possibly in
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the treatment of diseases, there are many concerns that have limited the use of embryonic

stem cells in tissue engineering applications. One of the concerns is the formation of

teratomas, a specific tumor which contains well-differentiated cells from the three

different germ layers at the site of implantation. Another concern of utilizing embryonic

stem cells is its immunoreactivity. Embryonic stem cells express the cell surface marker:

MHC Class I, which can be recognized by the host T cells and elicit an immune response.

In order to limit the risk of an immune response, a match between the host MHC Class I

and the donor embryonic cells must be made prior to implantation. This may pose a

limitation in the clinical setting, unless an embryonic stem cell bank is created containing

all the possible MHC Class I moieties. The current state of the public policy which limits

the funding of federal research on embryonic stem cells to only 22 cell lines, would limit

this endeavor. Public policy aside, the ethical debate on utilizing embryonic stem cells for

research does not seem to be heading in a definitive direction.

1.3 Hematopoietic Stem Cells

There are two major classes of stem cells derived from adult tissue: hematopoietic stem

cells and mesenchymal stem cells. Hematopoietic stem cells (HSCs) reside in adult bone

marrow close to the endosteum. Under either stochastic or deterministic conditions,

hematopoietic stem cells differentiate into the various blood cells such as neutrophils,

monocytes/macrophages, basophils, eosinophils, erythrocytes, platelets, mast cells,

dendritic cells, B and T lymphocytes[9]. The process of hematopoiesis is tightly regulated

and when disrupted can lead to severe pathologies such as lymphoma, chronic or acute

leukemia. The differential potential of the hematopoietic stem cells is dependent on its
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niche, which is within the bone marrow [38]. The hematopoietic stem cell niche is

supported by other cells such as mesenchymal stem cells, stromal cells and osteoblasts.

Hematopoietic stem cell transplantation is the oldest and well-characterized

example of stem cell transplantation, being practiced in medicine for over fifty years.

This procedure is done to treat those afflicted by blood disorders such as lymphoma and

leukemia. However, in order to assure successful cell engraftment, the host cell and donor

cells must have an immunogenic match through the expression of histocompatibility

locus antigen (HLA). The mismatch will lead to graft versus host disease(GVHD), a

reaction that has severe complications and may compromise the healing process of the

transplant. The in vitro manipulation of HSCs for tissue engineering purposes is not very

successful because HSCs do not expand under in vitro conditions and are non-adherent.

The plasticity of HSCs is limited to blood and immune cells, however, there have been a

few successful attempts of differentiating HSCs to other cell types, such as

hepatocytes[3]. Therefore, for the applications of tissue engineering, HSCs are not

preferred.

1.4 Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) are multipotent cells harvested from adult bone marrow.

MSCs have a low frequency in the bone marrow, representing only 1 out of 100,000

nucleated cells. MSCs are promising in regenerative medicine because of the vast

differentiation potential into cells comprising connective tissue. Ethically, mesenchymal

stem cells preferred in research because they are harvested from adults rather than the

embryonic blastocyst, which is the source of debate with embryonic stem cell research.
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These cells are also preferred in research because of the ease of in vitro maintenance and

expansion.

The differentiation potential of mesenchymal stem cells is dependent on its niche,

within the stromal compartment of the bone marrow, or in the case of in vitro culture, the

local microenvironment. Mesenchymal stem cells can differentiate into osteoblasts,

chondrocytes, adipocytes, as well as the stromal cells of the bone marrow which, provide

support to the hematopoietic stem cells.

The isolation and culture of human mesenchymal has been well characterized.

Bone marrow aspirate is taken from the superior iliac crest of the pelvis and fractionated

using a density gradient solution such as Percoll [22]. A low percentage of cells attach in

the initial days of culture. Yet, 12-16 days is sufficient for reaching confluence of MSCs

and depletion of non-adherent hematopoietic stem cells. Cells are cultured using

Dulbecco's Modified Eagle Medium containing 10% Fetal Calf Serum. Human

mesenchymal stem cells are characterized by cell surface markers: CD45-, CD105+,

CD44+, CD29+, and CD31- [8]. These cell surface markers differ from those expressed

on hematopoietic stem cells as well as endothelial stem cells. Mesenchymal stem cells

have been isolated from sites besides bone marrow, such as the periosteum, trabecular

bone, adipose tissue, synovium, skeletal muscle and teeth[14]. The differentiation

potential of mesenchymal stem cells is similar when isolated from different sites.

The clinical implications of mesenchymal stem cells in tissue engineering are

more promising compared to embryonic stem cells. Embryonic stem cells have the

capacity of forming teratomas in vivo, which is not observed with mesenchymal stem cell

transplantation. The immune properties of MSCs are impressive in that there is a
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decreased immune response of the host to donor MSCs because they do not express MHC

Class II, which is expressed on embryonic stem cells [33]. This eliminates the need to

match donor MSCs to host MSCs, thereby eliminating the onset of GVHD.

The in vitro differentiation of human mesenchymal stem cells to specific cell lines

is dependent on the supplementation of components in the culture medium as well as

other manipulations such as genetic engineering. MSC differentiation into specific cell

line leads to a change in cell morphology and a change in function. Chondrogenic

differentiation is best achieved in a three-dimensional culture condition. The in vitro

conditions requires: serum free medium and transforming growth factor-β (TGF-β). In

chondrogenic differentiation pathway, the MSCs express and release extracellular matrix

components such as glycosaminoglycans. Adipogenic differentiation is achieved through

the addition of isobutymethylxanthine in the culture medium. The morphology of MSCs

following adipogenic differentiation is characterized by the inclusion of large lipid

vacuoles[31]. The neurogenic differentiation of MSCs is followed by the addition of

isobutyl methylxanthine and dibutylryl cyclic AMP as well as brain derived neurotrophic

factor and EGF.

The potential therapeutic value of MSC transplantation is promising in areas such

as leukemia treatment, lung fibrosis, and muscular dystrophy. However, the therapeutic

implications of mesenchymal stem cells transplantation have already been most

promising in orthopedic applications. This is due to the ease of cellular engraftment into

skeletal tissue defects. Mesenchymal stem cells have been transplanted to repair spine

fusion, segmental bone and craniofacial defects and articular cartilage and tendon.
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1.4.1 Osteogenic Differentiation of Mesenchymal Stem Cells

The potential orthopedic applications of MSC transplantation highlight the need to

implement in vitro osteogenic differentiation protocols that provide a reliable, consistent

culture system that will inevitably be translated into a clinical setting. Osteogenic

differentiation of MSCs has been optimized under many different culture conditions. In

vitro osteogenic differentiation can be achieved through chemical cues from defined

medium, substrate cues from extracellular matrix, genetic cues and mechanical cues[23].

The presence of animal or human recombinant proteins in culture medium is a concern in

osteogenic differentiation of MSCs that may be used in in vivo transplantation. However,

the growth of MSCs is best achieved in cultures containing 10% Fetal Calf Serum and

comparable serum free substitutes have not been as successful in promoting MSC

proliferation. Recombinant bone morphogenic protein, (BMP) which is a member of the

transforming growth factor (TGF-β) has been shown to induce osteogenic differentiation

in vitro. Although the use of recombinant proteins such as BMP has been successful in

MSC differentiation into osteoblasts, it is not preferred because of the delicate nature of

proteins, which may denature over time, among other problems encountered with protein

modification such as glycosylation. Thus, recombinant protein supplementation is not

preferred in long-term cultures. Moreover, the various sources of recombinant proteins

may elicit different responses from cells. This poses a problem if there is an attempt to

synchronize cultures. Therefore, non-protein supplementation to serum based medium is

preferred. Supplements that support osteogenic differentiation are: prostaglandins E2,

Vitamin D3, L-ascorbic acid, dexamethasone and β-glycerophosphate. However, the

most effective combination in inducing osteogenic differentiation is L-ascorbic acid,
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dexamethasone which is a glucocorticoid, and β-glycerophosphate. Vitamin D3 is a

potent supplement to induce mineralization.

When added to control culture medium, these supplements elicit a specific

osteogenic differentiation pathway which can be determined by observing the

morphology and quantifying osteoblast biomarkers. The morphology of an osteoblast is

cuboidal[12], in contrast to the fibroblast-like morphology of a mesenchymal stem cell.

The change in morphology can be observed as early as two days post-osteogenic

induction, however, it is more apparent four days post-osteogenic induction. Osteoblasts

are characterized by the function of secreting proteins such as collagen, and mineral such

as calcium into the extracellular matrix. Osteoblasts are measured for specific biomarkers

such as alkaline phosphatase, an enzyme that is important in bone mineralization, calcium

and osteocalcin, the most abundant non-collagenous protein in bone. In vitro, the

presence of osteocalcin is attributed to the addition of Vitamin D3 in the culture

medium[25].

Mesenchymal stem cells are rather unique from other stem cells in that they have

an affinity to adhere onto tissue culture substrates. Unlike, hematopoeitic stem cells

which are non-adherent, mesenchymal stem cell growth, attachment and differentiation

are a function of the substrate. This property can be manipulated to enhance optimum cell

response in vitro. In vivo, this property is preserved through MSCs interaction with the

extracellular matrix. The extracellular matrix of cartilage is comprised of proteins such as

collagen, elastin and glycosaminoglycans. The extracellular matrix of bone is unique in

that it is comprised of a protein and mineral component. The majority of the protein

component of the bone's extracellular matrix is type I collagen. Other proteins present are
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fibronectin, osteocalcin, osteopontin, bone sialoprotein[7] . The mineral component of the 

extracellular matrix is hydroxyapatite, which is a calcium phosphate. 

MSCs interact with the extracellular matrix proteins via transmembrane receptors 

called integrins. lntegrins are incorporated with the cytoskeletal filaments within the cell 

such as actin, talin and paxillin which forms focal adhesion contacts with the extracellular 

matrix proteins[4]. Signal transduction occurs following integrin-extracellular mauix 

protein binding, by way of adhesion, differentiation and motility. By manipulating the 

composition of the ECM proteins in. vitro and in. vivo, the differentiation of MSCs along a 

specific pathway can occur[28]. Osteogenic differentiation can occur on extracellular 

matrix compositions containing fibronectin, vi tronectin and type I co llagen[36]. 

II!) 

The cytoskeleton 
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Figure 1.1 Interaction between integrin and fibronectin and its relationship to 
cytoskeletal organization. 

1.5 Biomaterials 

The implantation of natural or synthetic materials goes as far back to 4000 years when 

the ancient Egyptians used linen and animal sinew to close wounds. Biomaterials 



11

encompass the range of materials that can be implanted into the body, including: metals,

ceramics and natural or synthetic polymers or a composite of these materials. Prior to the

advances in materials science in the last 50 years, biomaterials were derived from natural

sources such as wood, silk and animal connective tissue. In the last 50 years, true

innovations in biomaterials began to be realized. Some important milestones were:

Harold Ridley used poly(methyl methacrylate) for the first intraocular lens, Vorhes

invented the vascular graft, Hufnagel invented the ball and cage heart valve and Chamley

invented the hip implant[32].

1.6 Polymers

Synthetic polymers are high molecular weight materials consisting of many repeat units,

called monomers which are linked together via chemical reaction. Polymers are

characterized by a distribution of molecular weight averages. This is due to the uneven

distribution of chains of monomer units. The structure of the polymer, whether it is a

random coil or semi-crystalline structure plays a critical role in the thermodynamic

properties of the polymer such as the glass transition temperature (T g). This is one factor

that influences the processibility of the polymer. The extent of which polymers can be

fabricated and processed is much greater than metals and ceramics. The ease in

processing polymers into a desired shape and texture makes it an ideal candidate for

creating complex structures such as scaffolds that can have features at the micro and nano

scale.
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Two dimensional in vitro cultures are instrumental for the screening of polymers

intended for two-dimensional scaffold culture. For two-dimensional in vitro cultures,

polymers are fabricated into thin films through solvent casting, spin coating, compression

molding and a number of other techniques. Both solvent casting and spin coating rely on

polymers in solution. The residual solvent that may exist on the surface and can cause a

cytotoxic effect, this can be detected with thermogravimetric analysis (TGA).

Compression molding, on the other hand, is a film fabrication technique where films are

made through the application of heat and pressure through a mold. The temperature

applied to the film is dependent on the polymer's T g . These fabrication techniques may

cause films to have differences in surface topography, which may aid or hinder cell

adhesion as well as differences in mechanical modulus which may affect cell

differentiation.

Understanding the interface between the cells and biomaterials is integral in the

successful implantation of biomaterials. The interface between the biomaterial and the

cell in vitro and in vivo is mediated by protein adsorption. In fact, cells do not interact

directly with the polymer. Therefore, cell behavior is a response to the adsorbed protein.

Protein adsorption is the process in which proteins rapidly adsorbs onto the surface of an

implanted material. In in vitro cultures, serum proteins in the medium in the form of

albumin as well as other proteins adsorb onto the biomaterial surface[1]. Protein

adsorption is influenced by the surface charge or surface wettability of the polymer[40].

Surface wettability is a measure of the affinity towards water. Surface wettability can be

determined by contact angle measurements, which is the angle formed by a liquid on a

solid surface at the three phase boundary. Surfaces which favor water are hydrophilic and
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surfaces that do not favor water are hydrophobic. It has been shown that hydrophobic

surfaces greater influences protein and cell attachment.

Another attractive property of some polymers in tissue engineering applications is

the ability to degrade under physiologic conditions, which is a property of bioresorbable

polymers. Bioresorption occurs in two steps the first step being the process of cleaving a

bond through hydrolysis or an enzymatic reaction to break down a polymer into its

monomer units. At this point, the molecular weight of the polymer decreases which is

followed by the loss of mechanical strength and mass loss. In the second step, the broken

pieces of the implant are attacked by macrophages, which are cells of the immune system

that engulf or phagocytosized foreign particles[30]. This is the beginning of a foreign

body response which ultimately leads to a collagenous capsulation. The extent of this

response can impede the function of an implant.

Over the last forty years, there has been considerable research on bioresorbable

polymers. Bioresorbable polymers are useful in other applications such as drug delivery

vehicles. The most well characterized bioresorbable polymers are classified as poly(a-

esters): poly (glycolic acid) (PGA), poly(L-lactic acid) (PLLA), and its copolymer: poly

(DL-lactic co-glycolic acid) (PLGA)[41]. These particular bioresorbable polymers are

favored for orthopedic applications because of their strong mechanical properties. The

polymerization of PGA is initiated by the ring opening of glycolide, which results in a

linear polyester molecule. PGA has a high degree of crystallinity which contributes to its

very high modulus. The degradation product of PGA is glycolic acid. The polymerization

of PLLA is initiated by the ring opening of lactide, a six membered ring. The L-isomer of

lactide, which is abundantly found in nature, contributes to the semi-crystalline structure
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and which results in a reasonably high tensile strength and high modulus which is less

than PGA. PLLA is more hydrophobic than PGA due to the presence of the methyl

group. When PLLA is degraded, it releases lactic acid which is then metabolically

excreted. Creating a copolymer is desirable because one can tailor the properties of the

copolymer by altering the composition of the two or more polymers. PLGA, a copolymer

of PGA and PLLA has a structure that is not as crystalline as PGA or PLLA

homopolymer. Moreover, the degradation rate of this copolymer is controlled by altering

the composition ratio of PLLA and PGA. The degradation products of PLLA, PLGA and

PGA which are lactic acid and glycolic acid, are natural products. However the acidic

nature of these byproducts may have a deleterious effect on the surrounding cellular

environment and impede healing[39]. Furthermore, the bulk degradation of these

materials produces crystalline particles which are phagocytosized by macrophages

through the foreign body response, which may lead to a collagenous encapsulation.

These materials have many limited mechanical and thermodynamic properties.

There are other bioresorbable polymers that are utilized in clinical settings: poly(c-

caprolactone), poly(orthoesters), poly(anhydrides) and poly(dioxanone). These polymers

have various mechanical properties and thermodynamic properties, which can be utilized

for a specific application. These polymers have also been copolymerized with other

bioresorbable polymer constituents to tailor a specific property.

1.7 Tyrosine Derived Polycarbonates

The field of bioresorbable polymers has been successful in the development of

commercial medical devices and drug delivery systems for the past thirty years.
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However, new approaches to the design of bioresorbable polymers with alternative

degradation profiles, mechanical properties are being developed. The combinatorial

chemistry approach to designing biodegradable polymers has the potential to offer an

array of materials with a wide range of thermodynamic and mechanical properties. This

approach developed by Dr. Joachim Kohn at Rutgers University was used to design a

library of structural-related tyrosine derived polycarbonates and polyarylates, which are

pseudo poly(amino acids).

In theory, poly(amino acids) would be an ideal candidate for biodegradable

polymers because of the structural similarity with natural amino acids. However,

poly(amino acids) were shown to have poor mechanical properties as well as elicit

immunogenicity. The development of pseudo poly(amino acids) relies on synthesizing

non-peptide linkages such as ester, carbonate and iminocarbonate bonds in the polymer

backbone structure[10]. Tyrosine is a phenolic amino acid which when dimerized is

chemically similar to Bisphenol A, a diphenol that has been used commercially to

enhance the mechanical properties of polymers. Bisphenol A is not favorable in the

context of biodegradable polymers because of its cytotoxicity and its inability to degrade.

It was determined that rather than creating a tyrosine dipeptide, polymerizing a

desaminotyrosine and desaminotyrosyl alkyl ester would provide the appropriate desired

mechanical properties. Tyrosine derived polycarbonates have the same backbone but

differ in the alkyl ester pendent chain. The ester bonds contribute to the degradation

properties of the material. These materials are denoted by the nomenclature

desaminotyrosyl-tyrosine alkyl esters (DTR) carbonate. The length of the pendent chain

is denoted by the nomenclature: desaminotyrosyl-tyrosine ethyl ester (DTE),
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desaminotyrosyl-tyrosine butyl ester (DTB), desaminotyrosyl-tyrosine octyl ester (DTO),

and desaminotyrosyl-tyrosine dodecyl ester (DTD). In the development of tyrosine

derived polyarylates, two parameters can be independently altered: the backbone and the

alkyl ester pendent chain length.

Figure 1.2 Tyrosine Derived Polycarbonate.

The length of the pendent chain influences the extent of most of the mechanical,

thermal and surface wettability properties. This is most evident in the wide range of glass

transition temperatures (Tg)of polycarbonates which range from (52°C-93°C) [18],

decreasing with the addition of each methyl group in the alkyl ester chain. The T g 's for

these amorphous materials are high enough to use under physiological conditions, where

the average temperature is 37°C, and high enough to ensure reasonable thermal

processing techniques. The molecular weight is also a function of the pendent chain

length. The weight-average (Mw) molecular weight of polycarbonates is between 176-

450 kDa. The surface wettability decreases with the addition of methyl groups in the

pendent chain, becoming more hydrophobic. The mechanical properties of these

materials, measured in mechanical strength and stiffness is relatively high, making these

materials ideal candidates in orthopedic applications. The rate of the degradation, which

under physiologic conditions proceeds through the hydrolysis of the ester bond and the

carbonate bond increases with the length of the pendent chain. The by-products of the

degradation are desaminotyrosine and L-tyrosine, an amino acid which does not elicit a

cytotoxic effect on surrounding cells.
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The in vivo response to the degradation of tyrosine derived polymers compared to

PLLA was evaluated in a study completed by Hooper et al. Extruded pins of poly(DTE

carbonate), poly(DTE adipate) and PLLA were implanted subcutaneously in rats. The

degradation of these materials was evaluated along with water uptake, mass loss and

tissue response over a 570 day span. It was shown that complete resorption of poly(DTE

adipate) was achieved within two years[24]. The resorption of poly(DTE carbonate) is

hypothesized to take more than three years, which is similar to PLLA. The tissue

response, according to the incidence of inflammation, to poly(DTE carbonate) and

poly(DTE adipate) was more favorable than PLLA.

Traditionally, PEGylation, the process of poly(ethylene glycol) (PEG)

incorporation into substances has been used in the pharmaceutical industry to the increase

lipid clearance of highly hydrophobic drugs and proteins[21]. The incorporation of

hydrophobic moieties to PEG can produce a surfactant, a material with a hydrophobic

head and hydrophilic tail. This was an important discovery in drug delivery. PEG is an

ideal material in drug delivery and biomedical implants because of its bioinert and non-

immunogenic properties.

Surface property modification, mechanical strength and degradation rates can be

affected by the incorporation of PEG through copolymerization. The properties of PEG

are dependent on its molecular weight. High molecular weight PEG moieties of PEG act

more as solids in contrast to liquid nature of low molecular weight moieties of PEG. The

development of tyrosine derived polycarbonates provided another library of materials in

which the surface properties and mechanical properties could be tailored to the

application of the material. This is achieved through the manipulation of three
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parameters: the percent mole fraction of PEG in the polymer backbone, average

molecular weight of PEG, and pendent chain length[45]. Copolymerization is carried out

by a condensation reaction of desaminotyrosyl-tyrosine alkyl ester with the desired molar

fraction of PEG in the presence of phosgene. The addition of PEG has a positive

correlation of water uptake and at high enough mole fraction (15%), results in hydrogel

like properties. At lower PEG concentrations (less than 5%), the copolymers possess

comparably strong mechanical properties such as tensile stiffness and strength, which

decreases at PEG concentrations above 5% to produce flexible elastomers. The addition

of PEG into the polycarbonate backbone increases the degradation rate by making it more

susceptible to hydrolytic cleavage because of PEG'S water uptake properties.

Figure 1.3 Tyrosine Derived Polycarbonate PEG copolymer.

Compared to other polymers, PEG does not promote surface protein adsorption

and subsequent cell attachment[17]. Protein adsorption and protein bioactivity and

conformation leads to significant effects in cell adhesion and motility which can be

modified through the addition of PEG in the backbone structure of polycarbonates at

various molar concentrations. In a study completed by Tziampazis et al., where human

fibronectin was adsorbed onto PEG polycarbonates ranging from 0-10% molar fraction,

the amount of fibronectin adsorbed and its bioactivity decreased at PEG molar fractions

greater than 6%[43]. Cell adhesion was also negatively affected at concentrations above

6%. Cell motility is an important parameter to study organogenesis, tissue remodeling,

pathologies and bone remodeling. The incorporation of PEG in the backbone of
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polycarbonates had a pronounced effect on cell motility. It was found that PEG molar

concentration had a biphasic effect on cell speed, the cell speed of L929 cells increased

with increasing PEG molar concentrations up to an intermediate PEG concentration (3-

4%), yet at higher PEG concentrations (>8%), is motility decreased[37].

The in vivo and in vitro response to tyrosine derived polycarbonates has been well

characterized. Polycarbonates have been shown to be biocompatible to a number of cell

lines such as osteoblasts and fibroblasts. Because of its biocompatibility, these

polycarbonates can be used in many biomaterial applications including orthopedics.

Polycarbonates have been used in a number of in vivo orthopedic studies where

mechanical strength, degradation, tissue response, bone apposition was evaluated over

time. In a few studies, polycarbonates were extruded into fracture fixation pins for

implantation into the transcortical femoral defect in rabbits. The polycarbonates,

contained different pendent chain lengths: poly(DTE carbonate), poly(DTB carbonate),

poly(DTH carbonate) and poly(DTO carbonate). In a 3-year study completed by James et

al., histological samples were studied at short term and long term timepoints. It was

shown that these materials were osteocompatible, meaning that there was no bone

resorption and presence of inflammatory cells at the implant site[26]. However, at the

bone-implant interface, bone apposition was shown to be a function of the pendent chain

length, where direct bone apposition was observed at higher frequency on poly(DTE

carbonate) at short term and long term timepoints compared to longer pendent chain

moieties such as poly(DTB carbonate) and poly(DTO carbonate). At the bone implant

interface on poly(DTB carbonate), the presence of fibrous encapsulation was observed at

higher frequency (79%) than bone apposition at short term and long term timepoints. This
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effect was observed with poly(DTO carbonate), where the presence of fibrous

encapsulation is 83%. Whereas, the frequency of fibrous encapsulation of poly(DTE

carbonate) was 27% while the frequency of bone apposition is 73%. This highly suggests

that the stepwise addition of methyl groups has a dramatic affect in vivo.

In the canine bone chamber study completed by James et al., bone ingrowth was

observed. In this study, coupons of compression molded films of poly(DTE carbonate),

poly(DTH carbonate) and PLLA were placed in a chamber into a longitudinal defect in

both the distal femurs of dogs. It was observed that bone ingrowth into poly(DTE

carbonate) and poly(DTH carbonate) was comparable to PLLA[15]. However, the

presence of fibrous encapsulation was observed at higher frequency on PLLA and to a

lesser extent on poly(DTH carbonate), and not observed on poly(DTE carbonate).

The previous mentioned in vivo studies highlight the osteoinductive properties of

tyrosine derived polycarbonates compared to standard biodegradable polymers such as

PLLA. This property, along with bioresorbability and mechanical strength make tyrosine

derived polycarbonates an ideal substrate for allogenic mesenchymal stem cell

transplantation with the potential to differentiate into osteoblasts. Another important

finding in these in vivo studies is the direct correlation of pendent chain length to fibrous

encapsulation, a negative effect of implantation which impedes healing. Although

polycarbonates have been shown to have fewer incidences of fibrous encapsulation

compared to PLLA, the addition of methyl groups in the pendent chain length increases

the onset of fibrous encapsulation.



CHAPTER 2

RESEARCH OBJECTIVE

The development of a library of polycarbonates has lead to polymers with an array of

material properties such as molecular weight, T s, water uptake, and surface wettability.

The goal of this study was to determine the effect of the alkyl ester pendent chain length

or PEG incorporation into the polycarbonate backbone, on the osteogenic differentiation

of human mesenchymal stem cells on thin film substrates. The polymers that were chosen

in this study were: poly(DTE carbonate), poly(DTO carbonate), poly (DTE co 3% PEG-

1K carbonate), poly(DTE co 4% PEG-1K carbonate) and poly(DTE co 5% PEG-1K

carbonate). Poly(DTE carbonate) and poly(DTO carbonate) differ in the length of the

alkyl ester pendent chain. The PEG copolymers have various molar percentages

incorporated in the polycarbonate backbone. Two thin film preparation techniques:

solvent casting and spin coating will be compared to determine their effect on osteogenic

differentiation.

In this study, it was postulated that polycarbonates of lower surface wettability or

higher hydrophobicity will induce adsorption of a relatively thick layer(s) of proteins that

will serve as ligands for the integrin binding domains on the cell, which will lead to

signal transduction by way of adhesion, osteogenic differentiation and motility in the

presence of osteoinductive (OS) medium. In contrast, polycarbonates containing PEG,

will have comparably higher surface wettability or higher hydrophilicity. This will induce

a relatively thinner, heterogenous layer of proteins, limiting the ligand-integrin binding
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and therefore, altering signal transduction by way of adhesion, osteogenic differentiation

and motility. In a previous study conducted by Godbole et al. 191, hMSCs seeded on

polyarylates of varying degrees of surface wettability had greater osteogenic

differentiation on the more hydrophobic surfaces. Therefore, in this study it is

hypothesized that the addition of methyl groups in the pendent chain, from ethyl to octyl,

which results in an increase in the hydrophobicity, will have an increased effect on

osteogenic differentiation. In contrast, the incorporation of PEG into the polycarbonate

backbone will have a decreased effect on osteogenic differentiation due to the

hydrophilicity.

In vitro osteogenic differentiation will be evaluated with standard quantitative

biochemical marker assays, qualitative morphology and cytoskeletal observations,

quantitative protein adsorption measurements and cell motility measurements.



CHAPTER 3

EXPERIMENTAL METHODS:

3.1 Polymer Processing

Poly(DTE carbonate), poly(DTO carbonate), poly(DTE co 3% PEG-1K carbonate),

poly(DTE co 4% PEG-1K carbonate) and poly(DTE co 5% PEG-1K carbonate) were

obtained from the laboratory of Dr. Joachim Kohn at Rutgers University. It was

important to maintain consistency so lot numbers were maintained throughout the study

as much as possible. The molecular weights were obtained from gel permeation

chromatography (GPC).

Thin film substrates were fabricated using two different methods: solvent casting

and spin coating. Solvent cast films were used in a 96 well plate format while spin coated

films were used in a 24 well plate format.

3.1.1 Solvent Casting

A 1% (w/v) polymer solution was made in methylene chloride and filtered with a 0.45

inn PTFE filter (Whatman). 300 !IL of polymer solution was pipetted into each well of a

96 well polypropylene plate. The plates were placed in a chemical hood overnight for

polymer solvent evaporation.
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3.1.2 Spin Coating

Spin coated disks were prepared following a protocol developed by Brocchini[11]. Glass

cover slips (15 mm) were subjected to a cleaning and poly(styrene silane) coating prior to

spin coating. Glass coverslips were sonicated twice in 25% NaOH for ten minutes and

then twice in 25% HCl for ten minutes. The glass cover slips were sonicated in 2% Micro

detergent for 30 minutes twice and then rinsed with deionised water following each

sonication step. The glass cover slips were then sonicated twice in ethanol for 5 minutes

and methylene chloride twice for 5 minutes. The cover slips were then twice rinsed in

ethyl acetate and then sonicated in a 2.5% (w/v) poly(styrene-silane) copolymer-ethyl

acetate solution and then soaked for an additional 10 minutes. The cover slips were then

placed in a 60°C vacuum oven for 48 hours to anneal the poly(styrene-silane) onto the

surface. Cover slips were removed from vacuum oven and cooled to room temperature

then rinsed twice with ethyl acetate, methanol and ethyl acetate. The cover slips were left

to air dry on aluminum prior to spin coating. A 2.5% (w/v) polymer solution in

methylene chloride was made and filtered with a 0.45 μm PTFE syringe filter

(Whatman). Cover slips were placed in an enclosed chamber of constant humidity (less

than 20%) and temperature, on top of the spin coater (Headway, Garland, TX). Polymer

solution was added to cover slip and the cover slip spun at 2000 rpm for 20 seconds.

Cover slips were placed in tissue culture polystyrene (TCPS) petri dish prior to

experiments. Cover slips were fixed to the bottom of TCPS 24 well plates with methylene

chloride. Plates were degassed for at least 48 hours to ensure methylene chloride

evaporation.
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Air-water contact angle measurements were taken on spin coated disks made of a

1% polymer solution using the methods described by Brocchini. Contact angle

measurements were made on a goniometer (Rame-Hart, Netcong, NJ) using double

distilled waters as the probe. A sessile drop was deposited on the spin coated glass disk of

approximate diameter of 2.5 mm.
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3.2 Cell Culture

In this study, human mesenchymal stem cells (hMSCs) were isolated from commercially

obtained (Cambrex) bone marrow aspirates collected from the superior iliac crest of the

pelvis of male donors (18-36). The isolation method described in detail by Haynesworth,

proceeds with washing the marrow sample with (Phosphate Buffered Solution) PBS then

centrifuging the sample in a 70% density gradient solution at 13,000g for 20 minutes. The

hMSC fraction was collected and then plated into tissue culture polystyrene flasks (Nunc)

with control medium: Dulbecco's Modified Eagle Medium (Invitrogen) containing 10%

Fetal Bovine Serum (Hyclone) and l% Antibiotic-Antimycotic (Invitrogen), then placed

in a 37°C, 5% CO2 containing humidified incubator. On average, confluency of hMSCs

was achieved within 12-16 days. At the point of near confluency, cells were detached

from the substrate with 0.25% Trypsin-EDTA (Invitrogen). Cells were resuspended in

control medium and centrifuged at 900 g for 5 minutes. The cells were then collected and

replated into a new tissue culture flask. This procedure called serial passaging or

subculturing was done up to a maximum of 5 passages. After each passage, cells were

cyropreserved in freezing medium containing 90% Fetal Bovine Serum and 10% DMSO.

The cyropreserved cells were stored in a liquid nitrogen tank until the initiation of an

experiment.

In this study, in vitro osteogenic differentiation was induced by adding

osteoinductive medium (OS medium) which is control medium supplemented with 10

mM beta glycerophosphate (Sigma, St. Louis, MO), 50μM L-ascorbic acid phosphate

(Wako, Richmond, VA) and 100 nM of dexamethasone (Sigma), 24 hours after initial

hMSC seeding.
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3.3 Biochemical Assay Experiment Design

In this study, osteogenic differentiation of hMSCs was determined by observing cell

morphology and quantifying cell proliferation and osteogenic biomarkers such as alkaline

phosphatase, calcium. A baseline of osteogenic differentiation was determined by

comparing undifferentiated hMSCs to differentiated hMSCs.

3.3.1 Cell Morphology

Cell morphology was observed at various points of the 14 day culture. Cells were

observed under bright field, inverted light microscope (Nikon Eclipse TS 100) at 10X,

20X and 40X. Images were taken with a digital camera (Nikon DXM 1200F) and were

visualized with an image analysis software (Metavue, Downingtown, PA).

3.3.2 Cell Proliferation

Cell proliferation was determined with the PicoGreen® ds DNA quantitation kit

(Molecular Probes, Carlsbad, California). The PicoGreen reagent fluorescently labels

double stranded DNA which is correlated to cell number using a standard curve.

Standards of known cell number and samples were prepared by lysing cells with 0.1%

Triton X-100 which were pipetted into each well of a 96 well plate. PicoGreen reagent

was prepared in a 1:200 dilution in buffer solution. 100 lit of the reagent was pippetted

into standards and samples. The fluorescence was detected with FLX800 microplate

reader (Biotek, Winooski, Vermont) at 480 nm excitation/ 520 nm emission.
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3.3.3 Alkaline Phosphatase

The activity of alkaline phosphatase was determined by quantifying the conversion rate

of para-nitrophenyl phosphate (p-Npp) to para-nitrophenol (p-Np) which occurs in the

presence of alkaline phosphatase. Standards of p-Np were prepared in phosphatase

buffer. The samples were prepared by lysing cells with 0.1% Triton X-100, and pipetting

25 [IL of the sample into a 96 well plate with 75 μL phosphatase buffer. The samples and

standards were incubated at 37°C for 30 minutes in a water bath. The reaction was

stopped by adding 0.1 N NaOH into each well. The absorbance was read at 405 nm with

an absorbance plate reader (Molecular Devices). The activity was normalized to cell

number determined from the cell proliferation data, is expressed as nmol of p-

Np/min/cell.

3.3.4 Calcium

The amount of calcium present in the extracellular matrix of the samples was determined

using the Calcium Kit (Thermal Electron). Calcium standards (Sigma) were prepared in

0.5 N HCl. The samples were prepared by hydrolyzing the substrates in a 0.5 N HCl

solution on a vortex overnight. The samples were centrifuged and the supernatant was

collected. A working solution provided by the kit was prepared and added to the samples

and standards. The, presence of calcium was indicated by a strong purple color which was

detected with an absorbance plate reader (Molecular Devices) at 570 nm. Calcium was

also normalized to cell number.
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3.4 96 Well Plate Experiments

Polymers were solvent cast onto 96 well polypropylene plates in methods detailed above.

Cells grown on tissue culture polystyrene (TCPS) served as the internal control for the

experiment (refer to Appendix A). Each polymer had a sample size of 4 wells (n=4).

On the day that the experiment is initiated, day 0, cyropreserved cells were

thawed and counted using Trypan Blue Exclusion dye (Sigma) and a hemacytometer. A

cell suspension in control medium was prepared and 10,000 cells (3.1*10 4 cells/cm2)

were seeded into each well. One day after initial cell seeding, osteogenic differentiation

was induced with OS medium in designated wells.

Throughout the duration of the experiment (14 days), undifferentiated cells were

maintained in control medium and differentiated cells were maintained in OS medium

which were all fed twice a week. On day 12, osteogenic cells were cultured with medium

supplemented with Vitamin D3: 10mM of β-glycerophosphate, 5μM of L-ascorbic acid

phosphate and 10 nM of Vitamin D3, to induce osteocalcin production. The cells were

harvested for biochemical assays at days: 4, 7, 11 and 14. At day 4, cell proliferation and

alkaline phosphatase assays were conducted. On days 7, 11 and 14, cell proliferation,

alkaline phosphatase and calcium assays were conducted.

3.5 24 Well Plate Experiment

Spin coated disks of polymers were fixed onto TCPS plates in methods detailed above.

Cells grown on tissue culture polystyrene (TCPS) served as the internal control for the

experiment (refer to Appendix A). Each polymer had a sample size of 3 wells (n=3).
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On the day that the experiment is initiated, day 0, cyropreserved cells were

thawed and counted using Trypan Blue Exclusion dye and a hemacytometer. Due to the

limited amount of cells available, a cell suspension of 40,000 cells (2.2* l04 cells/cm2)

were seeded into each well rather than (3.1 * 104 cells/cm2). Osteogenic differentiation and

cell culture was similar to 96 well plate experiments. The cells were harvested at

timepoints: days 7, 11 and 14 for cell proliferation, alkaline phosphatase, calcium assays.

3.6 Cytoskeletal Staining

Cytoskeletal organization was observed by fluorescently staining the f-actin filaments

with Alexa Fluor® 488 phalloidin (Molecular Probes, Eugene, OR). Cells were seeded in

the 96 well plate format. Each polymer had a sample size of 2 wells (n=2).

At day 0, cyropreserved cells were thawed and counted. A cell suspension in

control medium was prepared and 10,000 cells (3.1*10 4 cells/cm2) were seeded into each

well. 24 hours after initial cell seeding, osteogenic differentiation was induced with OS

medium in designated wells. Cells were harvested for the staining at timepoints: 1 hours,

5 hours, 24 hours, day 4, day 7, day 11 and day 14. Cells were fixed with formaldehyde

for 20 minutes, rinsed with PBS and fixed with 0.1% Triton X-100 for 5 minutes. The

cells were then rinsed with PBS 2-3 times. The cells were then stained with a 1:100

dilution of the Alexa Fluor 488® phalloidin in PBS for a minimum of 40 minutes. The

cells were then rinsed with PBS 2-3 times and fixed with anti-stain. Fluorescent images

were obtained using the 450 nm-490 nm excitation/505 nm emission filter on the Nikon

fluorescence microscope.
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3.7 QCM-D

The adsorption of fetal bovine serum (FBS) on polymer surfaces was measured in real-

time with a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D)

instrument (Q-sense AB, Goteborg, Sweden). In the Q-CMD, an alternating electric field

is applied to a quartz crystal at resonance frequencies of 5 MHz or at one of its overtones

of: 15 MHz, 25 MHz, 35 MHz and 45 MHz. Protein adsorption or desorption is measured

in the change in frequency (Δf) and dissipation (ΔD) of the quartz crystal due to the

increase or decrease of mass bound to the crystal. The adsorbed mass thickness and

viscosity can be obtained by modeling the Δf and ΔD data using the Voight model

available in the Q-Sense software package.

Sample preparation is described in detail in Weber's paper (2005) [44]. Gold-

coated quartz crystals (5 MHz, Q-Sense, Goteborg, Sweden) were spin coated with a 1%

w/v polymer solution in methylene chloride. The polymers used for this analysis were:

poly(DTE carbonate), poly(DTE co 3% PEG-1K carbonate), poly (DTE co 5% PEG-1K

carbonate) and poly(DTO carbonate). The crystals were then treated in a solution

containing 30% H202, NH4OH and deionized water for 15 minutes at 80°C. The crystals

were then rinsed with deionized water, dried under nitrogen and exposed to UV and

ozone for 10 minutes and rinsed with pure ethanol prior to use.

Protein adsorption experiments occurred at 37°C under a flow rate of 20μL/min.

In one experiment, a 10% solution of FBS (Sigma) in Phosphate Buffered Saline (PBS)

was adsorbed onto the polymer coated quartz disks. Protein-free PBS was added after

surface saturation to determine the irreversibility of protein adsorption. The change in
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frequency (At) and dissipation (AD) was determined at the 9 th overtone of 45 MHz and

plotted for each polymer sample.

3.8 Cell Motility

The motility of hMSCs was observed and measured using confocal microscopy. On day 0

of the experiment, cyropreserved hMSCs were thawed and counted. A concentration of

3000 cells/cm2 was seeded onto spin coated disks of: poly(DTE carbonate), poly(DTE co

3% PEG-1K carbonate), poly(DTE co 4% PEG-1K carbonate) and poly(DTE co 5%

PEG-lK carbonate) which had been mounted inside a glass chamber. Each chamber was

collected at timepoints: 18 hours, days 4, 7, 11 and 14. At day 0, 3 hours after initial cell

seeding, cells were stained with 1 of the fluorescent probe, Cell Tracker (Molecular

Probes, Eugene, OR) in control medium for 30 minutes at 37°C. The Cell Tracker

solution was replaced with CO2 independent medium (Invitrogen) and the chamber was

placed on a 37°C incubated microscope stage on a confocal microscope (Leica). Ten

sample areas which had approximately 200 cells per area, were taken of each film.

Images were taken every 10 minutes for 18 hours. Cells in the remaining chambers were

induced with OS medium, 24 hours after initial cell seeding and placed in a 37° C, 5%

CO2 incubator until the date of harvest. On the date of harvest, the medium in the

chamber was replaced with the Cell Tracker solution for 30 minutes at 37°C. The same

procedure described above was followed with the remaining cell cultures to track cell

motility.

The parameters that defined cell motility in this study were: average velocity,

which is the rate of displacement over increments of time, random motility coefficient,
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and persistence time, which is the length of time a cell travels in a straight line. These

parameters are displacement dependent, where displacement was measured as a function

of time, by tracking the x and y coordinates of the cell centroid, using Image Pro software

(Media Cybernetics, Silver Spring, MD). The calculation of the persistence time and

random motility coefficients as a function of time, was derived from the following

equation: D 2(ti)=4µ(t-P), [29] where D 2(ti) is the squared displacement as a function of

time, pt is the random motility coefficient and P is the persistence time. Average velocity,

S, is obtained from the calculation: D 2 = 2S2P[t-P(1-e(-t/p))]. Matlab was used to compute

calculations.



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Contact Angle Measurements

One characterization method of the surface is the contact angle measurement. Contact

angle measurements are an indication of surface wettability, which in the case of tyrosine

derived polycarbonates is modified by the addition of methyl groups in the alkyl ester

pendent chain. It is observed in Table 4.1, that the average contact angle 10°, when going

from poly(DTE carbonate) to poly(DTO carbonate), an addition of 6 methyl groups.

Likewise, the incorporation of PEG into the polycarbonate structure is lower compared to

poly(DTE carbonate), indicating that these polymers: poly(DTE co 4% PEG-1K

carbonate) and poly(DTE co 5% PEG-1K carbonate) are more hydrophilic than

poly(DTE carbonate).

Table 4.1 Contact Angle Measurements, n=3

St.
Material 	 Contact Angle / ° Dev.
Poly(DTE carbonate) 	 77.7 	 0.6
Poly(DTO carbonate) 	 87.3 	 4.6
Poly(DTE-co-4%PEG K carbonate) 	 71.7 	 2.0
Poly(DTE-co-5%PEG  K carbonate)  	 72.3   2.5

34
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4.2 Cell Morphology

In this experiment, cell morphology is a visual representation of the cells on the substrate.

Below are bright field images of undifferentiated hMSCs and osteogenic differentiated

hMSCs (OS) cells at various timepoints in a 14 day culture. Experiments for both 96 well

plate and 24 well plate were conducted in October 2005 using hMSC, Donor 2, passage

2. Undifferentiated hMSCs on poly(DTE carbonate), poly(DTO carbonate) (Figure 4.1c

and Figure 4.2c, respectively) are characterized by a fibroblast-like morphology, while

undifferentiated hMSCs on poly(DTE co 5% PEG-1K carbonate) are characterized by

aggregates (Figure 4.3c). Osteogenic differentiated hMSCs (OS) are characterized by a

cuboidal morphology. At high confluence, by day 7, the monolayer has a cobble-stone

like morphology (Figure 4.le and 4.2e). However, cells on poly(DTE co 5% PEG-1K

carbonate) do not produce a monolayer, rather cells on poly(DTE co 5% PEG-1K

carbonate) form aggregates as early as four hours after initial cell seeding (Figure 4.7a).



4.2.1 96 Well Plate Experiment 

Bright-field images of cells on solvent cast films. 

Figure 4.1 Cells on poly(DTE carbonate), lOX: undifferentiated hMSCs at (a) 4 hours, 
(b) day 4, and (c) day 7; OS cells at (d) day 4 and (e) day 7. 

Figure 4.2 Cells on poly(DTO carbonate), lOX: undifferentiated hMSCs at (a) 4 hours, 
(b) day 4, and (c) day 7; OS cells at (d) day 4 and (e) day 7. 

• 

36 
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Figure 4.3 Cells on poly(DTE co 5% PEG-I K carbonate), lOX : undifferentiated hM SCs 
at (a) 4 hours, (b) day 4, (c) day 7; as cells at (d) day 4 and (e) day 7. Arrows indicate 
areas of ce ll aggregation. 

Figure 4.4 Cells on ti ssue culture polystyrene (TCPS), lOX : undifferentiated hMSCs at 
(a) 4 hours. (b) day 4, (c) day 7; as cell s at (d) day 4 and (e) day 7. 



4.2.2 24 Well Plate Experiment 

Bright-field images of cells on spin coated disks. 

Figure 4.5 Cells on poly(DTE carbonate) , lOX: undi ffe rentiated hMSCs at (a) 4 hours, 
(b) day 7 and (c) day II ; OS cell s at (d) day 7 and (e) day II . 

, 

" 

Figure 4.6 Cells on poly(DTO carbonate), lOX: undifferentiated hMSCs at (a) 4 hours, 
(b) day 7 and (c) day II ; OS cells at (d) day 7 and (e) day II . 

38 



39 

.. 

. " 

Figure 4.7 Cells on poly(DTE co 5% PEG-I K carbonate), lOX: undifferentiated hMSCs 
at (a) 4 hours, (b) day I and (c) day 3: OS cells at (d) day 4 and (e) day 7. Arrows 
indicate areas of aggregation. 

Figure 4.8 Cells on TCPS, lOX : undifferentiated hMSCs at (a) 4 hours, (b) day 4, and 
(c) day 7; OS cells at (d) day 7 and (e) day II . 
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4.3 Biochemical Assays: 96 Well Plate Experiment

The following section is the quantitative representation of osteogenic differentiation in

terms of cell proliferation, alkaline phosphatase activity and calcium production on

solvent cast films in 96 well plates. Below are the results of an experiment conducted in

July 2005, using hMSCs, Donor 2, passage 2. For each experiment, two graphs are

represented: one representing undifferentiated hMSCs and osteogenic differentiated

hMSCs (OS) (Figures 4.9, 4.11 and 4.13), and the other representing only osteogenic

differentiated hMSCs (OS cells) (Figures 4.10, 4.12, 4.14 and 4.15). Data analysis was

conducted using the Tukey-Kramer test between the OS cells on the polymer substrates.

4.3.1 Cell Proliferation

In this experiment cell proliferation over a 14 day culture was quantified using the DNA

assay (Figure 4.9 and 4.10). For the duration of the experiment, the number of cells was

much lower on poly(DTE co 5% PEG-1K carbonate) compared to the other materials. On

poly(DTE carbonate) and poly(DTO carbonate) substrates, cell number reached a

maximum at either days 7 and 11. At day 14, cell number sharply decreases on all

polymers except for OS cells on poly(DTE carbonate). This effect could be attributed to

contact inhibition of the substrate.
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Figure 4.9 Cell proliferation of undifferentiated hMSCs (control) and as cells on 
polymer substrates. Asterisks indicate statistical difference. (p<0.05) between as cells on 
poly(DTE co 5% PEG- l K carbonate) and as cells on both poly(DTE carbonate) and 
poly(DTO carbonate). 
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Figure 4.10 Cell proliferation of OS cells on polymer substrates. Asterisks indicates a 
statistica lly significant difference (p<0.05), between poly(DTE co 5% PEG-I K 
carbonate) to both poly(DTE carbonate) and poly(DTO carbonate). 

4.3.2 Alkaline Phosphatase 

Alkaline Phosphatase activity is a marker for osteogenic differentiation. Alka line 

Phosphatase activity was negligible in undifferentiated hMSCs. Alkaline Phosphatase 

activity of OS cells wasn't apparent until after day II (Figure 4. 11 and Figure 4. 12). 

Alkaline Phosphatase activity in OS cells on poly(DTE co 5% PEG- I K carbonate) was 

much lower compared to OS cells on other polymer substrates. however not stati sti cally 

significant. 
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Figure 4.11 Alkali ne Phosphatase acti vity of undifferentiated hMSCs (control) and OS 
cell s on polymer substrates. 
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Figure 4.12 Alkaline Phosphatase activi ty of OS cell s on polymer substrates at 
days I I and 14. 
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4.3.3 Calcium 

Calcium production is a marker for osteogenic differentiation . Therefore, in thi s 

experiment, undifferentiated hMSCs produced less calcium compared to as cells (Figure 

4.1 3). At day I I , calcium production of as cells on poly(DTE co 5% PEG-I K carbonate) 

was stati sti cally higher than poly(DTE carbonate) and poly(DTO carbonate) (Figure 

4.14). Calcium production was normalized to the average cell number obtained from the 

cell proliferation assay (Figure 4.15). At day II , calcium production normalized to cell 

number of as cell s on poly(DTE co 5% PEG-I K carbonate) was stati stically higher than 

poly(DTE carbonate) and poly(DTO carbonate). 
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Figure 4.13 Calcium production of undifferentiated hMSCs (control) and as cells on 
polymer substrates at days II and 14. Astelisks indicates a stati stically significant 
difference (p<O.05), between as cells on poly(DTE co 5% PEG-I K carbonate) to as 
cells on both poly( DTE carbonate) and poly(DTO carbonate). 
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Figure 4.14 Calcium production of OS cell s on polymer substrates. Asterisks indicates a 
stati stically significant difference (p<O.OS) between poly(DTE co 5% PEG-I K carbonate) 
to both poly(DTE carbonate) and poly(DTO carbonate). 
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Figure 4.15 Calcium production normalized to cell number of OS cell s on polymer 
substrates. Astelisks indicate statistical difference (p<O.OS), between poly(DTE co 5% 
PEG-I K carbonate) to both poly(DTE carbonate) and poly(DTO carbonate). 
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4.4 Effect of PEG on Osteogenic Differentiation

The data presented thus far demonstrate the anti-cell attachment effect on poly(DTE co

5% PEG-1K carbonate) as well as its effect on osteogenic differentiation markers. The

goal of this section was to determine the effect of the concentration of PEG on osteogenic

differentiation using poly(DTE co 3% PEG-1K carbonate) and poly(DTE co 5% PEG-1K

carbonate). Biochemical assay results were compared to poly(DTE carbonate) which was

conducted in a separate experiment in July 2005 (see section 4.3). Below are the results

of a 96 well plate experiment conducted in April 2006 using hMSC, Donor 2, passage 2.

Cells were seeded on poly(DTE co 3% PEG-1K carbonate) and poly(DTE co 5% PEG-

1K carbonate) to determine the effect of the concentration of PEG on osteogenic

differentiation. Data analysis was conducted using the Tukey-Kramer test between the

polymer substrates.

4.4.1 Cell Morphology

The modification of the molar fraction of PEG in the polycarbonate backbone, from 3%

to 5%, has a substantial effect on the cell morphology. The morphology of OS cells on

poly(DTE co 3% PEG-1K carbonate) by day 14 is a confluent monolayer, while the

morphology of OS cells on poly(DTE co 5% PEG-1K carbonate) by day 14 is exhibited

by the formation of cell aggregates.
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Figure 4.16 OS ce ll s at day 14 : (a) on poly(DTE co 3% PEG- I K carbonate), lOX (b) on 
poly(DTE co 5% PEG-I K carbonate), 20X. AtTOWS on (a) indicate cuboidal cell 
morphology. M Ows on (b) indicate cell aggregation 

4.4.2 Cell Proliferation 

The modifi cation of the molar fraction of PEG in the polycarbonate backbone, from 5% 

to 3%, has a positi ve effect on cell proliferation. OS cell s on poly(DTE co 3% PEG- I K 

carbonate) had a higher cell proliferation compared to OS cells on poly(DTE co 5% PEG-

I K carbonate) (Figure 4. 17). At day I I, OS cell number on poly(DTE co 3% PEG- I K 

carbonate) is stati sti cally higher than cell number on poly(DTE co 5% PEG- I K 

carbonate) (Figure 4.18). 
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Figure 4.17 Cell proliferation of undifferentiated hMSCs (control) and OS cell s on 
polymer substrates. 
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Figure 4.18 Cell proliferation of OS cells on polymer substrates . Asteri sks indicate 
stati stical difference (p<O.05), between poly(DTE co 5% PEG- I K carbonate) to both 
poly(DTE carbonate) and poly(DTE co 3% PEG- I K carbonate). 
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4.4.3 Alkaline Phosphatase 

The modifIcation of the molar fraction of PEG in the polycarbonate backbone, from 5% 

to 3%, has a positive effect in alkaline phosphatase activity at days II and 14. 

Undifferentiated hMSCs had lower alkaline phosphatase activity compared to OS cell s 

(Figure 4.19). By day II , there is negligible alkaline phosphatase activity in OS cells on 

poly(OTE co 5% PEG-I K carbonate). OS cells on (OTE co 3% PEG-I K carbonate) have 

a higher alkaline phosphatase activity compared to cells on poly(OTE co 5% PEG-I K 

carbonate) (Figure 4.20). 
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Figure 4.19 Alkaline Phosphatase activity of undifferentiated hMSCs (con trol) and OS 
cells on polymer substrates. 
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4.4.4 Calcium 
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The modification of the molar fraction of PEG in the polycarbonate backbone, from 3% 

to 5%. has an increased effect on calcium production at day 14 (Figure 4.21 ). as cells on 

poly(DTE co 5% PEG-I K carbonate) had a statisticall y higher production of calcium per 

cell compared to as cells on poly(DTE co 3% PEG-l K carbonate) (Figure 4.22). 
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4.5 Biochemical Assays: 24 Well Plate Experiment

The following section is the quantitative representation of osteogenic differentiation in

terms of cell proliferation, alkaline phosphatase activity and calcium production on spin

coated disks in 24 well plates. Below are the results of an experiment conducted in

December 2005 using hMSC, Donor 2, passage 4. For each experiment, two graphs are

represented: one representing undifferentiated hMSCs and osteogenic differentiated

hMSCs (OS cells) (Figures 4.23. 4.25, 4.27) and the other representing only OS cells

(Figures 4.24, 4.26, 4.28, 4.29). Data analysis was conducted using the Tukey-Kramer

test between the polymer substrates.

4.5.1 Cell Proliferation

Cells were harvested at days 7 and 11 for DNA assay. At day 11, proliferation of OS cells

on poly(DTE co 5% PEG-1K carbonate) is statistically lower than both poly(DTE

carbonate) and poly(DTO carbonate). (Figure 4.23 and Figure 4.24)



80000 

70000 

Q; 60000 
.c 
E 
:J 

Z 
50000 

Qi 40000 
u 
~ 30000 .. 
~ 20000 

...: 
10000 

Cell Proliferation 

f 
* 

o ~------__ --------________ ___ 
Cell # at day 0 Day 7 Day 11 

Date of Harvest 

-+- p(DTE co 
5%PEG 
carbonate)­
control 

~p(DTE co 
5%PEG 
carbonate)-OS 

-+- p(DTE 
carbonate)­
control 

p(DTE 
carbonate)-OS 

~p(DTO 

carbonate)­
control -+-

S3 

Figure 4.23 Cell proliferation of undifferentiated hMSCs (control) and OS cells on 
polymer substrates in a 14-day culture. Asteri sks indicates a statistically significant 
difference (p<O.05), between OS cells on poly(DTE co 5% PEG-I K carbonate) to OS 
cells on both poly(DTE carbonate) and poly(DTO carbonate). 
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4.5.2 Alkaline Phosphatase 

At day 7, alkaline phosphatase acti vity was negligib le. Undifferentiated hMSCs had 

lower a lkaline phosphatase acti vity compared to OS cells (Figure 4.25). Alka line 

phosphatase acti vity of OS cell s was not stat istically di fferent between substrates at day 

I I (Figure 4.26). 
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Figure 4.25 Alkaline Phosphatase acti vity of undi fferenti ated hM SCs (contro l) and OS 
cell s on polymer substrates. 
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Figure 4.26 Alkaline Phosphatase activity of OS cells on polymer substrates. 
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Undifferentiated hMSCs produced much less calcium than osteogenic differentiated 

hMSCs (Figure 4.27). There was no stati stical difference in calcium production of OS 

cells between the polymer substrates (Figure 4.28). Calci um production was normali zed 

to the average cell number obtained from the cell proliferation assay. At day I I, calcium 

production normali zed to cell number of OS cells on poly(OTE co 5% PEG- I K 

carbonate) was stati stically higher than poly(OTE carbonate) and poly(OTO carbonate) 

(Figure 4.29). This effect was also observed in the 96 well experiment (Figure 4.15). 
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Figure 4_27 Calcium production of undifferentiated hMSCs (control) and OS on 
polymer substrates. 
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Figure 4.28 Calcium production of OS cell s on polymer substrates. 
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Figure 4.29 Calci um production normalized to cell number of OS cell s. Asterisks 
indicates a statisticall y significant difference (p<0.05), between poly(DTE co 5% PEG­
l K carbonate) to both poly(DTE carbonate) and poly(DTO carbonate). 

4.6 Cytoskeleton Staining 

Cytoskeleton staining is an indication of focal adhesion contacts onto the substrate. [n 

this experiment, there were differences in the focal adhesion contacts of undifferentiated 

hMSCs and osteogenic differentiated hMSCs (OS cells) on the various substrates. The 

actin cytoskeleton assembly of undifferentiated hMSCs has a parallel orientation (Figures 

4.30d, 4.31 d, 4.33d). However, the actin cytoskeleton assembly of OS cells has a mesh-

like orientation (Figures 4.30e, 4.31 e, 4.33e). As early as 5 hours, cell s have established 

adhesion contacts with the polymer substrates (Figure 4.30a, 4.3 la, and 4.33a). Cells on 

poly(DTE co 5% PEG-I K carbonate) did not establish focal adhesion contacts to the 

substrate (Figure 4.32). There was no actin filaments observed in cells seeded on 
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poly(DTE co 5% PEG carbonate). [mages shown here were taken at 5 hours, 4 days and 7 

days after initial seeding at a magnification of 20X. 

Cells on poly(DTE carbonate), 20X: (a) undifferentiated hMSCs on 
poly(DTE carbonate) 5 hours after seeding, (b) undifferentiated hMSCs on poly(DTE 
carbonate) at day 4, (c) OS cells on poly(DTE carbonate) at day 4, (d) undifferentiated 
hMSCs on poly(DTE carbonate) at day 7, (e) OS cells on poly(DTE carbonate) at day 7. 
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Figure 4.31 Cells on poly(DTO carbonate), 20X: (a) undifferentiated hMSCs on 
poly(DTO carbonate) 5 hours after seeding, (b) undifferentiated hMSCs on poly(DTO 
carbonate) at day 4. (c) OS cells on poly(DTO carbonate) at day 4, (d) undifferentiated 
hMSCs on poly(DTE carbonate) at day 7, (e) OS cells on poly(DTE carbonate) at day 7. 
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Figure 4.32 Cells on poly(DTE co 5% PEG· I K carbonate), 20X: (a) 
hMSCs on poly(DTE co 5% PEG- I K carbonate) at 5 hours after seeding, (b) 
undifferentiated hMSCs on poly(DTE co 5% PEG- I K carbonate) at day 4. (c) OS cells 
on poly(DTE co 5% PEG- I K carbonate) at day 4, (d) undifferentiated hMSCs on 
poly(DTE co 5% PEG- I K carbonate) at day 7, (e) OS cells on poly(DTE co 5% PEG-I K 
carbonate) at day 7. 
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Figure 4.33 Cells on ti ssue culture polystyrene (TCPS), 20X: (a) undifferentiated 
hMSCs on TCPS 5 hours after seeding, (b) undifferentiated hMSCs on TCPS at day 4, (c) 
OS cells on TCPS at day 4, (d) undifferentiated hMSCs on TC PS at day 7, (e) OS cells on 
TCPS at day 7. 
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4.7 QCM-D

The QCM-D data provides information about the thickness of the adsorbed protein layer.

The data for the change in frequency and dissipation was modeled to using 2 different

models: Voight and Sauerbrey. The Sauerbrey model is used to calculate the adsorbed

mass of thin, non-dissipative layers of protein, while the Voight model is used to

calculate the adsorbed mass of a thick dissipative layer of protein. In this particular

application, the Voight model is preferred.

With 10% FBS, there is no statistical difference in the thickness of the protein

layer between the substrates using the Voight model due to the high standard deviations

(Figure 4.34). However, the thickness of the adsorbed protein layer using the Sauerbrey

model, shows a statistical difference between poly(DTE co 5% PEG-1K carbonate) and

the other substrates (Figure 4.35). Although, the Sauerbrey model is not the preferred

model for this application, it can be generally concluded that the adsorbed layer of fetal

bovine serum on poly(DTE co 5% PEG-1K carbonate) is thinner compared to the other

substrates.
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Figure 4.34 Thickness of adsorbed layer of 10% FBS onto substrates USIng Voight 
model. 

6.00 

5 .00 

_ 4.00 
E 
E-
O) 

0) 3.00 .. 
c: .., 
.11 
t=. 2 .00 

1.00 

0.00 

Layer Thickness of Protein (10%FBS) on Polymer Substrates 
Using Sauerbrey Model 

[] Poly(DTE-co-5%PEG 1 K 
carb onate) 

Poly(DTE-co-3%PEG 1 K 
carbonate) 

o Poly(DTE carbonate) 

o Poly(DTO carbonate) 

Figure 4.35 Thickness of adsorbed layer of 10% FBS onto substrates using Sauerbrey 
model. Asteri sks indicate statistical difference (p<0.05) between poly(DTE co 5% PEG­
I K carbonate) and other substrates. 
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4.8 Cell Motility 

The goal of the cell motility experiment was to eval uate the relationship between cell 

substrate adhesion and cell-cell aggregation to motility by modifying the molar fraction 

of PEG in the polycarbonate backbone. The cell motility experiments were conducted in 

March 2006, using hMSCs, Donor 4, passage 2. The effect of the molar fract ion of PEG 

in the polycarbonate backbone, on motility is evident in this experiment. As osteogenic 

differentiation proceeds to day II , OS cells on poly(DTE co 3% PEG-I K carbonate) has 

an increased effect on random motility coefficient, velocity and persistence time 

compared to the other substrates (Figures 4.36-4.39). [t is interesting to note that the 

motility data collected at day I [ on poly(DTE co 3% PEG-I K carbonate) is the highest in 

the experiment. By day II , there is considerable minera li zation of the extracellular 

matrix. 
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Figure 4.36 Average velocity of cells on substrates during II day motility experiment. 
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CHAPTER 5

DISCUSSION AND FUTURE RESEARCH

The regenerative potential of mesenchymal stem cells (MSCs), along with the relative

ease in culturing these cells in vitro has made them an attractive candidate in many tissue

engineering applications such as bone graft substitutes. Properties of ideal substrates for

potential bone graft scaffolds are:

• Bone in-growth

• Porosity

• Mechanical integrity

• Bioresorbable

The bioresorbability and mechanical properties of tyrosine derived polycarbonates have

been well characterized, and are appropriate for orthopedic applications. The goal of this

study was to determine the extent of osteogenic differentiation of hMSCs on tyrosine

derived polycarbonates as a function of the alkyl ester pendent chain length and molar

percent of PEG in the polycarbonate backbone.

Tyrosine derived polycarbonates are a library of bioresorbable polymers that

possess the same backbone yet differ in the methyl groups of the alkyl ester pendent

chain. The polycarbonates that were chosen for this study: poly(DTE carbonate) and

poly(DTO carbonate) have two methyl groups and eight methyl groups respectively.

Tyrosine derived polycarbonate PEG copolymers have three modifiable parameters: the

alkyl ester pendent chain length, the molecular weight of PEG and the molar percent of

67
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PEG. In this study, two parameters remained fixed: the alkyl ester pendent chain (ethyl)

and the molecular weight of the PEG molecule (1000 kDa), while the molar

percent of PEG was adjusted between 3-5%. The modifications in the polymer chemistry

of polycarbonates, whether it is the addition of methyl groups in the alkyl ester pendent

chain or the incorporation of PEG in the backbone has a significant effect on the surface

wettability of the polymer, which is reflected in the contact angle measurements (Table

4.1). It was hypothesized that the surface wettability may have a negative effect on

osteogenic differentiation.

In this study, osteogenic differentiation was assessed with the quantitation of

osteoblast biomarkers: alkaline phosphatase, and calcium. Cell proliferation was the

determinant of cell attachment and surface biocompatibility. Osteogenic differentiation

was also determined by morphology and cytoskeletal organization.

In the preceding results of the biochemical assays on 96 well plates, it was shown

that there was no statistical difference in the osteogenic differentiation in terms of cell

proliferation, alkaline phosphatase activity, calcium and osteocalcin, between poly(DTE

carbonate) and poly(DTO carbonate). However, the presence of PEG in the backbone of

the polycarbonate had a profound impact on osteogenic differentiation. PEG has an anti-

attachment effect on cells, which is reflected in the decrease in the cell number from the

initial cell seeding density (Figure 4.10). There was no statistical difference between the

substrates in terms of alkaline phosphatase activity. However, the calcium production of

osteogenic differentiated cells normalized to cell number on poly(DTE co 5% PEG-1K

carbonate) is statistically greater compared to both poly(DTE carbonate) and poly(DTO

carbonate).
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There was no qualitative difference in the morphology of OS cells on poly(DTE

carbonate) and poly(DTO carbonate). On these substrates at late timepoints (7 and 11

days), OS cells formed a confluent single-cell monolayer. However, on poly(DTE co 5%

PEG-1K carbonate) at late timepoints, OS cells were characterized by sparse clusters of

cell aggregates (Figure 4.7e). In fact, aggregation was observed as early as 4 hours after

cell seeding (Figure 4.7a).

The cytoskeleton organization through actin-filament staining, indicates the focal

adhesion contacts between the cell and the substrates and is representative of the

integrin-ligand binding interactions. The ligand in this case, are the adsorbed proteins present in

the cell culture medium, onto the substrate. In this study, it was observed that cytoskeletal

organization of OS cells on the substrates: poly(DTE carbonate) and poly(DTO

carbonate) had a mesh-like orientation (Figure 4.30e and Figure 4.31e), in contrast the

cytoskeletal organization of hMSCs on these substrates had a parallel orientation (Figure

4.30d and Figure 4.31d). The cytoskeletal organization of cells grown on poly(DTE co

5% PEG-1K carbonate), (Figure 4.32) was not apparent, therefore concluding that these

cells did not form focal adhesion contacts to the substrates. Another interesting point is

that the morphology and cytoskeletal organization of cells grown on poly(DTE co 5%

PEG-1K carbonate) did not change from the mesenchymal stem cell to the osteogenic

differentiated cell. These observations suggest that aggregation, a cell-cell cohesive force

is much stronger than the cell-substrate adhesive force on polycarbonates containing 5%

PEG.

The biochemical profile, morphology and cytoskeletal organization of OS cells on

poly(DTE co 5% PEG-1K carbonate) is remarkably different compared to cells on the
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other polymer substrates. This could be due to an accelerated state of differentiation. The

differentiation of osteoblasts proceeds with proliferation, which decreases, as matrix

maturation and mineralization occurs[16]. The absence of proliferation and increased

mineralization of OS cells on poly(DTE co 5% PEG-1K carbonate) could be evidence of

a highly differentiated osteoblast. Further biochemical assays testing for the presence of

osteopontin must be done to prove this.

The phenomenon of cell aggregation versus cell-substrate adhesion and migration

on polycarbonates containing PEG was reported by Ryan et al, in which L929 mouse

fibroblasts were transfected with different cadherin clones and seeded on polycarbonates

containing various concentrations of PEG. It was shown that decreasing the molar

percent of PEG in polycarbonates increases the cell-substrate adhesion as well as

increasing the rate of emigration[34]. In this study, this phenomenon was observed on

cells seeded on poly(DTE co 3% PEG-1K carbonate) which were morphologically more

spread out than cells seeded on poly(DTE co 5% PEG-1K carbonate) (Figure 4.16), and

had a higher incidence of cell attachment indicated by the cell proliferation data. The

alkaline phosphatase activity of osteogenic differentiated cells on poly(DTE co 3% PEG-

1K carbonate) was higher compared to poly(DTE co 5% PEG-1K carbonate) (Figure

4.20). However, calcium released normalized to cell number is significantly higher on

cells on poly(DTE co 5% PEG-1K carbonate) (Figure 4.22).

Evidence from the data presented in this study as well as previous studies,

suggests that cell-substrate adhesion is a function of the molar percent of PEG into the

polycarbonate backbone. In this study, the relationship between cell-substrate adhesion

and motility of undifferentiated hMSCs and OS cells was evaluated. Cell-substrate
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adhesion was modified by increasing the molar percent of PEG in the backbone from 3%

to 5%. In previous reports, it was shown that there was a biphasic effect of PEG

concentration on motility, in that at concentrations of PEG (<3%), there was

unsubstantial cell motility, as the concentration of PEG increased to an intermediate

concentration (3-4%), motility increased, and then decreased at higher concentrations of

PEG (>8%). This effect was observed in the average velocity data at day 11, where OS

cells on poly(DTE carbonate) had an unsubstantial average velocity, while cells on

poly(DTE co 3% PEG-1K carbonate) had the highest average velocity and cells on

poly(DTE co 5% PEG-1K carbonate) had a lower average velocity (Figure 4.39). This

suggests that perhaps the proteins adsorbed to the surface of poly(DTE co 3% PEG-1K

carbonate) are of an optimum conformation, which may promote cell motility.

The conformation of the adsorbed protein layer was not determined in this study

but can be inferred from the thickness of the protein layer, which was determined using

the Q-CMD instrument. Serum albumin is a globular protein of dimensions of

approximately 8nm x 3.8nm [20]. It is hypothesized that substrates that do not contain

PEG have hydrophobic-hydrophobic interactions with proteins which cause the protein to

unfold and denature onto the surface. However, substrates containing PEG have

hydrophilic-hydrophobic interaction, and results in the stabilization of the protein's

globular structure. The average Voight thickness of 10% FBS on poly(DTE carbonate),

poly(DTO carbonate), poly(DTE co 3% PEG-1K carbonate), poly(DTE co 5% PEG-1K

carbonate), respectively is 11.46 ± 4.59 nm, 7.04 ± 3.99 nm, 6.64 ± 4.15 nm, and 5.23 ±

2.36 nm. An argument could be made that on poly(DTE carbonate), poly(DTO

carbonate) and poly(DTE co 3% PEG-1K carbonate) that there are multi-layers of
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denatured albumin present on the surface, being that the thickness values are greater than

3.8 nm and are almost multiples of 3.8 nm. However on poly(DTE co 5% PEG-1K

carbonate), it can be inferred that there is one layer of non-denatured protein. The protein

in the denatured state reveals bioactive sites that are recognized by integrins, in which the

binding to the protein leads to signal transduction by way of adhesion, differentiation and

motility. In order to successfully engraft MSCs onto a substrate, the interface between the

cell and substrate, mediated by protein adsorption must be determined.

The work presented in this study is very preliminary and there are many areas

where one can expand upon to gain a greater understanding of the cell substrate interface

and how it affects cell differentiation. Surface analysis of the thin film substrates in terms

of surface topography and residual composition must be analyzed, because it was evident

that there was a difference of osteogenic differentiation on spin coated disks and solvent

cast films. The surface topography of the spin coated disks was analyzed with SEM (refer

to Appendix C), and it was shown to be homogeneous. However this analysis was not

conducted on solvent cast films. Furthermore, the protein adsorption experiments must be

conducted with extracellular matrix proteins such as fibronectin, vitronectin, and type I

collagen which contain the integrin-binding sites: arginine-glycine-aspartate (RGD), that

are integral in cell adhesion and osteogenic differentiation. In fact, Salasznyk et al.

reported that hMSCs seeded on plates coated with vitronectin or type I collagen in the

absence of osteogenic induction medium, can cause differentiation along the osteogenic

lineage. Osteogenic differentiation may also be a function of the paracrine factors that

cells secrete and may be dependent on cell seeding density. Future studies using various

cell seeding densities must be considered. Another concern for future studies is donor
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variation. In thi s study, consistent osteogenic differentiation data was obtained with one 

donor "Donor 2". For analys is of different donor types, refer to Appendix B. For future 

studies. the effect of donor variation must be analyzed. Gene express ion, using RT-PCR 

technology will provide sensiti ve information about the expression of osteoblast 

biomarkers. 

The aim of thi s study was to screen tyrosi ne deri ved polycarbonates for potential 

substrates for bone graft scaffolds, which are three dimensional envi ronments. Therefore, 

understanding the in vivo nature of mature osteoblasts is imperati ve. In vivo, osteoblasts 

exhi bit a compact. columnar, apical structure that form a layer of cells at sites of ti ssue 

deposition (Figure 5. 1) 
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Figure 5.1 Histology of cancellous bone of cat. Bone is lined with osteoblasts and 
osteoc ytes [6]. 

This is in contrast to the spread-out morphology of OS cells in vitro on the two 

dimensional polymer substrates: poly( DTE carbonate), poly(DTO carbonate) and 

poly(DTE co 3% PEG-I K carbonate). OS cell s on poly(DTE co 5% PEG- l K carbonate) 

have a morphology which most resembles mature osteoblasts in vivo. FUllher 

experiments, on three dimensional scaffo lds should be implemented to determine whether 
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the morphology and biochemical profile of OS cells is differs from the two dimensional

environment.

In conclusion, osteogenic differentiation of human mesenchymal stem cells was

supported on tyrosine derived polycarbonates in the presence of osteoinductive medium

in vitro. OS cells on poly(DTE carbonate), poly(DTO carbonate) and poly(DTE co 3%

PEG-1K carbonate) are characterized by cell proliferation, the secretion of alkaline

phosphatase and calcium, focal adhesion contacts to the substrate and a cuboidal

morphology. Moreover, OS cells on poly(DTE co 3% PEG-1K carbonate) is

characterized by a relatively high average velocity and random motility coefficient,

which is ideal for bone remodeling. The differences in morphology, cytoskeletal

organization, cell proliferation and biochemical markers between poly(DTE co 5% PEG-

lK carbonate) and poly(DTE carbonate), poly(DTE carbonate) and poly(DTE co 3%

PEG-1K carbonate) may be an indication of a highly differentiated osteoblast and further

analysis must be made to prove this. These distinct cell responses induced by the polymer

substrate could be used in a variety of tissue engineering applications.



APPENDIX A 

BIOCHEMICAL ASSA YS INCLUDING TCPS SAMPLES 

Tissue Cul ture Polystyrene (TCPS) was used as an internal control for osteogenic 

differentiation. During the biochemical assays on polymer substrates, hMSCs were 

seeded onto 96 well TCPS plates (Becton Dickinson: BD 3072, Franklin Lakes, NJ) and 

24 well TC PS plates (Becton Dickinson: BD 35 3047, Franklin, NJ ). 

A.I Cell Proliferation on 96 Well Plates 

In thi s experiment cell proliferation over a 14 day culture was quantified using the DNA 

assay. 
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Figure A.I Cell proliferation of OS cells on polymer substrates. 
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A.2 Alkaline Phosphatase Activity on 96 Well Plates 

Alkaline Phosphatase. a marker for osteogenic differentiation was quantified. 
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A.3 Calcium Production on 96 Well Plates 

Calcium production. a marker for osteogenic differentiation was quantifi ed. 
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Figure A.3 Calcium production of OS cells on polymer substrates. 
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A.4 Cell Proliferation on 24 Well Plates 

In thi s experiment cell proli feration over a 14 day cul ture was quantified using the DNA 

assay. 
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A.S Alkaline Phosphatase Activity on 24 Well Plates 

Alkaline Phosphatase, a marker for osteogenic differentiation was quantified. 
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A.6 Calcium on 24 Well Plates 

Calcium production, a marker for osteogenic differenti ation was quantifi ed. 
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A.7 Osteocalcin 

Osteocalcin is a marker for mature osteoblast differentiation[5J. The amount of 

osteocalcin present in the extracellular matlix of the samples was determined using the 

Intact Human Osteocalcin E[A kit (Biomedical Technologies, Stoughton, MA). [n this 

ELA kit, the provided standards and samples were quantified for osteocalcin by detecting 

the monoclonal antibody that is specific to it. A microplate coated with monoclonal 

antibody was treated with the standards and samples and osteocalcin antiserum for 2 and 

Y2 hours at 37°C. The plate was washed with phosphate-saline buffer 2-3 times before 

adding streptavidin-horseradish peroxidase for 30 minutes. The plate was washed again 

and a solution of hydrogen peroxide and TM B solution added to the plate, which was 

incubated fo r 10 minutes in the dark. The stop so lution was added to the wells of the plate 

and the resulting absorbance was read at 450 nm on the absorbance plate reader (Biotek). 
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A. 7.1 Osteocalcin Results 

At day I I, osteocalcin production on osteogenic di fferentiated hM SCs (OS) is 

stati sti ca ll y lower compared to the other substrates . Osteocalcin production was 

normali zed to average cell number. There was no stati stical difference between the 

substrates when normali zed to cell number. However, osteocalcin production normalized 

to cell number of the substrates is stati stically higher than osteocalcin production 

normali zed to cell number of ti ssue culture polystyrene . 
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Figure A.9 Osteocalcin production of OS cells on polymer substrates. 
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Osteocalcin Production Normalized to Cell Number 
at Day 11 
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Figure A.IO OsteocaJcin normali zed to cell number, of OS cells on polymer substrates. 



APPENDIX B 

DONOR VARIABILITY 

Donor variation may have an effect on osteogenic differentiation, which was first 

evidenced by Phinney et al. In an experiment conducted in May 2005, donor variability 

was observed in cell proliferation and osteogenic differentiation assays on 96 well ti ssue 

culture polystyrene (TCPS) plates. [n thi s experiment, at day 14, it is evident that Donor 3 

has the highest calcium production and Alkaline Phosphatase activity, but the lowest cell 

number. Donors I and 2 have similar response at day 7 but not at day 14. [t is not known 

whether, the variability is inherent in the donors. 

Cell Proliferation 
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Figure B.1 Cell proliferation of OS cells of Donors 1-3 on TCPS. Asterisks at day 4 
indicates statistical di fference , (p<0.05) between Donor 3 to both Donors I and 2. 
Asteri sks at day 14 indicates statistical difference between Donor 2 to Donors 2 and 3. 
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Figure B.2 Alkaline Phosphatase activ ity of OS cells of Donors 1-3 on TCPS. Asterisks 
at day 4, indicate statistical difference (p<O.05), between Donor 3 to both Donor I and 2. 
Asterisks at day 14, indicate stati stical difference (p<O.05) between Donor 2 to both 
Donor 2 and 3. 
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Figure 8 .3 Calcium production of OS cell s of Donors 1-3 on TCPS. Asterisks indicate 
statistical difference (p<O.05), between Donor 3 to both Donors 2 and 3. 
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Figure 8.4 Calci um normalized to cell number of OS cell s of Donors 1-3 on TCPS. 
Asterisks indicate stati stical difference (p<O.05), between Donor 3 to both Donor 2 and 3. 



APPENDIXC 

SEMIMAGING 

The integrity of the spin coated surface was observed with Scanning Electron Microscopy 

(SEM). The following SEM images are of spin coated di sks prepared in November 2005. 

The homogeneity of the surface indicated a smooth surface. SEM was not conducted on 

solvent cast films. 

Figure C.I SEM image of poly(DTE carbonate) at 2,020x. 
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Figure C.2 SEM image of poly(DTE co 5% PEG- I K carbonate) at 5,950X. 
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