

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

SEPARATION OF SSL PROTOCOL PHASES
ACROSS PROCESS BOUNDARIES

by
Kirthikar Anantharam

Secure Sockets Layer is the de-facto standard used in the industry today for secure

communications through web sites. An SSL connection is established by performing a

Handshake, which is followed by the Record phase. While the SSL Handshake is

computationally intensive and can cause of bottlenecks on an application server, the

Record phase can cause similar bottlenecks while encrypting large volumes of data.

SSL Accelerators have been used to improve the performance of SSL-based

application servers. These devices are expensive, complex to configure and inflexible to

customizations. By separating the SSL Handshake and the Record phases into separate

software processes, high availability and throughput can be achieved using open-source

software and platforms. The delegation of the SSL Record phase to a separate process

by transfer of necessary cryptographic information was achieved. Load tests conducted,

showed gains with the separation of the Handshake and Record phases at nominal data

sizes and the approach provides flexibility for enhancements to be carried out for

performance improvements at higher data sizes.

SEPARATION OF SSL PROTOCOL PHASES
ACROSS PROCESS BOUNDARIES

by
Kirthikar Anantharam

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science

May 2006

APPROVAL PAGE

SEPARATION OF SSL PROTOCOL PHASES
ACROSS PROCESS BOUNDARIES

Kirthikar Anantharam

Dr. Andrew Sohn, Thesis Advisor/Committee Chair 	 Date
Associate Professor, Department of Computer Science, NJIT

Dr. Alexandros Gerbessiotis, Committee Member 	 Date
Associate Professor, Department of Computer Science, NJIT

Dr. Teunis J. Ott, Committee Member 	 Date
Professor, Department of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author:	 Kirthikar Anantharam

Degree:	 Master of Science

Date:	 May 2006

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, NJ, USA, 2006

• Master of Science in Industrial Engineering,
New Jersey Institute of Technology, NJ, USA, 1999

• Bachelor of Engineering in Mechanical Engineering,
University of Mysore, India, 1996

Major:	 Computer Science

Transliteration:

Karmanye Vadhikaraste Ma Phaleshu Kadachana,

Ma Karma Phala Hetuh Bhurmatey Sangostva Akarmani

Translation:

You certainly have the right to perform your duties, but never at any time in their results.

You should never be motivated by the results of your actions, never should have any

attachment in not performing your duties.

Verse 47 from Chapter 2 of the Srimad Bhagavad-Gita forms one of my core

philosophical beliefs. I would like to dedicate this effort to my parents and my family

members in Bangalore, India. Their love and support during my formative years instilled

in me, a strong sense of values and a pure love for learning. I hope to have lived true to

my core belief through this research effort.

ACKNOWLEDGMENT

I would like to express my gratitude and appreciation to Dr. Andrew Sohn. He not only

inspired to take on this research effort but also supported, mentored and guided me

throughout the process. His knowledge and model work ethic helped groom my

professional outlook and scientific thinking. In spite of my residency out-of-state, he

graciously accepted to advise my Master's thesis primarily during meetings over

weekends, without which, this effort would have been impossible. Today, it is hard to

measure the growth of my technical capabilities in the field of Computer Science, thanks

in large part to Dr. Andrew Sohn. I would also like to thank Mr. Hyung Won Choi who

provided me with valuable insight during my research and helped me with all the

experimental setup. I request Dr. Alexandros Gerbessisotis and Dr. Teunis Ott to accept

my thanks for participating in my committee.

I like to specially thank my wife, Dr. Arti Santhanam and my brother, Karun

Anantharam for supporting me in all my endeavors. Without their support, I would lack

the motivation to attempt and the perseverance to complete such a research effort.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Virtual Private Network 	 1

1.2 SSL VPN 	 3

1.3 Problem Statement 	 4

2 BACKGROUND 	 6

2.1 Protocol Architecture 	 6

2.2 SSL Connection Phases 	 9

2.3 SSL Handshake 	 9

2.4 SSL Record Protocol 	 11

2.5 SSL Record Format 	 12

3 PROPOSED APPROACH 	 13

3.1 Cryptography and Clustering 	 13

3.2 SSL Accelerators 	 14

3.3 Separating the Handshake and Record Phases 	 15

3.4 Open-source SSL Software 	 18

3.5 Advantages of Delegation in Software 	 19

4 LOGICAL ORGANIZATIONS AND COMPONENTS 	 21

4.1 Software Platform and Libraries 	 21

4.2 Overall Logical Architecture 	 22

4.3 Transferring the SSL Cryptographic State 	 24

4.4 Handler Agent and SSLHandler 	 25

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.5 Delegate Agent and SSLWorker 	 29

4.6 SSLClient 	 31

4.7 Resuming the SSL Session 	 32

5 EXPERIMENTAL SETUP AND IMPLEMENTATION. 	 34

5.1 Hardware 	 34

5.2 Server Configurations 	 34

5.3 Metrics 	 37

6 RESULTS AND ANALYSIS 	 39

	

6.1 Handshake Times 39

6.2 Encryption Times. 	 41

6.3 Total Processing Times 	 42

6.4 Session Initiation and Resumption Times... 	 47

6.5 Experimental Limitations 	 49

	

7 CONCLUSIONS 50

8 FUTURE SCOPE 	 54

APPENDIX A HANDSHAKE TIMES 	 57

	

APPENDIX B SESSION INITIATION TIMES 59

APPENDIX C SESSION RESUMPTION TIMES 	 61

REFERENCES 	 63

viii

LIST OF TABLES

Table Page

2.1 OSI Layers and Services 7

6.1 Average SSL Handshake Times 40

6.2 Average Encryption Times 41

6.3 Total Processing Times 44

6.4 % Difference in Total Processing Times 45

6.4 % Increase in Session Initiation and Resumption Times 	 47

ix

LIST OF FIGURES

Figure 	 Page

2.1 OSI layer architecture 7

2.2 TCP/IP layer architecture 8

2.3 Location of SSL in the TCP/IP protocol stack 	 8

2.4 SSL Handshake 10

3.1 SSL Handshake phase with separation 16

3.2 SSL Record phase with separation 18

4.1 Overall logical architecture 23

4.2 Handler Agent 	 26

4.3 SSLHandler 	 28

4.4 Delegate Agent 30

4.5 SSLWorker 30

4.6 SSLClient 31

5.1 No-delegation configuration 35

5.2 2-Server configuration 36

6.1 Comparison of encryption times 42

6.2 Comparison of total processing times 46

63 Log % increase versus data size 48

7.1 Direct routing of SSL responses. 53

8.1 Proposed enhancements. 55

LIST OF ACRONYMS

S SL	 Secure Sockets Layer

VPN	 Virtual Private Network

ISO	 International Standards Organization

OSI	 Open System Interconnection

TCP	 Transport Control Protocol

IP	 Internet Protocol

HTTP	 Hyper Text Transfer Protocol

SMTP	 Simple Mail Transfer Protocol

NNTP	 Network News Transfer Protocol

MAC	 Message Authentication Code

TLS	 Transport Layer Security

ASN.1	 Abstract Syntax Notation One

BER	 Basic Encoding Rules

NAT	 Network Address Translation

CHAPTER 1

INTRODUCTION

1.1	 Virtual Private Network

Securing the network infrastructure of an organization is one of the top priorities for

information technology administrators [1]. One way to make a secure connection into an

organization is through a Virtual Private Network (VPN) [2, 3] over the public Internet.

Users can safely connect into an organization's infrastructure through a VPN service and

get access into personal files, email, databases, etc. with the assurance of no

eavesdropping on the data being accessed through the public Internet [4].

A VPN uses the Internet as its transport mechanism, while maintaining the

security of the data on the VPN [5]. The main benefit of a VPN is the potential for

significant cost savings compared to traditional leased lines or dial up networking.

However, these savings come with a certain amount of risk, particularly when using the

public Internet as the delivery mechanism for VPN data. VPN technology is based on the

idea of tunneling, and is commonly used to describe secure remote access tunnels.

Network tunneling involves establishing and maintaining a logical network connection

(that may contain intermediate hops). Over this connection, packets constructed using a

specific VPN protocol format and encapsulated within some other base or carrier

protocol, are transmitted between a VPN client and a VPN server, and finally, de-

encapsulated on the receiving side. For Internet-based VPNs, packets in one of several

VPN protocols are encapsulated within IP packets [6]. VPN protocols also support

1

2

authentication and encryption to keep the tunnels secure.

Technologies enabling VPN connectivity include Point-to-Point Tunneling

Protocol (PPTP) [7], Layer Two Tunneling Protocol (L2TP) [8], Internet Protocol

Security (IPSec) [9] and Secure Socket Layer (SSL)/Transport Layer Service (TLS) [10,

11, 12]. PPTP and L2TP exist at the data link layer (Layer Two) of the OSI model, while

IPSec exists at the network layer (Layer Three) of the OSI model.

Typically, IPSec based connectivity solutions are embedded in hardware and/or

custom software and that requires the presence of IPSec compliant hardware/software at

both end-points of the connection. This requirement for IPSec compliance at both end-

points along with its complex setup and management requirements has limited the

widespread adoption of IPSec-based VPN in general.

The Layer 2 Transmission Protocol (L2TP) as documented in RFC 2661 [8] is a

lower level protocol for remote connectivity. Combining PPTP [7] and Layer 2

Forwarding allows secure communications. All Microsoft Windows-based machines are

already equipped with this protocol for establishing secure connections to remote servers.

However, this protocol requires both the client and server to use proprietary software to

enable this forwarding. As a result, the usage of L2TP has also been limited.

SSL-based VPNs, on the other hand, leverage the existing and widely accepted

SSL protocol in standard Web browsers like Internet Explorer or Netscape Navigator.

The VPN connection is established and maintained over secure web connections using

HTTPS [13, 14, 15]. The base protocol for this connection is done through a higher-level

communication protocol (L4/L7) used in applications [16, 17, 18]. In addition, there is no

need for proprietary hardware/software compliance at the communication end-points.

3

1.2 SSL VPN

Architecturally and commercially, SSL-based VPN has significant advantages over the

other solutions. Firstly, Web browsers are ubiquitous. There is no need for expensive and

time-consuming conversions and training programs. Secondly, the solution is platform

independent. Anyone with a Web browser can connect securely into a network with little

or no configuration. Thirdly, development and security enhancements automatically

evolve as SSL and browser technologies improve (client side). Lastly, the solution is

inexpensive, since Web browsers with SSL capabilities are freely available.

While the advantages of an SSL-based VPN solution greatly outweigh the

alternatives, this approach is not without its problems, namely performance scalability. At

the core of SSL-based VPN or any SSL-based service is its encryption/decryption

capability [19]. All data traveling through an SSL tunnel will entail substantial encryption

and decryption. During times of high load, a VPN server can potentially end up in a

crippled state. Studies have indicated that even a small number of users generating SSL-

based traffic can drop server performance to 80% or by 1/5th of its performance

capability [20, 21]. Thus, the encryption/decryption overhead of SSL based services

poses a significant problem [22].

Dedicated hardware and software technologies have been introduced to accelerate

the SSL protocol [23, 24]. Modern L4/L7 switches provide hardware support for SSL

acceleration as part of the switch configuration. SSL VPN products from vendors such as

Array Networks [25], Aventail [26], Cisco [27], Juniper Networks [28], Nokia [29],

NetScaler [30], Netilla Networks [31], NetSilica [32], Nortel Networks [33], Symantec

(appliance) [34], Whale Communications [35], etc. come equipped with SSL VPN as one

4

NetScaler [30], Netilla Networks [31], NetSilica [32], Nortel Networks [33], Symantec

(appliance) [34], Whale Communications [35], etc. come equipped with SSL VPN as one

of the standard features.

Software approaches to accelerate SSL-based connections have also emerged in

an attempt to provide fast and secure VPN connectivity. Software vendors such as Areabe

[36], CheckPoint [37], Citrix [38], Menlo Logic [39], OvisGate [40], PortWise [41],

Symantec [34], Tarantella [42], V-ONE [43], 3SP (open-source) [44], etc. support SSL

VPN features in their product offerings.

1.3 Problem Statement

While the hardware and software solutions described in the previous section increase the

performance of SSL computing, two issues remain unanswered, namely performance

scalability and closed-box vs. open-source. As these products and approaches are closed-

boxes and proprietary in nature, it is very difficult for the vast majority of the open-

source community to make any changes for improvement and customize them for

specific needs. While scaling with these closed-boxes is cost-prohibitive and complex in

most cases, it is simply unrealistic in others.

The primary objective is to examine the feasibility of separating the SSL protocol

phases across process boundaries and measure any gains thereof, in an effort to improve

the clustering capabilities and increase the performance of SSL-based computing. The

outcomes of this investigation hold a direct relevance to the larger problem domain of

clustering and scalability in VPN and Web servers using an open-source approach.

SSL is a protocol that ensures the security of the data transmitted over the

5

Internet, using encryption capabilities that are automatically available in every browser.

The SSL protocol consists of two phases, the Handshake phase and the Record phase.

Currently, these phases are implemented to execute as part of a single operating system

process in user-mode. The goal is to distribute these phases over separate processes

executing on multiple servers. A successful separation will not only provide enhanced

options for clustering, but also potentially improve performance and scalability. The

performance gains demonstrated by such a distributed approach will be especially useful

in the area of SSL-based VPN services and HTTPS (HTTP over SSL).

CHAPTER 2

BACKGROUND

Chapter 1 provided an introduction to VPN and the various protocols and approaches

used to provide VPN connectivity to clients. It also provided an overview of the SSL-

based VPN services and a description of the problem statement as it relates to SSL-based

services. This chapter will discuss in brief, the TCP/IP communication protocol and the

two phases of the SSL protocol in more detail.

2.1 Protocol Architecture

The International Standards Organization (ISO) proposed a highly modular, layered

architecture for the communication protocols over the Internet called the Open Systems

Interconnection (OSI) model, published as OSI RM-ISO 7498. Figure 2.1 shows the OSI

protocol architecture. Table 2.1 gives a brief description of the services provided by each

layer.

6

Figure 2.1 OSI layer architecture.

Table 2.1 OSI Layers and Services

Layer No. Layer Name	 Services provided by Layer

1	 Physical	 Encoding and Signaling, Physical Data Transmission,
Hardware Specifications, Topology and Design

2	 Data Link	 Logical Link Control, Media Access Control, Data
Framing, Addressing, Error Detection and Handling,
Defining Requirements of Physical Layer

3	 Network	 Logical Addressing, Routing, Datagram Encapsulation,
Fragmentation and Reassembly, Error Handling and
Diagnostics

4	 Transport	 Process-Level Addressing, Multiplexing/De-
multiplexing, Connections, Segmentation and
Reassembly, Acknowledgments and Retransmissions

5	 Session	 Session Establishment, Management and Termination

6	 Presentation	 Data Translation, Compression and Encryption

7	 Application	 User Application Services

7

Transmission Control Protocol/Internet Protocol (TCP/IP) is a suite of protocols

that enable networks and machines to be interconnected and forms the basic foundation

8

for the Internet. The TCP/IP suite of protocols is a subset of the OSI model and contains

five layers in its architecture. The services provided by the various TCP/IP layers are the

same as the ones provided by the OSI model. The layers in the TCP/IP suite are shown in

Figure 2.2.

Application Layer

Transport Layer (TCP)

Network Layer (IP)

Data Link Layer

Physical Layer

Figure 2.2 TCP/IP layer architecture.

SSL runs beneath application layer protocols such as HTTP, SMTP and NNTP

and above the TCP transport layer protocol. Figure 2.3 shows the location of SSL within

the TCP/IP protocol suite. In practice, applications that wish to use SSL for

communication make use of standard software libraries that provide services constructed

around the TCP/IP stack, which is exposed through the system call interface on most

operating systems.

Application Layer (HTTP)
SSL

Transport Layer (TCP)

Network Layer (IP)

Data Link Layer
Physical Layer

Figure 2.3 Location of SSL in the TCP/IP protocol stack.

9

2.2 SSL Connection Phases

SSL connections are divided into two phases, the Handshake and Record phases [43].

The SSL Handshake phase authenticates the server (optionally, the client) and establishes

the cryptographic keys which are used to protect the transmitted data. The Handshake

phase must be completed before any application data can be transmitted. Once it is

complete, the data to be communicated is broken up into fragments, which are encrypted

and then transmitted as a series of packets. This phase is called the SSL Record phase.

2.3 SSL Handshake

During the SSL Handshake, the server and optionally, the client, are authenticated using

digital certificates. An encryption algorithm is selected from a set of predefined

algorithms and a symmetric key is chosen for each direction of communication. The

following series of messages are exchanged by the server and the client to perform a

successful SSL Handshake [45]. Figure 2.4 illustrates the same.

1. The client sends the server, the client's SSL version number, cipher settings,
randomly generated data, and other information required by the server to
communicate with the client using SSL. This step is denoted by the client-hello
message in Figure 2.4.

2. The server sends the client, the server's SSL version number, cipher settings,
randomly generated data, and other information the client needs to communicate with
the server over SSL. The server also sends its own certificate and, if the client is
requesting a server resource that requires client authentication, requests the client's
certificate. This step is denoted by the server-hello message in the Figure 2.4.

3. The client uses some of the information sent by the server to authenticate the server.
If the server cannot be authenticated, the user is warned of the problem and informed
that an encrypted and authenticated connection cannot be established. If the server
can be successfully authenticated, the client moves on to step 4.

10

4. Using all data generated in the handshake so far, the client (with the cooperation of
the server, depending on the cipher being used) creates the pre-master secret for the
session, encrypts it with the server's public key (obtained from the server's certificate,
sent in Step 2), and sends the encrypted pre-master secret to the server. This step is
denoted by the client-premaster-key message in Figure 2.4.

5. If the server has requested client authentication (an optional step in the handshake),
the client also signs another piece of data that is unique to this handshake and known
by both the client and server. In this case the client sends both the signed data and the
client's own certificate to the server along with the encrypted pre-master secret.

I ► client-hello •

• server-hello •

► client-premaster- •
key

-. client-verify .-

--■ client-finish .-

• server-verify •

• server-finish 4

Figure 2.4 SSL Handshake.

6. If the server has requested client authentication, the server attempts to authenticate
the client. If the client cannot be authenticated, the session is terminated. If the client
can be successfully authenticated, the server uses its private key to decrypt the pre-
master secret and performs a series of steps (The steps are also performed by the
client, starting from the same pre-master secret) to generate the master secret.

11

7. The client and the server, then, use the master secret to generate the session keys,
called the write-key and the read-key. These are symmetric keys used to encrypt and
decrypt information exchanged during the SSL Record phase and to verify the
integrity of the SSL session, i.e., to detect any changes in the data between the time it
was sent and the time it is received over the SSL connection. Different keys are used
for each direction of transmission. Feeding the master key, the session identifier, and
the challenge data through an algorithm generates the session keys. The two ends of
the SSL connection do this independently.

8. The client then sends a message denoted by client-verify to the server informing it
that future messages from the client will be encrypted with the session key. It then
sends a separate (encrypted) message indicating that the client portion of the
handshake is finished. This step is denoted by the client-finish message in Figure
2.4.

9. The server sends a message denoted by server-verify to the client informing it that
future messages from the server will be encrypted with the session key. It then sends
a separate (encrypted) message indicating that the server portion of the handshake is
finished. This step is denoted by the server-finish message in Figure 2.4.

10. The SSL Handshake phase is now complete, and the SSL session is completely
established. The client and the server use the session keys to encrypt and decrypt the
data they send to each other and to validate its integrity.

2.4 SSL Record Protocol

The purpose of the SSL Handshake phase is to setup the shared data required to enable

the sending and receiving of protected data. In SSL, the actual data transfer is

accomplished during the second phase using the SSL Record Protocol [46]. The SSL

Record Protocol works by breaking up the data stream to be transmitted into a series of

fragments, each of which is independently encrypted and transferred. On the receiving

end, each record is decrypted and verified.

To ensure the integrity of the message and to guard against an attacker replying to

an old message, a Message Authentication Code (MAC) is computed over the data to be

transmitted. The MAC is concatenated to the data and the entire block is then encrypted

12

to form the payload. Finally, a header is attached to the payload to form a record. These

records are then transmitted using lower level protocols such as TCP. If necessary,

random padding data will be added to an application message to make it the correct

length for the encryption algorithm to process.

2.5 SSL Record Format

There are three record types for SSL Version 3: (1) Handshake (2) Alert - warning or

fatal error (3) Data - application data

The data in any SSL record has the following characteristics: (1) A variable

length and starts with a 5-byte record header; (2) Contains handshake data, alert data or

application data; (3) Is encrypted, except for the first few messages in the handshake

message flows. The format of an SSL Record is as follows:

Byte 0:	 SSL Record Type

Bytes 1-2:	 SSL Version (major/minor)

Bytes 3-4:	 Length of data in the record (excluding the header itself). The

maximum record size supported by SSL 16384 bytes (16K).

CHAPTER 3

PROPOSED APPROACH

The previous chapter explained in detail the SSL protocol phases and the format of the

records transmitted between the end points of an SSL connection. This chapter will focus

on the computational overhead caused by the encryption and decryption activities carried

out by the server during the SSL Handshake and Record phases, and delve into the

strategies available to improve server throughput and performance. The proposed

approach consisting of distributing the SSL protocol phases over separate processes is

described and the advantages it provides are discussed.

3.1 Cryptography and Clustering

Once a client and a server have completed the Handshake phase, they can communicate

using standard encryption algorithms such as DES, RC4, etc. These algorithms, called

ciphers, use a technique called symmetric-key cryptography. Symmetric-key

cryptography uses a common key for both encrypting and decrypting data. Symmetric

key cryptography is relatively fast compared to public-key cryptography [47].

Public-key cryptography uses a pair of keys, called private key and public key and

is usually based on the RSA algorithm. Typically, 1024-bit RSA key-pairs are used in

SSL-based communications. Public-key cryptography is also called asymmetric-key

cryptography, since it uses a pair of keys, to perform the encryption and decryption of

information. During the Handshake phase, public-key cryptography is used to exchange

13

14

important pieces of data (pre-master secret and challenge data) used to generate the

symmetric keys called session keys. In addition, the Handshake phase performs server

authentication (optionally, client authentication) and negotiation of ciphers.

The Handshake phase is computationally very intensive owing to the public-key

cryptography in addition to the load imposed by the authentication and symmetric key

generation activities [22]. This is a major cause of bottlenecks in servers supporting SSL-

based communications. In many cases, such bottlenecks limit a server to as few as five or

ten SSL handshake transactions per second depending on the power of the server.

Delegating the computationally intensive cryptographic operations from the server to a

separate and specially designed device/entity can distribute the load on the CPU and

increase throughput. Thus, cryptographic operations required by SSL create a need for

load distribution through clustering.

3.2 SSL Accelerators

A specialized device that is designed to handle the extra computational burden imposed

by the SSL Handshake phase is called an SSL Accelerator [48, 49]. SSL Accelerators are

available in two forms, internal cards and network devices [50]. Internal cards generally

handle the SSL encryption and decryption process, leaving the server to cope with

activities such as session set-up, key exchange and cipher suite negotiations. External

network devices are capable of handling the entire SSL workload, so that the traffic

entering and leaving the server is in plain HTTP format or other clear-text. Although SSL

Accelerators provide numerous advantages, they pose the following disadvantages:

• Expensive and highly specialized.

15

• Complex setup and configuration requirements.

• Difficult to perform customizations since all the functionality is built into the
hardware.

• Application functionality — Most commercially available SSL Accelerators are
designed and built to operate in conjunction with web servers providing HTTPS
capabilities.

• Symmetric encryption for large data sizes — SSL Accelerators usually provide
assistance with the public-key cryptography portion of a Handshake. Once the initial
SSL session is established, the Accelerator plays no part in further connections with
the same SSL session. Although some are capable of performing symmetric
encryption, the overheads of actually sending the information to the hardware to be
encrypted or decrypted is often higher (both in terms of latency and system resources)
than just performing the operations directly in the server. This problem of increasing
loads due to symmetric encryption becomes especially significant when the size of
data to be encrypted is large, in the order of hundreds of Kilobytes to Megabytes and
higher.

• Large decryption loads on servers — The increased load due to symmetric decryption
is also significant when decryption is required at the server for large data volumes In
the case of web servers, which typically use SSL, the decryption loads on the server
are insignificant compared to the encryption loads for out-going data. SSL VPNs on
the other hand, would have to handle large-volumes of data, both incoming and
outgoing.

• Logical separation of SSL gateways and application servers providing data for
encryption — Separation of secure gateways to an enterprise from the application
servers is not possible due to tight coupling between software providing SSL
capabilities and application functionality.

• Special requirements such as measurement of SSL encryption performance are not
easy to achieve due to proprietary hardware and firmware.

3.3 Separating the Handshake and Record Phases

The proposed approach to achieve performance gains and scalability involves the

separation of the SSL Handshake and the Record phases across process boundaries as

described below. A client such as a Web browser wishing to communicate with a server

(Web server, VPN server, etc.,) using SSL, establishes an SSL connection (SSL

16

Handshake) followed by exchange of encrypted information through requests and

responses (SSL Record phase). Typically, the server process connected to the client

handles both the SSL protocol phases. The proposed approach involves one server

process handling the SSL Handshake phase while another handles the SSL Record phase.

Henceforth, SSLClient will refer to the client and SSLHandler, the server process

that participates in the SSL Handshake with the client. Initially, SSLClient and

SSLHandler perform an SSL Handshake. This is followed by the SSLHandler transferring

all the cryptographic information required by the SSL Record phase to an external process

called, SSLWorker. Figure 3.1 illustrates this simple two-step process of performing an

SSL Handshake.

Figure 3.1 SSL Handshake phase with separation.

The 2-step process described creates a pathway for two-way data communication

17

between the SSLClient and the SSLWorker during the SSL Record phase. Through this

pathway, the SSLWorker can receive encrypted data from the SSLClient, decrypt it, and

perform a series of custom actions as requested by the SSLClient and send back an

encrypted response. Examples of such custom actions include, but are not limited to

updating a database, creating media files, etc. The SSLHandler simply acts as an

intermediary during the SSL Record phase, passing encrypted data coming from the

SSLClient to the SSLWorker and vice-versa.

Figure 3.2 depicts SSL Record phase communications between the SSLClient and

the SSLWorker. Following Step 2 in Figure 3.1, the SSLClient creates a simple HTTP

request in Step 3 and transmits it to the SSLHandler as shown in Figure 3.2. The

SSLHandler receives the request and forwards it to the SSLWorker in Step 4. The

SSLWorker decrypts the request using the cryptographic information received from the

SSLHandler (after the SSL Handshake) and creates an encrypted response which is

transmitted back to the SSLHandler in Step 5. The SSLHandler re-transmits the response

received from the SSLWorker to the SSLClient in Step 6.

Steps 3 through 6 describe the crux of the proposed approach to separate the SSL

protocol phases across process boundaries. The SSLHandler handles all the processing

during the Handshake phase, and delegates the Record phase operations to the

SSLWorker instance. The separation provides the ability to selectively scale either the

servers performing the SSL Handshake phase or the ones involved in the SSL Record

phase or both, as the requirements demand. This is possible because, the SSLHandler and

SSLWorker processes can be executed on separate physical machines. The separation also

allows the time-consuming symmetric encryption and decryption of large data (hundreds

18

of Kilobytes to Megabytes) to be moved and scaled on separate computers, thus enabling

the faster SSL Handshakes carried out by dedicated servers.

Figure 3.2 SSL Record phase with separation.

3.4	 Open-source SSL Software

Open-source SSL software libraries such as OpenSSL provide the ability to perform SSL

communications over TCP/IP in a very simple fashion. It is also tailored for open-source

platforms such as the Linux operating system that runs on in-expensive x-86 hardware.

Put together, they offer a free and highly cost-effective solution in comparison to

expensive and proprietary hardware devices such as SSL Accelerators. The caveat is that

within OpenSSL, the SSL Handshake and SSL Record phases are tightly coupled within a

single operating system process.

19

SSL-based communications using OpenSSL as-is, would not be flexible enough

to accomplish the separation of the SSL Handshake and Record phases across the

SSLHandler and SSL Worker processes respectively. No commercial products are

available in the market either to achieve such a separation. Custom software developed in

conjunction with OpenSSL would offer such a solution. The SSLHandler and SSLWorker

processes mentioned in the previous section constitute such custom software developed

around the OpenSSL software library in addition to minor modifications to the library

itself These minor modifications are required to make the open-source library adaptable

for such use.

3.5 Advantages of Delegation in Software

A software solution, as described in the previous sections, providing the ability to

delegate the SSL Record phase of an SSL connection to an external process provides the

following advantages:

• Cost savings owing to the use of a freely available open-source platform such as
Linux and the open-source SSL software OpenSSL compared to expensive hardware
solutions involving SSL accelerators and load balancers.

• High availability can be easily achieved at low cost by providing fail-over capabilities
to servers performing SSL Handshake and/or SSL Record phases as required.
Providing fail-over with SSL Accelerators will increase the already high cost of such
hardware.

• Scaling can also be accomplished easily and cost effectively as compared to hardware
SSL Accelerators.

• Ability to be designed and developed for easy setup and configuration with varying
degrees of customizability.

• Ease of integration - Backend applications such as databases, file servers, multi-
media servers, tunneling software, etc., can be easily integrated with processes that

20

perform SSL Record phase communications.

• Special measurements such as SSL Handshake and Record phase SSL encryption
performance can be easily collected by modifying any part of the open-source code
(Linux and/or SSL library source) to track any desired metrics.

• Symmetric encryption for large data sizes — The ability to off-load the symmetric
encryption to an external process will prove beneficial for large data sizes. Typically,
multi-media servers, file servers, etc., which server large amounts of data to clients
require such capabilities.

• Large decryption loads on servers — A software solution provides the ability to
decrypt large amounts of data on the server in an efficient manner since this activity
can be carried out by an external process. Large decryption loads are often
experienced by VPN and Secure Shell servers that provide tunneling capabilities to
clients.

CHAPTER 4

LOGICAL ORGANIZATION AND COMPONENTS

This chapter discusses the implementation details of the SSLHandler and SSL Worker

components introduced in the previous chapter. Also discussed are two software

processes called Handler Agent and Delegate Agent, used to manage the SSLHandler and

SSL Worker instances, respectively. The implementation includes the use of various open-

source libraries and minor modifications to the OpenSSL library. The various data

structures used are also described in this chapter.

4.1 Software Platform and Libraries

Red Hat Linux 9 is the software platform used to implement the SSLClient, Handler

Agent, SSLHandler, Delegate Agent and SSL Worker executables. Code development was

carried out using the C programming language and gcc compiler.

OpenSSL version 0.9.7d is used to provide the required SSL functionality [51].

The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade,

full-featured, and open-source toolkit implementing the Secure Sockets Layer (SSL

v2/v3) and the Transport Layer Security (TLS v1) protocols as well as a full-strength

general purpose cryptography library. The project is managed by a worldwide community

of volunteers that use the Internet to communicate, plan, and develop the OpenSSL

toolkit and its related documentation. OpenSSL is based on the SSLeay library developed

by Eric A. Young and Tim J. Hudson.

21

22

ASN.1 stands for Abstract Syntax Notation One. ASN.1 allows the description of

complex data structures independently of any particular programming language. The

ASN.1 compiler can then take these ASN.1 specifications and produce a set of target

language (C, C++, Java) files which contain the native type definitions for these

abstractly specified structures, and also generate source code (function calls) which can

perform the conversions of these structures into/from a series of bytes (serialization/de-

serialization) [52]. These function calls provide the capability to transfer data structures

with information over the network or to write to external media.

An open-source ancillary library termed libancillary; version 0.9.1 is also used in

the implementation to provide an easy interface to UNIX domain sockets [53]. This

interface is used to pass file descriptors from one process to another and is used to

implement the session resumption capabilities as detailed in a separate section of this

chapter.

4.2	 Overall Logical Architecture

Figure 4.1 shows the architecture comprising of the various processes and steps involved

in the separation of the SSL protocol phases. The Handler Agent and the Delegate Agent

represent daemons listening for incoming connections. The following steps illustrate the

process of establishing a new SSL connection before an SSLClient instance can send

encrypted requests and receive encrypted responses from the server.

1. An SSLClient instance initiates a new SSL Connection request with the Handler
Agent.

2. The Handler Agent spawns a child process, called the SSLHandler, to perform the
SSL Handshake.

23

3. The SSLHandler instance connects to the Delegate Agent daemon for delegation.

4. In response to the connection request from the SSLHandler, the Delegate Agent
spawns a child process, called SSLWorker, to whom all the SSL requests will be
delegated to.

5. Then, the SSLClient and SSLHandler instances perform a full SSL Handshake.

6. The SSLHandler process collects all the cryptographic state information resulting
from the SSL Handshake and transports it to the SSL Worker instance.

Figure 4.1 Overall logical architecture.

24

After Step 6, the SSLHandler is ready to delegate incoming requests from the

SSLClient to the SSLWorker instance. The SSLWorker instance is ready to receive

encrypted requests, decrypt it, and create encrypted responses. These responses are sent

back to the SSLHandler which, in turn forwards them to the SSLClient. The red and green

arrows shown in Figure 4.1 indicate the flow of requests and responses, respectively.

The process of SSL session resumption does not involve Steps 2 and 4 since there

is no need to spawn new SSLHandler and SSLWorker processes. The Handler Agent and

the Delegate Agent re-use the previously spawned processes by locating them based on

the resuming SSL session identifier in the connection request (Step 1). More details on

this are provided in a later chapter.

4.3 Transferring the SSL Cryptographic State

While an SSLHandler instance performs the handshake with the SSLClient, the process of

data encryption and decryption in the SSL Record phase is performed by a SSLWorker

instance running on a separate server. So, there is a need to transfer the cryptographic

state (keys, ciphers, etc.,) attained by the SSLHandler instance after the completion of the

handshake to its corresponding SSLWorker instance.

The transfer of cryptographic state is achieved by the use of ASN.1. The

OpenSSL structure SSL* stores all the cryptographic information required to delegate the

SSL Record phase to an external process. This structure in turn, contains OpenSSL

structures such as SSLSession* and SSLCipher* along with other information. An ASN.1

specification was developed to represent the minimal information contained in the SSL*

and its nested structures, required during the SSL Record phase. This specification was

25

provided as input to the asnlc compiler, which produced the C language files with

headers.

The asnlc is a free, open source compiler of ASN.1 specifications into C source

code [54]. It supports a range of ASN.1 syntaxes, including ISO/IEC/ITU ASN.1 1988,

'94, '97, '02 and later amendments. The encoding used in this implementation is as per the

Basic Encoding Rules (BER) syntax.

4.4 Handler Agent and SSLHandler

The Handler Agent spawns a child process, referred to as SSLHandler, to serve each new

SSL connection request (requests without an SSL session identifier). SSL connection

requests with an SSL session identifier are handed over to the previously spawned

SSLHandler process that served a request with the same session identifier. The flowcharts

shown below show the actions taken by the Handler Agent and SSLHandler processes in

serving incoming requests.

Figure 4.2 represents the actions taken by Handler Agent in particular. The

initialization step involves two main activities: (1) Reading a configuration file called

entryserver. config (2) Setup of a hash table called the SessionlD table to keep track of the

SSL session identifiers and the SSLHandler instances serving these SSL sessions. The

entryserver. config file contains the server names and the respective port numbers of the

Delegate Agent instances to connect to in a round-robin fashion. Future sections in this

chapter discuss the implementation of SessionID table and the enablement of SSL session

resumption in more detail.

Figure 4.2 Handler Agent.

26

27

As the Handler Agent listens for incoming requests and accepts a connection, it

checks the request to see if an SSL session identifier is present. If it does not find one, the

request is treated as one coming from a new SSLClient. First, a pair of sockets is created

using the socketpair() system call. The Handler Agent will use one socket from this pair

to communicate with its child. This is followed by the spawning of a new child process

(SSLHandler) using the fork() system call. The SSLHandler instance can communicate

with the Handler Agent since it inherits both the socket descriptors from its parent

(Handler Agent). The Handler Agent then sends the socket descriptor obtained by

accepting an incoming connection request from an SSLClient to the SSLHandler. This

enables the SSLHandler to communicate directly with the SSLClient to perform an SSL

Handshake. Meanwhile, the Handler Agent returns to accept any more waiting

connection requests.

On the other hand, if a newly accepted connection request contains an SSL

session identifier, the Handler Agent tries to retrieve the value stored in the SessionlD

hash table stored against a key identical to the SSL session identifier. The value stored

against the session identifier key is the socket descriptor (derived from the socketpair()

call) capable of communicating with the SSLHandler instance that had previously served

a request with the same session identifier. Upon retrieving this socket, the Handler Agent

uses it to send the new socket descriptor obtained by accepting the incoming connection

request from SSLClient to the appropriate SSLHandler instance. This enables an

SSLHandler instance to resume an SSL session without the need to perform a full

Handshake again.

28

Figure 4.3 SSLHandler.

29

Figure 4.3 depicts the flow of actions taken by an SSLHandler instance. It sets up

the OpenSSL SSL_CTX* structure and connects to an instance of SSLWorker. All SSL

Record phase communications from the SSLClient will be delegated to this SSLWorker

instance. This is followed by the receipt of the socket descriptor holding a connection to

the SSLClient. The OpenSSL library call SSL_accept() performs a Handshake or a

session resumption depending on the presence of an SSL session identifier in the data

sent by SSLClient. This is followed by the relaying of the session identifier back to

Handler Agent for inserts/updates to its SessionlD table. The SSLHandler process then

uses the ASN.1 routines (generated by the asnlc compiler) to communicate all the

pertinent cryptographic state information to the SSL Worker, which enables it to delegate

the SSL Record phase.

4.5 Delegate Agent and SSLWorker

The Delegate Agent spawns a child process, referred to as SSLWorker, to serve the SSL

Record phase needs of an SSLHandler process, which, in turn communicates with an

instance of SSLClient. The Delegate Agent waits for new connection requests and spawns

a child process (SSL Worker) after accepting a new connection. This is illustrated in

Figure 4.4.

An SSLWorker sets up the OpenSSL SSL_CTX* structure and waits for incoming

data (cryptographic information) from its corresponding SSLHandler. It creates the

required SSL* and its nested data structures and copies the cryptographic information

received into these structures. This enables the SSLWorker instance to encrypt/decrypt

information. This process is illustrated in Figure 4.5.

Figure 4.4 Delegate Agent.

30

Figure 4.5 SSLWorker.

31

4.6 SSLClient

The SSLClient functions as depicted in Figure 4.6. It initializes and sets up the

SSL CTX* structure. It follows this by creating a TCP/IP based socket connection to the

Handler Agent. Using this socket, an SSL connection is established (through an

SSL _connect() call) with an SSLHandler process.

Figure 4.6 SSLClient.

32

HTTP requests are sent through this SSL connection in an encrypted format and

responses are read back and decrypted. After the first request-response cycle, an attempt

is made to resume the previously created SSL session by retrieving the SSLSession*

from the SSL* structure and re-using it in a new SSL connection. After a pre-determined

number of such session resumptions, the SSLClient terminates. This sequence of actions

simulates a real-world user establishing a new SSL connection with a backend

application server, carrying out some transactions and then disconnecting.

4.7 	 Resuming the SSLSession

The ability to resume an SSL session is very important since SSL resumption is a highly

efficient operation that eliminates the need for returning SSL clients to perform a

complete SSL Handshake [3]. SSL session resumption is implemented by means of a

hash table used to keep track of SSLHandler processes that have previously performed an

SSL Handshake and served a request. This hash table is called the SessioniD table

throughout this document. The following C structures show the data stored in each entry

of the hash table.

struct key {

char session id[32];

} ;

struct value {

int sd;

} ;

33

The SSLHandler process communicates a newly established SSL session

identifier to the Handler Agent through a UNIX domain socket. The Handler Agent

receives this information and creates a new entry in the SessionlD table with the SSL

session identifier as the key (struct key) and the corresponding socket descriptor as the

value (struct value). This socket descriptor represents the SSLHandler process in the

Handler Agent since it provides the ability to communicate with the SSLHandler

instance, at will. Although session resumptions do not usually result in a change to the

SSL session identifier it has been observed that some session identifiers undergo a

change upon session resumption. This creates the need for an SSLHandler instance to

communicate the session identifier back to Handler Agent for every request received.

This two-way communication channel enables Handler Agent to send socket descriptors

(representing connections to SSLClient instances) to the appropriate SSLHandler

instances during session resumptions.

New SSLHandler instances are created only when a SSL session is to be

established for the first time with an SSLClient. These instances are not destroyed after

the completion of the first request, but are preserved in memory. By preserving these

running SSLHandler processes, it is possible to resume SSL sessions with minimal

overhead by avoiding the creation of new processes with each subsequent request from

the same SSLClient. The Handler Agent peeks into a connection request to see if a SSL

session identifier is available. If one is present, it looks up the SessionlD table to retrieve

the UNIX domain socket connecting it to the appropriate SSLHandler instance. The

socket descriptor representing the new client connection is then transported to the

SSLHandler via the UNIX domain socket for session resumption to take place.

CHAPTER 5

EXPERIMENTAL SETUP AND IMPLEMENTATION

This chapter discusses in detail the experimental setup used to run the SSLClient, Handler

Agent, SSLHandler, Delegate Agent and SSLWorker processes described in the previous

chapter including sections to describe the hardware used, server configurations, metrics

collected and the method used to collect them

5.1 Hardware

The hardware used in the experiments along with their specifications is listed below.

• 3 servers with the following specifications: 2.1 GHz, 512 MB RAM, 2 GB swap
space. These servers were primarily used as load generators by spawning SSLClient
instances as background processes through shell script.

• 1 server with the following specifications: 2.1 GHz, 512 MB RAM, 2 GB swap space.
This server was used to run the Handler Agent and all the SSLHandler instances.

• 1 server with the following specifications: 2.1 GHz, 512 MB RAM, 2 GB swap space.
This server hosted the Delegate Agent and SSL Worker processes in the 2-Server
configuration. It was also used to run the datacollector tool for collection of metrics
reported by the SSLHandler processes. The datacollector tool is described briefly in a
separate section of this chapter.

5.2 Server Configurations

Two different server configurations were used to compare the performance of the

proposed approach (using separation of SSL protocol phases) against the current

approach (without separation). These configurations are referred to as No-delegation and

34

35

2-Server configurations. The test results obtained from the No-delegation configuration

will be used as a benchmark for comparing the performance gains and losses against the

2-Server configuration.

Figure 5.1 No-delegation configuration.

Figure 5.1 shows the No-delegation configuration. In this configuration, the

Handler Agent and all the SSLHandler instances run on the same server. The SSLHandler

instances perform all the SSL Record phase operations without delegating to SSL Worker

36

instances. This configuration mirrors the classical setup used in most applications using

SSL. The dark (solid black) lines indicate two-way data flows between pairs of SSLClient

— SSLHandler processes. A one-to-one correspondence exists between these processes.

Figure 5.2 2-Server configuration.

Figure 5.2 shows the 2-Server configuration. In this configuration, the Handler

Agent and its children (SSLHandler processes), run on one server while the Delegate

Agent and its children (SSL Worker processes) run on a separate server. The physical

server running the Handler Agent and its children will be referred to as the Front-End

server, and the server running the Delegate Agent and its children, as the Back-End

37

server. A one-to-one relationship exists between SSLClient, SSLHandler and SSLWorker

processes. In this configuration, all SSL Record phase processing is off-loaded to the

Back-End server.

The Load Generator shown in Figure 5.1 and Figure 5.2 comprised of three

machines with similar capacities. Such a scheme was adopted to ensure that the

concurrency generated by the load was as close to the realistic Internet loads as possible.

5.3 Metrics

Experimental runs were carried out under varying loads generated by the load generating

machines. Each run created a load on the server by executing the SSLClient instances

concurrently. Varying loads were created by executing 100 to 900 SSLClient instances in

steps of 100 each for each run. Each of these runs was repeated for different data sizes of

2 KB, 6 KB, 10 KB, 20 KB and 200 KB. The following metrics were collected by

SSLHandler and SSL Worker instances during each run for analysis.

• Handshake time: This value is the time taken (in milliseconds) to perform a
complete SSL Handshake by the SSLHandler with the SSLClient. The relevance of
this metric holds for both the No-delegation and 2-Server configurations detailed in
the previous sections since the SSL Handshake is always performed between an
SSLClient and an SSLHandler processes.

• Encryption time: This is the time taken (in milliseconds) by an SSL Worker instance
to perform symmetric encryptions in response to requests. This value does not include
the time taken to send the encrypted responses over the network.

• Session Initiation time: Session Initiation represents the first SSL connection
negotiated by an SSLClient instance with an SSLHandler instance and it includes the
receipt of a request and the generation of corresponding response. It is relevant for
both the No-delegation and 2-Server configurations. The total time taken (in
milliseconds) by an SSLHandler instance to perform Session Initiation with an
SSLClient instance is called Session Initiation time.

• Session Resumption time: This represents the resumption of an SSL session after its

38

establishment through the Session Initiation process. The total time taken (in
milliseconds) by an SSLHandler instance to resume an SSL session is called Session
Resumption time. Like Session Initiation, this term holds relevance for both the No-
delegation and 2-Server configurations too.

• Total processing time: In every run, an SSLClient instance generated three requests
in succession, the first one being a Session Initiation and the other two, Session
Resumptions. Each SSLHandler instance tracked the Session Initiation and the two
Session Resumption times. The total processing time (in milliseconds) is the
difference in the time between the beginning of the Session Initiation and the end of
the last Session Resumption.

The above listed metrics were collected by each SSLHandler instance and

reported to a tool called the datacollector. The datacollector is a simple executable that

listens for connections on TCP/IP based sockets and collects the incoming data. This data

is then appended to a file for later analysis. One such data file was created by each

experimental run.

CHAPTER 6

RESULTS AND ANALYSIS

This chapter lists and discusses the results obtained by carrying out the experiments

detailed in the pervious chapter. The analysis performed on these results will not only

provide an insight into the benefits gained by the separation of the protocol phases, but

also help peer into the future scope and potential gains thereof.

6.1 Handshake Times

Handshake times were measured in the 2-Server configuration (Figure 5.2) on an idle

machine and averaged to obtain a value of 64 milliseconds. Although the SSL

Handshake involves the exchange of multiple messages between the client and the server

and the latencies depend on the various Internet factors such as routing, congestion,

packet loss, etc., the test environment was highly controlled due to the clients and servers

residing on the same network. This eliminated the typical latencies introduced by the

Internet. Thus, the SSL Handshake time measured is a reasonably good measure of the

server's ability to perform the cryptographic operations required. At this rate, the server

hosting the SSLHandler processes was able to perform a theoretical maximum of 15.62

SSL Handshakes/sec.

Table 6.1 shows the average Handshake times in milliseconds for the No-

delegation and 2-Server configurations at various data sizes. The average Handshake

times remain fairly constant at various data sizes, although a slight increase can be seen

39

40

for data sizes of 200 KB in both the server configurations. This increase could possibly

be due to the increased network latency caused by the large data transfers between the

SSLWorker - SSLHandler and SSLHandler - SSLClient pairs. Refer to Table A.1 in

Appendix A for a detailed listing of Handshake times recorded under various load

conditions. It is also worth noting from that the variance of the Handshake times from the

mean is very small in Table A.1.

From Table 6.1, it is evident that there is a drop in Handshake times at higher data

rates (200 KB) for the 2-Server configuration compared to the No-delegation

configuration. This can be attributed to the fact that the Front-End server is less loaded

and free to handle Handshakes faster due to the off-loading of the SSL Record phase

encryptions to the Back-End server. Refer to Table A.1 for a detailed listing of

Handshake times and percentage differences. The negative percentage differences are due

to lower average Handshake times in the 2-Server configuration as compared to the No-

delegation configuration.

Table 6.1 Average SSL Handshake Times

Handshake time in milliseconds
Data Size No-delegation 2-Server

2 KB 65 65
6 KB 66 65
10 KB 66 66
20 KB 66 66

200 KB 82 74

41

6.2 	 Encryption Times

Encryption times were measured in the 2-Server configuration at various loading

conditions and data sizes. Table 6.2 lists the average Encryption time measured at

conditions of No-load and loads of 300, 600 and 900 SSLHandler instances each, for

varying data sizes. The column titled No-load in Table 6.2 indicates measurements taken

by running one instance of the SSLWorker on an idle machine. These values represent the

best performance attainable on the given server. Figure 6.1 displays the same in a

graphical format.

Table 6.2 Average Encryption Times

Encryption time in milliseconds

Data size No-load
300

SSLHandlers
600

SSLHandlers
900

SSLHandlers
2 KB <1 0.08 0.09 0.11
6 KB 0.33 0.58 0.51 0.51
10 KB 0.67 1.21 1.35 1.45
20 KB 1.33 3.84 4.62 3.85

200 KB 19.83 68.09 92.54 108.67

From Figure 6.1, it is evident that the Encryption times increase in direct

proportion to the data size at No-load conditions. As the load increases, the encryption

times increase rapidly with increasing data sizes for each load condition. The increase is

more pronounced at higher data sizes (200 KB) and higher loads (900 SSLHandler

instances). By extrapolation of this trend for data sizes higher than 200 KB, it is clear that

a server is significantly burdened at high loads and large data sizes.

42

Figure 6.1 Comparison of encryption times.

6.3 Total Processing Times

Total processing times were collected for experimental runs differing in terms of the load

and size of the data requested. A Total processing time value represents the time taken to

receive the three requests, carry out the required SSL handshake/session resumption

activities and perform the data encryption. Since latencies introduced by the Internet are

eliminated in the experimental setup, this value is a good measure of the throughput by

the server. The values for the No-delegation and 2-Server configurations (Figure 5.1 and

Figure 5.2) for each data size and load are listed.

Table 6.4 lists the % difference between the No-delegation and 2-Server

configurations for the various data sizes and loads. The positive values in green cells

indicate improved throughput in the 2-Server configuration over the No-delegation

43

configuration, while the negative values indicate degradation in throughput experienced

in the 2-Server configuration. The red cells indicate especially large amounts of

degradation (10% or more).

From Table 6.4, a relatively large number of green cells are seen in columns for

smaller data sizes (2 KB, 6 KB and 10 KB) than at larger data sizes (20 KB and 200 KB).

This indicates that at small data sizes, the 2-Server configuration provides improved

throughput over a wide range of load conditions, in spite of the additional overhead

caused by TCP/IP communication between with the SSLHandler and SSL Worker

instances. As the data size increases, the performance deteriorates as is evident by the

clustering of red cells in the 20 KB and 200 KB categories. This can be attributed to the

overhead caused by the introduction of additional network communication between the

SSLHandler and SSLWorker instances running on physically separate servers.

Table 6.3 Total Processing Times*

2K 6K 10K 20K 200K

SSLHandlers
No-

delegation
2-Server

No-
delegation

2-
Server

No-
delegation

2-Server
No-

delegation
2-Server

No-
delegation

2-
Server

100 12992 12146 12277 12213 12085 12240 12686 14371 16473 18534

200 30148 28461 30751 32266 30554 27764 28165 28689 31653 49986

300 52658 35164 35457 35781 35313 37077 35403 38736 69073 72399

400 98917 57550 101687 100541 54760 57173 58594 100296 103286 97812

500 106246 100252 103248 105474 99687 99015 114885 104829 111141 126694

600 111905 121365 200113 195896 110869 197278 197072 198844 199972 233922

700 201871 199791 224090 205139 207789 203041 209263 203768 219664 221333

800 224866 236615 232573 205737 223980 221710 223008 216553 224173 231996

900 223362 225980 225341 234247 240802 245075 225134 246726 293698 288752

*A11 values in Table 6.3 are in milliseconds.

Table 6.4 % Difference in Total Processing Times

46

Figure 6.2 Comparison of total processing times.

Notice that the degradation in the 2-Server configuration's performance is <5% in

15 out of 25 cells in Table 6.4 (see red cells with negative percentages). This, in spite of

increased communication overhead (almost doubled), indicates that the 2-Server

47

configuration provides potential for significant improvements in server throughput via a

mechanism, where-in, a SSLWorker instance completely by-passes its corresponding

SSLHandler instance while responding to a request. This fact is evident in Figure 6.2

where the lines closely follow each other or separate in favor of the 2-Server

configurations except in a few cases at large data sizes.

6.4 Session Initiation and Resumption Times

Session Initiation is the process of serving the first request from an SSLClient by the

SSLHandler, where a full SSL Handshake is performed. Session Resumption is the

process of resuming an already existing SSL session, which is usually the preferred

method for purposes of efficiency. In this case, a complete SSL Handshake is not

performed.

Table 6.5 % Increase in Session Initiation and Resumption Times

Session Initiation Session Resumption
Data Size % Increase Data Size % Increase

2 KB 8.409 2 KB 7.556
6 KB 8.391 6 KB 7.565
10 KB 8.375 10 KB 8.056
20 KB 8.324 20 KB 14.141

200 KB 51.278 200 KB 215.436

The average values of Session Initiation and Session Resumption times for each

load condition was computed for a given data size. A listing of these average Session

Initiation and Session Resumption times are as shown in Appendix B and Appendix C

respectively. A mean of these averages over different load conditions was computed for

each data size. The resulting percentage increases of these averages for the 2-Server

48

configuration over the No-delegation configuration are listed in Table 6.5. Figure 6.2

displays the log (base 2) of these percentage increases plotted against the data size.

Figure 6.3 Log % increase versus data size.

The pattern of increase in average Session Initiation times (Figure 6.3) closely

mirrors the average Handshake times (Table 6.1). The % increase stays mostly constant

for data sizes 2 KB, 6 KB, 10 KB and 20 KB, and increases sharply for 200 KB. This

implies the addition of an overhead that is a proportionally constant to the No-delegation

Session Initiation times at every data size. A similar observation can be made regarding

the Session Resumption times and the average Handshake times too. The % increase

remains roughly constant for data sizes 2 KB, 6 KB and 10 KB, with a small increase for

20 KB followed by a sharp increase for 200 KB. Network communication overhead

caused by the SSLHandler acting as an intermediary between the SSLWorker and the

SSLClient during the Record phase provides a plausible explanation to such observations.

49

This network communication overhead is not introduced in the No-delegation

configuration since the SSLHandler instances perform all of the SSL Record phase

encryption and return the data directly to the client.

6.5 Experimental Limitations

During the experimental runs, it was observed that the Front-End server reached the limit

of its processing capabilities when the number of SSLHandler processes reached slightly

beyond 1000. The 1-minute loadavg valued reached highs of 50-60. Such values for the

loadavg indicate that the server is stretched well beyond its capabilities. In such cases, it

was also noticed that many SSLHandler instances failed to complete their processing.

Ideally, a cluster of Front-End servers is desirable to distribute the load under such

conditions. A limitation in available hardware prevented such clustering and conducting

experimental runs exceeding 900 SSLHandler instances.

The number of machines used to generate the load imposes a limitation on the

experiments too. In the experiments conducted, three machines were used to generate

loads with a peak load of 300 SSLClient instances from each machine contributing to 900

SSLClient instances in total. This number is not nearly close enough to realistic Internet

loads in the tens to thousands to millions of clients.

CHAPTER 7

CONCLUSIONS

The separation of the SSL protocol phases across process boundaries, which can be

distributed over multiple machines was investigated and the results, discussed in the

previous chapter. A set of conclusions can be drawn from these results that direct our

attention to the potential benefits of using such a distributed approach and entail the

future scope of work that can be carried out in this regard.

Although the SSL Handshake consumes computational resources at a much higher

order of magnitude as compared to the SSL Record phase at low data sizes and loads, the

SSL Record phase consumption grows to comparable orders and beyond, under high

loads and for large data sizes. Given the fact that the Handshake times measured in these

experiments are a good measure of the actual cryptographic loads involved due to the

isolation of the testing environment from the Internet, it is evident that clustering

capabilities and scalability provided by the separation of the SSL protocol phases will

provide benefits as the SSL Record phase begins to consume a larger proportion of

resources in comparison to the SSL Handshake during encryption and decryption of large

amounts of data. An indication of improvement in Handshake times at higher data rates

(200 KB) due to the offloading of SSL Record phase computations points toward a payoff

that can be gained at high data rates and at high loads.

At smaller data sizes (2 KB, 6 KB and 10 KB), the approach using SSL protocol

separation begins to show some improvement in server throughput in terms of the total

50

51

number of requests processed per unit time. However, at larger data sizes of 20 KB, 200

KB and possibly higher, the benefits of separation begin to erode owing to the higher

communication overheads in the current implementation. This overhead is caused by the

data packets containing the encrypted response traversing the network protocol stack of

the SSLHandler up to the application layer (TCP) before being re-transmitted to the

client. This can be avoided by direct routing of responses to the client instead of a

passing through an intermediary. Direct routing can be achieved using NAT or such other

means.

There is a slight degradation in the Session Initiation and Session Resumption

times with SSL protocol separation. Again, this is caused by the additional overhead

introduced by the communication between the SSLHandler and the SSLWorker instances.

While the percentage increase in average initiation and resumption times is mostly

constant for smaller data sizes (up to 10 KB), it increases rapidly as the data size grows

larger (20 KB and higher). This increase directly contributes to the latency in response

times experienced by the clients requesting large amounts of data such as for large

images, video files, etc. Direct routing of responses from the SSLWorker to the SSL

clients would address the reduction of this overhead.

The load tests carried out in the experiments detailed in previous chapters are not

an exact representation of true load experienced by a server in the Internet, but only an

approximation. Concurrent requests were created by background clients running on

multiple machines residing within the same network as the servers. While such an

approach eliminated the latencies introduced by the Internet, large scale loads involving

tens of thousands to millions of clients is hard to create with limited hardware resources.

52

In view of such limitations, the results obtained from tests conducted provide only a

reasonable peek into the trends that can be expected under more realistic loads. These

trends can then be used to design more elaborate and accurate experiments to improve

server throughput.

It was observed that the Front-End server eventually posed a bottleneck. Scaling

and load-balancing multiple Front-End servers would solve the problem. The ideal

solution would contain m Front-End servers performing SSL Handshakes and delegating

the SSL Record phase to n Back-End servers. The m Front-End servers also require

seamless migration of SSL session information so that Session Initiation and Session

Resumptions can be carried out by different Front-End servers. Direct routing of

responses from Back-End servers to SSL clients would eliminate the communication

overhead experienced in our experiments.

Separation of the protocol phases is not intended for improving server throughput

alone, but also to enable the clustering of SSL based applications such as Web servers,

VPN servers, etc. for high availability. Hardware SSL Accelerators increase the cost of

providing high availability due to increased costs incurred in procuring and maintaining

backups for fail-over. Clustering by phase separation provides an economic alternative to

gain high availability since SSL sessions can be seamlessly migrated between processes

from one machine to another in case of failure. Scaling is also achieved at low cost by

adding additional computing power as required. Such open-source software based

solutions are also conducive to customizations as opposed to expensive and proprietary

hardware.

The key contribution of this thesis is the separation of the SSL Handshake and

53

Record phases across processes executing on different machines. It was aimed at

clustering the SSL services offered by VPN and Web servers by offloading the

encryption and decryption services. It was demonstrated through load tests that improved

throughput can be achieved by such a separation, although at higher data rates, the

communication overhead erased the gains. Future scope of work was identified in the

form of eliminating the communication overhead through direct routing to improve

performance. Direct routing can be achieved by means of NAT or socket migration. This

concept is illustrated in Figure 7.1.

Figure 7.1 Direct routing of SSL responses.

CHAPTER 8

FUTURE SCOPE

Future work can be conducted in this area to address the shortcomings of the separation

and further enhance the scalability of servers providing SSL-based services. The key

shortfall in the approach developed arises from the routing of encrypted request from

SSLClient through the SSLHandler process en-route to the SSLWorker process and the

same of the encrypted response from the SSLWorker to the SSLClient. The latencies

introduced are mainly due to the fact that the data does not traverse just up to Layer 3 of

the protocol stack in the intermediary, but all the way up to the application layer and back

out again onto the network. Direct routing of data between the SSLClient and SSLWorker

achieved through NAT can eliminate this overhead during the SSL Record phase. The

proposed direct routing is illustrated in Figure 8.1.

Currently, the SSLHandler instances are responsible for both the SSL Handshake

and session resumption activities. Since SSL session resumption is relatively easy and

non-intensive, this activity can be carried out by the SSLWorker directly instead of the

SSLHandler. This will require the Handler Agent to hand-off SSL session resumption

requests to the appropriate SSLWorker instance as shown in Step 7 and 8 of Figure 8.1.

Such a hand-off will provide two benefits:

• Eliminate the overhead of transmitting the SSL cryptographic information from the
SSLHandler to the SSLWorker

• Remove the need for preserving SSLHandler instances on the Front-End server,
thereby reducing the number of running processes.

54

55

Figure 8.1 Proposed enhancements.

Clustering of multiple Back-End servers providing SSL Record phase services has

already been made possible with the current implementation. A further extension of

clustering multiple Front-End servers will provide comprehensive scalability to the

solution. While an Initial Connection Request (Step 1 in Figure 8.1) can be satisfied by

any Front-End server, a Subsequent Connection Request (Step 8 in Figure 8.1)

containing an SSL session identifier can arrive at a Front-End server other than the one

56

that processed the Initial Connection Request. At this time, the Handler Agent will

require the Back-End server and SSL Worker port number information to perform the

hand-off. Thus, to achieve Front-End clustering, the Handler Agent instances running on

separate Front-End servers will require the ability to share information mapping SSL

session identifiers to SSL Worker instances running on different Back-End servers. Such

sharing can be achieved by means of a shared cache or a simple communication protocol

between the Handler Agents.

APPENDIX A

HANDSHAKE TIMES

Handshake times for experimental runs under different loads and data sizes are

listed in Table A.1.

57

Table A.1 Handshake Times*
2K 6K 10K 20K 200K

Clients No-
delegation 2-Server No-

delegation 2-Server No-
delegation 2-Server delegation

No- 2-Server NOdelegation 2-Server

100 0.065 0.065 0.065 0.065 0.066 0.065 0.068 0.065 0.076 0.073
200 0.065 0.066 0.065 0.065 0.065 0.065 0.065 0.065 0.087 0.073
300 0.065 0.065 0.066 0.066 0.065 0.066 0.066 0.066 0.087 0.075
400 0.065 0.065 0.065 0.066 0.065 0.065 0.066 0.066 0.083 0.075
500 0.065 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.078 0.076
600 0.065 0.065 0.065 0.065 0.066 0.066 0.066 0.066 0.081 0.074
700 0.066 0.065 0.065 0.066 0.065 0.065 0.066 0.066 0.082 0.074
800 0.065 0.065 0.066 0.065 0.065 0.066 0.066 0.066 0.082 0.075
900 0.066 0.065 0.065 0.065 0.066 0.066 0.066 0.066 0.081 0.074

Average 0.065 0.065 0.066 0.065 0.066 0.066 0.066 0.066 0.082 0.074
%

Difference 0.01% -0.02% 0.01% -0.03% -0.80%

*All values in Table 6.3 are in seconds.

APPENDIX B

SESSION INITIATION TIMES

Session Initiation times for experimental runs under different loads and data sizes are

listed in Table B.1.

59

Table B.1 Session Initiation Times*
2K 6K 10K 20K 200K

Clients No-
delegation 2-Server No-

delegation 2-Server No-
delegation 2-Server No-

delegation 2-Server No-
delegation 2-Server

100 1.074 1.157 1.074 1.159 1.074 1.161 1.094 1.159 1.134 1.277
200 1.075 1.162 1.075 1.157 1.075 1.163 1.083 1.168 1.227 1.670
300 1.074 1.159 1.077 1.159 1.076 1.156 1.080 1.168 1.217 2.114
400 1.074 1.159 1.074 1.162 1.077 1.158 1.084 1.171 1.194 1.634
500 1.074 1.159 1.075 1.161 1.079 1.163 1.083 1.168 1.151 1.693
600 1.074 1.159 1.075 1.158 1.077 1.162 1.082 1.168 1.210 1.736
700 1.075 1.158 1.075 1.161 1.076 1.159 1.083 1.169 1.193 1.692
800 1.075 1.157 1.075 1.159 1.077 1.162 1.084 1.170 1.200 1.705
900 1.075 1.158 1.076 1.157 1.078 1.160 1.085 1.166 1.206 1.826

Average 1.075 1.159 1.075 1.159 1.077 1.160 1.084 1.168 1.193 1.705
% Difference 8.41% 8.39% 8.38% 8.32% 51.28%

*All values in Table 6.3 are in seconds.

APPENDIX C

SESSION RESUMPTION TIMES

Session Resumption times for experimental runs under different loads and data sizes are

listed in Table C.1.

61

Table C.1 Session Resumption Times*

2K 6K 10K 20K 200K

Clients No-
delegation 2-Server No-

delegation 2-Server No-
delegation 2-Server delegation

No- 2-Server NOdelegation 2-Server

100 1.011 1.085 1.018 1.091 1.027 1.103 1.076 1.218 1.798 2.987
200 1.009 1.086 1.012 1.087 1.025 1.099 1.033 1.109 1.659 3.820
300 1.011 1.088 1.016 1.090 1.023 1.096 1.064 1.200 1.890 4.414
400 1.010 1.086 1.016 1.095 1.019 1.095 1.045 1.234 1.852 3.882
500 1.009 1.090 1.012 1.093 1.021 1.110 1.045 1.226 1.818 4.308
600 1.011 1.085 1.016 1.091 1.022 1.102 1.049 1.150 1.790 3.557
700 1.011 1.084 1.016 1.093 1.018 1.101 1.044 1.195 1.871 4.138
800 1.012 1.086 1.014 1.090 1.016 1.103 1.044 1.240 1.725 3.910
900 1.011 1.085 1.017 1.087 1.017 1.102 1.047 1.149 1.674 4.450

Average 1.010 1.086 1.015 1.091 1.021 1.101 1.050 1.191 1.786 3.941
% Difference 7.56% 7.56% 8.06% 14.14% 215.44%

*All values in Table 6.3 are in seconds.

REFERENCES

1. G. Spafford, Web Security, Privacy & Commerce, O'Reilly and Associates, 2001.

2. E. Herscovitz, Secure virtual private networks: the future of data communications.
International Journal of Network Management, vol. 9, issue 4, July-August
1999, pp. 213-220.

3. D. Kosiur, Building and managing virtual private networks, Wiley, September 1998.

4. M. Sarrel, "Improving Performance and Availability of SSL VPN Solutions",
August 2003,
http://www.findarticles.com/p/articles/mi_zdpcm/is_200308/ai_ziff45224.

5. Matthew D. Wilson, "VPN HOWTO", December 1999,
http://www.tldp.org/HOWTONPN -HOWTO/index.html.

6. Introduction to VPN -VPN Tunnelling, February 2006,
http://compnetworking.about.com/od/vpn/l/aa010701d.htm.

7. K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, G. Zorn, RFC 2637: Point-to-
Point Tunneling Protocol (PPTP), July 1999, http://www.ietf.org/rfc/rfc2637.txt.

8. W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, B. Palter, RFC 2661: Layer
Two Tunneling Protocol (L2TP), August 1999,

http://www.ietforg/rfc/rfc2661.txt.

9. S. Kent, R. Atkinson, RFC 2401: Security architecture for the Internet Protocol
(IPSec), November 1998, http://www.ietf.org/rfc/rfc2401.txt.

10. T. Dierks, and C. Allen, RFC 2246: The TLS Protocol Version 1.0, January 1999,
http://www.ietforg/rfc/rfc2246.txt.

11. A. Freier, P. Karlton, and P. Kocher, The SSL Protocol Version 3.0, November
1996, Netscape, http://home.netscape.com/eng/ss13/draft302.txt

12. R. Khare, S. Lawrence, RFC 2817: Upgrading to TLS Within HTTP/1.1, May 2000,
http://www.ietf.org/rfc/rfc2817.txt.

13. D. Bhatt, S. Schulze, G. Hancke, L. Horvath, "Secure Internet access to gateway
using secure socket layer", in Proceedings of IEEE International Symposium
on Virtual Environments, Human-Computer Interfaces and Measurement
Systems, July 2003, pp.157-162.

63

64
14. C. Crall, M. Danseglio, and D. Mowers, SSL/TLS in Windows Server 2003,

Microsoft Corporation, July 2003,
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/secu
rity/sslws03.mspx.

15. E. Rescorla, RFC 2818: HTTP over TLS, May 2000,
http://www.ietforg/rfc/rfc2818.txt.

16. G. Apostolopoulos, D. Aubespin, V. Penis, P. Pradham, D. Saha, "Design,
implementation and performance of a content-based switch", in Proceedings of
the Conference on Computer Communications (IEEE INFOCOM'00), March
2000, vol. 3, pp. 1117-1126.

17. E. Casalicchio, M. Colajanni, "A client-aware dispatching algorithm for Web
clusters providing multiple services", in Proc. of 10th International World
Wide Web Conference, Hong Kong, May 2001, pp. 535-544.

18. V. Pai, M. Aron, G. Banga , M. Svendsen, P. Druschel, W. Zwaenepoel, E. Nahum,
"Locality-aware request distribution in cluster-based network servers", in
Proceedings of the Eighth ACM ASPLOS, San Jose, California, October 02-07,
1998, pp. 205-216.

19. K. Kant, R. Iyer, P. Mohapatra, "Architectural impact of secure socket layer on
Internet servers", in Proceedings of IEEE International Conference on
Computer Design, Sept. 2000, pp. 7-14.

20. Ed. R. Hinden, RFC 3768: Virtual Router Redundancy Protocol (VRRP), April
2004, http://www.ietf.org/rfc/rfc3768.txt

21. M. Colajanni, P.S. Yu, "A performance study of robust load sharing strategies for
distributed heterogeneous Web server systems", IEEE Transactions on
Knowledge and Data Engineering, vol. 14, issue 2, pp. 398-414, March/April
2002.

22. E. Rescorla, A. Cain, B. Korver, "SSLACC: A clustered SSL Accelerator", in
Proceedings of the 1 1 th USENIX Security Symposium, San Francisco, CA,
August 2002.

23. D. Boneh, H. Shacham, "Improving SSL handshake performance via batching", in
Proceedings of the RSA Conference, San Francisco, CA, April 2001, pp. 28-43

24. C. Coarfa, P. Druschel, and D. Wallach, "Performance analysis of TLS web
servers", in Proceedings of the Network and Distributed Systems Security
Symposium (NDSS), February 2002, pp. 183-194.

25. ArrayNetworks, Inc., Array Networks SPX Series, February 2006,
http://www.arraynetworks.net/products/EnterpriseSSLVPN.asp.

65
26. Aventail Corporation, Aventail SSL VPN appliances (Aventail EX-2500, Aventail

EX-1500, Aventail EX-750), February 2006,
http://www.aventail.com/products_services/appliances/default.asp.

27. Cisco Systems, Inc., Cisco VPN 3000 Series Concentrators, February 2006,
http://www.cisco.com/en/US/products/hw/vpndevc/ps2284/index.html.

28. Juniper Networks, Inc., Juniper Networks NetScreen-SA 5000 Series, February
2006, http://www.j uniper.net/products/ssl.

29. Nokia, Nokia SSL VPN, February 2006,
http://www.nokia.com/nokia/0,8764,43098,00.html

30. NetScaler, Inc., NetScaler SSL VPN feature option for the NetScaler 9000 Series,
February 2006, http://www.netscaler.ca/9000_series/options/ssl_vpn.htm.

31. Netilla Networks, The AEP Netilla Security Platform, March 2006,
http://www.aepnetworks.com/products/ssl_vpn/nsp/overview.htm.

32. NetSilica, Inc., NetSilica Application Security Gateway, March 2006,
http://www.netsilica.com/nshome/index.htm.

33. Nortel Networks, Nortel SSL VPN, July 2005
http://www.nortel.com/products/01/alteon/sslvpn/.

34. Symantec Corporation, Symantec Clientless VPN Gateway 4400 Series, February
2006, http://enterprisesecurity.symantec.com/products/products.cfm?productid=342.

35. Whale Communications Ltd., Intelligent Application Gateway, April 2006
http://www.whalecommunications.com/site/Whale/Corporate/Whale.asp?pi=30.

36. Areabe, inc., SWANStor SSL VPN Remote Access Solution, March 2006,
http://www.areabe.com/eng/products/index.html

37. Check Point Software Technologies, Inc., SSL Network Extender, March 2006,
http://checkpoint.com/products/ssl_network_ext/index.html.

38. Citrix Systems, Inc., Citrix Access Gateway, March 2006,
http://www.citrix.com/English/ps2/products/product.asp?contentID=15005.

39. Menlo Logic, AccessPoint SSL VPN, February 2006,
http://www.menlologic.com/ssl_vpn_products.html.

40. OvisGate Software, SSL VPN Windows Solution, February 2006,
http://www.ovisgate.com/product.html.

66
41. PortWise, PortWise mVPN, April 2006,

http://www.portwise.com/portImg/Download_press/ProductSheet_PortWise_mVPN.p
df.

42. Tarantella Inc., Secure Global Desktop Enterprise Edition, April 2006,
http://www.tarantel la.com/supportidocumentation/s_gd/ee/3 .42/help/en-
us/base/gettingstarted/tarantella intro. html .

43. V -ONE Corporation, V -ONE clientless solution, January 2005, http://www.v-
one.com/ssltestdrive.html.

44. 3SP Ltd., SSL-Explorer, April 2006, http://3sp.com/showSslExplorer.do.

45. Jason Everard, Introduction to SSL , http://docs.sun.com/source/816 -6156 -

10/contents .htm.

46. E. Rescorla, SSL and TLS: Designing and Building Secure Systems, Addison-
Wesley, New York, NY 2000.

47. Mark J. Cox, Geoff Thorpe, "Apache e-Commerce Solutions", in ApacheCon 2000,
Florida 2000, http://www.geoffthorpe.net/apcon2000/apachecon2000.pdf.

48. Logan G. Harbaugh, SSL Accelerators — Spped up SSL transactions with hardware,
May 2002,
http://www.newarchitectmag.com/documents/s=2455/new1017959283467/.

49. Dan Kegel, SSL Acceleration, May 2001, http://www.kegel.com/ssl/hw.html.

50. SC Magazine, SSL accelerators, March 2006,
http://www.scmagazine.com/uk/grouptest/details/27f879d4- 8d4c-4dd4-9 871-
6ce94f5Oefbe/ssl+accelerators/.

51. OpenSSL, January 2005, http://www.openssl.org/.

52. The ASN.1 Consortium, January 2006, http://www.asnl.org/

53. Nicolas George, Ancillary library, June 2005,
http://www.eleves.ens.fr/home/george/info/prg/libancillary.html.

54. Open Source ASN.1 Compiler, January 2005, http://lionet.info/asnlc/

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment Page
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Background

	Chapter 3: Proposed Approach

	Chapter 4: Logical Organization And Components

	Chapter 5: Experimental Setup And Implementation

	Chapter 6: Results And Analysis

	Chapter 7: Conclusions

	Chapter 8: Future Scope

	Appendix A: Handshake Times

	Appendix B: Session Initiation Times

	Appendix C: Session Resumption Times

	References

	List of Tables

	List of Figures

	List of Acronyms

