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ABSTRACT

HEAVY METAL ADSORPTION ON IRON OXIDE
AND IRON OXIDE-COATED SILICA: MACROSCOPIC, SPECTROSCOPIC,

AND MODELING STUDIES

by
Ying Xu

To accurately model metal mobility and bioavailability in soils and sediments, systematic

sorption studies are needed using representative and well-characterized minerals. Two

important surfaces are iron oxide and silica, which are ubiquitous and associated with one

another in the environment playing important roles in metal distribution. The objectives

of this research are to develop models for predicting speciation and mobility of toxic

trace metal ions in groundwater, soils, and sediments when competing ions are present.

A model system for soils and sediments, iron oxide-coated silica, was synthesized; the

degree of coatings was highly sensitive to the particle size of silica and ranged between

0.59 and 21.36 mg Fe g -1 solid. The iron oxide coatings increased surface area and

introduced small pores. Surface charge distribution suggested that both silica and

goethite surfaces are important for adsorption. The sub-micrometer-sized coatings

exhibited a larger capacity for metals ions than discrete ones and, although in low

concentration, they greatly affected metal affinity to the coated media. X-ray absorption

spectroscopy (XAS) analysis revealed that both Ni(II) and Pb(II) ions form mononuclear

bidentate edge-sharing surface complexes on Fe06 octahedra. This mechanism appeared

to be invariant of pH, ionic strength, metal loading, and reaction time. Constrained with

spectroscopic information, the 2-pK triple layer model successfully predicted Ni or Zn

adsorption in single adsorbate systems. The curvature in adsorption isotherms was

accurately described using two types of sites — high affinity and low affinity ones. A



unique set of parameters was found for each metal ion that can successfully describe

adsorption over a large range of experimental conditions, covering six or seven orders of

magnitude in concentration, ionic strength from 10 -3 to 10-2 , and an environmentally

relevant pH range. Competition was also predicted quantitatively with parameters

calibrated using single adsorbate data. Results of this work will assist in better

understanding and predicting the mobility and bioavailability of trace metals in soils,

sediments, and groundwater.
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CHAPTER 1

INTRODUCTION

Heavy metals in natural aquatic and soil environments potentially impact the growth of

plants and threaten the health of animals and humans even when present in trace

amounts. Risk assessment and remediation require information on heavy metal

speciation, mobility, and bioavailability to characterize their behavior and impact in the

environment. Sorption is one of the most important processes that influences the

distribution and transport of heavy metals in aquatic and/or soil environments (Benjamin

and Leckie, 1981a; Siegel et al. 1992).

Heavy metal adsorption to hydrous iron, manganese, and aluminum oxides has

been extensively investigated (e.g., Forbes et al. 1976; Swallow et al. 1980; Hsi and

Langmuir, 1985; Hayes and Leckie, 1986; Johnson, 1990; Cowan et al. 1991; Müller and

Sigg, 1992; Ainsworth et al. 1994; Manceau and Charlet, 1994; Coughlin and Stone,

1995; Fendorf et al. 1997; Green-Pedersen et al. 1997; Venema et al. 1998; Jenne, 1998;

Villalobos et al. 2001; Peak and Sparks, 2002; Dyer et al. 2003; Wazne et al. 2003;

O'Reilly and Hochella, 2003; Kanungo et al. 2004; Jeon et al. 2004). These minerals are

prevalent in natural environments as particles or surface coatings, have high affinity and

great capacity for metal ions (Schwertmann and Cornell, 1991), and therefore impact

metal contaminant mobility (e.g., Anderson and Christensen, 1988; Jackson and Inch,

1989; Johnson, 1990; Coston et al. 1995; Fuller et al. 1996; Green-Pedersen et al. 1997;

Dong et al. 2002). Although individual sorbents and contaminants have been

investigated, the presence of competing ions is more frequently encountered (e.g.,

1
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Anderson and Christensen, 1988; Cowan et al. 1991; Ryan and Gschwend, 1994; Coston

et al. 1995; Jenne, 1998; Barnett et al. 2002). As a multicomponent-multiphase system,

the natural aquatic environments can only be described properly when competitive

reactions/processes are considered (Nilsson et al. 1996).

Adsorption of metal ions in aqueous solutions to mineral surfaces can be

described in terms of surface complexation models (Hsi and Langmuir, 1985; Hayes and

Leckie, 1986; Hiemstra et al. 1989; Dzombak and Morel, 1990; Katz and Hayes, 1995 a,

b; Hiemstra and van Riemsdijk, 1996; Sahai and Sverjensky, 1997; Robertson and

Leckie, 1997, 1998). For the description of metal binding on surfaces, a series of

reaction equations need to be formulated (van Riemsdijk and Hiemstra, 1998). Sposito

(1989) has summarized the principal mechanisms of adsorption as (1) inner-sphere

complexation, (2) outer-sphere complexation, and (3) association with a diffuse layer; the

role of these three mechanisms in diverse reactions as well as their contribution to surface

charge development have also been reviewed (Sposito, 1989). The more accurate the

model the more likely the prediction of metal/mineral interaction will be successful.

However, describing ion binding on mineral surfaces in a way that is mechanistically

reasonable is always a great challenge.

One common practice is to assume that the surface is chemically homogeneous

and to invoke a two step protonation reaction as the basis for the charging of metal

(hydr)oxides (van Riemsdijk and Hiemstra, 1998; Sahai and Sverjensky, 1997; Palmqvist

et al. 1997; Davis et al. 1998); ion binding reactions are generally proposed based on

information from adsorption edges, isotherms, and/or number of H ± released (e.g., Forbes

et al. 1976; Benjamin and Leckie, 1981a; Hayes et al. 1988; Lövgren et al. 1990; Müner
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and Sigg, 1992; Gunneriusson et al. 1994; Nowack et al. 1996); the assumed surface

complexes are checked by the goodness of fit (Goldberg, 1991). Although these

approaches are usually successful, the surface species used may not be physically

meaningful. Fortunately, recent advances in identification of sorbed species by in-situ

spectroscopic techniques like X-ray absorption spectroscopy (XAS) and Fourier

transform infrared spectroscopy (FTIR) have made it possible to overcome this drawback

for many systems of interest (e.g., Chisholm-Brause et al. 1990; Charlet and Manceau,

1992; O'Day et al. 1994; Bargar et al. 1997a,b; Scheidegger et al. 1998; Manning et al.

1998; Sahai et al. 2000; Trainor et al. 2000; Nachtegaal and Sparks, 2003; Trivedi et al.

2003, 2004; Wazne et al. 2003). Qualitative and quantitative information from

spectroscopy can be included in adsorption modeling, connecting molecular details to

macroscopic measurements, and resulting in improved modeling of the solid/liquid

interface (e.g., Katz and Hayes, 1995 a, b; Hayes and Katz, 1996; Dyer et al. 2003, 2004).

Overall, trace metal adsorption to mineral surfaces is an important phenomenon in

many industrial applications as well as in the study of the natural environment.

Development of better mechanistic adsorption models that describe the binding with

physically meaningful species is not only of theoretical but also potentially of great

practical interest (van Riemsdijk and Hiemstra, 1998). The objective of this proposed

research is to understand the effect of iron oxides, as discrete particles and coatings, on

contaminant adsorption. Surface complexation modeling constrained with XAS data is

invoked for single and binary adsorbate studies. Results of this work assist in better

understanding and predicting the mobility and bioavailability of trace metals in soils,

sediments, and groundwater.
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The following chapters include Chapter 2, a literature review on the importance of

iron oxides and iron oxide coatings; Chapter 3, the objectives and hypotheses for this

research; Chapter 4, Experimental Methods; Chapter 5, Characterization of Iron Oxide

and Silica; Chapter 6, Synthesis and Characterization of Iron Oxide-Coated Silica;

Chapter 7 and 8, mechanisms of heavy metal adsorption to iron oxide using Pb and Ni as

examples, respectively; Chapter 9, surface complexation modeling of Ni and Zn

adsorption and competition on goethite; Chapter 10, heavy metal adsorption on iron

oxide-coated silica; and, lastly, Chapter 11, Conclusions and Future Work.



CHAPTER 2

OXIDES AND THEIR EFFECT ON SORPTION

Sorption of trace elements onto reactive mineral surfaces is an important process

regulating contaminant mobility and bioavailability in natural systems (Forbes et al.

1976; Balistrieri and Murray, 1982; Anderson and Christensen, 1988; Jackson and Inch,

1989; Coston et al. 1995). This review focuses on the adsorption of solute(s) at the

aqueous-mineral interfaces. Specifically in this chapter the following topics are

discussed: (1) iron oxides and iron oxide coatings in environment, (2) macroscopic

adsorption studies, (3) XAS studies, and (4) surface complexation modeling.

2.1 Iron Oxides and Iron Oxide Coatings in Environment

Iron oxides are prevalent in natural environments as particles or surface coatings,

exhibiting a high affinity and great capacity for metal ions (Schwertmann and Cornell,

1991), and therefore impacting metal mobility significantly (e.g., Anderson and

Christensen, 1988; Jackson and Inch, 1989; Johnson, 1990; Coston et al. 1995; Fuller et

al. 1996; Green-Pedersen et al. 1997; Dong et al. 2002). These oxides in the environment

are present as crystalline and amorphous forms including goethite, hematite, and

ferrihydrite (also is referred to as hydrous ferric oxide, HFO). Goethite is the most

common and thermodynamically stable iron oxide under most soil conditions

(Schwertmann and Taylor, 1989; Ainsworth et al. 1989). Although metastable,

ferrihydrite is also an important sorbent because of its abundance in the subsurface.

Ferrihydrite conversion to goethite and hematite is slow at temperatures below 20 °C, and

5
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is further retarded by adsorbed species (Scheinost et al. 2001; Schwertmann et al. 1985;

Cornell, 1987; Cornell et al. 1987, 1992). Given localized increases in ferric

concentrations, its precipitation is accompanied by a high partitioning of trace metals in

soils (Manceau et al. 2003). Therefore, goethite and HFO have been widely used as

model sorbents in adsorption studies (Cornell and Schwertmann, 1996). Dzombak and

Morel (1990) comprehensively compiled and modeled metal adsorption on HFO using

the diffuse double layer model. However, since 1990, spectroscopic evidence has proven

to be critical in mechanistic model development.

In natural aquatic environments, many reactions such as dissolution, adsorption,

precipitation, and colloidal adhesion result in multi-component solids with bulk and

surface characteristics different from the original pure phases (Anderson and Benjamin,

1990). Specifically, oxide mineral coatings are often observed in soils and sediments

(Ryan and Gschwend, 1994; Coston et al. 1995; Wang et al. 1993). For example, Ryan

and Gschwend (1994) found that in oxic sediments, quartz grains are coated by colloidal

kaolinite and microcrystalline iron (III) oxide, primarily goethite (a-FeOOH) at 39 ± 2

μmol Fe g-1 sediment (0.22% by weight). Coston et al. (1995) reported that in a shallow,

unconfined aquifer of glacial out wash, sand and gravel were extensively coated with Al-

and Fe-bearing minerals and that the iron concentrations ranged between 0.0736 and 4.96

mg Fe g-1 sand. Iron oxide coatings were also found on ped surfaces and pores of paddy

and non-paddy soils at concentrations of 10 to 44 mg Fe g -1 soil and were characterized

as ferrihydrite, lepidocrocite, and goethite (Wang et al. 1993). Many studies have shown

the importance of these surface coatings in controlling metal distribution in soils and

sediments (Edwards and Benjamin, 1989; Coston et al. 1995; Zachara et al. 1995; Fuller
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et al. 1996; Green-Pedersen et al. 1997; Uygur and Rimmer, 2000;). In addition, coated

minerals have been studied in recent years because of their potential application as

effective sorbents (Coston et al. 1995; Zachara et al. 1995; Lo and Chen, 1997; Kuan et

al. 1998; Khaodhiar et al. 2000; Meng and Letterman, 1993a).

Adsorption studies on both discrete iron oxide and iron oxide coatings are

important for understanding and modeling heavy metal distribution and transport in the

environment. While systematic studies are warranted in characterizing iron oxide-coated

silica, an important representative surface in soil, methods and results of related studies

are summarized in the following sections.

2.1.1 Oxide Coating Methods

Although iron oxide-coated media have been used to simulate natural systems or produce

novel sorbents (Edwards and Benjamin, 1989; Zachara et al. 1995; Kuan et al. 1998;

Khaodhiar et al. 2000; Meng and Letterman, 1993a; Lion et al. 1982; Dong et al. 2000;

Lo et al. 1997; Szecsody et al. 1994; Joshi and Chaudhuri, 1996; Lai et al. 2000), little

has been conducted in systematically evaluating factors that influence the degree of

coating. Lo et al. (1997) found that higher coating temperatures enhanced the stability of

the oxide coating. Furthermore, iron oxide coatings were amorphous at lower

temperatures (60 °C), while goethite and hematite formed at 150 °C and hematite formed

exclusively at temperatures greater than 300 °C. Lo and Chen (1997) found no

significant difference between the amount of iron oxide coated at 105 and 200 °C, while

Scheidegger et al. (1993) observed increases in goethite coating with increasing

temperature (from 110 °C to 120 °C). In addition, coatings produced at pH 12 resulted in

greater metal adsorption efficiency than those produced at circum neutral; however, the
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coatings were less resistant to acid. Kuan et al. (1998) reported that at a higher coating

pH (10.77-12.50), Al oxide coatings were more resistant to acidic and alkaline conditions

and tended to be crystalline. Lo et al. (1997) found that the Fe concentration had less of

an effect than pH on the degree of coating. Although the influence of substrate particle

size has not been investigated systematically, Coston et al. (1995) showed that oxide

concentration increased as particle size decreased in soils and sediments.

2.1.2 Coating Characterization

Many studies have been conducted to evaluate coating characteristics. Methods for

mineral identification are based on specific properties of the minerals (de Kimpe, 1993).

These properties include crystallographic, optical (microscopic), physical (cleavage,

color, density), and chemical properties. Numerous researchers (Edwards and Benjamin,

1989; Zachara et al. 1995; Khaodhiar et al. 2000; Szecsody et al. 1994; Stahl and James,

1991 a, b; Marchetti et al. 1997) have produced Fe oxide coatings ranging between 0.7

and 50 mg Fe g-1 sand, while those of natural soils and sediments are in the range of

0.074 to 44.2 mg Fe g -1 sand (Ryan and Gschwend, 1994; Coston et al. 1995; Wang et al.

1993; Pieper et al. 1997). The oxide-silica interface has been investigated with x-ray

photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR)

(Scheidegger et al. 1993), where Fe-O-Si bonding was proposed. Liang et al. (2000)

concluded that the quartz-ferrihydrite interface involves chemical interactions based on

their observations that repulsive forces could not explain the results. Using Mössbauer

spectroscopy, Marchetti et al. (1997) reported that the smaller the oxide particles the

stronger the oxide-substrate interaction. X-ray diffraction (XRD), transmission electron

microscopy (TEM), and scanning electron microscopy (SEM) have been used as well to
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identify components, distribution, and structure of surface oxide coatings (Coston et al.

1995; Wang et al. 1993; Edwards and Benjamin, 1989; Kuan et al. 1998; Meng and

Letterman, 1993b). Typically, oxides are non-uniform (Edwards and Benjamin, 1989)

over the surface, as both the oxide and substrate have been observed (Anderson and

Benjamin, 1990). Surface area combined with extractable Fe may be an effective

geochemical 'indicator' of the potential variability of metal distribution in an aquifer

(Fuller et al. 1996). The need to characterize the structure and behavior of sediments is

clear.

2.1.3 Measurement of Coating

Iron concentration in coated silica is an important factor in evaluating the coating process

and a number of researchers have used extraction (Kuan et al. 1998; Stahl and James,

1991a, b; Fan, 1996; Wang, 1995; Szecsody et al. 1994). These techniques have been

developed by soil scientists, geologists, and oceanographers to enhance in clay mineral

characterization (Ryan and Gschwend, 1991; Shuman, 1982; Furtado et al. 1990; Sequi et

al. 1983; Borggaard, 1981; Geiger and Loeppert, 1986; Jackson et al. 1986; Kunze and

Dixon, 1986; Leoppert and Inskeep, 1996). For example, Ross and Wang (1993)

summarized five extraction methods that may be used to approximate the amounts and

forms of Fe in soils (Table 2.1): dithionite citrate, acid ammonium oxalate,

hydroxylamine, tiron (4, 5-dihydroxy-1, 3-benzene-disulfonic acid), and pyrophosphate.

Other extraction methods for Fe include citrate-ascorbate (Reyes and Torrent, 1997),

ethylenediaminetetraacetic acid (EDTA) (Borggaard, 1981), HC1, and H2C2O4 (Chao and

Zhou, 1983) for amorphous iron oxides; and, ascorbic acid-oxalate (Shuman, 1982) and

titanium(III)-citrate-EDTA-HCO 3 (Ryan and Gschwend, 1991) for crystalline iron



Table 2.1 Extraction Methods for Oxides

Method Extractants Target forms of iron oxides References

Dithionite-citrate
method

Sodium hydrosulfite (Na2S2O4)
Sodium citrate (Na3C6HSO7•2H2O)

Crystalline, amorphous, and organic-
complexed Fe, Mn, and Al

Ross and Wang
(1993)

Acid ammonium
oxalate method

Ammonium oxalate ((NH4)2C2O4-1-12O)
Oxalic Acid (H2C2O4.2H2O)

Amorphous and organic-complexed
Fe, Mn, and Al

Ross and Wang
(1993)

Hydroxylamine
method

Hydroxylamine hydrochloride
(NH2OH•HC1)-hydrochloric acid (HC1)

Amorphous and organic-complexed
Fe and Al

Ross and Wang
(1993)

Tiron method 4, 5-dihydroxy-1, 3-benzene-disulfonic
acid

Amorphous and organic-complexed
Fe and Al

Ross and Wang
(1993)

Pyrophosphate
‘method Sodium pyrophosphate (Na4P2O7 -2H2O) Organic-complexed Fe and Al Ross and Wang

(1993)

Citrate-ascorbate
method

Sodium citrate (Na3C6H5O7)
Sodium ascorbate Amorphous Fe Reyes and Torrent

(1997)

EDTA method Ethylenediaminetetraacetic acid (EDTA) Amorphous Fe Borggaard (1981)

Ti(III)-citrate-
EDTA-HCO3
method

Titanium (III) chloride (TiC13)
Sodium citrate dehydrate ((Na3C6HSO7)
Tetrasodium EDTA (Na4EDTA)
Sodium bicarbonate (NaHCO3)

Crystalline and amorphous Fe
Ryan and
Gschwend
(1991)

Ascorbic acid-
oxalate method

Ascorbic acid (C6H8O6)
Ammonium oxalate ((NH4)2C2O4•H2O) Crystalline Fe Shuman (1982)



11

oxides. Because extraction methods suggest the mineral form, dissolution data are

commonly used for soil classification.

In this study, dithionite citrate will be used for extracting both crystalline and

amorphous Fe oxide, and hydroxylamine will be employed for amorphous Fe oxide. The

amount of crystalline Fe oxide is therefore the difference between the two.

2.1.4 Coating Factors

The amount of coating may be influenced by factors such as coating temperature, particle

size, surface area, roughness, and other characteristics of the supporting media. Wang

(1995) applied 0.04 g Fe g -1 GAC and Fan (1996) applied 0.055 g Mn g -1 GAC in their

studies to achieve higher coating efficiencies. Metal concentrations initially applied by

many researchers (Edwards and Benjamin, 1989; Stahl and James, 1991a, b; Wang, 1995;

Fan, 1996; Khaodhiar et al. 2000; Kuan et al. 1998; Joshi and Chaudhuri, 1996;

Stenkamp and Benjamin, 1994; Bailey et al. 1992) are usually in the order of 10 -3 to 10 -2

g metal g-1 media. A metal concentration of 0.05 g Fe g -1 silica will be applied in this

research.

One important variable affecting the degree of coating is temperature. Fan (1996)

obtained more Mn oxide coatings on granular activated carbon (GAC) at 160 °C than 105

°C, although the same concentration of Mn was applied. Edwards and Benjamin (1989)

found that as Fe dose increased a much greater percentage of the surface was covered

upon heating (110 ± 10 °C) as opposed to precipitation without heating. Also, the

coatings produced with heating were observed to be more resistant to abrasion and

exposure to mild acid solutions than those produced through alkaline precipitation (no

heating). However, from their study it is not clear whether a difference in detachment
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reflects kinetics or mineralogical form. A number of coating studies (Khaodhiar et al.

2000; Edwards and Benjamin, 1989; Stahl and James, 1991a, b; Wang, 1995; Fan, 1996)

have shown that the degree of coating increased with increasing temperature.

Earlier studies (Table 2.2) have involved varying coating temperature, initial

applied metal concentration, and silica (with different particle size, surface area,

roughness and other characteristics). Although a relationship between the amount of

coating and temperature was observed in earlier work, no such result was found with

respect to particle size. Most likely, the degree of coating is a function of a number of

factors. To systematically evaluate factors that influence the degree of coating,

experiments will be designed using a three-level fractional factorial method (Anderson

and Mclean, 1974) to reduce the number of studies and isolate effects. Factors

investigated will include coating temperature (T), mean diameter of silica particle (D), Fe

concentration initially applied (Feini), and aging time (t, for adsorption method only).

In summary, adsorption studies on discrete iron oxides and iron oxide-coated

silica are important in investigating heavy metal distribution in environment. However,

for iron oxide-coated silica, factors affecting coating processes have not been fully

evaluated.

2.2 Macroscopic Adsorption Studies

Metal sorption to hydrous oxides is affected by the solution pH (Gadde and Laitinen,

1974), ionic strength, (Swallow et al. 1980), inorganic and organic ligands present in the

system (Forbes et al. 1974; Ali and Dzombak, 1996; Weng et al. 2002, Scheinost et al.

2001; Sauvé et al. 2000; Brooks and Herman, 1998; Düker et al. 1995; Ledin et al. 1994;



Table 2.2 Some Coating Work and Corresponding Coating Results

Method Metal
coated

Meapplied
g Me/g sand

Mecoated
g Me/g sand

Temp.
°C

Sand size
(mm) Author

1 Natural
Sediment

Fe oxide
Al oxide N.A.1 0.0022

0.0002 N.A. 0.25-1.0 Ryan and Gschwend
(1994)

2 Natural
aquifer Fe(OH)3 N.A. 0.00005 N.A. 0.063-2

median 0.6
Martin and Kempton
(2000)

3 6Mix. FeOOH NA 2 0.003
-0.006 35 0.074

-0.21
Szecsody et al.
(1994)

4 Mix. 6

Prcp. 3

Fe oxide
Mn oxide NA2 0.00582

0.00195 35 0.21 Zachara et al.
(1995)

5 Prcp. 3

Evp 4 Ferrihydrite 0.00336
0.0139

0.0007
0.01

25
110 059-084. 	 . Edwards and

Benjamin (1989)

6 Prcp. 3
FeOOH
Fe2O3 0.00164 0.00125

-0.00132
105
500 NA2 Stahl and James

(1991a)

7 Wet oxid. 5

Dry oxid. 5

Birnessite
Pyrolusite

0.00429
0.0277

0.00191
0.0269

44
105-160 NA2 Stahl and James

(1991b)

8 Prcp. 3
Al(OH)3
Fe(OH) 3

0.00675 Assume
0.00675 22 0.000015

-0.00002
Meng and
Letterman (1993a)

9 Prcp. 3 Al(OH)3 0.0135 -0 . 00375 _
70 0.71-0.84 Kuan et al.

(1998)

10 Prcp. 3 Fe oxide 0.0448 NA2 110 0.49 Joshi and Chaudhuri
(1996)

11 Prcp. 3 Ferrihydrite 0.0228 NA2 110 0.297
-0.42

Stenkamp and
Benjamin (1994)

12 Prcp. 3 Ferrihydrite -0.02090.0209 NA2 110 0.65-0.85 Bailey et al.
(1992)

13 Prcp. 3 Fe oxide 0.04-0.12 _00.003752 90-105 0.42-0.841 Wang
(1995)

14 Prcp. 3 Mn oxide _00.0015456 00.0003251 -
60-160 0.5 Fan

(1996)

15 Prcp. 3 Fe2O3 0.0039 0.0074 110 0.6-0.85 Khaodhiar et al.
(2000)

1 N.A.-not applicable;
2 NA-not available;
3 Prcp.-precipitation;
4 Evp.-evaporation;
5 oxid.-oxidation;
6 Mix.-Mixing.

13
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Ephraim et al. 1991; Bar-Tal et al. 1988; Lion et al. 1982; Baccini et al. 1982; Buerge-

Weirich et al. 2002), sorbate/sorbent ratio (Gadde and Laitinen, 1974; Hayes and Leckie,

1986; Weesner and Bleam, 1998; Webster et al. 1998), and competing metal ions

(Benjamin and Leckie, 1981b; Voegelin et al. 2001; Christi and Kretzschmar, 1999;

Christophi, 1998; Christophi and Axe, 2000; Gadde and Laitinen, 1974; Palmqvist, et al.

1999; Swallow et al. 1980; Trivedi et al. 2001b; Vulava et al. 2000). Other factors

involve redox, temperature, supersaturated solutions of metal ions, and microbial effects.

Generally, metal cation adsorption increases with increasing pH as the surface charge

becomes more negative. Ionic strength affects metal adsorption by influencing adsorbate

activity as well as the surface charge and double-layer capacitance and thickness.

However, the effect of ionic strength is often relatively minor compared to pH.

Complexing ligands may decrease or increase adsorbate uptake. Adsorption competition

occurs when multiple species are present and compete for a limited number of surface

sites.

Macroscopic studies include adsorption edges and isotherms. The former

addresses pH and ionic strength dependence of adsorption, while the latter describes

metal concentration dependence. In the following, both adsorption edges and isotherms

as well as metal competition studies are introduced.

2.2.1 Adsorption Edge

A plot of cation adsorption to iron oxides vs. pH is usually sigmoidal with percent metal

sorbed increasing from 0 to 100% over a narrow pH range (Cornell and Schwertmann,

1996; Hayes and Leckie, 1986). Sorbate/solid ratio influences the position of edge jump.

Adding more solid causes the edge jump to shift to a lower pH; on the other hand,
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increasing the sorbate concentration will cause either no shift at very low coverage or a

shift to higher pH values becoming less steep with increasing coverage (Hayes and Katz,

1996). Temperature has also been observed to affect cation uptake; adsorption edges of

Zn, Cu, Pb, and Cd on goethite (Johnson, 1990; Rodda et al. 1993) and Ni, Gd, and Y on

alumina (Kosmulski, 1997) shifted to lower pH values as temperature rose from 10-70

and 15-35 °C, respectively. The relative affinity of a metal is reflected by the position of

the edge jump. Dzombak and Morel (1990) reported the following trend for metal

affinity to HFO Ca < Ni < Zn < Cd < Pb < Cr and Cornell and Schwertmann (1996)

discussed a trend of Mn < Ni < Co < Cd < Zn < Pb< Cu.

The effect of ionic strength on the adsorption edge although suggestive, is not

concrete. Nonspecific adsorption of cations (such as alkali cations) is dependent on ionic

strength, where specific adsorption is typically absent ionic strength effects (Cornell and

Schwertmann, 1996). Hayes and Leckie (1987) observed little ionic strength (IS = 102-

100) effect on Pb and Cd adsorption on goethite, the results were best modeled as an

inner-sphere surface reaction. In modeling, the absence or presence of an ionic strength

effect on metal adsorption is usually interpreted as inner-sphere or outer-sphere

adsorption, respectively. Additionally, cation adsorption is often accompanied by proton

release. The number in the past has been attributed to mononuclear or binuclear

complexes and typically restricted to one or two (Cornell and Schwertmann, 1996).

Intermediate values (Forbes et al. 1976; Hayes and Leckie, 1986; Müner and Sigg, 1992;

Kooner, 1993; Gunneriusson et al. 1994; Trainor et al. 2000) may be caused by

hydrolysis of the cation and/or occurrence of two types of sites or surface species

(Cornell and Schwertmann, 1996). Benjamin and Leckie (1981a) observed 3.2 protons
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released from Zn sorption to HFO; the authors explained their results as formation of

multinuclear species. Although these approaches are usually successful in modeling, the

surface species may not be unique or physically meaningful.

2.2.2 Adsorption Isotherm

Isotherms exhibit several types of shapes depending on metal concentration and/or

surface coverage (Hayes and Katz, 1996). At low concentration and low surface

coverage, isotherms are often linear, the slope of which is referred to as distribution

coefficient (K,1). Kd has been used extensively to describe the partitioning of ions at the

solid/liquid interface and is often found to be a function of pH, solution composition, and

solid/liquid ratio (Jackson and Inch, 1989; Kooner, 1993; Lee et al. 1996; Larsen and

Postma, 1997). Therefore, one condition may not be applicable to another. When an

isotherm is conducted over a wider concentration range, it often becomes highly

nonlinear and may level off at relatively high metal concentration. This type of isotherm

can be described by the Langmuir model using two parameters, K for the equilibrium

constant and C t for site density. The Langmuir isotherm has been applied in a variety of

adsorption studies (Pierce and Moore, 1980; Kanungo, 1994; Lee et al. 1996; Gupta,

1998; Small et al. 2001; Christophi and Axe, 2000; Trivedi et al. 2001b; Dong et al.

2001; Vaishya and Gupta, 2002, 2004; Delolme et al. 2004; Juang and Chung, 2004).

The Freundlich isotherm has been used often for metal adsorption on oxides or soil

samples (Barrow et al. 1989; Gupta, 1998; Sen et al. 2002; Vaishya and Gupta, 2002,

2004), and suggests the existence of more than one type of site.

Isotherms may be more complicated than discussed above. Robertson and Leckie

(1998) observed three regions in the isotherm for Cu adsorption to goethite: below —10-5
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mole Cu g -1 goethite (-1-7% of the total sites), between —10 -5 and —10-4.3  Cu g-1

goethite (-3-30% of the total sites), and above —10 -4.3 mole Cu g -1 goethite. Similar

trends for isotherms were found in other studies on Cd/HFO (Dzombak and Morel, 1986;

Spadini et al. 2003), Cr/HFO (Charlet and Manceau, 1992), Zn/HFO (Kinniburgh and

Jackson, 1982), and Co/Al2O3 (Katz and Hayes, 1995a). Homogeneous precipitation

may occur if the metal ion is supersaturated resulting in an abrupt increase in the

isotherm slope (Hayes and Katz, 1996). Gradual increases in the slope at high metal

concentrations were modeled as surface polymers or surface precipitation (Katz and

Hayes, 1995b; Dzombak and Morel, 1986; Charlet and Manceau, 1992) and have been

supported by XAS for Cr/HFO system (Charlet and Manceau, 1992). Similar features in

Cd/goethite isotherm (Robertson and Leckie, 1998) were successfully modeled using the

triple layer model assuming several surface species. Based on wet chemical,

spectroscopic, and crystallographic considerations, Spadini et al. (2003) proposed a low-

affinity site for modeling isotherms at high surface coverage.

Although many studies have been conducted with single sorbate systems, metal

ions may co-exist in the environment resulting in competition, which is discussed in the

following section.

2.2.3 Competition Studies

Many researchers have investigated competition, for example, Gadde and Laitinen (1974)

concluded that Pb sorbed more strongly than other ions, Zn, Cd, and Ti, on HFO and

HMO. Adsorption of trace metals (Cu, Pb, Zn, Ni, and Cd) tends to be suppressed by

high levels of weakly adsorbing alkaline earth ions (Balistrieri and Murray, 1982; Cowan

et al. 1991; Trivedi et al. 2001b). Christophi and Axe (2000) observed that goethite has a
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greater affinity for Pb than Cu. Cd adsorption is strongly influenced by the presence of

competing cations such as divalent Ca and Zn (Benjamin and Leckie, 1981a; Bradl

(2004). Kanungo et al. (2004) found in a study on Co, Ni, Cu, and Zn sorption to HMO

that Ni experienced the greatest degree of displacement. Crawford et al. (1993) observed

Zn and Ni in equal concentrations adsorb independently of each other on ferrihydrite; it's

likely that the site density was not limited in this study. However, Zn was observed to

have higher affinity than Ni on goethite (Tiller et al. 1984; Crawford et al. 1993; Gupta,

1998; Dube et al. 2001; Trivedi et al. 2001b; Jeon et al. 2003). Nevertheless, competition

between trace metals may be difficult to demonstrate when site density is not limiting

(Swallow et al. 1980; Benjamin and Leckie, 1981a; Palmqvist et al. 1999).

For soil samples, Gomes et al. (2001) found Cr, Pb, and Cu were the most

strongly sorbed heavy metal cations, whereas Cd, Ni, and Zn were the least competitive.

They also found that for metals of the same valence, sequences did not exactly follow the

order of electronegativity. Stefanova (2001) observed a high selectivity of Cu and Pb

over Zn and Cd ions by Keramzite sand. Khaodhiar et al. (2000) found Cu(II) adsorption

increased slightly in the presence of arsenate but was not affected by chromate. Arsenate

adsorption was not affected by either copper or chromate, while chromate adsorption

increased in the presence of Cu(II) and decreased in the presence of arsenate. The

authors modeled the single-sorbate behavior successfully with the triple layer model, but

could not predict adsorption for multi-sorbate systems with surface complexation

constants from single-sorbate systems. The local structure of the sorbed species is

needed to constrain surface complexation modeling.
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Overall, macroscopic adsorption studies are just a starting point for investigating

metal partitioning at the solid/liquid interfaces. Efforts to further describe and predict

their behavior are restricted by poor understanding of the adsorption mechanism. Recent

advances in addressing speciation using in situ spectroscopic techniques such as XAS

have made it possible to overcome this drawback (Brown, 1990; Brown and Sturchio,

2002; Hayes and Katz, 1996). Spectroscopic studies are introduced in the next section.

2.3 Adsorption on Oxides — Spectroscopic Studies

XAS and its derivatives XANES (X-ray absorption near edge structure) and EXAFS

(extended X-ray absorption fine structure) spectroscopy are powerful tools for

ascertaining the speciation of trace metals in natural soils and sediments (O'Day et al.

1998). Many researchers have used EXAFS to study the speciation of metal ions in

natural sediments. O'Day et al. (1998) found that as sphalerite (ZnS) weathers, Zn is

scavenged primarily as zinc hydroxide and/or zinc-iron oxyhydroxide phases, depending

on the total amount of iron in the system. Similarly, Pb sorbed to iron oxyhydroxides at

low pH (<7) when oxides were present in significant amounts. Pb sorption onto iron

oxyhydroxides and precipitation of lead carbonate may occur at higher pH (>7)

depending on the lead and iron concentrations in the system. Cd released from sphalerite

weathering is preferentially partitioned into the aqueous phase. Scheinost et al. (2002)

studied Zn speciation in soils near a former sphalerite smelter. They found that in the

topsoil, Zn exists as franklinite (ZnFe2O4) (60%), sphalerite (30%), and aqueous or outer-

sphere Zn2+; in the subsoil, aqueous or outer-sphere Zn 2+ prevailed (55%) and the

remaining 45% was incorporated by hydroxyl-Al interlayers of phyllosilicates. The
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authors concluded that hydroxyl-Al interlayered phyllosilicates act as a potential sink for

Zn in acidic soils. Furrer et al. (2001) proposed a similar binding mechanism for Ni.

EXAFS studies helped to isolate the sorption mechanism where hydroxyl-Al interlayers

of phyllosilicates may be important for the retention of 3d metals (Scheinost et al. 2002).

EXAFS has been extensively used to probe the local structure of adsorbed species

on model soil surfaces. From such studies, Axe et al. (1998) concluded that the strontium

ion remains hydrated thus physically adsorbed to HFO surface. Sahai et al. (2000)

observed that strontium sorbed to kaolinite, amorphous silica gel, and goethite surfaces

by forming hydrated surface complexes and this structure did not change up to 57 days.

Concomitant with a maximum of dissolved CO2 , the authors observed an increase of Sr

sorption at approximately pH 8.5 where the local structure was consistent with SrCO3(s).

Sahai et al. (2000) suggested that sorption of carbonate may nucleate the precipitation of

SrCO3 in the pH range in which carbonate species sorption on goethite is near a

maximum. Additionally, Zn(II) was found to form bidentate surface complex on 2-

lineferrihydrite (Waychunas et al. 2002, 2003; Trivedi et al. 2004), aluminum oxide

(Trainor et al. 2000), and goethite (Schlegel et al. 1997; Trivedi et al. 2001a).

Many studies have been conducted on Pb(II) adsorption mechanisms on

crystalline iron and aluminum oxides (e.g., Chisholm-Brause et al. 1989, 1990; Roe et al.

1991; Bargar et al. 1997b; Strawn et al. 1998; Ostergren et al. 1999a, b, 2000a; Elzinga et

al. 2001; Templeton et al. 2003). To construct an accurate description of Pb(II)-oxide

surface, Bargar et al. (1997b) studied Pb(II) sorption products and surface functional

groups on iron oxides. They found that Pb(II) ions sorbed as mononuclear bidentate

complexes to edges of FeO6 octahedra on both goethite (up to 4.2 μmol Pb m -2) and
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hematite (up to 9.9 limo' Pb ril-2). Combined with bond-valence determination, the

authors proposed that Pb(II) adsorption occurred primarily at [Fe FF:4O -1/2 ] and

[Fe-OH 2+1/2 ] sites. Similar surface complexes have been observed for Al oxides (Bargar

et al. 1997a; Strawn et al. 1998). However, Pb binding has been found to change with

increasing sorption density: surface complexes on goethite shifted from bidentate corner-

sharing to bidentate edge-sharing as the loading increased from 0.83 to 4.9 μmol Pb m -2

(Templeton et al. 2003). On the other hand, Pb(II) polynuclear complexes were observed

on γ-Al2O3 (1.3 μmol Pb 111-2 , Chisholm-Brause et al. 1990), a-Al2O3 (> 3.4 μmol Pb m-2,

Bargar et al. 1997a), and goethite (9.6-19.2 μmol Pb m -2 , Roe et al. 1991). Interestingly,

Trivedi et al. (2003) found a mixture of bidentate edge- and monodentate corner-sharing

Pb(II) complexes on 2-line ferrihydrite at pH 4.5 above which only the former was

observed despite the extent of surface coverage.

Pb(II) uptake by goethite in the presence of various anions has also been

investigated. Bargar et al. (1998) proposed that the presence of Cl - has little effect on the

Pb(II)/goethite and Pb(II)/'y-alumina surface complexes at pH 7, while Pb(II)-C1 --goethite

ternary complexes were formed at pH ... 6. Recent studies (Elzinga et al. 2001; Ostergren

et al. 2000 a, b) indicate that first and second-shell distances for Pb sorption to goethite

are essentially unchanged (AR < 0.03 A) by the presence of carbonate or sulfate. While

much work has been conducted with crystalline oxide surfaces, limited EXAFS studies

have been reported on amorphous iron oxides. Manceau et al. (1992) observed that

Pb(II) was adsorbed on HFO as mononuclear bidentate complexes on edges of FeO6

octahedra based on a short-term contact time of three hours. Scheinost et al. (2001)

found that Cu and Pb formed similar edge-sharing inner-sphere sorption complexes when
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sorbed to 2-line ferrihydrite, this structure did not change as a function of time (up to 2

months), ferrihydrite morphology (with and without freeze-drying), and competing ions

(Cu2±). In their analysis, Cu and Pb were expected to bind to the same types of sites.

However, competition was not observed. Again as discussed above, Trivedi et al. (2003)

observed inner-sphere bidentate edge- and monodentate corner-sharing Pb(II) complexes,

at constant pH, the configuration of the sorption complex was observed to be independent

of the adsorbate concentration thus suggesting one average type of mechanism.

Ni has also been studied extensively using EXAFS. Much of the existing work

has focused on its sorption to aluminum oxides, silica, or related minerals (Clause et al.

1992; Paulhiac and Clause, 1993; Scheidegger et al. 1996, 1998; Ford et al. 1999;

Roberts et al. 1999; Nachtegaal and Sparks, 2003; Voegelin and Kretzschmar, 2005),

where the formation of layered double hydroxide (LDH) precipitates were observed.

Elzinga and Sparks (1999) reported that adsorption and surface precipitation are

consecutive mechanisms involving nonspecific or specific adsorption followed by

dissolution of Al and nucleation of a mixed Ni/Al phase. In the process, Al dissolution

has been found to be the rate limiting mechanism based on rates of Ni uptake and Al

dissolution (Scheidegger et al. 1998). EXAFS analysis reveals that formation of Ni-Al

LDH is characterized by increased second shell contributions as the structure grows

(Scheidegger et al. 1998). Also, as pH decreased from 7.5 to 6, the rate of formation

decreased from 15 min to 72 hours (Roberts et al. 1999). Recently, however, Strathmann

and Myneni (2005) found that Ni(II) forms inner-sphere mononuclear bidentate

complexes with aluminol groups on boehmite (y-A1OOH), where contact times ranged

from 1 to 31 days with loadings between 7.0x10 -6 and 4.11x10 -5 mol g -1 . The total Ni(II)
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concentration in their system was about one order of magnitude lower than in other

studies where LDH precipitates were observed (Scheidegger et al. 1996, 1998; Scheinost

et al. 1999; Elzinga and Sparks, 1999; Roberts et al. 1999; Nachtegaal and Sparks, 2003).

Previous work with Ni and iron oxides has been limited to coprecipitation with goethite

and hematite; Ni 2+ was found to substitute for Fe 3+ at 3% and 6% (molar ratio) loadings,

respectively (Manceau et al. 2000; Singh et al. 2000). Little has been reported on Ni

adsorption to iron oxide surfaces. Although a number of researchers (Dzombak and

Morel, 1990; Coughlin and Stone, 1995; Buerge-Weirich et al. 2002) have modeled Ni

adsorption on goethite using SOM+ surface species, molecular-scale analyses are needed

to corroborate this mechanism.

Overall, the mobility, bioavailability, and toxicity of heavy metals are greatly

controlled by adsorption reactions taking place at the oxide/water interfaces. XAS

analysis is an effective tool in deciphering mechanisms at the surface. These

investigations demonstrate how the structure of sorbent, through the nature of the reactive

surface sites, may control the mobility and speciation of metals in the environment

(Manceau et al. 1992). Macroscopic observations can be more confidently explained,

and as is shown by Trivedi (2001) and Dyer et al. (2003), XAS derived structural

information may be combined with macroscopic studies to predict heavy metal mobility

in aquatic/soil environments.

2.4 Adsorption Modeling — Surface Complexation Models

Many researchers used traditional Langmuir (e.g., Pierce and Moore 1980;

Padmanabham, 1983; Jackson and Inch, 1989; Miller et al. 1989; Kooner, 1993;
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Kanungo, 1994; Lee et al. 1996, 1998; Sauvé et al. 2000) and empirical Freundlich

models (Dzombak and Morel, 1986; Mishra and Tiwary, 1995, 1998; Nakahara, 1996;

Mishra et al. 1997; Gupta, 1998; Christophi and Axe, 2000, Vaishya and Gupta, 2004) to

describe equilibrium adsorption. However, a good fit using the Langmuir equation, or

any other model without complementary molecular information, does not necessarily

support the proposed mechanism (Schulthess and Sparks, 1991). For the Freundlich

model, generally, if data can be fit with this isotherm, surface site heterogeneity is likely

(Trapnell, 1955; Adamson, 1982). There are two limitations however in using the

Freundlich equation (Schulthess and Sparks, 1991): first, it is only applicable to dilute

solutions, adsorption at high aqueous concentrations is generally overestimated and no

maximum adsorption is predicted; and, secondly, it does not explain the adsorption

mechanism.

The distribution coefficient, Kd, has been used extensively to describe the

partitioning of ions at the solid/liquid interface even though it is a function of pH,

solution composition, solid/liquid ratio, and time (Lee et al. 1996; Jackson and Inch,

1989; Kooner, 1993; Larsen and Postma, 1997). Misak et al. (1996) concluded that the

erroneous logKd-pH plots in their study was caused by changes in the activity coefficients

of surface species even at sufficiently low surface coverages. Sauvé et al. (2000) studied

Cd partitioning in 64 contaminated soil samples, where IQ varied over a range from 10 to

100,000. Therefore, partitioning parameters achieved from one situation may not be

applied to another; adsorption modeling using a single parameter, Kd, has significant

limitations in the sense of adsorption prediction.
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Surface complexation modeling (SCM) has been demonstrated to be one of the

most promising methods in modeling sorption. It offers a distinct advantage by

representing surface chemical reactions with a set of quasi-thermodynamic constants,

which are independent of changes in solution conditions (Hayes, 1987). A number of

studies have shown that adsorption can be described in terms of SCMs accounting for the

effect of pH, ionic strength, and surface-coverage (Hsi and Langmuir, 1985; Hayes and

Leckie, 1986; Hiemstra et al. 1989; Dzombak and Morel, 1990; Katz and Hayes, 1995 a,

b; Hayes and Katz, 1996; Hiemstra and Riemsdijk, 1996; Sahai and Sverjensky, 1997;

Robertson and Leckie, 1997, 1998). One requirement of using SCMs is that controlling

reactions and surface species must be known or assumed. The more accurate the surface

complex, the more likely the model can predict surface interactions successfully.

However, describing ion binding on mineral surfaces in a way that is mechanistically

reasonable is always a great challenge and discussed below.

2.4.1 Surface Reactions and Species

In a review, Sposito (1989) summarized that regardless of the molecular structure,

polymeric constituents of natural aqueous colloidal systems present reactive functional

groups of two kinds: siloxane ditrigonal cavities and inorganic or organic hydroxyl

groups. One common practice is to assume that the surface is chemically homogeneous

and a two-step protonation reaction accounts for the charging of metal (hydr)oxides

(Palmqvist et al. 1997; Sahai and Sverjensky, 1997; Davis et al. 1998; van Riemsdijk and

Hiemstra, 1998). Adsorbate reactions are generally proposed based on adsorption edges,

isotherms, and/or the number of H+ released (e.g., Forbes et al. 1976; Benjamin and

Leckie, 1981a; Hayes and Leckie, 1987; Hayes et al. 1988; Lövgren et al. 1990; Müner
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and Sigg, 1992; Gunneriusson et al. 1994; Nowack et al. 1996). Assumed surface

complexes are checked by the goodness of the model fit (Goldberg, 1991). For example,

shifts in the adsorption edge at very low coverage are usually attributed to the presence of

a small number of high affinity sites (Honeyman, 1984). Dzombak and Morel (1990)

used two types of sites, a high affinity and a low affinity one, to describe the pH

dependence of adsorption data. Although these approaches are usually successful, the

surface species selected may not be unique or physically meaningful.

Fortunately, recent advances in addressing speciation using in situ spectroscopic

techniques such as XAS and FTIR spectroscopy have made it possible to overcome this

drawback (Hayes and Katz, 1996; Brown, 1990). Especially from XAS analysis, inner-

sphere versus outer-sphere complexation, mononuclear versus multinuclear, or solid

solution formation can be distinguished through a local structure analysis (e.g.,

Chisholm-Brause et al. 1990; Charlet and Manceau, 1992; O'Day et al. 1994; Bargar et

al. 1997a, b; Scheidegger et al. 1998; Manning et al. 1998; Sahai et al. 2000; Trainor et

al. 2000; Nachtegaal and Sparks, 2002; Trivedi et al. 2003, 2004; Wazne et al. 2003).

For example, vanadium (V) adsorption on goethite at pH 1.5 to 12 could be better

modeled with two monodentate surface complexes as compared to two bidentate species;

however, based on XAS, only inner-sphere bidentate surface complexes formed (Peacock

and Sherman, 2004). Also, SCM modeling was found to under-predict Co(II) adsorption

on a-Al2O3 at high surface coverage (> 10%) using mononuclear complexes; while based

on XAS results, Katz and Hayes (1995b) successfully modeled this adsorption using

polymer complexes.
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Overall, surface complexation modeling is heavily dependent on the accurate

chemical and physical representation of surface complexes and the oxide surface (Hayes

and Leckie, 1987; Cowan et al. 1991). Spectroscopic studies can provide qualitative and

quantitative information on adsorption modeling, connecting molecular details to

macroscopic measurements and significantly improving the ability to model the

solid/liquid interface (e.g., Katz and Hayes, 1995 a, b; Hayes and Katz, 1996; Dyer et al.

2003, 2004).

2.4.2 Surface Complexation Models and Their Applications

A variety of SCMs have been used for predicting sorption of metal ions and other species

on minerals (Westall and Hohl, 1980; Hayes and Katz, 1996; Lützenkirchen, 2002).

Although these models may be expressed with similar mass law and material balance

equations, they involve different descriptions of the electrical double layer (Westall and

Hohl, 1980). The non-electrostatic model (NEM) neglects the electrostatic effects; the

diffuse layer model (DLM) uses the Gouy-Chapman equation for the relationship

between surface charge and potential in the interfacial region; the constant capacitance

model (CCM) has one sorption plane with an inner-layer capacitance, C 1 ; and the triple

layer model (TLM) incorporates the full Gouy-Chapman-Stern-Grahame equation for the

interfacial region with two planes for surface complexation, an inner- and outer-layer

capacitance, C1 and C2 (Westall and Hohl, 1980; Hayes and Katz, 1996). The DLM and

CCM are often limited to lower and higher (>0.01 M and constant) ionic strength

conditions, respectively. The TLM can be applied to a wide range of ionic strengths with

an upper limit of applicability being that for the Davies Equation (Davies, 1962), which is

employed to account for activity corrections (Hayes et al. 1991).
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Surface complexation models have successfully described acid-base properties of

oxides (Hayes et al. 1991; Sahai and Sverjensky, 1997) and metal binding with various

mineral surfaces (Robertson et al. 1997, 1998; Katz and Hayes, 1995 a, b). For example,

Dzombak and Morel (1990) used a two-site DLM and Hiemstra and van Riemsdijk

(1996, 1999) used a charge distribution multi-site complexation (CD-MUSIC) model to

describe metal sorption to HFO and goethite successfully. Hayes et al. (1991) used

CCM, DLM, and TLM to fit goethite titration data and found that many combinations of

parameters can successfully replicate acid-base behavior. A unique set of parameters is

still difficult to achieve. Although a set of averaged parameters were used to predict

adsorption behavior of complex assemblages of different bacterial types (Yee and Fein,

2001, 2003), few studies have addressed both isotherm and edge data over a large range

of conditions with the same model (e.g., Müller and Sigg, 1992; Waite et al. 1994;

Heidmann et al. 2005). Furthermore, most models have been derived from adsorption

edges (Dyer et al. 2003). The applicability of these models may be questionable in the

event there is an effect of adsorbate concentration with more than one type of site (Rodda

et al. 1993; Dyer et al. 2003). Even with both edge and isotherm data, a single set of SCM

parameters could not predict Pb(II) sorption onto ferrihydrite over a wide range of

conditions, the equilibrium "constant" was adjusted with pH to fit the isotherm data

(Dyer et al. 2003). Robertson and Leckie (1998) also could not apply a unique model for

Cu adsorption isotherms with goethite, covering three pH values (4-6) and two ionic

strengths (10 -2-10 1 ).

To summarize, surface complexation models can be used to describe adsorption

data in a thermodynamically consistent way using physically realistic surface species.
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Spectroscopic techniques, especially XAS, provide mechanistic information about metal

adsorption to mineral surfaces, thus significantly improving the predictive ability of

SCMs. A unique set of parameters that is capable of describing various conditions is

difficult to achieve, models must be calibrated using experimental data covering a wide

range of conditions.

2.5 Summary

In summary, adsorption studies on discrete iron oxides and iron oxide-coated silica are

important in investigating heavy metal mobility, bioavailability, and toxicity in the

environment. Factors affecting coating processes have not been fully evaluated for iron

oxide-coated silica and a systematic investigation is warranted. XAS analysis is an

effective tool in deciphering metal adsorption mechanisms at the oxide/water interfaces.

Coupled with macroscopic observations surface complexation models can describe

adsorption data in a thermodynamically consistent way using physically realistic surface

species. However, a unique set of parameters that is capable of describing various

situations is difficult to achieve, models must be calibrated using experimental data

covering a significant and relevant range of conditions.

In the next chapter, objectives and hypotheses are presented and followed by the

associated methods.



CHAPTER 3

OBJECTIVES AND HYPOTHESES

As discussed in the review, sorption of trace elements onto reactive mineral surfaces is an

important process regulating contaminant mobility and bioavailability in natural systems.

Iron oxide is an important phase (Fuller et al. 1996; Green-Pedersen et al. 1997) that

exists both discretely and as surface coatings. Although many studies have been

conducted on heavy metal adsorption to discrete iron oxides and/or iron oxide-coated

media, the coating process has not been systematically investigated. Furthermore, in

modeling adsorption mechanisms, physically realistic surface species based on

spectroscopic analyses are needed (e.g., Hsi and Langmuir, 1985; Gunneriusson et al.

1994; Robertson and Leckie, 1997, 1998; Sahai and Sverjensky, 1997).

In an effort to model heavy metal distribution and transport in soils and

sediments, the objectives of this proposed research are as follows:

• Synthesize and characterize iron oxide-coated silica, which serves as a model
system for soils and sediments. A systematic investigation will be conducted to
address the factors influencing goethite coating to silica. Also, a variety of
analyses will be applied to characterize the goethite-coated silica.

• Elucidate mechanistic interactions between heavy metal ions and the mineral
surfaces. XAS analysis will be performed on heavy metal adsorption to iron
oxide samples under varying conditions relevant to the subsurface in an effort to
elucidate sorption mechanisms.

• Develop mechanistic models for heavy metal adsorption to mineral surfaces
based on macroscopic and spectroscopic information. Various types of
adsorption data (including titration, adsorption isotherm, and adsorption edge)
covering a wide range of experimental conditions will be used to calibrate the
surface complexation model.

30
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• Understand the effect of competing ions on heavy metal adsorption to iron
oxides. The ability of models developed in this research to predict heavy metal
competition on iron oxide will be tested.

Specific hypotheses for this research include:

First, surface functional groups and reactions are similar between crystalline and

amorphous iron oxides (Davis and Leckie, 1978; Charlet and Manceau, 1993; Bargar et

al. 1997b; Villalobos et al. 2001; Dixit and Hering, 2003). Therefore, XAS results for

metal ions sorbed on HFO may be applied to that on goethite. Bargar et al. (1997a, b)

reported that iron oxides and aluminum oxides have fundamentally similar crystal

chemistry — both form Fe06 or A106 octahedra with very similar average Al-O and Fe-O

bond lengths, therefore, they may exhibit comparable surface structures and functional

groups. Bargar et al. (1997a, b) found that Pb(II) ions sorbed as mononuclear bidentate

complexes to edges of FeO6 or A1O6 octahedra on goethite, hematite, and aluminum

oxide. Also, Pb adsorption to HFO (three hours contact time) and 2-line ferrihydrite

(Manceau et al. 1992; Scheinost et al. 2001; Trivedi et al. 2003 [for pH > 4.5]) were

dominated by similar surface complexes. The first hypothesis will be tested by analyzing

Pb/HFO sorption samples (4 hours contact time) with XAS and comparing to that of

Pb/goethite.

Secondly, coupled with XAS data, intrinsic surface complexation constants can be

achieved by calibrating the SCM with a variety of adsorption data including titration,

isotherm, and edge data covering a wide range of conditions. SCMs offer the advantage

of representing surface chemical reactions with a set of quasi-thermodynamic constants,

which are independent of changes in solution conditions (Hayes, 1987). However, few

studies have addressed both isotherm and edge data over a large range of conditions with

the same model (e.g. Müller and Sigg, 1992; Waite et al. 1994; Heidmann et al. 2005);
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this may be due to the fact that most models have been derived only from adsorption

edges (Dyer et al. 2003) or that the surface reaction products may not be physically

meaningful. To obtain a unique set of parameters describing the oxide/water interfaces,

this study will use XAS derived surface complexes and calibrate models with data

covering a broad range of experimental conditions.

The third hypothesis is that mechanistic SCM parameters for a single solute can

be applied to multi-solute systems. As discussed in the first hypothesis, adsorption sites

are highly related to surface functional groups and surface structures; metal ions will then

occupy the same types of sites in the presence of other metal ions. The mechanistic

modeling parameters from single sorbate systems are thus expected to describe the

multisorbate system. Although no direct XAS support was found, there are studies

showing some success in modeling metal competition based on single sorbate parameters.

Ali and Dzombak (1996) predicted sulfate and organic acids adsorption reasonably well

based on single-sorbate data over a wide range of conditions. Palmqvist et al. (1999)

showed single adsorbate modeling predicted adsorption competition for Cu and Zn but

underestimated Pb(II) adsorption. In this study, metal competition will be predicted

using SCMs from single sorbate systems. These models are based on XAS derived

mechanistic information and calibrated using data covering a significant range of

conditions.

Finally, goethite is selected as the representative iron oxide sorbent in soils and

sediments for this research. Goethite and hematite are thermodynamically the most

stable Fe oxides under aerobic surface conditions and therefore, the most widespread

crystalline Fe oxides in soils and sediments (Schwertmann and Cornell, 1991). However,
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existing in almost all soils and other surface formations (e.g. lakes, streams), goethite is

predominant under cool to temperate, humid climates and associated with hematite in

warmer regions. Soil goethite can be formed in two ways (Cornell and Schwertmann,

1996): Ferrous iron can be released from iron silicates, carbonates, and sulfides, for

example, or reduced through microbial respiration. The ferrous ion is then oxidized

under aerobic conditions and precipitates via a nucleation-crystal growth process.

Alternatively, ferrihydrite precipitation undergoes dissolution/reprecipitation and

converts to goethite. The transformation is slow at neutral pH (months to years), but can

be greatly accelerated (in days) by organic reducing agents such as cysteine

(Schwertmann and Cornell, 1991). In the laboratory, goethite formation is favored by

raising or lowering the pH away from the PZC of ferrihydrite (pH 7-8, Schwertmann and

Cornell, 1991) which promotes dissolution of ferrihydrite (Schwertmann and Murad,

1983).

Because its surface chemistry and crystal morphology are well characterized and

because its widespread in natural environments, goethite has been extensively used as a

model component for soils and sediments in a variety of investigations (e.g. Tiller et al.

1984; Hayes and Leckie, 1987; Crawford et al. 1993; Bargar et al. 1998; Sahai et al.

2000; Trivedi et al. 2001b; Templeton et al. 2003). For the same reasons, adsorption to

goethite will be the focus of this research and goethite will be synthesized through

ferrihydrite transformation under basic conditions (pH>12). Considering that the pH for

natural aquatic environments ranges between six and eight and becomes acidic with for

example the introduction of acid mine drainage or historically poor waste management

practices, adsorption studies will be investigated covering an environmentally relevant
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pH range of 4 to 7. Heavy metals may exist at trace level in natural aquatic systems (10

-11-10-7 M, Buerge-Weirich et al. 2002; Nolan et al. 2002) and may be at much higher

concentrations in industrial wastewater discharge and contanimated sites. To develop

models that can be widely applicable, adsorption data will be collected over as broad a

metal concentration range as possible from approximately 10 -11 M up to less than its

solubility limit.

In the following chapters, methods to achieve the objectives and corresponding

results are presented.



CHAPTER 4

EXPERIMENTAL METHODS

In this section, methods used for synthesis, characterization, adsorption, XAS, and

modeling are presented. All chemicals used are of reagent grade unless otherwise stated.

Quality assurance / quality control (QA/QC) was conducted in accordance with standard

methods (Clesceri et al. 1998) and the associated procedure is presented in Appendix A.

For all experiments, Milli-Q Type 1 deionized (DI) water was used; all containers were

washed, soaked in 10% HNO3 overnight, and then rinsed with DI water before use.

4.1 Synthesis of Iron Oxides

Amorphous hydrous ferric oxide (HFO) used in this study was synthesized following the

method described by Dzombak and Morel (1986). HFO was always freshly synthesized

for each adsorption study in a 1 g L -1 batch using Fe(NO3)3.9H2O (99.99%+, Aldrich) and

DI water. Precipitation was conducted under a N2 environment (N2 flowrate = 1-2 L

min-1 , N2 pressure = 2.27 atm) and turbulence (Re .1.0x104) maintained by a motorized

stirrer with polyethylene coated impeller. The ferric nitrate solution was adjusted to pH

7-7.5 by dropwise addition of 10 N NaOH solution and aged for 4 hours before

adsorption studies.

Goethite was synthesized based on the Atkinson et al. (1967) method and

characterized in earlier work (Trivedi and Axe, 2001b); its characteristics are discussed

along with that of the coating in Chapter 5 and 6. The procedure is similar to that for

HFO except that the ferric nitrate solution was adjusted to pH 12. After aging for 4
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hours, goethite suspensions were centrifuged at 12000 RPM for 20 minutes using the

Sorvall® RC-28S centrifuge. The paste was re-suspended and centrifuged again to

remove the background electrolyte (Nat and NO3 - ions). The cleaning process was

repeated until the conductivity of the supernatant after centrifugation reached

background. The goethite paste after cleaning was freeze-dried and stored for future use.

Goethite was re-suspended and aged for 4 hours before use in adsorption studies to

ensure a stable particle size distribution (Trivedi, 2001).

4.2 Pretreatment of Silica

All silica samples were quartz, based on XRD analysis. The 0.2 mm (mean) silica was of

99.995% (metals basis) purity and purchased from Alfa Aesar (Alfa Aesar silica). The

0.9 mm and 1.4 mm (mean) silica samples were provided courtesy of U.S. Silica

Company (US silica). All silica samples were initially acid-washed (2 ml acid g -1 silica)

with 10 -1 N HNO3 for 24 hours. After decanting the solution, the remaining silica was

rinsed repeatedly with DI water and then dried at 105 °C for 24 hours before storing in

Nalgene® containers for future use.

4.3 Coating Methods

Two methods were used for producing goethite-coated silica, a modified adsorption

method based on Szecsody et al. (1994) and a modified precipitation method based on

Meng and Letterman (1993a). To evaluate factors that influence the degree of coating,

experiments were designed using a three-level fractional factorial method (Anderson and

Mclean, 1974) to reduce the number of studies and isolate effects. Factors investigated
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included coating temperature (T), mean diameter of silica particle (D), Fe concentration

initially applied (Feini), and aging time (t, for adsorption method only).

In the modified adsorption method, discrete goethite was mixed with the silica

suspension at pH 7.5 and the factors varied according to the factorial design of

experiment. The suspension was subsequently dried in the oven for 6 days, rinsed with

DI water, and dried again for another 6 days. The drying temperature was varied from 35

to 110 °C based on the design of an experiment.

In the second method, goethite was synthesized under identical chemical and

physical conditions as discrete goethite except in the presence of silica. Ferric nitrate was

dissolved in a silica suspension, completely mixed, and purged with N2 gas. The system

pH was raised to 12 by drop-wise addition of 10 N NaOH and aged for 4 hours.

Subsequently, the suspension was aged for two weeks and rinsed with DI water. The

coated silica was then dried for 3 days. In this method, temperature during aging ranged

from 60 to 110 °C.

To avoid inclusion of loosely attached oxide in characterization, abrasion studies

were performed on the coated silica at Re > 10 4 for 4 hours. The total Feconc. was

determined with a modified dithionite-citrate method based on Ross and Wang (1993)

where the supernatant was then analyzed by atomic absorption spectrophotometry (AA)

analysis (Clesceri et al. 1998). Amorphous Fe oxide was extracted with hydroxylamine

hydrochloride-hydrochloric acid solution (0.25 M NH2OH•HC1, 0.25 M HC1) (Ross and

Wang, 1993). Crystalline Fe oxide is the difference between the total and amorphous Fe

concentration.
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4.4 Extraction Methods

In this study, the total Fe oxide concentration was determined with a modified dithionite-

citrate method based on Ross and Wang (1993), dissolving the ferric oxide via shaking

samples at ambient temperature overnight in a reducing and complexing solution of 0.68

M sodium citrate solution and dithionite (sodium hydrosulfite). The supernatant was then

analyzed with atomic absorption spectrophotometry (AA) (Ross and Wang, 1993).

Amorphous Fe oxide was extracted with hydroxylamine hydrochloride-

hydrochloric acid solution (0.25 M NH2OH•HC1, 0.25 M HC1) following the same

procedure as for total Fe content (Ross and Wang, 1993). The crystalline Fe oxide

concentration is the difference between the total and amorphous Fe oxide.

4.5 Characterization of Uncoated and Coated Silica

Studies have shown that the adsorption of trace elements by mixed solids is related to the

content and interaction of the component minerals; limited knowledge of the physical-

chemical characteristics of the system has restricted our ability to predict the distribution

of trace elements in aquatic and soil environments (Meng and Letterman, 1993a). The

information obtained from X-ray analysis, particle size analysis, electron microscopy,

surface area, and the point of zero charge are helpful in explaining adsorption.

4.5.1 X-Ray Diffraction (XRD)

Mineralogy was assessed with a PW3040-MPD XRD (Philips Electronic Instruments

Company). The silica particles were placed in the sample holder with the back filling

technique. Diffraction data were obtained by step-scans using Cu K-a radiation
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generated at 45 kV and 40 mA, scanning from 10 ° to 120° 20. The (hkl) values

corresponding to various peaks were calculated and compared with the standard powder

diffraction file (PDF) (JCPDS, 1998).

4.5.2 X-Ray Fluorescence (XRF)

Elemental analysis was performed with a sequential X-ray spectrometer system

(PW2400R, Philips Electronic Instruments Company). The PW2592/15 Rh tube and

goniometer detector were used and the X-ray path was in Helium. The results were

analyzed with the Philips SemiQ program and were normalized to 100.0%.

4.5.3 Particle Size Analysis (PSA)

Particle size distribution (PSD) was evaluated with a Beckman-Coulter LS 230 analyzer

as a function of ionic strength and pH. Laser diffraction technique sizes particles by

utilizing the diffraction pattern of scattered light over a range of 0.04 pm to 2 mm.

Sodium nitrate (NaNO3) was added to adjust the ionic strength and pH was adjusted with

10-1 N sodium hydroxide (NaOH) or 10 -1 N nitric acid (HNO3). The system was

completely mixed in a 1 L beaker with a stir bar for at least 3 hours at room temperature

before the particle size analysis. Reynolds number was calculated based on the

characteristic length using the stir bar (Perry and Green, 1984).

4.5.4 Scanning Electron Microscopy (SEM)

Environmental scanning electron microscopy (ESEM, Model 2020, ElectroScan

Corporation) and LEO 1530 field emission (FE)-SEM were utilized to study the surface
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morphology. Samples were fixed on the aluminum sample holder with double-stick

conductive carbon substrate.

4.5.5 Surface Area, Porosity, and Pore Size Distribution

Surface area (BET method) was measured with a NOVA 3000 series unit as well as by

the Gas Technology Institute (GTI, 2002). Porosity (mercury porosimetry) and pore size

distribution (mercury porosimetry) analyses were performed by GTI (2002).

4.5.6 Fourier Transform Infrared Spectroscopy (FTIR)

To study the interfacial bonding mechanism between goethite and silica, Fourier

transform infrared (FTIR) spectra were obtained on an ATI Mattson Research Series 1

FTIR Spectrometer. Goethite, silica, and goethite-coated silica samples were dispersed

homogeneously in KBr matrices and pressed into discs. Five hundred scans of resolution

4 cm -1 were averaged to improve signal to noise ratio. The instrument was continually

purged with dry air. Spectra were obtained over the range of 400-4000 cm -1 .

4.5.7 Surface Charge Distribution

Surface charge distribution varies depending on the degree of hydration, contamination of

the surface by other ions, and method of determination. The point of zero charge (pHpzc)

of a system of any complexity is the condition of no net charge on the surface (Parks,

1967; Westall et al. 1976); others may prefer to designate this the common intersection

point, pHcip, for mixed systems. The PZC can be measured from a wide variety of

experiments in which pH is a master variable (Parks, 1967). Methods used to determine
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PZC include electrophoretic mobility, potentiometric titrations, streaming potential, and

cation and anion adsorption.

Potentiometric titrations were conducted with 1 g L-1 sorbent at three ionic

strengths (IS, 10 -3 , 10 -2 , and 10 -1 ) adjusted with NaNO3. The suspension was purged with

high purity (99.999%) nitrogen gas to remove CO2. Titrations were conducted from pH 2

to 10 for silica and coated silica and 4 to 10 for goethite with stepwise addition of 0.1 ml

titrant (10 -1 and/or 10-2 N HNO3 or NaOH); pH values were recorded after an

equilibration time of 2 minutes per step (Trivedi and Axe, 2001b).

4.6 Adsorption Studies

In all adsorption studies, bulk aqueous phase concentrations of metals were used below

their solubility limit with respect to the thermodynamically stable form (Appendix B).

Ionic strength, pH, and metal ion concentrations were adjusted with NaNO3, HNO3 and

NaOH, and metal nitrate, respectively. Turbulence (Re 1.0x10 4) was maintained to

eliminate resistance due to external mass transfer. All macroscopic adsorption studies

were conducted in Nalgene® containers with a contact time of 4 hours using a shaker (C-

1 Platform Shaker, New Brunswick Scientific) at room temperature (-22 °C) and open to

the atmosphere.

The amount of metal adsorbed was calculated from a mass balance by subtracting

final aqueous concentration from initial concentration. Metal concentrations were

analyzed with either Beckman Liquid Scintillation System (model LS6500) or graphite

furnace atomic absorption spectrophotometer (AA, Perkin Elmer 4110 ZL). When using
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the liquid scintillation counter, an isotope-tagged (i.e., Ni 63 , Zn65, pb210) metal-nitrate

stock solution was used to adjust metal concentration.

Constant boundary condition (CBC) experiments were conducted to study the

transient sorption process. In these studies, the bulk aqueous concentration of metal ions

was maintained approximately constant by monitoring and adding adsorbate as

necessary. CBC studies were performed in 1 L Nalgene ® bottles using the isotope-tagged

stock solution to adjust metal concentration.

4.7 X-ray Absorption Spectroscopy (XAS) Analysis

Samples for XAS studies were prepared similar to macroscopic adsorption studies. The

suspension was separated by centrifugation and stored wet for XAS analysis. The metal

loading was obtained from the simultaneously prepared tagged sample using scintillation

counting (Trivedi, 2001).

The XAS data were collected at beamline X-11A and X-11B at the National

Synchrotron Light Source (NSLS), Brookhaven National Laboratory. The storage ring

was operated at 2.81 GeV beam energy with a beam current in the range of 100-300 mA.

Silicon (111) double-crystal monochromators were used for both beamlines. The

incident beam (Is) was detuned by 30% to reject high-energy harmonics. Data were

collected in both transmission and fluorescence modes. The I o ion chamber was filled

with N2(g) and the fluorescence signal (If) was collected using a Lytle detector filled with

Ar gas. The transmission signal (I t) was measured with a N2(g) and Ar(g) mixture-filled

ion chamber and the gas composition was adjusted to absorb approximately 60% of the

incoming X-rays. EXAFS spectra were collected from 12,855 to 13,602 eV over the Pb
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Lin-edge, from 8,133 to 8,884 eV over the Ni K-edge, and from 6,912 to 7,857 eV over

the Fe K-edge. Pb, Ni, and Fe foils were used as references for energy calibration. At

least five scans for Fe and typically —20 scans for Pb and Ni were collected. The analysis

was carried out on the averaged data to improve signal statistics. All EXAFS data were

collected at room temperature. XAS data for reference compounds were collected in

transmission mode. Both transmission and fluorescence data were collected for the

hydrated ion in a metal nitrate solution in order to address self-absorption (Tröger et al.

1992).

The XAS data were analyzed with WinXAS 2.3 (Ressler, 1998) and followed

standard procedures (Bunker and Sayers, 1988). For each scan, the background was

fitted with a linear polynomial through the pre-edge region and subtracted. The edge

jump of the background-corrected XAS spectra was then normalized to one by refining

100-200 eV above the edge with a zero order polynomial and normalizing the spectra to

the ordinate value of this polynomial. The energy threshold (E0) of the absorption

spectrum was determined from the first inflection point of the edge region and was used

to convert the absorption spectrum from energy to k space. A cubic spline function was

applied to account for the isolated atomic absorption μ0(E). EXAFS function (x(k)) was

obtained after subtracting ,u0(E) from the absorption of the atom in condensed matter.

The x(k) data were weighted by k 3 to enhance the higher k-space data and then Fourier

transformed using the Bessel window function to produce the radial structural function

(RSF). The RSF was not corrected for phase shift. EXAFS fitting of the RSF was

conducted using theoretical phase shift and amplitude functions calculated by FEFF 7
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(Zabinsky et al. 1995). Fits were optimized by minimizing the residuals and errors were

assessed by fitting the spectra averaged over subgroups of scans.

4.8 Surface Complexation Modeling

The nonlinear least-square fitting program, FITEQL Version 4.0 (Herbelin and Westall,

1999) was used for fitting parameters from titration and adsorption data. This program

solves the equilibrium model at each data point and optimizes adjustable parameters until

the sum of the squares of the residuals (SOS/DF term in FITEQL) between the measured

data and the calculated values is minimized (Herbelin and Westall, 1999). The TLM has

the flexibility in placing electrolyte and metal ions along the interface and therefore is

selected for modeling the goethite titration and adsorption data. In distinguishing inner-

and outer-sphere adsorption, the TLM has been demonstrated to accurately cover a large

range of conditions (Cowan et al. 1991; Hayes and Katz, 1996; Dyer et al. 2004).

Parameters calibrated from the titration data were further applied in modeling adsorption.

In the following chapters, results are discussed: Chapter 5, Characterization of

Iron Oxides and Silica; Chapter 6, Synthesis and Characterization of Iron Oxide-Coated

Silica; Chapter 7, Surface Complexation of Pb(II) on Amorphous Iron Oxide:

Spectroscopic and Time Studies; Chapter 8, Ni(II) Complexation to Amorphous Hydrous

Ferric Oxide: An X-ray Absorption Spectroscopy Study; Chapter 9, Surface

Complexation Modeling of Heavy Metal Adsorption and Competition on Goethite; and

Chapter 10, Ni and Zn Sorption to Iron Oxide-Coated Silica.



CHAPTER 5

CHARACTERIZATION OF IRON OXIDES AND SILICA

In this section, results are presented for characterizing iron oxide and silica. Goethite was

produced in earlier work (Trivedi, et al. 2001a); HFO is synthesized following the same

method as of Axe and Anderson (1995). Characterization analyses are conducted in

corresponding studies and are summarized below.

5.1 Characterization of Iron Oxides

XRD analysis reveals that goethite is highly crystalline; the ESEM micrograph shows

needle shaped or acicular crystals of 0.5 to 1µm in length. In the particle size analysis,

the goethite powder is re-suspended for 4 hours and the stabilized particles range from

0.2 to 84 1.1m. The BET surface area of the goethite is 31 m 2 g-1 ; the pore size ranges

from 2 to 220 nm and the porosity of goethite is 0.3%.

Potentiometric titrations were performed to evaluate the PZC of goethite; the

result, 8.78 ± 0.97 (Figure 5.1), suggests slight drifting to a higher pH compared to that

found earlier 7.8 ± 0.4 (Trivedi and Axe, 2000). Possible reasons for this difference may

be that potentiometric titrations were performed on different batches of goethite. Studies

(Schwertmann et al. 1985; Villalobos et al. 2003) have shown that crystalline shape, size

of particles, and the resulting reactivity of goethite depended on experimental conditions

such as rate of addition and total base added, presence of sorbing ions, and aging time.

Small variances between different batches may exists and influence the PZC. Previous

studies (Evans et al. 1979; Zeltner and Anderson, 1988) have shown that when the

goethite suspension was purged for 2 months, the PZC increased from 8.1 to 9.1 as
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-Figure 5.1 Potentiometric titration of goethite (1 g L 1 ) at room temperature.
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measured by potentiometric titration (Zeltner and Anderson, 1988). The authors

explained the changes in PZC by CO2 adsorption and desorption. However, aging

impacts crystallization, which would significantly affect the PZC. Reported PZC values

of goethite (Table 5.1) range from 7.5 to 9.38. The PZC for goethite (8.78 ± 0.97)

observed in this study is consistent with this range.

Characterization of HFO was conducted earlier by Axe and Anderson (1995) and

is used as a reference for the HFO used in this study. For freeze-dried HFO, the surface

area and mean pore size radius measured with N2 adsorption and desorption were 36.6 m 2

-1g and 3.8 nm, respectively. The porosity was 0.5 and the pore size distribution from Hg

porosimetry showed a mean pore size of less than 5 nm. The particle size distribution of

HFO in the aqueous phase revealed particle diameters ranging between 1 and 200 m

with a mode of approximately 90 μm.

5.2 Characterization of Silica

Acid washed silica samples were analyzed with XRD, XRF, particle size analysis (PSA),

ESEM, and surface charge distribution.

5.2.1 XRD

XRD analyses were conducted on Alfa Aesar silica and US silica samples and showed

patterns consistent with that of a-quartz (Powder Diffraction File (PDF) #33-1161)

published by International Center for Diffraction Data (ICDD). The diffraction patterns

of these two silica samples with the (hkl) planes (Figure 5.2 and Table 5.2) showed that

relative intensities were equivalent for the 100% peak, but there was deviation for the



Table 5.1 PZC Values of Goethite in Some Studies

PZC of goethite Reference

1 9.38 Yoon et al. (1979)

2 9.20 Evans et al. (1979)

3 9.0 Zeltner and Anderson (1988)

4 8.50 Hsi and Langmuir (1985)

5 8.45 Hayes and Leckie (1987)

6 8.00 Hingston et al. (1972)

8 7.60 Forbes et al. (1974)

9 7.55 Atkinson et al. (1967)

10 7.50 Yates and Healy (1975)
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Figure 5.2 X-Ray diffraction patterns of US silica and Alfa Aesar silica (the number sets
identify the crystal planes).



Table 5.2 XRD Data of Alfa Aesar (A) and US Silica Compared with the Standard Powder Diffraction Database File

20 (°) d-spacing (nm) Relative Intensities hkl planes
H

WC20
H
)

A
silica

US
silica

PDF
A

silica
US

silica
PDF

A
silica

US
silica

PDF h k 1
A

silica
US

silica

20.89 20.84 20.85 4.25 4.26 4.26 5.2 29.3 22 1 0 0 0.1350 0.0892

26.65 26.65 26.65 3.34 3.34 3.34 100.0 100.0 100 1 0 1 0.1233 0.1362

39.50 39.37 39.46 2.28 2.29 2.28 5.0 7.7 8 1 0 2 0.1337 0.0485

50.16 50.13 50.14 1.82 1.82 1.82 3.4 3.1 14 1 1 2 0.1361 0.0938

60.00 59.99 59.95 1.54 1.54 1.54 9.4 3.9 9 2 1 1 0.1078 0.2182



50

22% peak. The differences between the sample and the PDF may be attributed to

preferred orientation. The width at the half height (WHH) (Figure 5.2) for the most

intense peak of US and Alfa Aesar silica are 0.14 and 0.12 '20, respectively.

5.2.2 X-Ray Fluorescence (XRF)

XRF was performed on silica samples to determine composition. Two original and eight

acid-washed US silica samples were analyzed, while only one Alfa Aesar silica sample

was taken because the measured SiO2 content (100%) conformed to the reported

99.995% purity. Alfa Aesar silica shows 100% purity (Table 5.3), while the original US

silica was 95.883% of SiO2 with some impurities of Al, Fe, and S. Retention of trace

elements is reported to be related to their Al and Fe content (Meng and Letterman,

1993a), and therefore, these Al and Fe impurities may influence adsorption. However,

after acid-wash treatment of silica samples, the SiO2 content increased to 98.759% for all

US silica samples. Therefore, based on XRF analysis, Alfa Aesar silica may be the most

appropriate for adsorption studies. US silica requires pretreatment.

5.2.3 Particle Size Analysis (PSA)

Results of the particle size analysis for Alfa Aesar silica show that ionic strength and pH

do not influence the particle size distribution. Alfa Aesar silica has a mode of 0.22 mm

(Figure 5.3), US silica has a mode of 0.99 mm (Figure 5.4), and again both ionic strength

and pH do not affect the particle size distribution. Considering that the silica particles

may be applied in column studies for adsorption, Alfa Aesar silica, which has a much

smaller particle size, may promote clogging when coated with iron oxide. Therefore,

based on the particle size analysis, US silica is more suitable for adsorption studies.



Table 5.3 XRF Results for Alfa Aesar (A) and US Silica

Silica Components Concentration with XRF (%) Concentration reported (%)

A SiO2 100 99.995

US

Original Acid-washed Original

Al2O3 2.513 0.471 <0.8

SiO2 95.883 98.759 99.0-99.9

SO3 0.245 Not detected Not reported

K 0.208 0.049 Not reported

FeOOH 0.9205 0.107 <0.1

TiO2 0.1425 0.615 <0.1

Cl 0.089 Not detected Not reported
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Figure 5.3 Particle size distribution for Alfa Aesar silica as a function of pH and ionic
strengths.
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Figure 5.4 Particle size distribution for US silica as a function of pH and ionic strength.
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5.2.4 Environmental Scanning Electron Microscopy (ESEM)

The ESEM micrographs of US and Alfa Aesar silica are taken at similar magnification.

Considering that Alfa Aesar silica has an average particle size of 220 p.m, while that of

US silica is 900 1.1,m, Figure 5.5 and Figure 5.6 were collected at lower magnification to

show the relative roughness of these two particles at larger scale. Both have relatively

smooth and rough areas on the surface. Figure 5.7 and Figure 5.8 show the surface of

Alfa Aesar and US silica particles at 1500x, respectively; similarly, both rough and

smooth parts of the surfaces. The surface roughness of Alfa Aesar and US silica particles

are comparable.

Trivedi (2001) found that the goethite crystals are needle-shaped or acicular,

approximately 0.5 to 1 pm in length, and goethite crystals aggregate into somewhat

spherical particles. At a lower ionic strength of 10 -3 , the largest particles were

approximately 10 to 20 μm. The upper two figures in Figure 5.9 show the size and shape

of the goethite particles that will be used in this research, and the lower two figures reveal

the 0.5-1.0 1.1m, needle-shaped goethite crystals at higher magnification. The ESEM

results are in agreement with Trivedi's (2001).

From the ESEM analysis of the surface roughness of silica particles and the size

of goethite particles, both Alfa Aesar and US silica are suitable for goethite coating.



Figure 5.5 ESEM micrograph for Alfa Aesar silica.
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Figure 5.6 ESEM micrograph for US silica.
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5.2.5 Surface Charge Distribution

Potentiometric titrations were conducted to verify the PZC of Alfa Aesar and US silica.

Usually titrations can be performed with either acid or base. In acid titrations, the silica

suspension needs to be adjusted to a higher pH and is then titrated with an acid. This

process is reversed when the titration is conducted with base.

In this study, titration of silica was initially performed with acid (HNO3). The

resulting PZC of Alfa Aesar and US silica was about 5.0 and 4.9, respectively, and are

higher than that of other studies listed in Table 5.4. These differences which may be

caused by the dissolution of silica. Yates (1975) studied the influence of oxide solubility

during a titration in determining oxide surface charge. He found that the dissolution does

not affect titrations below pH 7, because the neutral species Si(OH)4 ° predominates.

However, the hydrolysis of Si(OH)4° occurs above this pH consuming Off (has a buffer

effect around its pKa1, 9.46, Yates, 1975) and thus affecting the titration procedure.

When the effect of dissolution is not corrected in the calculation, the surface charge

increases. Therefore, the consumption of O1-1- should be considered when performing

titrations with acid, especially when the silica concentration in the suspension is low and

surface dissolution is potentially a significant fraction of the total silica present (2 g L -1 in

this study).

Ultimately, base titrations were used to determine the surface charge distribution

of silica samples. The PZC value of silica samples in this study is 2.85 (Figure 5.10) and

is consistent with other studies. The acid-washed US silica sample has less than 1.5%

(mass) impurities as seen in Table 5.3; nevertheless, these impurities are likely on the

surface affecting the surface charge.



Table 5.4 Isoelectric Points of SiO2

IEP Description Investigator Reference
1.5 Brazilian crystal, mep
1.8 Crystals-Harding Mine, NM, mep. Bhappu

2.5±0.
2 Natural crystals, mep Iwasaki, Cooke,

and Choi
2.2-2.8 Quartz-beach sand, sp Flaningham
2.3 ads.
2.0
1-2

sp. in HCl only
sp in 104 M NaC1 Brazilian crystal Li

2.7-3 pt

<3 Quartz, mep. O'Connor and
Buchaman Parks (1965)

3.7 Brazilian crystal, sp. Gaudin and Fuerstenau
2-3 pH of min. gelation rate Moulik and Ghosh

Sols synthetic:
1-2 IEP-location of viscosity minima DeBoer, Linsen,
1-1.5 1% Si02 sols, mep and Okkerse
2 pH-min. gelation rate
1.3 pH-min. gelation rate Sen and Ghosh
2.8-3 PH-min. gelation rate Hückel
—0.5 IEP by eo  Michaelis

4.1 PZC-potentiometric titrations Schwarz et al. Schwarz et al.
(1984)

1.8 Stumm and
Morgan (1996)

3.5 Commercial sol "Ludox" with
spherical Si02 particles Bolt Bolt (1957)

3.5 Degussa Aerosil amorphous silica, pt Casey
3.5
3.5

Degussa Aerosil amorphous silica, pt
Pyrogenic CAB-O-SIL am. silica, pt

Brady
Abendroth

Sahai and
Sverj ensky

3.5 BDH precipitated amorphous silica, pt Yates )(1997

ads.: IEP estimated as pH at which adsorption of indifferent positive ions equals that of negative ions;
eo.: electroendoosmosis or electroosmosis;
pt.: IEP estimated by potentiometric titration.
sp.: IEP estimated as pH of zero streaming potential or current;
mep.: microelectrophoresis;
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Figure 5.10 Potentiometric titration of 2 g L -1 acid-washed US silica with 0.1, 1, and 10
N NaOH where 1 N HNO3 was used to adjust initial pH. Titration was conducted under a
N2 pressure of 35 psi.
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5.3 Summary

From the results of XRD analysis, Alfa Aesar and US silica have XRD patterns that are

similar with the standard PDF of a-quartz. Based on XRF the purity was 100% for Alfa

Aesar silica and 98.759% for US silica. The modes of the size distributions revealed 220

μm for Alfa Aesar silica and 900 μm for US silica. From ESEM micrographs, Alfa

Aesar and US silica show comparable surface roughness, both are potentially suitable for

goethite coating with respect to column works. Because a pH greater than 9 may change

the silica surface permanently and influence the surface charge determination further,

titrations of silica were conducted with base in which the initial pH is low. The PZC of

US silica is about 2.85 and is consistent with other studies.

In the next chapter, characterization results on iron oxide-coated silica are

discussed, where US silica is applied.



CHAPTER 6

SYNTHESIS AND CHARACTERIZATION OF IRON OXIDE-COATED SILICA
AND ITS EFFECT ON METAL ADSORPTION

Two methods were used for producing goethite-coated silica, a modified adsorption

method based on Szecsody et al. (1994) and a modified precipitation method based on

Meng and Letterman (1993a). To evaluate factors that influence the degree of coating,

experiments were designed using a three-level fractional factorial method (Anderson and

Mclean, 1974) to reduce the number of studies and isolate effects (Table 6.1). Factors

investigated include coating temperature (T), mean diameter of silica particle (D), Fe

concentration initially applied (Fe ini), and aging time (t, for adsorption method only).

6.1 Synthesis of Goethite-Coated Silica

The Fe., before and after the abrasion study (Figure 6.1) demonstrated that

approximately 0.5 to 11 mg Fe g-1 silica detached from the coating constituting as much

as 80% of the initial loading. Scheidegger et al. (1993) separated coated sand with

strongly bound goethite from weakly attached goethite aggregates by washing the system

in a 1 M NaNO3 solution. Stenkamp and Benjamin (1994) and Khaodhiar et al. (2000)

washed the iron oxide-coated sand with DI water until the supernatant pH was about 7.

Others (Edwards and Benjamin. 1989; Zachara et al. 1995; Kuan et al. 1998; Joshi and

Chaudhuri, 1996) have rinsed until the runoff was visually clear. Abrasion is necessary

before quantifying the degree of coating, and coating characteristics discussed below are

those measured after the process.
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Table 6.1 Experimental Conditions for Adsorption and Precipitation Coating Processes
Based on the Fractional Factorial Experimental Design

Coating method Experiment Run # T (°C) D (mm) Fe;,,; (% wt) t (day)

Adsorption

method

1 35 0.2 1 1

2 35 0.9 3 2

3 35 1.5 5 3

4 60 0.2 3 3

5 60 0.9 5 1

6 60 1.5 1 2

7 110 0.2 5 2

8 110 0.9 1 3

9 110 1.5_ 3 1

Precipitation

method

10 60 0.2 1

N.A.*

11 60 0.9 3

12 60 1.5 5

13 90 0.2 3

14 90 0.9 5

15 90 1.5 1

16 110 0.2 5

17 110 0.9 1

18 110 1.5 3

* N.A.: not applicable.
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Figure 6.1 Comparison between Feconc before and after abrasion studies. Experiments 1
through 9 are based on the adsorption method, and 10 through 18 the precipitation
method; column (a) represents Feconc before abrasion, and column (b) is that after
abrasion.
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Extraction results after abrasion showed the degree of coating was in the range of

0.59 to 21.36 mg Fe g -1 sand for adsorption and 0.67 to 8.5 mg Fe g -1 sand for

precipitation (Figure 6.1). These results are consistent with those observed in soils and

sediments (Ryan and Gschwend, 1994; Coston et al. 1995; Wang et al. 1993; Pieper et al.

1997). From the adsorption process, goethite constitutes greater than 95% (average

96.8%) of the oxide, while it is less than 89% (average 62.9%) employing precipitation.

This difference may be explained by silica solubility evaluated with MINEQL+ (version

5.0) (Westall et al. 1976), where the dissolved Si(OH)4 ° concentration is about 3x10 -2 M

at pH 12 and 25 °C; these conditions represent those used for the aqueous coating

application (precipitation). Therefore, dissolved Si(OH)4 ° may be incorporated into the

iron oxide structure during precipitation. The resulting less crystalline form of iron oxide

may be due to the presence of the substrate as well as silica dissolution, and has been

observed by others (e.g., Anderson and Benjamin, 1985; Cornell et al. 1987) to inhibit

crystallization. In the adsorption method, dissolution is not relevant as goethite was

prepared before coating. Subsequently, in re-suspending the two minerals at pH 7.5 and

25 °C, dissolved Si(OH)4° is approximately 104 M; however, the suspension is repeatedly

rinsed after aging.

Given the observed oxide loadings, only silica was observed in the XRD patterns

(Figure 6.2). Generally, the patterns of silica are similar to those of coated silica; the

differences in the relative intensities may be attributed to the variability in preferred

orientation of the silica sample. Nevertheless, powder residuals produced in the

precipitation process at 110°C were confirmed to be goethite (Figure 6.2, and enlarged in

Figure 6.3 for detailed planes). As discussed earlier, Lo et al. (1997) found amorphous
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Figure 6.2 XRD patterns for goethite, silica, goethite-coated silica, and residual goethite
produced in the coating process.



Figure 6.3 XRD analysis of goethite produced in coating.
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iron oxide coatings at 60 °C, goethite and hematite at 150 °C, and hematite above 300 °C.

Zhong et al. (1999) observed amorphous iron oxide coatings transformed to γ-Fe2O3

(maghemite) after heating oxide-coated alumina at 400 °C. In this study, hematite was

not observed even at the most elevated temperatures.

However, temperature was observed to affect the degree of coating (Figure 6.4),

which was greater at 60 °C than 35 °C in adsorption and again greater at 90 °C than 60 °C

in precipitation. The oxide coating decreased at the highest temperature (110 °C), which

is similar to that observed by Stahl and James (1991a) where iron oxide coating

decreased as the temperature increased from 105 °C to 500 °C. Nevertheless, increased

oxide coating at greater temperatures has also been achieved (Edwards and Benjamin,

1989; Scheidegger et al. 1993). For example, Edwards and Benjamin (1989) and

Scheidegger et al. (1993) observed greater coating at higher temperatures (110 and 120

°C, respectively) than lower ones (room temperature and 110 °C, respectively).

Interestingly, Lo and Chen (1997) found no significant difference between the amount of

iron oxide coated at 105 and 200 °C. Also, a number of researchers (Edwards and

Benjamin, 1989; Lo et al. 1997; Bailey et al. 1992) have reported that higher coating

temperatures enhanced attachment. Therefore, the effect of temperature on coatings may

require further investigation with respect to oxide concentration and mineralogy.

Overall, based on the results of the experimental design (Figure 6.4), the most significant

factor in the coating process is particle size (D) where coating increased as the substrate

particle size decreased; other factors (T, Fein;, and t) are of less importance. Optimal

coating factors are a temperature of 60 °C for adsorption and 90 °C for precipitation, a
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Figure 6.4 Effect of coating conditions from the fractional factorial study.
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substrate diameter of 0.2 mm, an initial Fe concentration of 3% (by weight as Fe), and for

adsorption an aging time of 4 days (Figure 6.4).

6.2 Characterization of Iron Oxide-Coated Silica

The coated silica with the highest iron concentration (21.36 mg Fe g-1 solid, coated by

adsorption method at pH 7.5 and 60 °C) was analyzed with FUR to investigate

interactions between the substrate and coating. Overall, the spectrum of goethite-coated

silica is very similar to that of silica (Figure 6.5); therefore a difference spectrum was

calculated based on the approach described by Scheidegger et al. (1993). Despite the

weak signal as a result of the low iron concentration, the difference spectrum showed

characteristic goethite absorption bands at 892, 795, and 455 cm -1 , suggesting

unambiguously that goethite was coated on the silica surface. The appearance of the

1080 cm -1 peak in the difference spectrum may indicate enhanced asymmetric stretching

of SiO4. The Fe -0 stretching band was found to shift from 640 to 620 cm -1 and an

absorption band at 825 cm -1 appeared in the difference spectrum as well (Figure 6.5).

Interestingly, absorption bands at similar positions, 580 and 825 cm -1 (olivine,

Christensen et al. 2000), 612 and 848 cm -1 (olivine, Gadsden, 1975), and 566 and 828 cm -

1 (fayalite, Gadsden, 1975; Fabian et al. 2001) have been observed for iron silicate

minerals. Additionally, other researchers have reported that substitution of Fe 3+ for Si4+

caused a substantial shift of the Si-O-Si stretching band (1080 cm -1 ) to lower frequencies,

for example, a shift to 750 cm -1 for a lignitic coal ash slag (Nowok et al. 1993) and 940

cm-1 for a ferrihydrite sample precipitated with 4.35% Si by weight (Schwertmann and

Thalmann, 1976). Comparing the coating spectrum to that of the physically mixed
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Figure 6.5 FTIR spectra of a. silica; b. goethite-coated silica (21.36 mg Fe g -1 solid,
coated with adsorption method at pH 7.5 and 60 °C); c. physically mixed goethite and
silica (20.76 mg Fe g -1 solid); and d. goethite. The 1390 cm -1 peak reveals existence of
the NO3 - impurity in the goethite sample.



72

goethite and silica results in only the two distinct spectra (Figure 6.5). In attempt to

understand the oxide-silica interfacial interactions, other samples coated by precipitation

(pH 12) or with differing temperature (i.e., 35, 90, and 110 °C) were evaluated; because

of the lower iron concentrations, however, only one goethite band was discernible in the

difference spectra. Interactions between silica and the oxide coatings potentially involve

electrostatic, van der Waals, and/or chemical bonds. Goethite was coated at pH 12 (as in

precipitation method), where both goethite and silica are negatively charged, suggesting

electrostatic repulsion. Furthermore, fluid shear from the abrasion study is approximately

one to two orders of magnitude greater than van der Waals forces. Therefore, these

results along with FTIR suggest the iron oxide-silica interaction may involve chemical

forces.

Optically, red-brown goethite coatings were observed to be non-uniform and

mostly located in concave rough areas (even before abrasion) (Figure 6.6), indicating that

rougher areas of silica may result in higher loadings of coating material. ESEM images

(Figure 6.7) reveal needle-shaped goethite crystals located mostly in rough areas as well.

The precipitation method produced smaller crystals of goethite (< 150 nm) than the

adsorption method (100-1000 nm) (Figure 6.7), and is somewhat consistent with the

extraction analysis in that ferrihydrite was present suggesting the presence of silica may

inhibit crystal growth. Elemental mapping from EDX analysis (Figure 6.8) shows Fe

concentrating in rough areas, and the relative distribution of Fe and Si demonstrates a

non-uniform coating on the silica surface, which is in agreement with others (Edwards

and Benjamin, 1989; Scheidegger et al. 1993).
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Figure 6.6 Optical micrograph of uncoated and coated US silica (1 cm in photograph
represents 0.2 mm of real size).
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Figure 6.7 ESEM micrograph (9000x) of goethite-coated silica (after abrasion): upper
figure is a rough area of goethite-coated silica using the adsorption method; lower figure
is a smooth area of goethite-coated silica employing the precipitation approach.
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Figure 6.8 EDX results of goethite-coated silica (white images in mapping represent the
corresponding element).



76

Furthermore, because discrete goethite particles are much smaller (0.2100 pm,

Trivedi and Axe, 2001a) than silica (average 900 pm) and the coatings accumulate in

rough concave areas, the coating does not appear to impact the particle size distribution

(Figure 6.9). However, the surface area of the coated systems increased by one to two

orders of magnitude (Table 6.2) due to the attachment of fine iron oxide particles.

Scheidegger et al. (1993) reported that the surface area of the goethite-coated sand is

consistent with the theoretical sum of the surface areas of the pure silica and the

corresponding weight fraction of goethite. The surface areas of goethite coatings were

back calculated and resulted in 40 m 2 g-1 for the adsorbed and 78 m 2 g-1 for the

precipitated forms. As observed in ESEM images the goethite coating is composed of

sub-micrometer crystals (Figure 6.7) and is not comparable with aqueous aggregates

(Trivedi and Axe, 2001a). In this study, although porosity is equivalent for all systems

(about 8 — 9%, Table 2), smaller pores were observed with the coated silica versus the

uncoated system (Figure 6.9). Intraparticle diffusion is an important process in metal

sorption to amorphous hydrous ferric oxide (Trivedi and Axe, 2001a), however, with 8%

porosity, this phenomenon is not expected to be significant for the goethite-coated silica.

Nevertheless, many studies have demonstrated the importance of Fe-oxide

coatings in sequestrating metals (Uygur and Rimmer, 2000; Fuller et al. 1996; Lo and

Chen, 1997; Khaodhiar et al. 2000; Stenkamp and Benjamin, 1994; Lo et al. 1997).

Surface charge characteristics impact adsorption capacities (Scheidegger et al. 1993).

Therefore, potentiometric titrations were conducted to investigate the surface charge

distribution of uncoated and goethite-coated silica. The pHpzc for the silica shifts to a

higher pH with iron oxide coatings and is between that of pure silica and goethite
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Figure 6.9 Pore size distribution (right) and particle size distribution (left) of uncoated
and coated silica. (For particle size distribution: • IS=0.1, A IS=0.01, V IS=0.001 using
NaNO3, pH 6, average size of silica sample is 0.9 mm, 0.3 g L-1).



Table 6.2 Surface Area and Porosity of Silica and Coated Silica

Sample Silica
Adsorbed goethite

coated silica*
Precipitated goethite

coated silica*

Feconc (mg Fe g-1 ) 0.31 17.64 3.43

Porosity (%) 8.3315 8.9695 7.8814

Measured Surface area l
(m2 g-1 ) 0.0757 1.2092 0.5021

Calculated surface area of
goethite coatings (m2 g-1) 2 N.A.3 40 78

1 Data from GTI (2002).
2 Calculation based on the theoretical sum of the surface areas of silica and corresponding weight fraction

of goethite is set equal to the measured value (Scheidegger et al. 1993).
3 N.A. — not applicable.
* Measured before abrasion studies.
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(Figure 6.10). Schwarz et al. (1984) had similar observations for a silica-alumina oxide

mixture. Stenkamp and Benjamin (1994) found a pHpzc close to 7.5 for an iron oxide-

coated sand while those for sand and iron oxide are 3 and between 8 and 9, respectively.

One study (Meng and Letterman, 1993a) showed that the potential of the Al(OH)3/Si02

suspension increased as the Al(OH) 3/SiO2 ratio increased until uniform coverage was

obtained and the isoelectric pH was equivalent to that of pure Al(OH)3. Schwarz et al.

(1984) demonstrated that a simple mass weighting model, originally proposed by Parks

(1967), allows for an accurate determination of the pHpzc of a silica-alumina oxide

mixture. Using the Feconc and the theoretical surface area of goethite coatings (Table 6.3),

the predicted values of the pHpzc are 4.29 and 6.55 for adsorbed and precipitated oxide-

coated silica, respectively, and are comparable to the measured values (Table 6.3) given

the significant uncertainty.

Preliminary adsorption edges (Figure 6.11) show Ni adsorption on goethite-coated

silica is greater than that of pure silica. Anderson and Benjamin (1990) reported that

Cd2+ uptake by an Al(OH)3/SiO2 suspension was indistinguishable from that of Al(OH)3

suggesting uniform coverage of the oxide. Meng and Letterman (1993a) observed that

Cd2+ adsorption on an Fe(OH)3/SiO2 mixed oxide was consistent with discrete Fe(OH)3,

however, for the coated system discrete Fe(OH)3 was present. In this study, the silica

surface is partially coated and discrete goethite was not present during adsorption. The

surface charge distribution reveals that both silica and goethite surfaces are available for

adsorption. Assuming Ni adsorption occurs on both surfaces, overall adsorption may be

explained as the sum of the two. However, the estimated adsorption is much less than

that observed (Figure 6.11). To further understand the increase in sorption, Ni adsorption
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Figure 6.10 Surface charge distribution of silica, goethite, and goethite-coated silica (1 g
1_,-1 solid). Ionic strength adjusted with NaNO3: • IS=0.1, A IS=0.01, V IS=0.001. The
PZC of the adsorbed goethite-coated silica is based on the crossover of two titration
curves and the average pH at which zero charge occurred under each ionic strength. All
other PZCs were determined by the crossover of three titration curves.



Table 6.3 PZC Measured and Calculated for Coated Silica (after Abrasion)

Sample Silica
Adsorbed goethite-

coated silica

Precipitated
goethite-coated

silica

Fec. (mg Fe g -1 ): - 0.47 0.59

Surface area of goethite
coatings (m2 g-i ):

pHpzc:

- 33 1 133 1

Measured: 2.85 3.13 4.45
Calculated2 : - 4.29 6.55

Calculation based on Fe cone and measured surface areas (GTI, 2002): silica 0.0757 m 2 g -1 ; adsorbed

goethite-coated silica 0.1 m2 g -1 ; precipitated goethite-coated silica 0.2 m2 g -1 .

2 pHpzc calculated based on surface area-weighted average of two components — silica and goethite coating.
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Figure 6.11 Ni adsorption edges on silica (5 g 1: 1 ), goethite-coated silica (5 g L-1 , Fe
concentration 4.01 mg Fe g -1 silica), and goethite (1 g L -1 ), at ionic strength 0.01
(NaNO3), [Ni]o=5x10- 10 M, and 25 °C with 4 hours equilibration time. Estimated
adsorption on coated silica was calculated based on weight fraction present of each
surface.
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to silica was deducted from that sorbed on the goethite-coated one and normalized to the

theoretical surface area of the coating. Comparing adsorption to discrete goethite, Ni

sorbed on coatings was approximately one order of magnitude greater (Figure 6.11

insert), suggesting a larger specific adsorption capacity. Uygur and Rimmer (2000)

reached similar conclusions for Zn adsorption on iron oxide-coated calcite. These

observations may suggest that the surface properties of discrete oxides may not be

applicable when modeling the oxide-coated system. In summary, the complementary

suite of analyses used in this research demonstrates that the presence of sub-micrometer

iron oxide coatings at the mineral-water interface increased the adsorption capacity as

compared to the discrete oxide.

6.3 Summary

In summary, a model system — iron oxide-coated silica was synthesized and

characterized. Adsorption and precipitation methods were used for producing goethite

coatings, which ranged between 0.59 and 21.36 mg Fe g -1 solid. A more crystalline form

of iron oxide was achieved in adsorption than in precipitation potentially due to the effect

of the substrate inhibiting crystallization. The degree of coating was highly sensitive to

the particle size of silica. Abrasion studies were found to be necessary in removing the

loosely attached goethite particles and the interaction between goethite and silica

potentially involves chemical forces. The iron oxide coatings on the silica surface are

non-uniform increasing surface area and introducing small pores. The pHpzc of coated

silica is between that of pure silica and iron oxide suggesting both silica and goethite

surfaces are important for adsorption. Ni adsorption on the coated silica is greater than
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that for pure silica, and the goethite coating exhibited a larger capacity than the discrete

goethite system. Both characterization and adsorption studies reveal that sub-micrometer

iron oxide coatings are produced; these coatings significantly increased adsorption

capacity impacting interactions at the aqueous interface.

In the following chapters, mechanisms of heavy metal adsorption to iron oxide are

investigated using XAS and are followed by surface complexation modeling and sorption

to coated silica.



CHAPTER 7

SURFACE COMPLEXATION OF PB(II) ON AMORPHOUS IRON OXIDE:
SPECTROSCOPIC AND TIME STUDIES

As discussed earlier in the hypothesis of this research, HFO is the precursor of goethite,

and because they may have similar surface functional groups and surface structures,

sorbed Pb(II) surface complexes are expected to be alike. This similarity was recently

demonstrated in other studies (Manceau et al. 1992; Bargar et al. 1997b; Scheinost et al.

2001; Trivedi et al. 2003) where mononuclear bidentate complexes to edges of FeO6 were

observed. In this chapter, Pb/HFO sorption samples are analyzed with XAS. Because

HFO is metastable and can transform into more crystalline form, Pb adsorption on HFO

as a function of time is also studied and analyzed at both Pb L iii-edge and Fe K-edge.

7.1 Pb EXAFS of Pb/HFO Samples

Pb adsorption mechanisms on freshly precipitated HFO samples as a function of pH,

ionic strength, Pb loading, and time have been studied (Table 7.1). The EXAFS spectra

collected for Pb standards (PbO, PbCO3, and aqueous Pb(NO3)2) are compared to

Pb/HFO adsorption samples (Figure 7.1 and Figure 7.2). The x(k)•k 3 spectra of PbO and

PbCO3 are similar to that observed by others (Bargar et al. 1997a; O'Day et al. 1998;

Ostergren et al. 1999b) and the fitting results (Table 7.2) are consistent with XRD. The

x(k)•k3 spectra of aqueous Pb(NO3)2 solution is characterized by a backscattering

envelope dominated by a first-shell of oxygen atoms around the central Pb atom (Figure

7.1). The RSF clearly demonstrates this P13-O contribution showing one peak at

approximately 1.9 A (Figure 7.3), which was fitted with 6.97 + 0.43 O atoms at 2.5 ±
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Table 7.1 Sample Preparation Conditions

*: Data measured on the 392 nd day. System was kept in turbulence and XAS samples were taken in the 14 th and 21 St month.
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Figure 7.1 EXAFS spectra of Pb standards and 4-hour Pb/HFO sample at Pb Liiiedge.
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Figure 7.2 EXAFS spectra of Pb/HFO samples at pH 5 and IS 10 -2 as a function of time
at Pb L i ledge.



Table 7.2 EXAFS Results of Pb Standards at Pb L 111 Edge

Fourier transform was performed over range: PbO 3.0-10.8 A -1 , PbCO 3 2.08-939 A-1 , Pb2+ 2.26-8.48 A-1 ; PbO was fitted over 0.74-3.95 A, PbCO 3 0.46-4.69 A,
and Pb2+ 0.42-3.0 A.
N, coordination number; R, interatomic distance; o2, Debye—Waller factor; ,AE 0, edge shift
1:Hill (1985)

00
2: Sahl (1974) 	 68



90

Figure 7.3 Fourier transform and fit of Pb standards spectra at Pb LIII edge. FT was
performed over range: PbO 3.0-10.8 A l , PbCO3 2.08-9.79 A l , Pb2+ 2.26-8.48 A l , PbO
was fitted over 0.74-3.95 A, PbCO3 0.46-4.69 A, and Pb2+ 0.42-3.0 A. Lines represent
data, dashed lines represent fit.
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0.08 A. This octahedral structure represents that of fully hydrated Pb(II), as greater than

99% of the total Pb exists as Pb 2+ in this aqueous sample. This result is consistent with

other studies (Bargar et al. 1997a; Elzinga and Sparks, 2002).

All spectra of Pb/HFO sorption samples are different from those of PbO, PbCO3,

and aqueous Pb(NO3)2 (Figure 7.1 and Figure 7.2), suggesting unique structures from

these standards. Overall, the spectra are dominated by the backscattering from a first

shell of O atoms and beat features at 4.5 — 5.0 A 1 and 6.5 — 8.5 A -1 indicative of a heavier

backscatter from second shell contributions. The x(k)•k 3 spectra were Fourier

transformed over the range 2.8 — 9.5 A -1 and fitted over the range 0.45 — 3.58 A with a

Fe-substituted PbO model generated theoretically using FEFF7 (Zabinsky et al. 1995).

The RSFs show two peaks at —1.9 A and —2.9 A (Figure 7.4 and Figure 7.5), and fitting

(Table 7.3) reveals 1.27 — 2.92 O atoms at 2.25 — 2.30 A for the first shell. The second

shell could only be fit with Fe atoms and resulted in 0.92 — 2.05 Fe atoms at 3.29 — 3.34

A. The experimental amplitude and phase were reproduced by the fitting (Figure 7.4 and

Figure 7.5). However, the larger Debye-Waller factor for the second shell (Table 7.3)

suggests greater variation in the Pb-Fe distances than those for Pb-O.

The absence of Pb backscatters around the central atom suggests that the adsorbed

Pb(II) ions on HFO are isolated mononuclear complexes. The absence of O as a second

shell and the tighter Pb-O distances as compared to the hydrated form observed indicate

that the waters of hydration were lost upon adsorption to HFO. Other EXAFS

investigations (Manceau et al. 1992; Scheinost et al. 2001; Trivedi et al. 2003) reported

that the adsorbed Pb(II) on ferrihydrite results in two O atoms at 2.3 A and less than one

to two Fe atoms at around 3.3 A. The fitting results of this study are similar with those
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Figure 7.4 Fourier transform and fit of 4-hour Pb/HFO adsorption samples at Pb L111
edge. FT was performed over range 2.8-9.5 A -1 , fitted over 0.45-3.58 A.
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Figure 7.5 Fourier transform and fit of Pb/HFO adsorption samples at pH 5 and 10 -2

ionic strength as a function of time at Pb LIII edge. FT was performed over range 2.8-9.5
A-1 , fitted over 0.45-3.58 A.



Table 7.3 EXAFS Results of Pb/HFO Samples at Pb LIII Edge

Fourier transform was performed over range 2.8-9.5 A-1, fitted over 0.45-3.58 A.
An S02 of 0.91 was used to account for self-absorption based on the ratio of fluorescence to transmission data for aqueous Pb 2+ .
N, coordination number; R, interatomic distance; a 2 , Debye—Waller factor; AE 0 , edge shift
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previous studies. Bargar et al. (1997b) proposed that the expected Pb-Fe distances are

2.91-3.49 A for bidentate adsorption to edges of FeO6 octahedra. Therefore, EXAFS

analysis of Pb/HFO samples suggests that upon adsorption, Pb ions lose their waters of

hydration and form mononuclear bidentate complexes at the edges of FeO6 octahedra.

Pb/HFO sorption samples were prepared at pH 5 and 6, ionic strength from 10 -3 to

10 -2 , loading from 104 to 10-3 mole Pb g-1 HFO, and reaction time of 4 hours to 21

months; the similarity in x(k)-k3 spectra and the fitting results of all these samples

indicate similar local structures. Therefore Pb adsorption to HFO may be described with

one average type of mechanism under the experimental conditions tested. This result also

suggests that Pb(II) forms similar surface complexes on the micropore walls as on the

external particle surface as 23% of additional sites were occupied during intraparticle

diffusion. In other words, internal and external adsorption sites are approximately

equivalent. One assumption in earlier modeling efforts (Axe and Anderson, 1995, 1997;

Trivedi and Axe, 2001a; Fan et al. 2005) was that the adsorption sites located along the

micropore walls are no different from ones on the external surface; this assumption is

verified in this current Pb/amorphous HFO EXAFS study.

The conversion of HFO to goethite and hematite has been reported to be slow at

temperatures below 20 °C, and is further retarded by adsorbed species (Schwertmann et

al. 1985; Cornell, 1987; Cornell et al. 1987). The effect of Pb(II) on the transformation

of HFO to goethite or hematite during the long-term CBC studies is addressed in the

following section.
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7.2 Fe XAS of Iron Oxides and Pb/HFO Samples

Three iron oxides, freshly prepared HFO, goethite (a-FeOOH), and hematite (a-Fe2O3),

and two Pb/HFO samples (reacted for 4 hours and 21 months respectively) were analyzed

with XAS to study the crystallization of HFO. In the XANES analysis (Figure 7.6), the

spectra of HFO and goethite were adjusted to correct for energy calibration at the Fe K-

edge. All samples (Figure 7.6) have a similar pre-edge feature suggesting existence of

defective FeO6 octahedra (Combes et al. 1989). The more pronounced pre-edge structure

for HFO samples indicates a greater degree of defects. Tetrahedrally coordinated Fe

atoms produce a well-resolved shoulder (at about three fifths of the edge height) before

maximum edge peak (Combes et al. 1989). The absence of such a feature in the spectra

of HFO and its similarity to that of goethite, which exhibits octahedral (FeO6) structure

(Szytula et al. 1968), suggest HFO and Pb/HFO samples too have octahedral structure.

This result is consistent with other studies (Manceau and Combes, 1988; Combes et al.

1989, 1990; Manceau et al. 1992; Charlet and Manceau, 1992; Manceau and Drits, 1993;

Waychunas et al. 1993). Compared to hematite, goethite and HFO appear to have less

features in the XANES spectra. Although relatively low in intensity, the shape of the

edge crest of HFO is closer to that of goethite suggesting similarities. Also, similar edge

crests were observed for HFO and Pb-sorbed HFO samples (aged for 4 hours and 21

months) indicating a similar local structure even as a function of reaction time.

The EXAFS spectra (Figure 7.7) of hematite and goethite reveal backscattering

from multiple Fe atoms at different distances. The first two RSF peaks of each spectrum

(Figure 7.8) can be fitted with O and two subshells of Fe atoms, respectively, for which

the coordination numbers were fixed based on XRD results (Blake et al. 1966; Gualtieri



Figure 7.6 Fe K-edge XANES spectra of iron oxides.
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Figure 7.7 EXAFS spectra of iron oxides and Pb/HFO samples at Fe K-edge.
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Figure 7.8 Fourier transform and fit of Pb/HFO adsorption samples at Fe K-edge. FT
was performed over range: hematite 2.83-11.42 A -1 , goethite 2.63-11.19 A -1 , HFO and
Pb-HFO sorption samples 2.86-11.77 A.
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and Venturelli, 1999). Overall the fitting results are consistent with XRD data (Table

7.4), except the distance of the second Fe subshell for hematite is about 0.18 A shorter

than the theoretical value (3.36 A). There are multiple Fe-Fe distances for hematite and

goethite (Table 4); the fitting results represent an averaged local structure. The beat

features in the x(k)•k3 data at about 5-5.6, 6.2, and 8.2 A 1 in the hematite spectrum and

3.8-4.4, 8.3-8.7, and 10.4-11.2 A -1 in the goethite spectrum represent contributions from

Fe atoms beyond the second shell (Fe shell located at 2.93-3.29 A). For hematite and

goethite, the edge-sharing of FeO6 octahedra produces Fe-Fe distances of 2.97-3.28 A

and that for double corner-sharing is 3.37-3.70 A (Charlet and Manceau, 1992).

Therefore, the beat features in the spectra suggest the presence of double corner-sharing

between FeO6 octahedra, which is necessary for crystal growth.

For HFO, many studies have reported an octahedral coordination environment

(Manceau and Combes, 1988; Combes et al. 1989, 1990; Manceau et al. 1992; Charlet

and Manceau, 1992; Waychunas et al. 1993). In this study, the spectra (Figure 7.7) of

HFO show beats at 4.5, 5.2, 7.5, and 9.2-9.9 A -1 indicative of Fe atoms around the central

one. The RSF (Figure 7.8) reveals two well-defined peaks that can be fitted with O and

Fe atoms, respectively. Considering error, the fitted Fe-O distance is similar to those of

hematite and goethite (Table 7.4). The Fe-Fe distance is in between those of hematite

and goethite indicating existence of face-sharing octahedra, which produces the shortest

Fe-Fe distance of 2.90 A in hematite while there is no such sharing in goethite (Charlet

and Manceau, 1992). Manceau and Combes (1988) also observed the presence of face-

sharing Fe(O,OH) 6 octahedra in HFO which necessitates the dissolution-reprecipitation

mechanism in the transformation from HFO to goethite. In crystalline iron oxides



Table 7.4 EXAFS Results of Iron Oxides and Pb/HFO Samples at Fe Kedge

Sample	 Atom	 N	 R (A)	 0.2 (A2)	 C3 (A3) 	 AE0 (eV) Residual

6 1.95-2.12**
1 2.90
3 2.97
3 3.36
6 3.71
6 1.93-2.10***
6 3.01
6 3.29
12 3.43
6 * 2.03 ± 0.02 0.011t 0.0001 0.0004t 0.0001
4 * 2.93 ± 0.02 0.005 ± 0.0001 -0.003 ± 0.0001 -7.02 ± 0.09 10.48
3 * 3.18t 0.02 0.003t 0.0001 -0.0027t 0.0001
6 * 2.08 ± 0.04 0.010 ± 0.001 0.0022 ± 0.0008
6 * 3.01 ± 0.02 0.012 ± 0.001 -0.0006 ± 0.0001 -1.30 ± 3.59 6.77

17t 15 3.29t 0.03 0.025t 0.011 -0.0021 ± 0.0003
2.42t 0.03
3.76 ± 0.13

2.03 ± 0.02
2.95 ± 0.02

0.002t
0.014

0.0001
± 0.0003

0.0006t 0.0001
-0.0025 ± 0.0002 -1.37 ± 0.33 11.09

2.68 ± 0.21
4.32 ± 0.34

2.03 ± 0.02
2.92 ± 0.04

0.003
0.014

± 0.001
± 0.001

0.0004 ± 0.0003
-0.0029 ± 0.0005 -2.40 ± 2.03 15.09

3.79 ± 0.07 2.03 ± 0.02 0.005 ± 0.0001 0.0010 ± 0.0001
3.36 ± 0.06 2.94 ± 0.02 0.012 ± 0.0003 -0.0026 ± 0.0001 -3.26 ± 0.70 10.30

Fourier transform was performed over range: hematite 2.83-11.42 k I , goethite 2.63-11.19A 1 , HFO and Pb-HFO sorption samples 2.86-11.77 A -1 .
Hematite was fitted over 0.53-3.95 A, goethite 0.63-3.76 A, HFO and Pb-HFO samples 0.52-3.91 A.
N, coordination number; R, interatomic distance; o-2 , Debye-Waller factor; C3, third cumulant; AE0, edge shift.
*: Fixed N numbers in hematite and goethite fitting; **: 3 0 at 1.95 A, 3 0 at 2.12 A; ***: 2 0 at 1.93 A; 1 0 at 1.95 A; 1 0 at 2.07 A; 20 at 2.10 A.
1 : Blake et al. 1966; 2 : Gualtieri and Venturelli, 1999.
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(hematite, goethite, akaganeite, and lepidocrocite), edge-sharing and corner-sharing

octahedra produce an Fe-Fe distance ranging 2.97-3.28 A and 3.37-3.87 A, respectively

(Charlet and Manceau, 1992). The 2.95 A Fe-Fe distance for HFO sample (Table 7.4)

suggests the presence of face and edge-sharing polymer in HFO without corner-sharing.

The x(k)•k3 spectra (Figure 7.7), RSF (Figure 7.8), and the fitting results (Table

7.4) of 4-hour and 21-month Pb/HFO samples are similar to those of HFO. Fits were not

obtained with Pb in the second shell, therefore Pb(II) ions do not appear to substitute into

Fe positions in freshly prepared HFO even with Pb/Fe molar ratio of 0.37 (corresponding

to 3.41 x 10 -3 mole Pb g-1 HFO) or aged for 21 months. The similarity in EXAFS results

of 4-hour and 21-month Pb/HFO with pure HFO suggests that HFO does not transform

into a more crystalline form in the presence of Pb(II) during aging up to 21 months. The

adsorbed Pb(II) ions binding to the edges of HFO polymers may block the edge and

corner-sharing between HFO polymers thus inhibiting crystal growth. This observation

is important for situations where adsorption occurs not long after ferric oxide

precipitation (possibly in wastewater treatment), the large binding capacity of the

amorphous oxide is maintained resulting in more effective removal of Pb (II).

7.3 Intraparticle Surface Diffusion Modeling

Results for Pb/HFO adsorption at pH 5 (Figure 7.9) show that approximately 72% sorbed

within 30 min (Figure 7.9 insert). This fraction represents that sorbed to the external

surface. The remaining Pb was sorbed through a much slower process. As discussed

earlier, this second step was observed by maintaining a constant boundary condition with

the Pb(II) in the bulk aqueous phase and therefore on the external surface. This slow



103

Figure 7.9 Pb/HFO CBC study on 0.3 g L -1 HFO at IS = 1.4x 10 -2 , pH = 5, and [Pb] e =
1 x 10 -4 M. Dashed lines represent the error (+ two standard deviations) of the model.
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adsorption process was observed for over 10 months.

The above XAS results suggest that, in the presence of Pb(II), HFO remains in

amorphous form for up to 21 months; Pb adsorption is invariant as a function of time.

These conclusions support the assumption in modeling sorption to microporous

amorphous oxides (Axe and Anderson, 1995, 1997; Trivedi and Axe, 2001a; Fan et al.

2005) that Pb adsorption sites located on the micropore walls are no different from ones

on the external surface. Therefore, integrating the analytical solution over a spherical

particle results in the amount of Pb sorbed to the internal surface of a single particle at a

given time (Axe and Anderson, 1995, 1997; Trivedi and Axe, 2001a; Fan et al. 2005).

The moles (M) sorbed internally is expressed below:

where C s is the metal concentration sorbed on the oxide external surface, R is the radius

of the particle, € is the oxide porosity, p is the bulk density, Ki is the distribution

coefficient representing the equilibrium constant times the internal site density, and D s is

the surface diffusivity.

The amount of Pb sorbed along the micropores times the number of particles with

that radius was summed over the entire particle size distribution to obtain the total Pb

concentration sorbed internally. The summation of Pb sorbed internally and externally

provides the theoretical value of the total Pb sorbed. D s is the only fitting parameter in the

modeling process. The best-fit D s is obtained by minimizing the variance between that
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theoretically sorbed and the experimental data. Modeling results for Pb/HFO CBC

experiment are shown as an example (Figure 7.9). The experimental data fall within two

standard deviations of the model suggesting that the diffusion model fits data reasonably

well. The best-fit D s was 2.5x10- 15 cm2 s-1 suggesting a slow and rate-limiting process

for Pb sorption to HFO. Results from many studies support that intraparticle diffusion is

the rate-limiting step in metal sorption to microporous oxides (Waychunas et al. 1993;

Theis et al. 1994; Axe and Anderson, 1995, 1997; Papelis et al. 1995; Strawn et al. 1998;

Scheinost et al. 2001; Trivedi and Axe, 2001a; Strathmann and Myneni, 2005; Fan et al.

2005). The D s of this study (2.5x10 -15 cm2 s -1 ) is consistent with the range obtained by

Fan et al. (2005) for Pb sorption in HAO, HMO, and HFO (10-16 to 10-14 cm2 s-1..) Based

on this surface diffusivity and boundary condition, it will take more than 20 years for Pb

sorption to approach equilibrium where the internal sites account for — 46% of the total

uptake.

7.4 Summary

Pb(II) adsorption mechanisms on freshly precipitated HFO as a function of time have

been studied. XAS results reveal that the freshly precipitated HFO exhibits short-range

order possibly forming edge and face-sharing polymers. The sorbed Pb(II) ions do not

substitute for Fe in the polymer structure. However, by binding to the edges of octahedra

polymers, Pb(II) ions inhibit crystallization of HFO, which is stable up to 21 months of

aging, thus maintaining its large capacity for Pb(II). EXAFS analysis of Pb(II)-sorbed

amorphous HFO samples suggests that Pb(II) ions form mononuclear bidentate edge-

sharing surface complexes on FeO6 octahedra. This mechanism appears to be invariant
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of pH, ionic strength, Pb loading, and reaction time. Pb adsorption on HFO is a two-step

process — a fast initial uptake followed by a slow surface diffusion step. The adsorption

mechanism does not appear to change with reaction time (as long as 21 months)

suggesting that internal sites on micropore walls are no different than the external ones.

Intraparticle diffusion modeling based on this observation described the Pb/HFO long-

term sorption data reasonably well. The surface diffusivity obtained from the modeling

verifies a slow and rate-limiting diffusion process, which may occur for decades

accounting for approximately 46% of total Pb uptake.

XAS results suggest Pb(II) forms similar surface complexes on a series of iron

oxides exhibiting comparable surface structures and functional groups — amorphous HFO

(this study and Manceau et al. 1992 for difference contact time), 2-line ferrihydrite

(Scheinost et al. 2001; Trivedi et al. 2003 [for pH > 4.5]), goethite, and hematite (Bargar

et al. 1997b). It is possible that sorption mechanisms of other heavy metals also are

controlled by the sorbent surface structures and similar surface complexes will form on

HFO and goethite. Therefore, in the next chapter, XAS analysis on Ni/HFO sorption

samples is presented and is followed by Ni/goethite modeling.



CHAPTER 8

NI(II) COMPLEXATION TO AMORPHOUS HYDROUS FERRIC OXIDE:
AN X-RAY ABSORPTION SPECTROSCOPY STUDY

In this chapter, Ni/HFO sorption samples are analyzed with XAS at the Ni K-edge and Fe

K-edge. Macroscopic adsorption studies are performed first to prepare XAS samples.

8.1 Ni/HFO Adsorption Studies

Ni adsorption studies were conducted to investigate the effect of ionic strength, pH, and

Ni concentration. The characteristic sigmoid shape of the edges (Figure 8.1) shows 50%

adsorption at pH 6. Consistent with others (Green-Pedersen et al. 1997; Hayes and

Leckie, 1987; Dzombak and Morel, 1990), ionic strength did not affect adsorption

potentially suggesting that Ni ions form inner-sphere complexes on the HFO surface.

From isotherms (Figure 8.2), the sorbed concentration is linearly related to the bulk

aqueous one over a large concentration range (10 -11 10 -3 M), potentially indicative of one

average type of adsorption site. This linear relationship was also observed in a study

conducted by Trivedi and Axe (2001b). The molecular level EXAFS analysis further

addresses adsorption mechanisms.

8.2 EXAFS Analysis of Ni

The measurement of EXAFS spectra at energies just greater than the Fe K-edge (i.e. Co,

Ni, and Cu) is difficult because the fluorescence signal from trace elements is typically

two orders of magnitude less intense (1:100) than the Fe fluorescence from the matrix

(Manceau et al. 2000). To overcome this difficulty, either a high flux X-ray beam or

107
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Figure 8.1 Ni adsorption edge on 1 g L -1 HFO at initial [Ni]o = 5x10 -9 M, NaNO3 based
electrolyte, and 25 °C.
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Figure 8.2 Ni adsorption isotherm on 1 g L-1 HFO as a function of pH at ionic strength
2.8x 10 -2 (NaNO3) and room temperature.
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high metal loading is needed. Because the flux at the beamline was fixed, loadings were

maximized (Table 8.1) given the solubility of Ni(II).

In EXAFS analysis of standards (Figure 8.3), the x(k)•k 3 spectra of aqueous Ni 2+

ions are dominated by the backscattering from oxygen atoms, resulting in one shell and

consistent with [Ni(OH2)6] 2+ octahedra (Table 8.2). Richens (1997) reported that

solutions of [Ni(OH2)6] 2+ are immediately generated upon dissolution of simple Ni 2+ salts

in water containing non- or weakly-coordinating counter-anions. Spectra of the

NiCO3•nH2O and NiO references reveal backscattering from heavier (Ni) atoms (Figure

8.3), which represent a second shell in the Fourier transform. For NiCO3.nH2O, the first

shell was fit with 5-6 O atoms at 2.05 ± 0.02 A and two subshells, a carbon shell with 4-5

atoms at 2.77 + 0.02 A and a Ni shell with 7-8 atoms at 3.67 ± 0.02 A. The two-shell

fitting for NiO resulted in 5-6 O atoms at 2.07 ± 0.02 A and 12-13 Ni atoms at 2.95 +

0.02 A. Overall, these results are consistent with XRD data (Pertlik, 1986; Wyckoff,

1988).

EXAFS samples were prepared addressing the effect of ionic strength from

2.8x10 -3 to 10 -1 , pH 6 to 7, loading from 8x10 -4 to 8.1 x10 -3 mole Ni g -1 HFO, and

reaction time from 4 hours to 8 months; a coprecipitation sample (3.5x10 -3 mole Ni g-1

HFO) was also prepared for comparison. These spectra (Figure 8.4) are unique from that

of NiO (Figure 8.3) and appear to exhibit a similar envelope as in the Ni 2+ spectrum

(Figure 8.3 and Figure 8.4) except for beat features observed at approximately 5, 7, 8.3,

and 9 A-1 . The difference suggests backscattering of heavier atoms (Ni or Fe) beyond the

first oxygen shell and the loss of some waters of hydration upon binding to the HFO



Table 8.1 Preparation Conditions for Ni XAS Samples

Sample	 pH	 IS	 Solid (g/L)	 [Nilo (M)	 [Ni]eg (M)	 Niads (mol/g) Reaction time

7	 1.4x10-2	 0.2	 10 -2	9.3x10 -3 	 3.5x10 -3 	 4 hr

6	 2.8x10-3	 0.1	 10-2 	 9.19x10-3	 8.1x10-3	 4 hr

7	 1.4x10-2	 0.2	 10 -2 	 9.2x10 -3 	 4.0x10-3	 4 hr

7	 1.4x10-2	 0.5	 5x10 -3 	 4.5x10 -3 	 1.0x10-3	 4 hr

7	 1.0x10-1	 0.2	 10 -2 	 9.26x10-3	 3.7x10-3	 4 hr

7	 1.4x10-2	 1.0	 2x10-3 	 1.2x10 -3 	 8.0x10-4	 5 days

7	 1.1 x10-2 	0.1	 10-4 	 1.4x10-5 	 8.6x10-4	 42 days

7	 1.1x10-2	 0.1	 10-4	 1.3x10-5	 8.7x10-4	 8 months

* coppt: coprecipitation;
** Samples prepared by Paras Trivedi.
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Figure 8.3 x(k)•k3 spectra and Fourier transform of Ni standards at the Ni K-edge at
room temperature. Fourier transform was performed over range, NiO 2.50-10.99 A -1 ,
NiCO3•nH2O 2.4-9.3 A-1 , Ni2+ (aq) 2.36-9.27 A-1.



Table 8.2 EXAFS Results of Ni Standards at Ni K Edge

Fourier transform was performed over range, NiO 2.50-10.99 A -1 , NiCO3 •nH20 2.4-9.3 A-I , Ni2+ (aq) 2.36-9.27 A -I ; NiO was fitted over 0.73-3.18 A,
NiCO3 •nH20 0.65-4.3 A, and Ni2+ (aq) 0.27-2.23 A.
N, coordination number; R, interatomic distance; a 2 , Debye—Waller factor; AE 0 , edge shift.
An S02 of 0.8 was used to account for self-absorption based on the ratio of fluorescence to transmission data for aqueous Ni2+ .
I Wyckoff (1988)
2 Pertlik (1986)
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Figure 8.4 (k)•k3 spectra of Ni-HFO sorption complexes as a function of pH, IS, and
adsorbate loading studied at the Ni K-edge at room temperature.
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surface. Although the spectra are similar to that of NiCO3•nH2O (Figure 8.3 and Figure

8.4), the peak at 6 A -1 shifts slightly to lower k and the shoulder at about 7 A 1 shifts

slightly to higher k for the samples. These shifts suggest NiCO3•nH2O does not

precipitate and is consistent with thermodynamic calculations using MINEQL+ (Westall

et al. 1976) where Ni2+ is the dominant species at pH less than 7.7 in an aqueous system

open to the atmosphere.

The spectrum of Ni/HFO coprecipitation sample stands out from those of the

sorption ones with unique features including a shoulder at about 4.4 A-1 and a discrete

peak at 5 A-1 (Figure 8.4). This spectrum is identical to that of poorly crystallized

hydrated a-Ni(OH)2 obtained by Pandya et al. (1990). The most thermodynamically

stable form of nickel hydroxide is 0-Ni(OH)2 (theophrastite) (Wallner and Gatterer, 2002;

Baes and Mesmer, 1976), which belongs to the trigonal system with P-3m 1 space group

(Wallner and Gatterer, 2002). The structure of a-Ni(OH)2 is similar to that of β-Ni(OH)2

except that between the (001) planes the presence of water layers results in an increase in

the c-axis spacing (Pandya et al. 1990). The a-Ni(OH)2 is labile and easily transforms to

β-Ni(OH)2 (Bode et al. 1966). Therefore metastable a-Ni(OH)2 may have coprecipitated

with HFO. The Fourier transform of the x(k)•k 3 spectra (Figure 8.5) show two shells fit

with 4-5 0 atoms at 2.04 ± 0.02 A and about 4 Ni atoms at 3.02 ± 0.02 A (Table 8.3).

Considering the error, fitting results are consistent with that of Pandya et al. (1990) where

6 O atoms at 2.04 A and 5-6 Ni atoms at 3.07 A were found.

The x(k)•k 3 spectra of adsorption samples are very similar (Figure 8.4) with one

another suggesting similar local structure. The Fourier transforms (Figure 8.5) identify

two shells fit with 3-7 O atoms at about 2.05 A (Table 8.3) and a second shell that could
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Figure 8.5 Fourier transforms (magnitude and imaginary part) of Ni K-edge XAS
spectra of Ni-HFO sorption complexes (Fourier transformed and fitted over ranges: 2.4-
9.3 A-1 and 0.84-3.80 A).



Table 8.3 EXAFS Results of Ni/HFO Samples at Ni K-Edge

N

4.41 ± 0.05
4.00 + 0.03

4.38 ± 0.13
0.67 ± 0.06

6.74 ± 0.21
2.83 + 0.21

5.61 E 0.57
1.75 ± 0.66

4.93 ± 0.61
1.79 + 0.22

4.56 ± 0.16
2.77 ± 0.20

4.80 ± 0.32
2.44 ± 0.13

3.36 ± 0.70
2.75 ± 0.77

R (A)

2.04 ± 0.02
3.02 ± 0.02

2.05 ± 0.02
2.93 ± 0.02

2.05 ± 0.02
3.01 ± 0.02

2.05 + 0.02
3.05 ± 0.02

2.04 ± 0.02
3.02 ± 0.02

2.06 ±0.02
2.99 + 0.02

2.05 ±0.02
2.95 ± 0.02

2.03 ±0.02
2.92 ± 0.04

0.2 (A2)

0.002 ± 0.001
0.007 ± 0.001

0.006 ± 0.002
0.005 + 0.002

0.009 ± 0.001
0.012 ± 0.002

0.007 ± 0.002
0.007 ± 0.005

0.004 ± 0.002
0.006 ± 0.002

0.005 ± 0.001
0.011 ± 0.001

0.004 ± 0.001
0.009 ± 0.001

0.001 ± 0.002
0.011 ± 0.003

C3 (A3)	 AE0 (eV)	 Residual

-0.0009 ± 0.0001	 -9 . 91 ± 0 . 22

-0.0045 ± 0.0003	
-5

'
77 ± 0 . 33

-0.0023 ± 0.0001	
-7.45 ± 0.21

-0.0013 ± 0.0007	 -7 .20 ± 0 . 32

-0.0015 ± 0.0003	
-7.72 ± 1.64

-0.0029 ± 0.0004	 -5 .97 ± 0 . 31

-0.0032 ± 0.0002	 -7 . 79 ± 0 . 67

-0.0041 ± 0.0009	
-5.97 ± 1.17

9.02

5.74

6.08

7.96

9.03

8.41

8.97

8.85

Fourier transform was performed over range 2.4-9.3 k I , fitted over 0.84-3.8 A.
N, coordination number; R, interatomic distance; o-2 , Debye-Waller factor; AE0, edge shift.
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be fit using either Fe or Ni atoms. Distinguishing between Fe and Ni atoms solely based

on EXAFS fitting is difficult, because of the difference in atomic number, because they

have similar ionic radii (0.65 vs. 0.69 A, Richens, 1997), and because they form similar

local structures — octahedral (Combes et al. 1989; Pandya et al. 1990; Scheidegger et al.

1996). The Ni/HFO coprecipitation sample provides a good comparison. The

differences in x(k)•k3 spectra between the sorption and coprecipitation samples (Figure

8.4) suggest that the second shell in the former may be composed of Fe atoms. Also, as

the Ni loading increases, the (potential) number of Ni atoms does not (Table 8.3); these

results are not self consistent for polymers or precipitates where the Ni coordination

number would increase as the structure grows. Therefore, the second shell is most likely

an Fe shell and the formation of a Ni polymer or Ni(OH)2 is ruled out.

Using Fe in the second shell resulted in 3-7 O atoms at 2.03-2.06 A and 1-3 Fe

atoms at 2.92-3.05 A. These results are consistent with two-shell fitting of a

coprecipitated Ni/goethite sample (Manceau et al. 2000), where 5.3 O atoms at 2.07 A

and 2.1 Fe atoms at 3.00 A were obtained. However, two outer shells were also observed

by Manceau et al. (2000) of 1.4 Fe atoms at 3.18 A and 2.5 Fe atoms at 3.62 A,

suggesting substitution of Ni 2+ for Fe3+ in the goethite matrix. The absence of multiple

Fe shells in our study indicates Ni(II) ions form surface complexes with HFO. Although

the coordination number of the 8-month sample (3.36) may suggest tetrahedral structure

for Ni, the Ni-O distance of 2.03 A is consistent with octahedral structure. Additionally,

the Ni-Fe distance of 2.92-3.05 A suggests formation of bidentate edge-sharing

complexes. A more recent study (Strathmann and Myneni, 2005) reported similar surface

species (mononuclear bidentate edge-sharing surface complexes) for Ni 2+ sorption on
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pure boehmite (γ-A1OOH). Fundamentally, aluminum and iron oxides exhibit similar

octahedral structural units with comparable A1-O and Fe-O bond lengths (Bargar et al.

1997a, b); therefore they may have similar surface structures and functional groups.

Bargar et al. (1997a, b) found Pb(II) surface complexes on iron and aluminum oxides

well consistent with on another. Therefore, it is not surprising that Ni forms similar

surface complexes on iron oxide (this study) and aluminum oxide (Strathmann and

Myneni, 2005).

EXAFS results (Table 8.3, Figure 8.4 and Figure 8.5) suggest that Ni(II) forms

inner-sphere mononuclear bidentate complexes along edges of FeO6 octahedra. This

surface complex was observed for ionic strengths 2.8x10 -3 to 10 -1 , pH 6 to 7, loadings

8x10 -4 to 8.1x10 -3 mole Ni g -1 HFO, and reaction times of 4 hours to 8 months. Through

a constant boundary condition study conducted over 8 days, Trivedi and Axe (2001b)

found as much as 40% of the total sites were located on micropore walls of HFO

samples; they successfully modeled the sorption data assuming similar internal and

external sites. Results of our study further corroborate that sorption to internal and

external surfaces potentially involve the same mechanism up to eight months. Because

only one Fe shell was observed, Ni 2+ does not appear to substitute for Fe 3+ .

Previous studies (Combes et al. 1989, 1990; Manceau and Drits, 1993) have

shown that HFO exhibits short-range structure and transforms to crystalline forms

through progressive long-range ordering. The effect of Ni(II) on the formation and

transformation of HFO is addressed in the following section.
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8.3 EXAFS Analysis of Fe

The x(k)•k3 spectra of discrete, sorbed, and co-precipitated samples (Figure 8.6) reveal

similar structures. Fitting resulted in (Table 8.4) 2-3 O atoms at 2.03-2.04 A and 3-4 Fe

atoms at 2.95 to 2.98 A suggesting edge-sharing FeO6 polymers. Double corner- or

single corner-sharing with Fe-Fe distances longer than 2.98 A are characteristic of

crystalline iron oxides (Charlet and Manceau, 1992) but were not observed. Even at the

highest loading of 8.1x10 -3 mole Ni g -1 HFO, no evidence of crystallization was seen

with XRD after aging the sample for 1 year. Ni(II) ions bound to surfaces or

coprecipitated with HFO may have inhibited crystallization of the amorphous iron oxide.

Similar results have been observed for the Pb/HFO system (Chapter 7).

In studying crystal chemistry of Ni(II) in synthetic goethite (Manceau et al. 2000;

Carvalho-E-Silva et al. 2003) and hematite (Singh et al. 2000), Ni(II) was coprecipitated

with amorphous iron oxides and went through an aging process (3, 14, and 93 days)

under elevated temperatures (70-90 °C) and pH (7.5 to —13). Subsequent EXAFS

analysis revealed Ni2+ substitution for Fe 3+ . However, the transformation of HFO to

goethite and hematite has been reported to be slow at temperatures below 20 °C, and is

further retarded by adsorbed species (Schwertmann et al. 1976; Cornell et al. 1987;

Cornell and Giovanoli, 1988; Paige et al. 1997; Martinez and McBride, 1998). In this

study, the HFO samples sorbed or coprecipitated with Ni(II) were maintained under room

temperature at pH less than or equal to 7. Ni2+ was not observed to substitute for Fe3+

possibly because HFO did not undergo long range ordering and therefore the Ni(II)

complexes were stable up to 8 months. In other words, Ni 2+ substitution for Fe 3+ may

require crystal growth of iron oxides. In soils and sediments, trace metals could be
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Figure 8.6 )(k)•k3 spectra of HFO, Ni/HFO 5-day sorption sample, and coprecipitated
Ni/HFO sample.



Table 8.4 EXAFS Results of HFO and Ni/HFO Samples at Fe K-Edge

Fourier transform was performed over range 2.86-11.77A-1 and fitted over 0.52-3.91 A.
N, coordination number; R, interatomic distance; a 2, Debye—Waller factor; C3, third cumulant; AE0 , edge shift.
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stabilized by incorporating into the structure of goethite and hematite, which may occur

over long periods of time (in terms of years) under varying environmental conditions.

8.4 Summary

Overall, results suggest that Ni(II) forms mononuclear bidentate edge-sharing surface

complexes upon adsorption to HFO. This mechanism was observed as a function of ionic

strength 2.8x10 -3 to 10 -1 , pH 6 to 7, loading 8x 10 -4 to 8.1x10-3 mole Ni g -1 HFO, and

reaction time 4 hours to 8 months. The presence of Ni(II) potentially inhibited HFO

transformation into a more crystalline iron oxide; therefore the large sorption capacity of

HFO was maintained. Metastable a-Ni(OH)2 appears to have formed when

coprecipitated with HFO. Ni 2+ was not found to substitute for Fe 3+ up to 8 months at

room temperature possibly because HFO did not undergo phase transformation into a

more crystalline form. This study is among the first in systematically addressing Ni(II)

adsorption mechanisms to amorphous iron oxides. The experimentally defined surface

complexes can be used to constrain surface complexation modeling for improved

description and prediction of Ni distribution at the iron oxide/aqueous interfaces, which

will be introduced in the next chapter.



CHAPTER 9

SURFACE COMPLEXATION MODELING OF HEAVY METAL ADSORPTION
AND COMPETITION ON GOETHITE

This chapter focuses on constraining surface complexation modeling with XAS results to

develop one unique set of SCM parameters for the description of both adsorption edge

and isotherm data. Data represent those covering a broad range of conditions, including

pH, ionic strength, metal concentration, and the presence of a competing ion. Ni(II) and

Zn(II) are two common metal contaminants that may coexist due to release from

historically poor waste management practices including industries such as electroplating.

Ni and Zn adsorption and competition at the goethite/water interface are investigated in

this chapter.

First, the adsorption mechanism needs to be defined. Based on the last chapter Ni

forms mononuclear bidentate edge-sharing complexes on HFO with loadings up to

8.1x10 -3 mole Ni g -1 and similar surface species may form on goethite. Zn(II) was found

to form bidentate surface complexes on both 2-line ferrihydrite (Waychunas et al. 2002,

2003; Trivedi et al. 2004) and goethite (Schlegel et al. 1997; Trivedi et al. 2001a).

Schlegel et al. (1997) reported that Zn(II) formed inner-sphere mononuclear edge- and

corner-sharing complexes upon adsorption to goethite at 10% proton site coverage (total

[Zn] = 2x10 -4 M). Trivedi et al. (2001a) also observed inner-sphere surface complexes

up to a loading of 2x10 -5 mol Zn g -1 . For these reasons, bidentate surface complexes are

assumed in this study, where SOH represents a surface hydroxyl group and the surface

reaction for either Ni or Zn (Me) on goethite is the following:
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This reaction is also consistent with the reported proton release for Zn adsorption on

goethite (Forbes et al. 1976; Kooner, 1993; Trainor et al. 2000). Although the systems

were open to the atmosphere, there was no evidence of structural contributions from

carbonate in XAS analyses (Chapter 8; Trivedi et al. 2001a). Carbonate species have not

been reported to affect adsorption of Zn, Ni, Cd, and Pb under atmospheric conditions

(Balistrieri and Murray, 1982; Lützenkirchen and Behra, 1994; Green-Pedersen et al.

1997; Villalobos et al. 2001; Strathmann and Myneni, 2005).

9.1 Potentiometric Titration Data

Titration results (Figure 9.1) reveal that the point of zero charge (PZC) for goethite is at

pH 8.8 ± 0.97 (pHpzc). This value is consistent with reported ones, which range from 7.5

to 9.5 (Lumsdon and Evans, 1994; Robertson and Leckie, 1998; Peacock and Sherman,

2004). The variation in the reactivity of goethite is caused by the synthetic conditions

such as total base added, rate of addition, the presence of sorbing ions, and aging time

(Schwertmann et al. 1985; Villalobos et al. 2003). Each crystal plane has a distinct site

density (Hiemstra et al. 1989); the pHpzc may also be a function of the particle shape,

size, and surface area. Sverjensky (2005) reported that pHpzc may be lower without

sufficient purging to remove carbon dioxide compared to otherwise obtained values.

Previous studies (Evans et al. 1979; Zeltner and Anderson, 1988) have shown that when

the goethite suspension was purged for 2 months, the PZC increased from 8.1 to 9.1; in

their interpretation, changes in PZC were due to CO2 adsorption and desorption.

However, aging also affects crystallinity, which would impact the PZC as well.
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Figure 9.1 Potentiometric titration of 1 g L -1 goethite in NaNO3-based electrolyte at
room temperature (lines represent TLM results using parameters corresponding to ApK a

= 1).
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Goethite titration data were used to calibrate the TLM. Because FITEQL is

unlikely to converge if the protolysis constants (logK a1 and logKa2) and electrolyte

binding constants (logKcat and logKan) are simultaneously set as adjustable parameters

(Hayes et al. 1991). The former was constrained based on the relationship that pHpzc is

equal to (logKa i+logKa2)/2. As a result, ApK a as well as the inner-layer capacitance (C1)

were optimized outside of the FITEQL program. The outer-layer capacitance (C2) is

traditionally set at 0.2 F/m2 (Hayes et al. 1991). For the total site density (N a) of goethite,

a value of —6 sites nm -2 was calculated (Tadanier and Eick, 2002; Peacock and Sherman,

2004) based on a crystallographic consideration proposed by Hiemstra and van Riemsdijk

(1996). This value was adopted for our work. Similar values for site density have been

used in other studies and proved reasonable in describing these systems (Hayes and

Leckie, 1986; Miller and Sigg, 1992; Coughlin and Stone, 1995; Kooner et al. 1995;

Venema et al. 1996; Robertson and Leckie, 1998; Liu and Huang, 2001). In summary,

the TLM parameters optimized in FITEQL in this study were logK cat and logKan . Ionic

strength effects are accounted for in FITEQL using activity coefficients calculated with

the Davies equation (Davies, 1962).

The TLM results for ApK a values varying from 1 to 5 (Table 9.1) show that,

although the protolysis constants systematically decreased by 0.5 log units, the maximum

change in either logKcat or logKan is only approximately 0.14 log units. Therefore, the

electrolyte binding constants reflect little sensitivity to changes in ApK a . In addition, the

summation of the absolute values of logKcat and logKan is approximately equal to 2pHpzc•

This relationship was used by Kosmulski (1996) to reduce the number of adjustable

parameters. The optimum C1 value was found to be 2.0 F 111-2 for all ApKa values and



Table 9.1 Surface Reactions and TLM Parameters for the Goethite-Water Interface

Reactions for the goethite-water interface
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TLM parameters for the goethite-water interface:

ApKa log Ka1 log Ka2 log Kcat log Kan C1 (F m -2) SOS/DF

1 -8.3 -9.3 9.94 -8.25 2.0 21.14

2 -7.8 -9.8 9.80 -8.38 2.0 21.14

3 -7.3 -10.3 9.75 -8.43 2.0 21.14

4 -6.8 -10.8 9.74 -8.45 2.0 21.15

5 -6.3 -11.3 9.73 -8.44 2.0 21.19
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was highly correlated to site density. Based on residuals, all five sets provide equivalent

fits to the titration data. Hayes et al. (1991) also found multiple solutions that

successfully replicated acid-base behavior of a-FeOOH, a-Al2O3, and TiO2. Koopal et al.

(1987) suggested that for crystalline oxides with few defects small ApKa values are

needed. Also molecular statics calculations have been performed to estimate stability

constants for proton binding to goethite (Rustad et al. 1996); 19 out of 26 intrinsic logKa

values were found to range between 7.7 and 9.4 where the pHpzc was calculated to be

8.9. A ApKa value of one was chosen in this study. The model described the

experimental titration data between pH 4 and 10 very well (Figure 9.1). This set of

parameters was therefore used in modeling adsorption.

9.2 Ni Adsorption on Goethite

In this work, the objective was to model both adsorption edges and isotherms. Studies

(Balistrieri and Murray, 1982; Rodda et al. 1993) have shown that parameters derived

from edge (pH dependence) modeling failed to account for the concentration dependence

of sorption; Palmqvist et al. (1997) and Dyer et al. (2003) also strongly emphasize the

importance of evaluating surface complexation models from data reflecting concentration

ranges as wide as possible.

Ni adsorption isotherms on goethite were conducted from pH 4 to 7 (Figure 9.2).

Although adsorption increases with pH, isotherms between pH 4 and 5 are almost

equivalent and within the experimental error. This result may be due to very low

adsorption and thus the error is large. Overall, Ni adsorption increases significantly

between pH 5.5 and 6.5. These isotherms also show that below 10 -6 M, the sorbed
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Figure 9.2 Ni adsorption isotherms for an open system at room temperature using 1 g L -1

goethite and le ionic strength (adjusted with NaNO3). Solid lines represent TLM
predictions.
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concentration is linearly related to the bulk aqueous concentration suggesting one type of

site. Palmqvist et al. (1997) did not observe a set of "high-affinity" surface sites in the

sorption of Pb, Cd, Zn, and Cu onto goethite below a concentration of —10 -6 M.

However, the slope of the isotherms became less than one for Ni concentrations greater

than 10-6 M, suggesting surface site heterogeneity (Robertson and Leckie, 1997). The

slight curvature seen in this same range of the isotherm may indicate an approach to

saturation of the stronger binding sites. These asymptotes may correspond to site density

varying with pH. Trivedi et al. (2001b) also observed that site density is a function of pH.

Surface heterogeneity has to be taken into account in modeling isotherms over the

entire range of Ni concentrations tested. However, as discussed earlier, only one type of

site was observed in XAS analysis. Because XAS data are averaged over the entire

surface, there may be a small fraction of other site types present, which are not detected

in the analysis. Benjamin and Leckie (1980, 1981b) proposed that the oxide surface

exhibits a spectrum of binding energies; as the surface binds more ions, the higher energy

sites may become limiting and the overall binding energy of the surface decreases.

Although different binding energies exist on the goethite surface, the reaction

stoichiometry proposed may still reflect an equivalent surface complex. A two-site

model was used as employed by Dzombak and Morel (1990). XAS derived (SO)2Ni

complexes were applied for both high affinity (KH) and low affinity (KO sites.

Surface complexation modeling resulted in seven best-fit sets of parameters

(Table 9.2), which correspond to each constant-pH Ni adsorption isotherm. The site

density of high affinity sites (NSH) increased with pH to attain convergence; these were

constrained from the isotherm studies. Overall, the TLM accurately reproduced the



Table 9.2 Model Parameters for Ni and Zn Adsorption Isotherms for Goethite at
Different pH Values

pH	 Log Kt,	 Log Kll	 NsH (mol/g)

Parameters for Ni adsorption

4 	 -1.93 	 3.73 	 2.5x10-6

4.5 	 -2.62 	 2.18 	 2.5x10-6

5 	 -3.34 	 0.39 	 2.5x10-6

5.5 	 -4.42 	 -0.42 	 5.0x10-6

6 	 -5.34 	 -1.15 	 2.0x10-5

6.5 	 -6.63 	 -2.45 	 3.5x10-5

7 	 -6.89 	 -3.04 	 6.0x10-5

Parameters for Zn adsorption

4 	 -2.10 	 4.18 	 5.0x10-7

4.5 	 -2.66 	 3.29 	 1.0x10-6

5 	 -3.56 	 2.34 	 3.1x10-6

5.5 	 -3.92	 2.14 	 3.1x10-6

6 	 -4.36	 0.86 	 7.3x10 -6

6.5 	 -4.60	 0.41 	 7.3x10 -6

7 	 -5.00 	 -0.29 	 7.3x10-6
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isotherm data (Figure 9.2). The results suggest that although polynuclear surface

complexes and/or precipitation can account for isotherms with slopes not equal to one

(Lützenkirchen and Behra, 1994; Katz and Hayes, 1996), multisite adsorption is

applicable when supported by spectroscopic data. More than one type of surface site has

been experimentally observed on ferric oxyhydroxide (Bottero et al. 1993) and supported

in crystallographic analysis (van Riemsdijk and Hiemstra, 1999). As Robertson and

Leckie (1997) note, even when slopes equal one, this does not guarantee that only one

type of site is present; it is more likely that several site types exist.

Even if site density is a function of pH, it appears that at least in this study, the

high affinity site density falls within an order of magnitude of each other. Therefore, in

terms of applying the TLM, a single set of parameters describing both adsorption edge

and isotherm data would be more practical. Adsorption edges (Figure 9.3) are consistent

with isotherm data, the % Ni sorbed increased significantly from pH 5 to 6.5 at low Ni

concentrations (Figure 9.3); however, at the highest [Ni]0 (Fig. 3a) the typical sigmoid

curve is not observed potentially due to site saturation. All seven sets of TLM parameters

derived from isotherms were used to predict edge data (Figure 9.3). Overall, only the pH

6.5 set of parameters was found to predict all edge data reasonably well (represented by

the solid line in each edge plot in Figure 9.3). These parameters were further tested on

the isotherms, and results (Figure 9.4) indicate that this one set of parameters successfully

modeled adsorption. Therefore, a single set of TLM parameters was found to describe Ni

adsorption on goethite over a broad range of conditions, covering almost seven orders of

magnitude in concentration (10 -10 to 10-3 M), ionic strength from 10 -3 to 10 -2 , and an

environmentally relevant pH range from 5 to 6.5.
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Figure 9.3 Ni adsorption edges for 1 g L -1 goethite conducted in air at room temperature;
ionic strength adjusted with NaNO3 (dots represent experimental data, lines represent
TLM modeling using best-fit parameters obtained from modeling the isotherm data at
different pH values).
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Figure 9.4 Ni adsorption isotherms for an open system at room temperature using 1 g L -1

goethite and 10 -3 ionic strength (adjusted with NaNO 3). Solid lines represent TLM
predictions using the parameters obtained from modeling isotherm at pH 6.5.
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9.3 Zn Adsorption on Goethite

Regression of the Zn-goethite adsorption data using the TLM involved the same

procedure applied in modeling Ni adsorption onto goethite. Adsorption isotherms

(Figure 9.5) also reveal decreasing slopes as concentration approaches 10 -5 M,

necessitating the use of high and low affinity sites for modeling. Seven sets of

parameters were obtained (Table 9.2) from modeling (Figure 9.5) and tested with edge

data (Figure 9.6). For Zn, the pH 5.5 parameter set was observed to provide a reasonable

fit of both the edge (solid line in each edge plot in Figure 9.6) and isotherm data (Figure

9.7) given uncertainties in both the data and model. Therefore, this unique set of

parameters was found to describe Zn adsorption on goethite over a large range of

conditions, covering six orders of magnitude in concentration (10 -10 to 10 -4 M), ionic

strength from 10 -3 to 10 -2 , and an environmentally relevant pH range from 4 to 6.

Palmqvist et al. (1997) found no evidence of high-affinity surface sites on

goethite; however, their study was conducted at low concentrations (— 10 -6 M). For Zn

sorption on ferrihydrite, Dzombak and Morel (1990) obtained a group of logKH and

logKL parameters by modeling a variety of edge and isotherm data; weighted averages of

these logKs were determined to be the best estimates. Although reasonable fits were

achieved using the best estimates, the surface complexes used in modeling were not

spectroscopically supported. Dyer et al. (2004) used an XAS-derived surface complex

[(FeO)2Zn] to fit Zn adsorption on 2-line ferrihydrite data over a pH range of 4-8 and a

loading of 10 -5 to 5x10 -1 moles Zn mole -1 Fe. Both the site density and best-fit

equilibrium "constant" had to be adjusted with pH to adequately fit the isotherm data. In

this study, a two-site TLM resulted in improved predictions of the Ni and Zn adsorption
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Figure 9.5 Zn adsorption isotherms for an open system at room temperature using 1 g
L-1 goethite and 10 -3 ionic strength (adjusted with NaNO3). Solid lines represent TLM
predictions.
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Figure 9.6 Zn adsorption edges for 1 g L -1 goethite conducted in air at room
temperature; ionic strength adjusted with NaNO3 (dots represent experimental data, lines
represent TLM modeling using best-fit parameters obtained from modeling the isotherm
data at different pH values).
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Figure 9.7 Zn adsorption isotherms for an open system at room temperature using 1 g
L-1 goethite and 10 -3 ionic strength (adjusted with NaNO3). Solid lines represent TLM
predictions using the parameters obtained from modeling isotherm at pH 5.5.
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data over a broad range of conditions when using a single set of model parameters.

9.4 Ni and Zn Competition

The modeling results for single adsorbate systems (Table 9.2) indicate that the reaction

constants for Zn(II) adsorption are greater than that for Ni(II), suggesting Zn ions exhibit

a higher affinity than Ni ions for the goethite surface. This observation is in agreement

with other studies (Tiller et al. 1984; Crawford et al. 1993; Gupta, 1998; Dube et al.

2001; Trivedi et al. 2001b; Jeon et al. 2003). Therefore, competition is expected when

both ions are present and the site density is limited. Competition has been investigated

by many researchers. For example, Gadde and Laitinen (1974) concluded that Pb sorbed

more strongly than other ions (Zn, Cd, and Ti) on HFO and HMO surfaces; Balistrieri

and Murray (1982) found that Mg(II) tends to suppress the adsorption of trace metals

(Cu, Pb, Zn, and Cd) on goethite; Christophi and Axe (2000) observed that goethite has a

greater affinity for Pb than Cu; Trivedi et al. (2001b) found that Zn and Ni bind more

strongly than Ca to goethite; Bradl (2004) observed that Cd adsorption is strongly

influenced by the presence of competing cations, such as divalent Ca and Zn; and

Kanungo et al. (2004) found in a study on Co, Ni, Cu, and Zn sorption onto HMO that Ni

experienced the greatest degree of displacement (Kanungo et al. 2004). However,

competition between trace metals in other studies may have been difficult to demonstrate,

because site density may not have been limiting (Swallow et al. 1980; Palmqvist et al.

1999).

The competition experiments were performed at pH 6. Compared to single

adsorbate systems, Ni(II) adsorption decreased by approximately 23% due to presence of
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Zn(II) (Figure 9.8). With a higher affinity for goethite surfaces, Zn(II) competes with

Ni(II) in occupying sites available for both metals. Ni(II) and Zn(II) competition was

predicted using both sets of parameters for Ni (pH 6.5 set) and Zn (pH 5.5 set) and results

were within the data and model error (Figure 9.8), predictions were within the data error.

Although SCMs have been employed to simulate multisolute adsorption

competition, success has been mixed. Using a generalized two-layer model, Ali and

Dzombak (1996) predicted adsorption of sulfate and organic acids reasonably well based

on single-adsorbate data over a wide range of conditions. Underprediction for the weaker

adsorbate was explained by adsorbate-specific surface site heterogeneity and/or by

inaccurate representation of Coulombic effects in the model. Gao and Mucci (2001)

predicted the shape of the competitive adsorption data for phosphate and arsenate on

goethite, but failed to reproduce it quantitatively. Heidmann et al. (2005) were able to

predict Cu and Pb competition on kaolinite successfully using the combination of a 1-pK

Basic Stern model for edge sites and an extended Basic Stern model for face sites;

nevertheless the surface complexes were simply assumptions without spectroscopic

support. Hayes and Katz (1996) pointed out that non-electrostatic, diffuse layer, and

constant capacitance models are likely to be less successful in modeling competition data,

because they do not account for differences in the affinity of inner- and outer-sphere

complexes. Christi and Kretzschmar (1999) demonstrated that surface site density is a

key parameter in applying SCMs to multicomponent environments and they obtained best

predictions with site densities between 5 and 10 sites nm -2 for hematite. Palmqvist et al.

(1999) showed that single-adsorbate modeling predicted adsorption competition for Cu

and Zn, but underestimated Pb(II) adsorption. Both the TLM and NEM predicted Cd and
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Figure 9.8 Ni adsorption in Zn-Ni bisolute systems at 1 g L -1 goethite, pH 6, 10 -3 ionic
strength (symbols represent experimental data; solid lines represent TLM predictions
using log Ka i=-8.3, log Ka2=-9.3, log Kanion=9.94, log K, and fitting parameters
obtained from single adsorbate modeling; dotted and dashed lines represent +1- two
standard deviations).
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Ca competition on HFO; however, the model failed at the lowest ionic strength (0.005)

studied (Cowan et al. 1991). Results of this study indicate that, when coupled with

spectroscopic data, parameters derived from single-adsorbate systems can be used to

predict adsorption competition within reasonable uncertainty limits.

9.5 Summary

A triple-layer surface complexation model has been used to simulate metal adsorption

onto goethite surfaces. Constrained with spectroscopic information, a 2-pK, 2-site TLM

successfully predicted Ni and Zn adsorption in single-adsorbate systems. Curvature in

the constant-pH adsorption isotherms was accurately described using both high-affinity

and low-affinity type sites. A unique set of parameters was found for each metal ion that

successfully describes adsorption over a wide range of experimental conditions (six to

seven orders of magnitude in adsorbate concentration, ionic strength ranging from 10 -3 to

10-2 , and an environmentally relevant pH range). Competition was also predicted with

parameters calibrated using single adsorbate data. Results of this study suggest that

accurate chemical and physical representations of the complexes at the interfacial region

assist in developing mechanistically based predictive models. As a result, these unique

sets of parameters for Ni and Zn may inherently provide a more comprehensive depiction

of surface interactions over a broad range of conditions.

Although adsorption and competition on discrete oxide have been successfully

described using surface complexation models, to predict metal distribution and transport

in soils and sediments these models needs to be tested using metal adsorption to iron
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oxide-coated silica. Ni and Zn sorption to iron oxide-coated silica is discussed in the next

chapter.



CHAPTER 10

NI AND ZN SORPTION TO IRON OXIDE-COATED SILICA

Iron oxide-coated silica represents an important surface in soils and sediments. The

effect of iron oxide coatings on adsorption needs to be addressed for better understanding

of heavy metal distribution in the environment. Macroscopic adsorption studies have

been conducted on goethite-coated silica and compared with those on discrete silica and

goethite. Results are discussed below.

10.1 Ni and Zn Adsorption Edges

Ni adsorption edges on 5 g L -1 goethite-coated silica (GACS) and silica were performed

over the pH range from 2 to 8 as a function of ionic strength (IS, 10 -3 to 10 -2). The

sigmoid-shaped edge was not found for silica, possibly due to site saturation, and was

only observed for GACS at IS 10 -3 (Figure 10.1). The edge jump begins at pH 6 for silica

and covers a range of 4-8 for GACS. Compared to silica, 50% adsorption for the GACS

system occurred 1.4 pH units lower at IS 10 -3 and 0.6 pH units lower at IS 10 -2 . The

GACS surface clearly shows a greater affinity for Ni. Ionic strength effects are observed

for the silica surface (Figure 10.1) potentially suggesting Ni sorbed as outer-sphere

complexes. Although inner-sphere Ni complexes were found on discrete HFO and

goethite, as presented in Chapter 7, the distinct edges at ionic strength 10 -3 and 10 -2 for

Ni/GACS system suggest that the silica surface significantly impact the electrostatic

character of coated silica. This observation is consistent with the small amount of

goethite coatings, which are non-uniformly distributed (Figure 6.6 and Figure 6.7).

However, the significant increase in % Ni sorbed for GACS (Figure 10.1) suggests that

145
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Figure 10.1 Ni adsorption edges on 5 g 1.: 1 silica and goethite-coated silica (GALS, 4.01
mg Fe g -1 solid) with [Ni] 0 = 5x10-1° M as a function of ionic strength (IS).
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adsorption affinity of the coated media is strongly influenced by goethite coatings.

Similar results were observed in Zn adsorption edges (Figure 10.2). Percent Zn

sorbed increases after pH 5 for silica and the edge jump was over a broad pH range from

4 to 8 for GACS. The goethite coatings present a higher affinity for Zn than silica and

the pH values at which 50% adsorption occurs lowered by 1.7 pH units at IS 10 -3 and 1.4

pH units at IS 10 -2 . Both systems show ionic strength effects on Zn sorption; therefore,

silica again appears to dominate electrostatic interactions of the coated media.

Overall, similar to proton adsorption, both components of the coated silica affect

Ni and Zn adsorption. By distinguishing inner- and outer-sphere adsorption with XAS,

the triple layer model is expected to be more advantageous in modeling than other models

such as CCM, DLM, and Stern model. This modeling work along with XAS is

recommended in future research.

10.2 Ni and Zn Adsorption Isotherms

Ni adsorption isotherms with silica, GACS, and goethite were conducted from pH 4 to 7

under ionic strength 10 -3 . Results (Figure 10.3) indicate that Ni adsorption to these

sorbents increases in the order of silica < GACS < goethite. For silica (Figure 10.4a), pH

4 and 5 isotherms have slopes approximately equal to one below a Ni concentration of

10-7 M and less than one between 10 -7-10-6 M. Saturation of the higher affinity sites

(approximately 5 x10 -9 mole Ni g-1 silica) may have occurred. The shape of the pH 4 and

5 isotherms at Ni concentrations greater than 10 -6 M is consistent with presence of a

lower affinity site and/or formation of Ni polymer (Dzombak and Morel, 1990; Katz and

Hayes, 1995b; Hayes and Katz, 1996). However, there was no indication of low affinity
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Figure 10.2 Zn adsorption edges on 5 g L -1 silica and goethite-coated silica (GALS, 4.01
mg Fe g -1 solid) with [Zn]o = 2x10-8 M as a function of ionic strength (IS).
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Figure 10.3 Comparison of Ni adsorption isotherms on 5 g L -1 silica and goethite-coated
silica (GACS, 4.01 mg Fe g -1 solid) and 1 g L-1 goethite at ionic strength (IS) 10 -3 as a
function of pH.
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Figure 10.4 Ni adsorption isotherms on 5 g L -1 silica and goethite-coated silica (GALS,
4.01 mg Fe g-1 solid) and 1 g L -1 goethite at ionic strength (IS) 10 -3 as a function of pH.
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sites in the pH 6 and 7 isotherms. For these two conditions, the isotherm appears

approach saturation (approximately 5x10 -7 mole Ni g -1 silica) for Ni concentrations

greater than 10-6 M and less than 10 -4 M. Interestingly, using a non-electrostatic model,

Delolme et al. (2004) obtained an optimized SiOH site concentration of 8x10 -7 mole g-1

for a natural sand with a diameter of 0.3 to 2 mm, similar to that used in this study. The

silica isotherms overlap at Ni concentrations greater than 10 -4 M; this may suggest

formation of Ni polymers instead of a lower affinity site. The Ni/silica adsorption

isotherm seems to reveal more information than the adsorption edges about surface sites

suggesting more than one mechanism. Coupled with electrophoretic information, Kuan

et al. (2004) modeled Al(III) adsorption to an amorphous silica reasonably well with a

surface complexation/precipitation model over Al(III) concentrations ranging from 10 4 ' 5

to 10-2 M. The authors proposed Al(H2O)6 3+ complex at low pH (<3) and low

concentration (up to 10 -175 mole Al g -1 silica), a hydrolyzed Al(OH)(H2O)6 2+ complex at

loadings of 10-375 to 10 -3 '25 mole Al g-1 silica, and surface-induced precipitation at

loadings greater than 10 -315 mole Al g -1 silica. Also, Cu adsorption on silica can only be

modeled by inclusion of surface polymerization and precipitation at higher loadings as

well (Subramaniam et al. 2003).

Consistent with the edge studies, Ni isotherms suggest GACS sorbs more Ni than

silica at the same pH (Figure 10.3). However, the slopes for all isotherms on GACS

(Figure 10.4b) are approximately equal to one up to a Ni concentration of 10 -6 M. The

heterogeneous surface appears to act as one averaged surface; this may be due to the

influence of goethite. At Ni concentrations between 10 -6 and 10 -3 M, site saturation

approaches —2x10 -6 mole Ni g-1 solid. This site density is consistent with the estimated
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one for GACS (2.77x10 -6 mole sites g -1 solid) based on the degree of coating and site

concentrations of goethite (3.09x10 -4 mole g-1 goethite, Chapter 9) and silica (8x10 -7

mole g -1 , Delolme et al. 2004). At Ni concentrations greater than 10-3 M, the increased

slope in the isotherms may be due to polymerization. Overall, GACS exhibits one type

of site over a large range of Ni concentrations (10 -10 to 10 -3 M). Polymers may form on

GACS at Ni concentrations greater than 10 -3 M in contrast to that observed for silica

where polymerization may occur at concentrations greater than 10 -4 M. Although a low

affinity site was not reflected in the GACS isotherms, the surface is heterogeneous by

nature. Metal sorption mechanisms therefore need to be investigated with other

techniques including XAS.

Zn adsorption isotherms were performed on silica, GACS, and goethite at pH 5

and 6 and ionic strength 10 -3 (Figure 10.5). Adsorption on coated silica is less than that

on goethite and slightly greater than silica due to the presence of goethite. The Zn

isotherms with silica and GACS are similar over the concentration of 10 -1° to 10 -5 M

(Figure 10.5) with slopes approximately equal to one below 10-7 M and less than one at

greater concentrations up to —5x10 -6 M (Figure 10.6a and b). Site saturation may be

approached at approximately 10-7 mole Zn g -1 solid for both systems at pH 5 and 6. The

abrupt increase in adsorption near 10 -5 M may suggest precipitation of a new phase. In

an EXAFS analysis of Zn complexation on an amorphous silica, Roberts et al. (2003)

observed inner-sphere adsorption complexes for pH 5.1 to 7.45, a loading 6.3x10 -6 to

2.63x10 -4 mole Zn g-1 solid, and a reaction time of 24 hours to 18 months. They found

amorphous Zn(OH)2 precipitation occurring at the highest pH 7.51. Overall, isotherms

with silica and GACS suggest one type of site over a Zn concentration of 10 -1° to 5x10-6
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Figure 10.5 Comparison of Zn adsorption isotherms on 5 g L -1 silica and goethite-coated
silica (GACS, 4.01 mg Fe g -1 solid) at ionic strength (IS) 10 -3 as a function of pH.
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Figure 10.6 Zn adsorption isotherms on 5 g L -1 silica and goethite-coated silica (GACS,
4.01 mg Fe g-1 solid) and 1 g L -1 goethite at ionic strength (IS) 10-3 as a function of pH.
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M. Polymerization may occur at concentrations greater than 5x10 -6 M. Similar to Ni, Zn

adsorption mechanisms need to be investigated further with techniques including

spectroscopic ones.

10.3 Summary

Overall, GACS has a higher affinity for Ni and Zn than silica due to the presence of

goethite. However, the electrostatic effect is controlled by silica. Both surfaces are

needed for successfully describing adsorption on this heterogeneous sorbent. Although

edge studies potentially suggest outer-sphere adsorption for silica and GACS, Ni and Zn

adsorption isotherms reveal more than one sorption mechanism. Silica exhibits high- and

low-affinity sites for Ni at low pH (4 and 5), but one type of site for Ni at high pH (6 and

7) and for Zn at all pH values (4-7). GACS is composed of two types of surfaces,

however, only one type of adsorption site was reflected in Ni and Zn isotherms up to 10 -6

M. Although Ni and Zn adsorption on goethite were successfully modeled without

inclusion of polymer formation, it may be needed for modeling silica and GACS system.

Depicting accurate adsorption mechanisms under various conditions need to be addressed

using techniques including EXAFS. This work is challenging because metal loadings are

low (Figure 10.3 and Figure 10.5). Amorphous silica is a high surface area analogue for

quartz (Manceau et al. 1999; Elzinga and Sparks, 2002), which may be a good substrate

for studying metal adsorption. Overall, sorption on iron oxide-coated silica has not yet

come to the same level as discrete iron oxide, and therefore more work is needed in this

area.



CHAPTER 11

CONCLUSIONS AND FUTURE WORK

Sorption of trace elements onto iron oxide is an important process regulating contaminant

mobility and bioavailability in natural systems. The purpose of this research is to

understand the effect of iron oxides, as discrete particles and coatings, on contaminant

adsorption and develop surface complexation models to predict heavy metal adsorption

and competition.

A model system for soils and sediments, iron oxide-coated silica, was synthesized

using adsorption and precipitation methods. The degree of coating was highly sensitive

to the particle size of silica and ranged between 0.59 and 21.36 mg Fe g -1 solid. The

interaction between goethite and silica potentially involves chemical forces. Iron oxide

coatings on the silica surface are non-uniform increasing surface area and introducing

small pores. The pHpzc of coated silica is between that of pure silica and iron oxide

suggesting both silica and goethite surfaces are important for adsorption. Ni adsorption

on the coated silica is greater than that for pure silica and the sub-micrometer goethite

coatings exhibit a larger capacity than discrete goethite impacting interactions at the

aqueous interface.

EXAFS analysis of Pb(II)-sorbed to freshly precipitated HFO suggest that Pb(II)

ions form mononuclear bidentate edge-sharing surface complexes on FeO6 octahedra.

This mechanism appears to be invariant of pH, ionic strength, Pb loading, and reaction

time. The internal sites on micropore walls appear to be no different than the external

ones. Intraparticle surface diffusion modeling described the two-step Pb/HFO sorption

process reasonably well. The rate-limiting diffusion process may occur for decades
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accounting for approximately 46% of total Pb uptake. XAS also revealed that the freshly

precipitated HFO exhibits short-range order possibly forming edge and face-sharing

polymers. By binding to the edges of octahedra polymers, Pb(II) ions inhibit

crystallization of HFO which is stable up to 21 months of aging, thus maintaining its

large capacity for heavy metals.

Similarly, Ni(II) forms mononuclear bidentate edge-sharing surface complexes

upon adsorption to HFO. This mechanism was observed as a function of ionic strength

2.8x10-3 to 10 -1 , pH 6 to 7, loading 8 x10 -4 to 8.1x10 -3 mole Ni g-1 HFO, and reaction time

4 hours to 8 months. The presence of Ni(II) potentially inhibited HFO transformation

into a more crystalline iron oxide; therefore the large sorption capacity of HFO was

maintained. Metastable a-Ni(OH)2 appears to have formed when coprecipitated with

HFO. Ni2+ was not found to substitute for Fe 3+ up to 8 months at room temperature

possibly because HFO did not undergo phase transformation into a more crystalline form.

Constrained with spectroscopic information, the 2-pK TLM can successfully

predict Ni or Zn adsorption in single adsorbate systems. The curvature in adsorption

isotherms was accurately described using two types of sites — high affinity and low

affinity ones. A unique set of parameters was found for each metal ion that can

successfully describe adsorption over a large range of experimental conditions, covering

six to seven orders of magnitude in concentration, ionic strength from 10 -3 to 10 -2 , and an

environmentally relevant pH range. Competition was also predicted quantitatively with

parameters calibrated using single adsorbate data.

GACS has a higher affinity for Ni and Zn than silica due to the presence of

goethite. However, the electrostatic effect is controlled by silica. Therefore, both
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surfaces are needed for successfully describing adsorption on this heterogeneous sorbent.

Ni and Zn adsorption isotherms reveal more than one sorption mechanism on silica and

coated silica. Although GACS is composed of two types of surfaces, only one type of

adsorption site was reflected in Ni and Zn isotherms up to 10 .6 M. Polymer formation

may be needed for modeling silica and GACS system. Depicting accurate adsorption

mechanisms under various conditions need to be addressed using techniques including

spectroscopic ones.

Therefore, future work associated with this research should include addressing

adsorption mechanisms on silica and iron oxide-coated silica under various conditions

using techniques including XAS. Amorphous silica can be used in this regard because of

its high surface area. Speciation results can then be used to constrain surface

complexation modeling for adsorption to coated silica. Additionally, heavy metal

distribution is regulated by microorganisms in the environment as well. Metal ions may

be involved in metabolic activities and/or sorbed to biotic coatings. This interaction is

not well understood yet and needs to be addressed for better description of natural

systems. Models developed for biotically and/or abiotically coated heterogeneous

systems can then be incorporated into environmental management programs to predict

the bioavailability of heavy metals and evaluate the potential ecological risk.



APPENDIX A

SOLUBILITY AND SPECIATION DIAGRAM FOR NI, PB, AND ZN

The solubility and speciation diagrams of Ni, Pb, and Zn are presented below.

Figure A.1 Ni solubility in open system at 298 K (in 10 -3 M NaNO3, PCO2=1 0-146 atm).
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Figure A.2 Ni speciation in 1x10 -5 M Ni(NO3)2 in open system at 298 K (ionic strength
10-3 NaNO3, PCO2=1 0 -3 .46 atm).
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Figure A.3 Pb solubility in open system at 298 K (ionic strength 10 -3 NaNO3, Pco2=10 -

3.46 atm).
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Figure A.4 Pb speciation in 5x10 -8 M Pb(NO3)2 in open system at 298 K (ionic strength
10-3 NaNO3, PCO2=1 0-146 atm).
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Figure A.5 Zn solubility in open system at 298 K (ionic strength 10 -3 NaNO3, Pco2=10 -
3.46 atm).
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Figure A.6 Zn speciation in 1x10 -5 M Zn(NO3)2 in open system at 298 K (ionic strength
10-3 NaNO3, PCO2=1 0-146 atm).



APPENDIX B

POTENTIOMETRIC TITRATION DATA

Potentiometric titration results of coated silica, silica, and goethite are presented below.

Titrations were conducted under a N2 pressure of 35 psi and room temperature. Surface

charge density is represented by a in meq g-1 .

Table B.1 Potentiometric Titration of 1 g L -1 Goethite Adsorption-Coated Silica

pH a (IS 10-3) pH a (IS 10-2) pH a (IS 104 )
1.97 2.575 1.99 2.754 1.99 2.859
2.02 2.143 2.05 2.410 2.05 2.504
2.08 1.746 2.18 1.555 2.19 1.696
2.25 1.071 2.27 1.170 2.40 0.898
2.54 0.419 2.40 0.861 2.57 0.527
2.83 0.111 2.56 0.471 2.86 0.166
2.93 0.062 2.86 0.155 2.96 0.105
3.05 0.002 2.96 0.096 3.09 0.045
3.24 -0.042 3.09 0.037 3.27 -0.020
3.37 -0.068 3.28 -0.019 3.60 -0.080
3.56 -0.094 3.63 -0.074 3.65 -0.087
3.61 -0.099 3.68 -0.082 3.71 -0.093
3.67 -0.103 3.75 -0.086 3.78 -0.098
3.73 -0.110 3.82 -0.093 3.86 -0.105
3.81 -0.114 3.92 -0.098 3.96 -0.111
3.91 -0.118 4.04 -0.103 4.09 -0.117
3.97 -0.120 4.11 -0.106 4.17 -0.120
4.04 -0.122 4.20 -0.109 4.27 -0.123
4.12 -0.125 4.32 -0.111 4.40 -0.127
4.21 -0.128 4.48 -0.114 4.60 -0.129
4.34 -0.130 4.74 -0.117 4.96 -0.132
4.52 -0.132 5.41 -0.120 8.06 -0.147
4.84 -0.134 9.00 -0.123 9.21 -0.150
6.53 -0.137 9.47 -0.123 9.53 -0.151
9.21 -0.139 9.70 -0.123 9.71 -0.152
9.55 -0.140 9.85 -0.122 9.84 -0.153
9.74 -0.140 9.97 -0.121 9.95 -0.153
9.88 -0.139 10.06 -0.120 10.02 -0.156
9.98 -0.140
10.06 -0.140
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Table B.2 Potentiometric Titration of 1 g U ' Goethite Precipitation Coated-Silica

pH a (IS 10 -3) pH a (IS 10 -2) pH a (IS 10-1 )
1.68 2.518 1.65 1.784 2.00 3.002
1.71 2.213 1.68 1.527 2.05 2.537
1.83 1.561 1.76 1.280 2.12 2.194
2.00 0.952 1.86 1.063 2.29 1.408
2.17 0.569 1.98 0.723 2.42 1.065
2.48 0.292 2.18 0.654 2.60 0.703
2.78 0.116 2.50 0.371 2.90 0.322
2.83 0.106 2.83 0.210 2.95 0.290
2.89 0.102 2.94 0.175 3.00 0.250
2.95 0.085 3.08 0.132 3.07 0.224
3.03 0.079 3.17 0.110 3.14 0.187
3.11 0.057 3.29 0.091 3.22 0.147
3.22 0.044 3.44 0.065 3.33 0.114
3.37 0.032 3.68 0.042 3.48 0.082
3.43 0.030 3.74 0.035 3.69 0.044
3.49 0.024 3.82 0.031 3.75 0.038
3.56 0.018 3.91 0.025 3.82 0.031
3.62 0.015 4.01 0.017 3.91 0.025
3.69 0.013 4.15 0.010 4.01 0.017
3.73 0.012 4.23 0.006 4.14 0.010
3.77 0.010 4.34 0.003 4.23 0.006
3.82 0.010 4.48 -0.001 4.33 0.002
3.87 0.008 4.66 -0.005 4.47 -0.001
4.00 0.005 4.94 -0.010 4.68 -0.005
4.08 0.004 5.21 -0.018 5.05 -0.009
4.19 0.003 5.95 -0.025 8.15 -0.014
4.32 0.001 9.18 -0.027 9.23 -0.016
4.50 -0.001 9.56 -0.027 9.55 -0.017
4.83 -0.002 9.77 -0.025 9.74 -0.017
5.42 -0.007 9.91 -0.024 9.87 -0.018
8.31 -0.014 10.02 -0.022 9.97 -0.018
9.25 -0.016 10.06 -0.017
9.55 -0.017
9.71 -0.019
9.85 -0.020
9.96 -0.019
10.05 -0.019
10.13 -0.018

166



Table B.3 Potentiometric Titration of 2 g L -1 Silica

pH a (IS 10 -3) pH a (IS 10-2) pH a (IS 10 -1 ) pH a (IS 10-3)
1.55 10.259 1.87 0.999 1.62 5.868 1.68 5.230
1.56 9.585 1.93 0.869 1.64 5.398 1.71 4.924
1.59 8.511 2.08 0.585 1.72 4.304 1.76 3.975
1.65 7.179 2.19 0.515 1.82 3.243 1.91 2.499
1.74 5.287 2.32 0.350 1.96 2.310 2.15 1.098
1.87 3.653 2.50 0.162 2.16 1.314 2.53 0.153
2.06 2.054 2.84 0.020 2.25 0.955 2.55 0.119
2.14 1.788 2.90 0.014 2.28 0.840 2.58 0.113
2.22 1.400 2.95 -0.018 2.33 0.723 2.90 -0.204
2.31 0.967 3.02 -0.034 2.49 0.439 3.02 -0.252
2.44 0.603 3.10 -0.054 2.73 0.119 3.28 -0.338
2.63 0.249 3.20 -0.072 2.76 0.081 3.63 -0.393
2.65 0.202 3.32 -0.096 2.80 0.057 4.06 -0.420
2.77 0.073 3.48 -0.122 2.84 0.026 4.13 -0.423
2.93 -0.064 3.74 -0.148 2.88 -0.011 4.22 -0.427
3.27 -0.244 3.79 -0.150 2.93 -0.040 4.34 -0.429
3.56 -0.312 3.83 -0.153 3.05 -0.100 4.50 -0.432
3.85 -0.345 3.88 -0.155 3.12 -0.134 4.72 -0.436
5.06 -0.379 3.92 -0.159 3.21 -0.163 5.17 -0.440
8.31 -0.383 3.98 -0.161 3.32 -0.195 8.73 -0.444
9.33 -0.384 4.03 -0.166 3.48 -0.222 9.48 -0.441
9.63 -0.383 4.10 -0.169 3.49 -0.228 9.76 -0.438
9.54 -0.397 4.18 -0.172 3.55 -0.238 9.93 -0.434
9.74 -0.397 4.27 -0.176 3.61 -0.250 10.05 -0.430
9.87 -0.397 4.39 -0.179 3.65 -0.259
9.98 -0.396 4.54 -0.183 3.68 -0.262

4.77 -0.187 3.71 -0.265
5.22 -0.192 3.74 -0.268
8.44 -0.198 3.78 -0.270
9.34 -0.198 3.89 -0.282
9.62 -0.198 3.99 -0.289
9.78 -0.199 4.05 -0.292
9.90 -0.199 4.13 -0.295
9.99 -0.200 4.22 -0.298
10.06 -0.202 4.33 -0.301

4.48 -0.304
4.71 -0.308
5.20 -0.311
8.83 -0.315
9.46 -0.314
9.72 -0.312
9.89 -0.309
10.01 -0.307
10.10 -0.305
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Table BA Potentiometric Titration of 1 g U 1 Goethite

pH a (IS 10 -3 ) pH a (IS 10-2) pH a (IS 104 )
10.01 -0.028 10.00 -0.070 10.00 -0.079
9.97 -0.027 9.97 -0.067 9.98 -0.075
9.93 -0.025 9.95 -0.061 9.95 -0.071
9.89 -0.022 9.91 -0.059 9.92 -0.067
9.85 -0.019 9.88 -0.054 9.88 -0.063
9.79 -0.018 9.84 -0.051 9.85 -0.059
9.72 -0.018 9.80 -0.047 9.81 -0.055
9.67 -0.013 9.76 -0.042 9.77 -0.051
9.58 -0.012 9.71 -0.039 9.73 -0.046
9.49 -0.009 9.67 -0.033 9.68 -0.042
9.36 -0.007 9.60 -0.030 9.63 -0.037
9.21 -0.004 9.54 -0.025 9.57 -0.033
8.99 0.000 9.47 -0.020 9.50 -0.028
8.64 0.004 9.38 -0.016 9.42 -0.023
8.07 0.011 9.28 -0.011 9.34 -0.018
7.53 0.020 9.16 -0.006 9.22 -0.013
7.19 0.030 9.01 0.000 9.08 -0.008
6.89 0.040 8.82 0.007 8.89 -0.002
6.60 0.050 8.57 0.014 8.61 0.004
6.19 0.059 8.26 0.022 8.20 0.012
5.64 0.068 7.91 0.031 7.72 0.020
5.24 0.074 7.63 0.040 7.32 0.030
4.97 0.079 7.37 0.050 7.04 0.040
4.78 0.083 7.14 0.060 6.77 0.050
4.64 0.087 6.92 0.070 6.52 0.059
4.53 0.090 6.70 0.080 6.27 0.069
4.45 0.095 6.44 0.090 5.96 0.079
4.36 0.096 6.16 0.099 5.64 0.087
4.30 0.100 5.85 0.108 5.34 0.095
4.24 0.102 5.56 0.117 5.08 0.101
4.19 0.105 5.32 0.125 4.88 0.106
4.14 0.108 5.10 0.132 4.71 0.110
4.09 0.109 4.93 0.138 4.58 0.113
4.07 0.115 4.79 0.144 4.47 0.115
4.02 0.114 4.67 0.148 4.38 0.118
3.99 0.118 4.58 0.153 4.30 0.119

4.50 0.158 4.23 0.121
4.43 0.163 4.17 0.122
4.36 0.166 4.12 0.124
4.31 0.171 4.07 0.125
4.26 0.175 4.03 0.126
4.21 0.178 3.99 0.127
4.17 0.182
4.13 0.186
4.10 0.190
4.07 0.195
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APPENDIX C

ADSORPTION STUDIES ON GOETHITE

Ni and Zn adsorption on goethite data are presented below. All adsorption studies were

conducted open to the atmosphere at room temperature.

Table C.1 Ni Adsorption Edges on 1 g L-1 Goethite

[Ni] 0=-5x 10-1° M
IS 10 -2

[Ni]0=3x10-8 M
IS 10 -3

[Ni]0=10-4 M

IS 10-3

pH % Nisorbed pH % Nisorbed pH % Nisorbed

3.15 2.6 4.4 18.0 4.0 2.7
4.42 1.4 5.0 19.6 4.5 4.2
5.15 12.3 5.8 53.4 5.0 5.9
5.82 38.0 6.0 87.3 5.5 6.1
6.6 96.3 6.4 97.4 5.9 11.1

6.75 99.1 6.9 97.8 6.4 15.9
7.18 99.7 6.9 37.2
7.54 99.8
7.73 99.8

Table C.2 Ni Adsorption Isotherms on 1 g L -1 Goethite at Ionic Strength 10 -3

pH 4 pH 4.5 pH 5 pH 5.5
[Ni] (M) Niads (mol/g) [Ni] (M) Niads (mol/g) [Ni] (M) Niads (mol/g) [Ni] (M) Niads (mol/g)
2.30E-08 6.99E-09 2.46E-08 5.39E-09 	 - 2.41E-08 5.87E-09 1.43E-07 5.66E-08
1.91E-07 8.65E-09 1.86E-07 1.40E-08 1.80E-07 1.98E-08 7.53E-07 2.47E-07
8.38E-07 1.62E-07 8.83E-07 1.17E-07 8.67E-07 1.33E-07 3.03E-06 9.65E-07
3.61E-06 3.91E-07 3.62E-06 3.82E-07 3.54E-06 4.57E-07 7.86E-06 2.14E-06
9.59E-06 4.09E-07 9.52E-06 4.81E-07 9.21E-06 7.91E-07 1.67E-05 3.25E-06
1.82E-05 1.76E-06 1.81E-05 1.87E-06 1.77E-05 2.34E-06 9.39E-05 6.11E-06
9.73E-05 2.67E-06 9.58E-05 4.20E-06 9.41E-05 5.87E-06 0.00019 1.21E-05
0.00019 5.50E-06 0.00019 6.97E-06 0.00019 9.86E-06

pH 6 pH 6.5 pH 7

[Ni] (M) Niads (mol/g) [Ni] (M) Niads (mol/g) [Ni] (M) Niads (mol/g)
3.80E-09 2.62E-08 7.91E-10 2.92E-08 6.54E-10 2.93E-08
2.23E-08 1.78E-07 6.06E-09 1.94E-07 3.94E-09 1.96E-07
1.84E-07 8.16E-07 3.78E-08 9.62E-07 1.94E-08 9.81E-07
9.88E-07 3.01E-06 1.59E-07 3.84E-06 6.20E-08 3.94E-06
3.24E-06 6.76E-06 6.29E-07 9.37E-06 1.75E-07 9.82E-06
1.45E-05 5.54E-06 8.60E-06 1.14E-05 2.30E-06 1.77E-05
8.89E-05 1.11E-05 8.41E-05 1.59E-05 6.28E-05 3.72E-05
0.00019 1.46E-05 0.00018 2.30E-05 0.00015 4.53E-05
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Table C.3 Zn Adsorption Edges on 1 g L -1 Goethite

[Zn] 0-5.2x10 -7 M

IS 10 -3

[Zn]o=10-5 M

IS 10-3

[Zn]0=10-5 M

IS 10 -2

pH % Znsorbed pH % Znsorbed pH % Znsorbed

4.04 5.2 4.52 7.23 4.53 13.4
4.48 18.9 4.93 17.55 5.11 19.2
5.01 56.1 4.96 19.62 5.45 28.3
5.02 59.8 5.02 20.45 6.01 52.6
5.50 89.7 5.57 35.43 6.49 81.3
5.98 97.7 5.84 68.01 6.71 91.6
6.46 99.6 6.07 76.56 6.96 96.8
6.92 99.8 6.60 93.96

Table C.4 Zn Adsorption Isotherms on 1 g L -1 Goethite at Ionic Strength 10 -3

pH 4 pH 4.5 pH 5 pH 5.5

[Zn] (M) Znads (mol/g) [Zn] (M) Znads (mol/g) [Zn] (M) Znads (mol/g) [Zn] (M) Znads (mol/g)
2.35E-08 2.45E-09 1.52E-07 4.83E-08 3.17E-09 2.28E-08 5.88E-10 2.54E-08
4.93E-07 2.68E-08 4.22E-07 9.84E-08 3.32E-09 2.27E-08 5.35E-08 4.66E-07
2.57E-05 3.26E-07 9.28E-06 7.23E-07 5.16E-08 1.48E-07 1.81E-06 2.19E-06
9.82E-05 1.85E-06 2.48E-05 1.24E-06 2.09E-07 3.11E-07 6.46E-06 3.54E-06

2.28E-07 2.92E-07 1.88E-05 7.25E-06
2.52E-06 1.48E-06
3.04E-06 9.57E-07
7.96E-06 2.04E-06
8.04E-06 1.96E-06
8.25E-06 1.75E-06
2.32E-05 2.77E-06
2.35E-05 2.51E-06

_ 9.38E-05 6.18E-06
pH 6 pH 6.5 pH 7

[Zn] (M) Znads (mol/g) [Zn] (M) Znads (mol/g) [Zn] (M) Znads (mol/g)
1.77E-09 1.98E-07 2.06E-09 5.18E-07 3.15E-11 2.60E-08
1.19E-08 5.08E-07 6.04E-07 9.40E-06 1.22E-09 5.19E-07
6.11E-07 3.39E-06 7.34E-08 3.93E-06
6.77E-07 3.32E-06 8.93E-07 2.51E-05
6.81E-07 3.32E-06 4.99E-05 5.01 E-05
2.34E-06 7.66E-06
3.20E-06 6.80E-06
1.40E-05 1.20E-05
1.44E-05 1.16E-05
7.96E-05 2.04E-05_



Table C.5 Ni Adsorption in Ni-Zn Bisolute Systems on 1 g L -1 Goethite at pH 6 and
Ionic Strength 10 -3

Ni, Zn binary system Ni single system
[Ni] (M) Niads (mol/g) [Ni] (M) Niads (mol/g)
1.40E-05 6.00E-06 1.05E-05 9.55E-06
2.33E-05 6.71E-06 1.98E-05 1.02E-05
3.17E-05 8.28E-06 2.77E-05 1.23E-05
4.06E-05 9.42E-06 3.63E-05 1.37E-05
5.06E-05 9.43E-06 4.63E-05 1.37E-05
5.86E-05 1.14E-05 5.46E-05 1.54E-05
6.90E-05 1.10E-05 5.48E-05 1.52E-05
7.76E-05 1.24E-05 6.37E-05 1.63E-05
8.76E-05 1.24E-05 7.3 5E-05 1.65E-05
9.60E-05 1.40E-05 8.28E-05 1.72E-05
1.06E-04 1.39E-05 9.16E-05 1.84E-05

1.02E-04 1.81E-05
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APPENDIX D

ADSORPTION STUDIES ON SILICA AND COATED-SILICA

Ni and Zn adsorption on silica and coated-silica data are presented below. All adsorption

studies were conducted open to the atmosphere at room temperature.

Table D.1 Ni Adsorption Edges on 5 g L -1 Silica and Goethite-Coated Silica (4.01 mg Fe
g-1 Solid) at [Ni]o=5x 10 -1° M

Silica Goethite-coated silica
IS 10 -3 IS 10 -2 IS 10 -3 IS 10 -2 IS 10 -2

pH % Nisorbed pH % Nisorbed pH % Nisorbed pH % Nisorbed pH % Nisorbed

2.88 3 3.1 1.6 3 4.7312 3.34 1.5514 3.25 0.4
3.54 6.7 3.89 2.5 3.53 12.05 4.08 3.8598 4.04 3.9
4.08 8.1 4.48 3.8 4.03 14.969 4.62 5.2465 4.51 8
4.53 9 4.99 6.9 4.64 36.173 5.23 12.09 5.06 8
5.01 16.8 5.8 4.9 5.21 65.073 5.8 12.39 5.48 10.9
5.52 30.3 6.3 10.1 5.76 70.287 6.35 12.828 5.95 11.6
5.7 33.9 6.44 11.9 5.9 75.367 6.48 22.835 6.13 18.4
6.02 41.8 6.81 13.5 6.05 74.803 7.07 37.055 6.42 22.7
6.25 48.1 7.06 23.9 6.65 91.082 7.31 72.84 6.81 37.1
6.8 58.1 7.46 41.3 7.11 95.598 7.59 94.488 7.09 55.6

Table D.2 Ni Adsorption Isotherms on 5 g L -1 Silica at Ionic Strength 10 -3

pH 4 pH 5 pH 6 pH 7
[Ni] (M) Niads (mol/g) [Ni] (M) Niads (mol/g) [Ni] (M) Niads (mol/g) [Ni] (M) Niads (mol/g)

4.74E-10 5.12E-12 4.39E-10 1.23E-11 3.10E-10 3.79E-11 2.82E-10 4.35E-11
9.68E-10 6.38E-12 9.19E-10 1.63E-11 5.93E-10 8.18E-11 4.03E-10 1.20E-10
4.66E-09 6.70E-11 4.38E-09 1.23E-10 3.37E-09 3.25E-10 2.36E-09 5.27E-10
4.90E-08 2.11E-10 4.52E-08 9.78E-10 8.34E-09 3.37E-10 6.43E-09 7.27E-10
9.63E-08 7.51E-10 9.04E-08 1.92E-09 3.27E-08 3.51E-09 2.14E-08 5.81E-09
9.88E-07 2.36E-09 9.78E-07 4.46E-09 7.32E-07 5.40E-08 6.33E-07 7.38E-08
9.89E-07 2.22E-09 9.66E-07 6.96E-09 7.55E-07 4.96E-08 6.43E-07 7.22E-08
4.93E-06 1.39E-08 4.70E-06 6.05E-08 4.34E-06 1.32E-07 4.00E-06 2.00E-07
9.78E-06 4.46E-08 4.81E-05 3.72E-07 4.82E-05 3.58E-07 9.42E-06 1.14E-07
9.51E-05 9.94E-07 9.54E-05 9.22E-07 9.49E-05 1.03E-06 4.66E-05 6.72E-07
0.00489 2.21E-05 0.00097 5.77E-06 9.48E-05 1.04E-06

0.00491 1.81E-05
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Table D.3 Ni Adsorption Isotherms on 5 g 	 Goethite-Coated Silica (4.01 mg Fe g -1

Solid) at Ionic Strength 10 -3

PH 4 pH 5 pH 6 pH 7

[Ni] (M) Niads (mol/g) [Ni] (M) Niads (mol/g) [Ni] (M) Niads (mol/g) [Ni] (M) Niads (mol/g)
4.44E-10 1.13E-11 3.22E-10 3.58E-11 1.54E-10 6.98E-11 2.59E-10 1.50E-10
9.12E-10 1.79E-11 6.47E-10 7.15E-11 3.00E-10 1.42E-10 9.82E-10 8.04E-10
4.53E-09 9.46E-11 2.94E-09 4.11E-10 1.79E-09 6.43E-10 2.02E-09 1.63E-09
9.66E-09 7.02E-11 6.98E-09 6.15E-10 3.88E-09 1.25E-09 9.24E-09 8.17E-09
4.65E-08 7.09E-10 3.41E-08 3.20E-09 1.57E-08 6.87E-09 1.93E-08 1.61E-08
9.46E-08 1.09E-09 6.60E-08 6.80E-09 3.51E-08 1.30E-08 3.22E-07 3.63E-08
4.67E-07 6.72E-09 3.48E-07 3.10E-08 2.60E-07 4.88E-08 3.68E-07 1.26E-07
9.55E-07 8.93E-09 7.05E-07 5.88E-08 4.60E-07 1.08E-07 2.35E-07 1.53E-07
9.15E-07 1.69E-08 7.22E-07 5.55E-08 5.19E-07 9.62E-08 1.79E-06 6.54E-07
4.67E-06 6.76E-08 3.97E-06 2.09E-07 2.94E-06 4.20E-07 9.48E-05 1.06E-06
9.36E-06 1.27E-07 8.70E-06 2.59E-07 0.00479 4.21E-05 0.00099 1.34E-06
4.61E-05 7.89E-07 4.67E-05 6.56E-07
9.36E-05 1.29E-06 9.49E-05 1.03E-06
0.00048 3.18E-06 0.00049 1.42E-06
0.00098 3.40E-06 0.00095 9.43E-06
0.00483 3.30E-05 0.00471 5.88E-05

Table D.4 Zn Adsorption Edges on 5 g L -1 Silica and Goethite-Coated Silica (4.01 mg
Fe g -1 Solid) at [Zn]0=2x10 -8 M

Silica Goethite-coated silica
IS 10 -3 IS 10-2 IS 10-3 IS 10-2

pH % Znsorbed pH % Znsorbed pH % Znsorbed pH % Znsorbed

3.69 4.356 3.23 3.6703 4.54 25.55 4.54 10.847
5.02 5.8829 3.97 9.0337 5.01 38.323 6.47 68.873
5.19 10.607 4.54 4.7916 5.74 72.062 5.07 8.6819
5.72 15.709 4.98 5.4557 6.13 81.168 5.46 21.469
6.15 25.563 5.58 3.5112 6.33 85.817 5.89 35.099
6.3 27.324 6.15 9.2311 6.84 89.752 6.39 65.628
6.28 30.863 5.9 7.4398 7.35 90.606 6.62 80.169
6.54 35.721 6.5 7.5594 6.76 78.127
6.84 45.879 6.89 15.487 7.07 87.511
7.14 61.932 7.27 39.935 7.15 90.073
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Table D.5 Zn Adsorption Isotherms on 5 g L -1 Silica and Goethite-Coated Silica (4.01
mg Fe g-1 Solid) at Ionic Strength 10 -3

Silica 	 Goethite-coated silica
pH5 pH6 pH5 pH6

[Zn] (M) Znads
(mol/g) [Zn] (M) Znads

(mol/g) [Zn] (M) Znads
(mol/g) [Zn] (M) Znads

(mol/g)
4.62E-10 7.75E-12 2.32E-10 5.45E-11 4.04E-10 1.96E-11 1.66E-10 6.78E-11
8.40E-10 3.26E-11 3.78E-10 1.26E-10 7.07E-10 5.87E-11 3.03E-10 1.41E-10
3.99E-09 2.02E-10 2.53E-09 4.99E-10 4.01E-09 2.01E-10 2.27E-09 5.55E-10
1.81E-08 3.89E-10 5.61E-09 8.76E-10 1.50E-08 1.02E-09 5.59E-09 8.97E-10
4.02E-08 2.01E-09 8.99E-09 2.23E-09 3.71E-08 2.61E-09 7.36E-09 2.55E-09
8.59E-08 2.83E-09 2.14E-08 5.76E-09 8.59E-08 2.85E-09 1.92E-08 6.24E-09
8.89E-07 2.23E-08 5.73E-08 8.65E-09 8.11E-07 3.87E-08 5.46E-08 9.23E-09
8.03E-06 3.95E-07 4.21E-07 1.57E-08 4.68E-06 6.40E-08 7.55E-07 4.96E-08

7.29E-07 5.49E-08 4.31E-07 1.40E-08 4.30E-06 1.42E-07
4.70E-06 5.95E-08 7.31E-06 5.42E-07 3.13E-07 3.77E-08
7.83E-06 4.36E-07 6.54E-06 6.98E-07



APPENDIX E

ADSORPTION STUDIES ON HFO

Ni and Pb adsorption on HFO data are presented below. All adsorption studies were

conducted open to the atmosphere at room temperature.

Table E.1 Ni Adsorption Edges on 1 g I: 1 HFO

[Ni] 0=5x10 -9 M
IS 2.8x10 -2 IS 104

pH % Nisorbed pH % Nisorbed

4 0.1 4.0 4.4
5 14.8 5.0 3.5

5.5 17.9 5.5 16.3
6 40.6 6.0 49.2

6.5 82.5 6.5 88.7
7 96.6 7.0 97.0
7 95.8 7.0 95.3

7.5 99.4 7.5 99.253
8 99.8 8 99.798
9 99.981 9 100

Table E.2 Ni Adsorption Isotherms on 1 g I: 1 HFO at Ionic Strength 2.8><10 -2

pH 5 pH 6 pH 7

[Ni] (M) Niads (mol/g) [Ni] (M) Niads (mol/g) [Ni] (M)_ Niads (mol/g)
4.43E-10 5.67E-11 3.17E-10 1.83E-10 1.93E-11 4.81E-10
8.97E-10 1.03E-10 5.96E-10 4.04E-10 5.27E-11 9.47E-10
9.18E-09 8.19E-10 5.76E-09 4.24E-09 5.64E-10 9.44E-09
8.89E-08 1.11E-08 6.14E-08 3.86E-08 6.00E-09 9.40E-08
9.32E-07 6.77E-08 6.30E-07 3.70E-07 4.80E-08 9.52E-07
9.33E-06 6.73E-07 6.73E-06 3.27E-06 6.62E-07 9.34E-06
9.60E-05 4.05E-06 8.16E-05 1.84E-05 6.25E-06 4.38E-05
0.000296 4.15E-06 0.00028 2.42E-05 1.82E-05 8.18E-05
0.000296 4.30E-06 0.00027 2.92E-05 2.08E-05 7.92E-05
0.000481 1.91E-05 0.00044 6.26E-05 0.000108 1.92E-04

175



Table E.3 Pb CBC Study on 0.3 g L -1 HFO at Ionic Strength 1.4x10 -2 , pH 5, And
[Pb] e=10-4M

time (day°.5) Pbads (mol/g) [Pb] (M)
0.14434 0.00132 0.0001
0.20412 0.00133 0.0001
0.28868 0.00132 0.0001
0.35355 0.00136 9.29E-05
0.40825 0.00135 9.54E-05
0.51031 0.00134 9.78E-05
0.61237 0.00137 9.48E-05
0.94648 0.00139 9.36E-05
1.0508 0.00142 8.87E-05
1.1456 0.00148 8.24E-05
1.3844 0.00151 9.28E-05
1.4965 0.00152 9.56E-05
1.7678 0.00152 9.96E-05
2.0104 0.00152 0.0001

2.25 0.00154 9.63E-05
2.5062 0.00159 8.61E-05
2.8468 0.0016 9.60E-05
3.0104 0.00168 7.57E-05
3.4851 0.0017 9.31E-05
3.7583 0.00172 9.30E-05
4.0156 0.00176 8.80E-05
4.4861 0.00175 0.0001
4.8164 0.00173 0.00011
5.1174 0.00177 9.66E-05
5.4801 0.00178 9.86E-05
5.8523 0.00175 0.00011
6.5535 0.00174 0.00011
6.9963 0.00179 9.65E-05
7.8229 0.00176 0.00011
8.498 0.00175 0.00011

9.4846 0.00177 0.0001
10.488 0.0018 9.71E-05
11.832 0.00177 0.00011
13.191 0.00177 0.00011

14.9 0.00176 0.00011
16.062 0.00175 0.00011
16.31 0.00172 0.00012

18.466 0.00173 0.00012
19.799 0.00177 0.00011
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APPENDIX F

GOETHITE COATING RESULTS

Results for the goethite coating processes are presented below. Abrasion was conducted

by shaking coated silica (Re > 104) in DI for 4 hours. Samples 1 through 9 are based on

the adsorption coating method and 10 through 18 the precipitation method.

Table F.1 Iron Concentration of the Coated Silica Before and After Abrasion

Sample
Fe concentration before

abrasion (mg Fe g -1 )
Fe concentration after
abrasion (mg Fe g -1 )

Fetot Feam Fecry Fetot Feam Fecry
1 6.58 0.56 6.03 5.46 0.14 5.32
2 2.43 0.30 2.13 1.83 0.05 1.78
3 1.42 0.31 1.11 0.87 0.03 0.84
4 25.75 1.82 23.93 21.36 0.25 21.12
5 2.17 0.57 1.60 1.17 0.05 1.12
6 2.56 0.52 2.04 1.09 0.03 1.06
7 4.46 1.06 3.40 1.99 0.10 1.90
8 4.62 0.78 3.84 2.84 0.06 2.77
9 1.77 0.55 1.22 0.59 0.03 0.56
10 7.41 7.27 0.14 4.13 4.17 0.00
11 3.93 0.72 3.21 1.47 0.17 1.30
12 3.84 0.49 3.35 0.67 0.10 0.57
13 20.39 10.06 10.33 8.50 5.85 2.65
14 5.71 1.13 4.58 1.64 0.48 1.16
15 2.30 0.81 1.49 0.88 0.19 0.69
16 7.79 3.94 3.85 6.23 3.69 2.54
17 2.39 0.99 1.40 1.14 0.19 0.95
18 4.70 0.72 3.98 1.58 0.18 1.40
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APPENDIX G

INTRAPARTICLE DIFFUSION MODELING

VBA code in Excel for estimating experimental surface diffusivity is listed below.

Option Explicit
Option Base 1

Function IntraDiff(mg1 As Range, rng2 As Range) As Integer

Const fPi As Double = 3.14159265358979
Const fDay2Hour As Double = 24#
Const fMum2Cm As Double = 0.0001
Const fTol As Double = 0.0001

IntraDiff = 0
If mgl.Columns.Count <> 2 Or rngl.Rows.Count < 2 Then

MsgBox "Wrong Pore size distribution data!"
IntraDiff = 1
Exit Function

End If
If rng2.Columns.Count <> 2 Or rng2.Rows.Count < 2 Then

MsgBox "Wrong CBC data!"
IntraDiff = 2
Exit Function

End If

Dim i As Integer, j As Integer, iCs As Integer

Dim nPSD As Integer, nCBC As Integer
Dim fRad() As Double, fVol() As Double, fMass() As Double
Dim fTime() As Double, fSorbExp() As Double
Dim fSorbPred() As Double

nPSD = rngl.Rows.Count
nCBC = mg2.Rows.Count

ReDim fRad(nPSD), fVol(nPSD), fMass(nPSD)
ReDim fTime(nCBC), fSorbExp(nCBC)
ReDim fSorbPred(nCBC)

For i = 1 To nPSD
fRad(i) = mgl.Cells(i, 1) * 0.5 * fMum2Cm
fVol(i) = mg1 .Cells(i, 2) / 100#
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Next i

For i = 1 To nCBC
fTime(i) = rng2.Cells(i, 1) * fDay2Hour
fSorbExp(i) = rng2.Cells(i, 2)

Next i

Dim fE As Double
Dim fS As Double
Dim fKd As Double
Dim fDen As Double
Dim fDsO As Double

fE = Range("C5")
fDen = Range("C6")
IS = Range("C7")
fKd = Range("C8")
fDsO = Range("C9") * 3600#

Dim fKi. As Double, ID As Double, fA As Double, fCs As Double, fDs As Double
Dim fSuml As Double, fSum2 As Double, flnfSeries As Double
Dim fDiffl As Double, fDiff2 As Double, Wet As Double, fPerSum As Double
Dim fVar As Double, fAveEr As Double
Dim fMinVar As Double
Dim flter As Double

fMinVar = 1#

fKi = fE * fKd / (1# - fE)
fCs = IS * fKd

For iCs = 0 To 89

fDs = fDsO * (1 + iCs / 10#)
fD = fDs / (1# + fE / (fDen * 1000# * fKi))

fSuml = 0#
fSum2 = 0#
fPerSum = 0#
For i = 1 To nCBC

fSorbPred(i) = 0#
For j = 1 To nPSD

fInfSeries = 0#
flter = 1#
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Do
fA = flier ^ 2
fA = Exp(-fD * fA * fPi A 2 * fTime(i) / fRad(j) A 2) / fA
flnfSeries = flnfSeries + fA
flier = fIter + 1#

Loop Until fA < fTol * flnfSeries Or fA = 0#

fMass(j) = (fCs * Men) * (1# - 6# / fPi A 2 * flnfSeries)
fMass(j) = fMass(j) * fVol(j)

fSorbPred(i) = fSorbPred(i) + fMass(j)

Next j
fSorbPred(i) = (fSorbPred(i) + fCs * Den) / Den

fDiffl = Abs(fSorbExp(i) - fSorbPred(i))
fDiff2 = fDiffl A 2
fPct = (fDiffl / fSorbExp(i)) * 100#

fSuml = fSuml + fDiffl
fSum2 = fSum2 + fDiff2
fPerSum = fPerSum + fPct

Next i

War = (fSum2 - fSuml A 2 / CDb1(nCBC)) / CDb1(nCBC - 1)
fAveEr = fPerSum / CDb1(nCBC)

Cells(14 + iCs, 8) = War
Cells(14 + iCs, 9) = fAveEr

If War < fMinVar Then

For i = 1 To nCBC
Cells(13 + i, 6) = fSorbPred(i)
Cells(13 + i, 7) = Abs(fSorbExp(i) - fSorbPred(i))

Next i
fMinVar = War

Cells(5, 7)
Cells(6, 7)
Cells(7, 7)
Cells(8, 7) =
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= War
= fAveEr
= fDs / 3600#

iCs

End If



Next iCs

Dim fSorbCalc As Double, fSorbCalcO As Double
Dim fHours As Double

fHours = fTime(nCBC) + 24#
fSorbCalcO = fSorbPred(nCBC)
Do

fSorbCalc = 0#
For j = 1 To nPSD

flnfSeries = 0#
titer = 1#
Do

fA = flier A 2
fA = Exp(-fD * fA * fPi A 2 * fHours / fRad(j) A 2) / fA
flnfSeries = flnfSeries + fA
flier = flier + 1#

Loop Until fA < fTol * flnfSeries Or fA = 0#

fMass(j) = (fCs * fDen) * (1# - 6# / fPi A 2 * flnfSeries)
fMass(j) = fMass(j) * fVol(j)
fSorbCalc = fSorbCalc + fMass(j)

Next j
fSorbCalc = (fSorbCalc + fCs * fDen) / fDen

If Abs(fSorbCalc - fSorbCalcO) / fSorbCalc < fTol / 10# Then
Exit Do

Else
fSorbCalcO = fSorbCalc
fHours = fHours + 24#

End If
Loop
Cells(9, 7) = fHours / 24# / 365#
Cells(10, 7) = fSorbCalc

End Function
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