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ABSTRACT

STUDY OF ORGANIC REACTIONS IN
PYRIDINIUM-BASED IONIC LIQUIDS

by
Ying Xiao

Recently, ionic liquids have attracted a lot of attention as novel materials for organic

transformations. This is due to their unique properties, which make them suitable

substitutes for organic solvents. Most of the available literature is focused on the

application of imidazolium-based ionic liquids for organic reactions, while very limited

information is available on the application of pyridinium-based ionic liquids.

In this study, two different ionic liquids, 1-ethyl-pyridinium tetrafluoroborate

(EtPy]+[BF4]-) and 1-ethyl-pyridinium trifluoroacetate ([EtPy]+[C F3C00 ] -) have been

investigated. Compared to previous reports, the synthetic technique for preparation of N-

ethyl-pyridinium-based ionic liquids has been improved. Systematic studies of five

reactions in both these ionic liquids have yielded a greater understanding. These

reactions include (i) Diels-Alder reaction; (ii) Friedel-Crafts alkylation; (iii) Friedel-

Crafts acylation; (iv) asymmetric Friedel-Crafts reaction; and (v) asymmetric reduction of

ketones. Moreover, the effects of various catalysts, solvents and temperatures have been

studied. Also, the reusability of ionic liquids for these reactions has been tested and the

optimal reaction conditions have been determined. These studies have led to the

development of new methodologies for all of these reactions in both these N-ethyl-

pyridinium-based ionic liquids.
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CHAPTER 1

INTRODUCTION AND OBJECTIVES

1.1 Ionic Liquids

What is an ionic liquid? An ionic liquid is a class of solvent that contains only ions. In

the broad sense, this term formerly was known as molten salts (Seddon, 1997).

Traditional molten salts exhibit a high melting point (e.g., 800 °C for sodium chloride

and 614 °C for lithium chloride), which greatly limits their use as solvents in most

applications. The term "ionic liquids" is used for the salts whose melting points are lower

than 100°C. Similarly, the salts that melt at or around room temperature are called

"room-temperature ionic liquids" (RTILs).

The traditional organic solvents such as diethyl ether, THF, benzene,

dichloromethane etc. used in organic synthesis, particularly in industrial production,

generate a large amount of waste and cause environmental and health problems.

Handling and treating this waste is a difficult problem, not only to separate them, but also

to destruct them, thereby dramatically increasing the cost of producing chemicals. In

view of this, searching for alternatives to the traditional solvents and developing cleaner

technologies has become a critical topic for both industry and academia. The emergence

of ionic liquids provides a new approach to green chemistry.

The first ionic liquid, ethylammonium nitrate [EtNH 3 ]+[NO3 ]- (m.p. 12°C), was

discovered by Walden in 1914. Since then, a number of ionic liquids with m.p. lower

than 100 °C have been synthesized and various properties of ionic liquids have been

investigated. Recently, much attention has been focused on ionic liquids as 'green'

1
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substitutes for commonly used molecular solvents, in particular volatile organic

compounds (VOCs), a major source of industrial pollutants. Ionic Liquids possess

excellent dissolution properties for many organic and inorganic substances but do not

show any measurable vapor pressure, which can greatly reduce the risk associated with

traditional solvents. Ionic liquids are also able to improve reaction rates, selectivities and

yields in a large number of reactions. In addition, their properties are tunable by the

choice of the cation-anion combination and therefore, have been described as designable

solvents. Herein, a comparison of properties between ionic liquids and general organic

solvents is shown in Table 1.1 (Dzyuba, 2002; Wasserscheid and Welton, 2003).

Table 1.1 The Comparison of Properties Between Ionic Liquids and Organic Solvents

These properties suggest that ionic liquids could be good solvents for many

organic and inorganic materials, therefore, they have been investigated as reaction media

in many organic and organometallic synthesis (Welton, 1999; Zhao et al., 2002; Zhao and

Malhotra, 2002a; Wasserscheid and Welton, 2003; Sheldon, 2001) such as Heck

reactions, Friedel-Crafts reactions, hydrogenation, hydroformylation, dimerization,

condensation, acylative cleavage of cyclic and acyclic ethers, polymerization, etcetera.
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These solvents are found to be more effective in enhancing the reaction rate and product

yields than the organic solvents.

Figure 1.1 The rise of publications concerning ionic liquids as a function of time

Figure 1.1 shows the growth of publications on ionic liquids searched by

SciFinder based on articles containing the phrase 'ionic liquids' in the title, abstract or

keywords (the number of publications in 2005 is estimated based on the real number by

November 2005). The increasing trend of relative publications in this area clearly

reflects an increasing progress and based on the continuing commitment to excellent and

innovative research from both industry and academia the prospects for the future are

bright. Commercial availability, however, is a drawback for ionic liquids research.

Therefore, seeking a rapid and inexpensive route to synthesize ionic liquids is an urgent

demand.
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Generally, ionic liquids are salts, which are composed completely of ions, cations,

and anions. The properties such as 'no measurable vapor pressure', 'non-flammability',

and 'good electrical conductivity' are common to all ionic liquids. Physical-chemical

properties such as melting point, viscosity, polarity and solubility depend on the cation-

anion combination. For example, [BMIM]±[PF6]- is totally hydrophobic, whereas,

[BMIM]+[BF4]- is hydrophilic at room temperature. This illustrates that by only

changing the counter anion, the hydrophobic character changes to hydrophilic.

The most commonly used cations in ionic liquids are alkylammonium,

alkylphosphonium, alkylsulfonium, dialkylimidazolium [RR'IM] (for example, 1-butyl-

3-methylimidazolium as [BMIM]), N-alkylpyridinium, dialkylpyrrolidinium, thiazolium,

pyrazolium and N-alkylisoquinolinium (Figure 1.2). Typically, the alkyl chains involved

are methyl, ethyl, propyl, butyl, hexyl, octyl and so on.

Figure 1.2 Commonly used cations in ionic liquids
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Typically used anions have been listed in Table 1.2. Various combinations of

cations and anions provide a huge number of ionic liquids including room temperature

ionic liquids and non-room temperature ionic liquids. In comparison to the other

combinations, room temperature ionic liquids attract much attention because they can

provide relatively mild reaction conditions.

Table 1.2 Some Commonly Used Anions in Ionic Liquids

Various combinations of cations and anions would produce thousands of ionic

liquids. This study focuses only on pyridinium-based ionic liquids. The properties and

applications of this class of ionic liquids are introduced in detail.

1.2 Properties of Pyridinium-based Ionic Liquids

1.2.1 Composition

As the name indicates, pyridinium-based ionic liquids are composed of N-alkyl

pyridinium cation and an anion, which varies widely from a simple halide to a complex

polyatomic ion. The typically involved alkyl chains are methyl, ethyl, butyl, hexyl, octyl

and so on; and those alkyl groups can attach to different positions (Figure 1.3).
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Commonly used anions are listed in Table 1.3. Different combinations of cations and

anions provide various pyridinium-based ionic liquids.

Figure 1.3 The structure of pyridinium cation

Table 1.3 Reported anions in Pyridinium-based Ionic Liquids

In 2002, Haramoto et al. reported the first example of synthesizing chiral

pyridinium-based ionic liquids, (+)-N-2-methylbuty1-4-(5-alkyl-1 ,3-dioxan-2-y1)

pyridinium bromides, which have a 1,3-dioxane ring in the central core (Figure 1.4 a).

Four new ionic liquids were prepared in four steps with yields ranging from 28 to 48%

and melting points from 11 to 73 °C. Paralleling this work, Baudoux et al. proposed a
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new chiral pyridinium-based ionic liquid with axial chirality settled on the 1,3-dioxane

ring (Figure 1.4 b). The authors emphasized that this type of chiral ionic liquids were not

obtained from the chiral pool but were synthesized via an enantioselective reaction with

excellent enantioselectivity and yield (Baudequin et al., 2003).

Figure 1.4 The structure of chiral pyridinium-based ionic liquids

Several other new chiral pyridinium-based ionic liquids were also synthesized

from pyridine and 1-chloro-2,4-dinitrobenzene, with chiral primary amine (Patrascu et

al., 2004). The corresponding enantiopure ionic liquids were obtained, which contained

the same alkylpyridinium cation and different anions (Figure 1.5). The physical

properties of those salts were determined; and 1-(1-Phenylethyl)pyridinium

bis(trifluoromethane-sulfonyl)imide has been found as a room temperature ionic liquid,

which is thermally stable up to 215 °C and suitable for organic synthesis.

Most recently, a new type of pyridinium-based ionic liquids containing polycation

and various counter-anions has been synthesized by Marcilla et al. (2005) (Figure 1.6).

Polycation ionic liquids such as Poly 1-ethyl-4-vinylpyridinium ionic liquids were

obtained by using a simple anion exchange reaction; and the reaction can be facilitated by

the phase separation of the resulting products. The properties of the new ionic liquids
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have been investigated and the authors mentioned that the solubility and thermalstability

of this type of ionic liquids depend on the nature of the counter-anion. Increased

thermalstability was observed in the order CF 3S03 - > (CF3CF2S02)2N - > C 12H25C6H4S03 -

> PF6 > Br > C16H34PO4-.

Figure 1.5 Synthesis of chiral pyridinium-based ionic liquids

Figure 1.6 Synthesis of polycation pyridinium-based ionic liquids
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1.2.2 Melting Point

Ionic liquids consist of completely ionized components and display as three-dimensional

networks of cations and anions linked together by weak interactions such as hydrogen

bonds, Van der Waals, and Coulombic forces. They are liquid salts, which means they

exist as liquid phase naturally, not simply as salts dissolved in liquid. In contrast to

traditional organic solvents, the maximum liquidus temperature of ionic liquids is the

thermal decomposition point rather than boiling point.

The dominant force in ionic liquids is the Coulombic attraction between cations

and anions. Melting must overcome this attraction.

F = K*(q *q2)/r2

Here, F is the Coulombic force; qi and q2 are the charges of particles. The

distance between the particles is r, and K is a constant, 8.99x 10 9 (Nm2/C2).

In many ionic liquids, the charge q is ±1; and the larger the size of the ions, the

larger the distance r. Therefore, the size and shape of both the cation and anion can

directly impact the melting point. Usually the cation has a low degree of symmetry,

which results in a reduced lattice energy, thus lowering melting points.

As Table 1.4 shows, the liquidus range of pyridinium-based ionic liquids depends

on the cation-anion combination and can range from -64.5°C up to more than 200 °C.

Generally, due to attenuation of the Coulombic attraction, increasing cation/anion size

tends to lower the melting points of pyridinium-based ionic liquids.



Table 1.4 Melting Points of Some Pyridinium-based Ionic Liquids

Ionic Liquids 	 m.p. (°C) 	 Reference
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[HPy]+ [C1] -

[HPy]+[Br] -

[EtPy] + [Br] -

[BuPy]+ [C1] -

[3-MeBuPy]+ [C1] -

[4-MeBuPy]+ [C1] -

[4-MeBuPy] + [PF6] -

[3,5-(CH3)2BuPy] + [Br]
[4-(CH3)2NBuPy] + [Br] -

[HexPy] + [(CF3S02)2N] -

[3,5-(CH3)2HexPy] + [(CF3S02)2N] -

[3-Me-4-(CH3)2NHexPy] + [Br] -

[3-Me-4-(CH3)2NHexPy]+[(CF3SO2)2N]
[3-MePrPy] + [(CF3SO2)2 N]-

[2-C1MePy] ± [I] -

[CN(CH2)3PynC1] -

[CN(CH2)3Py]+[PF6]-

[CN(CH2)3PY]+[BF4]
[CN(CH2)3Py]+ [ CF3SO2)2 N]-

144
200

117-119
131132

95
158-160

45
95

222
0
10

119
-2
0

204-206
101
95
62

-64.5

Prey, 1941
Robinson and Osteryoung, 1979

Ray and Bhattacharya, 1936
Robinson and Osteryoung, 1979

Heine et al., 2005
Ardizzone et al., 1996

Behar et al., 2002
Crosthwaite et al., 2005
Crosthwaite et al., 2005
Crosthwaite et al., 2005
Crosthwaite et al., 2005
Crosthwaite et al., 2005
Crosthwaite et al., 2005
Tsukahara et al., 2001

Amin et al., 1979
Zhao et al., 2004a
Zhao et al., 2004a
Zhao et al., 2004a
Zhao et al., 2004a

In conclusion, anion and cation effects cannot be considered in isolation.

Increasing symmetry of ions permits more efficient packing in the crystal cells and

increases melting points. Conversely, low symmetry distorts packing and reduces the

lattice energy, thereby lowering the melting points. In addition, there are some other

factors which should be considered such as hydrogen bonding (Elaiwi et al, 1995),

etcetera.

1.2.3 Density

Density is the most straightforwardly determined and unambiguous physical property of

ionic liquids and can be easily measured by mass-volume methods. The densities of most

ionic liquids at room temperature range from 1.02 g/ml for [(C8H 17)(C4H9) 3N +
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[(CF3SO2)Of (Sun et al., 1998) to 1.8 g/ml for [(CH3)3S]+[Al2Br7T (Matsumoto et al,

2000a; Pernak et al.,2001) The densities of some pyridinium-based ionic liquids at room

temperature are summarized in Table 1.5. Generally, the shape and size of both cation

and anion can influence the densities of ionic liquids. In most cases, due to the

depression of packing among ions (Fuller et al., 1994), the density decreases as the

bulkiness of the cation grows. Increasing the mass of the anion, however, results in an

increase in the density of ionic liquids.

Table 1.5 Densities of Some Pyridinium-based Ionic Liquids at Room Temperature

Ionic Liquids
[HPy]+I-

[HPy] + [C2HSOC2H4SO4] -

[EtPy] + [(CF3SO2)2N]
[BuPy] + [BF4 ] -

[BuPy] + [(CF3SO2)2N] -

[4-MeBuPy] + [BF4] -

[3-MePrPy] + [(CF3SO2)2 N]-
[3-MeBuPy] +l (CF3SO2)2

Density (g/ml)
2.09
1.28

1.536
1.220
1.449
1.20
1.44
1.40

Reference 
Hart!, 1975

Kato and Gmehling, 2004
Kato and Gmehling, 2004

Noda et al., 2001
Noda et al., 2001

Schofer et al., 2001
Tsukahara et al., 2001
Tsukahara et al., 2001

Table 1.6 Temperature Effect on Densities of Pyridinium-based Ionic Liquids

Temperature
(K)

Density (g/ml)

[HPy]+[C2HSOC2H4SO4] [EtPy] + [(CF3S02)21\1] [BuPY] + [BF4f
293.15 1.284 - 1.224
298.15 1.281 1.536 1.220
303.15 1.277 1.531 1.216
308.15 1.273 1.526 1.212
313.15 1.270 1.521 1.208
318.15 1.266 1.516 -
323.15 1.262 1.512 -
328.15 1.259 1.507 -
333.15 1.255 1.502 -
338.15 1.251 - -
343.15 1.248 - -
348.15 1.244 - -
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The densities of ionic liquids are significantly influenced by temperature. There

are three examples shown in Table 1.6. The first two were reported by Kato and

Gmehling in 2004, and the last one proposed by Noda et al. in 2001. In all cases, the

densities gradually decreased with increasing the temperature.

Table 1.7 Pressure Effect on the Densities of [BuPy] +[BF4] .

298.2 ± 0.1 (K) 323.2 ± 0.1 (K)
Pressure

(Pa)
Density
(g/cm3)

Volume
(cm3/mol)

Pressure
(Pa)

Density
(g/cm3)

Volume
(cm3/mol)

0.099±0.001 1.2144±0.0072 183.65±1.09 0.099±0.001 1.1988±0.0071 186.04±1.10

23.54±0.69 1.2224±0.0131 182.44±1.96 - - -

36.64t0.69 1.2314±0.0132 181.11±1.94 - - -

70.43t0.69 1.2405±0.0133 179.78±1.93 71.46±0.69 1.2286±0.0132 181.53±1.95

103.52±0.69 1.2535±0.0135 177.92±1.91 103.52±0.69 1.2377±0.0133 180.20±1.94

137.99±0.69 1.2610±0.0135 176.86±1.90 137.99±0.69 1.2487±0.0134 178.60±1.92

172.47±0.69 1.2725±0.0137 175.26±1.88 172.47±0.69 1.2562±0.0135 177.53±1.91

202.81±0.69 1.2764±0.0137 174.73±1.88 204.18±0.69 1.2657±0.0136 176.20±1.89

The pressure effect on the densities of 1-n-butylpyridinium tetrafluoroborate ionic

liquid has also been studied at different temperatures by Gu and Brennecke (2002). As

can be seen in Table 1.7, high pressure would increase the densities while lowering the

molar volume at the same temperature.

1.2.4 Viscosity

Viscosity is the resistance or thickness of a material to flow, which is a result of the

internal friction of the material's molecules. Generally, ionic liquids are more viscous

than most commonly used organic solvents. At room temperature, the viscosity range of

ionic liquids is from 20.5 cP for (CH3)3S]+[HBr2]- (Ma and Johnson, 1994) to even
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higher than 574 cP (Sun et al., 1998). The viscosity could be influenced by impurities

and also by temperature. Generally, impurities might decrease the viscosities and higher

temperatures result in less viscosity. For example, the viscosity of [BMIM]± [PF6].

decreases 27% when the temperature changes from 293K to 298K (Baker et al., 2001).

Some literature examing viscosity data of pyridinium-based ionic liquids are summarized

in Table 1.8. The viscosities are strongly influenced by the size and shape of the cation.

Generally, the viscosity increases as the bulkiness of the cation grows.

Table 1.8 Viscosities of Pyridinium-based Ionic Liquids at 298K

Ionic Liquids 
[EtPy]+ [EtSO4] -

[BuPy]+ [BF4 ] -

[BuPy]+ [(CF3SO2)2N]
[3-MeEtPy] + [EtSO4] -

[3-MeBuPy] + [(CF3SO2)2N] -

[3-MeBuPy] + [BE] -

[HexPy] + [(CF3SO2)2N] -

[3-MeHexPy]+ [(CF3SO2)2N] -

[3,5-Me2HexPy] +[(CF3SO2)2N -

[2-Et-3,5-Me2HexPy] +[(CF3 SO2)2N -

[2-Pr-3,5-Et2HexPy] + [(CF3SO2)2N] -

[4-(CH3)2NHexPy] +[(CF3SO2)2N]
[3-Me-4-(CH3)2NHexPy]+ [(CF3SO2)2N] -

[3-MeOctPy] +[(CF3SO2)2N] -

Viscosity(cP)
137
103
57
150
63
177
80
85
104
245
206
111
112
112

Reference 
Crosthwaite et al., 2005

Noda et al., 2001
Noda et al., 2001

Crosthwaite et al., 2005
Crosthwaite et al., 2005
Crosthwaite et al., 2005
Crosthwaite et al., 2005
Crosthwaite et al., 2005
Crosthwaite et al., 2005
Crosthwaite et al., 2005
Crosthwaite et al., 2005
Crosthwaite et al., 2005
Crosthwaite et al., 2005
Crosthwaite et al., 2005

1.2.4 Solubility

Ionic liquids are considered as polar but non-coordinating substances. Hence, most ionic

liquids are miscible with water, dichloromethane and ethanol and tend to be immiscible

with diethyl ether and toluene. The solubility of ionic liquids depends on the

combination of their cation and anion, e.g. changing the cation or anion will change the

solubility. For instance, changing to [PF6I causes the solubility of the ionic liquid in
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water to vary from complete miscibility to almost immiscibility. Also, increasing the size

of the substituent group on the cation will gradually enhance the immiscibility of ionic

liquids in water (Earle and Seddon, 2000). This may be due to large size substituents

attenuating the polarity and thereby enhancing the hydrophobicity.

1.2.5 Thermal Stability

Ionic liquids are more thermally stable than traditional organic solvents. They have a

negligible vapor pressure due to the reduced Coulombic attraction between ions, which

energetically restricts the ion-pair formation required for volatilization. The upper

liquidus limit of ionic liquids is the decomposition temperature, which depends on the

structure and bonding in ionic liquids. Generally, 150 °C is the highest temperature for

most ammonium ionic liquids. Many other ionic liquids have liquid ranges more than

300°C compared to the 100°C of water. Particularly, [EMIM] +[(CF3 SO2)21\I] - is stable up

to 400°C (Bonhote et al., 1996). Some literature decomposition temperatures of

pyridinium-based ionic liquids are listed in Table 1.9. Generally, pyridinium-based ionic

liquids could be stable up to 649K for 4-dimethylamino-hexylpyridinium bis(trifluoro-

methylsulfonyl)imide (Crosthwaite et al., 2005).



Table 1.9 Decomposition Temperature of Pyridinium-based Ionic Liquids

Ionic liquids	 Td (K)	 Reference
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[BuPy] + [Br] -

[BuPy] +[BF4 ] -

[BuPy]+ [(CF3SO2)2N]
[EtPy] + [EtSO4] -

[3-MeEtPy] +[EtSO4]
[3,5-Me2EtPy] +[EtSO4] -

[3-MeBuPy]+[Bri
[3-MeBuPy] + [(CF3SO2)2N]-

[3-MeBuPy]+[BF4]-
[3,5-Me2BuPy] + [BEd -

[4-Me2NBuPy] +[Bri
[3-Me-4-Me2NBuPy] + [Br]

[HexPy] + [Br] -

[HexPy]±[(CF3SO2)2N ]-

[3-MeHexPy] + [Br] -

[3-MeHexPy] + [(CF3SO2)2N]-
[3,5-Me2HexPy]+ [BI] -

[3,5-Me2HexPy] +[(CF3SO2)2N]-
[2-Et-3,5-Me2HexPy] +[(CF3SO 2)2N] -

[2-Pr-3,5-Et2HexPy] + [(CF3SO2)2N]-
[4-(CH3)2NHexPy] +[Br]-

[4-(CH3)2NHexPy] + [(CF3SO2)2N] -

[3-Me-4-(CH3)2NHexPy]+ [Br] -

[3-Me-4-(CH3)2NHexPy] +[(CF3SO2)2N]
[OctPy]+[Br] -

[3-MeOctPy] +[Br] -

[3-MeOctPy] + [BF4]
[3-MeOctPy] + [(CF3SO2)2N]-

467	 Crosthwaite et al., 2005
615	 Noda et al., 2001
677	 Noda et al., 2001
483	 Crosthwaite et al., 2005
486	 Crosthwaite et al., 2005
482	 Crosthwaite et al., 2005
472	 Crosthwaite et al., 2005
590	 Crosthwaite et al., 2005
506	 Crosthwaite et al., 2005
471	 Crosthwaite et al., 2005
526	 Crosthwaite et al., 2005
498	 Crosthwaite et al., 2005
468	 Crosthwaite et al., 2005
605	 Crosthwaite et al., 2005
472	 Crosthwaite et al., 2005
603	 Crosthwaite et al., 2005
474	 Crosthwaite et al., 2005
613	 Crosthwaite et al., 2005
601	 Crosthwaite et al., 2005
598	 Crosthwaite et al., 2005
525	 Crosthwaite et al., 2005
649	 Crosthwaite et al., 2005
505	 Crosthwaite et al., 2005
631	 Crosthwaite et al., 2005
460	 Crosthwaite et al., 2005
459	 Crosthwaite et al., 2005
547	 Crosthwaite et al., 2005
605	 Crosthwaite et al., 2005

1.2.6 Polarity

It is well known that the solvent chosen could dramatically affect chemical reactions and

solvent effects are considered to be primarily dependent on the solvent polarity.

Therefore, polarity is an important property of ionic liquids. The simplest qualitative

definition for a polar solvent is one that will dissolve and stabilize dipolar or charged

solutes, e.g., 'like dissolves like'. Under this definition, ionic liquids due to their salt
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nature will be highly polar. The polarities of some pyridinium-based ionic liquids were

measured at room temperature and are shown in Table 1.10. The data indicate these ionic

liquids are more polar than propan-2-ol but less polar than methanol.

Table 1.10 Polarities of Some Pyridinium-based Ionic Liquids at Room Temperature

Solvents	 ET(30) (kcal/mol)	 Reference

Hexane
Diethyl ether
1,4-Dioxane

THE
Acetone

Acetonitrile
tert-Butyl alcohol

Propan-2-ol
[BuPy] + [BF4] -

[BuPY] + [(CF3SO2)2N]
Ethanol

[PrPy] + [BF4]-)
[4-MePrPy] + [BF4 ]-)

Methanol
Water

31
34.5
36

37.4
41.3
45.3
43.5
48.5
51.44
51.7
51.9

52.08
52.41

55
63.1

Aki et al., 2001
Aki et al., 2001
Aki et al., 2001
Aki et al., 2001
Aki et al., 2001
Aki et al., 2001
Aki et al., 2001
Aki et al., 2001

Park and Kazlauskas, 2001
Reichardt, 2005
Aki et al., 2001

Park and Kazlauskas, 2001
Park and Kazlauskas, 2001

Aki et al., 2001
Aki et al., 2001

1.2.7 Electrochemical Properties

The preliminary research on ionic liquids was focused on their applications as

electrochemical solvents, electrolytes for batteries, and capacitors. One of the first uses

of ionic liquids was as a solvent for the room temperature electrodeposition of aluminum

(Hurley and Wier, 1951). As desirable solvents in electrochemical processes, ionic

liquids possess a series of electrochemical properties, such as high electrical

conductivities, wide electrochemical potential windows, excellent solvent transport

properties, wide liquidus ranges and good solubility for inorganic, organic and

organometallic species.
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The electrochemical potential window is the range of voltage over which the

solvent is electrochemically inert. In the case of ionic liquids, the 'window' depends on

the resistance of the cation to reduction and the resistance of the anion to oxidation. Of

course, impurities in ionic liquids have a profound impact on the 'window'. The

electrochemical stabilities of ionic liquids in an increasing order are: pyridinium <

pyrazolium imidazolium sulfonium ammonium (Wasserscheid and Welton, 2003).

The ionic conductivity is another key criterion for selecting electrochemical

solvents. The room temperature conductivities of pyridinium-based ionic liquids are

shown in Table 1.11.

Table 1.11 Conductivity of Some Pyridinium-based Ionic Liquids at Room
Temperature

Ionic Liquids
[BuPy] + [BEd -

[BuPy] + [(CF3SO2)2N]

Conductivity (ms/cm)
1.9
2.2

Reference 
Noda et al., 2001
Noda et al., 2001

1.2.8 Toxicity

Ionic liquids have been investigated for about 20 years and the information about their

chemical, physical, biological, and thermodynamic properties has been reported

continuously. Very little data on their toxicity and eco-toxicity, however, has been

available until now.

Although ionic liquids can reduce the air pollution, they may cause water

pollution due to their high solubility. Therefore, it is important to determine the toxicities

of ionic liquids prior to their exposure to the environment. Based on the toxicity database

and using quantitative structure-activity relationship (QSAR) model, ionic liquids could
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be designed particularly for individual industrial processes by tuning the combination of

cations and anions to prevent or eliminate pollution of the environment (Rogers and

Seddon, 2003). It should be noted that all eco-toxicological assays have to be done in the

pure ionic liquids. Otherwise side effects of impurities, which may be produced during

synthesis or purification processes, have to be considered (Swatloski et al., 2004).

Figure 1.7 EC50 values for three pyridinium-based ionic liquids

In 2005, EC50 values for Vibrio fischeri in some pyridinium-based ionic liquids

were investigated by Kathryn M. Docherty and Charles F. Kulpa, Jr. (Table 1.12). They

found increasing alkyl chain length at N-substitution position of pyridinium-based ionic

liquids would increase the toxicity to V. fischeri as shown in Figure 1.7 (Lower EC50 or

log EC50 values indicate higher toxicity).
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Table 1.12 Toxicities of Some Pyridinium-based Ionic Liquids and Organic Solvents

Solvents EC50 (ppm)

[3-MeOctPy] ± [Br]- 1.77 ± 0.20
o-Xylene 9.25

[3-MeHexPy] ±[Brf 29.99 ± 10.83
Phenol 30.76 ± 7.21
Toluene 31.74 ± 15.82

[3,5-Me2BuPy]+ (CN)21\11 - 55.71 ± 23.27
Me(CO)iBu 79.60 ± 0.00

[3-MeBuPy]+ [(CN)21\1] - 98.00f 10.20
Benzene 108.05 ± 85.77

3-MePyridine 110.60 ± 19.60
[3,5-Me2BuPy]+[Bri 119.27 ± 23.88

[3-MeBuPy] + [Br] - 130.48 ± 39.41
[BuPy]+ [(CN)21\1] - 409.92 ± 97.68

[BuPy]+[Clf 439.97 ± 84.27
[BuPy] + [Br]" 538.40 ± 14.58

Ethylene glycol 621.00
Chloroform 1199.33 ± 1127.51

Dichloromethane 2532.33 ± 1415.38
Ethyl acetate 5822.00

Acetone 19311.14 ± 5295.78
Methanol 101068.50 ± 113703.83

As the data shows, increased methyl substitution on pyridinium ring results in

increasing the toxicities to V. fischeri. Also, the bulkiness of cation leads to high

toxicities. However, as the data is limited, we cannot tell the anion effect on the toxicity.

Since building the toxicity database of ionic liquids would help chemists to theoretically

predict the possible biological activities of newly designed ionic liquids, it is critical to

continue determining the toxicity of more ionic liquids.

1.3 Applications of Pyridinium-based Ionic Liquids

Ionic liquids have recently attracted considerable attention as viable alternatives to

conventional organic solvents in not only separation, synthesis, and electrochemical
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applications, but also for some novel applications such as polymerization, biocatalysis,

and nanomaterial processes. All these applications are based on their unique properties

which give them the capability to expand traditional laws of chemistry. For example,

ionic liquids are highly polar, yet non-coordinating, and are ideal for catalytic reactions;

they can be made immiscible with water and/or a number of organic solvents thus

facilitating a number of reactions and separation processes. Furthermore, the physical

and chemical properties of ionic liquids (such as density, conductivity, viscosity, Lewis

acidity and thermostability) could be tuned by varying the combination of the component

ions to obtain desired solvent properties.

Much research work has been done for ionic liquids in various fields. As

designable solvents, ionic liquids can be made specifically for each individual process. It

should be noted there are many advantages to carrying out reactions in ionic liquids: (1)

the reactions are easy to perform in ionic liquids, usually no special equipments,

conditions and methodologies are required; (2) many reactions can occur faster and more

efficiently compared to traditional organic solvents; (3) high product yields and

selectivities can be obtained; (4) most ionic liquids can be recycled therefore reducing the

process cost.

As an important member in the family of ionic liquids, pyridinium-based ionic

liquids have been investigated in various roles, such as solvents, catalysts, precursors and

so on. Herein, we summarized the applications of this type of ionic liquids.
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1.3.1 Organic Synthesis

1.3.1.1 Aromatic Benzoylation

Benzoylation is an important reaction for the synthesis of benzophenones, which are used

as perfumery fixatives. N-butylpyridinium chloroalumate ionic liquid has been explored

in the aromatic benzoylation reaction (Rebeiro and Khadilkar, 2000). Their results show

various aromatic compounds could be efficiently benzoylated with benzotrichloride in the

acidic [BuPy] + [C1]--A1C 13 system, which contained only half of the amount of aluminum

chloride compared to the traditional process (Figure 1.8).

Figure 1.8 Benzoylation in pyridinium-based ionic liquids

1.3.1.2 C-C Cleavage Reaction

The catalytic cracking of polyethylene to light alkanes is one of the most important

processes for plastics recycling and conversion into useful feedstocks. Adams et al.

successfully performed this reaction in the acidic 1-butylpyridinium chloride—A1C13

system in 2000. The major products of the reaction are C3—05 gaseous alkanes (such as

isobutene) and no alkenes are observed. Compared to the traditional methods, there are

some advantages achieved by using ionic liquids such as (1) high selectivity to low
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molecular weight products; (2) easy of separation of products from ionic liquids by

extraction; (3) ionic liquids are reusable.

1.3.1.3 Cycloaddition

Cycloaddition of carbon dioxide to propylene oxide has been investigated in room

temperature ionic liquids, 1-butyl-3-methylimidazolium and 1-butylpyridinium salts,

without any additional organic solvents (Peng and Deng, 2001a). However, it was found

that [BMIM] ±[BF4]- was the most active catalyst with almost 100% conversion and

selectivity. The conversion increased with increasing temperature or increasing the

amount of ionic liquids in a certain range. Furthermore, the ionic liquids as catalysts for

the reaction were recyclable (Figure 1.9).

Figure 1.9 Cycloaddition of propylene oxide and carbon dioxide

1.3.1.4 Esterification

Esterifications of alcohols and carboxylic acids performed in 1-butylpyridinium chloride-

aluminum chloride have been reported by Deng et al. (2001). Higher conversions

(100%) and selectivities (99%) were achieved compared to those carried out in traditional

solvents. Moreover, the ionic liquids could be recovered and reused.
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Our group has developed a successful method for synthesizing amino acid esters

(Zhao, 2002), which are very important intermediates in the chemical and pharmaceutical

industry. Satisfactory results were obtained by using pyridinium-based ionic liquids

[EtPy] + [CF3COO]- as a catalyst or co-solvent (Figure 1.10).

Figure 1.10 Esterification of amino acids

1.3.1.5 Olefin Hydroformylation

Wasserscheid and Waffenschmidt (2000) reported the regioselective, platinum-catalysed

hydroformylation of functionalized and non-functionalized olefins in chlorostannate ionic

liquids, which were synthesized by mixing 4-methylbutyl-pyridinium chloride [4-

MeBuPy] +Cl- with SnC12 in a molar ratio of 1:1.04. High selectivities (>95%) were found

in most cases (Figure 1.11).
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Figure 1.11 Hydroformylation of methyl-3-pentenoate (M3P)

1.3.1.6 Beckmann Rearrangement

The Beckmann rearrangements of ketoximes were catalyzed by phosphorous

pentachloride in room temperature pyridinium-based ionic liquids (Peng and Deng,

2001b). High conversion and selectivity were achieved under mild conditions and

without any organic solvents. The ionic liquids were recyclable (Figure 1.12).

Figure 1.12 Beckmann rearrangements of ketoxime

1.3.1.7 Diels-Alder Reaction

The utility of room temperature chloroaluminate pyridinium-based ionic liquids as

solvent and catalyst for Diels-Alder reaction was studied by Carlos W. Lee in 1999. The

endo selectivity and rate enhancement were observed (Figure 1.13).



Figure 1.13 Diels-Alder reaction of cyclopentadiene

1.3.1.8 Fischer Indole Synthesis

Fischer indole synthesis is one of the most useful heterocyclic reactions to obtain

biologically active products like reserpine, strychnine, yohimbine, indomethacin, as well

as some essential amino acids such as tryptamine, photoconductors, and antioxidants.

Pyridinium-based ionic liquid, 1-butylpyridinium chloride, has been investigated in this

reaction with aluminum chloride by Rebeiro and Khadilkar in 2001. Chloroaluminate

pyridinium-based ionic liquids were employed as solvent and catalyst. Good yields have

been achieved under relatively mild conditions (Figure 1.14).

Figure 1.14 Fischer indole synthesis of ketones

1.3.1.9 Friedel-Crafts Alkylation

The long-chain alkylation of methylnaphthalene is a very important process due to long-

chain alkylmethylnaphthalenes being the core intermediates for synthesizing alkylmethyl-
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naphthalene sulfonate (AMNS). It has a great potential for enhanced oil recovery with

low costs and high efficiency. Friedel-Crafts alkylation of a -methylnaphthalene with

long-chain alkenes has been investigated in chloroaluminate room temperature ionic

liquids and organic polycation ionic liquid - methylenedipyridinium chloroaluminate

(MeDiPyCl—A1C1 3) (Zhao et al., 2005). It is found that the [BuPy] +Br--A1C13 ionic liquid

exhibits outstanding catalytic properties. Under the optimum reaction conditions, high

conversion (90%) and selectivity (100%) were obtained. Furthermore, the ionic liquids

could be recycled and reused without loss of their catalytic activity (Figure 1.15).

Figure 1.15 Friedel-Crafts alkylation reaction of a-methylnaphthalene

1.3.1.10 Knoevenagel Condensation

Knoevenagel condensation is one of the most useful methods for alkene synthesis. In

2002, Harjani et al. first investigated n-butyl pyridinium aluminum chloride in this

reaction. Furthermore, Li et al. (2003) also successfully carried out this reaction in n-

butyl pyridinium nitrate, which performed as a reusable reaction medium (Figure 1.16).
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Figure 1.16 Knoevenagel condensation

1.3.1.11 Stille Coupling Reaction

The Stille Coupling is a C-C bond forming reaction. Generally, it is a palladium

catalyzed reaction between orango-stannanes and organic halides and allows synthesizing

different products from the most combinations of halides and stannanes. The main

drawback is the usage of tin compounds, which are toxic and have low polarity. Zhao,

Dongbin et al. (2004a) have investigated the nitrile-functionalized pyridinium-based ionic

liquids in the reaction of iodobenzene and phenyltributylstannane (Figure 1.17). Based

on the transmission electron microscopy (TEM) images, palladium nanoparticles have

been formed in ionic liquids and identified as the active catalysts for the Stille reaction.

The palladium-ionic liquids, however, could not be recycled and reused efficiently.
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Figure 1.17 Stille coupling reactions in pyridinium-based ionic liquids

1.3.1.12 Suzuki Cross-Coupling Reaction

The Suzuki C-C coupling reaction is another versatile method for generating new carbon-

carbon bonds. However, there are some problems in the traditional reactions such as

poor solubility of reagents, decomposition of catalyst, and difficulty of product

separation. In order to improve the reaction, palladium catalyzed Suzuki reactions have

been studied in the nitrile-functionalized pyridinium-based ionic liquids by Zhao,

Dongbin et al. (2004a). The PdC1 2-ionic liquids complexes show good catalytic activity,

but could not be recycled and reused efficiently, which is evident from the fact that the

yield of the fifth run is less than 15%. (Figure 1.18)

Figure 1.18 Suzuki coupling reactions of phenylboronic acid and iodobenzene

In 2005, Albrecht and Stoeckli-Evans proposed that as a ligand precursor,

pyridinium-based ionic liquids 1 reacts with [Pd(OAc)2] in the presence of a base such as

KOtBu to form the pyridylidene complex 2, which catalyzed the Suzuki coupling
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reactions of phenylboronic acids and aryl halides (Figure 1.19). It should be noted that

pyridinium-based ionic liquids acted not only as solvents in this reaction but as reagents.

Figure 1.19 Suzuki coupling reaction of phenylboronic acid and aryl bromide

1.3.2 Polymerization

1.3.2.1 Olefin Dimerization

Linear dimerization of 1-butene has been successfully performed in buffered

chloroaluminate ionic liquid solvents (Ellis et al., 1999). Satisfactory results have been

achieved in [4-MeBuPy] +C1 -/A1C13 (0.45/0.55) buffered with excess LiCl. The reported

buffering procedures facilitated the reactions with catalyst (cod)Ni(hfacac), permitting

the reaction to take place in biphasic reaction mode with easy catalyst separation and

efficient catalyst recycling. Compared with that of conventional organic solvents such as

toluene, significant enhancement of catalytic activity was observed. The same reaction
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has also been explored in different chloroaluminate ionic liquids by Wasserscheid and

Eichmann in 2001 (Figure 1.20).

Figure 1.20 Linear dimerization of 1-butene in biphasic model

1.3.2.2 Electrochemical Polymerization

Arnautov (1997) first investigated the possibility of ionic liquids for the electrochemical

synthesis of polyphenylene (PP). A new ionic liquid was made by mixing

butylpyridinium chloride with alkoxy aluminum chloride A1C12(OC2H5) instead of with

the more traditional aluminum chloride. The use of it for the electrochemical PP

synthesis was successful.
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1.3.3 Biocatalysis

1.3.3.1 Enzymatic Resolution of Amino Acid Ester

The application of pyridinium-based ionic liquids in biocatalysis with alcalase was first

studied by Zhao and Malhotra (2002b). The results are compared with those performed

in the organic solvent — acetonitrile. The ionic liquid, N-ethyl-pyridinium-based

trifluoroacetate, shows better results on both yield and enantioselectivity (Figure 1.21).

Figure 1.21 Enantioselective resolution of N-acetyl amino acids

1.3.3.2 Transesterification

The kinetic resolution of 1-phenylethanol catalyzed by lipase in ionic liquids has been

investigated by Schöfer et al. (2001). High conversion (46%) and enantioselectivity

(>98%) have been obtained in pure 4-methylbutylpyridinium tetrafluoroborate (Figure

1.22). They mentioned the unreacted starting materials and products could be removed

by vacuum distillation. Then the ionic liquids could be recycled and reused for the next

reaction cycle.



Figure 1.22 Enzymatic resolution of 1-phenylethanol in ionic liquids

1.3.4 Electrochemical Applications

Ionic liquids were primarily developed by electrochemists more than 50 years ago. Since

they possess a number of electrochemical properties such as large window of

electrochemical stability, high conductivity and high thermal stability, ionic liquids are

proven to be excellent candidates for electrochemical process. For example, room

temperature ionic liquids have been successfully employed as electrolytes for lithium

rechargeable batteries. Most recently, ionic liquids are utilized with ionic polymer

membranes and form transducers, actuators and sensors which have long term air

stability (Bennett, 2005).

In conclusion, all applications described above show that ionic liquids have been

investigated as a new class of solvents in an increasing number of applications. Many

exciting applications have been reported. However, in this field of research, there are

many ideas and applications which still need further investigated. We sincerely wish

some day this new solvent - ionic liquid, could be employed in the chemical and

pharmaceutical industries.
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1.4 Objectives

In recent years, imidazolium-based ionic liquids have been investigated in organic

synthesis and found to be highly suitable media for many organic reactions. Though the

pyridinium-based ionic liquids have also been known for some time, reports on the

potential of this class of ionic liquids have not been explored to the same extent. Most of

them are N-butyl pyridinium-based ionic liquids (Welton, 1999; Zhao et al., 2002; Zhao

and Malhotra, 2002a; Wasserscheid and Welton, 2003). This leaves curiosity to further

investigate the application of other pyridinium-based ionic liquids as potential media for

organic reactions.

Previously, it has been shown (Zhao, 2002) that N-ethyl-pyridinium-based ionic

liquids are good reaction media for biocatalysis. Based on these results, we initiated an

investigation of the application of N-ethyl-pyridinium-based ionic liquids as solvents for

various organic reactions. Two different ionic liquids have been studied, namely: 1-

ethyl-pyridinium trifluoroacetate ([EtPy] +[CF3 COO] -) and 1-ethyl-pyridinium

tetrafluoroborate ([EtPy] +[BF4] -). The objective of this dissertation research is to develop

an improved method for synthesizing pyridinium-based ionic liquids. These ionic liquids

have been used for systematic investigation of five different reactions: (i) Diels-Alder

reaction; (ii) Friedel-Crafts alkylation; (iii) Friedel-Crafts acylation; (iv) asymmetric

Friedel-Crafts reaction; (v) asymmetric reduction of ketones.



CHAPTER 2

PYRIDINIUM-BASED IONIC LIQUIDS

2.1 Background Information

In past decade, there has been a dramatic increase in the research of a novel class of

solvents - ionic liquids. However, the most reported use of these solvents in organic

synthesis has been that of imidazolium-based ionic liquids. Lesser attention has been

paid to the ionic liquids derived from pyridine. Although pyridinium-based ionic liquids

are reported in literature, synthesis of these ionic liquids is yet to be explored. Therefore,

in order to extend and supplement the research on this type of ionic liquids, we synthesize

two kinds of pyridinium-based ionic liquids and investigate them in various organic

reactions. In our studied organic reactions, two ionic liquids (Figure 2.1) namely, 1-

ethyl-pyridinium tetrafluoroborate ([EtPy] +[BF4]-) and 1-ethyl-pyridinium trifluoro-

acetate ([EtPy] +[CF3 COO] -) were employed.

Figure 2.1 Pyridinium-based ionic liquids studied

34
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2.2 Synthesis and Purification of Ionic Liquids

2.2.1 Materials and Methods

N-ethyl-pyridinium bromide was purchased from Alfa Aesar, a Johnson Matthey

Company. Trifluoroacetic acid, silver (I) oxide and Tetrafluoroboric acid were purchased

from Sigma Aldrich.

Generally, there are two basic methods for synthesizing ionic liquids: 1)

Metathesis of a halide salt with, for example, a silver, alkali or ammonium salt containing

the desired anion. 2) Acid-base neutralization reaction. In this study, the first method

was employed for synthesizing pyridinium-based ionic liquids. 1-ethyl-pyridinium

trifluoroacetate ([EtPy] +[CF3COO] -) and 1-ethyl-pyridinium tetrafluoroborate

([EtPy]+ [BF4 ] -) were prepared following the literature method (Holbrey and Seddon,

1999; Zhao et al., 2003), but some improvements have been made in our study.

IR, UV-visible Spectroscopy and NMR techniques have been employed to

analyze the ionic liquids.

2.2.2 Synthesis of 1-Ethylpyridinium Trifluoroacetate [EtPy] +[CF3C00] -

Trifluoroacetic acid (13.3 ml, 0.1726 mol) was slowly added to stirred slurry of silver (I)

oxide (20.0g, 0.0863 mol) and distilled water (50 ml) in 400m1 beaker at about 45 °C. To

avoid photodegradation of the silver (I) oxide, the reaction mixture was fully covered

with aluminum foil. The mixture was stirred continuously until the indication of the

formation of a solution was extant. A solution of N-ethyl-pyridinium bromide (32.46 g,

0.1726 mol) and distilled water (60 ml) was added to the reaction mixture. As the

reaction took place and ionic liquids formed, yellow precipitate of silver (I) bromide
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started to be observed. The mixture was stirred at room temperature for a certain time

until no more precipitate formed. When the stirring was stopped, the precipitate would

remain at the bottom of the beaker and a clear water layer at the top. Because N-ethyl

pyridinium bromide is hygroscopic, silver (I) trifluoroacetate is generally in excess in the

reaction mixture. Therefore, we added a 1M solution of N-ethyl pyridinium bromide

drop wisely and stirred the mixture to make the fresh milky precipitate to fall down to the

bottom. We repeated this step until no further precipitate was produced. To confirm that

there was no excess N-ethyl-pyridinium bromide in the mixture, we added one drop of

1M silver (I) trifloroacetate solution to the mixture. If no milky precipitate occurred, we

added one drop of 1M N-ethyl-pyridinium bromide and then stirred for 10 minutes. The

solubility of AgBr (5.35 x 10 -13 M2 at 25°C) guarantees the residue of starting materials

in the reaction mixture as low as possible, and therefore can be ignored. We filtered off

the yellow precipitate of silver (I) bromide and then removed the solvent by rotary

evaporation under reduced pressure at about 65 °C. The resulting ionic liquid is a light

yellow liquid (27.5m1, 93%).

Figure 2.2 Synthesis of [EtPy] + [CF3 COO]- by a two-step reaction

2.2.3 Synthesis of 1-Ethylpyridinium Tetrafluoroborate [EtPyr IBF4J -

Tetrafluoroboric acid (30.0 ml, 0.230 mol, 48% solution in water) was slowly added to

stirred slurry of silver (I) oxide (26.66g, 0.115 mol) and distilled water (50 ml) in a

400m1 beaker at about 45°C. To avoid photodegradation of silver (I) oxide, the reaction
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mixture was fully covered with aluminum foil. The mixture was stirred continuously

until the reaction was completed, as indicated by the formation of a solution. A solution

of N-ethyl-pyridinium bromide (43.2 g, 0.230 mol) and distilled water (60 ml) was added

to the reaction mixture. As the reaction took place and ionic liquids formed, yellow

precipitate of silver (I) bromide became detectable. The mixture was stirred at room

temperature for a certain time until no more precipitate formed. Once the stirring was

stopped, the precipitate would remain at the bottom of the beaker and the clear water

layer remained at the top. Because N-ethyl pyridinium bromide is hygroscopic, silver (I)

tetrafluoroborate is generally in excess in the reaction mixture. Therefore, we added 1M

solution of N-ethyl pyridinium bromide drop wisely, and stirred to make the fresh milky

precipitate to fall down to the bottom. We repeated this step until no more precipitate

produced. To ensure that there was no excess N-ethyl pyridinium bromide in the

mixture, we added one drop of 1M silver (I) tetrafloroborate solution. If no milky

precipitate occurred, we added one drop of 1M N-ethyl pyridinium bromide and stirred

for 10 minutes. The solubility of AgBr (5.35 x 10 -13 M2 at 25 °C) guarantees that the

residue of starting materials in the reaction mixture as little as possible and can be

ignored. The yellow precipitate of silver (I) bromide was filtered off, and then the

solvent was removed by rotary evaporation under reduced pressure at about 65 °C. The

resulting ionic liquid is a colorless liquid (31.1m1, 91%).

Figure 2.3 Synthesis of [EtPy] + [BF4]-) by a two-step reaction
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2.2.4 Purification of Ionic Liquids

Any color and/or other impurities, such as unreacted starting materials or residual halide

present in the synthesized ionic liquids could be removed by passing ionic liquids

through a charcoal column with distilled water (Swartling et al., 2000).

In our synthesis of ionic liquids, we followed Swartling's method and the distilled

water was removed by rotary evaporation under reduced pressure at 65 °C. The resulting

ionic liquids are put into oven for 24 hours to remove the moisture and ready to use.

2.3 Results and Discussion

2.3.1 Density of Ionic Liquids

The densities of two ionic liquids [EtPy]+[BF4]- and [EtPy] F [CF3COO]- were measured

by mass-volume method and shown in Table 2.1.

Table 2.1 Densities of Ionic Liquids Studied (latm, 20 °C)

The data shows our experimental data are slightly higher than those reported

earlier. It may be because the improvements promoted the synthetic reactions to proceed

completely.

2.3.2 UV-Visible Spectra of Ionic Liquids

UV-visible spectroscopy has been employed to analyze the ionic liquids

[EtPy]+[CF3COO ]- and [EtPy] +[BF4 ] - . The spectra are shown in Figure 2.4 and 2.5. The
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main absorption is due to the pyridinium ion at 259.94 nm. Pure ionic liquids show

strong absorption below 280 nm, so we dilute the ionic liquids to 0.0002mo1/1 and

compare them to the corresponding reactants at the same concentration.

Figure 2.4 UV-Visible Spectra of [EtPy] + [CF3COO]-

Figure 2.5 UV-Visible Spectra of [EtPy] + [BF4]-
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It should be mentioned that at the same concentration, the peak at 259.94 nm of

[EtPy]+[CF3COO]7[EtPy] +[BF4]- is slightly higher than [EtPy] ± [Bri. The reason for this

may be twofold: 1) [EtPy] +[Bri is hygroscopic which tends to lower the concentration in

experiment process; 2) the impact effect of different anions.

A comparison of Figure 2.4 and Figure 2.5 shows the peak at 209.97 nm may be

attributed to the anions in ionic liquids. However, the real reason for the first peak is still

unknown.

Even though they have different anions, when we compared the two ionic liquids

[EtPy]+ [BF4]- and [EtPy] + [CF3COO]-, we found they had similar absorption strength at

the same position.

2.3.3 IR Spectra of Ionic Liquids

IR spectroscopy technique also has been employed to analyze the ionic liquids. The

spectra are shown in Figure 2.6 and Figure 2.7. Note: Nujol was employed as the

suspension solvent to "dilute" the pure ionic liquids.

Figure 2.6 IR Spectrum of [EtPy]+[CF3COO]-
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Table 2.2 Main ER. Bands of [EtPy] ± [CF3COO] -

Peak freq. (cm -1 ) 	 Band assgnt a 
3434	 H2O (O-H), str

	

3136,3065	 Ar (C-H), str/b
2985, 2947,2882	 Aliphatic (C-H), str
1671,1635,1585	 Ar (C-C), str

1490	 Ar, str/deform
1415	 Me (C-H), b, asym
1358	 Me (C-H), b, sym
1320	 Ring, b, i, sym

	

1124,1066	 C-H, b, i
974	 Ring, b, o

	

827, 801	 Ring, b, i, asym
782	 Me (C-H), b
720	 Ring, b, o, asym
687	 CH2, b

a Abbreviations: str, stretching; b, bending; deform, deformation; i, in plane; o, out of plane;
sym, symmetrical; asym, asymmetrical.

C-H stretching vibrations were observed in the region 3200-2000 cm -1 . The peaks

at > 3000 cm -1 can be attributed to the ring C-H stretch, while those at < 3000 cm -1 can be

attributed to aliphatic C-H stretches. Other bands are listed in Table 2.2 and Table 2.3

(Tait and Osteryoung, 1984).

The anion [CF3COO] . is a strong complex anion and participates in strong

hydrogen bonding. So the IR spectrum of [EtPy] ±[CF3COO] - (Figure 2.6) shows a

hydrogen bonding bands in the region 3300-3650 cm -1 . However, anion [BE] - is weakly

complex and is not expected to participate in strong hydrogen bonding. This has been

confirmed by weak hydrogen bonding bands in the region 3500-3650 cm -1 in the IR

spectrum of [EtPy]+[BF4 ]- (Figure 2.7).



Figure 2.7 IR Spectrum of [EtPy] + [BF4] -

Table 2.3 Main IR Bands of [EtPy] + [BF4]-)

Peak freq. (cm -1 )	 Band assgnt a

	3609, 3584	 H2O (O-H), str

	

3145,3099,3082	 Ar (C-H), str/b

	

2986, 2949,2887	 Aliphatic (C-H), str

	

1693, 1638, 1586	 Ar (C-C), str
1497	 Ar, str/deform
1386	 Me (C-H), b, asym
1356	 Me (C-H), b, sym

1318, 1287, 1244, 1223	 Ring, b, i, sym
1177	 Ring, b, i, asym
1051	 C-H, b, i

	

969, 959	 Ring, b, o

	

869, 767	 Ring, b, o, asym
787	 Me (C-H), b
689	 CH2, b

a Abbreviations: str, stretching; b, bending; deform, deformation; i, in plane; o, out of plane;
sym, symmetrical; asym, asymmetrical.
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2.3.4 NMR Spectra of Ionic Liquids

Both 1 H NMR and 13C NMR (300 MHz) were employed to analyze the ionic liquids at

room temperature. Note: deuterated water (D2O) acted as the solvent in this study and its

chemical shift was set to 4.73 ppm as a reference in 1 H NMR. Methanol was used as the

reference in 13C NMR and its chemical shift was set to 49.10 ppm.

Table 2.4 1 H NMR Chemical Shifts of Ionic Liquids

H Position Chemical Shift (ppm)
[EtPy]+B r- [EtPy]+[BF4]. [EtPy]+[CF3COO]

1 (3H) 1.94 (triplet) 1.90 (triplet) 1.24 (triplet)
2 (2H) 5.06 (quartet) 4.92 (quartet) 4.27 (quartet)
3 (1H) 9.38 (doublet) 9.11 (doublet) 8.48 (doublet)
4 (1H) 8.45 (triplet) 8.31 (triplet) 7.68 (triplet)
5 (1H) 8.93 (triplet) 8.80 (triplet) 8.15 (triplet)
6 (1H) 8.45 (triplet) 8.31 (triplet) 7.68 (triplet)
7 (1H) 9.38 (doublet) 9.11 (doublet) 8.48 (doublet)

As can be seen in Figure 2.8, the anions of ionic liquids have an important effect

on the 1 H NMR spectra. Different anions could influence the electron density and

distribution on the pyridinium cation, and thus could change the chemical shifts.

Trifluoroacetate anion shows the strongest shielding effect on the chemical shifts of the

protons. Therefore, the spectrum of [EtPy] + [CF3COO] -.moved to the upfield. All

chemical shifts are shown in Table 2.4 and Table 2.5. The 13 C NMR spectra of those

three ionic liquids are similar to each other (Figure 2.9). The splitting in C8 is due to

Fluorine.
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Table 2.5 13 C NMR Chemical Shifts of Ionic Liquids

C Position Chemical Shift (ppm)
[EtPy]+Bf [EtPy] [BF4] [EtPy] ± [CF3COO]

1 144.24 144.15 144.24
2 128.38 128.45 128.67
3 145.63 145.63 145.85
4 128.38 128.45 128.67
5 144.24 144.15 144.24
6 57.27 57.52 57.68
7 16.46 15.76 15.95
8 - - 116.41
9 - - 161.81



Figure 2.8 1 H NMR spectra of ionic liquids
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Figure 2.9 13 C NMR spectra of ionic liquids
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CHAPTER 3

DIELS-ALDER REACTION

3.1 Background Information

Diels-Alder reaction which is a widely used reaction in organic synthesis (Carey and

Sundberg, 2000), and in the chemical industry (Griffiths and Previdoli, 1993) is one of

the most important tools for carbon-carbon bond formation. In 1928, two German

Chemists, Otto Diels and Kurt Alder, discovered that butadiene reacts vigorously with

maleic anhydride to give cis-1, 2, 3, 6-tetrahydrophthalic anhydride (Figure 3.1). The

discoverers won the Nobel Prize in 1950 "for their discovery and development of diene

synthesis".

Figure 3.1 First discovered Diels-Alder reaction

Diels-Alder reaction is [4+2]-cycloaddition of a conjugated diene and a

dienophile (an electrocyclic reaction that involves the 4 ir electrons of the diene and 2

electrons of the dienophile to form an unsaturated six-member ring). One new it bond

and two new a bonds are formed when the dienophile attacks the diene. The driving

force of the reaction is the formation of new a-bonds, which are thermodynamically more
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stable than the a bonds. The normal Diels-Alder reaction is favored by electron-

withdrawing groups (EWG) on the dienophile and by electron-donating groups (EDG) on

the diene. It is because that ERG are "pushing" up the HOMO of diene and EWG are

"pushing" down the LUMO of dienophile. Therefore, the energy gap becomes smaller.

The consequence of this effect is a dramatic increase in the rate of the cycloaddition. The

general mechanism is shown below (Figure 3.2).

Substitution effect on HOMO-LUMO gap

Figure 3.2 General mechanism of simplest Diels-Alder reaction

It is well known that the reactivity and selectivity of Diels-Alder reactions are

strongly influenced by the Lewis acidity of the medium. Therefore, the reaction has been

investigated using water (Rideout and Breslow, 1980; Breslow et al., 1983), surfactants
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(Diego-Castro and Hailes, 1998), lithium amides (Handy et al., 1995), borane-THF

complex (Furuta et al., 1988), etcetera. Rate enhancement has been seen in different

solvents and catalysts systems as well. Considering the practical importance and wide

spectra of applications of Diels-Alder reaction in organic synthesis and the chemical

industry, the development of 'green' methods for the purpose of improving rate and

selectivity of this reaction has lately received increased attention.

As high polar solvents, ionic liquids have the potential to influence the outcome

of Diels-Alder reaction. There have been reports on the usage of ionic liquids for Diels-

Alder reactions (Figure 3.3). However, most of these studies have focused only on

solvents derived from imidazole. For the pyridinium-based ionic liquids, only N-butyl-

pyridinium chloride has been studied and A1C1 3 was still needed in the reactions. Herein,

we wish to report the first study on the application of N-ethyl-pyridinium-based ionic

liquids as a solvent for the Diels-Alder reaction.

Figure 3.3 Literature examples of Diels-Alder reaction in ionic liquids
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3.2 Materials and Methods

3.2.1 Materials

Isoprene, acrylonitrile, acrylic acid, and methacrylic acid were purchased from Sigma

Aldrich. Pyridinium-based ionic liquids were prepared in our lab following the

procedure in Section 2.2.

3.2.2 General Procedures

Isoprene (60 mmol) was added slowly to a mixture of a dienophile (40 mmol) and an

ionic liquid (46 mmol) under argon at room temperature. The biphasic reaction mixture

was allowed to stir (400 rpm) at room temperature for the desired time period. After the

reaction was over, the mixture was diluted with 3 mL of water and 3 mL of petroleum

ether and then was shaken vigorously. The organic layer was separated from the ionic

liquid. Any leftover organic material was extracted with ethyl ether and the ionic liquid

was dried at 65 °C under vacuum to remove moisture, and purified following the method

in Section 2.2.4. It was then reused. The combined organic extracts were first washed

with saturated sodium bicarbonate (5 mL), followed by water (5 mL), and finally brine (5

mL). Evaporation under reduced pressure and drying over Na2SO4 yielded the products,

which passed through flash column chromatography (acetone/petroleum ether 1:25) to

give the purified materials (Figure 3.4).
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Figure 3.4 Flow chart of Diels-Alder reaction in ionic liquids

3.2.3 Analysis Methods

All reactions were carried out under argon atmosphere. The reaction samples and

products were analyzed using a Varian CP-3800 Gas Chromatograph equipped with

SPBTM5 column, 30m x 0.25mm x 0.25μm. The yields of major products were

determined by the area ratio of each chromatograph peak as compared with the standard

compounds. The ratio of isomers was confirmed by 1 H NMR (500 MHz, in CDC13).

4-Methylcyclohex-3-ene-l-carbonitrile

1 H-NMR (500 MHz, CDC13), 6 = 1.30-1.40 (m, 1H), 1.56-1.64 (m, 1H), 1.63 (s, 3H),

1.86-2.06 (m, 2H), 2.18-2.40 (m, 2H), 2.69-2.79 (m, 1H), 5.30 (m, 1H).

3-Methylcyclohex-3-ene- l -carbonitrile

1 H-NMR (500 MHz, CDC1 3), 6 = 1.18-1.27 (m, 1H), 1.47-1.56 (m, 1H), 1.69 (s, 3H),

1.73-1.86 (m, 2H), 2.06-2.18 (m, 2H), 2.79-2.86 (m, 1H), 5.40 (m, 1H).
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4-Methylcyclohex-3-ene-l-carboxylic acid

1 H-NMR (500 MHz, CDC13), 6 =1.65 (s, 3H), 1.66-1.79 (m, 2H), 1.97-2.06 (m, 2H),

2.20-2.30 (m, 2H), 2.49-2.58 (m, 1H), 5.32-5.44 (m, 1H), 11.96 (s, 1H).

3-Methylcyclohex-3-ene-1 -carboxylic acid

1 H-NMR (500 MHz, CDC13), 8 = 1.67 (s, 3H), 1.57-1.75 (m, 2H), 1.95-2.16 (m, 2H),

2.58-2.65 (m, 2H), 2.68-2.78 (m, 1H), 4.68-4.72 (m, 1H), 11.96 (s, 1H).

1,4-Dimethylcyclohex-3-ene-l-carboxylic acid

1 H-NMR (500 MHz, CDC1 3), 6 =1.25 (s, 3H), 1.57-1.63 (m, 2H), 1.66 (s, 3H), 2.48-2.56

(m, 4H), 5.69 (m, 1H), 11.41 (s, 1H).

1,3-Dimethylcyclohex-3-ene-l-carboxylic acid

1 H-NMR (500 MHz, CDC13), 6 =1.22 (s, 3H), 1.53-1.57 (m, 2H), 1.67 (s, 3H), 2.04-2.12

(m, 2H), 2.41-2.48 (d, 2H), 5.35 (m, 1H), 11.41 (s, 1H).

3.3 Results and Discussion

3.3.1 Effect of Solvent and Reaction Time

The utility of two ionic liquids (scheme 1) namely, 1-ethyl-pyridinium tetrafluoroborate

([EtPy] + [BF4] -) and 1-ethyl-pyridinium trifluoroacetate ([EtPy] ± [CF3COO] -) was

investigated in reactions of isoprene 1 with acrylonitrile 2, acrylic acid 3 and methacrylic

acid 4 (Figure 3.5).



Figure 3.5 Reactions of isoprene with different dienophiles

Table 3.1 Diels-Alder reactions of Isoprene 1 with Dienophiles at 20 °C

En try Solvent Dieno phile Time
(h)

Yield a

(%)
Selectivity a

("para like": "meta like")
1 CH2C12 Acrylonitrile, 2 72 12 64:36
2' Phosphonium tosylates Acrylonitrile, 2 24 38 69:31b
3 [EtPy]+[CF3C00]- Acrylonitrile, 2 2 (24) 90 (97) 89:11b (75:25)
4 [EtPy]+[CF3C00]- Acrylonitrile, 2 72 99 75:25
5 [EtPy]±[BF4]- Acrylonitrile, 2 2 (24) 42 (64) 84:16" (66:34)
6 [EtPy]±[BEt]- Acrylonitrile, 2 72 83 58:42
7 CH2C12 Acrylic acid, 3 72 27 70:30
8d Borane-THF + CH 2C12 Acrylic acid, 3 30 75 -
9 [EtPy]+[CF3C00]- Acrylic acid, 3 2 (24) 97 (98) 95:5" (85:15)
10 [EtPy]+[CF3C00]- Acrylic acid, 3 72 98 80:20
11 [EtPy]+[BF4]- Acrylic acid, 3 2 (24) 32 (50) 82:18" (65:35)
12 [EtPy]+[BF4I Acrylic acid, 3 72 55 62:38
13 CH2C12 Methacrylic acid, 4 72 5 58:42
14e Borane-THF + CH2C12 Methacrylic acid, 4 68 66 -
15 [EtPy]+[CF3C00]- Methacrylic acid, 4 2 (24) 55 (64) 62:38 (54:46)
16 [EtPy]+[CF3C00]- Methacrylic acid, 4 72 67 1:1"
17 [EtPy]+[BF4]- Methacrylic acid, 4 24 18 66:34
18 [EtPy]+IBF4]- Methacrylic acid, 4 72 22 55:45"

a Determined by GC; b Ratio determined by 1H NMR; C 80°C (Ludley and Karodia, 2001);
d 0 °C (Furuta et al., 1988); e 20°C (Furuta et al., 1988).

In a typical reaction, the diene 1 and dienophile 2, 3, 4 were added to the ionic

liquid directly, and the mixture was stirred (400 rpm) at the desired reaction temperature

for the specified time period. The molar ratio of isoprene: dienophile: ionic liquid is

1.5:1:1. All reactions are heterogeneous in nature. At the end of the reaction, organic

layer could be easily decanted from the ionic liquid, and any organic residues removed by
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extraction with ethyl ether. The purified ionic liquid was further investigated in

experiments for recycling and reuses. As shown in Figure 3.5 (Equations 1-3), both `para

like' (5, 7, 9) and 'meta like' (6, 8, 10) products were obtained in each case. However, in

all cases the major products are `para like'. Table 3.1 shows the results of reaction of

isoprene with various dienophiles at room temperature.

As the data shows, the reaction rate and yields of Diels-Alder reaction are

dependent on the solvent. An initial study of reactions carried out in CH2C12 as solvent

gave low product yields (entry 1, 7, 13), thus indicating the need for a polar medium for

the reaction. The observations and results of our earlier studies (Zhao, 2002), prompted

us to investigate this reaction in pyridinium-based ionic liquids. In a comparison of the

results with literature data of reactions using Borane-THF complex (entry 8, 14),

improved yields were obtained using ionic liquids in relatively short reaction period.

Also, much better yields were obtained using our reaction protocol, compared to the other

ionic liquids for the same system reported in the literature (entry 2). When [EtPy]+[BF4 ]-

was used as solvent medium the reaction occurred slowly, but at a relatively faster rate

than seen in CH2C12. The same reactions when carried out in [EtPy] ±[CF3COO] - ,

occurred rapidly with much higher product yields. Interestingly, moreover, as the

reaction continued beyond 2 hours there was a decrease in `para/meta like' product ratio,

while overall yield of the combined products increased. This was true in the case of all

reactions irrespective of the ionic liquid used. This may be indicative of the need of a

specific reaction time in order to approach equilibrium. It should also be noted that as an

electron donating group, the methyl group makes the methacrylic acid relatively less
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reactive than acrylic acid. As a result, overall yields are lower than those seen in the case

of the reaction with acrylic acid.

Table 3.2 Time Effect on Diels-Alder Reactions of Isoprene 1 with Acrylic Acid 2

Entry Solvent Time
(min)

Yield
(%)

Selectivity
("para like": "meta like")

1 20 4 78:22
2 40 8 74:26
3 60 12 71:29
4 CH2C12 80 15 70: 30
5 100 17 70: 30
6 120 19 70: 30
7 20 47 96:4
8 40 70 96:4
9
10 [EtPyr[CF3COOF 60

80
83
90

96:4
96:4

11 100 94 95:5
12 120 97 95:5
13 20 12 87:13
14 40 20 86:14
15
16 [EtPy]+[BF4r 60

80
25
28

84:16
84:16

17 100 30 83:17
18 120 32 82:18

Figure 3.6 Diels-Alder reactions of isoprene with acrylic acid at 20 °C

Table 3.2 and Figure 3.6 show the effect of various solvents on the rate of

reaction between isoprene and acrylic acid at 20 °C. Initially, in each solvent, the
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reaction occurs rapidly and exhibits little change with prolonged time period. Ionic liquid

[EtPy]+[BF4]- has an effect in enhancing the rate of reaction. However,

[EtPy]+[CF3COO]" seems to be ideal and has the greatest effect on increasing the reaction

rate.

The reaction order for the Diels-Alder reaction of isoprene and acrylic acid in

[EtPy]± [CF3COO] - has also been explored. In this reaction, the rate law is:

Rate = k [isoprene] a[acrylic acid]b [other factors] c

Here k is the rate constant. As these reactions were carried out under the same

conditions (with the exception of changing the amount of reactants), the last item in the

rate law equation could be considered as a constant. We ran three reactions to determine

a and b.

Isoprene: Acrylic acid (The molar ratio) --> the overall yield (after 20 minutes)

(1) 1.5 : 1.0 -) 47%

(2) 1.0 : 1.0 --> 36%

(3) 1.0: 1.5 --> 40%

We assume that the concentrations of reactants remained constant during 20

minutes and the dosage change of the reactants would not impact the total volume of the

reaction mixture. Using the data above we substituted the rate and concentrations for

each reactions:

Rate 1 = k [1.5/v] a[1.0/v] b [other factors] c = (0.47/v)/20min

Rate 2 = k [1.0/v] a [1.0/v] b [other factors] c = (0.36/v)/20min

Rate 3 = k [1.0/v] a [1.5/v] b [other factors] c = (0.40/v)/20min

Divided the rate 1 equation by rate 2 equation —> a = 0.66 ,:-,' 1;
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Divided the rate 2 equation by rate 3 equation —> b = 0.26‘-.-', 0.

Therefore, the Diels-Alder reaction of isoprene and acrylic acid in

[EtPy] ± [CF3COO]- is first order reaction and the experimentally determined rate law for

this reaction is

Rate = k[Isoprene]

3.3.2 Effect of Reaction Temperature

We also investigated the effect of temperature on Diels-Alder reaction in ionic liquid

[EtPy] + [CF3COO] - . These reactions were also carried out at 0 °C and 45 °C. Results are

shown in Table 3.3. With a decrease in temperature to 0 °C, the selectivity increased

slightly, but the overall yield decreased. On the other hand at 45 °C the rate of reaction

was accelerated, while selectivity dropped significantly. There may be two reasons for

these results: (1) the amount of by-products increases at higher temperature; (2) increased

temperature provides more energy for the reaction to proceed easier on both sides, thus

decreasing the selectivity. It is also important to note that at 0 °C and 20 °C, the

reactions mixtures were in two phases. On increasing the reaction temperature to 45 °C,

the reaction mixture became a homogenous solution.

Table 3.3 Diels-Alder Reactions in [EtPy] + [CF3COO]- at 0 °C and 45 °C

Entry Dienophile Time Temp. Yield Selectivity to main product
(h) (°C) (%) (%)

1 Acrylic acid 2(24) 0 91(98) 98(90)
2 Acrylic acid 2(24) 45 98(98) 74(56)
3 Acrylonitrile 2(24) 0 81(94) 98(84)
4 Acrylonitrile 2(24) 45 98(98) 67(50)
5 Methacrylic acid 2(24) 0 40(61) 72(60)
6 Methacrylic acid 2(24) 45 62(69) 50(50)
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3.3.3 Recycle and Reuse of [EtPy] + [CF3COO]"

Finally, we investigated the reusability and efficiency of ionic liquid [EtPy] +[CF3 COO] - .

After the first reaction, the ionic liquid was separated from the organic layer. Any

leftover organic material was extracted with ethyl ether and the ionic liquid dried at 65 °C

under reduced pressure (Figure 3.7).

Figure 3.7 Flow chart of recycling process of [EtPy] + [CF3COO]-

Successive runs were performed with the recovered ionic liquid

[EtPy] ±[CF3COO]- for reaction between isoprene and acrylonitrile (Figure 3.5, Equation

1), at 20 °C for 24 hours. As the results in Table 3.4 show, the ionic liquid could be

recovered quantitatively and without much loss of activity. This is evident from the fact

that the overall product yield of the Diels-Alder reaction is not affected even after six

runs with the recovered ionic liquid.
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Table 3.4 Recovery and Reuse of [EtPy] +[CF3COO] - in Reaction of Isoprene and
Acrylonitrile at 20 °C

Recycling # Recovered Ionic Liquid Yield (w%) Overall product Yield (%)
1 96 97
2 97 97
3 95 95
4 96 96
5 97 94
6 96 92

3.4 Proposed Mechanism

The mechanism of Diels-Alder reaction has been subject to much debate. Although a

number of successful examples of exploring ionic liquids as solvents to this reaction have

been reported, the molecular origin of how ionic liquids influence the well-known Diels-

Alder reaction is a matter of controversy. The goal is to provide physical insight into the

molecular origin of catalysis and stereoselectivity caused by ionic liquids in order to

design new catalytic methods for other cycloaddition reactions. Currently, there are three

main ideas on how ionic liquids induce their catalytic effect: (1) high internal pressure,

(2) Lewis acid catalysis, (3) a combination of both.

In the 1980's, some researchers reported that polar solvents with salts can

increase the association of diene (HOMO) and dienophile (LUMO), e.g., eliminate the

HOMO-LUMO gap and therefore enhance the reaction rate (Rideout and Breslow, 1980;

Breslow et al., 1983). It was also found that there are three main possible reaction

pathways on which the mechanism occurs (Figure 3.8): (1) the concerted synchronous

mechanism (The two new bonds are formed simultaneously. In the transition state, these

two forming bonds have the same lengths.); (2) non-concerted asynchronous mechanism

(The reaction undergoes multistage process. The transition state is a di-radical, one bond
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being formed, and the other not.); (3) concerted asynchronous mechanism (It is a mixture

of first two possible, one bond being more properly formed and thus shorter than the

other.). One of these ideas is supported by a kinetic study done by Dewar and Pierini in

1984. Their experiment suggests that the reaction is concerted and synchronous.

Figure 3.8 More O'Ferral-Jencks diagram of Diels-Alder mechanism

Figure 3.9 The mechanism of Diels-Alder reactions
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Based on literature review and our experimental data, we proposed the

mechanism of Diels-Alder reactions (Figure 3.9). There are three possible reasons why

Diels-Alder reaction can be carried out in ionic liquid. (1) N-ethyl-pyridinium-based

ionic liquids are polar solvents, which can stabilize the transition state of Diels-Alder

reaction, therefore facilitating the reaction. (2) Both pyridinium-based ionic liquids are

Lewis acids, which show catalytic activity in the reaction. (3) Ionic liquids are room

temperature molten salts, which can facilitate the Diels-Alder reaction with strong

hydrophobic effect (Rideout and Breslow, 1980; Breslow et al., 1983). The experimental

data shows that [EtPy]+[C F3COO ]- dramatically increases the reaction rate, which is due

to its strong Lewis acidity.

3.5 Summary

Our study has shown for the first time that pyridinium-based ionic liquids can be used

effectively as solvents in the Diels—Alder reaction. The reaction rate and yield of Diels-

Alder reaction are dependent on the solvent used. [EtPy]+[CF3COO]- gives better results

in comparison to [EtPy]+[BF 4] - and CH2C12. [EtPy]+[CF3COO]- can be recycled

efficiently and reused in the studied Diels-Alder reactions.



CHAPTER 4

FRIEDEL-CRAFTS REACTION

Friedel-Crafts reaction is one of the most useful synthetic methods in organic chemistry.

Therefore, research in this field is permanently ongoing and of high interest (Bandini et

al., 2004; Olah, 1973). The Friedel-Crafts reaction could be either alkylation or

acylation. The reaction is carried out via formation of a carbocation in the presence of

Lewis acid. The most commonly used catalyst is aluminum chloride. Other Lewis acids

such as BF3, ZnC1 2 , TiC14, SbF5 and SnC14 can also promote this reaction. Alkylation

places an alkyl group on a benzene ring, while acylation introduces an acyl group into a

benzene ring by either an acyl halide or an acid anhydride.

As the most commonly used catalyst for Friedel-Craft alkylation, AlC1 3 has low

solubility in many organic solvents. However, people found it can dissolve in molten

salts. The first example of F-C alkylation in molten salts (e.g. A1C13-NaC1) was reported

in the 1950's (Baddeley and Williamson, 1956). It was found that the reaction rate and

yield were improved. However, there is a problem: NaC1 has a high melting point, which

leads to high reaction temperature correspondingly. Therefore, side reactions and

decomposition could happen more frequently than in the cases with a lower reaction

temperature. Room temperature ionic liquids, however, can solve this problem.
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4.1 Friedel-Crafts Alkylation

4.1.1 Background Information

Friedel-Crafts alkylation of benzene with alkyl halides in the presence of aluminum

chloride was discovered by Charles Friedel and James M. Crafts in 1877. Alkyl halides

by themselves are insufficiently electrophilic to react with benzene. A Lewis acid

catalyst, such as aluminum chloride, could enhance the electrophilicity of an alkylating

agent by complexing the halide and forming a carbocation. Subsequently, the

electrophilic C+ attacks the benzene ring. This step destroys the aromatic ring and creates

a cyclohexadienyl cation intermediate. Finally, the deprotonation of the intermediate

generates the products. A general mechanism of alkylation is shown in Figure 4.1 (Carey

and Sundberg, 2000).

Figure 4.1 General mechanism of Friedel-Crafts alkylation

The overall transformation of Friedel-Crafts alkylation introduces an alkyl group

on an aromatic ring. However, the process has disadvantages, such as the formation of

aluminate waste, troublesome product recovery and purification, and the inability to reuse

catalysts. There have been some reports on synthesis and improved reaction
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characteristics of the Friedel-Crafts reactions in ionic liquids (Zhao et al., 2005; Zhao et

al., 2004b; Formentin and Garcia, 2002; Qiao and Deng, 2001; Boon et al., 1986;

Decastro et al., 2000). However, all these studies have focused only on the ionic liquids

derived from imidazole (Figure 4.2). Pyridinium-based ionic liquids have similar

solvation properties as imidazolium-based ionic liquids. However, their application has

not been explored for Friedel-Crafts reaction.

Figure 4.2 Literature example of Friedel-Crafts alkylation in ionic liquids

4.1.2 Materials and Methods

4.1.2.1 Materials

Anhydrous aluminum chloride, iron (III) chloride, benzene, 1-bromopropane, 1-

chlorobutane, benzyl chloride were purchased from Sigma Aldrich. Pyridinium-based

ionic liquids were prepared in our lab following the procedure in Section 2.2.
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4.1.2.2 General Procedures

Each reaction was carried out under N2 atmosphere in oven-dried glassware. Ionic

liquids were dried overnight in oven at 70°C. In a typical reaction, the catalyst,

anhydrous AlC1 3 or FeC13 (16 mmol), was slowly added to a pyridinium-based ionic

liquid (8 mmol) and the mixture was stirred at 45 °C until the catalyst dissolved

completely. Benzene 1 (16 mmol) and alkyl halides 2 or 3 or 4 (8 mmol) were directly

added to the mixture. This resulted in the formation of two phases: organic layer (upper)

and ionic liquid layer (lower). The reaction mixture was stirred (250 rpm) at the desired

reaction temperature for four hours. Subsequently, the mixture was diluted with 3 ml of

water and 3 ml of petroleum ether and shaken vigorously. The organic layer was

separated from the lower layer. Any leftover organic material was extracted with ethyl

ether and the ionic liquid was dried at 65 °C under reduced pressure to remove water.

And after purification (Section 2.2.4), it was ready to be reused. The combined organic

extracts were washed with water (3 mL) followed by brine (3 mL). The evaporation of

the solvent under reduced pressure gave the products, which were dried over Na2SO4

(Figure 4.3).

Figure 4.3 Flow chart of Friedel-Crafts alkylation in ionic liquids



66

4.1.2.3 Analysis Methods

All analyses were carried out by Varian CP-3800 Gas Chromatograph equipped with

SPBTM5 column, 30m x 0.25mm x 0.25m. The conversion and selectivity were

determined by the area ratios of each chromatograph peak compared with the standards.

4.1.3 Results and Discussion

The utility of ionic liquids [EtPy] +[CF3COO]- and [EtPy] + [BF4] - was investigated in

alkylation of benzene 1 with 1-bromopropane 2, 1-chlorobutane 3 and benzyl chloride 4

(Figure 4.4).

Figure 4.4 Friedel-Crafts alkylation reactions with benzene

4.1.3.1 Alkylation of Benzene with 1-Bromopropane

As shown in Figure 4.4 Equation 1, both iso-product (5) and n- product (6) were obtained

in the alkylation of benzene and 1-bromopropane. The reaction proceeds via the

formation of a carbocation intermediate, whose primary propyl cation may undergo a

hydride shift to form a more stable cation — isopropyl cation. Therefore, the major

product in each case is iso-propylbenzene. Table 4.1 shows the results of reaction of
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benzene with 1-bromopropane in different metal chloride-ionic liquid systems at room

temperature and at 50 °C.

Table 4.1 The Friedel-Crafts Alkylation of Benzene 1 with 1-Bromopropane 2a

Entry 	 Catalyst-Solvent 	 Conv.(%) 	 Selectivity to major
rt (50°C) 	 product (%)

1 	 [EtPyr[BF4I 	 17 (43) 65 (72)
2 	 [EtPy]+[CF3COOT 	 29 (51) 71 (76)
3 	 A1C13-[EtPyr[BEIT 	 60 (81) 75 (84)
4 	 A1C13-[EtPy]+[CF3COOI 	 72 (91) 78 (93)
5 	 FeC13-[EtPyr[BE4]- 	 56 (80) 74 (81)
6 	 FeC13-[EtPy]+[CF3COOF 	 71 (90) 77 (89)

a Molar ration of benzene: 1-bromopropane: catalyst: IL = 2: 1: 2: 1.

As the data shows, the yields of Friedel-Crafts alkylation are dependent on the

catalyst-solvent composition. An important outcome of our initial studies was that the

reaction occurred in ionic liquids even in the absence of a catalyst (entries 1 and 2). This

is due to the Lewis acidity of ionic liquids. However, the low conversions indicated the

need for a catalyst to enhance this reaction. A comparison of the results of aluminum

chloride (considered environmental hazardous) with iron chloride, shows the same

catalytic activity. This demonstrated that the FeC13 -IL system could efficiently replace

A1C13-IL in the Friedel-Crafts alkylations. Also, a comparative study at two different

temperatures (room temperature and 50 °C) showed that higher product conversion and

selectivity are obtained with increased temperature. This could be because increased

temperature prefers thermodynamically stable 2 ° cation i.e., iso-propyl carbocation

compared to 1 ° cation. However, further increasing the temperature to 75 °C resulted in

decreased yield and selectivity of the desired product, and some unidentified byproducts

were formed. In all cases, the results with [EtPy] +[CF3COO]- are better than those with
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[EtPy]+[BF4]- even though they have the same cation, which indicates the anions of ionic

liquids are critical for the reactions. FeC13-[EtPy]+[CF3COO]- gave the best performance

in the Friedel-Crafts alkylation and it is much more friendly to the environment compared

with aluminum chloride.

In order to investigate the catalytic activity of FeC13-IL system, reactions with

various amounts of FeC1 3 were studied with different ionic liquids compositions in the

Friedel-Crafts reactions of benzene and bromopropane at room temperature for four

hours. We kept the molar ratio of benzene: bromopropane: ionic liquid is 2:1:1 as a

constant and changed the quantity of FeC1 3 . The FeC13-IL systems were studied

separately in two different pyridinium-based ionic liquids. The results are summarized in

Figure 4.5.

Figure 4.5 Alkylation of benzene and 1-bromopropane with different amounts of FeCl3

Figure 4.5 shows that better results are obtained with larger amount of FeCl3.

However, when the quantity of FeC13 is more than 2 equivalent of ionic liquid, the

catalytic activity does not change any more. Similar descriptions have also been reported

by others (Boon et al., 1986; Decastro et al., 2000). Therefore, reactions of benzene with

other alky halides were studied with 2 equiv. FeC13.
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4.1.3.2 Alkylation of Benzene with 1-Chlorobutane

Results of alkylation of benzene with 1-Chlorobutane in different metal chloride-ionic

liquid systems are shown in Table 4.2. As Equation 2 in Figure 4.4 shows, `sec-' (7), 'n-'

(8) and `tent-' (9) products were obtained in this reaction. We would expect tert-

butylbenzene, thermodynamically the most stable of the three, to be the major product.

However, interestingly sec-butylbenzene is the major product.

Table 4.2 The Friedel-Crafts Alkylation of Benzene 1 with 1-Chlorobutane 3

Entry Catalyst-Solvent Conv.(%)
rt (50°C)

Selectivity to major product
(%)

1 [EtPy]+[BF4]- 21 (45) 66 (75)
2 [EtPy]+[CF3COO]- 34 (55) 76 (80)
3 A1C13-[EtPy][BF4]- 68 (87) 76 (88)
4 AlC13-[EtPy]+ [CF3COO]- 77 (96) 81 (93)
5 FeC13-[EtPy]+[BF4]- 67 (88) 74 (87)
6 FeC13-[EtPy]+ [CF3COO]- 77 (94) 83 (94)

As Table 4.2 shows, slightly better conversions and product selectivities are

obtained compared to the reaction of benzene with 1-bromopropane (Table 4.1). This

could be because CF is more electronegative than Br" resulting in enhanced

electrophilicity of the intermediate carbocation thereby promoting the reactions.

Comparable results are obtained in A1C13-IL and FeC13-IL systems. In the reactions with

1-Chlorobutane, higher conversions are observed at 50 °C. Also, [EtPy] + [CF3COO]- turns

out to be a better medium than [EtPy] + [BF4] -, which also indicates the anions of ionic

liquids are important for the reactions. One interesting thing, we note, is when we raise

the temperature, the selectivity to sec-butylbenzene also increases, which seems to be in
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contrast with the general mechanism of the reactions. So far, unfortunately, we do not

know the reasons, and further investigation is underway.

4.1.3.3 Alkylation of Benzene with Benzyl Chloride

Table 4.3 shows the results of alkylation of benzene with benzyl chloride at different

temperatures, catalysts and solvent conditions. In this reaction, the product conversion

decreased significantly compared to previous cases. The decreased reactivity could be

due to bulkier size of the benzyl chloride.

Table 4.3 The Friedel-Crafts Alkylation of Benzene 1 with Benzyl chloride 4

Entry Catalyst-Solvent Conv.(%) rt (50 °C)
1 [Etpy]±[BF4r <1 (6)
2 [EtPy]+[CF3COOI <1 (12)
3 A1C13-[EtPyr[BE4r 21 (47)
4 A1c13-[EtPy]+[cF3coor 35 (59)
5 FeC13-[EtPy]+[BE4] 20 (44)
6 FeC13-[EtPy]+[CF3COOI 33 (56)

Here again, the metal chloride-ionic liquid system still shows better results than

the pure IL. Also, in all cases, results with [EtPy] +[CF3COO]- are better than those with

[EtPy] + [BF4]-. Both FeC13-IL and A1C13-IL systems show comparable efficiency.

4.1.3.4 Recycle and Reuse of Ionic Liquids

We investigated the reusability and efficiency of ionic liquids with or without catalysts.

The recycling process involved washing the used ionic liquids with diethyl ether. Any

organic residue left in the ionic liquid layer could be separated by the ether wash. The
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ionic liquid layer was then separated and dried under reduced pressure at 65 °C (Figure

Successive runs were performed with the recovered ionic liquid [EtPy]+[BF4 ]. or

[EtPy] + [CF3COO]- for the alkylation between benzene and 1-chlorobutane (Figure 4.4,

Equation 2) at 50°C for four hours.

Table 4.4 Recycling of Ionic Liquids in the Alkylation of Benzene and 1-Chlorobutane

Recycling #
[EtPy]+[BF4]- [EtPyrICF3COO]-

Recovered (w%) Cony. (%)	 Recovered (w%) Cony. (%)
0 - 45 (75) - 55 (80)
1 94 43 (73) 93 53 (75)
2 92 44 (74) 92 51 (78)
3 93 41 (72) 93 50 (76)

As the results in Table 4.4 show, both ionic liquids could be recovered

quantitatively and almost without loss of activity and selectivity. This is evident from the

fact that the conversion of the Friedel-Crafts alkylations was not affected even after the
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third run with the recovered ionic liquid. However, yields of the ionic liquid recovery

from the used iron chloride-ionic liquid system (Figure 4.7) were relatively low.

Figure 4.7 Flow chart of recycling process of iron chloride-ionic liquid system

Table 4.5 Recycling of ILs-FeC13 in the Alkylation of Benzene and 1-Chlorobutane

FeC13-[EtPy] + [BF4]- FeC13-[EtPy]+[CF3COO]-Recycling # Recovered (w%) Cony. (%) Recovered (w%) Cony. (%)
0 - 88 (87) - 94 (94)
1 88 75 (84) 90 82 (92)
2 85 67 (83) 86 76 (90)
3 89 65 (81) 87 75 (91)

As can be seen in Table 4.5, although the ionic liquids in FeC13-IL system can be

recovered efficiently, the conversion dropped dramatically even with fresh FeC13. This

may be due to some impurities in recovered ionic liquids. On the other hand, product

selectivity remained nearly the same.
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4.1.4 Proposed Mechanism

Our experimental data shows that pyridinium-based room temperature ionic liquids

GEtPy]+[BF4]- and [EtPy] + [CF3 COO] -) are good solvents for the Friedel-Crafts alkylation

reaction. Based on the classical mechanism of alkylation (Figure 4.1), we propose the

following mechanism in IL-MC1 3 (M = Al or Fe) catalysis system (Figure 4.8).

Figure 4.8 Proposed mechanism of Friedel-Crafts alkylation

We found that the rate of this reaction is significantly enhanced in ionic liquids

compared to organic solvents (Ross and Xiao, 2002). This enhanced rate of the reactions

might be caused by lowering the activation energy of the rate-determine step. Mainly,

there are five possible reasons why Friedel-Crafts alkylation can be carried out in ionic

liquids. (1) Ionic liquids are high polar solvents. (2) They are Lewis acids. (3) They

exhibit an hydrophobic effect. (4) A1C13/FeC13 can be dissolved in ionic liquids. (5)

They are room temperature molten salts.

In 1986, Boon et al. found that Friedel-Crafts reaction is dependent on the

concentration of Lewis acid. For A1C1 3 catalysis system, it depends on the concentration

of the [Al2C17] - ion, which is acting as the Lewis acid in the reaction. Therefore, excess

A1C13 (2 equiv.) in ionic liquids will increase the concentration of [Al2C17] - in the A1C13-

rich environment. Furthermore, the product could be easily extracted by petroleum ether,
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indicating that the product did not combine with the catalyst. This further indicates ionic

liquids could be the potential alternatives of conventional organic solvents in Friedel-

Crafts reaction.

4.1.5 Summary

The pyridinium-based ionic liquids are suitable media for Friedel-Crafts alkylation of

benzene. The reactions proceed not only at a better rate but also at relatively lower

temperature, yielding a high product conversion. The [EtPy] + [CF3COO]--FeC13 was

found to be the best catalysis system which can efficiently substitute the aluminum

catalysis system. High selectivity is obtained at 50 °C. However, [EtPyrICF3COO]--

FeC 13 cannot be recycled and reused as efficiently as [EtPy] + [CF3 COO] - .

4.2 Friedel-Crafts Acylation Reactions

4.2.1 Background Information

The Friedel-Crafts acylation of aromatic compounds is an important method for the

synthesis of aromatic ketones (Olah, 1973). This method has been widely used in the

synthesis of pharmaceuticals, fine chemicals and polymers (Kozhevnikov, 2003;

Metivier, 2001; Wan et al., 2001; Spagnol et al., 1996). It is a very effective way of

attaching a hydrocarbon-based group to an aromatic ring. An example is the acylation of

benzene with acetyl chloride to form the acetophenone, which is an important and useful

intermediate for further transformations. Although the overall transformation is Ar-H to

Ar-COR (a ketone), it is easily converted into other functional groups. For example, the
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carbon-oxygen double bond can be reduced to give a secondary alcohol, which is an

important starting material in chemical and pharmaceutical industries.

Figure 4.9 General mechanism of Friedel-Crafts acylation

The acylation reaction involves the substitution by an acyl group, RCO- , which is

derived from a carboxylic acid derivative, usually an acyl halide or anhydride. The

carbonyl group in such acid derivatives is sufficiently basic that formation of a complex

occurs with strong Lewis acids. A general mechanism is shown in Figure 4.9 (Carey and

Sundberg, 2000). The acylating reagent reacts with the Lewis acid to form a discrete

positively charged acylium (or oxocarbonium) ion, which acts as the electrophile, or the

active electrophile could be a complex formed by the acylating reagent and Lewis acid
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catalyst. Then the electrons of the aromatic C=C act as a nucleophile, attacking the

electrophile. This step destroys the aromaticity giving the reforms in the C=C and the

aromatic system and regenerating the active catalyst. It places an acyl group on a

benzene ring. Generally, Lewis acids such as BF3, ZnC12, TiC14, SbF 5 , etcetera, could

promote this reaction; however, AlC1 3 still is most common used catalyst. Although, this

reaction is widely applied in industry, there are some disadvantages such as long reaction

time, troublesome product recovery and purification, catalysts which cannot be reused,

and the formation of environmentally hazardous and corrosive aluminate waste. In

contrast, very few examples are reported in the literature where FeC1 3, an

environmentally favorable catalyst is applied for this reaction (Dufang, 1991; Yamamoto

et al., 1993).

Figure 4.10 Literature example of Friedel-Crafts acylation in ionic liquids

There are examples reporting clean synthesis and improved reaction

characteristics of the Friedel-Crafts acylation reactions in ionic liquids (Csihony et al.,

2001; Gmouh et al., 2003; Yeung et al., 2002; Ross and Xiao, 2002; Valkenberg et al.,
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2001; Earle et al., 1998; Csihony et al., 2002). The conversion and selectivity of the

reaction in these studies vary with the catalysts, substrates and reaction conditions. Also,

all of these studies have focused only on the imidazolium-based ionic liquids (Figure

4.10). Encouraged by earlier successful investigations with pyridinium-based ionic

liquids (Zhao, 2002), we embarked on the study of Friedel-Crafts acylation in these

solvents. Herein, we wish to report the results of this first study on the Friedel-Crafts

acylation using pyridinium-based ionic liquids as solvents.

4.2.2 Materials and Methods

4.2.2.1 Materials

Anhydrous aluminum chloride, iron (III) chloride, acetic anhydride, benzene, toluene,

and bromobenzene were purchased from Sigma Aldrich. Pyridinium-based ionic liquids

were prepared in our lab following the procedure in Section 2.2.

4.2.2.2 General Procedures

In a typical reaction, the reaction was carried out under N2 atmosphere in oven-dried

glassware. Ionic liquids were dried overnight in the oven at 70 °C. The catalyst,

anhydrous A1C1 3 or FeC13 (16 mmol), was slowly added to a pyridinium-based ionic

liquid (8 mmol). The mixture was stirred at 45 °C until the catalyst was completely

dissolved. Acetic anhydride 1 (8 mmol) was added to the mixture and stirred for 15

minutes then aromatics 2 or 3 or 4 (16 mmol) were added. Two phases were formed and

the reaction mixture was allowed to stir (250 rpm) at the desired reaction temperature for

four hours. After the reaction was over, the mixture was diluted with 3 mL water and 3
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mL petroleum ether and shaken vigorously. The organic layer was separated from ionic

liquid. Any leftover organic material was extracted with ethyl ether and the ionic liquid

was dried at 65 °C under reduced pressure to remove water. It was then reused after

purification. The combined organic extracts were washed with water (3 mL) followed by

brine (3 mL). Evaporation under reduced pressure yielded the product and then it was

dried over Na2SO4 (Figure 4.11).

Figure 4.11 Flow chart of Friedel-Crafts acylation in ionic liquids

4.2.2.3 Analysis Methods

All analyses were carried out by using Varian CP-3800 Gas Chromatograph equipped

with SPBTM5 column, 30m x 0.25mm x 0.25pm. The conversion (based on the

consumption of acetic anhydride) and the yield of major products were determined by the

area ratio of each chromatograph peak as compared with the standard compounds.
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4.2.3 Results and Discussion

The utility of ionic liquids [EtPy]+[CF3COO ]- and [EtPy] +[BF4]- was investigated in

acylation reactions of acetic anhydride 1 with benzene 2, toluene 3 and bromobenzene 4

(Figure 4.12).

Figure 4.12 Friedel-Crafts acylation reaction with acetic anhydride

In a typical reaction, a specified amount of catalyst (anhydrous FeC13 or AlC13)

was slowly added to ionic liquid and the mixture was continuously stirred at 45 °C until

the catalyst was completely dissolved. Acetic anhydride 1 and aromatic compound 2, 3

or 4 were added directly to the metal chloride-ionic liquid mixture. As a result two

phases (ionic liquid and organic) were formed, and the mixture was stirred (250 rpm) at a

desired reaction temperature for four hours. The molar ratio of aromatic: acetic

anhydride: ionic liquid was maintained at 2:1:1.
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4.2.3.1 Acylation of Benzene with Acetic Anhydride

As shown in Figure 4.12 Equation 1, acetophenone was obtained as the major product in

acylation of benzene 2 with acetic anhydride 1 in different metal chloride-ionic liquid

systems at various temperatures. The results are listed in Table 4.6.

Table 4.6 The Friedel-Crafts Acylation of Acetic Anhydride 1 with Benzene 2a

Entry Catalyst-Solvent Conv.(%)
rt / 50°C / 75 °C

Selectivity to major product (%)
rt / 50°C / 75 °C

1 [EtPy]±[BF4]- 51 / 72 / 78 100 / 97 / 69
2 [EtPy]+[CF3COO]. 60 / 77 / 81 100 / 99 / 71
3 AlC13-[EtPy]+ [BF4]- 77 / 92 / 94 100 / 96 / 70
4 AlC13-[EtPy]+ICF 3 COO]- 84 / 98 / 99 100 / 99 / 74
5 FeC13-[EtPy]±[BF4]- 73 / 90 / 93 100 / 94 / 73
6 FeC13-[EtPy] +ICF3COO]- 82 / 97 / 97 100 / 97 / 75

a molar ration of benzene: acetic anhydride: catalyst: IL = 2: 1: 2: 1.

The first important observation here is that a significant amount product

formation was seen in ionic liquid medium (entry 1, 2), even in the absence of any

catalyst. This renders truly green characteristics to the reaction procedure. Further, as

the data shows, the reaction yields are dependent on the catalyst-solvent composition.

When the same reaction was carried out in the presence of a catalyst in ionic liquid, the

product yields improved. Both FeC13 and AlC13 promoted the reaction, giving nearly the

same product yield. This suggests that the FeC13-IL system could efficiently substitute

A1C13-IL system for the Friedel-Crafts acylations. Also, a comparative study at different

temperatures (rt, 50°C and 75 °C) showed that the product conversions were higher when

the reaction temperature was increased to 50°C. However, further increasing the

temperature to 75 °C resulted in decreased yield of the desired product, and the formation

of unidentified byproducts. In all cases, the results with [EtPy] + [CF3COO]- are better
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than those with [EtPy]+[BF4]- even though they have the same cation. This indicates the

anions of ionic liquids are critical for acylation reactions.

In order to find a suitable catalyst amount in the FeC1 3-IL system, this reaction

was studied with different FeC13 molar ratios at room temperature for four hours in both

ionic liquids. However, the molar ratio of benzene: acetic anhydride: ionic liquid was

maintained at 2:1:1. The results are shown in Figure 4.13.

Figure 4.13 The acylation of benzene and acetic anhydride with different amounts of
FeC13

As the data shows, the catalytic activity increases when the amount of FeC13 is

increased to 2 molar equivalents. However, further increasing the molar ratio of FeC13 to

3 equivalents did not have any significant change in product yields. This optimized

FeC13 amount in ionic liquid, i.e., 2 equivalents, is similar to other studies reported in the

literature (Gmouh et al., 2003; Earle et al., 1998). Therefore, further investigations were

carried out with these optimized conditions.
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4.2.3.2 Acylation of Toluene with Acetic Anhydride

The acylation of toluene (Figure 4.12, eq. 2) resulted in three products, i.e., para- (6),

meta- (7) and ortho-(8). The major product of this reaction was the para-compound.

Results of this reaction in different metal chloride-ionic liquid systems at room

temperature and at 50 °C are shown in Table 4.7.

Table 4.7 The Friedel-Crafts Acylation of Acetic Anhydride 1 with Toluene 3

Entry Catalyst-Solvent Conv.(%)
rt (50°C)

Selectivity to major product
(%)

1 [EtPy]+[BF4]- 55 (75) 57 (66)
2 [EtPy]+[CF3COO]- 62 (80) 61 (72)
3 A1C13-[EtPy]+ [BE] - 77 (89) 63 (70)
4 A1C13-[EtPy]+[CF3COO]- 86 (98) 65 (77)
5 FeC13-[EtPy]+[BF4]- 74 (89) 63 (71)
6 FeCl3-[EtPy]+[CF3COO]- 85 (96) 67 (80)

As Table 4.7 shows, higher conversions were observed with toluene compared to

that with benzene at room temperature (Table 4.6). This could be due to the inductive

effect of the CH3- moiety, which increases the reactivity of the phenyl ring in toluene.

However, significant amount of ortho-product is also formed, which results in reduced

overall selectivity. A comparative study at two different temperatures (rt and 50 °C)

showed that higher product conversions are obtained with increased temperatures.

Similar to previous reaction, these results also show that the catalytic activity of FeC13-IL

is comparable with A1C1 3-IL system. The ionic liquid [EtPy]+[CF3COO ]- has relatively

more influence on acylation reaction compared to [EtPy] ±[BF4]-. Again, it is suggested

that the anions of ionic liquid have some influence as well. Therefore, further systematic

studies with different anions are required for better understanding of the anion effect.
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4.2.3.3 Acylation of Bromobenzene with Acetic Anhydride

As shown in Equation 3 of Figure 4.12, acylation of bromobenzene with acetic anhydride

gave three products. In this reaction, para-isomer i.e. (p-bromobenzene) methyl ketone

9, was the major product. Similar to previous examples, the reaction was tested in both

ionic liquids at two different temperatures. The results are listed in Table 4.8.

Table 4.8 The Friedel-Crafts Acylation of Acetic Anhydride 1 with Bromobenzene 4

Entry Catalyst-Solvent
Conv.(%)
rt (50°C)

Selectivity to major product
(%)

1 [EtPy]±[BF4]- 54 (71) 61 (74)
2 [EtPy]+[CF3COO]- 63 (77) 69 (82)
3 A1C13-[EtPy]+ [BF4]- 76 (86) 73 (86)
4 A1C13-[EtPy]+ICF3COO]- 84 (95) 83 (92)
5 FeC13-[EtPy]+[BF4]- 73 (88) 76 (87)
6 FeC13-[EtPy]+[CF3COO]- 82 (93) 85 (93)

The data suggests that an electron-withdrawing group Br- renders bromobenzene

less reactive than benzene and toluene. As a result, the conversion is slightly lower than

the previous reactions. However, the selectivity is relatively higher than for toluene.

This could be because that ortho- and para- directing and deactivating effect of -Br seem

more predominant on the para- position. Also, in this case, steric effect favors the para-

product. Though, improved conversions are seen with the metal chloride-ionic liquid

system, it is noteworthy that a reaction could also proceed in ionic liquid alone. In all

cases, the results with [EtPy]+[CF3COO]- are better than those with [EtPy] +IBF4]-, and

FeC13-IL show efficiency similar to the A1C13-IL system.
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4.2.3.4 Recycle and Reuse of Ionic Liquids

The IL-catalyst system was recycled to investigate the reusability and efficiency of ionic

liquids, with or without catalyst. The recycling process involved washing the used ionic

liquids with diethyl ether to remove any leftover organic residues. Two layers formed

(ionic liquid and organics). The resulted ionic liquids were separated and the ionic liquid

dried under reduced pressure at 65 °C to get the recovered ionic liquids (Figure 4.14).

Figure 4.14 Flow chart of recycling process of ionic liquids

Successive runs were tested for acylation between benzene and acetic anhydride

(Figure 4.12, Equation 1) at 50 °C for four hours. The results are shown in Table 4.9.

Both ionic liquids could be recovered quantitatively with negligible loss of activity.

Moreover, the acylation was not affected even after third run with the recovered ionic

liquid. A similar study was also carried out with recovered FeC1 3 -IL system (Figure

4.15) for the acylation of benzene with acetic anhydride. The results are shown in Table

4.10.
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Figure 4.15 Flow chart of recycling process of iron chloride-ionic liquid system

Table 4.9 Recycling of Ionic Liquids in the Acylation of Benzene and Acetic anhydride

Recycling # [EtPy]±[BF4]- [EtPy]±[CF3COO]-
Recovered (w%) Cony. (%) 	 Recovered (w%) Cony. (%)

0 - 72 (97) - 77 (99)
1 93 70 (97) 96 76 (98)
2 93 70 (95) 94 74 (97)
3 94 68 (96) 95 74 (98)

Table 4.10 Recycling of ILs-FeC13 in the Acylation of Benzene and Acetic Anhydride

Recycling FeC13-[EtPy]±[BF4]- FeC13-[EtPy]+[CF3COO]-
# 	 Recovered (w%) Cony. (%) Recovered (w%) Cony. (%)
0 - 90 (94) - 97 (97)
1 90 88 (91) 88 96 (94)
2 87 84 (89) 91 91 (91)
3 89 83 (88) 88 88 (92)

In this case, even though ionic liquids in FeC13-IL system could be recovered

efficiently, the yield of acylation product (Acetophenone) decreased gradually. This may

be due to some impurities in recovered ionic liquids.
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4.2.4 Proposed Mechanism

It is well known that A1C1 3 is low soluble in many organic solvents but dissolves in

molten salts. The first example of F-C acylation in molten salts (e.g. A1C1 3-NaC1) was

reported by Raudnitz and Laube in 1929. They found the reaction rate and yield were

improved. Similarly, they met the same problems as in Friedel-Crafts alkylation, e.g.

NaC1 has a high melting point, leading to correspondingly high reaction temperatures.

Therefore, side reaction and decomposition could happen more often than the cases at

lower reaction temperatures. However, ionic liquids, especially room temperature ionic

liquids, can solve this problem.

[EtPy]± [BRif and [EtPy] ±[CF3COO]- are suitable as solvents for the Friedel-

Crafts acylation of aromatic compounds. Based on the classical mechanism of acylation

(Figure 4.9), we propose the following mechanism in IL-MC1 3 (M = Al or Fe) catalysis

system (Figure 4.16).

Figure 4.16 Proposed mechanism of Friedel-Crafts acylation

We found that the rate of this reaction is significantly enhanced in ionic liquids

compared to organic solvents (Ross and Xiao, 2002; Sreekumar and Padmakumar, 1997).

This enhanced rate of the reactions is due to lowered activation energy of the rate

determining step. However, using ionic liquids instead of organic solvents does not
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change the mechanism of the Friedel-Crafts acetylation reaction. Furthermore, the

product could be easily extracted with petroleum ether, indicating that the product did not

combine with the catalyst.

Similar to the alkylation, there are five possible reasons why Friedel-Crafts

acylation can be carried out in ionic liquids: (1) ionic liquids are high polar solvents; (2)

they are Lewis acids; (3) hydrophobic effect; (4) A1C13/FeC13 can be dissolved in ionic

liquids; and (5) they are room temperature molten salts.

4.2.5 Summary

The pyridinium-based ionic liquids are suitable media for Friedel-Crafts acylation

reactions. High conversions were obtained at relatively lower temperatures, as compared

with the literature studies (Ross and Xiao, 2002; Valkenberg et al., 2001; Sreekumar and

Padmakumar, 1997) which were carried out at high temperatures and obtained similar

results. The combination of [EtPy] ±[CF3COO]--FeC13 is found to be an excellent

catalysis system, which could efficiently substitute the aluminum catalysis system. High

selectivity is obtained at 50 °C. However, [EtPy]+[CF3COO]--FeCl3 cannot be recycled

and reused as efficiently as pure IL.



CHAPTER 5

ASYMMETRIC FRIEDEL-CRAFTS REACTION OF AROMATIC AMINES

5.1 Background Information

In past three decades, asymmetric synthesis has emerged as one of the most rapidly

developing research areas in organic chemistry. A great deal of interest in this area has

been focused on catalytic asymmetric synthesis, a critical tool for pharmaceutical and

fine chemical industries and academia. The importance of this field is evident from the

fact that in 2001, the Nobel Prize in Chemistry was given to three researchers who made

pioneering contributions in this area.

As a novel class of solvents, ionic liquids have been successfully applied in

various organic reactions. However, most of these studies have mainly focused on non-

asymmetric reactions. Asymmetric synthesis in ionic liquids is still at a preliminary

stage. The first example in asymmetric synthesis was proposed by Chauvin in 1995, and

most of the related studies were published after the year 2000. As summarized by

Baudequin et al. in 2003 and shown in Figure 5.1, there could be three different ways to

achieve asymmetric synthesis in ionic liquids. (1) With chiral starting materials, ionic

liquids act as solvents, which can take place of the environmentally unfriendly organic

solvents. (2) With achiral starting materials, chiral ionic liquids act not only as solvents

but also as chiral catalyst or chiral inducer. (3) Similar to the 2nd strategy with achiral

starting materials, ionic liquids only act as solvents (and chiral ligands would be needed

in this case).

88
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Figure 5.1 Three strategies for asymmetric synthesis in ionic liquids

The polar and non-coordinating properties of ionic liquids suggest the

considerable potential of these solvents on the reactivities and selectivities of asymmetric

reactions. Therefore, it is reasonable to expect that ionic liquids could also play a

significant role in asymmetric synthesis. Our earlier studies show that N-ethyl-

pyridinium-based ionic liquids show positive results in non-asymmetric transformations

such as Diels-Alder reaction and Friedel-Crafts alkylation & acylation. This prompted

our curiosity to investigate the application of pyridinium-based ionic liquids as solvents

in the asymmetric conversion. In this study, we investigated 1-ethylpyridinium

trifluoroacetate [EtPy] +ICF3COO]- and 1-ethylpyridinium tetrafluoroborate [EtPy]+[BF4]_

as solvents in asymmetric Friedel-Crafts reaction of aromatic amines.

The asymmetric Friedel-Crafts reaction of aromatic amines with a—dicarbonyl

compounds is an important reaction in organic chemistry (Olah et al., 1991). This

reaction provides a simple procedure for synthesizing optically active aminomandelic

acid derivatives, which have been found to have broad applications such as starting
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materials, intermediates, and/or resolving agents in the preparation of many chiral

pharmaceutical and agricultural products (Nakamura et al., 1993). It has been reported

that Friedel-Crafts reaction of glyoxylate with N, N-Dimethylanilines could be promoted

by tert-butyl bisoxazoline-copper (II) complex (Gathergood et al., 2000) or BINOL-

titanium (IV) complex (Yuan et al., 2004). High yields and enantioselectivities have

been achieved in organic solvents. However, the effect of ionic liquids so far has not

been reported. Therefore, we investigated our N-ethyl-pyridinium-based ionic liquids in

this reaction.

5.2 Materials and Methods

5.2.1 Materials

3-Bromo-N,N-dimethylaniline and 3-Methoxy-N,N-dimethylaniline were purchased from

Lancaster Synthesis, Inc. (now a part of Alfa Aesar, a Johnson Matthey Company). 3-

Chloro-N,N-dimethylaniline was purchased from Alfa Aesar, a Johnson Matthey

Company. Ethyl glyoxylate (50% in toluene), N,N-dimethylaniline, 3-methyl-N,N-

dimethylaniline, Titanium(IV) isopropoxide, Copper(II) trifluoromethanesulfonate, (R)-1,

1'-Bi-2-naphthol ((R)-BINOL) and (R)-6, 6'-Dibromo-1,1'-bi-2-naphthol ((R)-BINOL-Br)

were purchased from Sigma Aldrich. Pyridinium-based ionic liquids were prepared in

our lab following the procedure shown in Section 2.2.

5.2.2 General Procedures

The reaction was carried out under N2 atmosphere in the oven-dried glassware. Ionic

liquids were dried overnight in an oven at 70 °C. Chiral ligands (0.05 mmol, 10 mol %)
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and catalyst (0.05mmol, 10 mol %) were added to 1 ml pyridinium-based ionic liquid.

The mixture was stirred until the solid was completely dissolved. In this step, a gentle

heat would be needed at about 4560 °C. Then the system was cooled down to the

specific temperature.

In the meantime, ethyl glyoxylate was prepared by the distillation of

commercially available ethyl glyoxylate-toluene solution. It should be noted that toluene

came out first at around 110°C; while ethyl glyoxylate (about 98%GC) was left as

residue. Freshly distilled ethyl glyoxylate (1 mmol) and amine (0.5 mmol) were added to

the reaction system. After a specific reaction time, 3 ml of water and 3 ml of diethyl

ether were added to quench the reaction. It should be noted that after adding water,

Ti(O'Pr)4 became a white suspension, which could be filtered off easily. However, this

phenomenon did not happen for Cu(OTf) 2 . The water layer was evaporated under

reduced pressure and the ionic liquids could be recycled and purified (Section 2.2.4). It

was then reused. The organic layer was concentrated under reduced pressure and the

product was purified by flash chromatography on silica gel using hexanes-ethyl acetate

(70: 30) as an eluent.

5.2.3 Analysis Methods

All analyses were carried out by HP CP-3800 HPLC equipped with a chiralcel OD-H

column (hexanes/2-propanol = 90: 10). The enantiomeric excess (ee) was determined by

the area ratios of each chromatographic peak. 1 H NMR was employed to confirm the

products (500 MHz, in CDC13).
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(R)-2-[4-(Dimethylamino)phenyl]-2-hydroxyacetic acid ethyl ester (3a)

A white solid, m. p. = 104°C. Enantiomeric excess was determined by HPLC (flow rate

= 1.0 ml/min), tr (minor) 11.7 min, t r (major) 12.6 min. 1 H-NMR (500 MHz, CDC13), 8 =

1.22 (t, -CH2CH3), 3.00 (s, -N(CH1)2_), 3.47 (d, -OH), 4.20 (q, -CH2CH3), 5.10 (d, -CH),

6.71 (m, 2H-Ar), 7.22-7.26 (m, 2H-Ar).

(R)-2-[2-chloro-4-(Dimethylamino)phenyl]-2-hydroxyacetic acid ethyl ester (3b)

A Colorless oil. Enantiomeric excess was determined by HPLC (flow rate = 1.0 ml/min):

tr (minor) 13.2 min, tr (major) 16.8 min. 1 H-NMR (500 MHz, CDC1 3), 6 = 1.22 (t, -

CH2CH), 2.99 (s, -N(CH), 3.60 (d, -OH), 4.24 (q, -CH2CH3), 5.43 (d, -CH), 6.67 (dd,

1H-Ar), 6.91 (d, 1H-Ar), 7.22 (d, 1H-Ar).

(R)-2-[2-bromo-4-(Dimethylamino)phenyl]-2-hydroxyacetic acid ethyl ester (3c)

A colorless oil. Enantiomeric excess was determined by HPLC (flow rate = 1.0 ml/min):

tr (minor) 11.3 min, t r (major) 16.5 min. 1 H-NMR (500 MHz, CDC13), 8 = 1.20 (t, -

CH2CH3), 2.92 (s, -N(CH3h), 3.58 (d, -OH), 4.22 (q, -CH2CH3), 5.40 (d, -CH), 6.66 (dd,

1H-Ar), 6.94 (d, 1H-Ar), 7.18 (d, 1H-Ar).

(R)-2[2-methy1-4-(Dimethylamino)pheny1]-2-hydroxyacetic acid ethyl ester (3d)

A light yellow oil. Enantiomeric excess was determined by HPLC (flow rate = 1.0

ml/min): tr (minor) 11.1 min, tr (major) 16.0 min. 1 H-NMR (500 MHz, CDC13), 8 = 1.24

(t, -CH2CH3), 2.43 (s, -ArCHa), 2.96 (s, -N(CH212), 3.43 (d, -OH), 4.21 (q, -CH 2CH3),

5.29 (d, -CH), 6.55-6.61 (m, 2H-Ar), 7.13 (d, 1H-Ar, which is farther from N).
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(R)-2-[2-methoxy-4-(Dimethylamino)phenyl]-2-hydroxyacetic acid ethyl ester (3e)

A colorless oil. Enantiomeric excess was determined by HPLC (flow rate = 1.0 ml/min):

tr (minor) 17.4 min, t r (major) 20.5 min. 1 H-NMR (500 MHz, CDC13), 8 = 1.21 (t, -

CH2CH3), 2.96 (s, -N(C11112), 3.61 (d, -OH), 3.84 (s, -OCH3), 4.21 (q, -CHCH3), 5.19 (d,

-CH), 6.26 (dd, 1H-Ar), 6.31 (d, 1H-Ar), 7.10 (d, 1H-Ar).

5.3 Results and Discussion

The Friedel-Crafts reactions of aromatic amine 1 with ethyl glyoxylate 2 catalyzed by

chiral BINOL-metal complex in pyridinium-based ionic liquids ([EtPy] +IBF4]- and

[EtPy]± [CF3COO] -) as solvents were investigated (Figure 5.2).

Figure 5.2 Asymmetric Friedel-Crafts reaction of aromatic amines

The effects of reaction time, temperature, the composition of catalyst-ionic liquids

and various substituents in reactants were investigated. Also, the effect of reusability of

recycled ionic liquids on reaction outcomes was studied.
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5.3.1 Effect of Catalyst and Solvent

Initially, the acylation of N, N-dimethylaniline la and ethyl glyoxylate 2 with two

different chiral ligands and two different Lewis acids (Titanium (IV) isopropoxide and

Copper(II) trifluoromethanesulfonate) in pyridinium-based ionic liquids at room

temperature for 24 hours was investigated (Figure 5.2). We kept the molar ratio of la: 2:

the complex 1:2:0.2 as a constant. The results are summarized in Table 5.1.

Table 5.1 Friedel-Crafts Acylation of N, N-dimethylaniline with Ethyl Glyoxylate

Entry
1*
2*
3*
4
5

6*
7
8 
9
10
11
12

Ligand	 Catalyst
(R)-BINOL
(R)-BINOL
(R)-BINOL
(R)-BINOL
(R)-BINOL

(R)-BINOL-Br
(R)-BINOL-Br
(R)-BINOL-Br

(R)-BINOL
(R)-BINOL

(R)-BINOL-Br
(R)-BINOL-Br

Solvent Yield (%) ee (%)
Toluene 99 77
CH2C12 99 70.6

THE 99 48
[EtPy] ± [CF3 COO]- 84 77

[EtPy]+[BF4]- 73 48
Toluene 99 90.6

[EtPy]+ [CF3COO]- 86 88
[EtPy] +[BF4r 74 59

[EtPy] +[CF3COO]- 86 74
[EtPy]+ [BF4]- 68 38

[EtPy]± [CF3COO]- 87 87
[EtPy] + [BF4]- 70 53

Ti(0 1Pr)4

Cu(OTf)2

* Yuan et al., 2004

As the data shows, the yield and enantioselectivity are dependent on the ligand-

catalyst-solvent system used. In this reaction, they both decreased in ionic liquids

compared to organic solvents. This is because the reactant N, N-dimethylaniline is an N-

donator which has a lone pair elections. It may coordinate to the N-ethylpyridinium

cation, therefore decreasing the yield. Chiral ligand (R)-BINOL and (R)-BINOL-Br gave

comparable yields. However, (R)-BINOL-Br has higher ee, which could be because the

inductive effect of electron-withdrawing group -Br at 6, 6'-positions of BINOL, i.e., -Br

at 6, 6'-positions of BINOL increases the Lewis acidity, thus facilitating the reactions
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(Ishii et al., 2000). A comparison of two metal catalysts shows that, even though they

both provide similar product yield, Ti(O 1Pr)4 has better enantioselective properties.

Furthermore, Ti(O 1Pr)4 was more easily removed from the reaction mixture, as it

precipitated by adding water to the system. Therefore, Ti(O'Pr) 4 was chosen to be the

catalyst for further studies. Reactions when carried out in [EtPy] + [BF4]-, gave lower

product yield and ee. This is because the Lewis acidity of [EtPy] +[CF3COO]- is higher

than [EtPy] + [BF4]-.

5.3.2 Effect of Reaction Time

The influence of reaction time for the Friedel-Crafts reaction of N, N-dimethylaniline 1 a

with ethyl glyoxylate 2 catalyzed by different chiral ligand-Ti(O 11304 complex at room

temperature has been investigated. The results are summarized in Table 5.2.

Table 5.2 Time Effect for F-C acylation of N, N-dimethylaniline with Ethyl Glyoxylate

Chiral Ligand-Solvent [Yield (%) / ee (%)]
Time
(hr) (R)-BINOL

[EtPy] + [CF3COOI
(R)-BINOL-Br

[EtPy] + [CF3COOT
(R)-BINOL

[EtPy] ± [BF4I
(R)-BINOL-Br
[EtPy]+[BEII

4 36 / 81 39 / 89 35 / 51 37 / 61
8 55 / 81 57 / 88 50 / 49 54 / 61
16 77 / 78 81 /88 68 / 49 69 / 59
20 81 / 77 85 / 88 71 / 49 73 / 59
24 84 / 77 86 / 88 73 / 48 74 / 59
30 85 / 77 86 / 87 74 / 48 74 / 58

As can be seen in Table 5.2, the enantioselectivity was almost not affected. While

the yield increased initially within the first 24 hours, no significant changes were

observed upon prolonging the time thereafter. The change in yield along with the
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reaction time in various chiral ligand-solvent systems is plotted in Figure 5.3. Also, in all

cases, the results with [EtPy] + [CF3COO]- are better than those with [EtPy] + [BF4f. The

combination of (R)-BINOL-Br-Ti complex with [EtPy] + [CF3COO]- has the most

effective in increasing the rate of reaction.

Figure 5.3 Time effect of F-C reaction of N, N-dimethylaniline with ethyl glyoxylate

5.3.3 Effect of Substituents

Various aromatic amines have been investigated in Friedel-Crafts acylation with ethyl

glyoxylate. All reactions were catalyzed by chiral ligand-Ti(O'Pr)4 complex in

[EtPy] + [CF3COO]- at room temperature for 24 hours.

As can be seen in Table 5.3, as electron-withdrawing groups (EWG), Cl- and Br-

deactivate the benzene ring the yield were thereby decreased. The ee increased, which

may be due to the steric factor. As an electron-donating group, Me- group can activate

the benzene ring and promote the reaction to occur. Therefore, the yields (entry 4 and 9)
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are increased in comparison to the results of N,N-dimethylaniline (entry 1 and 6).

However, the ee decreased, which might be due to the steric hindrance. Entry 5 and 10

show that the yield and ee of MeO- group have decreased dramatically, even though

MeO- is an electron-donating group. This is because the product contains a hydroxyl

group and a methoxyl group, which might combine with the catalyst to form a six

member ring, thus inhibiting the reaction. In all cases, chiral ligand (R)-BINOL-Br has

higher ee compared with (R)-BINOL, which is due to the inductive effect of bromine.

Table 5.3 Friedel-Crafts Reaction of Various Aromatic Amines

Entry	 Amine 
1	 la (-H)
2	 lb (-C1)
3	 lc (-Br)
4	 1 d (-Me)
5	 le (-OMe)
6	 la (-H)
7	 lb (-C1)
8	 lc (-Br)
9	 1 d (-Me)
10	 le (-OMe)

Ligand Yield (%) ee (%)
(R)-BINOL 84 77
(R)-BINOL 79 81
(R)-BINOL 72 73
(R)-BINOL 86 68
(R)-BINOL 54 63

(R)-BINOL-Br 86 88
(R)-BINOL-Br 80 91
(R)-BINOL-Br 74 85
(R)-BINOL-Br 89 81
(R)-BINOL-Br 55 74

5.3.4 Effect of Reaction Temperature

The Friedel-Crafts reaction of various aromatic amine with ethyl glyoxylate catalyzed by

different chiral ligand-Ti(O iPr)4 complex at 0 °C and -20 °C were investigated. Results

are shown in Table 5.4.

Entry 1 shows extremely low yield and ee, which is because [EtPy] + [BF4] .

becomes frozen at around 0 0C, which attenuates the catalytic and enantioselective

effects. Therefore, we only investigated the reactions in [EtPy] + [CF3C00] - .
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In all cases, with a decrease in temperature, the overall yield decreased, which is

due to the decreased temperature lowering the reaction energies. However the

enantioselectivities increased. Meta-substitution effect shows the same rule as the results

at room temperature.

Table 5.4 The Friedel-Crafts Reactions at Different Temperature

Entry Amine

1 	 la (-H) 
2 	 la (-H)
3 	 lc (-C1)
4 	 ld (-Br)
5 	 lb (-Me)
6 	 le (-OMe)
7 	 la (-H)
8 	 lb (-C1)
9 	 lc (-Br)
10 	 ld (-Me)
11 	 le (-OMe)

Temp.
(°C)

Time
(hr) Solvent

Yield (%) / ee (%)

BINOL BIONL-Br
0 36 [EtPy]+IBF4]- 47 / 10 50 / 16
0 36 81 /85 82/91
0 36 74/83 76/94
0 36 67/80 68/87
0 36 83 /79 85 /85
0

-20
36
48 [EtPy]+[CF3COO ]_ 49 / 70

77/89
50 / 77
77/92

-20 48 70 / 87 71 / 96
-20 48 60 /83 62 /89
-20 48 78 /84 80/87
-20 48 44 /73 46/79

5.3.5 Recycle and Reuse of Ionic Liquids

The reusability of ionic liquid for the Friedel-Crafts reaction of N, N-dimethylaniline 1 a

with ethyl glyoxylate 2 catalyzed by the complex of (R)-BINOL-Br- Ti(O'Pr)4 were

investigated. The recycling process involved washing the used ionic liquids with diethyl

ether. Any organic residue left in the ionic liquid layer could be separated by the ether

wash. The ionic liquid layer was decanted and evaporated under reduced pressure at

65 °C, then purified following the method in Section 2.2.4 (Figure 5.4). Successive runs

were performed with the recovered ionic liquid [EtPy]+[B F4]- or [EtPy] + [CF3COO]- at

room temperature for 24 hours.



Figure 5.4 Flow chart of recycling process of ionic liquids

Table 5.5 Recycling and Reuse of Ionic Liquids

Recycling #
[EtPy]±[BF4]- [EtPy]+[CF3COO]-

Recovered(w%) Yield/ee(%)	 Recovered(w%) Yield/ee(%)
0 - 74 / 59 - 86 / 88
1 92 72 / 58 93 84 / 87
2 94 73 / 58 93 83 / 87
3 91 72 / 57 92 82 / 87
4 93 71 / 56 94 83 / 86
5 92 69 / 55 92 82 / 85

As Table 5.5 shows, both ionic liquids could be recovered efficiently and utilized

almost without loss of activity and selectivity. This is evident from the fact that the yield

and ee of the Friedel-Crafts acylations are not much affected even after the 5th run with

the recovered ionic liquid.

5.4 Proposed Mechanism

On the basis of Mikami's (1993) and Corey's (1997) work, Yuan et al. (2004) proposed a

detailed transition state working model for the asymmetric Friedel-Crafts reaction of

aromatic amines with ethyl glyoxylate (Figure 5.5). The BINOL-Ti complex and the

99
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formyl group in ethyl glyoxylate form a six-member ring transition state by hydrogen

bonding. As an electrophile, the carbon in formyl group will be attacked by the most

nucleophilic site (para- position) of N, N-dimethylaniline. The attack would be easier to

occur from re face (bottom) than from si face (top) due to the steric hindrance caused by

the naphthol group. Therefore, product with (R-) configuration is predominant. Based on

all of these studies, a detailed catalytic cycle for asymmetric Friedel-Crafts reaction of

aromatic amines in pyridinium-based ionic liquids is proposed and shown in Figure 5.6.

Figure 5.5 The transition state model of asymmetric Friedel-Crafts reaction

In our study, the catalytic activity and enantioselectivity were found to be

influenced by the substituents of BINOL derivatives. The experimental data shows that

the (R)-6, 6'-Br-BINOL-Ti complex was a more effective catalyst than the BINOL-Ti

complex. This is because -Br, as an electron-withdrawing group, could draw away the

electrons of BINOL-Br-Ti complex, thus increasing the Lewis acidity of the catalysis

system. This would make the carbon of formyl group more electrophilic, thereby

facilitating the reactions.
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Figure 5.6 Catalytic cycle of asymmetric Friedel-Crafts reaction studied

5.5 Summary

Pyridinium-based ionic liquids are viable solvents for asymmetric Friedel-Crafts reaction

of aromatic compounds with ethyl glyoxylate in the presence of BINOL-metal complex

as chiral catalysts. The reaction yield and ee are dependent on the combined effects of

ionic liquids, catalysts, chiral ligands, substituents, temperature and reaction time. High

yields and excellent enantioselectivities were achieved under relatively mild conditions.

[EtPy] +ICF3COO]- was found to be a suitable solvent which can efficiently substitute for
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the traditional organic solvents. Furthermore, both ionic liquids could be recycled and

reused efficiently as opposed to traditional organic solvents.



CHAPTER 6

ASYMMETRIC REDUCTION OF AROMATIC KETONES

6.1 Background Information

Enantioselective reduction of prochiral carbonyl compounds is one of the most important

asymmetric reactions (Seyden-Penne, 1997). Generally, aldehydes and ketones can be

reduced to the corresponding alcohols by various reductants such as alkali metal

aluminum hydrides, alkali metal borohydrides, and metal cyanoborohydride, etc. As for

the asymmetric reduction of prochiral ketones to chiral secondary alcohols, those metal

hydrides are modified with chiral alkoxyl or amino ligands - R *OH or RR*NH. It

provides an efficient method to synthesize optically active alcohols that have been found

to be applied as starting materials or chiral introducing agent for preparing many chiral

pharmaceutical and chemical products.

Lithium aluminum hydride (LAH) is a powerful reducing agent with excellent

solubility in ethereal solvents. As a hydrogen donor, it is widely employed for reductions

of aldehydes, ketones, esters, amides and nitriles. The first attempted modification of

lithium aluminum hydride with (+)-camphor was done by Bothner-By in 1951, and the

modified system showed excellent reactivity and selectivity in asymmetric reductions.

Since then, a wide variety of chiral ligands have been investigated to modify lithium

aluminum hydride. Most of those chiral modifiers are readily available and naturally

occurring substances such as alkaloids (Cervinka, 1965; Cervinka and Belovsky, 1967),

sugars (Landor et al., 1966; Landor et al., 1967; Cervinka and Fabryova, 1967), alcohols

(Noyori et al., 1979; Noyori, 1981), amines (Mukaiyama et al., 1977; Asami and

103



104

Mukaiyama, 1979), and amino alcohols (Yamaguchi, 1972; Yamaguchi and Mosher,

1973; Jacquet and Vigneron, 1974; Vigneron and Jacquet, 1976; Terashima, 1980),

etcetera.

In our previous studies, N-pyridinium-based ionic liquids show excellent results

in asymmetric Friedel-Crafts reaction of aromatic amines. Therefore, we embarked upon

study utilizing the same ionic liquids, i.e. [EtPy] +[CF3COO]- and [EtPy]IBF4]- for the

asymmetric reduction of aromatic ketones. Based on Noyori's successful work on the

reduction of ketones by the complex of LiA1H4 containing chiral 1, 1'-Bi-2-naphthol

(BINOL) and an alcohol in 1979, we employed the BINOL—LAH complex as the catalyst

to investigate enantioselective reductions of aryl alkyl ketones.

6.2 Materials and Methods

6.2.1 Materials

Lithium aluminum hydride, (R) - 1 , l'-Bi-2-naphthol, (R)-6,6'-Dibromo-1,1'-bi-2-naphthol,

acetophenone, propiophenone, butyrophenone, isobutyrophenone, valerophenone, 2,2-

dimethylpropiophenone, isovalerophenone were purchased from Sigma Aldrich.

Pyridinium-based ionic liquids were prepared in our lab following the procedure in

Section 2.2.

6.2.2 General Procedures

Since LiA1H4 can react violently with water (methanol, ethanol etc.), it must be handled

away from moisture. The reaction equations are shown in Figure 6.1.
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In this study, all reactions were carried out under N2 atmosphere in oven-dried

glassware. Ionic liquids were dried overnight in an oven at 70°C. Chiral ligand (R)-1,1'-

Bi-2-naphthol or its derivative (R)-6,6'-Dibromo-1,1 1-bi-2-naphthol (2 mmol, 1 equiv.)

was added to 2 ml pyridinium-based ionic liquid. The mixture was stirred until the solid

was dissolved. A gentle heat (around 45-60°C) might be needed in this step. Then the

catalyst, lithium aluminum hydride (2 mmol, 1 equiv.), was slowly added to the mixture,

which would produce a very small amount of suspension (if a large amount of precipitate

occurs, the experiment has to be repeated). Furthermore, in this step, we noticed some

bubbles were generated. After being stirred (250 rpm) for 30 minutes at the specified

reaction temperature, the reactant, aromatic ketone (2 mmol, 1 equiv.), was dropped in.

The reaction mixture was stirred (250 rpm) at this temperature for the desired time

period. Finally, 2 N HC1 (5 ml) was added to quell the reaction and the mixture was

warmed to room temperature. The organic compound was extracted by diethyl ether (5

ml) and washed first with saturated sodium bicarbonate (5 ml) followed by brine (5 ml).

Evaporation under reduced pressure yielded the concentrated organic mixture, which was

further purified by flash chromatography (acetone/hexanes 1:7) to give the purified

materials. The water layer was evaporated under reduced pressure, and the ionic liquids

could be recycled and purified following the methods in Section 2.2.4. However, we find

that, in this case, [EtPy] + [CF3COO]- changed color from colorless/light yellow to yellow,

then to brown.

Figure 6.1 LiA1H4 reacts with water or alcohols
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6.2.3 Analysis Methods

All analyses were carried out by HP CP-3800 HPLC equipped with a chiralcel OD-H

column (hexanes/2-propanol = 75: 25). The ee was determined by the area ratios of each

chromatograph peak. 1 H NMR was employed to confirm the products (500 MHz, in

CDC13).

(R) - 1-Phenylethan-l-ol (a)

A colorless liquid. Enantiomeric excess was determined by HPLC (flow rate = 0.6

ml/min), tr (minor) 8.25 min, tr (major) 8.68 min. 1 H-NMR (500 MHz, CDC13), 6 = 1.48

(d, -CH3), 2.41 (s, -OH), 4.82-4.87 (m, -CH), 7.21-7.35 (m, 5H-Ar).

(R) - 1-Phenylpropan-l-ol (b)

A colorless liquid. Enantiomeric excess was determined by HPLC (flow rate = 0.6

ml/min; hexanes: 2-propanol = 75:25), t r (minor) 7.95 min, t r (major) 8.43 min. 1 H-NMR

(500 MHz, CDC1 3), 6 = 0.91 (t, -C113), 1.65-1.90 (m, -C112), 2.13 (d, -OH), 4.55-4.61 (m,

-CH), 7.18-7.31 (m, 5H-Ar).

(R) -1-Phenylbutan-l-ol (c)

A white solid. m.p. = 47°C. Enantiomeric excess was determined by HPLC (flow rate =

0.6 ml/min), tr (minor) 7.27 min, tr (major) 7.87 min. 1 H-NMR (500 MHz, CDC13), 6 =

0.92 (t, -CH3), 1.31-1.37 (m, -CHCH3), 1.54-1.81 (m, -CHCH2CH3), 3.22 (s, -OH),

4.59-4.64 (m, -CH), 7.17-7.29 (m, 5H-Ar).
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(R)- 1-Phenyl-2-methylpropan-l-ol (d)

A colorless liquid. Enantiomeric excess was determined by HPLC (flow rate = 0.6

ml/min), tr (minor) 6.73 min, tr (major) 7.45 min. 1 H-NMR (500 MHz, CDC13), 8 = 0.77

(d, -CH3), 0.98 (d, -CH3), 1.87-2.01 (m, -CH(CH3)2), 2.08 (s, -OH), 4.27-4.30 (m, -

CHOH), 7.22-7.32 (m, 5H-Ar).

(R)-1-Phenylpentan-l-ol (e)

A colorless liquid. Enantiomeric excess was determined by HPLC (flow rate = 0.6

ml/min), tr (minor) 7.00 min, tr (major) 7.68 min. 1 H-NMR (500 MHz, CDC13), 8 = 0.95

(t, -CH), 1.42-1.85 (m, -(C1-1_2_13 CH3), 2.01 (s, -OH), 4.63-4.67 (m, -CHOH), 7.20-7.31

(m, 5H-Ar).

(R)-1-Phenyl-3-methylbutan-l-ol (f)

A colorless liquid. Enantiomeric excess was determined by HPLC (flow rate = 0.6

ml/min), tr (minor) 6.48 min, tr (major) 7.33 min. 1 H-NMR (500 MHz, CDC13), 8 = 0.95

(d, -(CH112), 1.36-1.61 (m, -CH), 1.79-1.90 (m, -CH(CH3)2), 3.06 (d, -OH), 4.21 (t, -

CHOH), 7.20-7.29 (m, 5H-Ar).

(R)- 1-Pheny1-2,2-dimethylprop an-1 -ol (g)

A colorless liquid. Enantiomeric excess was determined by HPLC (flow rate = 0.6

ml/min), tr (minor) 6.25 min, tr (major) 7.23 min. 1 H-NMR (500 MHz, CDC13), 6 = 0.82

(s, -(CH3)3), 1.67 (d, -OH), 4.20-4.24 (m, -CHOH), 7.25-7.36 (m, 5H-Ar).
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6.3 Results and Discussion

The enantioselective reduction of aromatic ketones catalyzed by the complex of (R)-1, l'-

Bi-2-naphthol ((R)-BINOL) or its derivative (R)-6, 6'-Dibromo-1, 1'-bi-2-naphthol ((R)-

BINOL-Br) and lithium aluminum hydride was investigated in pyridinium-based ionic

liquids ([EtPyrIBF4]- and [EtPy]+[CF3COO]-) (Figure 6.2).

Figure 6.2 Asymmetric reduction of aromatic ketones

In this study, ionic liquids were employed as solvents and (R)-BINOL or (R)-

BINOL-Br acted as the chiral promoter. We followed the 3 rd strategy in Figure 5.1. The

effects of solvent, reaction time, temperature, the amount of catalyst and various

substituents in reactants were investigated. Recycle-ability and reuse of ionic liquids

were studied as well.

6.3.1 Effect of Catalyst Dosage

On the basis of Noyori's work, we investigated the asymmetric reduction of

acetophenone catalyzed by various quantities of the chiral BINOL-LAH-EtOH complex



Dosage of catalyst
(equiv.)a

2.0 
0.5
1.0
1.5
2.0b

2.5
3.0
0.5
1.0
1.5

2.0b

2.5
3.0

with Ethanol 
Yield / ee (%)
95100 / 64 

78 / 58.1
96 / 65.8
99 / 66.3
99 / 67.5
99 / 67.9
99 / 68.6

without Ethanol
Yield / ee (%)

91 / 63.2
99 / 67.7
99 / 67.8
99 / 68.0
99 / 68.1
99 / 68.1

76 / 53.5
97 / 62.9
99 / 63.7
99 / 64.6
99 / 66.4
99 / 66.4

86 / 59.4
99 / 66.1
99 / 66.2
99 / 66.3
99 / 66.3
99 / 66.3

Solvents

THFb

[EtPy]+[CF 3 COO] -

[EtPy]±[BF4]-
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in pyridinium-based ionic liquids at room temperature for 24 hours (Figure 6.2 a). We

kept the molar ratio of chiral ligand: LiA1H4 : ethanol = 1:1:1 as a constant. Concerned

that ethanol may react with LiA1H4, the reactions were performed under the same

conditions but without alcohol. The results are summarized in Table 6.1.

Table 6.1 Asymmetric Reduction of Acetophenone with Various Amount of Catalyst

a 1 equivalent is counted on the basis of acetophenone (2mmol);
b Reported by Noyori et al., 1979.

As the data shows, if with ethanol, 2 equivalents of the catalysis complex or more

were needed. However, the required amount of the catalyst was deducted in the reactions

without ethanol. Therefore, in our further studies, we kept using chiral BINOL-LAH (1

equivalent) to catalyze the reactions without alcohol.

The results with [EtPy] + [CF3COO] - are better than those with [EtPy]
+
 [BF4] .

Similar to the previous reactions, this may be due to the different Lewis acidities, i.e.,

+ 	 _
[EtPy] [CF 3COO] is more acidic than [EtPy][BF 4] . Also, as room temperature molten
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salts, [EtPy] [CF3COO] and [EtPy][BF4] can make the reactive species more accessible

than can organic solvents.

6.3.2 Effect of Reaction Time

Kinetics studies have been performed in the asymmetric reduction of acetophenone at

room temperature up to 24 hours. We kept the molar ratio of chiral ligand (R)-BINOL:

LiA1H4 = 1:1 as a constant. The results are listed in Table 2.

Table 6.2 Reaction Time Effect of Asymmetric Reduction of Acetophenone

Ionic Liquid Reaction Time (hr) Yield (%) ee (%)

1 73 71.1
2 96 69.7

[EtPy]+[CF3COO]-
4
8

68.599
99 68.0

12 99 68.0
24 99 67.7

1 76 67.7
2 97 67.2

[EtPy]±[BF4]-
4
8

67.099
99 66.4

12 99 66.2
24 99 66.1

As can be seen in Table 6.2, the enantioselectivities decreased with reaction time,

while the yields increased. This may be because a specific time is needed to reach

reaction equilibrium. However, after four hours, this decrease became so slight that it

can be ignored. At the meantime, the maximum yields were obtained. After 8 hours, the

enantioselectivities almost did not change further with a more prolonged time period.

Considering the time-saving and lack of significant differences among results, we still
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choose 4 hours as the reaction time for the further studies. In all cases, even the

enantioselectivities with [EtPy] +ICF3COO]- are better than those with [EtPy] +[BF4] - due

to its stronger Lewis acidity, and the product yield is slightly lower than in those with

[EtPy] ± [BF4]- at the beginning. This may be because [EtPy] + [CF3COO] - might react with

LiA1H4 because it has carbonate group in the trifluoroacetate anion, which may cause a

slight delay of the reductions.

6.3.3 Effect of Substituents and Reaction Temperature

The asymmetric reductions of various aryl alkyl ketones in ionic liquids have been

investigated at various temperatures, e.g., room temperature, 0°C, and -30°C (Table 6.3).

It should be noted that, at around 0 °C, the reaction mixture was frozen caused by

[EtPy] [BF4] in the reduction of acetophenone, which yielded 73% (±)-1-phenylethanol

and 30.18% ee. Therefore, we only carried out the reductions in [EtPy] + [CF3COO] - at

low temperatures. -30°C is the lowest temperature that the reaction mixture can stay in

liquid status. Below this point, the reaction system would be frozen.

As the data in Table 6.3 shows, with a decrease of temperature to -30°C, the

enantioselectivities increased. But the overall yields decreased even with prolonged

reaction period. This is because lower temperatures eliminate the reaction energy thus

reducing the overall yield. However, ee increased because the activation energies for

forming both enantiomers did not change.

Comparing the results of various ketones at the same temperature, we found the

size and shape of alkyl group have a significant influence on the reductions. Due to the

steric hindrance, larger size and more branches of alkyl group would block the reaction
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thus reducing the yield and ee (especially at low temperatures). Following the order of

ketones a — g, the enantioselectivity slightly decreased at each temperature case. Besides

of the steric effect, this may also be influenced by the reaction phase effects. From

ketones a — g, the homogeneous reaction system gradually turns to the heterogeneous

mixture, therefore disturbing the reactions. Since the reaction mixture was stirred

vigorously (250 rpm), the difference among the results is minor. It should be noted that

from entry 6 to 7, the enantioselectivity has a relatively significant drop. This should be

caused by the steric hindrance of a tertiary butyl group, which is right next to the

carbonyl group, and therefore shields the reactive site of ketones.

Table 6.3 Asymmetric Reduction of Ketones Catalyzed by BINOL-LAH

Entry Ketone
Yield / ee (%)

RT (4hr) 0°C (24hr) -30°C (24hr)
1 C6H5COCH3 99 / 68.5 91 / 75.1 85 / 83.5
2 C6H5COCH2CH3 99 / 69.2 93 / 79.7 86 / 84.9
3 C6H5CO(CH2)2CH3 98 / 69.7 91 / 79.3 83 / 84.0
4 C6H5COCH(CH3)2 97 / 68.7 85 / 78.3 79 / 82.0
5 C6H5CO(CH2)3CH3 96 / 68.5 87 / 78.6 80 / 84.0
6 C6H5COCH2CH(CH3)2 97 / 67.6 82 / 74.0 76 / 77.7
7 C6H5COC(CH3)3 95 / 58.9 79 / 64.2 71 / 70.3

Based on our results of asymmetric Friedel-Crafts reaction of aromatic amine, we

are curious whether (R)-6, 6'-Dibromo-1,1'-bi-2-naphthol ((R)-BINOL-Br) can promote

the reductions as well as did BINOL. Therefore, we investigated the reductive reactions

under the same conditions but catalyzed by BINOL-Br-LAH instead of BINOL-LAH.

As can be seen in Table 6.4, BINOL-Br-LAH showed better enantioselectivity

than BINOL-LAH at each temperature. Similar to the previous asymmetric Friedel-
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Crafts reaction, -Br, as an electron withdrawing group, could drag away the electrons of

BINOL-Br-LAH complex, which might activate the reactive site on ketones thus

promoting the reductions.

Table 6.4 Asymmetric Reduction of Ketones Catalyzed by BINOL-Br-LAH

Entry Ketones
Yield / ee (%)

RT (4hr) 0°C (24hr) -30°C (24hr)
1 C6H5COCH3 99 / 69.7 91 / 78.9 86 / 87.6
2 C6H5COCH2CH3 99 / 73.3 91 / 82.9 90 / 81.6
3 C6H5CO(CH2)2CH3 99 / 73.6 83 / 89.9 82 / 89.6
4 C6H5COCH(CH3)2 97 / 70.2 85 / 79.8 80 / 86.7
5 C6H5CO(CH2)3CH3 96 /72.9 86 / 81.7 78 / 88.6
6 C6H5COCH2CH(CH3)2 96 / 71.2 80 / 78.5 75 / 80.9
7 C6H5COC(CH3)3 93 / 62.1 75 / 68.2 68 / 73.5

6.3.4 Recycle and Reuse of Ionic Liquids

We investigated the reusability of ionic liquids for the asymmetric reduction of

acetophenone catalyzed by the complex of (R)-BINOL-LAH. The recycling process

involved washing the used ionic liquids with diethyl ether. Any organic residue left in

the ionic liquid layer could be removed by the ether wash. The ionic liquid layer was

decanted and evaporated under reduced pressure at 65 °C, then purified following the

method in Section 2.2.4 (Figure 6.3). Successive runs were performed with the recovered

ionic liquid [EtPy][BF4]- or [EtPy] +[CF3COO]- at room temperature for four hours.



Figure 6.3 Flow chart of recycling process of ionic liquids

Table 6.5 Recycling and Reuse of Ionic Liquids

Recycling #	
[EtPy]±[BF4]- 	 [EtPy]±[CF3COO]-

0 - 99 / 67 - 99 / 68
1 93 97 / 64 87 98 / 51
2 92 98 / 65 76 99 / 43
3 90 98 / 63 68 99 / 37

The results show ionic liquid [EtPy] +IBF4]- could be recovered efficiently and

almost without loss of activity and selectivity. This is evident from the fact that the yield

and ee were not affected much even after the 3th run. In this reaction, however,

[EtPy] +[CF3COO]- could not be recovered as efficiently as the previous cases. It may be

because lithium aluminum hydride, as a powerful reductant, might react with carbonyl

group of trifluoroacetate anion. The evidence is that a color change of [EtPy]+[CF3COO]-

has been observed during experiments, which changed from colorless/light yellow to

yellow, then to brown.
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In [EtPy]+ [CF3 COO] -, enantiomeric excess dropped dramatically. This is due to

solvent properties which changed along with the transformation. However, the reduction

yields have not been affected.

6.4 Proposed Mechanism

Based on Noyori's work (1979), we proposed a detailed transition state working model

for the asymmetric reduction of aryl alkyl ketones (Figure 6.4). As mentioned in Section

6.2.2, after adding LiA1H4 to the mixture of BINOL and ionic liquid, the BINOL-LAH

complex formed accompanied with gas (H2) generating. The BINOL-LAH complex and

the carbonyl group in ketones form a six-membered, chelating ring transition state. There

are two possible transition states in this study, which is dependent on the different

reactive site recognition. As can be seen in Figure 6.4, transition state (R)-T.S. with axial

alkyl and equatorial phenyl groups is favored over (S)-T.S., which has the opposite

conformations, i.e., phenyl group at axial position and alkyl group at equatorial position.

Because (S)-T.S. suffers severe steric repulsion between the benzene ring and the

binaphthyl group, thus distorting the molecule orbitals, and therefore increasing the

activation energy of (5)-enantiomer. As a result, (R-) configuration products are major

products in accordance with the experimental data.

The structures of transition states also make it easy to be understood that the

bulky and branched alkyl group of ketones could eliminate the energy gap between R and

S configuration products, therefore decreasing the enantioselectivities.
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Figure 6.4 The proposed mechanism of asymmetric reduction of aromatic ketones

6.5 Summary

Both pyridinium-based ionic liquids are feasible media for asymmetric reduction of

aromatic ketones with chiral BINOL/BINOL-Br modified lithium aluminum hydride.

They can efficiently substitute the traditional organic solvents (e.g. THF). The reactions

proceed at relatively fast rate and achieve high yield and ee. In our study, the catalytic

activity and enantioselectivity were found to be influenced by the substituents of BINOL

derivatives. The experimental data shows that the (R)-6, 6'-Br-BINOL-LAH complex
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was a more effective catalysis system than the (R)-BINOL-LAH complex. However, this

reaction still has a problem: [EtPy]+[CF3COO]- could not be recycled quantitatively and

the enantioselectivity dropped down when reused.



CHAPTER 7

CONCLUSIONS

In this study, two pyridinium-based ionic liquids, N-ethyl pyridinium tetrafluoroborate

[EtPy] + [BF4]- and N-ethyl pyridinium trifluoroacetate [EtPy] +[CF3COO]- were prepared

and the synthesis procedure improved by introducing a titration step. These pyridinium-

based ionic liquids were tested as solvents for C-C and C-H bond forming reactions.

These reactions are:

1) Diels-Alder Reactions

It is the first study using N-ethyl-pyridinium cation based ionic liquids in Diels-Alder

reactions. The reactions between isoprene and representative dienophiles showed highly

enhanced reaction rate with [EtPy] + [CF3COO]-, and to lesser extent in [EtPy] + [BF4]-.

This could be due to three reasons: (i) high polarity; (ii) strong Lewis acidity; and (iii)

strong hydrophobic effect of ionic liquids. Furthermore, [EtPy] +[CF3COO]- could be

recycled and reused efficiently.

2) Friedel-Crafts Alkylation and Acylation

The reaction strategy and conditions were studied in detail for both alkylation and

acylation reactions. We found that FeC1 3 could efficiently replace ALC13 as catalyst in

both these ionic liquids. Thus providing an environmentally acceptable catalyst (FeC13)

substitutes more commonly used but hazardous AlC1 3 . The improved results seen in

these ionic liquids could be due to: (1) high polarity; (2) strong Lewis acidity; (3) strong
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hydrophobic effect; and (4) high solvating property of these solvents. The ionic liquids-

FeC13 mixture could not be easily recycled and reused. Even adding fresh FeC1 3 into the

already used mixture did not give good results. However, we could recycle ionic liquids

alone and effectively use it with fresh FeC1 3 .

3) Asymmetric Friedel-Crafts Reactions

It is the first investigation on the application of N-ethyl-pyridinium-based ionic liquids

for this reaction. Both ionic liquids can be recycled and reused efficiently. However, the

reaction yields were lower than those with organic solvents. This could be due to the

interaction between cations and reactants. Further investigation with other anions would

be needed for better understanding.

4) Asymmetric Reduction of Aromatic Ketones

It is the first study on the application of N-ethyl-pyridinium cation containing ionic

liquids as solvents in asymmetric reduction of aromatic ketones. The enantioselectivity

observed is lower than seen in organic solvents. However, the amount of catalytic

complex required was reduced compared to those with organic solvents. For the

representative examples studied [EtPy] +[CF3COO]- could not be easily recycled. The

yield of recovered ionic liquid and the % ee of the reduced ketone product dropped

significantly. While [EtPy]+[BF4]- could be recycled and reused efficiently.

These studies show that N-ethyl-pyridinium cation based ionic liquids are feasible

solvents for C-C and C-H bond forming reactions investigated here. As this cation is
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non-toxic (Zhang and Malhotra, 2005), more reactions should be studied in these ionic

liquids for development of methodologies useful in the chemical and pharmaceutical

industries.



APPENDIX A

SOME CONCEPTS

CHIRALITY is the ability of a chemical substance to exist in two mirror-image forms

which cannot be superimposed upon each other; each of them rotates polarized light in

opposite directions.

CONCERTED reaction is a reaction that takes place in a single kinetic step.

EC50 value is a statistically or graphically estimated concentration of a substance (or a

toxicant) resulting in 50% effect reduction of a given population of organisms under

defined conditions. Decreasing EC50 values indicate higher toxicity.

ECOTOXICOLOGY is a specialized area within toxicology and is the study of the fate

of toxic substances and their effects on an ecosystem; ecotoxicology builds on the science

of toxicology and the principles of toxicological testing, although its emphasis is more on

the population, community, and ecosystem.

ELECTROCHEMICAL WINDOW is the range within which cations and anions are

inert toward electrochemical oxidation and reduction.

ENANTIOMER is either one of a pair of compounds that are mirror images on each

other but are not identical.

ENANTIOMERIC EXCESS (ee/e.e.) is the proportion of the major enantiomer less that

of the minor enantiomer and commonly expressed as a percentage. The five main ways

of determining e.e.'s are:

• Polarimetry

• Isotope dilution
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• Gas chromatographic methods

• Liquid chromatographic methods

• NMR resolution with

o chiral derivatives

o chiral solvating agents

o chiral shift reagents

GREEN CHEMISTRY is the use of chemistry for pollution prevention or, more

specifically, is the design of chemical products and processes that reduce or eliminate the

use and generation of hazardous substances.

LC50 is lethal concentration. The value is the statistically derived estimate of a

concentration of a substance resulting in death of 50% individuals by a predetermined

time; decreasing LC50 values indicate higher toxicity.

LD50 is lethal dose. The amount of a substance that is lethal to 50 per cent of the

experimental animals exposed to it. LD 50 is usually expressed as the weight of the

substance per unit of animal body weight (in order to account for weight difference

among animals).

POLAR SOLVENT is a solvent that will dissolve and stabilize dipolar or charged

solutes.

SYNCHRONOUS reaction is a reaction in which the various changes in bonding have

progressed to similar extents in the transition state.

TOXICOLOGY is the study of adverse effects of xeno-biotics on living systems.



APPENDIX B

REACTION PICTURES

Figure B.1 The asymmetric Friedel-Crafts reaction
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Figure B.2 The asymmetric reduction of aromatic ketones



Figure B.3 Recylce and reuse of [EtPy] + [CF3COO]- in the asymmetric reduction of
acetophenone
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