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ABSTRACT

MODELING, DESIGN, AND FABRICATION OF
PULSED FLUIDIC MICRO-ACTUATORS

by
Max Roman

The forced vibration of a thin flexible plate or membrane in a sealed cavity with a small

opening can cause fluid to be pumped into and out-of the cavity. At particular

frequencies and amplitudes of vibration, a streaming of vortex rings can occur near the

orifice. These vortex rings move under their own self-induced momentum. Downstream

of the opening the rings ultimately break up and can form a fully developed jet. This

work is dedicated to the analysis, design, and fabrication of electrostatic micro fluidic

actuators, which use the pulsing mechanism described above to generate a fluid flow.

Particle Image Velocimetry (PIV) is used to visualize the jet at various drive frequencies.

The complex coupling between the electric field driving the membrane, the deformation

of the membrane, and the compressible squeeze film in the cavity are studied in depth.

Theoretical modeling, computer simulation (CFD-Computational Fluid Dynamics) and

experiments are used to characterize the performance of the actuator. A low dimensional

theoretical model, which takes into account the coupled physics of the problem, is

derived from the Newton equation. The model is used to predict the membrane motion

for varying voltage and frequency inputs. The system response predicted with the model

is compared to numerical simulations, and it was found that the model can accurately

capture the system response for a given input. Finally, a protocol for fabricating the

actuator using Micro ElectricAi Mechanical Systems (MEMS) processes is presented.
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CHAPTER 1

INTRODUCTION, OBJECTIVES, AND OUTLINE

1.1 Introduction

The subject of flow control is of immense technological interest and accounts for a large

area of today's current research in fluid mechanics. The goal of such study is to reduce

drag, increase lift, suppress vortex shedding and flow-induced noise, enhance mixing,

filtration, or any other desirable effect. Numerous control schemes aimed to favorably

alter the characteristics or natural inclination of a flow field have been suggested and

implemented with varying degrees of success. Some control tools for wall bounded

flows include the application of compliant coatings, suction or injection, electromagnetic

forces (in conducting fluids), heating and cooling, and the addition of shear thinning or

thickening additives into the boundary layer (7). All of these methods are designed to

alter the instantaneous and mean velocity profiles and lead to the desired flow control

effect.

Recent advances in microfabrication offer the opportunity and framework to build

inexpensive, reliable, light weight, low power actuators and sensors that have the

potential of curtailing the penalties and drawbacks associated with conventional flow

controlling schemes, such as response time, size and weight, cost, and durability. Before

any rewards are to be reaped from such small-scale devices and any significant large

scale application of these devices is to take place, much more data is required. In

addition, as the fluid behavior at small scales itself is still not well understood,

optimization of the devices themselves has hardly been addressed. Current design is

1
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based not on optimal flow characteristics, but rather on simplicity of fabrication using

standard microfabrication techniques.

Proposed herein is the concept, design, and fabrication of an actuator that by

creating a fluid jet could potentially be used in various flow controlling schemes. A

cross-sectional drawing of the proposed device is shown in Figure 1.1.

Figure 1.1 Three-Dimensional cut-out view of a Micro Electro Mechanical System
(MEMS) jet.

The jet is generated by the oscillation of a membrane in a cavity that is sealed,

except for a small orifice on one face of the cavity. A key feature of the synthetic jet is

that it can be readily microfabricated. From a fabrication and application point of view,

the synthetic jet is attractive in that no external tanks, valves, pipes, or pumps are

necessary to create the jet flow. The jet is synthesized, hence its name, from the

surrounding fluid. A synthetic jet has zero-net mass flux. That is, with each cycle, the

surrounding fluid is sucked into a sealed cavity and then expelled outward through an

orifice into the same surrounding fluid. No additional fluid is added from an external
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source outside of the domain. The amount of fluid exiting through the orifice is equal to

the amount of fluid entering through the orifice. A very simple synthetic jet can be

fabricated using a speaker mounted in a sealed cavity with a small opening on its

opposite end.

Though seemingly simple in concept, a synthetic jet is quite a complex system to

analyze. The jet flow can essentially be split into two primary domains: the internal and

external fluid regions. The fluid flow inside the cavity is a result of a coupled interaction

between the oscillating membrane and the fluid. There is a further coupling between the

external force applied to the membrane and the membrane itself. Usually, the external

driving force comes from an electric field, such as electrostatic or piezoelectric actuation.

In practice, it is difficult to decouple the driving frequency and stroke, or maximum

membrane amplitude, of the actuator. A key element, then, is to minimize the voltage and

power required to drive the membrane. In a MEMS scaled system, which is characterized

by very large lateral dimensions relative to the height of the cavity, the squeeze film

problem must also be considered, as it can have significant damping and stiffness effects

on the membrane itself. The amount of spring or damping is a function of the driving

frequency of the membrane. It is difficult to physically measure and visualize the flow

inside the cavity, therefore modeling tools are very useful in analyzing the fluid flow

there.

The external domain is bounded at the exit plane of the jet. At particular

frequencies and amplitudes of excitation of the membrane, as the fluid passes through the

opening, a train of vortex rings is created at the edges of the orifice. The vortex pairs
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characterize the near field evolution of the synthetic jet. These counter-rotating vortex

pairs are carried outward under their own self induced momentum, as illustrated in

Figure 1.2). In the far field, the individual vortex rings break apart and eventually

coalesce into a fully developed jet (9). Figure 1.3 displays the experimental visualization

of a synthetic jet evolving near the orifice with the formation of a roll-up of vortices,

which develop into a turbulent jet further downstream.

Figure 1.2 Concept of a synthetic jet.

Figure 1.3 Flow visualization of synthetic jet. (Roman 2004)
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Jet flows created by vibrating plates in sealed cavities having a small opening

have been studied experimentally using Schlieren images, hot wire anemometry, and PIV

(Particle Image Velocimetry) techniques. Some numerical modeling has also been

conducted to study both the flow inside the cavity as fluid is drawn in, and outside the

cavity, downstream beyond the opening. (18,12). Wang and Menon (25) numerically

explored the use of synthetic microjets for fuel-air mixing enhancement. Although

insightful, most of the numerical studies attempting to characterize synthetic microjets do

not accurately represent the boundary conditions and geometries that are a result of

microfabrication. In particular, these studies do no account for the large aspect ratios

which result in very high fluid pressures inside the cavity at high actuation frequencies.

While the concept is not necessarily new, the aggressive study and development

of synthetic jets is a rather recent field. Much of the work on synthetic jets has been

spearheaded and centered around Ari Glezer's group at Georgia Tech. Coe and Glezer (5)

published the first paper on microfabrication of synthetic jets. Their seminal paper is still

frequently referenced, for having indicated the feasibility and practicality of synthetic

microjet designs. More recently, Michael Muller at the University of Michigan has been

actively pursuing the synthetic microjet concept applied to thrust generation for micro

flying devices (13,14,15). However, although promising, the study is still very much in

its infancy.

Due to their size and low power consumption, there are many appealing

applications for synthetic microjets, ranging from thermal cooling of electronics and

vectoring of larger jet flows to turbulent flow control and mixing. In addition, with some
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modification, the synthetic jet concept can be extended to the design of micropumps for

use in microfluidic delivery systems (28, 29), fuel atomizers, and for printheads.

There are several reasons why it makes sense to microfabricate synthetic jets. Due

to their size, microfabricated devices are lightweight, require minimal space, can be batch

fabricated for low cost and improved reliability, and impose very low power

requirements. Batches of these microdevices can be connected to form larger arrays,

which can be addressed individually or in clusters. Since they are batch produced, the

batches would have very consistent geometric tolerances and properties. The increase in

surface area to volume ratio inherent to microdevices makes them very efficient for their

size, requiring very little power (milliwatt range) to operate. Additionally, as the scale

decreases, the acoustic frequency increases, which results in a higher operating Reynolds

number. In addition, the integration of MEMS-scale jet actuators and sensors distributed

over a large control area can be envisioned for optimal flow control.

1.2 Objectives

For the purpose of this work, several objectives have been set. The subject of synthetic

jets is still an emerging field. In particular, the works of Glezer (8,9) have shown that the

flows generated by pulsing jets can have a significant influence on larger flow fields, as

was previously discussed in the introduction part of this chapter. However, these flows

are still poorly understood. It is clear that the direct cause of the vortex rings that are

created at the exit are caused by flow separation at the sharp edges; however, the

evolution of these vortex rings, how they originate in the cavity, and how they are created
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by the oscillation of the membrane, is much less understood. Chapter 2 of this work

deals specifically with flows generated by synthetic jets.

Another area which deserves attention is a thorough analysis of the fully coupled

(actuation, membrane displacement, fluid flow) synthetic jet actuator. It has been

common practice to simply build a device and then apply it to some flow. However,

many synthetic jet actuators that work well in the lab environment do not operate as

intended when scaled up or used in a real-world flow control situation. Therefore, it is

this thesis's goal to attempt to fully analyze the problem and its dependence on the

various parameters involved. Once the role of all parameters is known, the likelihood

that the actuator will work as intended is far greater. Chapters 3 through 6 deal with this

issue and serve as the main body of this work, the main objective being to derive a

reduced model, a set of closed equations, that can facilitate and speed-up the design of

microjets. The closed equations are easier to use and can offer more insight into the

problem than full numerical simulations.

For a number of years, many experts on flow control, such as Gad-el-Hak (7),

have pointed to MEMS as primary elements in flow controlling schemes. Without a

doubt, MEMS sensors, such as pressure sensors and accelerometers, have been very

successful. However, MEMS actuators have not shared the same degree of success in the

control of fluid flows. Coe et al. (5), for instance, indicate that synthetic microjets can be

viable flow control actuators, but yet, many details are lacking. The final goal is to

fabricate a synthetic microjet actuator which can be shown to function as intended, that

is, causing the fluid, air, to flow at a certain speed and flow rate for a given membrane

oscillation. The final chapter deals with the fabrication of a microjet using MEMS
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fabrication techniques. Having laid the foundation, it is hoped that the design and device

developed here can set the stage for future work on synthetic microjets. With the

successful operation of the actuator the next phase of research will focus on the jet flow

generated by the actuator and its interaction with a larger flow for the control of the latter.

1.3 Outline

In Chapter 2, the synthetic jet concept is established experimentally. A miniature

synthetic jet is fabricated using conventional machining processes, and flow fields

created by the actuation of this jet are presented. Particle Image Velocimetry (PIV) is

used to illuminate and visualize the flow field, and flows for varying actuating

frequencies are shown. Some tests are conducted using the jet to cool electronic

components, and the results are presented here.

Having established the concept, chapter 3 focuses on the mechanics of the

membrane, which drives the fluid in a synthetic jet. A detailed analysis using energy

methods for the large deformation of membranes is presented. In particular, an analytical

expression relating pressure to deformation (for large deformations) is derived. The first

part of the chapter deals particularly with square and rectangular membranes, which are

common geometries resulting from typical MEMS fabrication processes. The second part

of the chapter deals specifically with circular membranes. The last section of the chapter

presents the dynamic analysis of membranes. Specifically, an analytical solution for the

natural frequency of membranes subject to large deformations is derived. Throughout the

chapter, results using the analytical expressions are compared to those obtained

numerically, primarily with the use of ANSYS.
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The electrostatic actuation is discussed in chapter 4. The chapter begins with a

review of the parallel plate capacitor. This is followed with a detailed analysis of the

membrane capacitor, for both small and large deflections. The objective is to derive

analytical expressions which can predict the membrane deflection as a function of the

applied voltage. The derived expressions also predict the gap distance when the system

becomes unstable and pull-in occurs. The pull-in behavior is then further studied using

ANSYS Multiphysics, which solves the coupled electric field - structure interaction

problem. Results from the simulations are compared with the analysis. A means for

estimating the electrical power required to put the membrane into motion is also included.

Chapter 5 is dedicated to the study of the fluid flow in the cavity. A brief

discussion on Helmholtz resonators introduces the chapter. In the following section, the

fluid is analyzed as an incompressible fluid. The continuity equation is applied to arrive

at some estimate of the fluid velocity at the orifice of the jet. A low dimensional model is

employed next to account for the compressibility of the fluid. The result is a coupled set

of ODEs describing the pressure in the cavity and the fluid exit velocity as functions of

time. Solutions to the ODEs are compared to those obtained with FLUENT. Lastly, the

fluid flow is studied more rigorously using the compressible Reynolds equation for

squeeze films. The Reynolds equation is solved analytically with MATLAB and

numerically with a PDE solver. The damping and stiffness coefficients are derived. The

coupled squeeze-film / fluid-structure interaction is also studied numerically using

ANSYS. The results are also compared to the analytical expressions.

The fully coupled system with the electric field - structure - fluid interaction is

addressed in Chapter 6. To this end, the equation of motion is applied, using the forces
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derived in the previous three chapters, as inputs. The damping and stiffness coefficients

from the squeeze film analysis are applied here. A low order model is then derived which

captures the important features of the dynamics of the system. Namely, the membrane

position is determined by inputting the primary parameters of the problem, such as the

drive voltage and frequency. The fully coupled problem is also solved using ANSYS

Multiphysics and results are compared to those obtained with the model.

Using insight gained through the analysis, a protocol for fabricating synthetic

microjets is presented in Chapter 7. Steps for fabricating the device using

microfabrication processes are outlined in detail. Images of the fabricated devices are

shown.

In the last chapter, a brief summary is given and directions for future work are

proposed.



CHAPTER 2

EXPERIMENTAL RESULTS

2.1 Experimental Set-up

As a starting point for understanding the fundamental fluid flow generated by a synthetic

jet actuator, a miniature synthetic jet was fabricated using conventional machining

techniques. The driver is a 25 mm diameter speaker. The cavity, which is 4mm high, is

machined from aluminum. The speaker is mounted to the bottom of the cavity, and a 2

mm thick plate is mounted on the top, thus closing off the cavity. A 3 mm diameter hole

was machined in the center of the top plate. Dimensions and construction are shown in

Figure 2.1. The entire unit is clamped together using screws around the circumference,

thus ensuring a sealed fit. The speaker is connected to a sine wave function generator

with a 20 Volt power supply.

Figure 2.1 Synthetic Jet actuator construction and dimensions.

11
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To visualize the flow, the entire unit was mounted to a board and fitted to the

empty wall of a large fish tank. On the backside of the board, channels were fabricated

that could allow smoke from an incense stick to flow through. The smoke from the

incense first rose through the channels in the board, and was subsequently entrained by

the jet as it exited the orifice. A class IV PIV laser was used to illuminate the plane

through the flow field of the jet. Consecutive snapshots were taken at a rate of 30 frames

per second with a camera. The excitation frequency of the jet was varied in a band

between 500 — 3800 Hz. Outside of this range no jet was observed.

2.2 Flow Visualization

Throughout the published literature (8,9,16), it is reported that a single jet is observed at a

frequency relating to the resonant frequency of the driver. However, in the author's

observations, distinctly defined jets were seen to develop at frequencies well outside the

driver's resonant frequency.



Figure 2.2 Flow visualizations for varying excitation frequencies.
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Figures 2.2a-h show the effects of varying the frequency on the structure of the

jet. At the low frequency of 600 Hz (figure 2.2a), a distinct jet can be observed, although

it is quite weak and imperceptible to the touch. A series of three vortex rings forms near

the orifice. These three rings ultimately break up, with each half of the ring taking its own

path to the far right and left of the jet in distinct streaks. The streaks open into a V pattern

as they move upwards. Eventually, the streaks come together again and form a larger ring

before disappearing from the view.

As the frequency is increased (figure 2.2b), the three vortex rings tend to come

together and form a single stream near the centerline of the jet. At a certain distance

downstream the jet begins to become unstable and ultimately breaks up. At 800 Hz, the

three vortex rings maintain their shape for a longer period. Downstream, they begin to

coalesce and ultimately break up. It is at this frequency that the jet is the strongest and

exherts the greatest force on particles placed in front of it.

At 1200 Hz (figure 2.2d), the characteristic vortex rings seen in the previous

images are no longer present. A mushroom shaped plume is observed very close to the

orifice, but quickly breaks up. The jet is fully turbulent without any distinct features in

the far field. As the frequency is further increased, the jet appears to come together once

again. Distinct mushroom shapes can be observed in alternating patterns rising upwards.

The jet also appears to be more cohesive, maintaining its width as it moves downstream

and ultimately breaks apart.

A very interesting profile was observed at 2000 Hz. The jet appears as a lump

near the orifice. The lump is perfectly balanced, dancing slightly at a frequency

corresponding to the excitation frequency of the speaker. The jet was very stable as long
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as the frequency was maintained. However, slight shift in frequency quickly caused the

lump to break apart.

Between the frequencies of 2000 and 3400 Hz, no jet was observed. As the

frequency approached 3400 Hz, a jet once again begins to emerge. A trail of "roll-ups"

appears visible in the wide jet. The shape is maintained well downstream of the orifice.

Again, between the frequencies of 3400 and 3800 Hz no jet was observed. At the

frequency of 3800 Hz, corresponding to a very low actuator displacement, the jet in

figure 2.2h became visible. Although the jet appears to resemble that of the jet observed

at 1200 Hz, it is much weaker. There is very little momentum transferred to the

surrounding fluid by the vibrating speaker, but its effect on the surrounding fluid is still

apparent.

2.3 Cooling of Electronics

The surging demand for smaller and faster chips, as found in much of today's electronic

packaging, has spurred the need for more effective methods of cooling. Chips are using

more power and getting hotter as more transistors are being put in them. Heat is thus

becoming more concentrated and harder to dissipate in the cramped quarters. This heat

crisis is the origin of a bottleneck in, e.g., increasing processing speed and component

reliability.

Traditional cooling techniques use metallic heat sinks to conduct thermal energy

away from devices, and then transfer this energy to air which is typically circulated by

fans. However, cooling fans have a number of limitations. For instance, much of the

circulated air bypasses the heat sinks and does not mix well with the thermal boundary
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layer that forms on the fins. Fans placed directly over heat sinks have "dead areas" where

their motor assemblies block air flow. Furthermore, as designers boost air flow to

increase cooling, fans use more energy, create more audible noise and take up more

space.

The use of liquid coolants has been proposed as a possible means of reducing heat

build up. However, liquids pose their own set of problems. The piping required to

channel the liquid can itself be bulky and cumbersome and complicated to fabricate.

Furthermore, there is the risk that the coolant can leak on to the circuitry if the seal fails.

By using a pulsed jet in place of a fan, a jet of air can be generated that can be

aimed at a heat source do dissipate heat. These jets are characterized by a buildup of

vortex rings near the orifice of the device. Further downstream, the vortices breakup and

coalesce into a fully developed turbulent jet. This type of jet flow is very effective in

mixing with ambient air and breaking up thermal boundary layers.

In the two figures of Figure 2.3, a synthetic jet is aimed at a plate directly opposite

to the exit of the jet at a distance of 7/16 inch. In the upper picture, the jet is operated at

low frequency. The two large vortices that are created are exactly balanced under the

plate. For cooling applications, this would not be very effective since the built up heat

would not be convected outward. However, when the frequency of the jet is increased,

the vortices begin to break up and leak outward. This outward momentum carries with it

the heat generated by the electronic device.



17

Figure 2.3 Synthetic jet aimed at a wall directly opposite to the jet orifice.

To test the effectiveness of a synthetic jet on cooling, a resistor was mounted to the upper

plate and allowed to heat up until it reached an equilibrium temperature of 90 degrees

Celsius. The resistor properties are shown in Table 2.1. The jet was then turned on and

operated at various frequencies. As can be seen by the measurements shown in Figure

2.4, at an excitation frequency of 450Hz, the jet is quite effective at lowering the

resistor's temperature by 15 degrees Celsius.

Table 2.1 Resistor properties.

Diameter 5/16"
Length 1 1/2"
Voltage 11.5 Volts
Resistance 20Q
Current 66 amps
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Figure 2.4 Synthetic Jet cooling effectiveness on heated resistor.

Further cooling tests were conducted to compare the effectiveness of the synthetic

jet against a more conventional heat sink. The properties of the resistor and the heat sink

are shown in

Table 2.2 and Table 2.3, respectively. The results, displayed in Figure 2.5, clearly

show that the heat sink lowered the temperature by only 8 degrees, from 100 to 92

degrees Celsius, and that the temperature remained steady after an initial drop. The

synthetic jet, on the other hand, lowered the temperature by 16 degrees, down to 84

degrees Celsius. The effectiveness of the synthetic jet by itself to cool electronic

circuitry is quite evident. A further advantage is that the synthetic jet is more compact

than the heat sink and could be readily incorporated into circuit board.



Figure 2.5 Comparison of cooling effectiveness between a synthetic jet and a heat sink.

Table 2.2 Resistor properties.

Diameter 9/16"
Length 1 1/16"
Voltage 11.5 Volts
Resistance 20Q
Current 66 amps

Table 2.3 Heat sink dimensions.

Height 0.5"
Length 1 3/16"
Width 1 1/16"
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CHAPTER 3

MEMBRANE DEFORMATION

3.1 Membrane Mechanics

A clear understanding of the large deflection behavior of thin plates (or membranes) is a

crucial design element for many microfabricated devices, such as micropumps and

pressure sensors. Similarly, a key component of a synthetic jet is the vibration of a

square, rectangular, or circular membrane. Square or rectangular geometries lend

themselves well to common wet etching microfabrication techniques, and are, therefore,

more common in MEMS devices. To induce separation of the fluid from the membrane,

the amplitude of the oscillations must be of sufficient magnitude and frequency. The

large amplitude that is required necessitates a nonlinear large deflection analysis to

accurately predict the membrane deflection for a given pressure loading. In addition,

electrostatic actuation can be readily incorporated into microdevices, and is the preferred

method of applying a uniformly distributed load to actuate a membrane. A cross-sectional

view of the proposed synthetic jet is shown in Figure 3.1.

20
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Figure 3.1 Microjet cross section and dimensions.

Solving the coupled, nonlinear, partial differential equations for the large

deflections of thin plates is a difficult task at best. Exact solutions of the governing

differential equations have been obtained for very few cases only. Consequently, the

importance of accurately predicting the large deflection behavior of plates as used in

microdevices has resulted in several publications addressing the issue (1,6). However, a

ready equation that deals specifically with square and rectangular plates has not been

presented in the literature. An analytical solution is desirable not only for its ease of use,

but also because it makes it possible to easily vary parameters to gain additional insight

to the problem.

Several sources, including Timoshenko and those who refer to Timoshenko,

provide an equation for calculating large deflections of thin plates. A problem with such

equation, however, is that it defines the deflection for a given value of Poisson's ratio,

specifically a Poisson ratio's value of 0.25 (22,24). Presumably, this is done to simplify

the development of the equations by eliminating one variable. While the value of 0.25 is
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common in many engineering applications and can be applied for a wide range of

materials, many newer materials have Poisson values that greatly differ from 0.25. The

development is further simplified by assuming that the plate is square, although there are

some tables available that can be used for certain rectangular plates based on the aspect

ratio of the sides (22,23,24). Ideally, it is desirable to have an equation that is applicable

to any Poisson ratio and any rectangular dimension, and allows the deflection to be

quickly and accurately determined. For circular plates, such an equation is readily

available (6). Therefore, a key goal of this thesis consists of deriving such an equation for

square and, more generally, rectangular plates. A detailed analysis of the membrane

deflection for circular membranes is also included.

3.2 Energy Method for Square and Rectangular Plates Subject to Large Deflections

The energy method offers a relatively simple and accurate technique for predicting the

deflection of a plate subjected to a uniform load po per unit area, as in Figure 3.2

(19,22,24). When the plate deflection w is equal to or larger than the thickness t (w t),

the midplane of the plate stretches, developing in-plane tensile stresses that resist the

stretching. The small deflection plate theory neglects this effect.

Figure 3.2 Thin plate with a uniformly distributed load.



23

Using potential theory, the potential energy of a body is given by

where II is the total energy, Ub is the strain energy due to bending, U rn is the strain energy

due to the stretching of the midplane, and W is the work done by the distributed load. The

potential energy of the body must be at a minimum when the displacements satisfy the

boundary and equilibrium conditions. Note that for very thin plates, Ub can be neglected

since the deflection is many times larger than the thickness of the plate. The membrane

stain energy, Um, is represented by the following area integral

where εx , εy  , γxy are the midplane strain-displacement relations due to bending and

stretching of the plate, E is the modulus of elasticity, t is the plate thickness and v is

Poisson's ratio.

The work done by the uniformly distributed load is given by

where po is the uniform load and w is the deflection normal to the plane.
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If the origin of the coordinates x, y is located at the center of the plate, as shown in Figure

3.3, the displacements in the x,y, and z directions can be represented by the set of

equations (3.5).

Figure 3.3 Thin plate coordinate alignment.

For the clamped plate, the boundary conditions that must be satisfied are

The membrane strain energy and work done by the applied load then become



25

Applying the condition that the potential energy must be minimum to satisfy the

boundary and equilibrium conditions makes it possible to solve for the unknown

coefficients ao and co . The maximum deflection Wmax occurs at the center of the plate and

can be determined using the first equation in the set of equations (3.6)

Similarly, the coefficients ao, co, and the maximum deflection wmax are determined

for a rectangular plate. The derivation follows that for a square plate. The coordinates x,

y are set up as in the square plate, but the sides are now of length 2a-2b, rather than 2b-2b

(Figure 3.4), making the solution algebraically more tedious than in the square case, but
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still yielding an analytical result. The expressions for the displacements are also modified

to account for the different lengths a and b.

Figure 3.4 Rectangular plate with sides of lengths 2a-2b.

For a rectangular plate, the membrane strain energy and work done by the applied load

are given by



The resulting solution for the coefficients c, and a, reads

where the coefficients A, B, and C in the above equations take the form
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An expression for determining the maximum deflection as a function of the lengths a-b

and the Poisson ratio for the case of a rectangular plate has therefore been obtained. A

comparison between the Finite Element Method (FEM) solution using ANSYS and the

above analytical expressions is shown in Figure 3.5.

Figure 3.5 Comparison of FEM results using ANSYS and the analytical expression
obtained for large displacements of a membrane.

3.3 Stresses in a Rectangular Membrane Subject to Large Deflections

Applying Hooke's law, the stresses in terms of strains are given by
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Substituting the set of equations (3.12) into the equations (3.3), the stresses at any point

on a rectangular plate are found to take the following expressions

In the center, where x = y = 0 , the above equations simplify to

For a square plate for which a = b the above formula reduce further to



The maximum stresses are thus found at the middle point of the long side of the plate.

Using the system of coordinates defined in Figure 3.4, it follows that these maximum

stresses at the location x = 0, y = a take the form
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Similarly, at the location x = b, y = 0 the stresses become

While the maximum stress can be predicted to be at the centers of the sides, in practice

the maximum stress is often found near the corners, where large concentration factors can

result due to corner effects. A way to reduce these high stress values due to corner effects

is to slightly round the sharp edges if the fabrication process allows it.

3.4 Energy Method for Circular Membranes Subject to Large Deflection

The above analysis for the displacements and stresses of a square and a rectangular plate

is further applied to a circular membrane. The deflection in the z-direction for a circular

membrane can be given by (24)



subjected to the boundary condition for a clamped membrane

The radial displacement is represented by the following series

which satisfies the zero displacement boundary condition:

Taking the first two terms in the series reduces the above to

The midplane strain-displacement relations due to the bending and stretching of the plate

are given by

(3.33)
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while the strain energy due to bending and stretching takes the expression



The unknowns ci and c2 are found by using the fact that the derivative of the strain

energy must vanish, i.e.

The two unknown coefficients are then found to be
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The work done by the uniformly distributed load reads

is obtained in dimensionelss form

It is noted that for small displacements, the first term on the right hand side of the above

equation does not contribute significantly but this contribution becomes important for
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large deflections. In this latter case, the linear term on the right hand side is less

significant compared to the first term on the same side.

3.5 Stresses in a Circular Membrane Subject to Large Deflections

The maximum bending stresses are given by

In the radial and theta direction the maximum bending stresses become

where z is taken at the midplane, z = t/2.

The bending stress takes the following expressions at the edge, r = a,

The membrane stress is given by
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At the edge, r = a, it reduces to

while at the center, r = 0, it takes the form

Finally, the total stress is the sum of the bending and membrane stresses,

The stresses are depicted graphically in Figure 3.6. For the example, a Poisson ratio of v

= 0.1 is used. It can be seen from the graph that the highest stresses are the bending

stresses at the edge.
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Figure 3.6 Stresses for a clamped circular plate subjected to a large deflection, for a
Poisson's ratio of v = 0.1.

In Figure 3.7, the displacements of a square and a round membrane are compared

graphically. The square line markers denote the nondimensionalized displacement

relations for a square plate while the round line markers depict that of a circular plate. It

is interesting to note that an equivalent pressure results in a larger maximum

displacement for a square membrane. Furthermore, the larger surface area of a square

membrane leads to a larger volume displacement when the membrane is deflected. For

the above reasons, a square membrane is the preferred geometry. However, one needs to
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keep in mind that, in practice, high concentration factors can be present near the corners

of a square membrane which can lead to fractures in the membrane.

Figure 3.7 Comparison of pressure versus deflection for thin circular and square plates
with a large deflection.

3.6 Natural Frequency and Dynamic Deflection

A critical parameter, when considering a vibrating plate, is its resonant frequency. The

largest displacements and most efficient transfer of energy will occur when the plate is

excited close to its natural frequency. The first mode of vibration, characterised by the

largest deflection, is shown in Figure 3.8 for a rectangular plate.
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The plate deflection during vibration is given by

where co, is the natural circular frequency, and w o is a function of x and y that determines

the mode of vibration. Referring to the set of equations (3.5), the deflection w, which

satisfies the boundary conditions and closely approximates the shape of the first mode, is

assumed for wo to be

Figure 3.8 Fundamental mode of a square membrane.

The energy method is applied once more to determine the plate's natural frequency. The

kinetic energy must be added to the total energy (3.1). The kinetic energy is expressed by



which can be rewritten as
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where in , the mass per unit area, is defined as

Upon integrating, the following solution is obtained for the maximum potential and

kinetic energies

To determine the natural circular frequency, the total potential energy

The unknowns ao and co were determined previously (equations (3.10) and (3.11)). The

resonant frequency of the lowest mode of vibration for a square plate subjected to a large

displacement can now be obtained
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For a rectangular plate, the solution is found in the same manner, but is algebraically

more tedious to derive due to the geometric variables a and b, the plate width and height.

The frequency of the lowest mode of vibration for a rectangular plate is then found to

take the form

For small amplitude oscillations, however, bending effects are predominant, and the

resonant frequency reads
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The total resonant frequency is thus a combination of the resonant frequency for large

and small amplitude oscillations, accounting for both membrane and bending effects.

Equations (16) and (17) clearly show that, for small amplitudes, the bending resonant

frequency is a function of geometry and material properties only, and is not amplitude

dependent. For large amplitudes, however, the resonant frequency varies linearly with

amplitude. The total resonant frequency is expressed as

The large displacement of the membrane results in an increase in resistance to deflection

by the membrane. The stiffening causes a shift in the resonant frequency of the

membrane. This effect can be used to "tune" the device to a particular desired resonant

frequency. In Figure 3.9 this effect is depicted graphically, where the resonant frequency

is plotted against the ratio of the maximum center deflection to the thickness of the

membrane. The resonant frequency is constant for an amplitude-to-deflection ratio of

approximately 0.5, above which the nonlinearities manifest themselves.



Figure 3.9 Natural frequency for large amplitude deflections of a square membrane.

The natural frequency of the plate in Hertz is deduced by dividing by 27t

Now that the natural frequency is known, the transmissibility, or ratio of maximum

dynamic to static displacement, can also be obtained

where f is the frequency of a simple harmonic disturbance corresponding to the input

frequency. As the f/fn ratio approaches unity, the amplitude of the forced motion

becomes infinitely large and resonance occurs. This condition should be avoided, as the
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structure could destruct itself. In reality, there is always some damping present in the

membrane itself that will keep this from happening. Finally, the dynamic load per unit

area is obtained as

where gin is the input acceleration. The maximum dynamic deflection is found by

replacing Po with pd in the expression of wmax.



CHAPTER 4

ELECTROSTATIC ANALYSIS

4.1 Electrostatic Actuation

In this work, the flexible membrane is displaced electrostatically. Electrostatic actuation

offers several advantages over other actuation methods, such as piezo-electric excitation.

Most importantly, electrostatic actuation makes it possible to excite the membrane at its

fundamental mode at frequencies outside the natural frequency of the membrane.

Electrostatic actuation also offers high reliability, very fast response time, low power

requirements, and is easily incorporated into micromachined designs.

4.2 The Parallel Plate Capacitor

The equations that describe a basic electrostatic actuator can be readily derived, and can

be found in many textbooks (i.e. 19). Therefore, their derivation is not presented here.

However, a brief overview is provided for reference. A parallel-plate capacitor in which

one plate is allowed to move is considered (Figure 4.1). The plates are separated by a gap

g, have a plate area A, and opposite charges IQ, respectively, when energized. Because

the two plates have opposite charges, there is a force of attraction between the two plates.

43



44

Figure 4.1 Parallel plate capacitor.

When energized, the top plate moves towards the fixed electrode by a distance w. A

spring force is attached to the top plate to model the restorative force. The voltage

determines the force, which stretches the spring, thus determining the change in gap. For

two parallel plates, the voltage is related to the force of attraction through the expression

The gap, g, between the fixed electrode and the flat moveable electrode is g = go — w,

while the spring force is

where F is the force, ε is the permittivity of the material in the gap such as air

(Farads/meter), A is the area, Vin is the applied voltage, g is the gap, g0 is the gap

corresponding to the rest position (zero spring force on zero capacitor charge), and w is

the displacement of the end of the spring.
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An important behavior that occurs in all electrostatic devices is pull-in. At some

critical gap, the system becomes unstable. When this takes place, the control of the

moveable plate is lost and the plate collapses against the fixed electrode. This instability

occurs when the restorative force in the spring can no longer overcome the force of

attraction. The stability criterion dictates that k be

which corresponds to a displacement of the top plate equal to

The corresponding voltage required for pull-in to occur is thus

4.3 Membrane Capacitor Subject to Small Deflections

If the gap, g, is small and the overall deflection of the membrane is also small (i.e. much

smaller than the thickness of the membrane), the membrane actuator can essentially be

modeled as a parallel plate capacitor, and the previous analysis holds. Pull-in can still be

expected to occur when the membrane deflection is 1/3 of the initial gap.

However, if there is a sufficiently large gap so that the membrane can deform to

about the thickness of the membrane itself, fringing effects of the electric field must be

considered. However, for membranes undergoing both small and large deformations,
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special care needs to be taken. The work of Bao et al. (2) is one example in which a

Lagrangian approach was used to solve the problem. Presented here is a closed form

analytical solution to this problem.

The deflection of the plate is a function of x and y, and the plate deforms like a

membrane undergoing linear deformation.

Figure 4.2 Membrane actuator with w(x,y).

The fringing effects are accounted for by developing a pressure for the curved plate that

is equivalent to that for a flat plate. This eliminates the gap's dependency on x and y.

Working from equation (4.1), the following equivalent pressure is obtained

The equivalent gap being defined by g eq = g 0 — w eq , the equivalent pressure can be

rewritten as
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Using equation (4.7) to solve for 1 / g e2q , one obtains

After substituting Equation (4.8) back into equation (4.6) and using

where a m is the maximum center deflection, one obtains the equivalent electrostatic

pressure

Where d , the normalized membrane maximum center deflection, is equal to d = a m / g..
The integral is solved numerically for values such that 0 S d 1. The integral solution is
plotted in

Figure 4.3, and the line is approximated by the function

where



Figure 4.3 Integral solution.

Figure 4.4 Comparison of the integral solution and the curve fitting approximation.



Substituting equation (4.10) for the integral in Equation (4.9) leads to

For small deflections, the maximum center displacement is given by

where D, the flexural rigidity, reads

Equation (4.12) can be solved for p eq and equated to equation (4.13). The voltage

required for a desired deflection can then be obtained
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where

The function given by equation (4.16) has a fixed point, x*, at a = 0.542, whose stability

is determined using

All points 6 > 0.542 result in an unstable solution. Therefore, the maximum center

deflection before pull-in occurs is such that

The stability plot is given in Figure 4.5.

Figure 4.5 Stability plot of normalized membrane deflection for small deflections.
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The voltage at which pull-in occurs, Vpi , can then be readily obtained by substituting

= 0.542 .

4.4 Membrane Capacitor Subject to Large Deflections

The solution for large deflections follows that for a membrane subject to small

deflections. For a square membrane, equation (4.13) is replaced with

where

Equating equation (4.19) to (4.12) gives the maximum center displacement for an input

voltage for large amplitude deflections

In this case, the fixed point occurs at a =0.780, and the maximum center deflection

before pull-in occurs is
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Figure 4.6 Stability plot of normalized membrane deflection for large deflections.

Comparing the pull-in gap for small and large deflections, a substantial increase in the

membrane travel results when the membrane is subjected to large deformations. From a

control standpoint, this makes the actuator effective over a larger range. On the other

hand, the necessary voltage has also increased. This is partially offset in that the voltage

has a weaker dependency on the function f(ā).

4.5 Power

The charge on a capacitor is proportional to the voltage across it, as defined by
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where q is the charge (in coulombs) and V is the voltage (in volts). The ratio of charge to

voltage, C, is the capacitance which has units of coulombs per volt or Farads. The

capacitance is

As with equation (4.9) the gap, g, is replaced with an equivalent gap, g eq . Therefore, for a

membrane capacitor, the capacitance is given by

The time rate of change of charge is the current, that is

Therefore,

The power delivered to the capacitor is



Using equation (4.27), this can be rewritten as
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(4.29)

Finally, the energy stored in the capacitor is derived from the power delivered to it



CHAPTER 5

FLUID FLOW ANALYSIS

5.1 Acoustic Analysis

A rigid container having an opening (channel or neck) with a volume of fluid inside is

called a Helmholtz resonator. The fluid inside oscillates in the neck in response to the

pressure fluctuations generated by the membrane. The assumptions for the Helmholtz

resonator are:

(a) The walls of the cavity are rigid

(b) The natural frequency of the resonator is much less than the time required for sound

to go through the resonator cavity, allowing the cavity to be modeled as a one-

dimensional spring.

(c) The channel is much smaller in cross section than the cavity, so that the fluid velocity

in the channel is much larger compared to the fluid velocity in the cavity. Therefore, the

fluid in the channel can be modeled as a mass.

The resonator's resonant frequency is given by

where A is the cross sectional area of the opening, V is the cavity volume, and LE is the

effective length of the neck. For a rectangular cross sectional channel, the effective

length is
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(5.2)

where AT is the channel cross sectional area. From equation (5.1), it is obvious that a

larger cavity volume results in lower resonant frequencies. This is due to the fact that for

a larger cavity more air must move out of the cavity to relieve a given excess of pressure.

Similarly, an increase in neck length also reduces the resonant frequency since there is

more resistance to the air entering and exiting the cavity. A larger neck area results in a

higher resonant frequency since the air can rush in and out faster. The effects of

geometry on the resonance frequency of Helmholtz resonators is addressed in Chanaud

(4) and also in Ingard (10).

Smith and Glezer (20) observed peak performance when their piezoelectric driven

synthetic jet (not of MEMS scale) was operated at the plate's resonant frequency. This

could be expected, as the largest volume displacements in the cavity occur when the

oscillating plate in the cavity is driven at resonance. On the other hand, Muller et al.

(13,14,15) noted that the peak velocity occurred at some value between the resonant

frequency of the membrane and the acoustic resonant frequency of their micro actuator.

This indicates that their device was not quite following the valid assumptions for an

acoustic resonator, and that some other unaccounted effect was taking place.

5.2 Incompressible Fluid

To quantify the synthetic jet's performance, an estimate of the exit flow velocity and

cavity pressure is desirable. The simplest model for analyzing the fluid inside the cavity

is to consider the fluid as incompressible. Figure 5.1 shows a cavity having a flexible
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vibrating membrane on one side and an opening on the opposite side. The membrane is

shown oscillating at its maximum and minimum position. The membrane velocity is VI,

and the exit velocity is V2. The maximum membrane deflection is referred to as a o while

the membrane area and opening area are denoted by A l and A2, respectively.

Figure 5.1 Membrane deflection in a sealed cavity with orifice opening.

The membrane deflection and velocity are given by (5.3) and (5.4), respectively

A sinusoidal variation of the maximum diaphragm deflection is assumed, i.e.

The volume flux resulting from the membrane deflection is given by equations (5.7)-

(5.l0).
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where AD is the diaphragm area and a o the membrane's maximum displacement at the

center. Using this result and applying continuity, the velocity can then be determined as a

function of the outlet area, At.

Finally, the Reynolds number based on the throat width W can be computed as

5.3 Low order Model for Unsteady Flow into the Cavity

The above simple analysis can give a reasonable estimate of the exit velocity. However,

both the damping resulting from the volume of air in the cavity and the pressure within

the cavity are neglected in the above analysis. The following model overcomes these

shortcomings and gives a more complete analysis of the fluid flow in the cavity.

The volume inside the cavity and its time variation due to the deflecting

membrane are given by
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(5.14)

(5.15)

(5.16)

where VD is the volume displaced due to the diaphragm displacement.

As presented in Muller et al. (13,14,15) who applied conservation of mass inside

the cavity, the resonator's forcing and compliance can be determined using

In addition,

where c is the speed of sound. The resulting solution using the above equations yields an

ordinary differential equation (ODE) for the pressure in the cavity.

The first term on the right hand side represents the cavity compliance and the second

term represents the forcing due to the diaphragm motion.
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In Figure 5.2, a channel connects the cavity to the outside ambient air. The fluid

flows through the channel as it is pulled in and driven out of the cavity.

Figure 5.2 Synthetic jet cavity and exit throat.

Figure 5. 3 Throat parameters.

The governing equation for the unsteady flow is as follows

or, in integral form,



where the viscous term of the right hand side represents the losses in the throat. For a

square channel of uniform cross section, V x co reduces to

which, in turn, becomes
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The exit flow velocity is then given by the following ODE

where Ue is maximum velocity at the exit, p is the difference in pressure in the cavity

from the ambient pressure, and p and la are the air density and viscosity, respectively.

The discharge coefficient is defined by Cd.

A code was written in MATLAB to solve the two ODES (equations (5.20) and

(5.26)) to obtain a solution for the cavity pressure and exit velocity. During the suction

stroke, the following combination of equations holds
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while during the compression (when velocity is positive), the equations were modified to

A sample solution of the above ODEs is plotted in Figure 5.4 and Figure 5.5. It

can be seen that as the frequency is increased the effect of compressibility becomes

prevalent. At 10KHz, there is no difference between the simplified incompressible model

and the low order compressible model (equations (5.11) and (5.27) through (5.30)).

However at 40 KHz the difference becomes clear. The exit velocity for a full range of

frequencies is shown in Figure 5.6.



Figure 5.4 ODE solution at 10 Khz.
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Figure 5.5 ODE solution at 40 Khz.



Table 5.1 Microjet parameters for fluid flow analysis.

Amplitude 15 μm
Cavity height 30 μm
Membrane 3mm x 3mm

Channel Length 360 μm
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Figure 5.6 Jet exit velocity over a broad range of frequencies.

5.4 Simulation with FLUENT

The fluid flow generated by the oscillating 	 membrane was also studied via

Computational Fluid Dynamics (CFD) using FLUENT. The geometry is outlined in

Table 5.2. The fluid is considered to be compressible and the membrane motion

sinusoidal. This causes the fluid domain to change with the membrane motion. Therefore,

an adaptive mesh is prescribed in the cavity to account for the unsteady change in cavity
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volume. The boundary conditions on the side walls of the cavity are taken as no slip. In

the far field, atmospheric pressure is assigned.

In Figure 5.8 vorticity levels are displayed for once cycle of the membrane

oscillation. The plots of vorticity closely resemble the flow fields presented in Chapter 2.

However, the simulation permits the detailed analysis of the fluid flow at any time

during the cycle. It is clear that by the time t = 37c/2, strong vortical structures are present

in the cavity as well as downstream, the vortices propagating downstream as they are

pinched at the edges.

It should be noted that this is not a fully coupled solution to the problem, as the

membrane is given a prescribed motion, which is not affected by the fluid inside the

cavity.

Figure 5.7 Geometry used for the synthetic jet simulation.
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Figure 5.8 2D Vorticity contour levels from the FLUENT numerical simulation of the
synthetic jet.
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Table 5.2 Values used for the synthetic jet simulation of Figure 5.8.

d = 500 μm A = 200 4m
Amplitude = 0.4d h = 500 1.1M

hid = 1 H = 2000 .tin
A/H = 0.1 W = 10,000 lam
W/H = 5 w=10001000 Hz

Some studies were also conducted in three dimensions. The velocity at the exit is

plotted as a function of frequency in Figure 5.9 and compared to that obtained with the

low order model. For the parameters chosen (Table 5.3), there is good agreement at low

frequencies between the incompressible and compressible models/numerical simulations.

However, as the frequency increases, compressible effects become important and some

differences appear. Both the CFD and low order model show a peak in performance at a

certain frequency value and then a sharp drop off as frequency increases. Notice that such

peak is absent when the fluid is considered incompressible. It is then clear from the

results that the peak performance is not only associated with the resonant frequency of

the membrane, but is some function of the fluid inside as well.
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Figure 5.9 Comparison of incompressible model, low order model, and 3D numerical
compressible and incompressible simulations using FLUENT.

Table 5.3 Values used in the 3D FLUENT simulations.

5.5 Squeeze Film Analysis

If the cavity is very thin with respect to the length of the membrane, the squeeze film of

the fluid must be considered. Under such conditions, the fluid can exert huge pressures

against the cavity, greatly hindering its motion and requiring huge voltages to excite. For

simplicity, it is assumed that the membrane deformation is in the normal direction only.
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The analysis begins with the compressible Reynolds gas-film equation, which can then be

linearized and non-dimensionalized (3).

where a is the squeeze film number, defined as

The displacement amplitude is given by the term ε, which is s = —a . (Note: s is the same
go

as a in equation (4.9)) The non-dimensional pressure perturbation is given by y . Using

a finite element PDE solver, the pressure perturbation, Ψ , at all points on the surface can

be determined. Assuming that there is no orifice in the center for the fluid to flow

through, the boundary conditions for the squeeze film problem are shown in

Figure 5.10.

Figure 5.10 Finite element PDE solver Boundary conditions for determining the pressure
perturbation.
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Alternatively, more insight can be gained by analyzing equation (5.31) further. A

solution of the following form is assumed for the pressure distribution

Ψ = Ψ1 cos τ + Ψ0 sin τ 	 (5.33)

The pressure distribution has two components, Ψ1 and Ψ 0 , representing the fluid spring

force and the viscous damping force, respectively. Equation (5.33) can be substituted into

equation (5.31) above. Collecting the sint and COST terms gives

Blech (3) expands the solutions T o and T i as follows:

(5.36)

where the coefficients amn and bmn are given by

The above equations are then solved and plotted using MATLAB. The solutions of the

set of equations (5.36) for varying frequencies are shown in Figure 5.11. As seen from
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the series of pictures in Figure 5.11, at low frequencies the highest pressure is

concentrated in a circular area near the center. As frequency increases, the high pressure

concentration occupies a square-like region, filling out the entire area. It is also

noteworthy that the maximum pressure value decreases as frequency increases, as it is

clear in Figure 5.12.

Figure 5.11 Pressure distribution for increasing frequency.



Figure 5.12 Maximum cavity pressure as a function of plate frequency.

The set of equations (5.36) can be solved analytically and then used to solve equation

(5.33). The non-dimensional damping and spring forces are given by

with the fluid damping coefficient being defined as

where the denominator represents the membrane velocity. Likewise, the stiffness

coefficient is defined as

72
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The frequency at which the damping and stiffness coefficients are equal is also known as

the cut-off frequency. At low frequencies, fluid damping is more prevalent. Above the

cutoff frequency, the fluid acts more like a stiff spring. Equations (5.39) and (5.40) will

be used in the following chapter to describe the one-dimensional equation of motion for

the system.

For the sealed cavity with an orifice, the boundary conditions for the squeeze film

equation can be applied as shown in Figure 5.13. For the membrane, the variation in the

gap spacing is cos πX cos πY . The contour plots in Figure 5.14 allows the comparison

between the result of the 3D numerical simulation and that obtained from the squeeze

film equation solved with a PDE solver (FlexPDE). The slight differences in the

magnitude of the pressure are due to the simplistic boundary condition v= 0 imposed at

Figure 5.13 Boundary conditions for a sealed cavity with orifice.

the orifice. The approximation can be improved by accounting for the losses and

resistance through the channel and the orifice.



a. Solution obtained from the non-dimensional squeeze film equation

b. Full numerical solution of the coupled fluid-structure interaction.

Figure 5.14 Comparison of pressure contours between the full numerical simulation and
the squeeze film equation. The parameters taken are f = 20KHz, ε = 0.4,
gap = 10μm, t = π/2.
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The fluid flow through the nozzle is studied by running a full numerical

simulation of the fluid subject to a sinusoidal fluctuation of the membrane. The fluid
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inside the cavity is assumed to be compressible. The geometry of the jet is symmetric,

therefore only one quarter is considered. The boundary conditions are applied as shown

in Figure 5.13 and the model mesh is displayed in Figure 5.15. The large gradients near

the wall require a very fine mesh to accurately capture the flow velocity profile. An

Arbitrary Lagrangian-Eulerian (ALE) Formulation is employed for moving the mesh in

the cavity.

Figure 5.15 Quarter model mesh for the simulation of the microjet.

In Figure 5.16, it is observed that the fluid is squeezed between the membrane and the

upper cavity wall. Near the channel, the fluid accelerates considerably at the boundary of

the cavity and the channel.
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Figure 5.16 Velocity contours through the nozzle for the following values of the
parameters: f = 20KHz, ε = 0.4, gap = 10μm.

In the series of plots in Figure 5.17, the velocity across the exit plane of the orifice

is plotted as a function of frequency and time. For all but the highest frequency, there is

always a flow in the positive direction near the center of the orifice. However, between t

= 7/2 and t = 27t, there is also flow in the opposite direction going into the cavity. This

negative flow could result in shearing the main flow exiting the orifice, which could

induce vorticity at the orifice.
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Figure 5.17 Velocity profile at the channel exit.

5.6 Power to Overcome Fluid Pressure

The average power required to drive the membrane at a prescribed amplitude is given by

the average of the integral (over the period) of the product of the force and the velocity.

The force is twice the pressure required to displace the membrane multiplied by the

surface area of the membrane. When the membrane is compressed (decrease in cavity

volume and positive velocity), the face of the membrane exposed to the open air

experiences a suction, thus causing the membrane to resist deflection. The force required
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to overcome the negative backpressure (suction) is equal to the force required to deflect

the membrane inside the cavity. The average power can then be expressed as

where p s = cpu and T = 2π / ω, the period of oscillation. Once integrated, the average

power can be calculated according to

Here, the speed of sound is given by c, p is the density of the ambient fluid, and the

membrane area is A. The velocity at the center of the membrane, u, is rewritten in terms

of ao(t), the maximum center displacement, and frequency of oscillation, w. This power

is in addition to the power required to drive the membrane, discussed earlier in Chapter 3.



CHAPTER 6

LOW DIMENSIONAL MODEL

6.1 Coupling of Forces

The fluid flow generated by a synthetic jet is the result of the complex coupling between

the mechanical forces of the deformed membrane, electrical forces from the actuation,

and the forces of the fluid in motion. In the previous three chapters each of these forces

has been addressed individually. This gives great insight into the individual parameters

and their interrelationships. From a practical point of view, it is very desirable to have,

for example, the exit velocity of the jet as a function of the applied voltage. A transfer

function is especially necessary if the actuator is to be used as part of a control loop, in

which the input (voltage) to output (fluid velocity) must be precisely known prior to

applying the control. Therefore, it is necessary to study the effect of these forces when

they are combined. Solving the coupled equations rigorously is computationally

expensive, requiring long run times, and thus often impractical. Numerical simulations

are difficult to set up and require complex software and codes. A low dimensional model

can be extremely useful in capturing the primary actuator dynamics. In the previous

chapters it was shown that the complexity of the full three-dimensional solutions of the

independent problems can be simplified to lower order models. The goal of this chapter is

to combine the various reduced models and compare the integrated model to full

numerical simulations that solve the coupled equations directly.
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(6.3)

(6.4)
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6.2 Equation of Motion

The equation of motion can be used to fully couple the forces in a dynamic setting. The

structural damping of the membrane is small compared to the other forces, and is

therefore ignored. The equation of motion for the system can be written as

where m is the mass of the membrane, k is the membrane's stiffness, Ff is the fluid

pressure, and Fe is the external pressure on the backside of the membrane, in this case the

electrostatic pressure that drives the membrane. Equation (6.1) can be rewritten as

The substitution for the natural frequency can be made

Substituting and rearranging terms yields

while integrating over the membrane area leads to
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(6.6)

(6.7)

where hi = pt is the mass per unit area. The result is then

For the steady case, the acceleration and fluid pressure terms drop out, which leaves

As previously shown, for small amplitude, the stable limit is a = 0.542. This is

substituted into equation (4.12) . Solving for p c and substituting into (6.7) the pull-in

voltage can be estimated.

Adding the effect of the fluid, the equation of motion becomes
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Taking into account the expression of the various coefficients in the former equation, one
obtains

Figure 6.1 depicts the time variation of the membrane position at the center for a

frequency of 100Hz. As expected, at such a low frequency the fluid effects are negligible,

and the membrane simply follows the electric field. The electric field being always

positive, the membrane position is always possible and the membrane oscillates at a

frequency whose value is double that of the driving electric field.



Figure 6.1 Time variation of the membrane position at the center for a frequency of
100Hz computed from the low order model coupling the electric field and
membrane deformation.

Figure 6.2 Time variation of the membrane position at the center for a frequency of 8124
Hz computed from the low order model neglecting the influence of the fluid
flow.
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In Figure 6.2, the drive frequency is increased to the value of 8124Hz, which

corresponds to the natural frequency of the membrane. To study the membrane response

to the electric field alone, the fluid is neglected. Because the electric field is always

positive and attractive, the motion of the membrane is not in phase with the drive

frequency. The membrane position is negative for part of the cycle and the amplitude is

four times lower than at the lower frequency of 100Hz. The electric field can introduce

other modes of vibration, which the low order model cannot fully capture. The damping

and spring effects of the fluid tend to supress higher modes very early in the cycle.

Because the membrane responds by oscillating at its fundamental mode, it is possible to

capture the membrane motion with a one-dimensional model.

A comparison between the full numerical simulation and the low order model is

presented in Figure 6.3. In this example, the system is clearly over damped. The

membrane is initially attracted to the fixed electrode, but then it becomes stuck in the

upper position. The membrane oscillates with very low amplitude. Although the 1-D

model does not lead to an exact match with the full numerical simulation, it clearly

captures the dynamical system's response to the electric field. Where a numerical

simulation can take days to run for just a few cycles, the 1-D model can be solved in

seconds. The model can be effective in signaling out which particular parameters to study

more rigorously with numerical methods.



Figure 6.3 Time variation of the membrane position at the center computed by means of
the full numerical simulation and the 1-D model including the electric field -
fluid -structure interaction at a frequency of 8124Hz.
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CHAPTER 7

MEMS FABRICATION

The synthetic microjet was fabricated by bonding two 8", 380 μm thick silicon wafers.

By creating the membrane on a separate wafer, complications, such as stiction, associated

with releasing thin structures, was avoided. Both wafers were preprocessed with a layer

of oxide and nitrite on all faces. The cavity and throat were also fabricated each on

separate wafers. Standard selective wet etching of silicon can be used to create the cavity.

An advantage to using a wet process is that expensive machinery is not required, and

processing does not necessarily need to take place strictly in a clean room environment.

Access to dry etching machines, such as Deep Reactive Ion Etching (DRIE), is typically

difficult and expensive. A disadvantage of wet etching, however, is that the final feature

is limited to square or rectangular geometries. In addition, the sloped sides that result

from wet etching are not always desirable. Anisotropic wet etching results in a

microdiffuser in place of a straight-walled channel. Subsequently, much of the jet's

energy would be lost. The membrane, cavity, and channel were therefore created in a dry

etch process.

Boron diffusion was used to stop the etching at the desired membrane thickness.

Typical membrane thicknesses range from 5 pm to 15 pm. The nitrite that was used for

the etch mask was stripped off just prior to bonding. The oxide layer remains and acts as

the insulator between the two wafers once they were bonded.

The two-wafer sandwich is divided into 4 equal quadrants. Starting on the top-

right quadrant of the membrane side, the membrane sizes range from 52 
MM2 to 22 

MM
2

,
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as shown in Figure 7.1a. On the opposite side, the minimum channel dimensions are

arranged and incremented as shown in Figure 7.1b. The wafer is diced for the testing of

individual jets. The fabrication was carried out at the Lucent Micro Fabrication Facility in

Murray Hill, New Jersey. The process flow is shown in the figure series of Figure 7.2.

Figure 7.1 Front and back layout of the device showing the two 4" bonded wafers before
dicing.



WAFER 1: JET CAVITY AND NOZZLE

Starting Material:

Silicon Wafer: 8"

Approximately 3501.1M thick
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• Clean Wafers
• Wet Oxidation. Target

3000A
• Silicon Nitride. Target

2500A

• Apply photo resist on front

• Align and expose mask for front etch
• Develop

• Dry etch nitride and oxide



89

• Strip PR
• Dry or wet etch through silicon

(leave approx. 10μm)

• Apply Photo Resist to other side
• Align and expose mask for backside

etch
• Dry etch nitride and oxide

• Dry or Wet Etch silicon. Target:
10-40 pm

• Strip nitride

WAFER 2: MEMBRANE

Starting Material:

Silicon Wafer: 8"

Approximately 350 p.m thick (or less by shaving)



• Clean wafers
• Wet Oxidation. Target 3000A
• Silicon Nitride. Target 2500A

• Apply Photo Resist
• Align and expose mask for front etch
• Develop
• Etch nitride and oxide
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• Etch through silicon, creating a
10-40 μm thick membrane

• Strip wafer
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• Align and bond wafers

Figure 7.2 Process flow for the fabrication of the synthetic microjet.

Figure 7.3 shows the etched nozzle wafer. The section of the wafer has been cut

in half to show the detail of the nozzle and cavity. Figure 7.4 shows a close-up view of

the nozzle.

Figure 7.3 Cutaway section of nozzle wafer showing nozzle and cavity.



Figure 7.4 Close-up view of nozzle and channel.
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CHAPTER 8

CONCLUSION AND FUTURE STUDIES

A vibrating plate in a sealed cavity with a small opening can be used to generate a jet

flow. The jet is created from the fluid surrounding the actuator and is of zero net-mass

flux. A miniature synthetic jet has been fabricated and tested. The jet has been visualized

for varying excitation frequencies of the driver. As the images in Chapter 2 show, the

characteristics of the jet can vary over a range of drive frequencies. At low frequencies

distinct streaks are present and the jet is well defined. As the frequency is increased, the

jet becomes more turbulent and less cohesive. A curious observation was made in that

there are ranges of frequencies in which no jet was observed. By altering slightly the

drive frequency, a jet can thus be created or destroyed. The displacement, or stroke, of

the driver varies with the drive frequency, and cannot be decoupled.

Experiments were conducted to test the jet as an electronic cooling alternative.

Temperature measurements show that for the cases studied, by impingement of the jet on

a concentrated heat source, a substantial reduction in heat can be achieved. The jet was

found to be more effective at cooling than a comparable sized heat sink alone. Future

studies should concentrate on deriving nondimensionalized parameters that can quantify

the optimized placement of the jet relative to the heat source. The effect of baffling, the

degree of cooling that can be achieved in sealed or nearly sealed enclosures, and tripping

of the boundary layer of a crossflow created by a fan should be studied further. In

particular, tripping the boundary layer with the synthetic jet has great promise in

enhancing the cooling effectiveness of fans alone.
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In Chapters 3, 4, and 5 the membrane mechanics, electrostatic actuation, and

fluid dynamics, respectively, were each studied separately in detail. Most noteworthy is

that a squeeze film approach is used to quantify the cavity pressure of the microjet. The

cavity pressure generates the pressure head to drive the fluid into and out-of the cavity.

Due to the squeeze film action, acoustic effects in the cavity are not applicable. The

pressure in the cavity generates the head that drives the fluid through the cavity.

Simulations indicate that there is always a positive mean flow in the center of the

channel. The fluid entering the cavity stays near the walls of the channel. This adjacent

positive and negative vectored flow could shear the mean flow through the channel,

which could induce vortex formation near the orifice. The flow field just downstream of

the orifice for the microjet was not studied here, but should be studied in more detail in

future works.

In Chapter 6 the separate physics of the previous three chapters are combined to

derive a closed one-dimensional transfer function that can capture the prevalent dynamics

of the system. The inputs to the model are the voltage amplitude and driving frequency.

The function was solved for the membrane displacement in time. The dynamical system

was also solved using Ansys Multi Physics. When compared to the Ansys simulation, the

transfer function captures the main features of the system response. However, the one-

dimensional model is a powerful tool in that it can greatly reduce the computational time

required to evaluate and predict the jet efficiency for a given set of parameters. Once the

desired response has been identified with the model, the system can be studied in more

detail using more rigorous and precise numerical methods. The preliminary results

presented in Chapter 6 indicate that for the parameters chosen, the system tends to be
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over damped. A more complete study should be conducted to identify parameters, such as

the drive function, which can give the optimum displacement response of the membrane.

Indications are that a slightly "tweaked" sine function can give a more desirable response.

In addition, a square pulse input function was not studied at this time; however, a detailed

analysis should be carried out in the future.

Lastly, in Chapter 7 a design for fabricating a micro-sized synthetic jet actuator is

presented. The primary design element is that the membrane and cavity with channel are

created on separate wafers. The wafers are then bonded together. This avoids

complications which arise in releasing thin structures. This also allows more control in

the dimensions and tolerances for the membrane thickness and cavity height. Finally,

some images of the fabricated device are shown at the close of the chapter.

In this study, the fabricated jet was not yet tested. As a first step, a static analysis

of the membrane displacement should be conducted and membrane actuation

demonstrated. Once it has been demonstrated that the membrane can be successfully

actuated, further tests can focus on the dynamic response of the membrane. Micro PIV

could be useful in visualizing and quantifying the jet field. It is hoped that once the

successful operation and satisfactory performance of the jets are confirmed, the jets will

be used to control some classic flows. Some possible flows to be studied include

boundary layer plate flow or wake flow. The jet should also hold great promise as a

mixer, particularly for gaseous flows.
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