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ABSTRACT

THE EFFECTS OF AGING ON CARDIAC MECHANICS

by
Samuel C. Lieber

It is well established that the aging heart exhibits left ventricular (LV) diastolic

dysfunction and changes in mechanical properties, which have been attributed to

alterations in the extracellular matrix (ECM). The investigators tested the hypothesis

that the mechanical properties of cardiac myocytes significantly change with aging

thereby contributing to the LV diastolic dysfunction. Cellular mechanical properties

were determined by indenting cells with an atomic force microscope (AFM). The

indentation results were interpreted by modeling the AFM probe as a blunted cone and

determining an apparent elastic modulus (E) with classical infinitesimal strain theory

(CIST). A commercially available finite element software package (ABAQUS) was

used to further explore nano-indentation and the use of CIST to determine material

properties. The cellular mechanical property changes, measured in young and old

cardiac cells isolated from rats, showed a significant increase (p<0.05) in E with aging.

Cellular protein changes were assessed by immunoblot (western) analyses in order to

establish if material property changes also occurred with aging. The western results

indicate significant (p<0.05) changes in cytoskeletal and mechanotransduction proteins

with aging. These data support the concept that the mechanism mediating LV diastolic

dysfunction in the aging hearts resides, in part, at the level of the myocyte. The effect of

these aging induced cellular changes on global cardiac function will be further explored

with instrumentation developed for implantation in an in vivo animal model.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this work is to analyze the effect of aging on single cardiac cell

(myocyte) material properties and its relation to global cardiac function. The mechanical

properties will be determined by indenting cells with an atomic force microscope (AFM)

allowing force and indentation depth to be measured. The indentation results will be

interpreted by modeling the AFM probe as a blunted cone and determining an apparent

elastic modulus with classical infinitesimal strain theory (CIST). A commercially

available finite element software package (ABAQUS) will be used to further explore

nano-indentation and the use of CIST to determine material properties. The selected

method will then be used to compare the Moduli of young and old cells isolated from

rats. Cellular protein changes will be assessed by immunoblot (western) techniques in

order to establish if a physical material property change has occurred with age.

Instrumentation for implantation will be developed for an in vivo animal model in order

to explore the effect of aging induced cellular changes on global cardiac function.

1.2 Anatomy of the Heart

The heart is divided into four muscular chambers, the left and right atria and left and right

ventricles, which are arranged to form the left and right heart pump systems (Figure 1.1).

The right heart pump system (right atria and ventricle) is part of the pulmonary vascular

system which sends deoxygenated blood to the lungs to be oxygenated.

1
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Figure 1.1 Diagram of the heart. Image modified from [I].

The left heart pumping system (left atria and ventricle) is part of the systemic vascular

system which pumps blood throughout the rest of the body [I]. The flow of blood

through the chambers of the heart is shown in Figure 1.1. Blood returns from the

systemic system (organs, muscles, tissues, etc.) to the right atrium by the superior and

inferior venae cavae (veins). Blood then passes the tricuspid valve into the right ventricle

where it is pumped through the pulmonic valve into the pulmonary (associated with the

lungs) circulation system through the pulmonary arteries. Blood is oxygenated at the

lungs and flows to the left atrium through the pulmonary veins. Blood then passes

through the mitral valve into the left ventricle where it is pumped through the aortic valve

into the aorta (artery) to be sent throughout the rest of the body [1]. The right and left

heart pumps are different physically but operate in the same fashion. The right ventricle
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pumps at a lower pressure then the left ventricle, which has roughly three times the mass

and twice the thickness of the right ventricle [2]. The focus of this research is on the left

heart pump, and its "pressure pump" the left ventricle.

1.3 Cardiac Muscle Anatomy and Function

The left ventricle is an axisymmetric ellipsoid constructed from billions of cardiac muscle

cells (myocytes) connected end-to-end to form a network of muscle fibers (Figure 1.2 )

[2]. Cardiac myocytes occupy approximately 75% of normal myocardial tissue

volume[3].

Figure 1.2 Cardiac muscle fibers consist of myocytes which consist of myofibrils. Image
modified from [4, 5].

Myocytes are branched and connected to other myocytes in an end-to-end fashion

throughout the myocardium via low-resistance folds known as intercalated disks. The

purpose of these disks is to provide a mechanical and electrical connection between the

so that the contractile force is felt and the action potentials can propagate along the

length of the myocyte onto other connected myocytes. Myocytes are tubular structures
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50-130 μm long with a diameter of 10-50 pm [5, 6]. The ability of the ventricles to

generate pressure is derived from the ability of individual myocytes to shorten and

generate a force [ I ]. Force production and shortening of cardiac muscle are created by

regulated interactions between contractile proteins which are assembled in an ordered and

repeating structure called the sarcomere (Figure 1.3).

Figure 1.3 (A) Electron micrograph of a sarcomere and (B) schematic diagram showing
protein structure [5].

Cardiac myocytes are electrically excitable cells and contract when they are

stimulated by ionic electrical impulses (action potentials). The action potentials cause

mechanical contraction through a process called excitation-contraction coupling, which

occurs with a dramatic increase in the intracellular Ca 2+ concentration (from resting 0.1

μM to maximum 100 μM) [1]. The cardiac cycle (one heart beat) is divided into the

systolic (contraction) and diastolic (relaxation) phases. Systole occurs when the
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intracellular Ca2+ level is greater than 1.0 and the cross bridges between myosin and

the actin filaments form [1, 2]. During systole, the muscles shorten and generate force

along their long axis by the linking (cross bridges) between the myosin (thick filaments)

and actin (thin filaments) assembled in a repeating 2.5 'um long structure (sarcomere) [5].

The actin filaments are attached in a band of structural proteins (Z disc) on the boundary

of each sarcomere, and the myosin filaments are held in a strand of proteins centered

between the Z-discs (M-line) [5]. Diastole (relaxation) is the period of time during which

the muscle relaxes from the maximally contracted state back towards its resting state [2].

This is known as the sliding filament mechanism of contraction [1, 2].

1.4 Cardiac Myocyte Structure and Function

The outer surface of the cardiac myocyte, is comprised of a surface membrane called the

sarcolemma, a lipid bilayer containing pumps and channels that control the influx and

efflux of ions that produce action potentials [2]. The proteins which contribute to the cell

shape, mechanical resistance, and morphological integrity of cardiac myocytes can be

subdivided into several groups based on their structural and functional properties [7].

This work focuses on proteins in two major groups those which strongly contribute to

mechanotransduction and those which are part of the cytoskeleton.

1.4.1 Mechanotransduction and Membrane Associated Proteins

The process of mechanotransduction refers to cellular mechanisms by which cells sense

physical forces, transduce the forces into biochemical signals, and generate appropriate

responses leading to alterations in cell structure and function [8]. How cells respond to
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variations in mechanical forces is critical to maintaining stable physiological functions

(homeostasis) and in the development of many diseases [9]. Mechanotransduction in

cardiac myocytes is particularly complex, in that individual muscle cells both respond to

externally applied mechanical forces as well as generate internal loads that are

transmitted to adjacent cells and their surrounding extracellular matrix (ECM) [8].

Understanding the cellular and molecular basis for mechanotransduction is important to

our overall understanding of cardiac structure and function in the normal and diseased

heart. Mechanotransduction can be further studied by investigating the common pathway

for force transmission through groups of proteins. The main signaling section for the

cytoskeleton is the focal adhesion complex: a multimolecular structure consisting of

structural proteins, signaling molecules, and transmembrane receptors. Focal adhesions

are dynamic structures that respond to mechanical stress with rapid reorganization and

formation [10]. These proteins are all localized at or close to the cellular membrane and

are functionally different from the extramyofilament cytoskeleton [11]. These proteins

are involved in the fixation of sarcomeres to the sarcolemma and the stabilization of the

T-tubular system [12]. They represent a component connecting the intracellular

environment with the ECM [7, 11]. They, along with integrin, are involved in

mechanotransduction where physical forces are converted into biochemical

signals(Figure 1.4) [2].
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Figure 1.4 Sketch of membrane associated proteins which are involved in
mechanotransduction in myocytes. Image modified from [2].

1.4. 1 .1	 Integrins. Integrins (MW 130 kDa) are strain transducers and are the main

receptors that connect the cytoskeleton to the ECM [13]. Integrins were initially

considered solely as molecules necessary for adhesive interactions between cells and the

ECM, but they have also been recognized as having an intimate relationship with force.

[14]. Recently, integrins have also been identified as mechanotransduction molecules in

cardiac cells converting mechanical signals to biochemical ones [15, 16].



8

	

1.4.1.2	 Vinculin. Vinculin (MW116 kDa) links the cell membrane and actin

filaments via talin, paxillin and a-actinin. Some have reported that Vinculin is located at

the Z-disc [17]. However, others have shown through confocal microscopy studies that

vinculin is part of the T-tubular membrane, which gives the impression of being localized

in the Z-disc [12]. A tail domain of vinculin (MW 116 kDa) binds to actin [18], whereas

the head binds to talin. Vinculin is in close contact with integrins and serves as an anchor

for actin and actin-binding proteins (e.g. a actinin). Vinculin contributes to the stability

of the cell membrane and is involved in communication, through integrins, between the

intracellular and extracellular proteins. In cardiac myocytes, vinculin is localized in the

fascia adherens part of the intercalated disk and at the costameres of the lateral

sarcolemma [11].

	1.4.1.3	 Talin. Talin (MW 215 kDA) is important in cell substratum adhesion.

Talin forms a high affinity bond with vinculin and binds to f3-integrin, but not to actin.

Talin is another major component of focal cell contacts and is found not only in striated

muscle but also in smooth muscle cells, endothelia, and some hemopoetic precursor cells.

Its major role is in establishing an attachment between the myofibrils and membranes. In

cardiac myocytes, talin shows a labeling pattern similar to that of vinculin, but it is absent

in the intercalated disc [11].

	1.4.1.4	 α-actinin. a-Actinin (MW 100 kDA) cross-links the actin filaments at the

level of the Z-disc and keeps them in a fixed position. This allows interaction with the

myosin cross bridges to be possible and increases the stability of the sarcomere. a-actinin
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is also an important link between actin and the cell membrane. It establishes

communication between the intracellular environment and the ECM through cross-links

with vinculin, talin, integrins, and fibronectin. a-actinin is also important in creating new

myofibers [19] .

	1.4.1.5	 Filamin. Filamin is a structural protein that belongs to an extended family

of actin-binding proteins. Filamin-A and -B are ubiquitous, whereas filamin-C (MW

—280 kDA) is a muscle-restricted isoform [20]. The main known function of filamin is to

cross-link actin filaments. This is achieved by the binding of the filamin dimer to two

actin filaments through its N-terminal actin-binding domain, leading to the formation of a

hinge between the two filaments. Filamin-C also binds to some transmembrane proteins

such as 131 integrin [21].

1.4.2 Cytoskeletal Proteins

	

1.4.2.1	 Microtubules. The tubulin molecule is a heterodimer of an a- and 13-

isoform with a molecular weight of 55 kDa per monomer and a diameter of 25 gm [7]. A

constant turnover of microtubules by polymerization and depolymerization takes place.

In cardiac myocytes, only 30% of total tubulin is present in the polymerized form as

microtubules whereas 70% occurs as a non-polymerized cytosolic protein [22].

Microtubular associated proteins (MAPs) bind to a- and β-tubulin and play a significant

role in stabilizing microtubules and enabling an interaction with other cellular organelles

[7•
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The main role of the microtubular network is to act as a railway that allows for the

transport of particles between intracellular sites, which synthesize proteins and lipid

particles and target organelles in construction [23, 24]. The microtubules constitute a

dynamic network in the cytoskeleton that forms by polymerization and disassembles

rapidly by depolymerization [25]. This process allows for rapid modifications of the

extent and shape of the microtubular network, even without changes of the pool of

available tubulin in the cell. One would expect that the microtubular network would be

expressed in increased amounts as long as the myocyte receives a stimulus to grow and

would disappear when the stimulus disappears [26].

1.4.2.2 Desmin. Desmin (MW 53 kDa) belongs to the family of intermediate

filaments with a diameter of 12-15 nm, which ranges in size between microtubules (25

nm) and actin filaments (8-10 nm) [7]. This protein is found mainly in the Z-disk of

striated muscles and in the dense bodies of smooth muscle cells (SMC) [27]. It plays an

essential role in maintaining muscle cytoskelatal architecture by forming a three-

dimensional scaffold around the myofibrillar Z-disk, and by connecting the entire

contractile apparatus to the subsarcolemmal cytoskeleton, the nuclei, and other organelles

[28, 29]. Desmin also forms longitudinal connections between the peripheries of

successive Z-disks and along the plasma membranes of striated muscle cells [27].

Desmin is particularly abundant in the intercalated disks, which is the attachment point

between cardiac myocytes in cardiac muscle. Studies indicate that desmin is essential for

maintaining the structural integrity and function of muscles, and may be important for the

positioning of mitochondria. Moreover, it is involved in the generation of active and
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passive forces through support of the sarcomere, is implicated in tissue repair, and is

important in cell matrix interactions [27].

1.5 Contributions of Cellular Structure to Mechanics

The mechanical properties of tissue cells may contribute to the overall deformation of the

tissue under applied forces. The field of cell mechanics addresses this topic together with

how cells move, deform, interact, as well as how they sense, generate, and respond to

mechanical forces. Recent developments in cell mechanics have included studies of

cytoskeleton dynamics and cell ECM interactions. Cell mechanics examines the

mechanical properties of not only whole cells; but also the subcellular structures (e.g.

microtubules, actin filaments, and intermediate filaments) [30].

The shape and mechanical properties of tissue cells likely depends on the

cytoskeleton. The internal cytoskeleton is composed of an interconnected network of

actin filaments (6-10 nm in diameter), intermediate filaments (7-11 nm) and

microtubules (25 nm) [31]. The three filamentous systems of the cytoskeleton are

believed to be the major stress-bearing components in the cell, but also could be the

structures that provide the mechanical interconnections from the membrane to the

nucleus [30]. The mechanical properties of the cytoskeleton are a determinant factor in

cell shape, and cellular functions including spreading, crawling, polarity, and cytokinesis

[32-36]. The microtubule assembly participates in diverse processes, such as cell

morphology, cellular motility, intracellular organization and transport [37]. Microtubules

can also function as rigid struts opposing the force generated by the actin/myosin

interaction [37, 38] and could contribute to the cytoskeleton's stiffness [39, 40].
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1.6 Cardiac Pump Mechanics

The cardiovascular system (cardio refers to the heart, vascular to the vessels) consists of a

central pump, the heart, and a network of tubes (blood vessels). This system transports

blood which nourishes cells, removes cellular waste, and helps to protect against

infection [41]. When the heart contracts (systole), blood is pumped into the large arteries

(aorta) and the carotid arteries which then expand. As blood flows out of these arteries

into smaller ones throughout the body the large blood vessels (aorta and carotid arteries)

then recoil back to the size they had prior to the heart contraction. As the arteries relax,

the heart also relaxes and fills with blood in preparation for the heart expansion (diastole)

[42]. The mechanical function of the heart can be described by the pressure and volume

changes that occur during one cardiac cycle (Figure 1.4) where left ventricular volume

(LVV), left ventricular pressure (LVP), left atrial pressure (LAP) and aortic pressure

(AOP) are plotted as a function of time. Before time A LVP and LVV are relatively

constant and AOP is gradually declining. At time A there is electrical activation of the

heart, contraction begins, and pressure rises inside the chamber. Early after contraction

begins, LVP rises to be greater than the left atrial pressure and the mitral valve closes.

Since LVP is less than AOP, the aortic valve is closed as well. Since both valves are

closed, no blood can enter or leave the ventricle during this period called isovolumic

contraction. At time B LVP is greater than AOP and the aortic valve opens, during which

time there is very little difference between LVP and AOP, provided that AOP is

measured just on the distal side of the aortic valve. During this time (ejection phase),

blood is ejected from the ventricle into the aorta and LV volume decreases.
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Figure 1.5 Left Ventricular Volume (LVV), Left Ventricular Pressure (LVP), Left Atrial
Pressure (LAP) and Aortic Pressure (AOP) are plotted as a function of time. Image
modified from [2].

As the contraction process of the cardiac muscle reaches its maximal effort,

ejection slows down and ultimately, as the muscles begin to relax, LVP falls below AOP

at time point C where the aortic valve closes. At this point ejection has ended and the

ventricle is at its lowest volume. The relaxation process continues as indicated by the

continued decline of LVP, but LVV is constant at its low level. This is because, once

again, both mitral and aortic valves are closed; this phase is called isovolumic relaxation.

At time D the LVP falls below the pressure existing in the left atrium and the mitral valve

opens. At this point, blood flows from the left atrium into the LV as indicated by the rise

of LVV with an increase in LVP as filling proceeds (filling phase) [1, 43]. The LVs

pressure and volume is linked to the tension and length of the cardiac myocytes forming

the muscle in its walls, where the cardiac muscle length-tension relationship is the basis
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for ventricular function [1]. The resting tension (preload) of the cardiac muscle fibers is

set by the End Diastolic Pressure (EDP). The tension that must be developed by cardiac

muscle fibers before they can shorten is referred to as afterload, which is the systemic

arterial pressure [2].

The phases of the cardiac cycle can be demonstrated by displaying LVP as a

function of LVV on a pressure-volume diagram (Figure 1.6), accomplished by plotting

the simultaneously measured LVV and LVP on appropriately scaled axes, which

corresponds to a cardiac muscle length tension relationship. In general terms, systole

includes isovolumic contraction and ejection; diastole includes isovolumic relaxation and

filling.

Figure 1.6 Pressure Volume (PV) Loop created by plotting LVP against LVV. Image
modified from [44].

As shown in Figure 1.6, the plot of pressure versus volume (PV loop) for one

cardiac cycle forms a clockwise loop. The point of maximal volume and minimal

pressure corresponds to time A on Figure 1.5 which is the beginning of systole. During

the first part of the cycle, pressure rises but volume stays the same (isovolumic
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contraction). Ultimately LVP rises above AOP, the aortic valve opens (B), ejection

begins and volume starts to decrease. After the ventricle reaches its maximum activated

state (C), LVP falls below AOP, the aortic valve closes and isovolumic relaxation

commences. Finally, filling begins with the mitral valve opening (D). Analysis of a PV

loop alone can provide several indices of the LV mechanical function; however, the

major strength in this technique is the analysis during interaction. This interaction is

achieved by varying the pressure conditions through occlusions in the circulatory system

preventing LV filling (change in preload volume) or restricting LV emptying (change in

afterload resistance) (Figure 1.7) [1, 43].

Figure 1.7 Pressure-Volume Loop with intervention (preload) allowing ESPVR and
EDPVR to be determined.

Plotting of the End Systolic Pressure Volume points and End Diastolic Pressure

Volume points during these interactions allows the development of indices of systolic

elastance (End Systolic Pressure Volume Relationship (ESPVR)) and (End Diastolic

Pressure Volume Relationship (EDPVR)). The regulation of the cardiac function depends

on communications with the heart, the rest of the body, and the external environment.
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These communications are made possible by signaling pathways which target receptors,

that recognize and interpret the arrival of these small molecules on the cell surface. The

most important regulators of the cardiac function are opposing stimuli carried by the

sympathetic and parasympathetic nervous systems. Sympathetic stimulation increases

heart rate, blood pressure, and myocardial contractility whereas, parasympathetic

stimulation slows the heart, decreases blood pressure, and causes a negative effect on the

force of muscle contraction [2].

1.7 The Effects of Cardiac Aging

Aging is marked by a decline in LV diastolic function in the absence of cardiovascular

disease [45]. A significant number of patients who exhibit symptoms of congestive heart

failure have preserved systolic function, but have significantly elevated LV filling

pressures (diastolic heart failure). Diastolic heart failure is associated with various

conditions including: aging [46]. This finding indicates that aging changes may

predispose older individuals to diastolic heart failure. These changes include: increased

hypertrophy and stiffness of the left ventricle, increased vascular stiffness, and decreased

cardiovascular reserve [47]. Progress in understanding diastolic heart failure has been

hindered by several factors: a lack of a reliable test to quantify the diastolic function, a

poor understanding of the physiology of heart failure, and a lack of a standard definition

of the medical condition [47]. Scientists believe that the mechanism of diastolic heart

failure can be elucidated by the integration of information acquired from basic science

investigations conducted in vitro and in vivo, mathematic modeling, and clinical
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investigations that can characterize the incidence, prevalence, and natural history of

diastolic disease [46].

1.8 Rat Cardiac Aging

Aging is marked by a decline in left ventricular (LV) diastolic function in the absence of

cardiovascular disease [45]. This age-related alteration in diastolic function has been

linked to structural changes [48], where stiffness has been measured in the whole heart,

excised papillary muscles, or cardiac muscle fibers [49, 50]. However, despite the

agreement that there is an increase in collagen content in the aging heart, results of

ventricular stiffness have been controversial indicating an increase [51], no change [52,

53], and even a decrease [54] with age in a number of animal species. The inconsistencies

in stiffness results led us to investigate what is occurring at the level of the single LV

myocyte.

The rat has been a widely accepted and used model for cardiac aging, where a

50% colony mortality is an indication of senescence [50]. In most strains of rats the

senescent heart exhibits moderate LV hypertrophy (25%) compared to hearts from young

and middle aged animals [50].In contrast to humans the senescent rat's LV wall thickness

does not increase, but the LV cavity dilates [55], which can occur in the absence of high

blood pressure (arterial hypertension) [56]. The ECM has been attributed with the

majority aging induced cardiac dysfunction where the average LV collagen content

doubles between adulthood and senescence [57] and LV fibronectin is markedly

increased in senescent compared to adult rats [58]. The increased expression of

fibronectin in the senescent heart has been linked to the overall increase in the proportion
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of the ECM [59]. Despite the increase in collagen content with fibrosis, there is no major

uniform change in passive myocardial stiffness [49]. The changes observed in rat

physiology with aging has been controversial as described in Table 1.1 where systolic

parameters including Left Ventricular Systolic Pressure (LVSP), rate of pressure

generation (+dP/dt), and elastance (Emax) and diastolic parameters Left Ventricular End

Diastolic Pressure (LVEDP), rate of pressure generation (-dP/dt), and isovolumic

relaxation time (t), and the End Diastolic Pressure Volume Relationship (EDPVR) were

measured in different strains and at different ages.

Table 1.1 Effect of Aging on Rat Physiology

Paper Aging Effect Species/Strain
Schmidt [60] 1) LVSP no change

2) +dP/dt no change
3) LVEDP increased
4) -dP/dt decreased
5) 't increased
6) Emax no change.

Male F344 rats aged 6,
26 mo

Zieman [61] 1) LVSP & LVEDP no
change

2) '1 increased

Male Wistar rats aged
4-7, 22-25 mo

Wanagat [62] 1) LVSP & LVEDP
decreased

2) +dP/dt & -dP/dt
decreased

Male F344xBN rats at
5 and 36-38 mo

Pacher [63] 1) LVSP & LVEDP
increased

2) +dP/dt & -dP/dt
decreased

3) Emax increased
4) t increased
5) EDPVR slope

increased

Male F344 rats aged 4-
5-moand 24-26-mo

Brenner [53] 1) LV relaxation
decreased.

2) Fractional shortening
decreased.

3) LV stiffness was not
affected by age.

Male F344xBN rats at
6 and 24 mo
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Most of the increase in cardiac mass with aging, however, is due to myocardial

cell enlargement (as is the case in humans). In individual myocytes isolated from rats of

2, 6-9, and 24-26 months of age, the average myocyte length increases by 20% between

2 and 24-26-months of age, while the average slack sarcomere length does not change

although the average volume of individual cells approximately doubles over this age

range [6]. There is also evidence to indicate that the number of myocytes within the heart

decreases with aging, due to both necrosis (provoked cell death) and apoptosis (cell

suicide), with the former predominating [59, 64, 65]. The effects of aging on single

myocyte kinetics has also been documented, specifically it has been shown that the

kinetics of the cellular reactions, which underlie the heart beat, are reduced in the

senescent vs. the younger adult.

In rodent cardiac muscle, the action potential, the transient increase in cytosolic

Ca2+, and contraction are all prolonged with aging (as reviewed by [50]). The altered

profile of excitation contraction mechanisms with aging results in a contraction that

exhibits a reduced velocity and a prolonged time course. This has been reasoned to be

energy efficient, where a prolonged contraction allows ejection of blood for a longer

period of time[45, 50, 66]. The changes in myocyte contraction has been attributed to

many factors including a change in the sarcomere's myosin heavy chain (MHCs) material

property from a faster to a slower form [50]. Isolated myocytes and myocardium

preparations have also shown 131 and 132 adrenergic receptor (AR) impairment with aging,

where a reduced myocardial contractile response is seen to either 131AR or 132AR

stimulation [67]. Further changes in the rat myocardium have been summarized by

Lakatta in Table 1.2 [66]
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1.9 Atomic Force Microscopy (AFM)

1.9.1 AFM Development and Principle of Operation

The AFM, originally developed by Binnig, Quate, and Gerber [68], can image the three

dimensional surface structure of biological specimens. The AFM has been used to image

living cells, the cell's underlying cytoskeleton, chromatin and plasmids, ion channels, and

a variety of membranes [69-73]. Dynamic processes such as crystal growth, mechanical

pulses of cardiac cells, analysis of the mitotic cycle of living vertebrate cells, the

polymerization of fibrinogen, and physicochemical properties such as elasticity and

viscosity in living cells have been studied with the AFM [74-76].

The AFM tip, attached to a cantilevered spring, moves over the surface of the

specimen and is deflected by the interaction forces between the tip atoms and the

specimen atoms. Because the spring constant of the commonly used cantilevers (10 -1 to

10 -2 N/m) is much smaller than the intermolecular vibration spring constant of the atoms

in the specimen (10 N/m), the cantilever can sense small forces exerted by the individual

sample atoms [74]. The deflection of the tip is a measure of the forces sensed by the

cantilever and the sensed forces are transduced to develop molecular images. The sample

is raster scanned in the xy-plane beneath the tip. The vertical position of the sample (z) is

also monitored. These movements are controlled by a piezoelectric xyz scanner; which

uses the three coordinates to create an image [77].
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1.9.2 AFM Cellular Imaging and Resolution

The AFM can image cellular and subcellular structures under physiological conditions

with a resolution exceeding that of optical microscopes. Fixed erythrocytes dried onto

glass cover slips were some of the first cells to be imaged by the AFM [69]; however,

little information was obtained about the extracellular or intracellular structures. Living

adult atrial cells were imaged at a resolution of —20 nm [78]. At this increased resolution

the cytoskeletal elements including muscle sarcomeres and cross bridges were able to be

visualized [74]. Many cells have been imaged in aqueous conditions and many have been

imaged alive [70, 71, 79-84].

The resolution obtained with the AFM may be cell dependent as well as hardware

dependent. The limit of the AFM spatial resolution is not well defined. The images are

formed by reconstructing the contour of forces exerted between the specimen and tip. By

selecting a small scan size and appropriate operating conditions, one can often distinguish

two adjacent objects that are < 1 nm apart [85]. The lateral resolution in AFM is limited

by the elastic indentation [86-90]. Biological materials, such as cells, often show a lower

lateral resolution which can be explained by their deformation due to the AFM tip [87].

When the tip indents a soft surface, a certain contact area between the tip and the sample

is created. This contact radius can be taken as a measure of the lateral resolution if one

ignores the surface roughness [86]. From elastic experiments, Radmacher et al. [90]

calculated a diameter between 500 and 50 nm for this contact area which is in good

agreement with the lateral resolution usually obtained on cells. Forces in the pN range (1-

10 pN) are required to obtain high-resolution images on biological materials with about 1

nm vertical deformation and only a few nm2 area of contact [87, 88, 91]. The lateral
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resolution achieved depends on the characteristics of the tip, the operating environment,

and the nature of the specimen [74].

For biological specimens in a normal imaging situation (e.g., the imaging of a

living cell surface), the resolution is relatively poor (-10 nm) but higher than light

microscopes and comparable to that of scanning electron microscopes. In the case of soft

materials, such as cells, the achievable resolution will be limited by the elastic

indentation of the sample by the tip. The resolution obtainable thus depends on the

softness of the sample, the geometrical shape of the cantilever, and the loading force

applied by the AFM tip [90]. The factor limiting resolution on the cell surface is the

mobility of the upper membrane with respect to the lower membrane, which is anchored

to the substrate, and also the mobility of the macromolecules within the membrane [74].

Improvements in resolution may be made first by increasing the surface rigidity by using

suction of cells onto patch pipettes and thus reducing the lateral mobility; and second by

imaging with low forces (attractive force mode imaging) [80].

Whole cell to molecule experiments in a physiological environment can be

performed and dynamic changes in the molecular structure of channels, receptors, and

other macromolecules can be observed [92]. AFM can be an important tool for growth

and developmental studies of cells and processes such as nerve growth, synapse

formation, and cell surface and cytoskeletal reorganizations [93]. Paul Hansma and

coworkers [94] followed the polymerization of fibrinogen, a constituent of the

extracellular matrix. This investigation was followed by the observation of other

biological processes: the response of the cell membrane to a probing tip [71]; the

observation of the infection of a cell by viruses [95]; the imaging of living, human
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platelets during their activation [96], and the monitoring of slow motion on the surface of

cells [97]. Other examples for following intracellular transport of material or changes of

the underlying cytoskeleton of the AFM have been reported by several groups [71, 93,

97-100].

1.9.3 Forces Affecting the AFM Probe

The sum of the forces on the tip causes the deflection of the cantilever; these forces can

be attractive or repulsive. The forces acting on the tip vary depending on the mode of

operation and the conditions used for imaging. In contact mode imaging, the tip is

deflected, mainly due to repulsive forces from the overlapping electron orbitals between

the tip atoms and the sample atoms. The dominant attractive force is a van der Waals

force resulting primarily from the nonlocalized dipole-dipole interactions among atoms of

the tip and specimen [68, 101]. While imaging in fluids contributions from electrostatic

Coulomb interactions between charges on the specimen and tip (either occurring

naturally or induced because of polarization), osmotic pressure due to charge movements

and rearrangements, and structural forces such as hydration force, solvation force, and

adhesion force should be considered [74]. The manner in which the AFM generates

images also makes the AFM an excellent sensor of molecular forces (hydrogen bonds,

van der Waals and electrostatic forces) [102, 103].

1.9.4 Measuring the Elastic Properties of Biological Material with the AFM

The elastic response of the cell is mainly due to its cytoskeleton [104, 105]. The

cytoskeleton is a network of three different polymeric proteins: actin, microtubules, and
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intermediate filaments, along with a large number of associated proteins that control

assembly, disassembly, crosslinking, and other properties of this filament network [106].

The cytoskeleton is related to the cell shape, the change of this shape, and the self

movement of the cells [32, 107].

The principle of the cell poker is very similar to the method of using an AFM

[108, 109]. Other methods have been used to measure the entire cell's elastic properties

including pipette suction method [110, 111], flicker spectroscopy [112], and optical

tweezers [113, 114]. Bereiter-Hahn and coworkers used another scanning microscopy

technique, scanning acoustic microscopy, to measure the elastic properties of cells locally

[115, 116]. The main difference between AFM and these techniques is the high lateral

resolution (100 nm) provided by the AFM with the potential to even further increase such

a resolution with improved tip design [90].

AFM data is interpreted as elasticity measurements [117-120]. The AFM allows

the mechanical properties of biomolecules to be determined accurately from force-versus-

distance curves (force curves) [121, 122]. The relationship between indentation force and

depth depends upon the tip geometry and the mechanical properties of the specimen

[123]. Measuring the elastic properties of biological material with the AFM has been

pioneered by Lindsay [120] who investigated the difference of bone and bone marrow,

and by Weisenhorn [87] who investigated rubber, cartilage, and living cells. If the sample

is soft the tip will deform it, and elastic indentation occurs. The force-indentation

relationship is non-linear for softer samples, because the compliance of the sample

becomes higher for larger loading forces. Radmacher considers the geometry of AFM

tips to be conical, on a scale of several 10's to 100s of nm [90]. The contact area of the
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probe increases with indentation, the force-depth relationship in any soft material is

nonlinear, making it difficult to assess how much of the response is due to the tip

geometry[123]. This process has been treated analytically by Hertz, where a relationship

between the indentation and the loading force is given for smooth parabolic indenter

profiles [124]. Most investigators have attributed nonlinearity of the indentation response

entirely to the tip geometry, and have applied equations based on classical infinitesimal

strain theory to extract the Young's Modulus of the material [87, 125].

1.9.5 Classical Infinitesimal Strain Theory Applied to Indentation

The indentation problem was originally solved by Hertz [124] for smooth parabolic

indenter profiles and by Love [126] for conical indenters for which the Hertz theory does

not apply [127]. The classical infinitesimal strain theory is a widely used approach

because of the simple form of the theoretical equations[123]. The theory assumes that the

sample is a homogeneous, isotropic, linear elastic half-space subject to infinitesimally

small strains. It should be noted that each of these key assumptions are questionable for

AFM indentation studies of biological specimens. First, at the macroscopic level most

biological materials are heterogeneous, anisotropic, and exhibit nonlinear constitute

behavior [128]. This could pertain to the microscopic level as well. Second, in order to

obtain an adequate indentation response with the AFM, soft biomaterials typically need

to be indented 50-500 nm, which is not infinitesimal compared to either the thickness of

some cell samples (<2[tm) or to the size of the indenter tip (-5-60 nm radius of

curvature) [129, 130]. Although the AFM measures on a microscopic scale, the classical
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theory may still be reasonable because the tip indents 100 or more atoms on the surface

[131].

The classical infinitesimal strain theory also indicates that pyramidal and conical

indenters should have a semi-angle (a) close to 90 degrees [127] so that the gradient of

displacement (strain) at the contact surface remains small (Figure 1.8). AFM tips

typically have an a value of 35 degrees. For indenters such as those used for AFM where

a<45 [130], the strains are likely to be large in the vicinity of the indenter, even for small

indentations relative to the sample thickness. Thus, AFM indentation could be classified

as a finite indentation problem, and analyses based on infinitesimal strain theory may be

inappropriate.

Figure 1.8 Cantilever tip with semi-angle a indicated. Image courtesy of Digital
Instruments, Santa Barbara CA.

Infinitesimal strain theory requires an infinitely large specimen relative to both

the indentation depth and the indenter size [127]. Indenter geometry relates to this issue

because it determines the radius of contact between the indenter and the sample. A
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conical indenter, in theory, yields an indentation response that closely approximates that

of commercially available silicon nitride (Si3N4) AFM Probes, the geometry of which is a

four sided pyramid [129]. For cylindrical indenters, the contact radius is constant yielding

a linear force-depth relation for infinitesimal indentations [132-134]. Nonlinearities arise

when either the radius or indentation depth are larger than a certain fraction of the sample

thickness [135, 136]. For flat ended circular cylindrical probes which may not fully

pertain to AFM tips, the following guidelines were established for indentation tests: the

in-plane dimensions relative to the indenter size should be >15, for the effects of finite

sized boundaries to be negligible, to avoid nonlinearities and/or incorrect results due to

finite thickness effects, the thickness-to-indenter size ratio should be greater than 10, and

for the properties of the underlying substrate not to affect the indentation results, the

thickness to indentation ratio should be greater than 5 [136].

For a conical indenter, the indentation force depth relationship is always nonlinear

because the contact radius increases with indentation depth .In contrast indentations with

a blunt cone approached the theoretical solution for a small indentation with respect to

the thickness even for nonlinear materials and an angle less than 45 degrees [123]. This is

due to the fact that in this limit the indentation depth and contact radius are smaller than

the spherical tip radius as required by infinitesimal theory [127]. Costa [123]

demonstrated that the two critical factors determining the accurate assessment of elastic

properties by indentation are whether the deformations are infinitesimal and whether the

material exhibits linear or nonlinear characteristics. Applying infinitesimal theory

incorrectly to finite-deformation situations can result in large errors in the estimation of

material properties. Correctly accounting for finite indentations and the geometry of the



29

indenter to calculate an apparent elastic modulus, may reveal material nonlinearity and

heterogeneity [123]. However, Some researchers consider that the absolute determination

of the Young's modulus of a biological sample is not always necessary, where only a

comparison between two different states is needed [131].

1.9.6 Theoretical Analysis with Conical and Blunt-Tipped Indenter Geometry

The indenter tip of an AFM, does not terminate in a point but instead is truncated in some

way. Costa [123] used finite element models (FEM) to simulate a blunt cone indenter

indenting into three materials. The probe was modeled as a cone with a half angle (a)

37.5 degrees which merged smoothly into a spherical tip with a radius R=30 nm

simulating an AFM probe. For an indentation (D) to thickness (t) ratio >0.15 the cone and

blunted cone data matched within +10 %; however, for smaller indentations a larger

discrepancy was found. Nonlinear materials indented with an ideal cone resulted in the

theoretical modulus overestimating the apparent one. In contrast, with a blunt cone

indenter the apparent modulus approached the theoretical one as D/t approached zero. It

follows that using a blunt cone may allow more accurate quantitative estimates of some

elastic properties of a material.

1.9.7 Measuring the Elastic Properties of Biological Material with the AFM

The Young modulus is the basic material coefficient of elasticity. It can range from 100

GPa for hard materials (glass, steel) to 100s MPa for typical polymers (polystyrene), and

1 MPa for soft gel-like materials [90]. Typical values for cells are somewhere between 1

kPa and 100 kPa [87, 137]. In order to accurately derive Young's modulus, the
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characteristics of the tip such as the tip radius, the cone angle and the force constant

should be carefully estimated [129, 138-140]. In addition, the tip deformation should be

negligible. In the case of Si3N4 tips, the modulus of Young is 150 GPa [87, 141] and for

commercial silicon cantilevers it takes the value of 169 GPa (according to the

manufacturer, Digital Instruments). The supporting sample (glass substrates) is crucial

too, because it is often used as a reference sample appearing hard compared to

biomolecules. Glass itself is softer than the Si 3N4 tip with a Young's modulus of 50 GPa

and has a spring constant of about 50 N/m [87].

The elastic response of living and fixed cells has been reported qualitatively in the

work by Schoenberger and Hoh [142] and in the work of Lal and coworkers

[78].Weisenhorn et al. [87] were the first to measure the elastic properties of a living cell,

and to quantify the elastic behavior of cells from force curves, obtaining a Young

modulus of 0.013-0.15 MPa for a living (lung carcinoma) cell. Radmacher and coworkers

[84] were the first to determine quantitatively the elastic properties of cells as a function

of the AFM position on the cell, finding Young moduli ranging from 1 to 50 kPa (Hertz'

model) [124]. Radmacher's observed correlation between the position on the platelet and

the changing elastic modulus is an interesting observation, which was found to be related

to the underlying cytoskeleton. However, a discrepancy was observed between the

experimental data and simulations based on Hertz' model. Micromechanical

measurements performed on cultured rat atrial myocytes also showed a similar

dependence of the elastic modulus on the position on the cell [143]. Young's modulus in

a nuclear region of the cell was 0.5-0.67 MPa (Ca2+-free solution, Sneddon mechanics),

and increased 5-8-fold toward the periphery. These variations in stiffness could be related
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to the cytoskeletal heterogeneity [143]. According to Costa [123] the correct classical

infinitesimal strain theory equations [133, 144]} have been reported incorrecyly in

several AFM publications [73, 84]}. Therefore, the mechanical properties of biological

samples determined in previous work may be questionable.



CHAPTER 2

ATOMIC FORCE MICROSCOPY NANOINDENTATION
ON CARDIAC MYOCYTES

2.1 Introduction

This chapter discusses experimental measurements conducted on cardiac myocytes

isolated from young and old rats. This published study [145] demonstrates that aging

exerts an effect on the material properties at the single cardiac myocyte level. The AFM

and its nanoindentation function made it possible to test the hypothesis that aging affects

the material properties of single cardiac myocytes independent of the size of the cell.

2.2 Materials and Methods

2.2.1 Animals

Variation in the apparent elastic modulus with cell length was studied in 2 month old

male Sprague Dawley rats (n=3) (Charles River Breeding Laboratories Inc.). Aging

effects were studied in male F344xBN rats obtained from the National Institute on Aging

colony. AFM studies were conducted on rats of 4 (n=4) and 30 (n=4) months of age

representing young and old rats, respectively [59, 146]. Cardiac myocyte contractile and

relaxation function and measurement of myocyte general dimensions (length, width)

were conducted in a parallel group of male F344xBN rats of 4 (n=3) and 30 (n=3) months

of age. The myocyte cross-sectional area was measured in a third group of male

F344xBN rats of 4 (n=3) and 30 (n=3) months of age.
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2.2.2 Preparation of LV Myocytes

Cardiac myocytes were prepared from male F344xBN rats and Sprague Dawley rats

respectively as previously described [147, 148]. In brief, the heart was rapidly excised

and perfused with basic solution composed of MEM (Sigma, Joklik's modification, M

0519), taurine (5mM), creatine (2mM), hepes (5 mM), NaHCO3, Insulin (20 U) and Penn

Strep (1%) containing 75 U/ml each of collagenase 1 and 2 (Worthington Biochemical,

Freehold, New Jersey, USA) at 37°C. All solutions were continuously bubbled with 95%

02 and 5% CO2 at 37°C. The digestion was stopped by adding MEM solution containing

CaC12 0.3mM and 6% BSA for 10 minutes. In every 10 minute period the supernatant

was removed and the MEM solution was added in a stepwise manner with CaC12

concentration (0.5 and 1.0 mM). The myocytes were washed twice with culture medium.

Young rat myocyte isolations resulted in a yield of approximately 70% whereas isolations

in old rats resulted in approximately 40% yield.

2.2.3 Measurement of Contractile and Relaxation Function

Myocytes were transferred to a warmed (37°C) and continuously perfused cell chamber

located on an inverted microscope stage (Nikon Inc., Melville, New York, USA). The

chamber was perfused with physiological buffer containing (in mmo1/1): 120 NaCl, 2.6

KC1, 1.2 MgC12 , 1.2 KH2PO4, 11 glucose, 5 HEPES, 25 NaHCO3, 2 taurine, 1 pyruvate,

and 1 CaC12. Myocyte contraction was induced at 1 Hz by platinum field electrodes that

were placed in the cell chamber and attached to a stimulator (S48; Grass Instrument Co.,

Quincy, Massachusetts, USA). Cell images were continuously monitored through an x20

objective lens (Nikon Inc.) and transmitted to a charge-coupled device (CCD) video
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camera (TM-640; Pulnix, Mountain View, California, USA). The output from the CCD

camera was displayed on a video monitor (PVM-135; Sony, New York, New York,

USA). The myocyte length was measured using a video motion edge detector (VED103;

Crescent Electronics, Sandy, Utah, USA), and the data were acquired at 240 images per

second. The percent contraction was calculated from the length data where the myocyte

length was calibrated with a hemocytometer grid placed on the microscope stage.

2.2.4 Cell Morphology

Measurements of myocyte length and width were made from photomicrographs of the

isolated myocytes and a computerized image-analysis system (Scion Corporation,

Maryland USA). Dimensions were calibrated with a hemocytometer grid placed on the

microscope stage. A separate method was used to measure myocyte cross-sectional area

in LV tissue fixed in formalin involving the MetaMorph image system software

(Universal Imaging, West Chester, PA, USA). Myocyte outlines were apparent after

silver-staining methacrylate embedded sections (1-μm thick), which were obtained

midway between the LV base and the apex. Traces of approximately 100 myocyte

outlines were obtained in the LV of each animal.

2.2.5 Atomic Force Microscope Operation

Indentation tests were conducted with a Digital Instruments MultiMode AFM,

Nanoscope Ma control system, fluid cell, and a "J" scanner (Digital Instruments, Santa

Barbara, CA) (Figure 2.1). A Digital Instruments MultiMode AFM, fluid cell, and a "J"

scanner are shown in Figure 2.1 (a). Figure 2.1. (b) shows a schematic of the
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nanoindentation procedure with the Digital Instruments MultiMode AFM. The

Nanoscope Ma control system (A) signals the AFM head (B) to operate in contact mode

and directs the movement of the piezoelectric xyz "J" scanner (C) in the z-direction and

not in the xy-plane. The sample (D) is indented by the AFM probe (E). The deflection of

the AFM cantilever (F) is monitored by emitting a laser beam (G) from a source (H)

which after deflecting off the AFM cantilever (F) is directed by a mirror (I) into a

position-sensitive photodetector (J). The measurements are sent through the Detector

Electronics (K) returning to the Nanoscope ilia control system (A) for data collection.

Figure 2.1 (c) shows a schematic, not to scale, of the nanoindentation of a section of the

myocyte sample with a blunted AFM probe. Boundary effects and nonlinearities in AFM

measurements are avoided because the ratio (-161) of the actual myocyte thickness (-15

gm) to indentation depth (-93 nm) greatly exceeds the value of 5, and the ratio (-375) of

the myocyte thickness (-15 gm) to indenter radius (-40 nm) is greater than the accepted

value of 10. Moreover, in-plane boundary effects are avoided because the ratio (2900)

of myocyte length (-120 gm) to indenter size (-40 nm) as well as the ratio (-750) of

myocyte width (-30 gm) to indenter size (-40 nm) are much greater than the accepted

value of 15 [136].



Figure 2.1 Digital Instruments MultiMode AFM, fluid cell, and a "J" scanner.

After isolation, myocytes were plated on customized (15 mm diameter) tissue culture

treated petri dishes (Becton Dickinson, Bedford, MA) coated with 20 μg/m1 of laminin

(Sigma Chemical Co., St. Louis, MO, USA). The myocytes were studied within 6 hours

from the time of isolation. When the cells were not analyzed with the AFM they were

kept in a CO, water jacketed incubator (Thermo Forma Model 3110 Series), which kept

the cells in a 37°C, 5% CO2 , humidified environment. AFM experiments were conducted

by placing the myocytes plated on the 15 mm diameter petri dishes into the AFM

36



37

Multimode head. The cells were studied in a 37 °C culture media environment by using

the AFM fluid cell at room temperature. All AFM measurements were conducted within

one hour after insertion into the AFM head. Etched silicon nitride probes (NP-20) were

used in these experiments. The NP-20 probe used had a tip radius of 20-60 nm, a cone

angle of 35°, and was attached to triangular cantilevers 200 gm in length with a spring

constant of 0.06 N/m (Digital Instruments, Santa Barbara, CA). The same NP-20 probe-

cantilever was used throughout the experiments in order to avoid the variation of the

cantilever spring constant with different AFM probes. The NP-20 sensitivity was

determined consistently near 50 nm/V. The indentation protocol involved no scanning in

the horizontal (xy)-plane. The cantilever was positioned directly above the surface of an

immobilized myocyte with the aid of an X 30 magnification eyepiece. Proper force

curves were obtained in the force calibration mode by setting the z-scan start at +220

volts with the z-scan size set at +440 volts, and a low frequency of 0.6 gm/sec, which

was found to minimize not only hysteresis (Figure 2.2), but also drag force, and

maximize the number of force curves that could be captured [149, 150]. Hysteresis was

calculated as previously described by subtracting the area under the curves for retraction

(Ares) from extension (Aext), which represents the energy dissipated into the cell from the

indentation of the AFM tip [149]. This area was normalized by dividing the hysteresis

value by the input energy, Aext. The apparent elastic modulus was found to be

reproducible at that frequency, and below. Force curves were taken at three positions

along the middle of the longitudinal axis, as in previous work [150]. The effects of

replicate indentation in the same location were studied to verify that the cell behavior and
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material properties did not change with repeated indentations, as shown in previous

studies [149, 150].

Figure 2.2 The selected probe velocity (0.6 μm/s) minimized hysteresis shown in the
figure plotting the ratio of the normalized hysteresis (NH) to the operating velocity's
normalized hysteresis (OVNH) with respect to probe velocity.

The indentation force (F) was calculated using Hooke's law (F = kb) where k and

denote the cantilever's spring constant and the cantilever's measured deflection,

respectively (see, e.g., ref [150]). The indentation depth (d) was calculated from the

difference in the z-movement of the piezo and the deflection of the cantilever [123, 149,

150]. The general equation for the total force F exerted by an indenter for infinitesimal

indentation, according to CIST with a blunted conical indenter, is given as [123]

F = 	 E 	 (2.1)
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where

Here, E refers to the apparent elastic modulus, v denotes the Poisson ratio, and d is the

indentation depth. The Poisson ratio v is assumed to be 0.5 for cells [151]. The function

0 (d) used in this work is that corresponding to a blunted conical indenter shape with tip

angle 2a (a = 350), and radius r (r = 40 nm). Its analytical expression has been previously

reported [123]. The elastic properties are defined as an "apparent" elastic modulus,

because there are viscous contributions within the cellular response [123]. The apparent

elastic modulus was determined by plotting the extension force in equation 1 above as a

function of the coefficient S2, and by identifying the resulting slope with the apparent

elastic modulus (E).

2.2.6 Calculating the Contact Force

The force curve shows the relationship between the setpoint and the deflection of the

cantilever. Because the setpoint defines the value of the deflection signal maintained by

the feedback loop, the force curve can be used to calculate the nominal contact force of

the tip on the sample if the spring constant, of the cantilever, is known. The contact force

is defined by the equation F =kAZ, where AZ is the distance from the control point to

Vcsmin in nanometers. Local variations in the form of the F vs. D curve indicate variations

in the local elastic properties. In the linear region of the F vs. D curves, the slope is

related to the elastic modulus of the system.
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2.2.7 Force Distance Curve Analysis with Classical Infinitesimal Strain Theory

Classical infinitesimal strain theory is a widely used approach [123]. The fundamental

assumptions of the theory are that the sample is a homogeneous, isotropic, linear elastic

half-space subject to infinitesimally small strains. These are the assumptions we have

made regarding the cell-body material.

The following is the general equation for the total force (P) exerted by an indenter

for infinitesimal indentations perpendicular to the finite stretch for the case of linear

hyperelastic materials (see Appendix A for development of formula) [123, 133].

E is Young's modulus and (1)(d) is a function of the indenter geometry, which determines

the dependence of P on the penetration depth (d). The indentation problem can be solved

for different indenter geometries by developing the appropriate (131(d) and inserting it into

(2.3). The following are 4(d) developed for the cone and blunted cone indenter shapes

used in this analysis. A cone with tip angle, 2a is represented by the following function

(see Appendix A for development of the function) [126, 133].

A blunt cone with tip angle 2a, which transitions at radius R (see Appendix A for

development of the function) [152]. For a smooth transition from the cone to the

spherical tip, b=Rcos(α).
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(2.5)

For d < b2/R, (1)(d) is given by a sphere with radius R.

where the radius of contact a is derived from [152]

A Newton's method [153] was applied to (2.7) with a tolerance of 10 -15 in order to find

the radius of contact a.

The cardiac myocyte apparent elastic modulus was found to be constant (up to

2%) at three positions on the cell's longitudinal line close to the center, avoiding

boundary effects. All data reported here were obtained at a probe speed of 0.6 μm/sec and

analyzed at the depth of 93.2 ± 0.1 nm (n=111) from the approaching part of the force

curve. In order to verify that nonlinearities associated with finite thickness effects are

avoided we measured the adult cardiac myocyte thickness by confocal microscopy (14.5±

0.7 pm, in good agreement with published data [154]) and found that the myocyte

thickness-to-indentation depth ratio exceeds by far the accepted value necessary to avoid

nonlinearities [136]. Moreover, the indentation depth (-93 nm) and probe size (-40nm)

were sufficiently minimal to prevent the underlying substrate properties and boundary
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effects from affecting indentation results. As noted in Table 2.1 there were differences in

the number of myocytes that could be studied successfully from each animal, with

variations from animal to animal but not between old and young.

Table 2.1 Average Elastic Modulus and Number of Myocytes Measured per Animal

Young Rat (4 months)

Rat 1 Rat 2 Rat 3 Rat 4

Average Elastic Modulus (kPa) 36.2 ± 1.0 35.7 ± 2.0 34.6 ± 1.3 36.2 ± 1.0

n (# of cells) 21 7 17 8

Old Rat (30 months)

Rat 1 Rat 2 Rat 3 Rat 4

Average Elastic Modulus (kPa) 44.2 ± 1.9 42.2 ± 2.6 42.7 ± 1.7 40.6 ± 1.9

n (# of cells) 12 12 21 13

2.2.8 Geometry Independence of Apparent Elastic Modulus

Hypertrophy is known to be characteristic of aging; however, the apparent elastic

modulus is a material property measure and should be independent of geometry. To prove

that this is the case, we conducted an experiment on 2 month old Sprague Dawley Rats

(n=33 cells from 3 animals). The apparent elastic modulus was determined as described

above and myocyte morphology was determined by conducting photomicroscopic

measurements with the AFM Multimode's X 30 magnification eyepiece and image

analysis software (Scion Corporation, Maryland USA). Myocyte morphology (length,

width) was calibrated by using the AFM cantilever known length (200 μm) (Figure 2.3).
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Figure 2.3 Image of AFM probe with cardiac myocyte. Length of the cantilever
(200μm) used as a scale to measure myocyte dimensions.

2.2.9 Statistical Analysis

All data are presented here as mean ± standard error of the mean (SEM) and the statistical

significance was determined by calculating a probability value (p) with an Analysis of

Variance (ANOVA) t-test. Values of p<0.05 were considered to be significant.

2.3 Results

2.3.1 Myocyte Contractile and Relaxation Function

Figure 2.4 shows representative contraction/relaxation recordings at baseline in young

and old rats . Figure 2.4 (a) shows a photomicrograph of a representative myocyte used

for morphological and contractile measurements obtained through a x40 objective lens

(Nikon Inc.), charge-coupled device (CCD) video camera (TM-640; Pulnix, Mountain

View, California, USA), and video capture system. Figure 2.4 (b) shows a representative

contraction/relaxation recording at baseline in young and old rats, demonstrating a
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difference in myocyte contraction and relaxation with aging Figure 2.4 (c) shows how

age affects myocyte contraction and relaxation, where the % contraction data shows a

significant (*p<0.01) decrease (38.3%) and a significant (*p<0.01) increase (88.2%) in

the time for the myocyte to return from the contracted state to 70 % of its original length.

Figure 2.4 Contractile measurement summary.

A significant (p<0.01) decrease in myocyte contraction was found from young (5.4%) to

old (3.4%). The relaxation function as assessed by the time required for 70% relaxation

was also increased in old myocytes (159.7 cosec.) compared with young myocytes (84.9

cosec.).
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2.3.2 Myocyte Morphology

A significant increase (p< 0.01) was seen in length from young (113.7±1.5 lam (n=64)) to

old (120.0± 1.8 μm (n=70)) and also an increase in width from young (28.2±0.5

(n=64)) to old (31.5±0.7 μm (n=70)). A significant 22% increase (p< 0.01) was also seen

in the cross-sectional area from young (249±9.3 μm2) to old (305±12.7 μm2) (Table 2.2).

Table 2.2 Myocyte Size and Morphology

Young (4 mos) Old (30 mos)

Rest Length (pm) 113.7±1.5 (n=64) 120.0±1.8 (n=70) p<0.01

Rest Width (gm) 28.2±0.5 (n=64) 31.5±0.7 (n=70) p<0.01

Cross-Sectional Area (1=2) 249.0±9.3 (n=257) 305.2±12.7 (n=184) p<0.01

2.3.3 Geometry Independence of Apparent Elastic Modulus

Figure 2.5 shows that there was no significant difference in the apparent elastic modulus

32.4±2.5 kPa, 31.8±0.7, 35.1±2.1 kPa, and 30.8±1.7 determined from myocytes of length

71.2±2.4 μm (n=6), 89.8±1.3 μm (n=11), 104.3±1.01-1M (n=6), and 131.5±2.8 μm (n=10)

respectively with an average modulus value of 32.3± 0.7 kPa.
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Figure 2.5 Study demonstrating that the apparent elastic modulus is a material property
essentially independent of geometry.

Myocytes isolated from 2 month old Sprague Dawley Rats (n=33 cells from 3 animals)

showed no significant difference (p>0.05) in the apparent elastic modulus 32.4±2.5 kPa,

31.8±0.7, 35.1±2.1 kPa, and 30.8±1.7 determined from myocytes of length 71.2±2.4 μm

(n=6), 89.8±1.3 μm (n=11), 104.3±1.0 μm (n=6), and 131.5±2.8 μm (n=10) respectively..

2.3.4 AFM Measured Effect of Age on Mechanical Properties

A Force-Indentation graph (Figure 2.6 a) was plotted for single cardiac myocytes. The

linear regression fit of the force F as a function of the coefficient S2 (Figure 2.6 b) gives

correlation coefficient (R2) values near 1 for the myocytes of young and old F344xBN.

The force indentation data fit CIST well with the AFM probe modeled as a blunted

conical indenter (R 2 values near 1). The slope of the linear regression fit is then identified

with the apparent elastic modulus E of the young and old myocyte cells.



Figure 2.6 (a) Sample Force-Indentation plot on young and old F344xBN myocytes (b)
Representative sample plot of the linear regression fit of the force F as a function of the
coefficient Q for young and old F344xBN myocytes.
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The slope of this linear regression fit is analyzed as the apparent elastic modulus (E) of

the young and old myocyte cells. The cardiac myocyte apparent elastic modulus did not

vary significantly between different animals in their respective age group, and the lowest

apparent elastic modulus from the old group was significantly higher (p<0.01) than the

highest apparent elastic modulus from the young group. Therefore, the apparent elastic

moduli of myocytes from animals in their respective young and old age groups were

grouped for statistical purposes. The average apparent elastic modulus value reported is

an average of the results obtained with all myocytes collected from rats in the respective

young (4 animals, n=53 cells) and old (4 animals, n=58 cells) F344xBN myocytes. The

AFM data (Table 2.1) show a significant difference (p< 0.01) in the apparent elastic

modulus of young vs. old rats 35.1 + 0.7 kPa (n=53) and 42.5 + 1.0 kPa (n=58),

respectively (Figure 2.7).

Figure 2.7 The apparent elastic modulus of young and old myocytes.
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The cardiac myocyte apparent elastic modulus did not vary significantly between

different animals in their respective age group (**p > 0.05). AFM data show a significant

difference (*p<0.01) in the apparent elastic modulus of young and senescent rats: 35.1 +

0.7 kPa (n=53) and 42.5 ± 1.0 kPa (n=58), respectively, demonstrating a 21% increase

with age. The AFM data show no significant (NS) difference in the effects of replicate

indentation in the same cellular location on young (n=9 cells) and old (n=10 cells)

cardiac myocytes respectively (Figure 2.8a), while still showing a significant difference

(p<0.01) in the apparent elastic modulus of young and senescent rats. The cardiac

myocyte apparent elastic moduli did not vary significantly (NS) over the time period (0-2

hours, 2-4 hours, and 4-6 hours) during which they were analyzed (Figure 2.8b).

However, significant differences (p<0.01) in the apparent elastic modulus of myocytes

from young and senescent rats were observed at each time period. The ratio of old

myocyte normalized hysteresis to young myocyte normalized hysteresis was 0.90,

indicating a 10% change in hysteresis with aging.



Figure 2.8 (a) Cardiac myocyte apparent elastic modulus between replicate indentations
on the same cellular location in the young and old myocytes. (b) Cardiac myocyte
apparent elastic moduli over the time period (0-2 hours, 2-4 hours, and 4-6 hours) during
which they were analyzed.



CHAPTER 3

FINITE ELEMENT MODEL OF AFM NANO-INDENTATION

3.1 Introduction

This chapter discusses modeling conducted with ABAQUS Finite Element Software in

order to investigate how an AFM probe interacts with known materials modeled the same

size as a myocyte. The relationship between indentation force and depth depends upon

the geometry and mechanical properties of the specimen. Because the contact area of the

probe increases with indentation, the force depth relationship in any soft material is

nonlinear. Most investigators have used CIST to extract an elastic modulus where the

fundamental assumptions of the theory are that the sample is a homogeneous, isotropic,

linear elastic half-space subject to infinitesimally small strains. Two accepted

hyperelastic materials (Mooney Rivlin, and Polynomial) were chosen to test whether

nanoindentation conducted with the AFM into a large object (i.e. myocyte) could be

considered infinitesimal small and predict accurately the elastic modulus.

3.2 Modeling

3.2.1 AFM Probe Model

The AFM probe was modeled in ABAQUS as a previously described axisymetric rigid

indenter [123] with dimensions provided by the manufacturer (Veeco Metrology) (Height

3 μm, a=35 °, with a 40 nm blunted end) (Figure 3.1 A-B). The Scanning Electron
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Microscope (SEM) image of the AFM probe (Figure 3.1C) looks similar to the

axisymetric rigid indenter modeled in ABAQUS (Figure 3.1 D).

Figure 3.1 (A) AFM probe measures described in the sketch (B). A SEM image of the
AFM probe looks similar to the axisymetric rigid model (D) constructed in ABAQUS.
(Images A-C provided courtesy of Veeco Metrology).
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3.2.2 Sample Model

We constructed a finite element model (FEM) of an incompressible, hyperelastic material

(Figure 3.2) to represent a sample the same size as a myocyte.

Figure 3.2 Finite Element Model (FEM) of sample to be indented as the same size as a
myocyte with a biased mesh providing smaller elements toward axis of symetry.

The myocyte size was chosen to represent the average thickness (15 μm) and length (120

μm) of typical myocytes as discussed in section 2.2.7 and Table 2.2. The model consisted

of 330 axisymetric. quadrilateral, bilinear, hybrid elements (10 axially & 33 radially) as

previously described [123] biased (100,000 to 1) with smallest elements located under the

indenter.

3.2.3 Boundary Conditions

The modeled AFM probe is positioned in contact withy the sample surface as shown in

Figure 3.3. Nodal displacements on the bottom surface of the material were

unconstrained radially (UR) and constrained axially (CA) to simulate frictionless sliding

contact with a rigid substrate (Figure 3.4).
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Figure 3.3 Modeled AFM probe in contact with material surface.

The nodal displacements on the axis of symmetry were constrained radially (CR) but

unconstrained axially (UA). Contact between the indenter and material was also

frictionless. Indentation was caused by incremental axial displacements of the rigid

indenter (100 nm) into the cell surface (Figure 3.4). The resulting indentation force (P), is

the axial component of the reaction force on the indenter and the indentation depth (d) is

of interest because these are the parameters measured with the AFM.

Figure 3.4 Boundary conditions applied to Finite Element Model.
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3.3 Materials Tested

The response of two different types of incompressible materials characterized by the

following strain energy functions was examined:

Where II and 12 are invariants of the Cauchy-Green deformation tensor. Equation 3.1 is

the nearly linear Mooney-Rivlin (MR) from characterizing rubberlike material with

C 10=0.085 kPa and C 01 =0.025 kPa and D=0 (incompressible n=0.5). Equation 3.2 is a

simple isotropic polynomial (POLY) form to introduce material nonlinearity with

C 1 0=0.167 kPa and C01=2.39 kPa and D=0 (incompressible n=0.5). These values were

chosen based on previous work conducted with FEM analysis of AFM indentation [123].

3.4 Results of Mooney-Rivlin and Polynomial Indentation

Figure 3.5 A & Figure 3.6 A demonstrates an enlarged view of the indentation of the MR

& POLY material respectively in the ABAQUS Finite element software. The probe

reaction force and indentation plot for both the MR (Fig. 3.5 B) and Poly (Fig. 3.6 B) is

consistent with what is typically seen in force indentation plots. Applying the similar

calculation incorporating Classical Infinitesimal Strain Theory described in section 2.2.7

demonstrates a linear relationship for both the MR (Fig. 3.5c) and POLY (Fig. 3.6c)

materials consistent with what is seen in AFM indentation experiments. The maximum

reaction force on the bottom surface is significantly smaller (MR: —800 million times, &

POLY —462 million times) than the force needed to indent the material.
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Figure 3.5 (A) 100 urn Indentation of AFM probe into myocyte modeled with an MR
material. (B) the reaction Force-myocyte indentation plot compares well to other curves
produced from indentation and (C) fitting this data with LIST using a blunted cone model
produces a linear effect.
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Figure 3.6 (A) 100 nm Indentation of AFM probe into myocyte modeled with a POLY
material. (B) the reaction Force-myocyte indentation plot compares well to other curves
produced from indentation and (C) fitting this data with CIST using a blunted cone model
produces a linear effect.
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The Young's elastic modulus of linear hyperelastic materials can be calculated according

to the equation given by Green and Zerna [123, 155] (Equation 3.3).

A comparison between Young Elastic Modulus determined by the Green equation and

that determined on the ABAQUS Force-Indentation data using CIST and the AFM tip

modeled as a blunted cone is shown in Table 3.1 for the MR and POLY materials.

Table 3.1 Comparison of Elastic Modulus Determined from Green Equation & F-I
Relationship using CIST with the AFM Probe Modeled as a Blunted Cone.

Green Elastic Modulus 	 ABAQUS Elastic Modulus

MR 660 Pa 	 609.3 Pa

POLY 15.342 kPa 	 16.455 kPa

There is a 7.7 % under prediction of the MR elastic modulus comparing the Green

theoretical value to the ABAQUS results (Figure 3.7). There is a 7.3 % over prediction of

the POLY elastic modulus comparing the Green theoretical value to the ABAQUS results

(Figure 3.8).



Figure 3.7 MR Young's Elastic Modulus (E) comparison between Green theoretical
equation and ABAQUS indentation results.
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Figure 3.8 POLY Young's Elastic Modulus (E) comparison between Green theoretical
equation and ABAQUS indentation results.



CHAPTER 4

MEASUREMENT OF CYTOSKELETAL PROTEINS

4.1 Introduction

This chapter describes experimental work conducted to determine cytoskeleton and

mechanotransduction protein changes with aging. Established immunoblot gel

electrophoresis (western blot) techniques were used where the conditions necessary to

measure each protein type had to first be determined before proteins were quantified in

each tissue type. The results indicate that in addition to a material property change, a

change in proteins involved in mechanotransduction takes place with aging.

4.2 Materials and Methods

4.2.1 Protein Sample Preparation and Concentration Determination

The LV samples from 7 young (4-6 months) and 7 old (29-31 months) F344xBN rats

were prepared for protein extraction. The masses of each animal and their tissue masses

were recorded for analysis. Dry ice is prepared to transport tissue samples from a -80 °C

freezer to the lab. A box of ice is prepared to place prepared sample solutions. Small

eppendorf tubes were also prepared to aliquot the preparation. An empty plastic test tube

was massed, while a small weighing boat was used on top of a Styrofoam container with

dry ice. The frozen sample was placed on top of the weighing boat and cut with a razor

blade. The cut sample is placed inside a test tube, and the tube and sample were weighed.

The mass of the tube was subtracted to determine the mass of the sample. This procedure
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was repeated until a desired mass of sample was achieved, and the stock tissue samples

were returned to the —80 °C freezer. The cut samples were kept on dry ice.

The extraction buffer (EB) was then added (0.9 ml) to each sample and the

homogenizer mixer was cleaned and prepared to grind the tissue. After the grinder was

inserted into the tube held in an ice container, the unit was turned on and mixed once to

soften hard sample then 3X for 5 sec periods. Once the finished solution was returned to

ice and the grinder head cleaned, warmed SDS is then added in order to create a 2% SDS

solution: The samples were vortexed and kept on ice for 10-20 minutes. The tubes were

centrifuged in 4°C at 1000 G for 15-20 min. After the supernatant was removed and

placed in eppendorf tubes on ice, the remaining pellets were centrifuged at 10,000 G for

10 minutes. The supernatant was then added to the previous supernatant, the sample

aliquoted into eppendorf tubes (100-200 Ill), and the aliquots stored in —80 °C freezer. The

protein concentration of each sample was determined in an automated fluorometer

microplate reader (Spectramax, Molecular Devices). Based on the concentration of each

protein sample, a certain amount of H 2O and 2% SDS dye was added to make a fixed

concentration for all samples (e.g. concentration of 1μg/μl).). This was done in order to

compare the same amount of protein for each sample.

4.2.2 Gel Electrophoresis

4.2.2.1	 Gel Preparation. The tissue sample's proteins were separated according

to their molecular weights on polyacrylamide gels. Gel solutions were prepared for each



62

protein of interest in an assembled glass plate apparatus (BioRad) (Figure 4.1) and were

prepared according to the recipes given in Table 4.1 in the order shown in Table 4.2.

Figure 4.1 Assembled BioRad glass plate apparatus for gel preperation.

The gel concentration was determined by the amount of acrylamide mix added

with respect to the total volume and the polymerization rate controlled by the amount of

TEMED and persulfate in the solution. A resolving gel (4.5 ml) was first poured into the

gel plate apparatus while a thin layer of 0.1% SDS was added on top to create a seal from

the air. Once the resolving gel polymerized, the 0.1% SDS layer was removed with

blotting paper and the stacker gel added (2.5 ml). After pouring the stacker gel, the 15

well comb was quickly inserted and positioned. Once the stacker was polymerized the

combs were gently removed and the wells rinsed with millipure water to make sure they

were free of polyacrylamide. A stacker gel was not used in the case of 6% gels, which

consisted only of a resolving gel solution (7 m1).



Table 4.1 Recipe For Preparing Resolving and Stacking Gel Solutions

Solutions for Preparing Resolving Gels for Tris-glycine
SDS-Polyacrylamide Gel Electrophoresis

Component volumes (ml) per gel mold volume of
Solution components 5 ml 10 ml 15 ml 20 ml 25 ml 30 ml 40 ml 50 ml
6%

H20 2.6 5.3 7.9 10.6 13.2 15.9 21.2 26.5
30% acrylamide mix 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10.0
1.5 m Tris (pH 8.8) 1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5
10% SDS 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
10% ammonium persulfate 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
TEMED 0.004 0.008 0.012 0.016 0.02 0.024 0.032 0.04

8%
H20 2.3 4.6 6.9 9.3 11.5 13.9 18.5 23.2
30% acrylamide mix 1.3 2.7 4.0 5.3 6.7 8.0 10.7 13.3
1.5 m Tris (pH 8.8) 1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5
-10% SDS 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
10% ammonium persulfate 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
TEMED 	 0.003 0.006 0.009 0.012 0.015 0.018 0.024 0.03

10%
H 20 1.9 4.0 5.9 7.9 9.9 11.9 15.9 19.8
30% acrylamide mix 1.7 3.3 5.0 6.7 8.3 10.0 13.3 16.7
1.5MTris(pH8.8) 1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5
10% SDS 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
10% ammonium persulfate 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
TEMED 0.002 0.004 0.006 0.008 0.01 0.012 0.016 0.02

12%
H 20 1.6 3.3 4.9 6.6 8.2 9.9 13.2 16.5
30% acrylamide mix 2.0 4.0 6.0 8.0 10.0 12.0 16.0 20.0
1.5 m Tris (pH 8.8) 1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5
10% SDS 	 * 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
10% ammonium persulfate 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
TEMED 0.002 0.004 0.006 0.008 0.01 0.012 0.016 0.02

15%
H20 1.1 2.3 3.4 4.6 5.7 6.9 9.2 11.5
30% acrylamide mix 2.5 5.0 7.5 10.0 12.5 15.0 20.0 25.0
1.5 m Tris (pH 8.8) 1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5
10% SDS 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
10% ammonium persulfate 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
TEMED 0.002 0.004 0.006 0.008 0.01 0.012 0.016 0.02

Solutions for Preparing 5% Stacking Gels for Tris-glycine
SDS-Polyacrylamide Gel Electrophoresis

Component volumes (ml) per gel mold volume of
Solution components 1 ml 2 ml 3 ml 4 ml 5 ml 6 ml 8 ml 10 ml
H20 0.68 1.4 2.1 2.7 3.4 4.1 5.5 6.8
30% acrylamide mix 0.17 0.33 0.5 0.67 0.83 1.0 1.3 1.7
1.0 m Tris (pH 6.8) 0.13 0.25 0.38 0.5 0.63 0.75 1.0 1.25
10% SDS 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.1
10% ammonium persulfate 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.1
TEMED 0.001 0.002 0.003 0.004 0.005 0.006 0.008 0.01

Tables are modified from Harlow and Lane (1988).

Detection and Analysis of Proteins Expressed from Cloned Genes
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Table 4.2 Order in which Gel Ingredients were Added for Resolving & Stacking Gels

Step Resolving Gel Stacking Gel

1 Millipure H2O Millipure H20

2 30% acrylamide mix 30% acrylamide mix

3 1.5 M Tris (pH 8.8) ' 1.0 M Tris (pH 6.8)

4 10% SDS 10% SDS

5 TEMED TEMED

6 10% ammonium persulfate 10% ammonium persulfate

Several different gel concentrations (Table 4.3) were used in these experiments

depending on the type of protein investigated. In each case a specific amount of protein

was loaded in each well (Table 4.3).

Table 4.3 Protein Gel Concentration and Amount of Protein Mass Loaded

4.2.2.2	 Running Gel Apparatus. The gels were placed into a running chamber

filled with 1X SDS running buffer (Figure 4.2). Protein samples were loaded into each

well by starting with the molecular weight marker.
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Figure 4.2 Photograph of the BioRad electrophoresis gel running chamber.

After the running chamber was tilled with running buffer, the gel was run at a constant

current (25 mA/gel), corresponding to a starting voltage of 100 V. The gel was then run

until the protein sample dye solutions run out of the bottom of the gel (approximately 1

hr), or until the appropriate mass of sample entered the gel (i.e. 250 marker has entered

the gel). Notice that the voltage increased with time as the resistance of the gel increased.

4.2.2.3 Gel Transfer. The gel was removed from the glass plates in the running

chamber setup. The stacker gel and wells were removed. or in the case of a 6% gel only

the wells were removed. A sandwich sitting in a plastic container was prepared in a

transfer sandwich setup (Figure 4.3). The plastic container was filled with 1 X Transfer

Buffer. A BioRad transfer sandwich is placed in the container with the black side facing

the bottom of the container. A Scotch Brite pad was placed in the sandwich followed by

one sheet of blotting paper (Size: 2.5"x4" & Small Plate Size for 6% gels). One blotting

paper was layed on the gel still attached to the glass plate and used to gently peel the gel

off the glass. The blotting paper and gel were then placed on top of the other blotting
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paper. A nitocellulose membrane (Size: 2.5"x4" & Small Plate Size for 6% gels) was

labeled in the upper right hand corner, wetted and then placed on top of the gel. The

membrane was then rolled in order to remove air bubbles.

Figure 4.3 Gel transfer sandwich in a tupperware container.

The membrane had protein binding properties and binded proteins non-

specifically (i.e. binded all proteins equally well). Protein binding was based upon

hydrophobic interactions, as well as charged interactions between the membrane and the

proteins. Two more blotting papers were placed on top along with a Scotch Brite pad,

removing air from each layer by rolling. The sandwich was then closed, making sure that

no air was introduced into the layers. The sandwich(s) were placed into the transfer

apparatus (Figure 4.4) with the black face of the sandwich touching the black wall of the

apparatus. A frozen pack was placed on one end and tilled with transfer buffer covering

the gel. The lid was connected (red to red, black to black) and the unit was run for 1 hr at

the constant voltage of 100V in a container of ice. In some cases, the unit was run longer

if the proteins needed a longer transfer time (90 minutes).
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Figure 4.4 Photograph of the BioRad gel transfer apparatus.

	4.2.2.4	 Blocking. After the transfer time was complete, the sandwich was

disassembled and the membrane carefully cut with scissors using the gel as a template.

Gloves were worn when handling the gel and tweezers used to handle the membrane. The

membrane was then washed in TBST to remove methanol, and the membrane blocked in

order to prevent non-specific protein interactions between the membrane and the

antibody protein. This was accomplished by placing the membrane in a solution of 5%

non-fat dry milk in TBST for 30 minutes (in a plastic box on the rocking platform).

	4.2.2.5	 Probing with the Primary Antibody. The individual membranes were

then probed for the protein of interest by exposing the membrane to the respective

amount (e.g. 1:1000 (1μ1 of antibody in 1 ml of solution) and type of antibody (Table 4.4).

This primary antibody, which only recognizes the protein of interest, was incubated with

the membrane. The antibody was diluted in a solution containing 5% milk typically

prepared on ice. You typically need 1-2 ml of solution was typically needed to cover a
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plot. The diluted antibody solution and the membrane were sealed in a plastic bag and

gently agitated for an overnight incubation at 4 °C.

Table 4.4 Respective Protein Gel Concentration and Amount of Protein Mass Loaded

Protein

13 1-Integrin
Vinculin

Talin
α-Actinin
Filamin-Cα-Tubulin

β-Tubulin
Desmin

l rY Antibody
Concentration

lrY Antibody Type try Antibody

1:1000 Becton Dickinson, 610468 mouse
1:1000 Sigma, V9133 mouse
1:1000 Sigma, T3287 mouse
1:1000 Sigma, A5044 mouse
1:1000 Abdellatif [20] rabbit
1:1000 Sigma, T6199 mouse
1:1000 Sigma, T7816 mouse
1:1000 Sigma, D8281 rabbit

4.2.2.6 Washing and Applying Secondary Antibody. The bag containing the

membrane was opened, and the membrane placed in a plastic box and rinsed with TBST.

The box was filled with TBST and rocked on the platform three times (First: 10 minutes,

Second: 7 minutes, and Third: 7 minutes). TBST was removed and replenished after each

wash. After the final wash the secondary antibody (type listed in Table 4.4) was added in

5% milk at a concentration of 1:5000, and allowed to rock at room temperature for 1

hour. The secondary antibody only recognizes the first antibody and was used for visual

identification of where on the membrane the primary antibody had bound. Once the

secondary antibody incubation period was complete, the milk was removed and the blot

rinsed with TBST. The membrane was then rocked on the platform in TBST three times

(First: 10 minutes, Second: 7 minutes, and Third: 7 minutes).
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4.2.2.7 Photo Developing and Analysis. The membranes were then treated with

developing solution to be transferred to photo paper. Three milliliters (ml) of reagent A

developing solution and three ml of reagent B developing solution (Perkin Elmer Western

Lightning) were added in separate corners of a plastic box. The membrane was dried on

blotting paper and then placed into the mixed developing solution for one minute. After

exposure to the developing solution the membrane was blotted dry and placed in a photo

developing canister on blue photo paper covered with seran wrap. The membrane was

then covered with seran wrap and the canister closed. In the dark room a piece of blue

photo paper was inserted in the canister and the film exposed initially for one minute. The

one-minute results were interpreted in the following manner: if they were too dark the

photo paper was exposed for a shorter amount of time, and if they were too light it was

exposed for a longer amount of time. The developed membrane was only good for

roughly 20 minutes, at which point more developing solution would have to be used.

Once a clear picture was seen the standard marker location was noted on the developed

photo. The blots were then scanned and an image analysis software (Quantity One,

BioRad) used to quantify the protein's band black levels, which correspond to the amount

of protein present.
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4.3 Results

4.3.1 Physiological Indices

The tissue samples collected from young F344xBN (n=7) and old F344xBN (n=7) were

analyzed. A comparison was made between the LV mass (mg) and the animal body

weight (BW) (g) and the LV mass (mg) and the Tibia length (TL) (cm), which are known

indices of hypertrophy. An non-significant (NS) difference was seen in the LV to BW

ratio, whereas a significant (*, p<0.05) 30.1% increase was obtained in the ratio of LV to

TL with age (Figure 4.5).

Figure 4.5 Comparison of (A)Ratio of LV/BW and (B) Ratio of LV/TL, between young
and old animals.

4.3.2 Mechanotransduction Proteins

Figure 4.6 shows the β1-Integrin (MW 130 kDa) western blot where there is a significant

(*, p<0.05) 63.7% increase in β1-Integrin's arbitrary density units (ADU) from young

(n=7) to old (n=7) samples.
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Figure 4.6 β1-Integrin Western blot and quantification in young and old animals.

Figure 4.7 shows the Vinculin (MW 116 kDa) western blot where there is a significant

(*, p<0.05) 26.5% increase in Vinculin ADU from young (n=7) to old (n=7) samples.

Figure 4.7 Vinculin Western blot and quantification in young and old animals.

Figure 4.8 shows the Talin (MW 215 kDa) western blot where there is no significant (NS,

p>0.05) change in Talin ADU from young (n=7) to old (n=7) samples.
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Figure 4.8 Talin Western blot and quantification in young and old animals.

Figure 4.9 shows the α-actinin (MW 100 kDa) western blot where there is no significant

(NS, p>0.05) change α-actinin ADU from young (n=7) to old (n=7) samples.

Figure 4.9 α-actinin Western blot and quantification in young and old animals.

Figure 4.10 shows the Filamin-C (MW 280 kDa) western blot where there is a significant

(*, p<0.05) 74.2% increase in Filamin-C ADU from young (n=7) to old (n=7) samples.
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Figure 4.10 Filamin-C Western blot and quantification in young and old animals.

4.3.3 Cytoskeletal Proteins

Figure 4.11 shows the α-Tubulin (MW 50 kDa) Western blot where there is a significant

(*, p<0.05) 2.3 fold increase in α-Tubulin ADU from young (n=7) to old (n=7) samples.

Figure 4.11 α-Tubulin Western blot and quantification in young and old animals.
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Figure 4.12 shows the β-Tubulin (MW 55 kDa) Western blot where there is a significant

(*, p<0.05) 1.7 fold increase in β-Tubulin ADU from young (n=7) to old (n=7) samples.

Figure 4.12 β-Tubulin Western blot and quantification in young and old animals.

Figure 4.13 shows the Desmin (MW 53 kDa) Western blot where there is a significant (*,

p<0.05) 40.9% decrease in Desmin ADU from young (n=7) to old (n=7) samples.

Figure 4.13 Desmin Western blot and quantification in young and old animals.
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4.3.4 Summary

The relationship between LV tissue mass and rat body weight did not indicate the

presence of hypertrophy. However, when the LV tissue mass was compared to the Tibia

length, hypertrophy was observed with aging (Figure 4.4). Table 4.5 summarizes the

cellular protein changes with aging.

Table 4.5 Summary of Cellular Protein Changes with Aging

Protein	 Result 

	

β1 -Integrin	 UpRegulated
Vinculin	 Up Regulated

Talin	 No Change

	

α-Actinin 	 No Change

	

Filamin-C	 Up Regulated

	

α-Tubulin 	 Up Regulated

	

β-Tubulin 	 Up Regulated
Desmin	 Down Regulated

Several key proteins linked to mechanotransduction were observed to be up regulated

with aging. Moreover, the measurements presented above show that there are changes in

cytoskeletal proteins, including up regulation in the microtubules and down regulation in

the intermediate filament Desmin.



CHAPTER 5

PHYSIOLOGY MEASURES IN CONCIOUS RATS

5.1 Introduction

This chapter discusses the development of an instrumentation technique to measure LV

pressure and dimension in a conscious rat, while applying interventions (drug delivery,

occlusions). This method will be used to determine the effects of aging induced cellular

changes on global cardiac function in the aging rat model.

5.2 Materials and Methods

5.2.1 Instrumentation for Implantation

Standard instrumentation consists of the following instruments placed through a left

intercostal thoracotomy (Figure 5.1). The pressure is measured by using a solid-state

pressure transducer (Konigsberg P1.5) A solid-state micromanometer (Konigsberg P1.5)

is placed in the left ventricle and the left ventricle short axis dimension is measured by

using a pair of piezoelectric crystals. One crystal is excited by an electrical signal and

oscillates sending out sound wave (pinger) while the other crystal receives the sound

wave. The time that the sound travels from the pinger to the receiver is measured. The

distance is calculated by multiplying this time by the speed of sound in water (1.54

mm/μsec).
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Figure 5.1 Instrumentation used to measure LV pressure and dimesion.

The volume of the LV can be determined by approximating the LV as a sphere and

calculating the volume (V) with the short axis dimension (d) (Equation 5.1) .

A Braintree Micro-Renathane (MR) tubing catheter (7 inch length) was placed in venous

for drug injection, while a Braintree Rena Pulse (RP) tubing catheter (8 inch length) was

placed in the ascending aorta for aortic pressure (AOP) measurement. LV filling, in the

conscious closed chest model, was altered by Inferior Ven Caval Occlusions (IVCO) by

using an embolectomy balloon catheter (Model-120502F, Edwards Life Sciences with

diameter 2 French OD (0.64mm & ID 0.30-0.34mm) inserted femorally. The inferior
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vena cava (IFC) was occluded, in the open chest case, with a 3-0 silk snare followed by

LV volume overload with saline (20% of blood volume). IVCO was performed with a

suture in the open chest case. During recovery from surgery, the animals were kept warm

and continuously monitored in a thermal care unit (31 °C, 30-50% humidity, and low flow

02). Physiology experiments were conducted 7 days after surgery to provide recovery

time.

5.2.2 Electronics Setup and Calibration

5.2.2.1	 General Setup. The implanted instrumentation was connected to an

amplifier electronic filter setup as shown in Figure 5.2. All the data were displayed on an

oscilloscope, recorded on tape, and recorded on a computer through a data acquisition

system (Notocord) with a 1000 Hz sampling rate. The Konigsberg LV pressure signal

was filtered with a 1000 Hz low pass filter, and the AOP signal with a 60 Hz low pass

filter. Basic physiology measures were deduced by configuring toolboxes in Notocord.

These include the rate of pressure generation (dP/dt, determined with 1 msec of

smoothing)), heart rate, systolic and diastolic pressures, and maximum and minimum

dimensions. A further analysis of the pressure volume relationship (PV loops) was

performed with a custom designed software written in the MatLab programming

language based on established physiological relationships [156-159].
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Figure 5.2 Electronic setup consisting of pressure transducer amplifier, dimension
crystal amplifier, and electronic filter.

5.2.2.2 	 Konigsberg Calibration. The P1.5 was calibrated before placing it into

the animal with a manometer and fluid tank system (Figure 5.3A) filled with 300 ml of

water maintained at 37 °C (Figure 5.3B). The pressure amplifier's offset and gain were

adjusted so that the ambient pressure (0 mm Hg) corresponded to 0 Volt and the

maximum applied pressure of 200 mm Hg corresponded to the maximum voltage of 1

Volt. The gain and offset knobs were then locked into position, as shown in Figure 5.4, to

preserve calibration until experimentation.



Figure 5.3 Photographs of (A) Manometer and Konigsberg calibration setup (B)
pressure vessel used to apply pressure to the Konigsberg.
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Figure 5.4 Photograph of the pressure amplifier with lockable gain and offset knobs.

The Konigsberg's sensitivity was checked by applying 25%, 50%, 75%, and 100% of the

total pressure (200 mm Hg) with the calibration setup shown in Figure 5.3. The

relationship between the applied and measured pressure should be linear to indicate a

properly working transducer, as verified in Figure 5.5.
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Figure 5.5 Konigsberg's sensitivity plot of measured pressure versus applied pressure
indicating the linearity of the transducer.

The Konigsberg was sent for low temperature Gas ETO sterilization. High temperature

sterilization requires the use of a vacuum which disrupts the offset's calibration. The gain

decreases approximately by 1-2% per year. The gain value, for all intents and purposes,

should never change during the experiment. The offset can vary over time due to the

baseline drift (as much as 15 mm Hg/month). The AOP measured with a fluid catheter

was used to calibrate the Konigsberg offset where the LVP systolic pressure was matched

with the AOP systolic pressure on the day of experimentation (example shown in Figure

5.6). The AOP fluid catheter was connected to a Becton Dickinson Pressure Transducer,

and calibrated with a manometer.
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Figure 5.6 Konigsberg offset adjusted to match the LV systolic pressure with the AOP
systolic pressure.

5.2.2.3	 Dimension Crystal Calibration and Operation. The LV short axis

dimension was measured by using a pair of piezoelectric crystals connected to their

amplifier unit (Figure 5.7).

Figure 5.7 Photograph of the piezoelectric crystal dimension amplifier.
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The pinger crystal was excited by an electrical signal coming from the pinger connection

on the amplifier. The pinger oscillates, sending out a sound wave, which is received by

the other crystal (receiver) attached to its respective amplifier connection. The signals are

triggered by manipulating the null and inhibit levels on the amplifier (Figure 5.7). This

method measures the time it takes for one crystal to send a sound wave and the other

crystal to receive that signal. Therefore, the voltage signal measured is converted first

into time with the amplifier's calibration (Figure 5.7) and then to distance by multiplying

this time by the sound wave's speed. The amplifier calibration dial indicates time in

microseconds. Therefore, setting the dial to 2 would send a voltage corresponding to a

time of 2 μsec. Several voltages were used in order to calibrate the crystals.

5.2.2.4 Experimentation. Upon arrival from the vendor, the rat is trained to enter

the conscious study restraining box (RB). A week after its arrival, the rat undergoes a

surgery through which the Konigsberg and dimension crystal are implanted. The animal

is allowed to recover for one week, during which time the rat continues to be trained to

enter the RB. After one week, the MR and RPT are inserted into the animal. The animal

then recovers for three days before experimentation. During this time, both catheters are

heparinized first by flushing the line thoroughly with saline (2cc) and then by filling each

catheter with heparin (.1 cc) before closure. This procedure was conducted in order to

prevent the lines from clogging. The rest of the procedure is as follows. On the third day,

the Konisberg's offset drift is adjusted with the AOP systolic pressure, and baseline

physiological measures are recorded. After the baseline levels are recorded, the drug is
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delivered bolus through the MR catheter according to the concentrations (mass of

drug/mass of animal) listed in Table 5.1.

Table 5.1 Drug Concentrations for Physiology Experiments

Isoproteranol (ISO) Concentrations (4μg/kg)

0.05	 0.1	 0.2	 0.4

Dobutamine (DOB) Concentrations (μg/kg)

2.5 5 10 20

The animal is then allowed to recover back to its baseline condition before the next drug

concentration is applied. At the end of testing cathers are heparanized and the rat is

returned to its cage. The following day the embolectomy catheter is inserted in order to

perform IVC occlusions later that same day. Open chest procedures involve no drug

experimentation. The animal is anesthesized with pentobarbital (50 mg/kg) and IVC

occlusions are performed with a snare technique following loading the LV with 20% of

the animals total blood volume (50m1/kg).
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5.3 Results

5.3.1 Baseline Signals

The solid state transducer produced clean signals (Figure 5.8) and reasonable values for

Left Ventricular Systolic Pressure (Fig 5.8 (a) —120 mm Hg), Short Axis Dimension (Fig

5.8 (b) 6.5-8.5 mm) and the maximal rate of pressure generation (dP/dtmax) (Figure 5.8

(c) —10000 mm Hg/sec).

Figure 5.8 (a) Left Ventricular Pressure (LVP), (b) Left Ventricle Short Axis dimension,
and (c) rate of pressure generation (dP/dt).crystal dimension amplifier.
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5.3.2 Konigsberg Measures on Anesthetized and Conscious Animals

A comparison was made between an anesthetized (A)(n=3) and a conscious (C) (n=3)

group of rats with the prototype Konigsberg. The results indicate that there is no

significant difference between the LV End Systolic Pressure (LVESP) and the LV End

Diastolic Pressure (LVEDP) (Figure 5.9).

Figure 5.9 There is no significant (NS) difference in LVESP (A) and LVEDP (B)
measured in anesthetized (A) and conscious (C) rats.

The rate of pressure generation (dP/dt) shows a significant (*, p<0.05) 40.5% increase in

+ dP/dt and 49.7% increase in —dP/dt from the anesthetized group (A) and the

conscious(C) groups (Figure 5.10)

Figure 5.10 Significant (*, p<0.05) difference in +dP/dt (A) and —dP/dt (B) measured in
anesthetized (A) and conscious (C) rats.
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The heart rate (HR) shows a significant (*, p<0.05) 36.8% increase from the anesthesized

(A) to conscious(C) groups (Figure 5.10 A). There is also a significant (*, p<0.05)

142.1% decrease in the isovolumic time constant for relaxation (T, msec) from the

anesthesized (A) to conscious(C) groups (Figure 5.11 B).

Figure 5.11 Significant (*, p<0.05) difference in HR (A) and (B) measured in
anesthetized (A) and conscious (C) rats.

5.3.3 Comparison of Anesthetized to Conscious PV Loop

The occlusions conducted in both anesthetized open chest (Figure 5.12 (a)) and closed

chest conscious (Figure 5.12 (b)) animals; show a significant reduction in pressure (20

mm Hg), allowing LV pressure volume relationships to be determined. The End Systolic

Pressure Volume Relationship (ESPVR) and Pressure Recruitable Stroke Work (PRSW)

could be measured in both cases, but only the open chest method allowed the End

Diastolic Pressure Volume Relationship (EDPVR) to be measured, because intra-thoracic

pressure affected EDP in the closed chest case (Table 5.2).

Table 5.2 Pressure Volume (PV) Measures between Anesthetized and Conscious Rats

Anesthesized	 Concious 
ESPVR	 0.60	 0.75
PRSW	 90.1	 99.3

EDPVR	 0.18	 Not Applicable
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Figure 5.12 PV loops generated from (a) open chest preparation (b) conscious condition.
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5.3.4 Conscious Measure of Drug Response

A major advantage of a conscious measure of cardiac physiology allows the effect of

drugs to be measured without the influence of anesthesia. Aging is known to have an

effect on the β adrenergic receptors in both the heart and vessels. The effect of

isoproterenol (ISO) which affects the 13 1 and β2 receptors, as well as dobutamine (DOB)

which affects the β1 receptors, was tested on young (n=3) and old (n=1) F344xBN rats.

The ISO effect on the contractility index (dP/dt) was seen in each animal (example shown

in Figure 5.13).

Figure 5.13 Isoproterenol effect seen on the contractility index (dP/dt) of rats.

While there was a response to high doses of ISO on the young rats, that effect was not

found to be as dramatic on old rats (Figure 5.14).
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Figure 5.14 Effect of Isoproterenol dose on the contractility index (dP/dt) of young and
old F344xBN rats.

The DOB effect on the contractility index (dP/dt) was studied in each animal (example

shown in Figure 5.15).

Figure 5.15 Dobutamine effect on the contractility index (dP/dt) of rats.

There was a response to high doses of DOB in the young rats but that effect was less

pronounced in the old rats (Figure 5.16).



Figure 5.16 Effect of dobutamine dose on the contractility index (dP/dt) of young and
old F344xBN rats.



CHAPTER 6

DISCUSSION AND CONCLUSION

Most studies on aging have demonstrated LV diastolic dysfunction [45]. The

implications from these studies is that the mechanical dysfunction observed with aging is

due to changes in the extracellular matrix, which could be attributed to increases in

collagen [50]. The underlying hypothesis of the current investigation was that mechanical

changes in the myocytes could participate in the LV diastolic dysfunction due to aging.

Moreover, the current study was conducted in LV myocytes from male hearts, since

aging-induced LV diastolic dysfunction is more pronounced in males than in females [45,

160]. The male F344xBN rat model is an accepted animal model of cardiac aging [146]

and the results presented in this thesis showed that the increase in cell size (Table 2.2)

and decrease in isolated myocyte contraction-relaxation data (Figure 2.4) are consistent

with results of previous studies in other aging male rat strains [6, 50, 161, 162], which

have been conducted previously in male animals.

To test the hypothesis that the material properties of cardiac myocytes change

with aging in the rat model, indentation tests were performed with an AFM, which has

been used to measure the viscoelastic response of different cell types (e.g. endothelial,

platelets) with typical cellular apparent elastic modulus values between 1 kPa and 200

kPa, as previously described [131, 150]. The AFM technique has been well documented

in its ability to measure cytoskeleton components [131]. A Finite Element Model (FEM)

of AFM indentation was conducted using the ABAQUS software to investigate the use of

CIST to analyze nano-indentation of known hyperelastic materials, specifically Mooney-

Rivlin (MR) and Polynomial (POLY) materials. The numerically obtained AFM probe

92
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sample interaction in the MR (Figure 3.5) and POLY (Figure 3.6) materials compared

well with typical Force-Indentation relationships observed in AFM indentation

experiments. The FEM showed that boundary forces do not effect measurements where

the maximum reaction force on the bottom surface is significantly smaller (MR: —800

million times, & POLY —462 million times) than the force needed to indent the material.

Furthermore, the elastic modulus determined from the CIST fitting compared well to that

calculated using Green's equation [123] based on the shear strain coefficients (MR Figure

3.7, POLY Figure 3.8). These data confirmed that the interpretation of AFM

nanoindentation results with CIST could indeed determine the material properties of a

sample.

The AFM indentation measurement registered changes in the myocyte

sarcolemma, sarcomeric skeleton, and general cytoskeleton proteins (tubulin, desmin, and

actin). The force indentation graph (Figure 2.6a) conducted on a myocyte compared

favorably with previously published theoretical and experimental curves for biological

cell material [123, 150]. For the same indentation depth, the cantilever deflection was

greater on old F344xBN myocytes than on the young F344xBN myocytes, indicating that

on average a larger force is necessary to indent the myocyte surface of old F344xBN rats

as compared to that of young F344xBN rats (Figure 2.6a). Therefore, before even

deriving a measure of the stiffness (apparent elastic modulus) from the force-indentation

relationship, the stiffness of aged cardiac myocytes was shown qualitatively to be greater

than young ones. The force indentation data fitted CIST well, with the AFM probe

modeled as a blunted conical indenter (Figure 2.6b).
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The results of the investigation reported here demonstrated that the apparent

elastic modulus of isolated cardiac myocytes increases significantly (p<0.01) with

advanced age (Figure 2.7). This increase was found to be approximately 21% from 35.1 ±

0.7 kPa (n=53) to 42.5 ± 1.0 kPa (n=58). The apparent elastic modulus (E) was

determined by analyzing the relationship between the AFM indentation force and depth

by means of the accepted and widely used CIST approach, and modeling the AFM probe

as a blunted conical indenter, the latter having been shown to be an accurate

representation of the AFM probe shape [123, 150]. Cardiac myocytes behave in a

viscoelastic manner and when they are indented by the AFM tip, energy is dissipated into

the cell (hysteresis). In order to accurately determine the apparent elastic modulus of the

myocyte, the energy dissipated into the cell was minimized by selecting a tip speed (0.6

µm/sec) above which hysteresis remained essentially constant (Figure 2.2) while also

maximizing the number of force curves that could be captured. Since minimal hysteresis

is still present, the measurements do not reflect a purely elastic modulus but rather an

apparent elastic modulus, which takes into account the viscoelastic nature of the myocyte.

Analysis of the effects of age on normalized hysteresis show a significant 10% decrease

in the energy dissipated into the myocyte cell with aging. A decrease in the energy

dissipated by the cell implies that the viscous component of the cell's mechanical

properties decreases with aging.

The apparent elastic modulus determined for young cardiac myocytes using AFM

nanoindentation are in accord with data derived from studies in isolated rat cardiocytes

using a variety of other techniques. However, no previous measurements are available in

the literature for old cardiac myocytes to compare with our data. The apparent elastic
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modulus value of 35.1 ± 0.7 kPa (n=53) on young (4 mos old) cardiac myocytes

compares favorably with Granzier's stiffness value (32 kPa) obtained by studying the

stress versus strain relationship on skinned rodent cardiocytes by attaching glass micro-

needles with urethane foam and applying a tensile force [163, 164]. It is also in good

agreement with Brady's stiffness measure (26 kPa) found in skinned rodent cardiocytes

held between double micropipettes by suction and barnacle cement [165]. Differences in

the measured value between the data reported here and previously published results could

be attributed to the fact that in this work the measured myocytes were not skinned, thus

still having their membrane, in contrast to other works. The removal of the cell

membrane could indeed have an effect on cardiac myocyte viscoelasticity. The

measurement technique itself could also affect viscoelasticity values, since the

measurements described above were carried out in the transverse direction, contrarily to

other studies in which measurements were performed in the tangential direction (through

the application of a tensile force).

Moreover, the myocytes studied by AFM were not electrically stimulated to

contract and therefore remained essentially motionless during nanoindentation. However,

the myocytes could not be considered completely passive because of the effect of cross

bridge cycling. The variation in stiffness with location prevalent for other cell types (e.g.

embryonic cardiocytes) measured with the AFM was negligible with adult mammalian

cardiac myocytes (see also [150]. It is worth also noting that the boundary effects that are

known to influence the results of AFM indentation on smaller cells are not relevant in

this experimental design, because of the AFM probe's nano-size which remains much

smaller than the myocyte's micro-size. Therefore, boundary effects such as the
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interaction between the myocytes laminin-receptors and the laminin-coated-substrate, as

well as the material properties of the substrate itself, do not affect the indentation

measurements. AFM indentation may also affect the material properties of the cell;

however, experiments proved that replicate indentation in one cellular location does not

significantly change the apparent elastic modulus (Figure 2.8a) as has also been shown by

others [150]. AFM measurements were conducted within a six-hour period from the time

of isolation. The variation in the time at which AFM measurements were conducted could

affect the apparent elastic modulus measured; however, the experiments proved that this

was not the case in both young and old myocytes by displaying similar data from the

AFM over a six-hour period (Figure 2.8b). It is also possible that the size of the cell, per

se, may have an influence on the apparent elastic modulus measurements. This point is

particularly important to consider here, since aging indeed causes myocyte hypertrophy

[50], as demonstrated in the current study. However, the apparent elastic modulus is a

material property reflecting the extent to which cardiac myocytes deform under a stress

and should thus be independent of the cell's geometry, a property indeed verified

experimentally in Figure 2.5. Nonetheless, the age related increase in the myocyte

apparent elastic modulus could be a result of hypertrophy [49]; however, as noted by

Lakatta [67], aging induced hypertrophy is different from hypertrophy produced by

pressure overload. In fact, Lakatta found that a portion of the mechanical property

alterations seen in the aged heart is due to the underlying hypertrophy; however, the

hypertrophy resulting from the mechanical loading of the LV cannot explain all the

changes resulting from aging [166]. In any case, this point would not impact the
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conclusions of the current study that material properties of myocytes become altered with

aging and that such changes could contribute to the altered properties of the aging heart.

Cellular material property changes were analyzed with established immunoblot

(western blot) techniques. Proteins involved in the process of mechanotransduction were

measured along with cytoskeletal proteins involved in the cell's structure.

Mechanotransduction refers to the mechanisms by which cells sense physical forces,

transduce the forces into biochemical signals, and generate appropriate responses leading

to alterations in the cellular structure and function [8, 167]. Mechanotransduction is a key

component of myocytes since cardiac cells are constantly sensing and transducing

external forces, and at the same time developing internal contractile forces [10, 168]. The

mechanical forces sensed by myocytes are linked to chemical signals that lead to

modifications both within the cell with changes occurring in signaling proteins, the

contractile apparatus, and the cytoskeleton, and outside the cell with a dynamic

restructuring of the extracellular matrix (ECM). These structural changes alter the

mechanical properties of the cells and the ECM, resulting in a redistribution of

mechanical stimuli until a new (mechanical and biological) equilibrium is achieved. This

balancing system is an essential part of normal cardiac growth and development, but

when the system goes out of balance, the result can lead to abnormal physiology and

disease [10]. Myocyte mechanotransduction, although not well understood, is directly

involved in the development of heart disease [169]. Therefore, an understanding of

mechanotransduction and the changes to cytoskeletal proteins with aging is crucial for a

better understanding of the mechanisms involved in the progression to cardiac

dysfunction with aging.
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In this thesis, it was shown that some proteins involved with mechanotransduction

changed with age (Table 4.5). While an upregulation in β1-Integrin (Figure 4.6), Vinculin

(Figure 4.7), and Filamin-C (Figure 4.10) was detected, no change was observed in the

expression of α-actinin (Figure 4.9) and Talin (Figure 4.8). Cardiac myocyte integrins are

not randomly distributed on the cell surface but are found embedded within the

sarcolemmal membrane [170]. β1-Integrin is regarded as a strain transducer and is the

main receptor that connects the cytoskeleton to the ECM [13]. Integrins were initially

thought of as molecules necessary for adhesive interactions between cells and the ECM,

but it has been shown that they are bidirectional signaling molecules involved in external

to internal signaling and vice versa in internal to external signaling [171]. They provide a

linkage between the cardiac ECM and the cardiac myocyte cytoskeleton through several

proteins (talin, α-actinin, filamin, etc.) [8]. Various studies have been conducted to

investigate the role of integrins in cardiac function. An aging study on mice revealed a

down regulation (reduction) in β1-Integrin measured by immunoblot techniques [172].

This finding is in disagreement with this study; however, Burgers et al.'s experiments

were conducted for a different species (mouse). Cardiac myocytes require integrin

adhesion to stay alive. The signals resulting from integrin attachment, along with growth

factor receptors, prevent apoptosis (programmed cell death) [173]. Apoptosis is known to

take place with cardiac aging [50]; therefore, an upregulation of β1-Integrin with aging

could possibly be a preventive response to these events. Investigations involving the

over-expression of β1-Integrin have demonstrated the importance of integrins in cardiac

function. The over-expression of β1-Integrin in the rat cardiac myocyte was found to

increase hypertrophic marker gene expression and protein synthesis [15]; moreover, it
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resulted in reduced contractility and relaxation in the intact heart [174]. Previous studies

have shown that aging is accompanied by hypertrophy and contractility dysfunction [50],

as was also shown in this thesis. Furthermore, it was also demonstrated that the removal

of β1-Integrin impaired cardiac function, weakened myocyte membranes, and reduced

the ability of the heart to withstand pressure overload, while not enhancing apoptosis

[175]. The relationship between β  1-Integrin and the amount of microtubules (cytoskeletal

protein) was investigated, with a β1-Integrin blocking agent inhibiting the stretch-

induced increase in microtubule polymerization in hypertrophic cardiac myocytes [14].

Therefore, it could be assumed that an increase in β1-Integrin could promote an increase

in microtubule polymerization. This would fall in line with the results of the current study

where an increase in both α and β tubulin is observed with aging (Table 4.5).

Vinculin plays a role in muscle structure and stability to mechanical forces, and is

involved in the attachment of myofibrils to the sarcolemma, and in the lateral translation

of force through the extracellular matrix to neighboring myocytes (as reviewed by [176].

Vinculin contributes to the stability of both the cellular membrane and the intracellular-

extracellular connections via the integrins. The protein Vinculin has also been associated

with adhesion [177], while the loss of this protein has been linked to myocardial fragility

in isolated, perfused rat hearts [178, 179]. It was also shown that a partial reduction of

decreased Vinculin leads to abnormal myocyte structure (disorganized Z-lines), but

without physiological evidence of cardiac dysfunction [180]. An increase of Vinculin has

been revealed in failing human hearts [181]. A study conducted with AFM indentation on

Vinculin deficient cells demonstrated that a decrease in Vinculin resulted in a decrease in
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measured stiffness [182, 183]. Therefore, one can assume that an increase in vinculin

would contribute to an increase in stiffness measured by AFM nanoindentation.

Filamin-C is mainly a structural protein that belongs to an extended family of

actin-binding proteins [20]. Loo et al. [21] suggested that the interaction between

βl-ntegrin and Filamin provides a mechanism for the interaction of the cell surface receptor

with cytoskeletal proteins, and that this interaction may play an important role in the

normal receptor function. The increase in Filamin-C with aging detected in this study

could be an indication of increased actin binding, which could result in direct changes of

the myocyte's cytoskeletal properties.

The analysis of cytoskeleton protein changes indicated a significant increase in α-

tubulin (Figure 4.11) and β-tubulin (Figure 4.12). It is generally accepted that the main

role of the microtubular network is to act as a transport system which sends particles

between sites that synthesize proteins and lipids [23, 24]. However, the importance of

microtubules in the development of hypertrophy and heart failure has been investigated

by several groups and remains controversial. Investigations by Cooper's group on feline

right ventricular hypertrophy showed contractile dysfunction in isolated myocytes [184,

185] and loss of compliance [186]. These changes were accompanied by increased

cytoskeletal stiffness characterized by a change in the amount of total Tubulin and an

elevated degree of polymerization. The conclusions from the present thesis are such that

an increased microtubule amount could be related to increased cellular stiffness. The role

of microtubules in cardiac hypertrophy and failure was further investigated by Cooper's

group in numerous experimental studies that showed the reduction of microtubules with

colchicines (microtubule depolymerizing agent) treatment, which in turn reversed
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myocyte stiffness and returned contraction dynamics. Studies by Cooper's group also

showed that Taxol (microtubule polymerizing agent) treatment of normal myocytes

produced an overload of microtubules and cardiac dysfunction similar to what has been

observed in in-vivo hypertrophy [7]. The conclusion drawn from the studies of Cooper's

group was that cytoskeletal abnormalities, rather than changes of myofilaments, are

responsible for cellular contractile dysfunction observed in hypertrophied and the failing

heart. Contractile dysfunction, seen in cardiac hypertrophy, was considered to be a result

of an increased density of microtubules [7]. The same group published data on the role of

microtubules in the transition from compensated to decompensated hypertrophy in a

canine model of left ventricular pressure overload due to aortic banding [22]. Isolated

myocytes from failing hearts showed contractile dysfunction and an increase in

microtubules, which could both be reversed with colchicines treatment. The findings of

Copper's group have been questioned by others including Bailey et al. [187] who did not

observe an effect of colchicine on contraction dynamics in isolated feline myocytes from

hypertrophied hearts, and de Tombe [188] who did not observe any effect of colchicine

and taxol on rat trabeculae contractility.

The view of Cooper's group is that an increase in microtubules is an important

factor in causing cytoskeletal stiffness and contractile dysfunction is shared by Wang et

al. [189] who examined the transition from hypertrophy to failure in guinea pig hearts.

Wang found an increase in microtubule density using quantitative confocal microscopy,

but no increase in total tubulin in Western blots. These findings led Wang to believe that

changes in the cytoskeleton (including desmin and titin) may be involved in ventricular

dysfunction. Collins et al. [190], using the same guinea-pig model for studying
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hypertrophy and failure, came to the conclusion that neither the level of tubulin nor the

degree of polymerization is involved in changes occurring in cardiac hypertrophy. The

results of the aging study presented above show a significant upregulation in α and β

tubulin (Table 4.5), a decrease in contractile function (Figure 2.4), and an increase in

myocyte stiffness (Figure 2.7). Whether the myocyte functional changes are solely linked

to microtubule changes is not yet established; however, the previous work suggests that

there is a role of microtubules in cardiac function.

This thesis has also shown a decrease in the intermediate filament Desmin (Figure

4.13), which plays an essential role in maintaining muscle cytoarchitecture by forming a

three-dimensional scaffold around the myofibrillar Z-disk and by connecting the entire

contractile apparatus to the subsarcolemmal cytoskeleton, the nuclei, and other organelles

[28, 29]. Studies in Desmin knockout mice (Des—/—) have been conducted to demonstrate

Desmin's function. Although these (lacking Desmin) mice develop normally and are

fertile, after birth, they suffer from cardiomyopathy, skeletal myopathy, and smooth

muscle dysfunction, which reduce their life span and make them less tolerant to exercise

[191, 192]. Moreover, a heart without Desmin develops cardiomyocyte hypertrophy and

eventual cardiomyopathy characterized by cardiomyocyte death, calcification, and ECM

changes [192, 193].

The mechanical function of the Desmin filaments in the heart wall has also been

studied by means of a Langendorf technique which showed an increase in diastolic

pressure, lower developed pressure, and structural remodelling of the ventricle [27]. It

has been suggested that the contractile apparatus generates less active force in Des—/—

[194], which could result from a change in the structure of the ventricle wall, an inability
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of the cell to transmit forces, or an inability to align sarcomeres. Desmin filaments may

be involved in generating active force in the cardiac muscle by supporting sarcomere

alignment and force transmission [27]. The morphology and function of mitochondria are

also abnormal in mice lacking Desmin [192, 193]. Studies suggest that the Desmin

cytoskeleton influences the position, movement, and activity of mitochondria in cardiac

muscle [195, 196]. The results of previous studies suggest that a reduction in Desmin

could contribute to the changes seen with aging where contractile dysfunction (Figure

2.4), myocyte hypertrophy (Table 2.2), and a down regulation in Desmin (Table 4.5)

were found.

In this thesis, an instrumentation technique was developed to determine the effects

of aging induced cellular changes on global cardiac function in the aging rat model. LV

pressure and dimension were measured in a conscious rat (Figure 5.8). The pressure

measurements compared well to previously published work in conscious rats with a fluid

catheter [197], a telemetered pressure volume catheter [198], and in several studies

performed on anesthesized animals [63]. Cardiac contractility was altered by delivery of

isoproterenol (Figure 5.14) and dobutamine (Figure 5.16), as evidenced by the index of

cardiac contractility (dP/dt) which increased as higher drug doses were delivered. The

observed change in dP/dt was found to be in good agreement with previously published

work [197]. Moreover, a clear difference was observed between young and old rats'

responses to isoproterenol and dobutamine. These results are the first to demonstrate β-

adrenergic dysfunction in a conscious aged rat model, although such a dysfunction had

previously been described in in-vitro setups of isolated cells and hearts [50, 67]. The

anesthesized pressure volume relationships compared well with previously published
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work [63]. In addition, a new method was developed to produce occlusions in conscious

rats, which will allow future independent load measures of contractility to be conducted

in conscious young and old rats.

In conclusion, this is the first study to use the AFM to examine either a disease

state or a change in physiological function in cardiac myocytes. The findings indicate that

the altered LV diastolic function in the whole heart resulting from age may not only be

due to structural changes in the heart, but also due to changes occurring at the single

myocyte level, such changes being independent of the extra cellular matrix. A limitation

of this study, as well as of most other studies examining myocyte function, is that the

yield of healthy myocytes is less in the old heart than in the young heart. However, there

is very little difference in myocyte function in cells from young rats over a broad range of

cell sizes, although there is a reduction in yield (Table 2.1). Material property changes

were seen in proteins involved in mechanotransduction and cytoskeletal structure (Table

4.5). Future investigations in this area will need to examine not only alterations in

collagen/elastin, but also the mechanisms involved in changing the myocyte's resilience

and stiffness, as well as potential differences due to gender. The development of the

novel method presented above to measure LV pressure and dimensions within the

conscious rat will also allow further testing of the effects of cellular changes on the entire

cardiac function.



APPENDIX A

AFM FLUID CELL OPERATION

This appendix covers the use a fluid cell which consists of a small glass assembly with a

wire clip for holding an AFM probe (Figure A.I).

Figure A.1 Tapping Mode Fluid Cell in Case. Images Courtesy of Digital instruments,
Santa Barbara CA.

The glass surfaces provide a flat, beveled interface so that the AFM laser beam may pass

into the fluid without being distorted by an unstable fluid surface (Fluid Cell Operation

Information From Digital Instruments Support Note 290B Fluid Operation)[199].

A.1 Clean Fluid Cell and 0-ring.

To reduce contamination problems and to obtain high-quality images, it is necessary to

clean the fluid cell, and 0-ring if applicable, in the following manner:

1. While soaking the fluid cell and 0-ring in warm, soapy water, place a few drops

of liquid dish soap on them.

105
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2. Gently rub the fluid cell and 0-ring with a cotton swab or finger. Avoid

scratching the glass surface with abrasive material.

3. Using distilled water, rinse the fluid cell and 0-ring of all soap.

4. Using 0.2 mm-filtered, compressed air or dry nitrogen, blow dry the fluid cell

until all moisture evaporates.

A.2 Select the Probe

AFM probes featuring low stiffness cantilevers produce the best results for biological

applications. Models NP-S (standard) or NP-STT (oriented twin tip) 100pm ("short"), V-

shaped cantilevers with oxide-sharpened silicon nitride tips are recommended.

A.3 Remove Organic Contamination from the Probe Tip

Since contaminants on the probe tip may limit AFM resolution, it is necessary to use

ultraviolet (UV) light to remove contaminants, in the following manner:

1. Place the fluid cell with installed tip face-up on a clean surface.

2. Position a UV lamp very close (3-5 mm) to the fluid cell and irradiate the probe

for two minutes at full intensity.

A.4 Load the Fluid Cell with a Probe

The probe is held in a small pocket on the bottom side of the fluid cell by a gold plated,

stainless steel wire clip. A tiny coil spring mounted on the top of the fluid cell holds the

wire clip against the probe. Load a probe into the fluid cell by performing the following

procedure:
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1. Turn the fluid cell upside down, and gently raise the wire clip by pressing from

beneath.

2. With the wire clip raised, use tweezers to slide a probe into the pocket. Lower the

clip to hold the probe (Figure A.2).

Figure A.2 Probe loaded into the fluid cell. Image courtesy of Digital Instruments,
Santa Barbara CA.

3. Verify that the probe is squarely set against one side of the pocket and flush

against the back. Verify the probe is held firmly by the wire.

A.5 Sample Mounting

Secure a 1 5mm glass sample slide containing cells to a magnetic stainless steel sample

puck. Supports may be secured to the puck with epoxy (Fig. 3.5).
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Figure A.3 Stainless-steel puck with aqueous sample image courtesy of Digital
Instruments, Santa Barbara CA.

A.6 Method To Load Fluid Cell With Solution

A.6.1 Install The Protective 0-Ring Into The Fluid Cell

1. Insert the 0-ring into the recessed groove in the underside of the fluid cell. The O-

ring slides up into the recessed groove.

2. Position the 0-ring so that it forms a seal around its periphery and does not

overlap any edges.

A.6.2 Pre-Wet The Fluid Cell (Figure A.4)

Occasionally, air bubbles form in the fluid cell and block laser light. Preventing bubbles

from forming can be obtained by following the steps below:

Figure A.4 Fluid inserted into the fluid cell. Sample image courtesy of Digital
Instruments, Santa Barbara CA.
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1. Before installing the fluid cell into the head, insert a syringe filled with liquid

solution into a fluid port, or connect the syringe to the inlet tubing on the fluid

cell.

2. Push enough fluid through the fluid chamber in order to flood the fluid cell

port, allowing liquid to drip out of the bottom of the cell.

3. Leave the solution-filled syringe inserted. A small amount of solution should

be held to the bottom of the cell by surface tension.

A.6.3 Install The Sample.

Install the sample attached to puck in the AFM head.

A.6.4 Install The Fluid Cell

Carefully install the fluid cell in the AFM head (Figure A.5).

Figure A.5 Fluid cell inserted into AFM head. Sample image courtesy of Digital
Instruments, Santa Barbara CA.
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1. Tighten the clamp to hold the fluid cell in place, making certain that the O-

ring positions properly between the sample and the fluid cell.

2. Verify the head is leveled side-to-side and that the head is tilted slightly

forward, so the tip is leveled when it contacts the surface.

3. Fill the fluid cell with liquid. Limit the volume of liquid in the fluid cell to 30

— 50 μl, if possible, in order to limit thermal drift.

a. Attach a drain line to the other fluid cell port.

b. Slowly flush the fluid cell with solution from the syringe. Check for leaks

and wipe away any spilled liquid with filter paper until the AFM

components are dry.

4. Remove bubbles and clamp off fluid cell lines. Bubbles inside the fluid cell

near or on the probe can interfere with the laser beam. Remove them by

performing the following procedure:

a. Observe the fluid cell and probe through the viewing port using an optical

microscope.

b. Rapidly push liquid through the cell with a syringe. If sufficient force is

applied, the bubbles will be carried out of the fluid cell.

c. Clamp off the drain line with a pair of hemostats or similar clamp.

5. Adjust the laser:

a. If the presence of fluid causes the laser spot to refract, slightly adjust the

laser aiming screw, to move the laser spot onto the end of the probe.
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b. If air bubbles become trapped near the probe, interfering with the laser

beam path, use the syringe to force liquid quickly through the cell to break

the bubbles loose.

A.7 Align the Laser

Use the x- and y- laser adjustment knobs to align laser spot onto the tip of the cantilever.

Insert a small slip of paper into the laser beam path to perform fine laser alignment.

Carefully adjust the laser adjustment knobs in both directions to achieve a solid rectangle

bar-shaped pattern reflected onto the slip of paper.

A.8 Adjust the Detector Offsets and Setpoint (Contact Mode)

Turn the detector mirror adjustment screws to center the laser spot on the laser detector.

For contact mode, set the vertical deflection signal to roughly -1.0 V and the setpoint to 0

V to begin. The difference between the vertical deflection signal before engaging and the

setpoint determines the amount of force that the probe applies to the sample. Typically,

samples are softer in liquid than in air. Before engaging, verify that there is not much

difference between the setpoint and the vertical deflection signal as to damage the

sample.

A.9 Engage the Surface

Using the coarse adjustment screws and MOTOR DOWN switch on the NanoScope®

MultiModeTM TM base, lower the tip until it is just above the level of the sample surface.

In the Real Time / Motor menu, click ENGAGE, or click the Engage icon. The motor
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begins to move the AFM head and probe down to the sample. When the tip reaches the

surface, the system should automatically stop, beep, and begin to image the sample.

A.10 Adjust Scan Parameters (Contact Mode)

Once engaged, adjust the scan parameters to obtain the best image as follows. To avoid

sample damage, adjust the setpoint as low as possible:

1. Reduce the setpoint in increments of 1/100 volt.

2. Stop when the tip pulls off the surface and the Z Center Position on the

display monitor jumps to Limit (-220 V).

3. Increase the setpoint until the tip begins to touch the surface again and an

image appears.

4. Set the two gains as high as possible (starting with the integral gain) without

causing oscillation distortion to appear in your image.

5. Choose a scan rate that is sufficiently slow to image without degrading your

data.

A.11 Fluid Cell Operation In Tapping Mode

Operation of Tapping Mode in fluid provides the same advantages of TappingMode in

air, with the additional ability to image samples under native liquid conditions. In fluid

TappingMode, the probe is oscillated so that it only intermittently contacts the sample

surface. This can reduce or eliminate lateral forces that can damage soft or fragile

samples in contact mode.
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A.11.1 Procedure for Tapping Mode Imaging in Fluid

1. Load the sample in the AFM.

2. Align the laser on the end of the cantilever portion of the probe.

3. Center the photodiode to give a deflection signal near OV.

4. Choose the TappingMode operation in software.

5. Set the initial scan parameters, by entering the View/Sweep/Cantilever Tune

menu to select a drive frequency and manually tune the probe using the Zoom

in and Offset functions above the Cantilever Tune display.

6. Center the laser spot on the photodiode detector. Adjust the photodiode until

deflection is roughly zero. The deflection signal can drift when the probe is

first in fluid, so it is best to adjust just prior to engaging.

7. Click the Engage icon to bring the tip into tapping range.

8. Adjust the setpoint when engaged.



APPENDIX B

INFINITESIMAL INDENTATION SUPERIMPOSED

ON A FINITE EQUIBIAXIAL STRETCH

This appendix covers the development of the formulas used related to the infinitesimal

indentation by a rigid axisymmetric punch superposed on finite deformations of an elastic

half-space for compressible and incompressible, isotropic, hyperelastic materials taken

from the following sources [123, 132-134, 152]. Costa [123] presented the equations

relating indentation force and depth for axisymmetric punch geometries based on

Humphrey's work [134]considering incompressible materials indented by a flat-ended

cylinder.

The following is the general equation for the total force (P) exerted by an indenter

for infinitesimal indentations perpendicular to the finite stretch [123, 133].

Where 11)(d) is a function of the indenter geometry, which determines the dependence of P

on the penetration depth (d). F(W) and Σ(W) incorporate the material properties and in-

plane deformation through their dependence on the strain energy function, W(11, 12), and

the principal strain invariants, I I and 12 . For finite equibiaxial stretch, μ, the deformation

gradient tensor is F=diag 0.1.41,20, where X=11 -2 to satisfy material incompressibility. For

incompressible materials F and I can be written as
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where k 1 and k2 are roots of the following quadratic equation for K[134]

where	 (i, j=1, 2) are second derivatives of W with respect to Ii or and

Where W1 and W2 are derivatives of W with respect to II and I2 respectively [123].
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The special case of zero in-plane stretch (μ=λ=1 and k1=k2=1), yields Γ=Σ=0, such that

Γ/Σ is indeterminate. This limit can be found by first setting k 1 =1 in (B.2)

with k2=1 and (B.4a), yields

Eg is a generalized elastic modulus for any isotropic, incompressible, hyperelastic

material in its unstretched state. Classical solutions for the infinitesimal indentation are

expressed in terms of

E is Young's modulus and v is Poisson's ratio. For incompressible materials v is 0.5

[127]. For the case of linear hyperelastic materials, where W1=C1 and W2=C2 are

constants, Eg from (B.6) is equal to 2/3 the Young's modulus given by E=6(Cl+C2) [123,

155]. Equation (B.1) becomes
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(B.8)

Where d is the indentation depth measured from the free surface at the axis of symmetry.

Costa's system [123] involves obtaining 4(d) from existing solutions to express them in

the form of (B.8). Expressions for 4(d) for a rigid spherical and conical punch indenter

geometries were developed because many of the axisymmetric punch shapes of principal

interest can be described by a quadratic function [133].

Where cβ, β=0,1,2, are constants determined from the assigned geometry. The radius of

the circle of contact is a. The variable r describes the convex punch shape as the radial

distance from the axis in the range 0≤r≤a. From [133] we obtain a relation for 0(d).

When r =0, this expression reduces to

Specific punch shapes can be determined with this relation.
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Cone With Tip Angle, 2α [126, 133]

The indentation of a conical punch of apex angle 2α may be described by

where d denotes the maximum depth of indentation. Therefore,

gives

The incremental stress should not become infinite at the ultimate circle of contact r=a. To

this end,

should be finite , therefore

Putting (B.14) into (B.13) gives



which simplifies to

This is the conical indenter geometry function.

Sphere With Radius, R [133]

The infinitesimal indentation by a spherical punch of radius R is characterized by

therefore

119

In order that the incremental stress distribution [133] be finite at r=a, we must have



120

a2 = R.d	 (B.18)

Inserting (B.18) into (B.17) we get

This is the rigid spherical indenter geometry function.

Blunt Cone With Tip Angle 2α, Which Transitions At Radius R [152]

0(d) for a blunt cone with tip angle 2α, which transitions at radius b into a spherical tip

of radius R was examined with Briscoe's method [152].

The reciprocal theorem relates the P(d) function for any axisymmetric indenter, to the

pressure distribution produced by a cylindrical punch of the same projected area as
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Where σ(r) and D are the pressure distribution and depth of indentation respectively for

the cylindrical punch, and f(r) is a function that specifies the indenter profile by its

distance from the undeformed surface (d=0) as a function of the radial distance, r, from

the axis0<_r<_a. The pressure distribution under a perfect cylindrical punch is given by

Sneddon [132]

Substituting (B.21) into (B.20), we get

From Figure B.1 the function for a defective cone is
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Figure B.1 A geometric model of a rigid cone with a spherical tip indenting an elastic
half space[133].

When the spherical tip merges smoothly (tangential) with the body of the cone, the defect

geometry is defined by R only and the corresponding value of b is given by b=Rcos(α).

When al) inserting (B.23a) into (B.22) gives

The radius of the contact zone is determined by maximizing the value of P with respect to

a, that is, aP/aa=0, which results in a=(Rd) 1/2 and



The compliance equation for a sphere (Hertzian contact) where 4(d) is

the rigid spherical indenter geometry function (B.19).

The depth of indentation corresponding to the transition from sphere indentation to

(defective) cone indentation, d„ is given by the boundary condition a=b; for which the

value of d is ds=b2/R=2d, .

The compliance equation when a≥b
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The condition aP/aa=0 applied to the above equation gives

Which is used to solve for the contact radius a. For d<b 2/R, 0(d) is given by (B.19) for a

spherical indenter. When d>_b2/R, we have
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