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ABSTRACT

DYNAMIC SIMULATIONS OF PARTICLE SUSPENSIONS SUBJECTED
TO AN EXTERNAL ELECTRIC FIELD

by
Xianj in Jiang

A numerical method is performed to study the suspension of polarizable particles in

nonconductive solvents subjected to external electric fields. Such particles experience

both hydrodynamic and electrostatic interactions. The hydrodynamic force acting on the

particles is determined using the Stokesian dynamics method under the assumption that

the Reynolds number is much smaller than 1, while the electrostatic force is determined

by differentiating the electrostatic energy of the suspension, which is computed from the

induced particle dipoles. In addition, the multiple image method is used to compensate

for the electrostatic force when two particles are close to each other. Because the

electrostatic energy accounts for both far- and near-field interactions, so does the

corresponding force.

In this thesis, a monodisperse suspension of hard, dielectric spheres in a

Newtonian fluid contained in a channel and subjected to an electrical field due to

energized electrodes embedded in the channel walls was considered. The transient

particles motion is studied both under static conditions and when a pressure driven flow

is applied, and in the case of a uniform and non-uniform electric field. The results show

that the electrostatic energy method applied in the past to the case of a uniform electric

field only can be extended to the situation where the electric field is non-uniform.
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NOMENCLATURE

Am, Bm 	coefficient

a 	 particle radius
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q vector of N particle charges moment



r distance between particles a, fi centers position y and x, r

and Vy 	
a

S 	 vector of N particle dipoles moment

T 	 Maxwell stress tensor
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V 	 the volume of the domain
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vector of N particle electric field
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to 	 dynamic or Bingham yield stress
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Subscripts
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p	 particle
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CHAPTER 1

INTRODUCTION

1.1 Overview

Interesting phenomena happen when polarizable particles suspended in a nonconductive

medium are subjected to external AC or DC electric fields. The suspension is called

electrorheological (ER) fluid. Electrorheological fluids are most commonly colloidal

suspensions, and their stiffening under an electric field is reversible. Both polarizable

particles and medium are dielectric materials. The dielectric constants of the suspended

particles and the suspending medium are different so that neutral particles can be

polarized when subjected to an external electric field.

Particles form chain structures aligned in the direction of the electric field in the

case of a uniform electric field. This stacking of an electrorheological fluid is sometimes

called the "Winslow effect" after its first investigator, Willis Winslow 111 in 1949. In a

non-uniform electric field, the induced dipoles (charges) within the particles interact with

the field to give rise to dielectrophoresis121 , electrorotation131 , or traveling wave

dielectrophoresis 13 '41, depending on the nature of the imposed electric field.

Nowadays, suspended particles are extensively used in applications, e.g. in

modern materials, manufacturing and medical/pharmaceutical operations, including

fluidized bed reactors, jet printers, active shock absorber devices, particle handling,

biological assays and drug discovery. In other situations, particles can be harmful, such as

in the case of particulate pollution of the environment and in industry. In both situations,

there is a need to manipulate particles for concentration, transport, separation or removal.

1
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Particular attention should be given to the recent increased utilization of AC

electrokinetic methods (with either a uniform or non-uniform electric field) for a wide

range of applications in biological science research and medicine. Dielectrophoretic

devices have been used to manipulate, separate and identify cells and microorganisms 15 '61 .

Next, some basic terms used in the remaining of this thesis are defined, although

for further information the interested reader is referred to Ramos et al. [7'81 for a thorough

review of AC electrokinetic structures and electrostatic forces.

1.1.1 Dielectric Materiarl

A substance that is a poor conductor of electricity but an efficient supporter of

electrostatic fields is called a dielectric material. In practice, many dielectric materials are

solid, including porcelain (ceramic), mica, glass, plastics, and the oxides of various

metals. Some liquids and gases can also serve as good dielectric materials. Dry air is an

excellent dielectric material, and is used in variable capacitors and some transmission

lines. Distilled water is also a fairly good dielectric material.

1.1.2 Dielectric Constant

The dielectric constant is a characteristic quantity of a given dielectric substance,

sometimes called the relative permittivity. In general, the dielectric constant is a complex

constant, with its real part e' giving reflective surface properties (Fresnel reflection

coefficients), and its imaginary part 6" giving the radio absorption coefficientl 1°1 :

(1.1)
e 	 = 6 1 — je"

so
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where se is the electric permittivity and co is the permittivity of free space (= 8.8542e42

F/m), j =

A perfect dielectric substance is a material that exhibits the displacement of

current only, so that it stores and returns electrical energy as if it were an ideal 'battery'.

The relative permittivity of a perfect dielectric substance is a scalar.

1.1.3 Dipole Momenti ll i

An elementary dipole can be thought as a pair of opposite charges with magnitude q. The

dipole moment is defined as the magnitude of the charge times the distance between the

two charges and its direction is toward the positive charge. The dipole moment is a useful

concept for atoms and molecules where the effect of charge separation is measurable.

Dipole moments are much more common than isolated charges.

1.2 Background and Theory

The study of the suspension of polarizable particles in electrolyte subjected to external

electric fields requires an understanding of the interactions between the suspending

medium, the electric field and the particles. The effects of the drag force and particle-

particle interactions are important in colloidal suspensions.

1.2.1 Hydrodynamic Forcen

Particles in ER fluid suspensions are much larger than the molecules comprising the

continuous phase so that the suspending fluid phase is generally treated as a continuum.

The continuous phase is usually sufficiently viscous so that the suspended particles

experience drag forces when moving in the fluid, even if there is no bulk flow. The drag
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force is related to the size, shape, surface characteristics of the particle and the relative

velocity of the particles compared to that of the fluid. For a smooth sphere isolated in an

infinite medium and for zero Reynolds number, the drag force takes the form

(1.2)

where a is the radius of the particle, is the viscosity of the fluid, ti c, up are the velocities

of the fluid and particle, respectively.

When more than one particle is present, there exist hydrodynamic interactions

between the particles, and between the particles and the bounding electrodes, but these

are often ignored in models of ER suspensions.

1.2.2 Brownian Forcer"'

The fluid phase can also influence sub-micron particle dynamics via Brownian motion. In

this case, the thermal motion of the continuous phase molecules gives rise to an erratic

motion of the particles.

1.2.3 Buoyancy ForceR 121

The buoyancy force is the force acting on a particle through gravity. For a particle with

density p suspended in a medium with density pc , the buoyancy force is:

(1.3)

where g is the acceleration due to gravity and V is the volume of the particle. This force is

responsible for sedimentation. For a sub-micrometre particle, this force is usually

ignored.
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1.3 Electrorheological Fluids

A comprehensive review of colloidal suspensions can be found in Gast and Zukoskir 131

(1989) while Jordan and Shawl"' reviewed the dependence of the electrorheological (ER)

effects on electrical and structural parameters and the existing theories of the ER

mechanism. They thought that the required properties for the dispersed dielectric include

high polarizability and a limited, but finite, conductivity. The latter is often achieved by

adding water to the suspension. In 1996, M. Parthasarathy and D. Klingenberg 1151

surveyed the mechanisms of ER fluids and models used to study suspensions and in

2002, H. Tiani 161 provided the scientific community with a current review of

electrorheological suspensions. In this section, a short review of electrorheological fluids

and the models used to study the particles movement is performed.

"Electrorheological (ER) fluid" indicates a class of liquids, which stiffen into

semi-solids when subjected to an external electric field with the strength of several

kilovolts per millimeter. Typical electrorheological fluids usually contain a disperse

phase and a continuous phase. The disperse phase has a volume fraction (volume

occupied by the disperse phase divided by the total volume) between 0.05 and 0.50.

Generally, the disperse phase consists of polarizable particles made of cornstarch, silica,

or even zeolite, with a size ranging from 1 to 100 micrometers and which are

approximately spherical, and non-conducting or semi-conducting. The continuous phase

has a field-free viscosity in the range of 0.1-10 Pa.s and is made of a non-conducting

solvent, for example, kerosene, chlorinated hydrocarbons, silica oil or corn oil. The

disperse particles and the suspending fluids have different dielectric constants. Generally,

the dielectric constants for the suspending fluid range from 2 to 15 and those of the
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particles range from 2 to 40. The particle-to-fluid dielectric constant ratio typically varies

from 2 to 10. The fluid and particles are such that the particles are close to being neutrally

buoyant and sedimentation is minimized.

1.3.1 Fundamentals and Mechanisms

Electrorheological fluids are the most common colloidal suspensions. Their stiffening

under electric fields is reversible, which is the fundamental difference between ER fluids

and ferro-fluidst 17"81 . A ferro-fluid is a suspension of permanently magnetized particles,

which implies that there exist polarization forces even in absence of an external magnetic

field. On the contrary, for an ER suspension, there are no polarization forces on an

initially charge-free particle in absence of an imposed electric field. Brownian forces are

usually negligible for ER fluids, and the fluid and particles motion is governed by

electrostatic and viscous forces, the latter being related by the parameter referred to as the

Mason number, Ma. Since the magnetic dipoles are permanent in ferro-fluids, the

Theological properties scale linearly with the applied magnetic field at high field

strengths. However, there is a quadratic dependence on the field strength in an ER fluid

since the particle dipoles are induced by the external electric fields. There is also a torque

acting on each particle in a ferro-fluid given by the cross product of its dipole and the

applied field which gives rise to an anti-symmetric stress tensor as shown by

Batchelor119'201 . In an ER fluid of nearly spherical particles, the induced dipole is aligned

with the local electric field, so there is no net torque on the particle. However, because

the "effective torque" exerted on the deformed or strained chains of particles, there are

anti-symmetric stresses in ER fluids.
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The uniform field-induced fibrous particles form chains parallel to the applied

field. For electric fields of the order of 1 kV/mm, the effective viscosities can increase by

a factor of up to 10 5 . The other rheological properties, such as yield stress, shear

modulus, and so on, can also abruptly change. The ER fluid responds in milliseconds to

the application of an electric field. Other remarkable properties include that these effects

are reversible and happen rapidly.

After Winslow published his observations, Uejimai 211 showed that the shear stress

of the electrorheological fluid was fairly well modeled as a Bingham model. The shear

stress is thus given by:

r(f', = r o(E) 117.' for r> TO (1.4a)

= 0 for r< ro (1 .4b)

where E is the applied electric field strength, r is the shear stress, ;% is the shear rate, ro is

the dynamic or Bingham yield stress, and 77 is the plastic (fluid) viscosity.

Studies often report that the apparent suspension viscosity e f, should be

distinguished from the plastic (fluid) viscosity 77. Marshall et al. 1221 noted that the yield

stress was linear in the volume fraction range studied and Smoluchowskii 231 obtained an

apparent viscosity equation in the dilute suspension of the form:

p =7711+2.5011+  1  (Cgc'sc)
crria2 2z 2\1

where rip indicates the apparent viscosity of the suspension, 77 is the viscosity of the

continuous phase (pure fluid), 0 is the particle volume fraction, a is the conductivity of

the suspension, a is the radius of the particle, Cis the zeta potential of the particle, and sc,

(1.5)

crria2 L 2z
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is the dielectric constant of the continuous phase. Recent works of KlingenbergE 241 report

that the yield stress reaches a maximum at about 35-40 percent of solids volume while

Brady's groupP5-271 investigated the yield stress, normal stress, etc.

1.3.2 Electrostatic Force

Particles experience both hydrodynamic and electrostatic interparticle forces when

suspended in a dielectric fluid subjected to a uniform electric field. In principle, the exact

electrostatic force in an electrorheological fluid can be computed from the integration of

the Maxwell stress over each particle, and in which the electric field is computed by

solving the many-body electrical potential problem within the system. However, this

problem is challenging from a practical viewpoint for a number of particles larger than

two.

ER fluids are heterogeneous, multicomponent systems consisting of particles and

medium. Moreover, the particles are often of non-spherical irregular shape, and/or may

be porous. This is thus an exceptionally complicated system, which makes the task of

calculating the electrostatic force acting on a particle quasi-impossible. Therefore, many

simplified models have been introduced for that purpose. While the idealized electrostatic

polarization model was the first simple model, variations of this model were introduced

later. The Maxwell-Wagner polarization model is another simple model taking account

the conductivities of the particles and/or medium.

1.3.2.1 Idealized Electrostatic Polarization Model. The idealized electrostatic

polarization model describes a suspension consisting of monodisperse, neutrally buoyant,

hard particles suspended in a Newtonian fluid. Both phases are ideal dielectric

substances.
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Due to the divergence and curl-free properties of the electrostatic field, the

electrical potential can be computed by solving Laplace's equation:

(1.6)

with the boundaries at each spherical particle/continuous phase interface satisfying the

interfacial conditions:

(1.7a)

(1.7b)

and

(1.7c)

where a =ep lec denotes the ratio of the dielectric constant of the spheres to that of the

continuous phase, and n is the surface normal vector. The superscript "+" indicates the

inside of the sphere while "-" refers to the outside.

Once the potential is solved, the local electric field can be computed by E= —Vco.

The force acting on the particle is then determined by integrating the Maxwell stress

tensor on the surface of the particle according to:

(1.8)

where the stress tensor has the components:

(1.9)

In this work, we seek a further simplification to the electrostatic problem.

For an uncharged, isolated, hard sphere suspended in a continuous medium far

from the electrodes, the solution of the potential both inside and outside the sphere, in

spherical coordinates, reads:
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(1.10)

(1.11)

Considering that the potential of a dipole has expression:

and comparing the potential outside the particle with that of the dipole, the effective

dipole moment induced in a particle can be expressed as:

(1.13)

denotes the Clausius-Mossotti factor.

With the assumption that the presence of the other particles does not alter the

distribution of dipoles on this particle, the force on the particle i at the origin can be

expressed by:

Equation (1.14) is not accurate when two particles are close to each other because of the

disturbance field created by the spheres. Klingenberg1281 solves Laplace's equation for

two particles suspended in a fluid by integrating the Maxwell stress tensor, and obtains

the exact force acting on the particle as:
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where 19y is the angle between the sphere centerline and the applied electric field, er is the

unit vector along the sphere centerline, es is the azimuthal unit vector, and f„, f, and fr.

are three force functions related to the dielectric constant ratio a = ep le and the length

ratio a/r. Equation (1.15) simplifies to Equation (1.14) by simply setting fll , f1 and

fr as unity when the point-dipole assumption is adopted and the particle-to-fluid

dielectric constant reaches 1.

Klingenberg et al. 129
"
311 performed the dynamic simulation of the ER fluids using

the point-dipole model for the electrostatic forces and the stokes drag formula to model

the hydrodynamic force. Andersont321 studied analytically the electrostatic force on ideal

dielectric spherical particles in an ER fluid in the infinite-a limit. Whittlet 331 performed a

computer simulation with a method similar to that of Klingenberg et al. 129-311 based on a

dipole-dipole interaction modified at short range. Wu et al. [3436) developed a multiple

image method to compute the interparticle force in a polydisperse suspension containing

particles of various sizes.

Bonnecaze and Brady developed a method to compute the electrostatic force by

expanding the integral form of Laplace's equation to study electrorheological

suspensionst 19'37'381 and their rheological properties. 125-271

1.3.2.2 Maxwell-Wagner Polarization Model. The Maxwell-Wagner polarization

modelP9411 was derived to describe the suspension by considering the conductivities and

permittivities of the particles and suspending fluid. The simplest Maxwell-Wagner

polarization model considers that the conductivities and permittivities are constant,

independent of the frequency. The complex dielectric constants of the particles and the

fluid can be written as:
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(1.16)

By solving Laplace's equation to determine the electric field and using the point-

dipole approximation, the time-average force acting on the particle at the origin, due to

the presence of the other particles at (Rii, 9,;), is:

The coefficient fie , and thus the force, depends on both frequency and time. In one limit,
the permittivities dominate the response:

while in another limit, the conductivities dominate the response:

(1.20)

T. B. Jones et a1. 1421 studied the dielectric levitation using the Maxwell-Wagner

relationship. Kadaksham et a1. 1431 investigated the effects of the dielectric constant on the

aggregation of polarizable particles in electrostatic suspensions of yeast cells. Wu et.

al. [44J performed a study of dielectric and conduction effects in ohmic electrorheological

fluids.
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The nonlinear conduction mode1 145 '461 is also used to evaluate the electrostatic

force on conducting particles where the nonlinear conduction plays a crucial role.

1.3.3 Applications of ER Fluid

Since the mechanical properties of ER fluids can be easily controlled within a wide range

of behaviors (from liquids to solids), ER fluids can be used as electric and mechanical

interfaces in various industrial applications. For example, in the automotive industry 147-

511, the electronic control of stress transfer through such fluids has applications in devices

such as active shock absorbers, engine mounts, clutches, brakes, actuators and damping

systems. It can also be used in robotic arm joints and handsE 52-541 . A successful area of

applications of ER fluids is the domain of actuators 1551 . Here, the desired forces can be

generated as required. Further potential applicationsE 55'561 are continuing to be invented

and patented nowadays.

Devices employing electrorheological (ER) fluids are generally more energy-

efficient than hydraulic, mechanical or electromechanical devices that accomplish the

same functions. In addition, the rapid response of ER fluids to the application of an

electric field within milliseconds makes ER devices attractive and for this reason ER

fluids are often called "smart" fluidsE57'581 .

Although ER fluids hold great promise as elegant means of providing

continuously variable forces for the control of mechanical vibrations, the development of

industrial devices has been hampered by the following problems which still need to be

resolved before commercialization can take place: (a) the yield stress is not sufficiently

high; (b) the ER fluid errs once contaminated; (c) the ER effect is significantly affected
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by the working temperature; (d) if the buoyancy force is not negligible, particles

sedimentation needs to be overcome.

1.4 Dielectrophoresis

The term dielectrophoresis (DEP) was first used by Pohli21 to describe the translational

motion of the particles caused by the interaction of the induced dipoles of particles with

the applied non-uniform electric field. The DEP force does not depend on the polarity of

the electric field so that it can be found with both AC and DC fields. An AC field induces

frequency-dependent dipoles on polarizable particles.

1.4.1 Theory

The interaction of the dipole and a non-uniform field gives rise to dielectrophoresis.

Unlike electrophoresis, in which motion is determined by the net intrinsic electrical

charge carried by the particle, dielectrophoretic motion is determined by the magnitude

and polarity of the induced charges within the particle due to the applied non-uniform

electric field.

Figure 1.1 shows a basic dielectrophoretic effect, in which electrodes are used to

generate spatially non-uniform electric field. The positively charged body moves towards

the negative electrode while the neutral body is polarized, and therefore attracted towards

areas where the field is either the strongest (when the body is more polarizable than the

surrounding medium) or the weakest (if the body is less polarizable).
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Figure 1.1 Diagram of a charged particle and a neutral particle in a non-uniform electric
field. The positively charged body moves towards the negative electrode. The neutral
body, on another hand, is polarized and therefore attracted towards areas where the
electric field is the strongest (when the body is more polarizable than the surrounding
medium) or the weakest (if the body is less polarizable).

Polarizable particles experience a DEP force when the electric field is spatially

non-uniform. The DEP force does not depend on the polarity of the electric field so that it

is present in both AC and DC fields. A particle experiences a DEP force even when only

one particle is suspended in the domain as shown in Figure 1.1. Dielectrophoresis can be

either positive or negative, depending on the dielectric constants of the particle and the

medium. If gp is larger than cc, the particle which is more polarizable than the fluid is

attracted towards the electric field intensity maxima and repelled from the minima

(positive dielectrophoresis) while if cp is smaller than s, the particle is less polarizable

than the fluid, the particle is attracted towards the electric field intensity minima and

repelled from the maxima (negative dielectrophoresis). For ideal dielectrics, the

magnitude of the permittivity of the particle is constant and equal to cp, and that of the

medium is cc. Obviously, for positive DEP, fl > 0 and for negative DEP, 13 < 0. Since

electric field maxima are located at the electrodes tips and the electric field minima are

placed away from the electrodes, whether the particle is attracted towards or directed
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Figure 1.1 Diagram of a charged particle and a neutral particle in a non-uniform electric
field. The positively charged body moves towards the negative electrode. The neutral
body, on another hand, is polarized and therefore attracted towards areas where the
electric field is the strongest (when the body is more polarizable than the surrounding
medium) or the weakest (if the body is less polarizable).

Polarizable particles experience a DEP force when the electric field is spatially

non-uniform. The DEP force does not depend on the polarity of the electric field so that it

is present in both AC and DC fields. A particle experiences a DEP force even when only

one particle is suspended in the domain as shown in Figure 1.1. Dielectrophoresis can be

either positive or negative, depending on the dielectric constants of the particle and the

medium. If ep is larger than cc., the particle which is more polarizable than the fluid is

attracted towards the electric field intensity maxima and repelled from the minima

(positive dielectrophoresis) while if Sp is smaller than se, the particle is less polarizable

than the fluid, the particle is attracted towards the electric field intensity minima and

repelled from the maxima (negative dielectrophoresis). For ideal dielectrics, the

magnitude of the permittivity of the particle is constant and equal to Sp, and that of the

medium is cc. Obviously, for positive DEP, 13 > 0 and for negative DEP, 13 < 0. Since

electric field maxima are located at the electrodes tips and the electric field minima are

placed away from the electrodes, whether the particle is attracted towards or directed
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away from the electrodes depends on the relative magnitude of the permittivity c of the

particle versus that of the medium ec. Negative dielectrophoresis has the advantage in

practice that it allows the collection of particles in a contactiess fashion, away from

electrodes and boundaries.

1.4.2 Dielectrophoretic (DEP) Force

In classic dielectrophoresis12
'
591, when a neutral particle is placed in a static field at

equilibrium, the electrostatic DEP force is determined from the effective moment method

according to the formula:

(1.21)

where P is the effective dipole moment vector. For an isolated spherical particle with

radius a suspended in a fluid with absolute dielectric permittivity cog., (Co is the

permittivity of free space, 6. 0 = 8.8542 *10 -12 F Im), the effective dipole moment can be

written as:

(1.22)

Substitution in Equation (1.21) leads to the classical expression of the DEP force:

(1.23)

Perfect dielectrics are commonly used in dielectrics theory for its simplicity in

models or numerical simulations. In reality, ideal or perfect dielectric materials with a

nonzero in-phase dielectric constant do not exist. The real dielectrics do conduct

electricity so that the dielectric constant should be replaced by a complex (absolute)

dielectric constant, or permittivity, in Equation (1.1). In view of this, the time-averaged

DEP force is given by:



17

where Re refers to the real part.

The study of the dielectrophoretic force acting on a non-spherical particle is

challenging. There is only limited information in the literature on this topic. H.

Morgant6°1 investigated rod-shaped viral particles and provided the DEP force expression

where the major axis of the particle is parallel to the electric field.

Recently, J. Kadaksham et a1. 1611 performed numerical simulations solving the

full hydrodynamics equations for the fluid-particle system (thus fully resolving the

hydrodynamic fluid-particles and particle-particle interactions) and taking into account

both the electrostatic interparticle interactions and the DEP force. In their work, the

electrostatic interparticle force exerted on a particle is calculated from the summation of

the interactions between this particle and all others using the point-dipole approximation.

L. Dong1621 studied the DEP force by modifying the Clausius-Mossotti function with the

influence of the near-field using the multiple image method. T. B. Jones 1631 developed a

dyadic tensor representation for multipolar moments to formulate the expression of the

dielectrophoretic force.

1.4.3 Applications of Dielectrophoresis

1.4.3.1 Biotechnology DEP. The first significant demonstration of biological

dielectrophoresis involved the separation of living biological cells by Poh1 121 . Since then,

there has been an increasing interest in applying the technique for the selective
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separation, collection and manipulation of bioparticles. Another important use of DEP in

biotechnology is electrofusion, first reported by Senda et al. 1641 in 1979. Later,

Zimmermann and his colleagues 165-671 derived an efficient method to simulate the

alignment of cells prior to electrofusion. This technology should be useful for

applications such as cancer research and treatment. Washizu et a. 168 711 have investigated

the DEP control and manipulation of cells and other biological particles, focusing upon

the development of practical technologies for the automated processing of cells and other

biological particles such as DNA. In basic cell studies, one can investigate the cell

structure by using DEP measurements to develop models based on their dielectric

properties. This task is usually posed to the investigator as an inverse problem, where the

cell structure must be inferred from its measured DEP spectra. The dielectric properties

of sub-micrometre particles have also been measured and characterized 1761 using a non-

uniform electric field. At the submicron scale, DEP has been used successfully for the

manipulation of a variety of sub-micrometre particles, such as DNA, viruses and latex

spheres172-751 . Green et a1. 177-801 used it to separate DNA molecules and proteins, cancer

cells from blood and different bacteria. Orientation and positioning of DNA molecules

and other biological macromolecules with microfabricated electrodes have also been

reported1811 . Recent trends in lab-on-a-chip devices show a growing use of

dielectrophoresis (DEP) to manipulate biological objects such as cells and organic

molecules182-851 . All these applications are based on differences in particle and fluid

conductivities and/or permittivities, which could control the DEP force. Bringing the

advances of microelectronic miniaturization into biological and clinical analyses,

combinatorial chemistry and high throughput screening require new tools.
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1.4.3.2 Mineralogical DEP. In conventional mineral industrial systems, DEP was first

used to separate ores and mineralsE86'81 . Conventional electrostatic methods, which rely

upon differences in the electrical charging tendencies of various constituents of crushed

ores and minerals, have been used in dry separation processes for many years. Wet

separation processesE 861, which use variable frequency, non-uniform AC electric fields,

offer an alternative in certain commercially important mineral recovery operations.

DEP is also used to manipulate colloidal crystallizationt88"1 . By using strong

electric fields at low frequency, colloidal particles can be ordered into three-dimensional

crystals rapidly and reversibly.

1.4.3.3 Microactuators. Many kinds of electrodes with different geometries have been

used for DEP research and applications. Recent advances in microfabrication techniques

have stimulated a set of new DEP structures that differ dramatically from the axi-

symmetric electrodes. For example, a MEMS fabricated planar, salient electrode was

used to create an azimuthally periodic electric field by Washizu et al. 19°1 The polynomial-

designed planar arrays of electrodes produce a traveling electric field wave that can

transport cells in an assembly line fashion. The castellated-designed electrode structures

were fabricated on glass and on silicon substrates, and can be used for both

characterization and separation.
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1.5 Objectives and Outline of This Thesis

1.5.1 Objectives

The primary objective of this research is to compare the capture efficiency of particles

using different electrode designs. In recent years, the manipulation of cells and

microorganisms using nonuniform electric fields has shown great promise. Getting the

best results in separating and sorting cells, virus and particles in a short time is one key

issue in modern biotechnology. When the particles size, shape and surface characteristics

and the properties of the suspending fluid are known, the applied spatially non-uniform

electric fields generated with various electrode geometries will give rise to different

capture efficiencies.

While it is not easy to obtain sub-micrometer particles of the same size and shape,

the suspending fluid should also be clean and have specific viscosity and density, and

thus fully controlled experiments can be a challenge. If the capture efficiency of particles

can be studied numerically under different electric fields, numerical results should serve

as useful and cheap guides for the design of efficient devices.

In modern numerical simulations, several microscopic models were employed to

relate forces, parameters and other features at the microscopic level to the suspension

macroscopic properties. Most of the models fall into three categories: description of the

macrostructure and property evaluations; equilibrium or near-equilibrium statistical

mechanics; and particle-level simulation 1141 . In the latter category, many researchers have

developed simulation techniques similar to molecular dynamics methods. The basic idea

is to consider the equation of motion of each particle, deduce the suspension structure
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taking into account all individual particles, and then evaluate the bulk properties of

interest. Within this framework, the particle' equation of motion reads:

(1.26)

where m is the generalized mass/moment of the particle, F" is the generalized

force/torque vector on the particle, which includes all nonhydrodynamic forces and

torques, and F H represents the hydrodynamic forces and torques. The present research

focuses on calculating the non-hydrodynamic, electrostatic forces and torques.

Bonnecaze et a1. 137
"
381 first presented an energy method by expanding the integral

Laplace equation in the case of a uniform electric field. When an ER fluid is subjected to

a non-uniform electric field, the electrostatic forces, including both the interaction

between the induced dipole of a particle and the imposed electric field, and the various

interactions between the induced dipoles of the different particles, need to be considered.

This thesis extends the energy method to calculate the electrostatic forces where ER

fluids are subjected to non-uniform electric fields. The near-field interaction is added by

using the multiple image method to compute the induced dipoles in near touching

particles. Our simulation technique can account for both far- and near-field effects of

electrostatic interactions with or without pressure-driven flow.

1.5.2 Outline

This thesis uses a Molecular-like dynamics method to numerically study

electrorheological suspensions subjected to uniform and non-uniform electric fields. The

hydrodynamic force is represented by the Stokes viscous drag, while the electrostatic

force is computed from differentiating the electrostatic density of the suspension with
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respect to the particles position to include both the interactions between particles and

electric field, and the interactions between particles. The near-field effects are included

by considering the interactions between the various pairs of particles using the multiple

image method. The capturing efficiencies are computed with and without the addition of

near-field effects, and with and without fluid flow pressure gradient.

The first Chapter gives a brief review on the hydrodynamics background, the

fundamental theory and mechanisms of electrorheological fluids and dielectrophoresis,

and different models used by former researchers to compute electrostatic forces when the

suspensions are subjected to uniform or non-uniform electric fields.

In the second Chapter, the physical model, governing equations and numerical

methods used in this thesis are presented.

The third Chapter focuses on the methods used to compute the electrostatic

forces. Electrostatic forces are determined in both a uniform electric field and a non-

uniform electric field for a two particles system, and then for a multiparticle suspension

subjected to a nonuniform electric field.

In Chapter 4, numerical results are presented for a two particles suspension using

different methods to calculate the electrostatic forces, while numerical results are

presented for a multiparticle suspension with or without the presence of a flow pressure

gradient in Chapter 5.

Finally, Chapter 6 summarizes the results of this thesis and presents

recommendations based on this research for future work.
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PHYSICAL MODEL AND GOVERNING EQUATIONS

2.1 Physical Model

When a dielectric neutral particle suspended in a perfect dielectric liquid is subjected to

an external electric field, the particle becomes polarized with dipoles (positive and

negative charges). The response to the application of the electric field takes place within

milliseconds so that the induced dipoles appear rapidly as the field is switched on but also

disappear fast once the field is removed.

Figure 2.1 Sketch of the diagram of two polarizable particles suspended in a fluid and
subjected to an electric field.

Before a physical model is considered, the following assumptions are made: the

suspended particles are monodisperse, neutrally buoyant, hard, dielectric spheres with a

real dielectric constant 6-, and radius a; the fluid is incompressible and Newtonian with a

real dielectric constant c and viscosity q. Both phases (fluid and particles) are assumed

23
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to be charge-free and have zero conductivity. The pressure-driven flow may be applied

by imposing a pressure gradient in the x direction.

The schematic shown in figure 2.1 is a typical computational cell with dimensions

4, 4 in the x, y, z directions, containing polarizable particles and medium.

Hereafter, the governing equations are presented in this Chapter for the particles

and the fluid, including the electrostatic forces induced by the nonuniform electric field

due to the mismatch of the dielectric constants of the particles and the fluid.

2.2 Governing Equations

2.2.1 Electric Field

The system consisting of the insulating dielectric particles and incompressible fluid is

subjected to an electric field. The corresponding electrical potential satisfies Laplace's

equation everywhere because of the divergence and curl-free properties of the

electrostatic field, that is,

(2.1)

subjected to the boundary conditions:

(2. I a)

(2.1b)

The electric field can be then be deduced from E = 	 .

The potential equations are made dimensionless by using the following

characteristic length and strength of the electric field: the length 4 in the y direction and
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the strength of the electric field E = le. It follows that the characteristic potential is E0

times ly .

2.2.2 Fluid Flow

In this section, the governing equations for the incompressible, Newtonian fluid flow are

stated where the temperature gradient due to the presence of the electric field is ignored.

Let the density, viscosity and velocity of the fluid be pc, 17, and w, respectively.

The fluid motion is described by the Navier-Stokes equations.

The continuity equation is given by:

(2.2)

while the momentum equation reads:

(2.3)

The boundary conditions are such that:

(2.4a)

(2.4b)

The governing equations are nondimensionalized using the following

characteristic velocity, length and time scale: the characteristic velocity U, characteristic

length in the y direction 4, and time scale is = —
a 

respectively. The Reynolds number
U '

then becomes: Re = ULp .
77
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2.2.3 Particle Motion

A molecular-like dynamics method used to describe the motion of the particles is

described in this section. Since the particles are considered neutrally buoyant (the density

of the particles is equal to that of the fluid), the gravity is neglected, and thus, the motion

of a single particle a is governed by:

(2.5)

where up is the velocity of the particle denoted by the subscript a, Fa is the

hydrodynamic force, and F aP is the electrostatic force, respectively. In this work,

hydrodynamic interactions between particles, as well as between particles and the

bounding electrodes, are ignored and the hydrodynamic force on a spherical particle is

taken as the Stokes' drag force (Equation (1.2)).

Under the assumption that the acceleration of the particles is negligible, the left

hand side of Equation (2.5) is also neglected, and therefore, the equation of motion

becomes:

(2.6)

Substituting the Stokes drag force in Equation (2.6) for a spherical particle, the previous

equation becomes:

(2.7)

Thus,

(2.8)
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Non-dimensionalizing this equation and integrating it over a time step At, the evolution

equation for the change in particle location x can be written as:

(2.9)

In this derivation, the following characteristic length, time, and force scales have

been used to nondimensionalize Equation (2.9): the particle radius a, the inverse shear

rate )2-1 , the hydrodynamic force 67rria2 %, and the electrostatic force 1270cca2 (i3E) 2
.

Here, Ma = 772212s,, sc (134 (E being the characteristic magnitude of the electric field) is

defined as the dimensionless coefficient, the Mason number, which represents the relative

importance of the viscous forces to the electrostatic forces.

2.2.4 Repulsive Force

In this paper, all particles are assumed to be solid spheres. To prevent particle

overlapping (which is obviously not allowed in physical space), a near field repulsive

force is included, which is described as a function of the position vector of the particles

(see Figure 2.2).

Figure 2.2 Schematic of the imposed near field repulsive force between two particles.
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The force is defined as:

(2.10)

where b is a coefficient depending on the distance between the two particles and 5 is

an infinitely small gap used in the simulations. The repulsive force is added to Equation

(3.8) at each time step to prevent the particles from overlapping in space.

2.3 Numerical Method

In this section, the numerical method used for solving the governing equations of motion

is described in detail. Specifically, the suspension of particles is numerically simulated

following three steps:

1. Calculate the electric fields in absence of particles.

2. Calculate the flow field in case a pressure gradient is imposed.

3. Calculate both the hydrodynamic force and the electrostatic force, and deduce the
instantaneous positions of N particles at time t according to the electric field
computed in step (1) and the flow field computed in step (2).

2.3.1 Electric Field

The electric field is calculated after solving for the electrical potential from equation (2.1)

with the appropriate boundary conditions. The finite element method is used here to solve

the Poisson's equation. Note that if f = 0, Poisson's equation reduces to Laplace's

equation.

In this study, the medium is assumed to be homogeneous. It also supposed that

the electrodes and channel walls are long in the z direction, and therefore the problem can

be solved in two dimensions (2D).
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Within the framework of the finite element method 1911, the following shape

functions are considered:

(2.11)

together with the integrated form of Poisson's equation

which, in 2D, can be rewritten in weak form as:

The electric field and its gradient are then obtained by using six-node triangle

elements1921 . Two-dimensional Lagrangian shape functions can be generated using the

products of one-dimensional shape functions.

The electrodes are inserted within the wall boundaries and assumed to be

energized at constant potential values.

2.3.2 Flow Field

The fluid is assumed to be an incompressible Newtonian liquid with constant density pc

and viscosity 77, and, as previously mentioned, the problem is considered to be two-

dimensional. The 2D governing equations are solved using the SIMPLER algorithm

developed by Patankar 193' 941 . This algorithm has been successfully implemented to solve

many problems of Newtonian fluid flow and heat transfer in both laminar and turbulent

regimes. In certain cases, the flow is driven by a pressure gradient in the x direction.
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Using the computed electric field, the electrostatic force on every individual

particle is then determined by using the method proposed in the next chapter. This force,

combined with the hydrodynamic force derived from Stokesian dynamics, allows one to

simulate dynamically the motions of particles in suspension.



CHAPTER 3

ELECTROSTATIC FORCE

Polarizable particles suspended in a dielectric fluid experience both a hydrodynamic

force and an electrostatic force. In this section, the electrostatic force acting on the

particles is determined in the cases of only two particles and a relatively high number of

particles. The electrostatic force can be computed by differentiating the energy density of

the suspension with respect to the particle position.

If the imposed electric field is uniform, the electrostatic force exerted on a particle

of the ER suspension is mainly the electrostatic particle-particle interaction force. In the

case of a nonuniform electric field, in addition to the particle-particle interaction force, a

polarizable particle also experiences a dielectrophoretic force. The exact electrostatic

force acting on a particle can be calculated by solving the many-body potential problem

and integrating the Maxwell stresses over the particles. However, this is a difficult task if

there are more than two particles suspended, even in the case where the applied electric

field is uniform. Bonnecaze et al. 1371 developed an alternative energy method to calculate

the grand capacitance matrix for a uniform electric field from which the force acting on a

particle can be calculated.

In this work, the energy method is extended to the case of nonuniform fields with

the addition of the near-field effects by calculating the electrostatic force on each pair of

particles. In the case of a uniform electric field, one can use the two following methods to

calculate the energy density: (a) directly solve Laplace's equation to obtain the electrical

potential of the two particles system, and then compute the induced dipole moment of the

31
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particles; (b) use the multiple image method to derive the induced dipole moment of the

particles. In the case of a non-uniform electric field, however, it is extremely difficult to

obtain a general solution by solving directly Laplace's equation subjected to various

boundary conditions. Nevertheless, the induced dipole moment could be calculated from

the image method and the electrostatic force within a multiparticles suspension could be

computed by expanding the integral form of Laplace's equation 137-381, with or without the

addition of the near-field influences.

3.1 Exact Electrostatic Force for two Particles in a Uniform Field

For two dielectric spherical particles suspended in a dielectric medium, there is creation

of induced dipoles within the particles if the dielectric constants of the medium and the

particle are different. The direction and magnitude of the dipole moment in a particle can

be determined approximately by computing the electric field around the particle.

Due to the properties of the electrostatic field, with zero-curl and zero-divergence,

the electrostatic potential satisfies Laplace's equation everywhere. By solving the latter

equation, the electric field, which contains the contribution of the imposed electric field,

as well as that generated by the induced dipole, is determined. The inter-particle force can

then be determined by differentiating the integral of the energy density with respect to the

particle position.
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3.1.1 Electrical Potential of the Particles

Two equal-sized spherical particles with a dielectric constant gp and a radius a suspended

in a fluid of dielectric constant 6, and subjected to a uniform electric field E are

considered. For convenience, the latter field is chosen along the z direction, that

is E = Ez

Figure 3.1 Schematic of two dielectric particles suspended in a dielectric fluid. Two
systems of spherical coordinates are considered: A right-hand one whose origin coincides
with the center of Particle 1, and a left-hand one whose origin coincides with the center
of Particle 2.

The electrostatic potential is governed by Laplace's equation:

(3.1)V2p = 0

with appropriate boundary conditions (i) on the particle surface:

and (ii) at infinity:

rP ---> —E • r when r —> 00 	(3 . 1 c)

where a -- gp lc is the ratio of the dielectric constant of the particles to that of the

continuous phase.
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Two (twin) systems of spherical coordinates(95'961, whose origins coincide with the

centers of the particles, are used to solve the two-particles problem. Particle 1 (resp.

Particle 2) is chosen to possess a right-hand (resp. left-hand) spherical coordinates

system.

Let E0 and El be the two components of E, which are parallel and perpendicular,

respectively, to the line joining the centers of the particles, and R the distance separating

the particles centers. The general solution of the electrostatic potential can be written as

a multipole expansion about the origin of each coordinate system:

for r > a

where the index j = 1 and 2 refer to Particles 1 and 2, the superscripts - and + indicate

the potentials inside and outside the particles, and P"` (cos 	 denote the Legendre

polynomials. By applying the boundary condition (3.1a), one can write the following

equation for the coefficients:

Substitution of the identity

in equation (3.4) then leads to a first relation between the coefficients cl,,,,, and gnu, as

follows
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(3.6)

By applying the second boundary condition (3.1b), one obtains a second equation

connecting the coefficients din, and gmn:

(3.7)

Combining the above two equations (3.6) and (3.7) in a manner which cancels out dmn,

the coefficients g„„ and g2 „  satisfy:

(3.8)

where fin = {n(a —1)}1[n(a +1) +1] , with the particular case A= fl when n = 1.

Since the particles are spheres of equal sizes, in the twin coordinates systems, the

symmetry gives:

(3.9a)

and

(3.9b)

Substituting equation (3.9a) into equation (3.8), the coefficients gmn are found to satisfy

To Solve Equation (3.10), one expresses the solutions as power series of a/R in

the forms

and
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and solve for the coefficients b,, and cpir of the series. The set of coefficients d„,„ can be

determined in a similar fashion.

After substituting the coefficients gnu, and 4,7 into equations (3.2a) and (3.2b),

one can deduce the electric potentials inside and outside the particles in their respective

system of coordinates.

3.1.2 Electrostatic Force on the Particle

For any two particles suspended in a fluid, the dipole moment induced in a particle due to

the presence of another particle can be calculated (see Jeffrey 1951) by using:

where the dielectric constants of the particles and the fluid are ep and e„ respectively.

By introducing the potential of Section 3.1.1, the dipole moment of particle 1 reads:

where R is the vector connecting the center of Particle 1 to the center of Particle 2, and Al

and B1 are known coefficients, the first few being

Equation (3.13) can be rewritten as:
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The first term in Equation (3.13a) is the dipole moment induced by the applied electric

field, while the second term can be considered as the induced dipole moment due to the

presence of the second particle.

From classical electrodynamics1971, the electrostatic force exerted on the particle

can then be determined by differentiating the energy density with respect to the particle's

position:

The expression of the force on Particle 1 because of the presence of Particle 2 reads:

The electrostatic force can also be determined by integrating the Maxwell stress tensor

over the particle surface using Equation (1.9) and deducing the electric field E from

E —V9 . This alternative method leads to Equation (3.16) as well.

For a two particles suspension subjected to a non-uniform field, the electrical

potential near the particles cannot be simply solved by using the uniform boundary

conditions. Therefore, the above method for deriving the expression for the dipole

moment cannot be directly extended to the non-uniform case. For practical purposes, it is

assumed that the induced dipole moment in Particle 1 due to the presence of Particle 2

can be represented in a similar manner whether the electric field is uniform or not, that is

the electrostatic energy of Particle 1 can be computed from the product of the dipole

moment and the electric field taken at the center of the particle.

If the electric fields at the center of two particles are E 1 and E2, respectively, then

the inter-particle electrostatic force acting on Particle 1 reads:
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(3.17)

where P; is the induced dipole moment on Particle 1 due to the presence of the electric

field E2 at the center of Particle 2. Equation (3.17) then takes the expression:

(3.18)

where c is the coefficient equal to c = 4ffa3 /kg,. R12 is the vector along the direction

connecting the center of Particle 1 to that of Particle 2, and R is the distance between the

two particles centers. Notice that this approximation ignores the influence of the

difference in electric fields at the center of Particle 2.

It is interesting to notice that when 1= 3, the particle-particle force takes the same

expression as that given in reference 1611 :

in a uniform electric field, where p, = 42ra3soecflE1 (1= i orb).

3.2 Two Particles Multiple Image Method

In classical electrodynamics, the method of images is commonly used to represent the

geometry of the domain by means of a small number of suitably placed charges of

appropriate magnitudes.

In this section, the multiple image method is used to calculate the induced dipole

moment in a spherical particle due to the other particles.
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3.2.1 Image Method for a Uniform Electric Field

First, the induced dipole of a conducting spherical particle with radius a when a point

dipole with moment p is placed near this particle is considered. It is well known that the

electric field vanishes inside the conducting sphere while the electric potential outside the

sphere can be found by using the image method. Let the distance from the point dipole to

the center of the particle be r. The image dipole p' can be computed by the fact that the

electrical potential inside the sphere is zero. The location of the image dipole is inside the

conductor at a distance r' from the center, where r' = a2 I r .

When the orientation of the dipole is perpendicular to the line between the dipole

and the sphere center, the dipole moment p' is given by:

while in the case where the dipole is parallel to the line, the image dipole moment is

given by:

(3 .20b)

Two conducting spheres (radii a and b) placed in a medium with dielectric

constant c subjected to a uniform electric field E o = Eoz are now considered. The two

spheres are electrically neutral and are located at a distance r from center to center. The

two particles are denoted by the indices a and b. The applied electric field induces

charges in the surface of each sphere which contribute to the dipole in each sphere such

that the dipole moments are Pao = eEoa3 and Pbo gEob3 respectively. The dipole

moment pao induces an image dipole Pb) inside the sphere b, pbo induces an image dipole
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Pal inside the sphere a, while ph i induces another image dipole inside the sphere a, etc.

(as shown in fig. 1). Consequently, multiple images are formed, making the total image

dipole moment in the sphere a the summation of the infinite series Pao, Pal, Pa2, Pa3, Pa4,

Pas, ... and the total image dipole inside the sphere h the summation of pbo, pbl, Pb2, pb3,

Pb4, Pb5, • • •

Figure 3.2 Illustration of the interaction between Particle a and Particle b through
multiple images of the dipole moments.

If the two particles are ideal dielectric spheres with the same dielectric constant

Ep, the similar infinite series of image dipoles can also be determined using the image

method. With the applied electric field E 0 = Eoz , the magnitudes of the induced dipole

moment inside the spheres are given by:

and

—

where fl = 
 6 

P 	. The direction of the moment is the same as that of the electric
E p +2E,,

field.

Similarly, for a point dipole placed near a dielectric particle a, the dipole moment

for transverse and longitudinal field can be given by:
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(3.22a)

and

In a uniform electric field, if the two particles have the same size with radius a, the image

dipoles Pal, Pa2, Pa3, Pao, Pa5, ... take the expressions (for simplicity, only the transverse

dipole component is given here):

(3.23a)

and so on, where r1 is the distance from the image dipole of Sphere b to the center of

'

Sphere a given by r, = r — —
a

. Similarly, the expressions of the subsequent image dipole
r

moments induced in sphere a can be calculated.



Figure 3.3 Two equal-sized dielectric spheres in a uniform electric field.

Hence, the total dipole moment of Sphere a can be computed from:

and

where the parameter a satisfies cosh a = —r . Because the two particles have the same
2a

size a, the image dipole of Sphere h have similar expressions in a uniform electric field.

Using 8, as the angle between the sphere centerline and the applied electric field

E, the dipole moment induced in Particle a due to the presence of another particle b can

be written as:

42

From classical electrodynamics, the electrostatic energy density W of the

suspension is computed by
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(3.26)

The force exerted on a particle a due to the presence of a particle /3 can be

calculated by differentiating the energy with respect to the particle position as:

(3.27)

where r is defined as x fl — as .

Therefore, in a uniform electric field, the electrostatic energy reads:

(3.28)

The force on the Particle a is expressed as:

3.29)

where

(3.29a)

and

(3.29b)

where p.7. and pa, satisfy Equations (3.24a) and (3.24b).

Equation (3.29) can be compared with Klingenberg's exact force formula:

One can now introduce the following force coefficients



44

(3.31b)

(3.31c)

where Fo = 127reosca3 /32E2 .

3.2.2 Dipole Moment in Particles in the case of a Non -uniform Field

In the case where the applied electric field is non-uniform, the field induced dipole

moments in two equal-sized particles 1 and 2 with radii a are:

and

where E1 and E2 are the electric fields at the center of each particle, respectively.

When there are more than one particle suspended in the medium, there is a need

to take into account the interactions between the particles, especially when two particles

are close. Considering a pair of nearly touching particles, with a center-to-center

separation r, one can write the total image dipole moment of Particle a in even and odd

using a method similar to that used in the case of a uniform electric field.
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Similarly, the total image dipole moment of Particle b is given by:

and

as:

(3.35)

Including the first three terms of the dipole moment, the coefficients ai and a2 take the

expression:

By differentiating the electrostatic energy with respect to the particle position, one

obtains the electrostatic force acting on Particle 1:
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where ri = .
a

The force formula Fi2 is based on the first three terms of the dipole moment.

Notice that the traditional DEP force and the dipole-dipole interaction force used in

reference 1611 are recovered here as the first two terms, and that the electric field E2 taken

at the center of Particle 2, together with its gradient VE 2 , enter in the expression

ofFi2 and therefore affect the force acting on Particle 1.

3.3 Multi-Particles Electrostatic Force

When more than two particles suspended in a dielectric fluid are subjected to a spatially

non-uniform electric field, the electrostatic force acting on a given particle consists of

two parts: (a) the interaction between the induced dipole of the particle with the non-

uniform electric field; (b) the interaction between the induced dipole of the particle and

dipoles of the other particles. In principle, the exact electrostatic forces acting on a

particle can be calculated theoretically from the solution of the many-body potential

problem and the integration of the Maxwell stresses over each particle in the domain. For

practical purposes, however, this is a huge task if there are more than two particles in the

suspension, even in the case of a uniform electric field.
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In this section, a general method to compute the electrostatic force by expanding

the integral form of Laplace's equation is presented. This method was first developed by

Bonnecaze et al. 137'381 to determine the grand capacitance matrix, the properties of the ER

fluid, and the electrostatic force on a particle within a suspension subjected to a uniform

electric field. In this section, the integral form of Laplace's equation was expanded in

terms of a Taylor series to obtain the electrostatic force in the case of a non-uniform

electric field.

3.3.1 Taylor Expansion

For N particles suspended in a fluid, the electric potential and the gradient of the potential

at the center of the particle can be expanded using a Taylor series when truncated at the

dipole level137'381 :

For spherical particles, O'Brien 1981 used the Faxen-type law of dipoles and derived

the formula:

Thus, the potential gradient at the center of the particle can also be approximately

in terms of the N particle charges and dipoles as follows:
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Combining equations (3.37) and (3.40), one can derive the following expression:

where (1) is the vector obtained by subtracting the external potential from the particle

potential evaluated at the particles centers, 9(11 a ) — cog (Ra ) , and q and S are the vectors

of the N particle charges and dipoles, respectively.

Let E = _GE be the electric field in absence of the particles. Equation (3.41) can

then be rewritten as:

(3.42)

where the matrix M is referred to as the grand potential matrix 1371 . It is composed of sub-

matrices which couple the variables appearing as subscripts; for example, Meq is the

matrix coupling the potentials and the charges, etc. The grand potential matrix, together

with its sub-matrices, can be computed according to the expansion of Laplace's equation;

for example, MES is the 3N X 3N submatrix such as:

(3.43)

3.3.2 Electrostatic Force

Since Laplace's equation, subjected to the appropriate boundary conditions, is linear

together with the external electric field, the N particle charges, the dipole moments and

potentials, one can write:
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where q and (1) are the N-dimensional vectors containing the particle charges and

potentials, C is the grand capacitance matrix with its sub-matrices relating the variables

appearing in their subscripts; for example, Co). relates the particle charges to their

potentials.

In classic electrodynamics1971, it is known that the energy of charged particles in

the absence of an electric field is one-half the sum of the product of the particle charges

and their local potentials. Thus, for charge-free particles in an electric field, the

electrostatic energy density is given by:

where 9 is the energy density for a system of N particles in a volume V,. S" is the

induced dipole moment of Particle a, and E is the local electric field taken at the center

of this particle.

For charge-free particles (q = 0), the dipole moment can be derived from Equation

(3.44) as:

where

Substituting Equations (3.46) and (3.47) into Equation (3.45), the electrostatic energy

density becomes



From classical electrodynamics, the force on Particle a is computed from the

differentiation of the energy density with respect to the particle position, i.e.

In the case of a non-uniform electric field, the potential gradient is spatially

related to the position x. Taking into account the fact that C(x) is a symmetric matrix,

the electrostatic force can be expressed as

Notice that in the case of a uniform electric field 1181 , the electric field strength is

constant everywhere, the gradient of the electric field becomes zero, and the electrostatic

force in Equation (3.50) simplifies to:

It follows that Equation (3.50) can be used to determine the electrostatic force in

both uniform and nonuniform electric fields. Furthermore, it is interesting to point out

that the grand capacitance matrix C and all its submatrices include both the long-ranged

many-body interactions as well as the lubrication-like near field interactions, and so does

the electrostatic force.

50
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3.3.3 Electrostatic Force with Near-field Effects

Unfortunately, an exact computation of the capacitance matrix C and its sub-matrices is

not possible due to the presence of infinite terms. Notice that the capacitance matrix C

can be determined theoretically by inverting the grand potential matrix M. In practice, M

is truncated at dipole levels and therefore its inversion does not coincide with the real

capacitance matrix. The matrix C can be approximately computed from the potential

matrix 1111371 by means of the relation

C AIM' +Cv, —C; (3.52)

which includes both near- and far-fields, as well as multi-particles interactions. M, the

potential matrix, can be calculated easily by expanding the integral form of Laplace's

equation of both the potential and its gradient as expressed in Equation (3.41).

In the case of an nonuniform electric field, the computation of the exact two-body

capacitance matrix, C2b, unlike that corresponding to a uniform electric field, cannot be

calculated by solving directly Laplace's equation, because of the difficulty of obtaining

analytically the general solution of Laplace's equation with different boundary

conditions. Hence, the multiple image methodP 4'971 is now introduced to compide the

induced dipole moment of a pair of particles when the latter are nearly touching. It is

worth pointing out that the image method also uses the integral equation approach to

calculate the electrostatic energy, and then the force is computed by differentiating the

energy with respect to spatial coordinates.

The far-field two-body capacitance matrix, C21,, is determined through the same

method as that used to calculate the invert of M, that is by neglecting the presence of
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other particles, except for the ith and jth particles located in the computational cell. The

force is computed by using the equation:

The exact two body interaction force Fif is computed from the image method, as

expressed in Equation (3.36) in the case of a nonuniform electric field and Equation

(3.18) or (3.29) in the case of a uniform electric field.

Therefore, the general electrostatic force with the addition of near-field effects

can be expressed as:

3.3.4 Electrostatic Force without Near-field Effects

In the case of a dilute suspension in which particles do not concentrate in particular areas,

near-field interactions can be neglected in the capacitance matrix and the dipole moments

take the expression:

Substituting Equation (3.55) into Equation (3.50), the force expression can be rewritten

as:

Using tensor properties, the first term in the right hand side of Equation (3.56) reads:
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Because the sub-matrix MEs is symmetric, Equation (3.57) can be written by using

Equation (3.55) as:

Using the expression (3.43) of MES in Equation (3.58), the first term of Equation

(3.50) becomes:

If the effects of other particles' dipoles are also neglected, Equation (3.43) is

further simplified to:

By taking into account Equation (3.60), one can derive the following expression for the

second term on the right-hand side of Equation (3.50):

which is simply the classical point-dipole approximation of the dielectrophoretic force

acting on an isolated spherical particle a and used by many investigators.

Combining Equations (3.59) and (3.61), it is clear that the electrostatic force

derived with the energy method is the same as that of othersE 611 if both the near-field

interactions and the many body interactions are neglected.

When the suspension is subjected to a uniform electric field, the electrostatic

force is determined by:
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In fact, from Taylor's expansion, the force acting on a particle with some charge

distribution can be approximately evaluated by:

where E(x) is the value of the local electric field at the center of the particle a. For N

charge-free particles, the local gradient of the electric field at the center of the particle a

is approximately given by:

Combining Equations (3.63) and (3.64), and considering that the particles are

charge-free, the electrostatic force on the particle a due to the presence of other particles

is:

that is exactly the same expression as Equation (3.62).

The electrostatic force without the addition of near-field effects, is obtained by

combining Equations (3.59) and (3.61) as:

Using Equation (3.66) in Equation (2.9), the particle location x can be computed

from:
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The latter equation can be nondimensionalized by using the characteristic

particles radius a, time i s = —a velocity U taken on the centerline of the channel for a
U '

pressure driven flow between 2D parallel plates, and electrostatic force 12;re0 ec (flE) 2 a 2 .

The Mason number, Ma, or ratio of the viscous drag force to the electrostatic forces, is



CHAPTER 4

TWO PARTICLES PROBLEM

In this chapter, the suspension properties of two particles are studied. When particles are

suspended in a dielectric fluid and subjected to an electric field, as described in the

previous chapter, the particles experience both a hydrodynamic and an electrostatic force.

The hydrodynamic force is approximated by Stokes' drag, while the electrostatic force is

computed using either the energy method (Equation (3.16)) or the image method

(Equation (3.29)) in the case of a uniform electric field. This electrostatic force accounts

for both the near- and far-field interactions. As discussed earlier, the electrostatic force

computed from the image method can also be used to calculate the force acting on

particles in the case of a non-uniform electric field.

4.1 Two Particles in a Uniform Field

In this section, suspensions consisting of two particles suspended in a liquid are studied

in the case of a uniform electric field. IM represents the results obtained with the image

method (from Equation (3.29)), DD those obtained with the point-dipole approximation,

and NF, FF those computed from the energy method with and without near-field effects,

respectively (Equations (3.54) and (3.66)).

4.1.1 Convergence of the Multiple Image Method

The analytical multiple image method gives different results depending on how many

terms are retained in the multiple image expressions and various models are recovered

with the particular truncations considered. If only one term is retained, i.e., n = 1, the

56
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method reduces to the point-dipole model, and the total dipole of a given particle is solely

due to the applied field. If two terms are retained, i.e., n = 2, the dipole-induced-dipole

model is recovered; if more than two terms are retained, the method corresponds to the

multiple-induced-dipole method, i.e., n = 3 to 00, but in the latter case the force diverges

as r/a-*2, i.e. when two particles are touching.

The multiple image method can then be used to compare the various models.

Table 4.1 lists the force obtained from the multiple image method with different

truncations when two particles are placed initially along the z direction, such that the line

joining their centers is parallel to the electric field. Computations were carried out when

the particles are at a distance r = 2.2a and r = 3a of each other and for two different

particle-to-fluid dielectric constant ratios a= 2.0 and a = 10.0. The force is non-

dimensionalized by 1227reoe fl2E2a2. Table 4.1 shows that the method converges as the

number of terms is increased, and the convergence is faster for the lowest dielectric

constant ratio. Indeed, for a= 2.0 the value of the force is observed to remain constant

with eight terms or more, even when the two particles are very close (r/a = 2.0), while

convergence requires fifteen terms for a= 10.0.
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Table 4.1 Convergence of the Multiple Image Method

17

..,
gp I cc = 2.0 sills, =10.0

r/a=2.2 r/a=3 .0 r/a=2.2 r/a=3.0

3 .109721 .026220 .183055 .029664

4 .110484 .026223 .203662 .029731

6 .110639 .026223 .219773 .029739

8 .110641 .026223 .222032 .029739

9 .110641 .026223 .222740 .029739

15 .110641 .026223 .222744 .029739

20 .110641 .026223 .222744 .029739

40 .110641 .026223 .222744 .029739

60 .110641 .026223 .222744 .029739

80 .110641 .026223 .222744 .029739

100 .110641 .026223 .222744 .029739
Note: Value of the electrostatic force for various truncations of the series (n refers to the number of terms
considered), for two particle-to-fluid dielectric constant ratios and two values of the distance between the
particles.

4.1.2 Comparison of the Force Computed with Different Methods

Unfortunately, there are only limited results in the literature for the many-body

electrostatic interaction force obtained with various methods. The available data for two

identical spheres suspended in a fluid subjected to a uniform electric field are the exact

results of Klingenberg et al. 1241 (presented in Gast and Zukoski 1131) obtained by calculating

the electrostatic force by integrating the Maxwell stress tensor on the particle surface for

two particle-to-fluid dielectric constant ratios a= 2.0 and a= 10.0. The conclusion was

that the energy method with near field effects led to results very close to the exact data of

Klingenberg for these two dielectric constant ratios.
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Table 4.2 compares the results of the force functions from calculations performed

in this thesis, in the case of two particles with two different particle-to-fluid dielectric

constant ratios (a = 2.0 and a = 10.0) and two different distances between the particles.

Here, the various techniques described above have been used, specifically the energy

method with (NF) and without (FF) the near-field interactions and the image method (IM)

with fifteen terms retained in the series. In addition, results are compared with

Klingenberg's exact data, as reported in referencei 131 . The letter "K" refers to

Klingenberg's data. For convenience, the electric field was assumed to be along the z

direction. The computational space is a closed box with dimensions 1.6mm, 0.4mm, and

1.6mm in the x, y, and z directions, respectively. The test fluid dielectric constant is 7.3,

and the particle-to-fluid dielectric constant ratios are chosen to be 2.0 and 10.0 to easily

compare the force.

Table 4.2 shows that the electrostatic force computed from the energy density

formulation with the inclusion of the near-field interactions (Equation (3.16)) is in

excellent agreement with the exact two particle interaction data of reference 1181, for both

particle-to-fluid dielectric constant ratios, even when the two particles are nearly

touching. However, if the near-field effects are neglected, the results do not agree as

much and the discrepancy increases as (i) the particles get closer to each other and (ii) the

particle-to-fluid dielectric constants ratio increases. For example, when the distance ratio

r/a is 2.2, the error is 25% for a = 2.0, but for a = 10.0, the error is as large as 70%. In

addition, it was found that whether or not the near-field interactions were included, the

energy method gave results closer to exact values than the point-dipole method. Notice

that when the applied electric field is uniform and the point dipole approximation is used,
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the force functions are unity for all particle separations and for any particle-to-fluid

dielectric constant ratio.

Table 4.2 Comparison of the Force Functions for a Two-particle Suspension in a
Uniform Electric Field

fll 	 L 	 fr

r/a K FF NF 1M K FF NF DD K FF NF IM
a=10.0

2.0 5.20 1.51 5.20 5.36 .62 .84 .62 .58 1.46 1.12 1.46 1.55
2.2 2.09 1.35 2.09 2.20 .72 .87 .72 .72 1.20 1.08 1.19 1.25
2.5 1.45 1.22 1.45 1.50 .83 .91 .83 .83 1.10 1.05 1.09 1.11
3.0 1.18 1.12 1.18 1.20 .92 .95 .92 .92 1.04 1.03 1.03 1.04

a=2.0
2.0 1.50 1.14 1.50 1.56 .82 .94 .82 0.83 1.08 1.04 1.08 1.10
2.2 1.27 1.10 1.26 1.29 .88 .95 .88 0.89 1.05 1.03 1.05 1.06
2.5 1.11 1.07 1.13 1.12 .94 .97 .93 0.94 1.03 1.02 1.03 1.03
3.0 1.09 1.04 1.06 1.06 .97 .98 .97 0.97 1.01 1.01 1.01 1.01

Note: K represents Klingenberg's data from Gast et al. (1989); NF and FF represent results computed from
the energy method with or without near-field interactions, and IM refers to the image method.

The next calculation compares the electrostatic forces acting on Particle 1 for

different /3 values. Two particles are placed in a fluid subjected to an electric field. The

centerline joining the centers of the particles is parallel to the electric field. The force was

calculated with four different methods: the image method, the dipole-induced-dipole

method, and the energy method with and without near-field effects. Figure 4.1 shows the

dimensionless electrostatic force (nondimensionalized with 12ze oeefi2E2a2 ) versus )6

when the initial distance between two particles is (a) three radii and (b) six radii. The

results demonstrate that for a given distance between the two particles, the dimensionless

force calculated from the dipole-dipole interaction method is independent of /3 due to the

nondimensionalization. It significantly differs from Klingenberg's exact force value,

which monotonically increases with fl. While both the image method and the energy

method recover the increase, the image method gives results the closest to the exact
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values. The energy method with the inclusion of both near-field and far-field interactions

was found to lead to the next accurate results while the discrepancy between the exact

value and the force computed from the energy method with only far field effects was

quite large, particularly when the particles were the closest and at the largest fi values.

Figure 4.1 Force versus the particle-to-fluid dielectric constant ratio 10 when the distance
between the two particles is (a) r = 3a; (b) r = 6a.
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4.1.3 Comparison of Particles Trajectories

The particles trajectories obtained with the various methods were plotted for comparison.

Initially, the two particles are placed at the locations (0.6, 0.6, 0.2) and (1.0, 1.0, 0.2),

with the line joining their centers neither parallel nor perpendicular to the imposed

electric field. The particles are expected to get attracted to each other and align with the

electric field.

Figure 4.2(a) displays the particle trajectories using the energy method (with or

without near-field effects) and the image method. The x-y plot in Figure 4.2(a) shows that

approximately the same results are obtained with the image method and the energy

method with and without the inclusion of the near-field effects. However, the point-

dipole assumption leads to different results.

Likewise, the time traces of Particle 1's coordinates (x- and y-coordinates versus

time) in Figures 4.2(b) and (c) show that the energy method with near-field interactions

and the image method give similar results, while the dipole-induced-dipole leads to a

discrepancy due to the fact that the particle takes a longer time in this case to reach their

final position where they touch each other, than in the other models. Recall that the

dipole-induced-dipole computes the dipole of a particle only from its interaction with the

external electric field, which leads to an inaccuracy in the force computed, particularly as

the two particles get close to each other.



63

Figure 4.2 (a) Trajectory of Particle 1 in a two-particle motion computed with four
methods. The x-coordinate of Particle 1 as a function of time, computed with four
different methods. (■ NF refers to the energy method with the inclusion of the near-field
effects; • FF refers to the energy method in which the near-field effects have been
neglected; x DD refers to the dipole-induced-dipole method; A IM refers to the image
method where fifteen terms have been retained.)
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Figure 4.2 (continued) (c) The y-coordinate of Particle 1 as a function of time, computed
with the four different methods. (■ NF refers to the energy method with the inclusion of
the near-field effects; • Ff. refers to the energy method in which the near-field effects
have been neglected; DD refers to the dipole-induced-dipole method;  A IM refers to the
image method where fifteen terms have been retained.)

4.1.4 Attraction, Repulsion, and Alignment

In this section, we compute the trajectories of particles in the case of attraction, repulsion,

rotation and alignment of the two particles with different initial positions related to the

applied uniform electric field. The electrostatic force is computed from the image

method, as expressed in Equation (3.29).

The electric field is generated by two parallel plates placed in two x-z planes at a

distance ly of each other. The electric field is then in the y direction. The computational

domain has dimensions 1.6mm, 1.6mm, and 0.4mm in the x, y, and z directions,

respectively. The dielectric constant is 7.3 for the fluid and 14.6 for the particles.
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The first example displays the case of particle attraction (see Figure 4.3(a))

between two particles initially positioned at (0.8, 0.5, 0.2) and (0.8, 1.1, 0.2). When the

line joining the centers of the two particles is parallel to the applied electric field, the

particles attract each other because the net attraction force is along the centerline. The

attraction force acting on the particles pulls the particles toward each other, and as the

particles get closer to each other, the force increases. This implies that the particles move

toward one another at a faster and faster rate until they touch.

The second example studied here is the case of particle repulsion (see Figure

4.3(b)) between two particles initially positioned at (0.65, 0.8, 0.2) and (0.95, 0.8, 0.2).

When the line joining the centers of the two particles is perpendicular to the applied

electric field, the particles repel each other and move away from each other. As the

distance between the particles increases, the repulsion force decreases, thus slowing

down the particles motion gradually during the repelling process.

When two particles whose line joining their centers is initially neither parallel nor

perpendicular to the electric field, as shown in Figure 4.2(c), the particles experience both

attraction and repulsion forces which cause the pair to rotate and eventually align with the

electric field. This phenomenon is at the origin of the formation of chain structures,

which align themselves along the direction of the electric field. The simulation showed

that the attraction, repulsion and/or alignment of the particles depend(s) on their positions

as well as on the polarizability of the particles (the amplitude and sign of the factor A.
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Figure 4.3 Electrostatic interactions between two particles, denoted by 1 ( , ) and 2 ( A ),
suspended in a uniform electric field: (a) two particles attract each other when the line
joining their centers is parallel to the electric field; (b) two particles repulse each other
when the line joining their centers is perpendicular to the electric field; (c) two particles
rotate and align with the applied electric field when the line joining their centers is
neither parallel nor perpendicular to the electric field.



67

4.1.5 Discussion

When two particles dispersed in a dielectric fluid are subjected to a uniform electric field,

the electrostatic force acting on a particle can be computed from four methods: (a) the

dipole-induced-dipole method with the point-dipole approximation; (b) the image method;

(c) the energy method with both far-field and near-field effects; and (d) the energy

method without the near-field effects. As expected, the dipole-induced-dipole method

leads to the least accurate results because the point-dipole approximation assumed that

the dipole induced within the particle comes from the external electric field only, and

fully ignores the influence of the presence of the other particles. The energy method

where the near-field effects are neglected gives better results than the dipole-induced-

dipole method because it considers the influence of the other particles although it

neglects the near-field interactions. The energy method to which the near-field

interactions have been added leads to better results because it takes into account the

influence of both the near-field and far-field interactions between the particles. Finally,

the image method generates accurate results as it considers not only the influence of the

other particles but also the near-field interactions in a fashion similar to the energy

method in which the near-field interactions have been added. Furthermore, it can also be

easily extended to calculate the electrostatic force in a non-uniform electric field.
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4.2 Two Particles Suspension with Non-Uniform Electric Field

In this section the suspension with only two particles is studied when the electric field

spatially non-uniform. The electrostatic force acting on a particle is computed using (i)

the energy method with and without the addition of the near-field effects (Equation

(3.66), (ii) the image method (with more than three terms included (Equation (3.36)), and

(iii) the point-dipole approximation.

The nonuniform electric field is generated by electrodes in x-z planes located at a

distance of lym of each other. The top electrode (y = lym) is energized at the voltage Vm

while the bottom electrode (y = 0) is grounded. It is further assumed that the electrodes

length of the electrodes in the z direction is much larger than those in the x and y

directions, and therefore the electric field can be considered to satisfy a 2D problem in

the x-y plane.

Both positive and negative dielectrophoretic motions are studied with different

computational cells and electrodes arrangements. For positive dielectrophoresis, we

consider the nonuniform electric field generated by electrodes placed outside the fluid

domain and its walls, as shown in Figure 4.4. The fluid box has the dimensions l,, /y, lz

taken as 1.6mm, 1.6mm and 0.8mm along the x, y and z direction, respectively, while lym

is chosen to be 2.4mm. However, negative dielectrophoresis is generated by electrodes

placed within the walls of the fluid domain, as shown in Figure 4.10. In both cases, the

density of the particles is 1010 kg/m3, while that of the fluid is 1000 kg/m3.
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4.2.1 Positive DEP (fl> 0)

In this section, the properties of the two particles suspension were studied under positive

dielectrophoresis (fl> 0). Both particles have the same sizes with 0.2mm in diameter. The

dielectric constant is 7.3 for the fluids, and 23.3 for the particles (and thus a= 3.19 and ,61

= 0.422). The viscosity of the fluid is assumed to be 0.1 Pa.s and there is no initial flow in

the domain.

Figure 4.4 Sketch of the domain, showing the electrodes in the x-y plane outside the
fluid box for positive dielectrophoresis (fl > 0). A, B indicate the electrodes, A being the
energized electrode, B being the grounded electrode.

The typical computational space used is showed in Figure 4.4 with the selected

dimensions. Notice that in this case, we have assumed that the electrodes are outside the

fluid channel and therefore the particles do not get very close to the electrodes.

Specifically, the electrodes are placed at a 0.4mm distance from the top and bottom edges
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of the fluid cell. The top electrode is energized at an electric potential whose

dimensionless value is 1, while the bottom electrode is grounded, and therefore its

potential is 0. The 2D Laplace equation is solved to obtain the electrical potential q, and

the electric field is deduced from the equation E = —V(6. . Figure 4.5(a) displays the

electric field, and Figure 4.5(b) shows the quantity E • VE relevant to the

dielectrophoretic force.

Figure 4.5 Solution of the Laplace equation. (a) Electric field E lines; (b) Force (E • VE)
lines.
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4.2.1.1 Convergence of the Results with Time Step Refinement. In this section, the

convergence of the results with time step refinement is verified by studying the case of

two particles. The initial positions of the particles are (1.3, 0.8, 0.4) and (1.3, 1.6, 0.4).

For several different time steps, the y coordinate of the first particle is plotted in Figure

4.6 as a function of time by using the image method which includes the near-field effects

to compute the electrostatic force. The plots show that the results for four different time

steps almost overlap, thus demonstrating the convergence of the results with time step

refinement.

Figure 4.6 The y-coordinate of the first particle as a function of time, computed using
four different time steps: (a)  ♦ 5.0* 10 -s ; (b) ■ 1.25* 10 -4 ; (c) o 2.5* 10 -4 ; (d) A 5.0* 10-'.

4.2.1.2 Electrostatic Force Comparison. The electrostatic force acting on the particles

includes two interactions: the interaction between the various particles, and the

interaction between every individual particle and the imposed electric field. As

mentioned in Chapter 3, the electrostatic force on a particle subjected to a non-uniform

electric field can be determined by five different methods.
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Table 4.3 lists the three components of the force acting on the first particle,

considered at various distances of one another, and for two different dielectric constant

ratios a = e/cc (2.0 and 10.0). These components are computed by means of five

different methods: (a) NF represents the results from the energy method with the

inclusion of the near-field effects (Equation (3.17)); (b) FF refers to the results from the

energy method taking into account the far-field effects only; (c) DD indicates the results

from the dipole-induced-dipole method, where the electrostatic force is determined from

the particle-particle interaction using Equation (3.19) to which the DEP force (1.23) is

added; (d) IM indicates the results from the image method with the first fifteen terms; (e)

DEP denote the results from the traditional DEP force only.

The two particles are placed symmetrically such that y = 1/2 4 at the locations

(1.3, y i , 0.4) and (1.3, y2, 0.4) and the distance between the two particles is varied by

changing yi and y2. The electrostatic forces are nondimensionalized with the factor

12=6, (13E) 2 a2 .

The results show that the DEP method is the least accurate, as it was expected,

since it considers the interaction between the particle and the electric field only, ignoring

all interactions between the particles. When the particles are almost touching, the error is

approximately 97% even for small values of the dielectric constant ratio ede, = 2.0 .

The dipole-induced-dipole approach remedies this deficiency by including both the

particle-particle interactions and the interaction between the particle and the non-uniform

electric field. However, it ignores both the near-field effects of the particle-particle

interactions and the dipole moment induced by the dipoles of the other particles. When

the particles are very close (2.2 sphere radii), the error is about 19% for the
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ratio ede, = 2.0 and 50% for the ratio ep ic, = 10.0 . The energy method, even without

the inclusion of the near-field effects, leads to reasonable results (errors are 11% and 33%

for the two ratios, respectively) if the suspension is dilute, i.e. the distance separating

particles is large. The image method accounts for both the particle-particle and particle-

field interactions, including the near-field effects. The error obtained with the image

method is less then 10% for ep lec = 2.0 and 16% for cp /e, = 10.0 .

When particles are placed at a distance of four sphere radii apart, the error is less

than 3% with the image method, in contrast with 58% with the DEP force only. However,

for a distance of eight sphere radii apart between the particles, all methods are in good

agreement, the error being less than only 5% for a ratio ep lec =2.0 and 9% for

ep is, =10.0 with the DEP force only. The other methods give even smaller errors.



Table 4.3 Comparison of the Two-particle Force Components in a Non-uniform Electric Field
F,, F,,

FF NF 1M DD DEP FF NF IM DD DEP
6p /cc = 2.0

2.0 -0.14317 -0.14322 -0.15339 -0.13446 -0.13352 1.16942 1.53577 1.37788 1.02892 0.02067
2.2 -0.14382 -0.14384 -0.15118 -0.13728 -0.13663 0.78196 0.88803 0.82860 0.71122 0.02286
2.5 -0.14504 -0.14504 -0.15001 -0.14061 -0.14021 0.46740 0.49294 0.47134 0.43871 0.02621
3.0 -0.14672 -0.14672 -0.14982 -0.14427 -0.14427 0.23904 0.24302 0.23712 0.23060 0.03194
4.0 -0.16671 -0.16671 -0.16832 -0.16570 -0.16563 0.10831 0.10856 0.10756 0.10689 0.04427
6.0 -0.21489 -0.21489 -0.21609 -0.21507 -0.21507 0.08646 0.08646 0.08576 0.08572 0.07350
8.0 -0.30508 -0.30508 -0.30661 -0.30602 -0.30601 0.11584 0.11584 0.11521 0.11520 0.11141

Ep ic, =10.0
2.0 -0.05574 -0.05606 -0.07083 -0.04544 -0.04451 1.53588 5.16124 2.39296 1.01514 0.00689
2.2 -0.05364 -0.05371 -0.06273 -0.04620 -0.04554 0.94155 1.44506 1.20787 0.69598 0.00762
2.5 -0.05204 -0.05206 -0.05742 -0.04714 -0.04674 0.51450 0.60648 0.55139 0.42124 0.00874
3.0 -0.05082 -0.05082 -0.05386 -0.04809 -0.04809 0.23410 0.24647 0.23238 0.20930 0.01065
4.0 -0.05650 -0.05650 -0.05794 -0.05528 -0.05521 0.08081 0.08153 0.07949 0.07738 0.01476
6.0 -0.07196 -0.07196 -0.07271 -0.07169 -0.07169 0.03725 0.03726 0.03682 0.03673 0.02450
8.0 -0.10189 -0.10189 -0.10260 -0.10201 -0.10200 0.04124 0.04124 0.04094 0.04093 0.03714

Note: NF and FF represent the results obtained with the energy method with and without the near-field interactions, IM refers to those obtained with
the image method, DEP denotes the DEP force only, and DD the sum of the DEP and the dipole-dipole interaction force term.
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4.2.1.3 Particle Trajectories Comparison. Figure 4.7 compares the trajectories of the

two particles computed by means of the energy method with those obtained when the

electrostatic force is taken as the DEP force only. The initial positions of the particles are

(1.3, 1.05, 0.4) and (1.3, 1.35, 0.4). The total electrostatic force increases with increasing

particle-to-fluid dielectric constant ratio a.

As recalled in Chapter 3, particles attract each other because of the presence of

particle-particle interactions. This phenomenon is well reproduced by the image method

if the latter includes near-field effects. In a nonuniform electric field and in the case of

positive dielectrophoresis, particles are attracted toward each other quickly and then

move toward the boundary together. When the electrostatic force is modeled by the DEP

force only, the trajectories show that the particles move separately to the electrodes

without being attracted to each other. Figure 4.7(a) allows the comparison of the two

trajectories in the x-y plane. A close observation of the particles' trajectories in Figure

4.7(b) reveals that the two particles are approximately in contact at x = 1.29mm, when the

image method is used to compute the electrostatic force. Figure 4.9(a) presents the

trajectories obtained with the three methods: the image method with both far-fiels and

near-field effects, the energy method with the far-field effects only, and the point-dipole

assumption (DD), with a closer view as the particles nearly touch each other displayed in

Figure 4.9(b). As expected, the results show that the trajectories differ only when the

particles are close to each other.
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Figure 4.7 Comparison of the trajectories of two particles in the case of positive
dielectrophoresis obtained with the image method and the DEP force only. (a) Full view
of the trajectories; (b) close view of the two particles as the latter are close to each other,
near x = 1.28mm.

Figure 4.8 Comparison of the first particle's y coordinate as a function of time in the
case of positive dielectrophoresis computed with the image method and the DEP force
only. (a) Full view; (b) close view as the particles get close to each other.
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Figure 4.9 Comparison of the trajectories of the two particles in the case of positive
dielectrophoresis computed with the image method, the energy method without near-field
interaction, and the point-dipole method. (a) General view of the trajectories; (b) closer
view as the particles get close to each other, near x = 1.22mm.

The evolution of the first particle's y coordinate with time t is also shown (see

Figure 4.8). If the electrostatic force is reduced to the DEP force only, the particles are

collected at the boundaries at time t = 4.4s. However the results from the energy method,

which takes full account of the particle-particle interactions, show that the collection of

particles takes about 15.0s. This means that a much longer time is needed in this example

to collect or separate particles when the interaction between the particles is accounted for.

A closer view of the y-t plot, provided in Figure 4.8(b), indicates that the particles move

first toward each other quickly and then toward the boundary as a pair, when the

electrostatic force is computed from the image method.
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Figure 4.10 Comparison of the trajectory of the two particles in the x-y plane, computed
with various methods.

Figure 4.10 shows the trajectories of the two particles between the locations (1.3,

0.8, 0.4) (initial position) and (1.3, 1.6, 0.4). Other parameters are kept identical. The

trajectories are computed by using three methods: the energy electrostatic density method

without the near-field effects, the method based on the DEP force to which dipole-dipole

interactions have been added, and the multiple image method. All results are in good

agreement. This is due to the fact that when the positions of the particles are far away

from each other, the particle-particle interaction force is weaker than the particle-field

interaction force and a rough estimate of the particle-particle interactions is sufficient.
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Figure 4.11 Comparison of the y coordinate of the first particle as it evolves in time,
computed with various methods.

In Figure 4.11, the image method is compared with the energy method without

near-field interactions and with the dipole-induced-dipole and DEP method. The image

method results are computed from the dipole moments in which the first three terms were

retained. From these results, we conclude that the image method, with only the first three

terms in the series, is sufficient to accurately simulate the particle trajectories.

4.2.2 Discussion

Two particles suspensions subjected to a nonuniform electric field have been studied in

this section. The electrostatic force was calculated using different methods. In most

cases, the latter include the DEP force only, the energy method with the addition of near-

field interactions, the energy method without the near-field interactions and the image

method.
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The results showed that the DEP only force is not enough to simulate the

movement of the particles because that the DEP force is the interaction between the field

and the induced dipole in a particle, but neglecting the interaction between the particles.

This method also ignores the near-field effects. The dipole-induced-dipole approach is

better because it considers both the interactions between the particles and between the

field and the field, but it still neglecting the influence of the near-field. The energy

method with the addition of the near-field interaction considers both the interaction

between the particles and between the field and the field, it also consider the influence of

the near-field, but the near-field interaction is computed from the approximation the

uniform field. Image method is great to take count of the interaction between the particles,

and it is the near-field suitable if appropriate terms are included.

4.3 Conclusions

Suspensions of polarizable particles in dielectric fluids when subjected to an applied

electric field were studied numerically using molecular-dynamics-like methods. The total

electrostatic force was computed from the electrostatic energy density of the suspension.

Since the capacitance matrix can include both far- and near-field interactions, the

electrostatic force, computed from the calculation of the capacitance matrix, can also take

into account both interactions. Furthermore, the energy density method is suitable when

the electric field is either uniform or non-uniform.

For a uniform electric field, the electrostatic force originates in the particle-

particle interactions due to the particles' induced dipole interactions. However, for a non-

uniform electric field, the electrostatic force includes two parts: the interaction between
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the induced dipole and the non-uniform field, and the interaction between the particles.

Both parts can take into account not only the far-field but also the near-field interactions.

Simulations could predict the time-evolution of the motions of particles as function of the

particle-to-fluid dielectric constant ratio, a, and distance between the particles, rla.

The formation of particle chaining was observed as a uniform electric field was

applied. However, in the case of a non-uniform electric field, particles gathered either in

the high electric field or low electric field regions, depending on their polarizability. With

an appropriate electric field strength, the particles moved towards electrodes if they were

more polarizable than the fluid, and they moved away from the electrodes if they were

less polarizable than the fluid.



CHAPTER 5

MULTI-PARTICLES PROBLEM

In this section, numerical simulations of multi-particle suspensions subjected to a

nonuniform electric field are performed and discussed. Multi-particle suspensions are

common in real life. How to manipulate particles dispersed in a fluid has been an

interesting and challenging problem in recent years not only for numerous traditional

applications but also for the advancement of novel technologies. The particles motion is

simulated using a molecular dynamics like method where the hydrodynamic force on a

particle is represented by the Stokes drag, and the electrostatic force is computed from

the methods presented in Chapter 3. In particular, the near-field effect present in the

interaction force between two particles is included by using the multiple image method.

5.1 Negative DEP

In this section, several simulations were performed in a computational domain of

dimensions 2.4mm by 1.6mm by 0.8mm in the x, y and z directions. A typical

computational cell used in this study is shown in Figure 5.1. The electrodes are

represented by four edges within the walls of the domain.

The initial particle distribution is displayed in Figure 5.2. A total of 40 particles

were placed in two layers with 20 particles in each layer, with an even distribution along

the y direction, but in the x direction, particles are much closer to the edge x = 0. The

fluid viscosity of the fluid is set to be 17 = 0.1 Pa.s. The particles are 0.2mm in diameter.

The density of particles is 1010 kg/m3 while that of the fluid is 1000 kg/m 3 . The dielectric

82
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constant of particles and fluid are 9.32 and 23.3, respectively. This gives the coefficient a

= 0.5, and factor fl = - 0.25.

Figure 5.1 Sketch of the domain considered for the manipulation of particles by means
of dielectrophoresis, where the location of electrodes (green and red) along the walls and
various dimensions are specified.

The fluid flow is driven by the pressure difference between the inlet (left) and

outlet (right). Since the electrodes are within the walls, they do not enter the fluid

mechanics problem and the fluid can be considered moving between two parallel plates.

It follows that the fluid velocity profile in the x direction is expressed as:

where 4, is the height in the y direction. This fluid velocity was also verified using the

commercial software FLUENT. On the top and bottom walls, the no-slip boundary

condition (velocity component ux = 0 and du)✓dy = 0) was used.
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Figure 5.2 Particle array in 3-D view consisting of two layers with 20 particles in each
layer.

5.1.1 Electric Field

The boundary conditions for the potential are as follows. On the electrodes, the potential

was set to q) = 0 or 1 in dimensionless units, on the left-hand side and right-hand side of

each electrode the condition aq)/an = 0 was imposed, as well as at the inlet and outlet.

The length of each electrode is 0.6mm.

Figure 5.3 Contours of the (dimensionless) electric potential q'.
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Figure 5.4 Solution of Laplace's equation. (a) Electric field (E) lines; (b) Electric force
VE) lines.

The electrical potential is shown in Figure 5.3. The staggered electrodes produce

an electric field for which the point located in the center of the domain is a point of

symmetry, its (dimensionless) potential being 0.5. The electric field E lines and force

E • VE lines are shown in Figures 5.4 (a) and (b). Local minima for the electric field
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magnitude are located at the center (1.2, 0.8, z) of the cell, as well as in the four corners

of the domain, while maxima are located at the tips of the electrodes. The center of the

cell is a saddle point for the electric field lines. All planes in the z direction have the

same electric E and force E • DE distributions.

5.1.2 Negative DEP with dp/dx=0

In this section, the instantaneous motions of particles with negative dielectrophoresis

were studied. The time step was kept at At = 2.5*10 4 . The suspension was subjected to

the nonuniform electric field generated by the electrodes arranged in a staggered fashion

and shown in Figure 5.1. Under negative DEP, particles should go toward the center of

the domain where the electric field is minimal.

The transient motion of two particles with no initial flow is first studied. Two

particles are initially placed at a distance of r = 3a apart at the locations (1.9, 0.65, 0.4)

and (1.9, 0.95, 0.4). As mentioned in Chapter 2, the electrostatic force plays a crucial role

in driving the motion of particles in ER fluids. Most publications so far reporting

numerical simulations of dielectrophoretic phenomena have accounted for the DEP force

as the only electrostatic force, although reference 1241 added the particle-particle

interaction force. Recall that the electrostatic force computed from the energy density

considers both interactions: the interaction between particles and the interaction between

the particles and the nonuniform electric field.



87

(b)

Figure 5.5 Trajectory of Particle 1 in a nonuniform electric field. (a) x-y plot; (b) x-t
plot.
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The results are compared with those obtained by assuming that the electrostatic

force is the DEP force only or the sum of the DEP force and particle-particle interactions.

Figure 5.5(a) shows the trajectories of the two particles computed with the image method

and the DEP force method. The calculation based on the image method shows that the

particles move first towards each other first under the particle-particle interactions, and

then together towards the low electric field region where they get collected. However,

when the electrostatic force is assumed to be merely the DEP force only, the two particles

move towards the low electric field region separately, approximately along the force lines

of Figure 5.4(b) but in the opposite direction to the arrows, due to the negative sign of fi

(negative dielectrophoresis). Figure 5.5(b) displays the time variation of the x coordinate

of the first particle. The results showed that the particles get collected in the region of

low electric field strength, and that the time of collection is approximately the same in

both computations, even the initial positions of the two particles are close.

The next simulation was performed in the domain sketched in Figure 5.1 for

multiparticle suspensions, with the initial fluid and particles velocities assumed to be

zero. The particles are less polarizable than the surrounding fluid with fi' = -0.25.

Imposing dp/dz = 0, that is no pressure difference between the inlet and outlet of the

fluid domain, there is no bulk fluid flow. The particles are subjected to the drag force, to

which a repulsive force, keeping the particles from overlapping, has been added. The

simulation was performed with and without the inclusion of the near-field electrostatic

interactions. In a non-uniform electric field, the electrostatic force acting on a particle

includes both the interaction between the particles and the interaction between the

particle and the non-uniform field. Recalling the analysis presented in the previous
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section, the inter-particle interaction force depends on the electric field at the centers of

particles, while the interaction force between the particle and the field depends on the

electric field E and its gradient VE . For negative dielectrophoresis, the particles move

toward the low electric field regions.

Figure 5.6 shows the initial instantaneous snapshots of the suspension computed

by means of the image method in which the near-field interactions were included. Figure

5.6(a)-(e) show the configuration of the suspension at different times from 0 to 2 seconds.

At time t = 0.1s, the particles close to the upper and lower left corners move quickly to

the local minimum of the electric field, while the particles near y = 1/2h in the first

column (from the left) move to the left edge as well as regroup because of the particle-

particle interactions. The particles in the third column (from the left) hardly move in the x

direction, and aggregate quickly in the y direction. At time t = 0.25 s, all particles in the

three right columns are collected in the middle of the domain. As the particles move close

to each other, the interparticle electrostatic force plays a crucial role, driving the particles

even closer to each other at a faster rate. Then, all three columns of particles aggregate

and reach a stable position (where nearly all particles are collected) at about time t = 0.5

s. Note that all particles located at about y = 1/2h move mostly along the x direction first,

but after getting close to the plane x = 0, they move toward the corner where they remain

after time t = 5s.
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Figure 5.6 Instantaneous snapshots of the
suspension computed by using the image
method including the near-field interactions
at the various times: (a) t = Os; (b) t = 0.1 s;
(c) t = 0.25s; (d) t = I s; (e) t = 2s. There is
no pressure driven flow in this simulation.
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Results of computations excluding the near-field effects are presented in Figure

5.7 at various times. At time t = 0.1s, similarly to what happened when near-field

interactions were included, the particles in the upper and lower left corners move quickly

to the local minimum of the electric field. However, the two particles near y = 1/2 ly move

to the corners separately, instead of moving close to the centerline y = 1/24 At about t =

0.5s, the two particles reach the corners and then move to the next cell. The particle near

y = 1/2h move in the —x direction while the particles in the second and third columns

move to the center and then two bending chains pointing toward x = 1/24 at t =0.1 s. At

later times, the particles continue to aggregate and the collection ends at about at t = 0.5 s.

A comparison of these transient snapshots of the suspension structures with and without

the inclusion of the near-field interactions has been provided, showing that the near-field

interactions do affect the motion of particles.

5.1.3 Negative DEP with dp/dx -0

In this section, the effects of the fluid flow, combined with the effects of the near-field

interactions, were studied in the case of fi = -0.25. When the pressure gradient is non-

zero, the fluid velocity cannot be neglected because the pressure difference between the

inlet and outlet causes the fluid to move. The instantaneous particles distribution depends

on the magnitude of the pressure gradient applied: if the pressure gradient is small, the

bulk fluid velocity is small, and the particle motion will be nearly along the electrostatic

force lines; on the other hand, if the pressure gradient is large, then the particle motion

will have a non-negligible component along the fluid flow streamlines.

Figure 5.8 shows the results where the applied pressure gradient is 10 pascal/m (1

dyne/cm3). The pressure gradient drives the fluid flow along the x direction. The particles
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are placed initially in the same manner as in the previous computation. The instantaneous

snapshots show that after the simulation is started, due to the weak pressure driven flow,

the motion of the particles is similar to that in the previous section without any pressure

gradient.

Figure 5.8 Instantaneous snapshots of the suspension structure with the inclusion of
near-field interactions (image method) with pressure driven flow (dp/dx = 10 pas./m), at
various times: (a) / = 0.1s; (b) 1= 0.25s; (c) / = 0.5s; (d) 1 = 1s.
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Figure 5.9 Instantaneous snapshots of the suspension structure with the inclusion of
near-field interactions (image method) with pressure driven flow (dp/dx = 20 pas./m) at
various times: (a) t = 0.1s; (b) t = 0.25s; (c) t = 0.5s; (d) t = ls.

With the increase of the pressure gradient, the fluid flow velocity increases as

well. Figure 5.9 shows the results when the imposed pressure gradient is 20 pascal/m (2

dyne/cm3). At about time 0.1s, the particles on the left corners move toward the nearest

corner, but the particles in the right three columns move to the center of the domain, as

shown in previous simulations. The particles configurations in Figures 5.9(c) and (d)

show the particles at time t = 0.5s and 1s. Particles in the right three columns continue to
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aggregate at the center of the domain, but the three particles in the left column continue

to move toward the left corner. Finally, at about 4s, all particles are collected.

Figure 5.10 Instantaneous snapshots of the suspension structure with the inclusion of the
near-field interactions (image method) with pressure driven flow (dp/dx = 200 pas./m) at
various times: (a) t = 0.1s; (b) t = 0.25s; (c) t = 0.5s; (d) t = ls.

When the pressure gradient is increased to 200 pascal/m (20 dyne/cm 3), the bulk

fluid flow velocity is large. The particles located at the end of the left column move to

toward the corners of the fluid domain, but all other particles move toward the center of
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the cell. At about 1s, all particles are collected there, except for the particles in the

corners.

5.1.4 Discussion

In this work, a colloidal suspension subjected to a non-uniform electric field has been

simulated numerically the using the integral equation approach. The particles experience

both a hydrodynamic interaction and an electrostatic force. The electrostatic force,

including both dielectrophoretic interactions and particle-particle interactions with the

inclusion of the near-field interactions, were introduced by using the multiple image

method to compute the induced dipoles. Due to the fact that the capacitance matrix

contains the contribution of the multi-body interactions, the derived force contains it too.

In the case of negative dielectrophoresis, all particles get collected in the neighborhood of

the local electric field minimum point.

5.2 Positive DEP

In this section, numerical simulations were performed in a computational space with

dimensions 2.4mm by 1.6mm by 0.8mm in the x, y and z directions. Figure 5.11 shows

the typical computational cell used in this section with its dimensions and the electrodes

are located at y = 0mm and y = 2.4mm. The complete boundary conditions for the

potential are as follows: on the electrode 9 = 0 or 1 in dimensionless units, on the left-

hand and right-hand edges act' / an .0 , and on the other edges between electrodes

av / an = 0 . The length of each electrode is 0.6mm. The computational fluid domain is

the same as that used in the negative DEP case while the electrodes are placed within the
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walls, at a certain distance from the boundaries of the fluid domain, so that electrostatic

interactions between particles and walls can be neglected.

5.2.1 Electric Field

The electrical potential and electric field lines are shown in Figure 5.12(a) and (b), while

the E • VE lines are displayed in Figure 5.13.

Figure 5.11 Sketch of the Computational Space for Positive DEP (not to scale).

The initial particle distribution can be observed in Figure 5.2: a total of 40

particles were placed in two layers with 20 particles in each layer along the direction. In

each layer in the x-y plane, 20 particles were placed in four columns along they direction,

with five particles in each column. Starting from the edge of the computational space,

particles were evenly arranged at a distance of 0.5mm separating each particle from the

next one (distance from particle center to particle center). The third column from the x =

0 edge is slightly lower than the middle line in the x direction. The fluid viscosity of the

fluid is set to be constant, equal to 17 = 0.1 Pa.s and the particles are 0.2mm in diameter.

The density of the particles is 1010 kg/m 3 and that of the fluid 1000 kg/m 3 . The dielectric
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constants of the particles and fluid are 26.6 and 13.3, respectively, giving a particle-to-

fluid dielectric ratio a = 2.0 and a factor fl = 0.25.

Figure 5.12 Contours of the dimensionless electric potential (0 .

5.2.2 Positive DEP with dp/dx=0

The first simulation in this section was performed in the computational space shown in

Figure 5.11 with time step At = 5*10 4 . Without pressure gradient, there is no bulk fluid

flow.



Figure 5.13 The solution of the Laplace equation. (a) Electric field E lines; (b)
E • VE (force) lines.
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Figure 5.14 Instantaneous snapshots of the suspension structure with the inclusion of the
near-field interactions (image method) without pressure driven flow at the various times:
(a) t = ls; (b) t = 3s; (c) t = 6s; (d) t = 10s.

Figure 5.14 (a)-(e) show the configuration of the suspension at various times. The

instantaneous particles distributions were showed in Figure 5.14. At about time t = ls, the

particles in the left three columns gather together with the middle particle in their own

column, and subsequently move to the middle of the first pair of electrodes. Note that the

particles in the third column from the left, because they were placed initially slightly

below the middle of the x direction, move to the middle of the first pair of electrodes. The
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particles in the forth column, move to the second pair of electrodes. At time t = 6s, as

shown in Figure 5.14(c), the particles in the left three columns start to aggregate along

the middle line of the first pair of electrodes. Once the particles start to aggregate, they

continue to do so as they undergo particle-particle interactions. At about time t = 8s, all

particles are fully collected near the electrodes.

Figure 5.15 Instantaneous snapshots of the suspension structure, including the near-field
interactions (image method) in presence of a pressure driven flow (dp/dx=10 pas./m) at
various time: (a) t = 1 s; (b) t = 3s; (c) t = 6s; (d) t = 10s.
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5.2.3 Positive DEP with dp/dx#0

In this section, the particles suspensions are studied in presence of different pressure

gradients in the x direction. All other parameters are the same as in the previous section

without the applied pressure gradient: the particle-to-fluid dielectric constant ratio is 2.0.

The particles experience both a hydrodynamic force and an electrostatic force, where the

latter includes the interaction between the field and the particles, as well as the interaction

between the particles.

The first simulation of this section is performed with a pressure gradient of 10

pas./m (1 dyne/cm3). The configurations of particles are shown in Figure 5.15 at the same

times as those selected with no pressure gradient. Figure 5.15(a) shows that the

configuration at time t = 1 s is similar to that of Figure 5.14(a): the particles in the first

and third columns move to the center due to the particle-particle interactions, and the

particles in the second column move to the nearest electrodes. However, in the x

direction, the particles in the third column move to the second pair of electrodes, instead

of the first pair of electrodes due to the bulk fluid flow rate. As time increases, the

particles in the first two columns continue to aggregate along the line connecting the

centers of the first pair of electrodes. The third column continues to move toward the

second pair of electrodes. Finally, one can observe two chains in the middle of the two

pairs of electrodes at about t = 7s. At time t = 10s, the particles suspension has the similar

structure, indicating that the two chains are stable after t = 7s.

The next simulation was performed with a pressure gradient of 20 pas./m (2

dyne/cm3). All other parameters are kept the same. Simulations show that the suspension



103

has similar configurations as those previously described, but the different configurations

occur at earlier times. Figure 5.16(c) and (d) show stable chains at about t = 6s.

Figure 5.16 Instantaneous snapshots of the suspension structure, including the near-field
interactions (image method) in presence of a pressure gradient (dp/dx=20 pas./m) at
various times: (a) t = ls; (b) t = 3s; (c) t = 6s; (d) t = I Os.

As the pressure gradient is further increased to 50 pas./m (5 dyne/cm 3), the

simulation reported in Figure 5.17 shows that the particles are driven to the middle of the

second and forth columns quickly, particularly due to the high flow velocity along the

plane y = 1/2/y At about time t = 7.5s, these particles form two chains which eventually

bend under the action of the flow velocity profile.
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Figure 5.17 Instantaneous snapshots of the suspension structure, including the near-field
interactions (image method) with the pressure driven flow (dp/dx=50 pas./m) at various
times: (a) t = 1 s, (b) t = 3s, (c) t = 6s, (d) t = 10s, (e) t = 15s.
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5.2.4 Discussion

In this section multiparticles structures within suspensions subjected to a nonuniform

electric field were studied numerically in the case where no pressure gradient was present

as well as with an imposed pressure gradient. The effect of the strength of the latter was

also investigated. The fluid velocity profile was assumed to be that of Poiseuille flow in

a channel and thus the effect of the particles on the flow was neglected (this was justified

by the fact that the suspension was very dilute (particles fraction less than 0.06)). In

absence of pressure gradient, the three particles columns from the left were observed to

chain together while the particles in the forth column was seen to chain separately.

However, in presence of pressure gradients, the left two columns chained together, and so

did the other two columns. The particles chained near the line connecting the middle

points of the electrodes. The velocity of the fluid was seen to assist the forming of the

chain structures.

5.3 Conclusions

In this Chapter, the multiparticles suspension structures were studied by means of a

numerical method. The particles suspended in the fluid experienced both a hydrodynamic

force and an electrostatic force. The hydrodynamic force consisted of Stokes viscous drag

force, while the electrostatic force was computed from the differentiation of the

electrostatic density of the system to include interactions both between the particles and

the electric field, and between the particles. The near field effects were included by using

the multiple image method applied to each pair of particles.
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The simulations were performed with both positive and negative dielectrophoresis

with or without the implied pressure gradient. The results showed that the fluid velocity

assist the particles collecting or separating.



CHAPTER 6

CONCLUDING REMARKS AND RECOMMENDATIONS
FOR FUTURE WORK

In this dissertation, a new numerical approach has been developed for simulating the

motion of particles of suspensions subjected to spatially uniform and non uniform

external electric fields. A suspended particle of the suspension experiences both

hydrodynamic and electrostatic forcest l". The former is calculated in the limit of zero

Reynolds number by using the Stokes drag law, which assumes that the particle is

isolated. The electrostatic force on a particle is determined by differentiating the

electrostatic energy of the system with respect to the particle position. The integral form

of the Laplace equation is first used to obtain the induced charges and dipole moments

from the grand capacitance matrix, which are then used to obtain the electrostatic energy.

In the case of two particles placed in a uniform electric field, the electrostatic

force acting on the particles is computed using the multiple image method and also by

directly integrating the Maxwell stress tensor over the particles surfacesu °13°51  The latter

requires the solution of the Laplace equation which is obtained in the bipolar coordinates.

The force given by the two methods are found to be approximately equal, and also match

the published values for a wide range of dielectric constant ratios.

In a nonuniform electric field, the total electrostatic force acting on a particle can

be divided into two distinct contributions[43,100,1°2,105]. The first depends on the spatial non

uniformity of the electric field and the second on the interactions among the polarized

particles. The multiple image method is applied to obtain the dipole moments of the

particles which are then used to construct the near field solution for two particles. This

107
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multiple image near-field solution for two particles is used to account for the near-field

effects in suspensions containing two or more particles. At present the multiple image

method is not implemented to account for boundaries and electrodes. This, however, can

be included and is essential when the particles approach the electrodes or the device

walls.

The dynamical motion of particles suspended in a channel is simulated

numerically for the cases when the channel is subjected to a pressure gradient and also

when the pressure gradient is not applied 161 'ml. Simulations show that when the applied

pressure gradient is not zero the induced bulk fluid velocity in the channel reduces the

time interval in which particles collect in the low or high electric field regions, depending

on their dielectric constant relative to that of the fluid. In a nonuniform electric field, the

particles form chains, which bend when a pressure gradient is applied.

In this dissertation, simulations were performed in a relatively simple geometry,

i.e., in a channel with a rectangular cross-section. The electrodes were considered to be of

the same size as the width of the channel. The approach developed in this dissertation,

however, can be used in other more complex flow geometries that are of interest in

various applications of dielectrophoresis.

In recent years, many new applications of dielectrophoresis have been developed,

including in the areas of the biotechnology and nanotechnology [99,w2-1041 . The method

developed in this dissertation will be helpful in both improving designs of

dielectrophoretic devices, as well as for understanding the dynamical behavior of

particles in these devices.
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