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ABSTRACT

IMAGE SEGMENTATION AND PATTERN CLASSIFICATION USING
SUPPORT VECTOR MACHINES

by
Shouxian Cheng

Image segmentation and pattern classification have long been important topics in

computer science research. Image segmentation is one of the basic and challenging

lower-level image processing tasks. Feature extraction, feature reduction, and classifier

design based on selected features are the three essential issues for the pattern

classification problem

In this dissertation, an automatic Seeded Region Growing (SRG) algorithm for

color image segmentation is developed. In the SRG algorithm, the initial seeds are

automatically determined. An adaptive morphological edge-linking algorithm to fill in

the gaps between edge segments is designed. Broken edges are extended along their

slope directions by using the adaptive dilation operation with suitably sized elliptical

structuring elements. The size and orientation of the structuring element are adjusted

according to local properties.

For feature reduction, an improved feature reduction method in input and feature

spaces using Support Vector Machines (SVMs) is developed. In the input space, a

subset of input features is selected by the ranking of their contributions to the decision

function. In the feature space, features are ranked according to the weighted support

vectors in each dimension.

For object detection, a fast face detection system using SVMs is designed. Two-

eye patterns are first detected using a linear SVM, so that most of the background can



be eliminated quickly. Two-layer 2nd-degree polynomial SVMs are trained for further

face verification. The detection process is implemented directly in feature space, which

leads to a faster SVM. By training a two-layer SVM, higher classification rates can be

achieved.

For active learning, an improved incremental training algorithm for SVMs is

developed. Instead of selecting training samples randomly, the k-mean clustering

algorithm is applied to collect the initial set of training samples. In active query, a

weight is assigned to each sample according to its distance to the current separating

hyperplane and the confidence factor. The confidence factor, calculated from the upper

bounds of SVM errors, is used to indicate the degree of closeness of the current

separating hyperplane to the optimal solution.
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CHAPTER 1

INTRODUCTION

Image segmentation and pattern classification have long been important topics in

computer science research. Image segmentation is one of the basic and challenging

lower-level image processing tasks. It is critical towards pattern classification. Feature

extraction, feature reduction, and classifier design based on selected features are the three

essential issues for the pattern classification problem. In this dissertation, several novel

algorithms in image segmentation, feature reduction, object detection, and active learning

are presented.

Image segmentation is a process of dividing an input image into subsets by

classifying pixels according to their similarities (e.g., intensity, color, texture). There are

primarily four types of segmentation techniques: thresholding, boundary-based, region-

based, and hybrid techniques [18]. An automatic seeded region growing (SRG) algorithm

for color image segmentation is developed. The initial seeds are automatically

determined. A color image is segmented into regions where each region corresponds to a

seed. Region merging is used to merge similar or small regions. An adaptive

morphological edge-linking algorithm that fills in the gaps between edge segments is

presented. Broken edges are extended along their slope directions by using the adaptive

dilation operation with suitably sized elliptical structuring elements. The size and

orientation of the structuring element are adjusted according to local properties.

Feature reduction is a process of selecting a subset of features with preservation

or improvement of classification rates. In general, it intends to speed up the classification

1
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process by keeping the most important class-relevant features. In this dissertation, an

improved feature reduction method for Support Vector Machines (SVMs) [5, 14, 67, 68]

in the combinational input and feature space is proposed. In the input space, a subset of

input features is selected by ranking their contributions to the decision function. In the

feature space, features are ranked according to the weighted support vectors in each

dimension. By combining feature selection in input and feature spaces, a fast non-linear

SVM is designed without a significant loss in performance.

Automatic human face detection plays an important role in applications such as

video surveillance, human computer interaction, face recognition, face tracking, and face

image database management. Yang et al. [76] classified various face detection methods

into four categories: knowledge-based, feature invariant, template matching, and

appearance-based methods. In this dissertation, a fast face detection system using two-

layer SVMs is designed. Using "integral images", each scanned window can be

normalized quickly. Two-eye patterns are first detected using a linear SVM, so that most

of the background can be eliminated quickly. Two-layer 2n d-degree polynomial SVMs are

trained for further face verification. The detection process is implemented directly in

feature space, which leads to a faster SVM. By training a two-layer SVM, higher

classification rates can be achieved.

The training procedure of SVMs usually requires huge amounts of memory space

and significantly time-consuming computation because of the size of the training data and

the involved quadratic programming problem. Some researchers have proposed

incremental training or active learning algorithms to shorten the training time [2, 6, 39,

44, 57, 65]. In this dissertation, an incremental training algorithm for SVMs is presented.
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The k-mean clustering algorithm is used to collect the initial training samples. In active

querying, a weight is assigned to each sample according to its distance to the current

separating hyperplane and a confidence factor indicating the degree that the current

separating hyperplane is the optimal one. The confidence factor is obtained from the

estimated generalization error of the current SVM which is calculated from the upper

bound error of the SVM.

The rest of this dissertation is organized as following.

Chapter 2. Image Segmentation.

Chapter 3. Feature Reduction.

Chapter 4. Face Detection Using Two-layer Support Vector Machines.

Chapter 5. An Improved Incremental Training Algorithm for Support Vector
Machines Using Active Query.

Chapter 6. Summary and Future Research.



CHAPTER 2

IMAGE SEGMENTATION

Image segmentation is one of the basic and challenging lower-level image processing

tasks. An automatic seeded region growing (SRG) algorithm for color image

segmentation and an adaptive morphological edge-linking algorithm are presented in this

chapter.

2.1 Automatic Seeded Region Growing for Color Image Segmentation

In this section, an automatic seeded region growing algorithm for color image

segmentation is presented. First, the input RGB color image is transformed into YCbCr

color space. Second, the initial seeds are automatically selected. Third, the color image is

segmented into regions where each region corresponds to a seed. Finally, region merging

is used to merge similar or small regions. Experimental results show that this algorithm

can produce better results as compared to some existing algorithms [15, 18].

2.1.1 Introduction

Image segmentation is a process of pixel classification. An image is segmented into

subsets by assigning individual pixels to classes. It is an important step towards pattern

detection and recognition. Pal and Pal [47] provided a review on various segmentation

techniques. It should be noted that there is no single standard approach to segmentation.

Many different types of scene parts can serve as the segments on which descriptions are

based, and there are many different ways in which one can attempt to extract these parts

4
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from the image. Selection of an appropriate segmentation technique depends on the type

of images and applications.

There are primarily four types of segmentation techniques: thresholding,

boundary-based, region-based, and hybrid techniques. Thresholding is based on the

assumption that clusters in the histogram correspond to either background or objects of

interest that can be extracted by separating these histogram clusters [10, 11, 46, 54, 72].

Boundary-based methods assume that the pixel properties, such as intensity, color, and

texture, should change abruptly between different regions [3, 36, 42, 59]. Region-based

methods assume that neighboring pixels within the same region should have similar

values (e.g., intensity, color, texture) [25, 27, 66]. Hybrid methods tend to combine

boundary detection and region growing together to achieve better segmentation [1, 13,

15, 18, 21, 37, 41, 50, 55, 69].

Seeded Region Growing (SRG) is one of hybrid methods proposed by Adams and

Bischof [1]. It starts with assigned seeds, and grows regions by merging a pixel into its

nearest neighboring seed region. Mehnert and Jackway [37] pointed out that SRG has two

inherent pixel order dependencies that cause different resulting segments. The first order

dependency occurs whenever several pixels have the same difference measure to their

neighboring regions. The second order dependency occurs when one pixel has the same

difference measure to several regions. They used parallel processing and re-examination

to eliminate the order dependencies. Fan et al. [18] presented an automatic color image

segmentation algorithm by integrating color-edge extraction and seeded region growing

on the YUV color space. Edges in Y, U, and V are detected by an isotropic edge detector,

and the three components are combined to obtain edges. The centroids between adjacent
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edge regions are taken as the initial seeds. The disadvantage is that their seeds are over-

generated.

In this section, the SRG is applied to color images with automatic seed selection.

Strategies to avoid the two order dependencies are also developed. In Section 2.1.2, an

overview of the proposed algorithm is given. In Section 2.1.3, the method for automatic

seed selection is presented. Section 2.1.4 describes the proposed color SRG algorithm.

Section 2.1.5 provides experimental results and discussions.

2.1.2 Overview of the Algorithm

Figure 2.1.1 presents the overview of the proposed algorithm. Firstly, the color image is

transformed from RGB to YCbC r color space. Secondly, automatic seed selection is

applied to obtain initial seeds. Thirdly, the seeded region growing algorithm is used to

segment the image into regions, where each region corresponds to one seed. Fourthly, the

region-merging algorithm is applied to merge similar regions, and small regions are

merged into their nearest neighboring regions.

A color image is specified in RGB components. The RGB model is suitable for

color display, but is not good for color analysis because of its high correlation among R,

G, and B components. Besides, the distance in RGB color space does not represent the

perceptual difference in a uniform scale. In image processing and analysis, these

components are usually transformed into other color spaces. Cheng et al. [11] compared

several color spaces including RGB, YIQ, YUV, normalized RGB, HIS, CIE L *a*b * , and

CIE L *u*v* for color image segmentation purposes. Every color space has its advantages

and disadvantages. Garcia and Tziritas [19] noticed that the intensity value Y has little

influence on the distribution in the CbC r plane and the sample skin colors form a small
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and very compact cluster in the CbC r plane. The YCbC r color space has been extensively

used for skin color segmentation [19, 26]. In this dissertation, the YCbC r color space is

used for segmentation due to three reasons: (1) YCbC r color space is widely used in video

compression standards (e.g., MPEG and JPEG) [26]; (2) the color difference of human

perception can be directly expressed by Euclidean distance in the color space; (3) the

intensity and chromatic components can be easily and independently controlled.

The YCbC r color space is a scaled and offset version of YUV color space, where

Y, U and V represent luminance, color and saturation, respectively. The Cb (Cr,

respectively) is the difference between the blue (red, respectively) component and a

reference value [7]. The transformation from RGB to YCbC r can be performed using

Equation (2.1.1), where R, G, and B are in the range of [0, 1], Y is [16, 235], and Cb and

Cr are in [16, 240].

V	 65.481

Cb = —39.797

Cr 	112

128.553	 24.966

— 74.203	 112

—93.786	 —18.214

x

R

G

B

+

16 -

128

_128_

(2.1.1)

2.1.3 The Method for Automatic Seed Selection

For automatic seed selection, the following three criteria must be satisfied. First, the seed

pixel must have high similarity to its neighbors. Second, for an expected region, at least

one seed must be generated in order to produce this region. Third, seeds for different

regions must be disconnected.

The similarity of a pixel to its neighbors is calculated as follows. Considering a

3 x 3 neighborhood, the standard deviations of Y, Cb and Cr components are calculated by

using
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(2.1.2)

9where x can be Y, Cb,or Cr , and the mean value .7 = 1-Ex,. The total standard deviation

is

The standard deviation is normalized to [0, 1] by

where σmax  is the maximum of the standard deviation in the image. The similarity of a

pixel to its neighbors is defined as

From the similarity, the first condition for the seed pixel candidate is defined as follows:

Condition 1: A seed pixel candidate must have a similarity higher than a threshold value.

Secondly, the relative Euclidean distances (in terms of YCbC, ) of a pixel to its 8

neighbors are calculated as

Experiments show that the performance of using relative Euclidean distance is better than

using normal Euclidean distance. For each pixel, the maximum distance to its neighbors

is calculated as
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From the maximum distance, the second condition for the seed pixel candidate is defined

as

Condition 2: A seed pixel candidate must have the maximum relative Euclidean distance

to its eight neighbors less than a threshold value.

A pixel is classified as a seed pixel if it satisfies the above two conditions. In

order to choose the threshold value automatically for condition 1, Otsu's method [46] is

used. The threshold is determined by choosing the value that maximizes the

discrimination criterion σB2 / o where o-82 is the between-class variance and 6.2, is the

within-class variance. For condition 2, the value 0.05 is selected as the threshold based on

the experiments.

Each connected component of seed pixels is taken as one seed. Therefore, the

seeds generated can be one pixel or one region with many pixels. Condition 1 checks

whether the seed pixel has high similarity to its neighbors. Condition 2 makes sure that

the seed pixel is not on the boundary of two regions. It is possible that for one desired

region, several seeds are detected to split it into several regions. The over-segmented

regions can be merged later in the region-merging step. Figure 2.1.2(a) shows a color

image, and (b) shows the detected seeds marked in red color. Note that the connected

seed pixels are considered as one seed.

Regarding the threshold value for the relative Euclidean distance, if a lower value

is used, a smaller number of pixels will be classified as seeds and some objects may be

missed; conversely, a higher number of pixels will be classified as seeds and different

regions may be connected. For example, in Figure 2.1.3, if the threshold is set as 0.04,

one flower is missed in Figure 2.1.3(c) because there is no seed pixel on the flower as
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shown in Figure 2.1.3(b). On the other hand, if the threshold is set as 0.08, then Figure

213(0 shows that some part of the boat is merged with the water since these seed pixels

are connected as shown in Figure 2.1.3(e). Note that due to variant background colors

appearing in the figures, different colors are used to display the object boundaries clearly.

2.1.4 The Proposed Segmentation Algorithm

Let Al , A2 , , A, denote initial seeds and S, denote the region corresponding to A,. The

mean of all seed pixels in S, in terms of Y, CI, and Cr components is denoted as

(Y, Cb , Cr ) . The proposed segmentation algorithm is described as follows:

(1) Perform automatic seed selection.

(2) Assign a label to each seed region.

(3) Record neighbors of all regions in a sorted list T in a decreasing order of distances.

(4) When T is not empty, remove the first point p and check its 4-neighbors. If all labeled

neighbors ofp have a same label, set p to this label. If the labeled neighbors ofp have

different labels, calculate the distances between p and all neighboring regions and

classify p to the nearest region. Then update the mean of this region, and add 4-

neighbors of p, which are neither classified yet nor in T, to T in a decreasing order of

distances.

(5) Perform region merging.

Note that in step 3, T denotes the set of pixels that are unclassified and are

neighbors of at least one region S,. The relative Euclidean distance d, between the pixel i

and its adjacent region is calculate by
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(2.1.8)

where (Y, Cb ,C r) are the mean values of Y, Cb, and Cr components in that region. In step

4, the pixel p with the minimum distance value is extracted. If several pixels have the

same minimum value, the pixel corresponding to the neighboring region having the

largest size is chosen. If p has the same distance to several neighboring regions, p is

assigned to the largest region. Figure 2.1.2(c) shows the result of the proposed algorithm,

where boundaries of regions are marked in white color.

Step 4 is explained graphically in Figure 2.1.4. Figure 2.1.4(a) is a small window

of Figure 2.1.2(b), where the red pixels are the seed pixels and the green pixels are the 4-

neighbor pixels of the seed regions. Therefore, the green pixels are actually the pixels

stored in the sorted list T. In Figure 2.1.4(b), the white pixel is the one among all the

green pixels that has the minimum distance to its adjacent regions. Therefore, the white

pixel will be connected to its neighboring red seed region. In Figure 2.1.4(c), the black

pixels are the three 4-neigbor pixels of the white pixel that are added to T. Note that these

three black pixels are neither classified nor previously stored in T.

It is possible that several seeds are generated to split a region into several small

ones. To overcome the over-segmentation problem, region merging is applied. Two

criteria are used: one is the similarity and the other is the size. If the mean color

difference between two neighboring regions is less than a threshold value, the two

regions are merged. Unfortunately, the result of region merging depends on the order in

which regions are examined. In the proposed method, the two regions having the smallest

distance value among others are first examined. In each iteration, if this value is less than



12

a threshold, the two regions are merged and the mean of the new region and the distances

between the new region and its neighboring regions are recomputed. The process is

repeated until no region has the distance less than the threshold. The color difference

between two adjacent regions R, and Rj is defined as the relative Euclidean distance

Based on experiments, the value 0.1 is selected as the threshold for color similarity

measurement.

Next, the sizes of regions are checked. If the number of pixels in a region is

smaller than a threshold, the region is merged into its neighboring region with the

smallest color difference. This procedure is repeated until no region has size less than the

threshold. Based on experiments, 1/150 of the total number of pixels in an image is

selected as the threshold. Figure 2.1.2(d) shows the result of merging all similar

neighboring regions, and Figure 2.1.2(e) shows the result of merging small regions.

Since variations of image complexity can be large, some cases have a high

number of regions and some have small sized regions. In order to achieve better

segmentation results, further merging is performed by controlling the size of regions and

the color difference between regions. In the region merging, the relative Euclidean

difference threshold 0.1 is set for initial merging. If this threshold is too high, some

desired region may be merged with other regions; conversely, there will be too many

regions. The size threshold of region is set as 1/150 of the image size. By using too high a

threshold, some important objects may be merged to other regions, while too low a

threshold may lead to over-segmentation. In the further merging step, the threshold value
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0.2 is set for final merging because all the regions with large difference from their

surroundings and with size larger than 1/150 of the image are desired to be kept. It is

observed that two regions are obviously different if the relative Euclidean distance is over

0.2. Also the size threshold is set as 1/10 of the image. All the regions with difference

higher than 0.1 and size larger than 1/10 of the image are desired to be kept. If this is not

used, then the sky and water will be merged as shown in Figure 2.1.2(f). If the number of

regions in an image is known, this information will help in improving the segmentation

result; however, it is usually unknown. Therefore, in the proposed algorithm the final

result is obtained by controlling the size of regions and the difference between regions.

The relative Euclidean distance is used as the merging condition because it

outperforms the fixed Euclidean distance. Figure 2.1.2(d) shows that using 0.1 as the

threshold value for initial merging can merge the most similar regions, while the water

and sky can be separated. If 0.15 is used, then the sky and water are merged. Figure

2.1.5(b) shows the segmented result of using 0.1 as the distance threshold and 1/150 of

the image size as the size threshold. Figure 2.1.5(c) shows the result of using the

threshold 0.2 for further merging, which produces a reasonably good result. Figure

2.1.5(d) shows the result of using the threshold 0.15 for further merging. It can be seen

that the two small regions on the right should be merged. Figure 2.1.5(e) shows the result

of using the threshold 0.25 for further merging. It can be seen that the two different

regions at the bottom are merged.

2.1.5 Experimental Results and Discussion

The proposed segmentation algorithm has been successfully performed on 150 color

nature scene images which were randomly collected from the Internet. Figure 2.1.6
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illustrates some of the results. Reasonably good results are obtained. Comparisons are

also performed with some existing segmentation algorithms. Figure 2.1.7 shows the

comparison with the JSEG algorithm developed by Deng et al. [15]. The first column

shows the original color images. The second column shows the segmented results from

the proposed SRG algorithm. The third column shows the results of the JSEG algorithm.

Figures 2.1.7(a3), (b3) and (c 3) are directly downloaded from their website. Figures

2.1.7(d3) and (e3) are generated from the JSEG algorithm obtained from their website.

Compared to Figure 2.1.7(a 2), Figure 2.1.4(a3)' s nose of the baboon is separated into

several regions and its background is over-segmented.

Figure 2.1.8 shows the comparison with the segmentation algorithm by Fan et al.

[18]. Figures 2.1.8(a3), (b3), (c3) and (d3) are their respectively segmented results on

Figures 2.1.8(a 1 ), (b1), (c 1 ) and (d1), and Figures 2.1.8(a2), (b2), (c2) and (d2) are the

corresponding results by the proposed method. By observing Figure 2.1.8(a3 ), their result

is over-segmented and the hair is inappropriately merged to the background. By

comparing Figures 2.1.8(b2), (c2), and (d2) with Figures 2.1.8(b3), (c3), and (d3),

respectively, it is noticed their results are over-segmented.

The segmented results from the proposed method are less noisy as compared to

Ref. [15, 18]. This is due to the fact that the proposed merging algorithm uses the

dynamic control over the size of regions and the difference between regions. However,

the merging step in Ref. [15, 18] uses a fixed threshold value. In Figure 2.1.7(d3), two

objects are missed in Ref. [18]. The reason is that either there is no seed generated in

these objects or the merging threshold is too high, so that they are merged to the

surroundings. Compared to Figure 2.1.7(e 3), Figure 2.1.7(e 2) produces more detailed and
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accurate boundaries. The reason is that in Ref. [15], color quantization is applied to form

the class-map, so that some details of color information may be lost; however, the

original color value is used by the proposed method.

There are mainly two disadvantages in the proposed algorithm. First, although

using the fixed threshold values can produce reasonably good results as shown in Figures

2.1.6-2.1.9, it may not generate the best results for all the images. From Figures

2.1.7(b2), (c2), (d2), and Figure 2.1.8(a2), some small objects are missed. Some

applications require more detailed information. Users can specify these threshold values

according to their applications. For example, if the threshold values is adjusted for the

size of objects and color differences, more detailed information can be segmented as

shown in Figure 2.1.9. Second, when an image is highly color textured (i.e., there are

numerous tiny objects with mixed colors), the proposed algorithm may fail to obtain

satisfactory results because the mean value could not represent the property of the region

well. Figure 2.1.10 shows an example where proposed algorithm performs worse than the

method in Ref [15]. Figure 2.1.10(b) shows that the tree is merged to the flower.

The time complexity for the proposed segmentation algorithm consists of three

components: seed selection, region growing, and region merging. In automatic seed

selection, calculating the standard deviation and maximum distance for each pixel

takes 0(n) , where n is the total number of pixels in an image. In region growing, each

unclassified pixel is inserted into the sorted list exactly once. Checking neighboring

regions and calculating distances can be done in constant time. Putting a pixel into the

sorted list requires log n . Therefore, it takes 0(n log n) for region growing.
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In region merging, calculating the differences between regions takes 0(n 2 ) ,

where m is the number of regions. To calculate sizes for all the regions, it takes 0(n) .

Usually, m is much less than n. Merging two regions requires labeling the pixels in the

two regions, calculating the mean for the new merged region, and calculating the

distances between this and the other regions. Therefore, it takes 0(n + m) 0(n) to

merge two regions. The complexity for region merging is 0(m 2 + n+ mn) O(mn).

Therefore, the total time complexity for the proposed algorithm is

0(n + n log n + mn) 0((m + log n)n) .



Transform the color image from
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seeds for seeded region growing.

NI/
Apply the seeded region growing
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image.

Apply the region-merging
algorithm to overcome over-
segmentation.
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Figure 2.1.1 Outline of the proposed automatic SRG algorithm.
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Figure 2.1.2 An example of SRG, (a) Original color image, (b) the detected seeds are
shown in red color, (c) seeded region growing result, (d) the result of merging adjacent
regions with relative Euclidean distance less than 0.1, (e) the result of merging small
regions with size less than 1/150 of the image, and (f) final segmented result.
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Figure 2.1.3 Examples of setting threshold for relative Euclidean distance. (a) A color
image, (b) the red pixels are seed pixels generated using threshold 0.04, (c) the
segmented result, (d) a color image with boat, water and sky, (e) the red pixels are the
seed pixels generated using threshold 0.08, and (f) the segmented result.

Figure 2.1.4 Step 4 of region growing. (a) A small window of Figure 2b, where the red
pixels are the seeds and the green pixels are the pixels in the sorted list T, (b) the white
pixel is the pixel with the minimum distance to the seed regions, and (c) the white pixel
is connected to the neighboring red region and the black pixels are added to T.
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Figure 2.1.5 Example of choosing the relative Euclidean distance threshold for further
region merging. (a) Original image, (b) the result after merging using 0.1 as the distance
threshold value and 1/150 of the image size as the size threshold, (c) further merging
using the relative Euclidean distance threshold 0.2, (d) further merging using threshold
0.15, and (e) further merging using threshold 0.25.



Figure 2.1.6 Some results of our color image segmentation algorithm.
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Figure 2.1.7 The first column shows the original images, the second column shows the
segments of the proposed SRG method, and the third column shows the results of JSEG
algorithm.



Figure 2.1.8 The first column shows the original images, the second column shows the
segmented results of the proposed SRG method, and the third column shows the results
of Fan's algorithm.



Figure 2.1.9 The segmented results with more details by adjusting the size of the
minimum objects and the threshold value for the relative Euclidean distance.

Figure 2.1.10 An example shows that the proposed algorithm failed. (a) An image with
highly colored texture, (b) our segmented result showing the tree is merged to the flower
region, and (c) the results of Ref. [151.
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2.2 An Adaptive Morphological Edge-Linking Algorithm

In this section, an adaptive morphological edge-linking algorithm is presented to fill gaps

between edge segments. Broken edges are extended along their slope directions by using

the adaptive dilation operation with suitably sized elliptical structuring elements. The size

and orientation of the structuring element are adjusted according to local properties. Post-

processes of thinning and pruning are applied. The edge-linking operation is performed in

an iterative manner, and the broken edges can be linked up gradually and smoothly while

the details of the object edge are preserved.

2.2.1 Introduction

Edge detection is part of processes in image segmentation. An edge is the boundary

between an object and the background or between overlapping objects [49]. In an

intensity image, an edge is the boundary between two adjacent, extensive regions where

gray levels differ abruptly [3]. If continuous edges can be identified accurately, all the

objects in the image can be recognized, and many properties such as area, perimeter and

shape can be obtained.

There are tremendous a very large number of edge detection algorithms. Many

edge detection methods apply neighborhood operations on each pixel to determine if it is

an edge point. Some of these operations are very simple, like the gradient or Laplacian,

whereas others are more complex and allow the elimination of most local noise [36].

Ideally, these operations should yield pixels which form continuous edges. In practice,

this set of pixels seldom characterizes an edge completely because of noise, breaks in the

edge due to non-uniform illumination, and other effects that induce spurious intensity
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discontinuities [20]. Thus, edge detection algorithms typically are followed by edge-

linking procedures to assemble edge pixels into meaningful edges. In the approaches of

edge or line linking, two assumptions are usually made [3]:

(1) True edge and line points in a scene follow some continuity pattern, whereas the

noisy pixels do not follow any such continuity.

(2) The strengths of the true edge or line pixels are greater than those of the noisy

pixels. The "strength" of pixels is defined differently for different applications.

Nevatia [43] presented an algorithm to link edge points by fitting straight lines.

Linking direction is based on the direction of edge elements within a defined angular

interval. However, portions of small curved edge segments may be neglected. Nalwa and

Pauchon [42] presented an approach based upon local information. The defined edgels

(i.e. short, linear edge elements, each characterized by a direction and a position) as well

as curved segments are linked based solely on proximity and relative orientation. No

global factor has been taken into consideration, and there is little concern about noise

reduction. Liu et al. [34] proposed an edge-linking algorithm to fill gaps between edge

segments. The filling operation is performed in an iterative manner rather than a single

step. They first connect so-called tip ends (i.e., the set of edge pixels which are very

likely to be the knots of some contour containing the one being considered) of two

segments with a line segment and then try to modify the resulting segment by straight-

line fitting. In each iteration, they define a dynamic threshold and the noises are removed

gradually. For this method, it is difficult to get accurate tip ends. Another method [53]

locates all of the end points of broken edges and uses a relaxation method to link them up

such that line direction is maintained. Lines are not allowed to cross, and closer points are
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matched first. However, this suffers problems if unmatched end points or noises are

present.

Mathematical morphology [22, 58, 60] has been extensively applied to image

processing and analysis. Many morphological algorithms have been proposed in the areas

of image enhancement, feature extraction, shape analysis, etc. A recursive soft

morphological filter by Shih and Puttagunta [62] has been used to reduce noise while

details are preserved. A noisy edge filtering algorithm using the so-called space-varying

opening can be found in [1999]. A thinning algorithm using mathematical morphology is

developed by Jang and Chin [28]. The algorithm is an iterative process based on the

hit/miss operation. A simple approach to edge linking is a morphological dilation of

endpoints by a circle followed by OR (a logic OR operation) of the boundary image with

the resulting dilated circles, and skeletonization is finally applied [53]. This method,

however, has the problem that some of the points may be too far apart for the circles to

touch, while the circles maybe obscure details by touching several existing lines. An

adaptive morphology for edge linking by using circular arcs to measure curvature can be

found in [63].

Conventional morphological methods perform operations by using a fixed

structuring element on all the image pixels although the size and shape of the structuring

element can be arbitrarily designed. This presents problems since the local properties of

input image pixels may not be identical everywhere and a fixed structuring element may

not meet all purposes. In this section, an adaptive morphological edge-linking algorithm

is presented. An adaptive dilation operation is applied at each endpoint with an adaptive

elliptical structuring element. The size and orientation of the structuring element are
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adjusted according to local properties. Post-processes of thinning and pruning are finally

applied.

2.2.2 The Adaptive Mathematical Morphology

A. Traditional Mathematical Morphology

Mathematical morphology provides an effective tool for image processing and analysis. It

has been used for extracting image components that are useful in the representation and

description of shape, such as boundaries, skeletons, and the convex hull [20]. The

language of mathematical morphology is set theory. Sets in mathematical morphology

represent objects in an image. The morphological operators deal with two images. The

image being processed is referred to as the active image, and the other image being a

kernel is referred to as the structuring element. Two basic morphological operations,

dilation and erosion, are defined below:

Definition 1: Let A and B be subsets of N-dimensional Euclidean space EN . The

dilation of A by B is defined by

Definition 2: Let A and B be subsets of EN . The erosion of A by B is defined by

Another important operation, translation, is defined below:

Definition 3: Let A be a subset of EN and x E EN . The translation of A by x is defined

by
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In binary image processing, the dilation of pattern A by structuring element B is

to grow a translated version of B centered at each point of A and union all of the

translated versions. The erosion of pattern A by B is to check the points of A where the

translated version of B is completely contained in A. Dilation and erosion are

fundamental to morphological processing. Many other operations are defined based on

the combination of these two operations, including Opening, Closing, Hit-or-Miss

Transform, Thinning, and Pruning [22, 58].

B. Adaptive Mathematical Morphology

Traditional morphological operators process an image by using a structuring element of

fixed shape and size over the entire collection of image pixels. In adaptive morphology

by incorporating rotation and scaling factors, the structuring elements are adjusted

according to the local properties. In order to introduce the adaptive morphology, several

terminologies are described [63].

Assume that the sets in consideration are always connected and bounded. Let the

boundary aB of a set B be the set of points, all of whose neighborhoods intersect both B

and its complement BC . If a set B is connected and has no holes, it is called simply

connected. If it is connected but has holes, it is called multiply connected. In this paper,

the concept of aB is defined as the continuous boundary of a structuring element in

Euclidean plane and only simply connected structuring elements are considered.

Therefore, the transformations performed on the structuring element B are replaced by

the transformations on its boundary aB in the Euclidean plane and followed by a positive

filling operator. The positive filling [am+ of a set B is defined as the set of points that

are inside 8B.
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The adaptive morphological dilation and erosion can be defined by slightly

modifying definitions 1 and 2 of the traditional operations.

Definition 4: Let A and B be subsets of EN . The adaptive morphological dilation of

A by a structuring element B is defined by

where S and R are the scaling and rotation matrices respectively.

Definition 5: Let A and B be subsets of E N . The adaptive morphological erosion of A

by a structuring element B is defined by

The broken edge segments can be linked gradually by using adaptive morphological

dilation as shown in Figure 2.2.1. Figure 2.2.1 (a) is the input signal with gaps. Figure

2.2.1 (b) shows an adaptive dilation at the endpoints. The reason for choosing the

elliptical structuring element is that by using appropriate major and minor axes, all kinds

of curves can be linked smoothly. Figure 2.2.1(c) shows one stage of adaptive dilation of

the program.

2.2.3 The Adaptive Mathematical Morphology Edge-linking Algorithm

Removing noisy edge segments, checking endpoints, adaptive dilation, thinning, and

pruning constitute a complete edge-linking algorithm. If large gaps occurr, this algorithm

can be applied several times until no more endpoints exist or a predefined number of

iterations has been reached.

Step 1: Removing noisy edge segments
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If the length of one edge segment is shorter than a threshold value, then this

segment is removed. The value 3 is used in the program.

Step 2: Detecting all the endpoints

Endpoint is defined as any pixel having only one 8-neighborhood. All the edge

points are checked to extract the entire endpoint set.

Step 3: Applying adaptive dilation operation at each endpoint

From each endpoint, a range of pixels along the edge is chosen. From the

properties of this set of pixels, the rotation angle and size of the elliptical structuring

element are obtained. In the proposed program, increasing sizedranges of pixels are used

for each iteration. This is indicated by the adjustable parameter s in this dissertation,

where s denotes the size of the range of pixels from the endpoint. Two pixels from this

range of pixels are taken: the left-most side pi (xi, yi) and the right-most side p2 (x2, y2).

The equation slope = (y2 -yd (x2-x1) is used to compute the slope. The rotation angle of

the elliptical structuring element can be obtained by using the equation B = tan - ' (slope) .

The size of the elliptical structuring element is adjusted according to the number of the

pixels in the set, the rotation angle 0, and the distance between pi and p2. In the propsed

program, the elliptical structuring elements are used with fixed b = 3 and a changing from

5 to 7. These values are based on experimental results. For a big gap, by using a = 7 the

gap can be linked gradually in several iterations. For a small gap, using a = 5 is better

than using 7. If a = 3 or 4 is used for a small gap, the structuring element will be almost a

circle, and the thinning algorithm does not work well on the circular shape.

As known, the ellipse can be represented as
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Where a and b denote, respectively, the semi-major and semi-minor axes. If the center of

the ellipse is shifted from the origin to (xo, ye), the equation becomes

If the center is at (xo, yo) and the rotation angle is 8 (-t/2<= 0<=71/2), the equation

becomes:

Because the image is discrete, the rounded off values are used in defining the elliptical

structuring element. At each endpoint, an adaptive dilation is performed by using the

elliptical structuring element. Therefore, the broken edge segment will be extended along

the slope direction by the shape of the ellipse.

Step 4: Thinning

After applying the adaptive dilation at each endpoint, the edge segments are

extended in the direction of the local slope. Because the elliptical structuring element is

used, the edge segments grow a little fat. Morphological thinning is used to obtain on

edge with one pixel of width.

Step 5: Branch pruning

The adaptively dilated edge segments after thinning may have noisy, short

branches. These short branches must be pruned away. The resulting skeletons after

thinning are one pixel in width. A root point is defined as a pixel having at least three

pixels in an 8-neighborhood. From each endpoint, the program traces back along the

existing edge. If the length of this branch is shorter than a threshold value after it reaches

a root point, the branch is pruned.

Step 6: Decision
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The program terminates when no endpoints exists or a predefined number of

iterations have reached. Eight iterations is used as a limit in the program.

2.2.4 Experimental Results

Figure 2.2.2(a) shows an original elliptical edge and Figure 2.2.2(b) shows its randomly

discontinuous edge. The edge-linking algorithm is demonstrated in Figure 2.2.2(b).

1. Using circular structuring elements

Figures 2.2.3 show the results of using circular structuring elements with r=3, r=5

and r=10, respectively, in 5 iterations. Compared with the original ellipse in Figure

2.2.2(a), it can be seen that if the gap is larger than the radius of the structuring element,

it is difficult to link the gap smoothly. However, if a very big circular structuring element

is used, the edge will look hollow and protuberant. Also, using a big circle can obscure

the details of the edge.

2. Using a fixed sized elliptical structuring element and a fixed range of pixels to
measure the slope

In this experiment, elliptical structuring elements are used with fixed semi-minor

axis b=3 and semi-major axis a=5, 7, 9, respectively. A fixed range of pixels is used to

measure the local slope for each endpoint. That is, the same range of pixels counting

from the endpoint is used in each iteration. The parameter s denotes the range of pixels

from an endpoint.

Figure 2.2.4 shows the result of using an elliptical structuring element a=5, b=3,

s=7. The result is not good because a=5 is too small for some big gaps. Figure 2.2.5

shows the result of using a=7, b=3, and s=9. Figure 2.2.6 shows the result of using a=7,

b=3, and s=11. There is not much difference between Figures 2.2.5 and 2.2.6. Compared

with the original ellipse in Figure 2.2.2(a), Figures 2.2.5 and 2.2.6 have a few
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shortcomings, but they are much better than Figure 2.2.4. Figure 2.2.7 shows the result of

using a=9, b=3, and s=11. Therefore, for this broken edge by using a=7 or a=9, a

reasonably good result can be obtained except or fvery few shifted edge pixels.

3. Using a fixed sized elliptical structuring element for every endpoint but using
adjustable sized ranges of pixels to measure local slope in each iteration

Figure 2.2.8 shows the result of using a=5, b=3, and adjustable s. Figure 2.2.9

shows the result of using a=7, b=3, and adjustable s. Compared with Figures 2.2.6 and

2.2.7, Figures 2.2.8 and 2.2.9 are better in terms of elliptical smoothness. This is true

because after each iteration, the range of pixels used to measure local slope is increased,

and more information from the original edge is taken into account.

4. Using adjustable sized elliptical structuring elements for every endpoint and
using adjustable sized ranges of pixels to measure local slope in each iteration (the
adaptive morphological edge-linking algorithm)

In this experiment, adjustable sized elliptical structuring elements are used with a

changing from 5 to 7, b=3, and adjustable s.

Figure 2.2.10 shows the result of using the adaptive morphological edge-linking

algorithm. Compared with Figures 2.2.6 and 2.2.9, Figure 2.2.10 is not obviously better.

The advantage of the adaptive method is that it can adjust the parameters a and s

automatically, while the parameters for Figure 2.2.6 and 2.2.9 are predefined, i.e., they

work well for this case, but may not for other cases. This algorithm is also applied to

many other broken elliptical edges, and for most cases the results are good. Figures

2.2.11 and 2.2.12 show the results of using this algorithm on other two randomly

discontinuous elliptical edges. The shortcomings occur at places where the original

broken edge segments are not smooth.



35

Figure 2.2.13(a) shows the elliptical edge with added uniform noise. Figure

2.2.13(b) shows the edge after removing the noise. Figure 2.2.13(c) shows the result of

using the adaptive morphological edge-linking algorithm. Compared with Figure 2.2.10,

Figure 2.2.13(b) has several shortcomings. This is because after removing the added

noise, the edge is changed at some places.

Figure 2.2.14(a) shows the edge of an industrial part and Figure 2.2.14(b) shows

its randomly discontinuous edge. Figure 2.2.14(c) shows the result of using the adaptive

morphological edge-linking algorithm. Figure 2.2.15(a) shows the edge with added

uniform noise and Figure 2.2.15(b) shows the edge after removing the noise. Figure

2.2.15(c) shows the result of using the adaptive morphological edge-linking algorithm.

Figure 2.2.16(a) shows a face image with the originally detected broken edge.

Figure 2.2.16(b) shows the face image with the edge linked by the adaptive

morphological edge-linking algorithm.
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Figure 2.2.1 The broken edge segments can be linked gradually by using the adaptive
morphological dilation. (a) Input signal with gaps, (b) Adaptive dilation using elliptical
structuring elements, and (c) One stage of adaptive dilation of our program.
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Figure 2.2.2 (a) Original elliptical edge, and (b) Its randomly discontinuous edge.
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Figure 2.2.3 Using circular structuring elements in 5 iterations with (a) r=3, (b) r=5, and
(c) r=10.



39

Figure 2.2.4 An elliptical structuring element	 Figure 2.2.5 An elliptical structuring
with a=5, b=3, and s=7. 	 element with a=7, b=3, and s=9.

Figure 2.2.6 An elliptical structuring	 Figure 2.2.7 An elliptical structuring
element with a=7, b=3, and s=11. 	 element with a=9, b=3, and s=11.
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Figure 2.2.8 Using an elliptical	 Figure 2.2.9 Using an elliptical
structuring element with a=5, 	 structuring element with a=7, b=3,
b=3, and adjustable s.	 and adjustable s.

Figure 2.2.10 Using the adaptive morphological edge-linking algorithm.
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Figure 2.2.11 (a) Another randomly discontinuous elliptical edge, and (b) Using the
adaptive morphological edge-linking algorithm.

Figure 2.2.12 (a) Another randomly discontinuous elliptical edge, and (b) Using the
adaptive morphological edge-linking algorithm.
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Figure 2.2.13 An example with noise. (a) The elliptical edge with added uniform noise,
(b) The edge after removing noise, and (c) Using the adaptive morphological edge-
linking algorithm.
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Figure 2.2.14 An example of an industrial part. (a) The edge of an industrial part, (b) Its
randomly discontinuous edge, and (c) Using the adaptive morphological edge-linking
algorithm.
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Figure 2.2.15 An example of part with added noise. (a) Part edge with added uniform
noise, (b) Part edge after removing noise, and (c) Using the adaptive morphological
edge-linking algorithm.



Figure 2.2.16 An example of face boundary linking. (a) Face image with the originally
detected broken edge, and (b) Face image with the edge linked by the adaptive
morphological edge-linking algorithm.



CHAPTER 3

FEATURE REDUCTION

In this chapter, an improved feature reduction method in the combinational input and

feature space for Support Vector Machines (SVMs) is presented. In the input space, a

subset of input features is selected by ranking their contributions to the decision function.

In the feature space, features are ranked according to the weighted support vector in each

dimension. By combining both input and feature space, a fast non-linear SVM is

developed without a significant loss in performance. The proposed method has been

tested on the detection of a face, person, and car. Subsets of features are chosen from

pixel values for face detection and from Haar wavelet features for person and car

detection. The experimental results show that the proposed feature reduction method

works successfully. In fact, this method performs better than the methods of using all the

features and the Fisher's features in the detection of a person and car. Also a speed

advantage is gained.

3.1 Introduction

Feature extraction and reduction are two primary issues in feature selection that are

essential in pattern classification. Feature extraction is used to achieve high classification

rates by extracting features to represent objects from raw data. Feature reduction is used

to select a subset of features with preservation or improvement of classification rates. In
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general, it tends to speed up the classification process by keeping the most important

class-relevant features.

Support Vector Machines (SVMs) are formulated from a mathematical point of

view. While most classifiers (e.g. Bayesian, neural networks, and Radial Basis Function

(RBF)) are trained to minimize the empirical risk, SVMs are implemented to minimize

the structural risk. Osuna et al. [45] applied SVMs to face detection. Heisele et al. [23]

trained a 2n d-degree polynomial SVM using 10,038 faces and 36,220 non-faces, and

achieved a higher detection rate than in [45]. However, they need to spend several

minutes to search an image for faces at different scales. Heisele et al. [24] presented the

two following methods to speed up face detection using SVMs: hierarchical classification

and feature reduction.

Principal Component Analysis (PCA) features are used to reduce the

dimensionality in input space. Weston et al. [71] developed a feature reduction method

by minimizing the bounds on the leave-one-out error. Evgenious et al. [17] introduced a

method for feature selection based on the observation that the most important features are

the ones that separate the hyperplane the most.

In this chapter, the method of feature reduction in the input and feature spaces to

achieve a fast non-linear SVM without a significant loss in performance is presented. The

rest of this chapter is organized as follows. In Section 3.2, a brief introduction to SVMs is

given. Sections 3.3 and 3.4 describe the feature reduction methods in input and feature

space, respectively, for face detection. In Section 3.5, a fast non-linear SVM is developed

by a combination of input and feature space for face detection. In Section 3.6, the
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proposed method is applied for person and car detection. Finally, discussions are

provided in Section 3.7.

3.2	 Support Vector Machines (SVMs)

In this section, the SVMs [14, 67] that are designed for two-class classification by using a

hyperplane that maximizes the margin or the distance between the hyperplane and the

nearest data point in each class is briefly introduced. The hyperplane is viewed as an

optimal separating hyperplane (OSH). These nearest points of the training set are called

support vectors.

Consider	 a	 set	 of	 1 	 labeled	 training	 patterns

(x, , y1 ) , (x 2 , y2 ), ..., (xi , y, ),	 (x, , y1 ), where xi denotes the i-th training sample

and y, E {1 ,-1} denotes the class label. If the data are not linearly separable in the input

space, a non-linear transformation function 1• is used to project xi from the input space

to a higher dimensional feature space. An OSH is constructed in the feature space by

maximizing the margin between the closest points Φ(xi ) of two classes. The inner-

product between two projections is defined by a kernel function

K(x, y) = (13(x) •1:1(y). The commonly used kernels include polynomial, Gaussian RBF,

and Sigmoid kernels.

The decision function of the SVM is defined as

where w is the support vector, a, is the Lagrange multiplifier, and b is a constant. The

optimal hyperplane can be obtained by maximizing
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(3.2)

constraint violation during the training process.

3.3	 Feature Reduction in Input Space

3.3.1 Projection Algorithm

Principal Component Analysis (PCA) is widely used in image representation for

dimensionality reduction. To obtain m principal components, a transformation matrix of

m x N is multiplied by an input pattern of N x 1. The computation is costly. In this

section, a method of feature reduction is proposed in the input space in order to save

computational time.

One way of feature reduction is using Fisher's criterion to choose a subset of

features that possess a large between-class variance and a small within-class variance.

For face detection, the within-class variance is calculated as

where / is the total number of samples, gj ,i is the i-th dimensional gray value of sample j,

and m, is the mean value of the i-th dimension. Fisher's score for between-class

measurement is calculated as
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By selecting the features with the highest Fisher's scores, the most discriminating

features between face and non-face classes can be retained.

To improve Fisher's method, a 2nd-degree polynomial SVM with kernel

K(x, y) = (1 + x y) 2 is proposed. The decision function for a pattern x is defined as

where s is the total number of support vectors, x, is the i-th support vector, and xi,k and xk

are respectively the k-th componenta for the support vector x, and the pattern x. The k-th

of (3.5) (where k = 1, 2, ..., N) is

The largest m contributions to the decision function out of the original N features

are selected. The contribution can be obtained by

where V denotes the input space and P(x) denotes the probability distribution function.

Since P(x) is unknown, F(k) is approximated using a summation over the support vectors

as
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3.3.2 Experimental Results

A face image database from the Center for Biological and Computational Learning at

Massachusetts Institute of Technology (MIT), which contains 2,429 face training

samples, 472 face testing samples, and 23,573 non-face testing samples, is adopted.

15,228 non-face training samples are randomly collected from the images that do not

contain faces. The size of all these samples is 19 x 19. A 2 nd-degree polynomial SVM

with kernel K(x, y) = (1 + x • y) 2 is used in the experiments.

In order to remove background pixels, a mask is applied to extract only the face.

Prior to classification, image normalization and histogram equalization are performed.

The image normalization is used to normalize the gray-level distribution by the Gaussian

function with mean zero and variance one. The histogram equalization is performed using

a transformation function equal to the cumulative distribution to produce an image whose

gray levels have a uniform density. In Figure 3.1, (a) shows a face image, (b) shows the

mask, and (c) and (d) show the images after normalization and histogram equalization,

respectively.

Figure 3.1 Face image preprocessing. (a) Original face image, (b) the mask, (c)
normalized image, and (d) histogram equalized image.

The following two methods are used to calculate PCA values: one is to combine

face and non-face training samples, and the other is to use face training samples only.
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Figure 3.2 shows the Receiver Operating Characteristic (ROC) curves of using different

numbers of principal components. The ROC curve is defined as shifting the SVM

hyperplane by changing the threshold value b. Face classification is performed on the

testing set and the false positive and the detection rates are calculated. The horizontal axis

shows the false positive rate over 23,573 non-face testing samples. The vertical axis

shows the detection rate over 472 face testing samples. In this example, the PCA values

are calculated using only the face training samples. It is observed that using 20 or 40

PCA values obtains worse results than using all the 283 grays. While using 60 or 100

PCA values can achieve almost the same performance as using all the 283 gray values.

Figure 3.3 shows the ROC curves of using the two following methods to obtain

PCA features: one uses both face and non-face training samples, and the other uses only

face training samples. It is observed that using only positive training samples performs

better than using both positive and negative training samples. This is also tested on the

3,600 faces extracted from FERET database and the same result is obtained. The reason

is that only training face samples are used in the calculation of the transformation matrix

and later for testing the input samples are projected on the face space, so that better

classification results can be achieved in separating face and non-face classes.

Figure 3.4 shows the ROC curves for different preprocessing methods: image

normalization, histogram equalization, and without preprocessing. It is observed that

using normalization or equalization can produce better results than without

preprocessing. Therefore, in the following experiments, image normalization is utilized

as the pre-processing method and positive training samples are used to calculate PCA

values.



Figure 3.2 ROC curves for different numbers of PCA values.
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Figure 3.3 ROC curves of using the following two methods to obtain PCA features: one
uses both face and non-face training samples, and the other uses only face training
samples.
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Figure 3.4 ROC curves for different preprocessing methods: image normalization,
histogram equalization, and without preprocessing.

Using the normalized 2,429 face and 15,228 non-face training samples and taking

all the 283 gray values as input to train the 2 nd-degree SVM, 252 and 514 support vectors

for face and non-face classes are obtained, respectively. Using these support vectors in

Equation (3.8), F(k) is obtained, where k = 1, 2, ..., 283. Figure 3.5 shows the ROC

curves for different features in input space. This ranking method of using 100 features is

compared with the methods of using all the 283 gray values, 100 PCA features, Fisher's

scores, and the 100 features selected by Evgenious et al. [17]. It is observed that using

this method performs similarly as using all the 283 features and using 100 PCA values;

however, it is better than using the 100 features by Fisher's scores and by Evgenious et

al. [17].



Figure 3.5 ROC curves for comparisons of using different features in input space.

3.4	 Feature Reduction in Feature Space

3.4.1 Feature Ranking

In feature space, the decision functionf(x) of SVMs is defined as

where w is the support vector. For a 2n d-degree polynomial SVM with the input space of

dimension N and kernel K(x,y) = (1+ x • y) 2 , the feature space is given by
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of dimension P = N(N + 3) / 2 .

Suppose that a 2 nd-degree SVM is trained using face and non-face samples to

obtain s support vectors. The support vector in the feature space can be represented as

One way to select a subset of features is to rank lWk l, for k = 1, 2,..., P. In this

the k-th component of x in the feature space V. Since the distribution function dp(X*k) is

unknown, a ranking function R(k) is defined as

where xi*,k denotes the k-th component of x,. The decision function of q features is

calculated as

where w(q) is the selected q features in w and Φ(x,q) is the corresponding q features in

x.

For a pattern x, the difference of two decision values of using all the features and

using the subset of q features is calculated as

The differences over all the support vectors are summed up as
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3.4.2 Experimental Results

In the experiments, a 2nd-degree polynomial SVM is trained using 60 PCA values in the

input space. The training samples are the same as in Section 3.2, and 289 and 412 support

vectors for face and non-face classes are obtained, respectively. The 1,890 features in the

feature space can be calculated by Equation (3.10). The support vector in the feature

space, w (w1, W2 .• •5 W1890' can be calculated by Equation (3.11). The value of AFq for

different q can be obtained by Equation (3.15). Figure 3.6 shows the variance of AFq by

varying the number of feature subsets using the following two ranking methods: one by

IwkI and the other by the proposed method. It is observed that the proposed method leads

to a faster decrease in the difference.

Given a pattern x, the decision value of using the selected q features can be

calculated by Equation (3.13). When q = 300, 500, and 1000 , the results are illustrated in

Figure 3.7. It is observed that using the selected 500 or 1,000 features can achieve almost

the same performance as using all the 1,890 features. However, using 300 features is

insufficient to achieve a good performance.
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Figure 3.6 Decision value differences relative to the subset of q features in the feature
space selected by two ranking methods.

Figure 3.7 ROC curves for different numbers of features in the feature space.
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3.5 Combinational Input and Feature Space

In this section, the method of feature reduction by combining the input and feature space

is presented. First, m features are chosen from the N input space as described in Section

3.3, the 2n d-degree polynomial SVM is trained. Next, q features are selected from

P = m(m +3)/ 2 features in the feature space to calculate the decision value. The two

following methods are used to compute the decision values: one by Equation (3.5) in

input space and the other by Equation (3.9) in feature space. In Equation (3.5), the

number of multiplications required to calculate the decision function is (N + 1)s . Note

that s is the total number of support vectors. In Equations (3.9) and (3.10), the total

number of multiplications required is (N + 3)N. If (N + 1)s > (N + 3)N, it is more

efficient to implement the 2n d-degree polynomial SVM in the feature space; otherwise, in

the input space. This is evidenced by the experiments because the number of support

vectors is more than 700, which is much larger than N. Note that N = 283, 60, or 100

indicates all the gray-value features, 60 PCA values, or 100 features, respectively.

The SVM is trained using the selected 100 features as described in Section 3.2 to

obtain 244 and 469 support vectors for face and non-face classes, respectively. From

Figure 3.8, it can be seen that using the 3,500 features selected by this method can

produce the similar performance as using all the 5,150 features by Equation (3.10).

Figure 3.9 shows the comparisons of using the combinational method, 60 PCA values,

and all the 283 gray values. It is observed that using the combinational method can obtain

competitive results with using 60 PCA values or all 283 gray values. Apparently, this

method gains has a speed advantage.
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Table 3.1 lists the number of features used in the input and feature space and the

number of multiplications required in calculating the decision values for comparing the

proposed method with the methods of using all the gray values and using PCA features.

Table 3.1 Comparisons of the Number of Features and the Number of Multiplications

Methods
Number of features
in input space

Number of features in
feature space

Number of
multiplications

All gray values 283 40,469 80,938

PCA 60 1,890 20,760

Proposed method 100 3,500 8,650

From Table 3.1, it is observed that by using PCA for feature reduction in the input

and feature space, a speed-up factor of 4.08 can be achieved. However, by using the

proposed method, a speed-up factor of 9.36 can be achieved. Note that once the features

in the feature space are determined, projecting the input space on the whole feature space

is not needed; it can be done on the selected feature subspace. This can further reduce the

computation, i.e., only 7,000 multiplications are required instead of 8,650.



61

Figure 3.8 ROC curves of using different numbers of features in feature space. The 100
features in the input space are selected using the proposed ranking method.
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Figure 3.9 ROC curves of using the proposed feature reduction method, 60 PCA, and all
the 283 gray values.

3.6	 Performance on Person and Car Detection

In this section, the experiments are extended to person and car detection to further justify

the validity of the proposed feature reduction method. Instead of selecting features from

gray values in face detection, Haar wavelet features are used in person and car detection

since the positive samples of person and car contain complex backgrounds, while the face

samples contain only the face part.
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3.6.1 Person Detection

The 924 person images of size 128 x 64 used in [17] are adopted. Some examples are

shown in Figure 3.10; 700 images are used for training and the remaining 224 images are

used for testing. Also 6,000 non-person training samples and 3,000 non-person testing

images are randomly extracted.

Figure 3.10 Some examples of person images.

Haar wavelet representation is used in person detection since it can produce better

results than using pixels or PCA [17]. The three types of Haar wavelets used are shown in

Figure 3.11. The Haar feature is defined as the difference between two sums of pixel

values in white rectangular and gray rectangular areas. Haar features are calculated at

scales of 32 x 32 and 16 x 16, respectively. In total, 1,326 Haar features are obtained for

each person image. The Haar features are normalized between 0 and 1.

Figure 3.11 The three types of Haar wavelet features: (a) vertical, (b) horizontal, and (c)
diagonal.
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Figure 3.12 shows the results of using the three methods: all the 1,326 Haar

features, the subset of 100 features selected using the proposed method, and the 100

features using Fisher's score. The x-axis indicates the false positive rate over 3,000 non-

person testing samples. The y-axis indicates the detection rate over 224 person images. It

is observed that when the false positive rate > 0.004, using 100 Fisher's features can

obtain slightly better results than using all the 1,326 features, while using 100 features

selected by the proposed method can always perform better than using all the 1,326

features.

Figure 3.13 shows that using the subset of 1,000 features in feature space, the

results are obviously worse than using all the 5,150 features. Using the subset of 2,000

features, at very low false detection rates (i.e., less than 0.002), the performance is worse

than using all the 5,150 features, while using the subset of 3,500 features, almost the

same results can be obtained as using all the 5,150 features.

For person detection, after training a 2nd-degree SVM using all the 1,326 Haar

features, 486 support vectors are obtained, among them 136 for person and 350 for non-

person classes. It is more efficient to implement the 2n d-degree SVM in input space since

(N+1)s < (N+3)N, where N = 1,326 and s = 486. Therefore, it takes about 644,922

multiplications to classify a pattern. If the proposed feature reduction method is used in

input space to select 100 Haar features and in feature space to select 3,500 features, it

takes about 8,650 multiplications. Thus it is about 74.5 times faster.
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Figure 3.12 ROC curves for person detection using the proposed feature reduction
method in input space, Fisher's method and all the 1,326 Haar features.
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Figure 3.13 ROC curves for person detection using the proposed feature reduction
method in feature space.
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3.6.2 Car Detection

In the experiment, 516 car images of size 128 x 128 used in [48] are adopted.

Some examples are shown in Figure 3.14. For each car image. its mirror image is also

constructed. Totally, 1,032 car images are obtained. 700 car images are used as positive

training samples and the remaining 332 images are used as testing samples. Also 6,000

non-car training samples and 3,000 non-car testing images are randomly extracted.

Figure 3.14 Some examples of car images.

Haar wavelet features are also used for car detection and 3,030 Haar features are

obtained for each car image. The Haar features are normalized between 0 and 1. Figure

3.15 shows the results of using the three methods: all the 3,030 Haar features, the subset

of 100 features selected by the proposed method, the 100 features by Fisher's score. It is

observed that using the subset of 100 Fisher's features can produce a little better result

than using all the 3,030 features. Using the subset of 100 features from the proposed

method in input space can produce better results than both the Fisher's method and all the

3,030 features.
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Figure 3.16 shows that using the subset of 1,000 features in feature space, the

result is obviously worse than using all the 5,150 features, while using the subsets of

2,000 and 3,500 features, similar results can be obtained as using all the 5,150 features.

For car detection, after training a 2 nd-degree SVM using all the 3,030 Haar

features, 260 support vectors are obtained, among them 88 for car and 172 for non-car

classes. It is more efficient to implement the 2nd-degree SVM in input space since (N+1)s

< (N+3)N, where N= 3,030 and s = 260. Therefore, it takes about 788,060 multiplications

to classify a pattern. If the proposed feature reduction method is used in input space to

select 100 Haar features and in feature space to select 3,500 features, it takes about 8,650

multiplications. So it is about 90 times faster.

Figure 3.15 ROC curves for car detection using the proposed feature reduction method
in input space, Fisher's method, and all the 3,030 Haar features.
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Figure 3.16 ROC curves for car detection using the proposed feature reduction method
in feature space.

3.7 Discussions

In this chapter it is intended to select a subset of features by ranking their

contributions to the decision function of SVMs. The features that have large contributions

indicate the importance of relevance in classification. This leads to a fast 2 nd-degree SVM

without a significant loss in performance. The proposed method has been tested on

detection of a face, person, and car. The experimental results show that the proposed

feature reduction method works successfully. In fact, the proposed method performs

better in the detection of a person and car. This is because they contain complex

background and the proposed method only selects the majority of target features rather

than the background features. The proposed method also gains on the advantage in speed.

For face detection, the subset is chosen directly from 283 gray values instead of the PCA

features that require matrix computation. For person detection, 100 Haar features are
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selected instead of all the 1,032 Haar features. For car detection, 100 Haar features are

selected instead of all the 3,030 Haar features. Furthermore, in the feature-space method,

a subset of 3,500 features is selected instead of all the 5,150 features.

For the feature reduction method in input space, the number of features required

to obtain good results is problem dependent. Experiments indicate that it is best to select

100 gray values from all the 283 gray values for the face detection, and 100 Haar features

from 1,326 and 3,030 Haar features for person and car detection, respectively. For face

detection problem, the selected features are shown in Figure 3.17 as white pixels. It can

be seen that most of these features are located at eyes, nose, cheek, and the corner of the

mouth. These pixels are the most relevant ones that distinguish face from non-face

images. For car and person detection, the features near the boundary capture the

difference between the object and background, while the features on the object capture

the object property. This is the reason why better results can be obtained by using a

subset of features than using all the Haar features. Six examples of the selected Haar

features are shown in Figure 3.18. For a domain problem, if all the features in input space

are necessary to obtain good results, then the proposed feature reduction method in input

space cannot be applied. On the other hand, if the dimension of the input space is very

large and it is possible to obtain good results using only a subset of features, then this

feature reduction method cannot applied directly. In this case, other feature reduction

methods should be used to reduce the dimension first.

Figure 3.17 The 100 selected pixels are shown as white pixels.
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For the feature reduction method in feature space, experiments have been

performed on selecting 1,000 features from 1,890 features corresponding to 60 PCA

values in input space and on selecting 3,500 features from 5,150 features corresponding

to 100 gray values in input space for face detection. For person and car detection,

experiments have been performed on selecting 3,500 features from 5,150 features

corresponding to 100 Haar features in input space. Experimental results show that the

proposed method works successfully. However, there is one limitation to applying the

feature reduction method in feature space. The feature reduction method in feature space

can only be applied if it is more efficient to implement the 2 nd-degree SVM in feature

space than in input space, i.e., the condition (N+1)s > (N+3)N must be satisfied, where N

is the dimension of input space and s is the total number of support vectors.

Figure 3.18 Six examples of selected Haar features.



CHAPTER 4

FACE DETECTION USING TWO-LAYER SUPPORT VECTOR MACHINES

In this chapter, a two-layer support vector machines (SVMs) method for face detection is

presented. Two integral images are used for obtaining the variance quickly in each

scanned window. By detecting two-eye patterns using a linear SVM, most of the

background can be eliminated quickly. Two-layer second-degree polynomial SVMs are

developed for face verification. The detection process is implemented directly in feature

space leading to efficient face classification. Experimental results show that the proposed

method can achieve better performance than other face detection methods.

4.1 Introduction

Automatic human face detection plays an important role in applications such as video

surveillance, human computer interaction, face recognition, face tracking, and face image

database management. Many variations contribute to the challenges of face detection

problems, such as pose, structural components, facial expression, occlusion, image

orientation, lighting condition, etc. Various approaches to face detection have been

proposed. Yang et al. [76] classified face detection methods into four categories:

knowledge-based, feature invariant, template matching, and appearance-based methods.

Face color is also taken into consideration [26, 74].

Sung and Poggio [64] used a number of Gaussian clusters to model the

distribution of face and non-face patterns. Rowley et al. [51] developed a neural network-

based algorithm to detect upright, frontal view of faces in gray-scale images.
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Schneiderman et al. [56] applied a Bayes classifier to estimate the joint

probability of local appearance and the position of face patterns. Yang et al. [77]

proposed a method that uses SNoW (Sparse Network of Winnows) to detect faces with

different features and expressions. Viola and Jones [70] proposed a face detection

algorithm using AdaBoost to train a cascade of linear classifiers and select features from

an over-complete set of rectangular features. Although rectangular features can be

quickly computed using integral images, it takes several weeks for training [24].

Support Vector Machines (SVMs) [14] are developed from a mathematical point

of view. While most classifiers (e.g. Bayesian, neural networks, and RBF) are trained to

minimize the empirical risk, SVMs are implemented to minimize the structural risk.

Osuna et al. [45] first applied SVM to face detection. Heisele et al. [23] trained a 2 nd-

degree polynomial SVM using 10,038 faces and 36,220 non-faces. Two heuristics are

used to suppress false positives. Although they achieved a high detection rate, it takes

several minutes to search an image for faces at different scales as noted by Heisele et al.

[24] who used the two following methods to speed up face detection by SVMs:

hierarchical classification and feature reduction. Linear SVMs are used to reject large

parts of the background, and feature reduction is achieved by ranking the contribution of

features in feature space. Ma and Ding [35] proposed hierarchical SVMs which are

composed of linear and nonlinear SVMs.

In this chapter, an efficient face detection system using two-layer SVMs is

presented. Two-eye patterns are first detected using a linear SVM to remove large parts

of background. Then two-layer 2 nd-degree SVMs are used for further face verification.

This chapter is organized as follows. Section 4.2 presents an overview of the proposed
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face detection system. The detailed steps in the face detection system are described in

Section 4.3. Experimental results are shown in Section 4.4.

4.2	 Overview of the Proposed Face Detection System

The overview of the proposed face detection system is illustrated in Figure 4.1. Integral

images are used to quickly calculate the variance of each rectangular area, so that gray-

level normalization can be performed. The variance is also used as a criterion to eliminate

uniform background. In each window of size 19x 19, it is verified whether its upper 7x 19

part contains a two-eye pattern using a linear SVM. If the window passes the two-eye

pattern verification, two-layer 2 nd-degree SVMs are used for further verification.

Principle component analysis (PCA) is adopted to reduce dimensionality in input space.

A fixed window of size 19 x 19 is used for face verification. To detect faces of

different sizes, the image is scaled in multi-layers. In each layer, the locations and sizes

of all the positive detections are recorded. The decision values are also recorded from all

the detections. The detections from all layers are combined to form the final result.



Figure 4.1 Overview of the face detection system.
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4.3	 The Proposed Face Detection System

In this section, the calculation of integral images for variance, the detection of two-eye

patterns, and the two-layer 2nd-degree SVMs for verifying face patterns are presented.

4.3.1 Calculation of Integral Images

In order to calculate the variance quickly in each detected window, two integral images

are used. The first integral image at location (x, y) containing the sum of the pixels

preceding it is computed as:

where /sum is the sum-integral image and /(x', ) is the gray value of the original image

I at location (x' , y') . The second integral image, called the squared-sum-integral image,

containing the sum of the squared values of the pixels preceding it is computed as:

Two integral images can be used to quickly calculate the variance of any

rectangle ABCD as illustrated in Figure 4.2. The sum of ABCD can be computed in four

parts as:

The squared sum of ABCD can also be calculated in four parts as:

Therefore, the variance of ABCD can be easily obtained as:
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(4.5)

where N denotes the total number of pixels in ABCD. The mean of ABCD is calculated as

m ABCD SUMABCD / N . The uniform background whose variance is smaller than a

threshold is excluded and the non-uniform regions where a face pattern may exist are

kept. If an input image is in the range [0, 1], the threshold is set as 0.0025. The

normalized value of the pixel (x, y) in ABCD can be quickly calculated as

Figure 4.2 Calculation of a rectangle ABCD.
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4.3.2 Detection of Two-Eye Patterns

The detection of two-eye patterns is applied to eliminate most of background. In each

window of size 19x19, it is verified if its upper 7x19 subimage is a two-eye pattern.

There are three advantages in doing this. First, the two-eye pattern contains fewer

features than the face pattern, so a linear SVM can quickly achieve the classification.

Second, if a one-eye pattern is detected instead of a two-eye pattern, the resolution is too

low to yield good classification. Third, the geometric property of two eyes is taken into

consideration in classification.

The mask for extracting the two-eye pattern pixels within a 19x 19 window is

shown in Figure 4.3 as the black region. In experiments, a linear SVM is trained using

1,200 positive and 6,718 negative two-eye patterns. Figure 4.4 shows the result of the

two-eye pattern detector. The processing speed is about 3 x10 5 windows per second when

the program is implemented in a PC with a 1.4 GHz Intel Pentium-M processor. It is

observed that there are some false positives, so face detection is applied on these

windows containing two-eye patterns.

Figure 4.3 The mask used to extract the two-eye pattern from a 19x19 window.
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Figure 4.4 The result of two-eye detection.

4.3.3 Two-Layer 2nd-Degree SVMs

The SVMs, intended for two-class classification, use a hyperplane to maximize the

margin between the hyperplane and the nearest data in each class. This hyperplane

determined by training samples is called an Optimal Separating Hyperplane (OSH) as

illustrated in Figure 4.5.



Figure 4.5 The optimal separating hyperplane (OSH) of SVM. The filled patterns are
testing samples. False positive and false negative are respectively shown as a filled
square and a filled circle.
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It is observed that in SVM, only a small portion of training samples are support

vectors, and most training samples have the decision value greater than 1. If the

distribution of testing data is not very different from the training samples, it can be

concluded that most of the errors in classifying testing data are generated from the

patterns near OSH. Conceptually, there are two strategies to improve classification rates.

The first strategy is collecting the positive and negative samples near the OSH of the first

SVM, and re-training a second SVM to classify them. The second strategy is re-

projecting these patterns on a second feature space that may separate them better.

However, since the projection is time-consuming, it will significantly slow down the

detection process. Besides, a second better feature space is difficult to find.

Principle component analysis (PCA) is adopted to reduce dimensionality in input

space. In experiments, the top 60 PCA values are used to represent each sample. There

are total of 2,429 face samples used: 2,000 for training and 429 for testing. There are a

total of 38,801 non-face samples used: 15,228 for training and 23,573 for testing. The

2,429 face and 23,573 non-face testing samples were established by the Center for

Biological and Computational Learning at MIT. In addition, 15,228 non-face training

samples are randomly collected. In the following experiments, three different training

methods are used for performance evaluations.

Method 1: A 2 nd-degree polynomial SVM is trained using 2,000 face and 15,228

non-face samples, and then it is tested it on 429 face and 23,573 non-face images. A

Receiver Operating Characteristic (ROC) curve is used to evaluate performance. The

ROC curve is generated by shifting OSH with varying the threshold value b. Face

classification is performed on testing samples and false positive and detection rates are
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calculated. The resulting ROC curve is shown in Figure 4.6, where the horizontal axis

indicates the false positive rate over 23,573 non-face testing samples and the vertical axis

indicates detection rate over 429 face testing samples.

Method 2: A 2 nd-degree polynomial SVM is trained using 1,000 face and 10,228

non-face samples which are subsets of the training samples used in Method 1. The

resulting ROC curve is also shown in Figure 4.6. It is observed that Method 2 performs

worse than Method 1.

Method 3: This is the method that uses the aforementioned first strategy. From the

2,000 face training samples, the 870 face patterns are collected that are near the OSH of

Method 2 (i.e., -1 < f(x) < 1), where f(x) denotes the decision value of pattern x. From

the 15,228 non-face training samples, the 1,715 non-face patterns are collected that are

near the OSH of Method 2. Using these collected samples, a second SVM is trained. In

testing, a pattern is first classified using the first SVM in Method 2. If it is near the OSH,

the second SVM is used for re-classification. The resulting ROC curve is also shown in

Figure 4.6. From experimental results, it is observed that the two-layer SVMs (Method 3)

outperform Method 2 significantly and perform slightly better than Method 1.

In general, to construct a SVM for face detection, positive and negative samples

are taken to train the SVM. The performance could be improved by adding false positives

and false negatives to re-train a new SVM. However, because too many variations exist

in face and non-face patterns, this method does not guarantee a better classification rate;

sometimes it could be worse. Instead of adding more training samples, the training

samples near the OSH of the first SVM can be collected to re-train a second SVM to

improve the classification. This does not slow down the classification process much

•
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because no new features need to be extracted, and the number of patterns near the OSH

of the first SVM is relatively small compared to the whole testing set.

Given a 2nd-degree polynomial SVM with a kernel K(x,y) = (1+ x • y) 2 , the

decision function for a given pattern x is defined as

where s is the number of support vectors, x i is the i-th support vector, and b is the

threshold value. If N denotes the dimensionality of the input feature x, the number of

multiplications required to calculate the decision function is (N + 1)s

Figure 4.6 ROC curves of three training methods. The testing samples include 429
faces and 23,573 non-faces.

In feature space, the decision function f(x) of SVM can be calculated as
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where

is the support vector and P is the dimension in feature space. The feature space is given

by

of dimension P = N(N + 3)/ 2 . The number of multiplications required to calculate the

decision function is (N + 3)N . If (N + 1)s > (N + 3)N , it is more efficient to implement

the 2n d-degree polynomial SVM in feature space. In experiments, N = 60 and s > 1,000,

so it is faster to implement the SVM in feature space. The processing speed is about

1.0x104 windows per second when the program is implemented on a PC with a 1.4 GHz

Intel Pentium-M processor.

If the detected patterns are different from faces, the decision values will be small.

As shown in Figure 4.7, there are three faces detected. Note that the incomplete-face

images cannot be detected. The decision values of an 8 x 8 region at the uppermost face

are shown in Table 4.1, and at the image center (where a face is not present) are shown in

Table 4.2. From Table 4.1, it is observed that four positive values appear on the center of

the uppermost face, and the values decrease as the pixels move away from the center of

the face. From Table 4.2, because no face is present, the decision values are all negative.

Therefore, non-face patterns can be eliminated quickly to speed up the detection process.



Figure 4.7 An example of three faces.

Table 4.1 The Decision Values of an 8 x 8 Region at the Uppermost Face

-8.9708 -7.8361 -7.2915 -7.2165 -7.7274 -8.4624 -8.9582 -8.5790
-9.6290 -8.3149 -6.7118 -6.2958 -6.9922 -8.3298 -9.4971 -9.0373

-10.1120 -8.9096 -5.8226 -3.9230 -4.8727 -7.6357 -11.1600 -11.7300
-9.7307 -9.1459 -3.9018 1.4697 1.3517 -2.5977 -9.3476 -12.7520
-7.3816 -7.0983 -3.3209 1.2614 1.8612 -1.6981 -7.9363 -12.3280
-5.7875 -4.8310 -2.4996 0.1457 -0.7831 r4,5756 -9.0572 -13.6200
-5.8639 -4.8173 -3.8848 -2.8779 -4.5553 -7.1203 -9.9464 -13.6260
-6.5973 -4.2707 -2.3995 -2.2787 -4.4652 -5.6277 -8.1469 -12.0170

Table 4.2 The Decision Values of an 8 x 8 Region at the Image Center

-5.7541 -6.8029 -9.0473 -11.4970 -10.5690 -8.8814 -8.2135 -9.5539

-6.3197 -6.3491 -8.8044 -12.0910  -10.8470 -8.2184 -6.4213 -7.2828 I

-7.1943 -6.5021 -8.2114 -10.5800 -9.8959 -6.9134 -5.8686 -6.2791

-9.3905 -7.3555 -7.7201 -8.7436 -8.3543 -6.1919 -6.0401 -6.3148

-18.2860 -15.8100 -11.4560 -7.4753 -6.7675 -5.8251 -6.0124 -6.0964

-20.1950 -18.7740 -16.9520 -14.3150 -12.4140 -10.8270 -8.7379 -7.2143

-17.7550 -16.6750 -16.1570 -16.4940 -17.2500 -17.2340 -16.5530 -14.9390

-15.7940 -14.6680 -15.0050 -16.8380 I -17.8560 -18.8550 -21.1670 -21.6420
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4.4 Experimental Results

In experiments, the first layer SVM is trained using 6,029 face samples; among which

2,429 are from MIT and the others are from FERET database. The 18,065 non-face

training samples were collected using the bootstrap strategy. After training the 2nd-degree

SVM using 60 PCA values, 457 and 1,015 support vectors, respectively, for face and

non-face classes are obtained.

From 2,032 face samples, 483 faces near the OSH of the first SVM are collected,

in which 9,253 non-face samples are also collected. The second layer SVM is trained

using these collected face and non-face samples and the support vectors from the first

SVM.

A test set containing 155 faces in 23 images is used. By applying only the first

SVM, the detection rate of 83.23% with 12 false positives is achieved. Using the two-

layer SVM system, the detection rate of 89.68% with 13 false positives can be achieved.

Therefore, the two-layer SVM system works better than just one SVM. Figure 4.8 shows

three examples. In the first image, all the faces are detected correctly. In the second

image, all the faces are detected with one false positive. In the third image, one face is

missed because it is too dark. Table 4.3 lists the performances of several face detection

systems on the same test set. The proposed method achieves better performance than the

distribution-based [64], neural network [51], and other SVM [23, 45] methods. The

results of Bayes [56] and SNoW-based [77] methods seem better than the proposed

method; however, they only tested on 20 images with 136 faces, and it is unclear what

heuristics they used to suppress false positives.
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The second layer SVM will not significantly slow down the algorithm as

compared with only one layer SVM. First, the number of patterns needed for re-

verification using the second SVM is relatively small. Second, 60 PCA features are used

as the representation corresponding to 1890 features in feature space. When the second

SVM is used for classification, the 1890 features from the first SVM are ready to use. To

obtain the decision values, 1890 extra multiplications are needed. This is relatively small

compared with the number of multiplications needed for computing the 60 PCA values,

which is 283x60=16,980.

As aforementioned in Section 4.3.2, the speed of the linear SVM for two-eye

detection is about 3.0x105 windows/sec, and of the 2 nd-degree SVM is about 1.0x104

windows/sec. In the proposed system, the variance is used to eliminate background and

the decision values are used to eliminate adjacent windows. It takes 0.3 second to process

an image of 320x240 using a 19x19 window. In [24], an average of 4 frames/sec is

achieved for an image of 320x240 at five different scales from 30x30 to 70x70.

However, their system produces a high false positive rate. The proposed system can

achieve 3 frames/sec. An additional condition such as the two-eye region is often darker

than the region under it can be used to achieve 5 frames/sec with only a slight decrease in

the classification rate.



Table 4.3 Performance Comparisons of Several Face Detection Systems

System Detection Rate False Positives

[Sung 96] MIT
Distribution-based

81.9% 13

[Osuna 97] MIT
SVM

74.2% 20

[Rowley 98] CMU
Neural Network

84.5% 8

[Schneiderman 98] CMU
Bayes *

91.2% 12

[Yang 2000] UIUC
SnoW *

94.1% 13

[Heisele 2000] MIT
SVM

84.7% 11

The proposed system 89.68% 13

Note: "*" indicates that the images of hand-drawn faces and cartoon faces
are excluded, using a total of 20 images with 136 faces.

88



Figure 4.8 Face detection examples.
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CHAPTER 5

AN IMPROVED INCREMENTAL TRAINING ALGORITHM FOR
SUPPORT VECTOR MACHINES USING ACTIVE QUERY

In this chapter, an improved incremental training algorithm is proposed for support vector

machines. Instead of selecting training samples randomly, they are divided into groups

and the k-mean clustering algorithm is applied to each group to collect the initial set of

training samples. In active query, a weight is assigned to each sample according to its

distance to the current separating hyperplane and the confidence factor. The confidence

factor, calculated from the upper bounds of errors of the SVM, is used to indicate the

degree of closeness of the current separating hyperplane to the optimal solution. A

criterion is proposed to incrementally eliminate some non-informative training samples.

The proposed algorithm has been successfully applied on artificial and real data sets. The

results show its robustness by comparing with other methods.

5.1 Introduction

The Support Vector Machine (SVM) is intended to generate an optimal separating

hyperplane by minimizing the generalization error without using the assumption of class

probabilities as does a Bayesian classifier [5, 14, 67, 68]. Its training procedure usually

requires huge amounts of memory space and significantly time-consuming computation

because an enormous amount of training data and quadratic programming are used. The

decision hyperplane of SVM is determined by the most informative data instances, called

Support Vectors (SVs). In practice, these SVs are only a small subset of the entire

training data. By applying feature reduction in both input and feature space, a fast non-
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linear SVM can be designed without a significant loss in performance [24, 61].

Therefore, some researchers proposed incremental training or active learning to shorten

the training time [2, 6, 39, 44, 57, 65].

Syed et al. [65] developed an incremental learning procedure by partitioning the

training data set into subsets. At each incremental step, only the support vectors are added

to the training set in next step. Cambell et al. [6] proposed a query learning strategy by

iteratively requesting the label of a sample which is the closest to the current hyperplane.

Schohn and Cohn [57] presented a greedy optimal strategy by calculating class

probability and expected error. A simple heuristic was used by selecting the training

examples according to their proximity to the dividing hyperplane.

Moreover, An et al. [2] developed an incremental learning algorithm by

extracting initial training samples as margin vectors of the two classes, selecting new

samples according to their distances to the current hyperplane, and discarding training

samples without contribution to the separating plane. However, only the distance factor is

considered. Nguyen and Smeulders [44] pointed out that prior data distribution is useful

for active learning, and new training data are selected from the samples having the

maximal contribution to the current expected error.

Most existing methods of active learning perform sample based on its proximity

to the current separating hyperplane. Mitra et al. [39] presented probabilistic active

learning using a distribution determined by the current separating hyperplane and a

confidence factor. They did not provide the criteria for selecting test samples for

calculating the confidence factor. There are two issues in their algorithm. First, the initial

training samples are selected randomly which may cause the initial hyperplane to be far
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away from the optimal solution. Second, using only the support vectors from the previous

training set may lead to bad performance in some cases.

In this chapter, an improved incremental training algorithm is presented for SVMs

using active query. The rest of this chapter is organized as follows. In Section 5.2, the

proposed incremental training algorithm is presented. In Section 5.3, experimental results

and comparisons with other active learning methods are provided.

5.2 The Improved Incremental Training Algorithm

In this section, the methods of the initial training samples selection using the k-mean

clustering algorithm, the active query of most informative samples, and the criterion for

eliminating non-informative training samples are presented.

5.2.1 Selection of Initial Training Samples

In most of the incremental training methods for SVMs [6, 39, 57], the initial training

samples are selected randomly. In a simple case of the positive and negative training

samples being two separable clusters, there will be no problem using the random

selection. However, in a complex case of the samples of one class being distributed

crossing several clusters, it is possible to obtain a final hyperplane that is far away from

the optimal solution if the random selection is used.

Figure 5.1 shows an artificial data set containing two classes: 1,000 points marked

as "+" and 1,100 points marked as "o". The "o" points are distributed over two clusters:

one with 1,000 points and the other with 100 points. The dashed line indicates the

decision boundary of the SVM training using 1,000 "o" and 1,000 "+" training samples.

The solid line indicates the decision boundary of the SVM training using 1,100 "o" and
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1,000 "+" training samples. It is observed that the solid line represents the optimal

hyperplane.

In incremental training, the samples near the hyperplane of the current SVM are

queried and added to the current training set to form the new training set for the next step.

If the initial training samples are selected randomly, a poor decision boundary may be

obtained as the dashed line in Figure 5.1. This experiment has been conducted for 10

times by taking a random 10% of the samples in each class as the initial training samples.

Results show the dashed line is chosen for four times and the solid line for six times.

Obviously, it is unreliable for using a random initial set of training samples to train the

SVM incrementally.

Instead, a method is designed to select the initial training samples by considering

the distribution of the training samples. The positive and negative training samples are

randomly separated into K groups respectively. Each group is separated into k sub-

clusters (such as k--10) using a k-mean clustering algorithm. From each of the k clusters,

one sample that is nearest to the mean of each cluster is chosen. In this way, around 1/k of

the total training samples are collected as the initial training samples. The variables K and

k are selected according to the size of the total training samples. In this experiment, the

values of K=10 and k=10 are used. Using this method, generating poor decision boundary

is avoided and almost the same boundary is obtained as using batch training, that is the

solid line in Figure 5.1.
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Figure 5.1 An artificial data set containing two classes: 1,000 "+" and 1,100 "o". The
solid line indicates the decision boundary training using all samples; the dashed line
indicates the decision boundary training using 1,000 "+" and 1,000 "o" samples.

5.2.2 Active Query of New Training Samples

Suppose there are / patterns, and each pattern consists of a pair: a vector xi E R" and the

associated label y, E {-1, 1} . Let X E R" be the space of patterns, Y = {-1, 1} be the space

of labels, and p(x, y) be a probability density function on Xx Y. The machine learning

problem consists of finding a mapping: sign( f (x )) --> y, , which minimizes the error of

misclassification. Let f be the decision function. The sign function is defined as

The expected value of the actual error is given by

(5.1)

(5.2)
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However, p(x, y) is not readily known in practice, and the suitable function f must be

inferred from the training set. The generalization performance of the function f is

controlled by two factors: the training error and the capacity of the machine which is

measured by its Vapnik Chervonenkis (VC) dimension [5]. Let us choose some i with

0 then with probability 1- η the following bound holds [68]:

where h is the VC dimension, and the e, is the error tested on the training set

For two-class classification, SVMs use a hyperplane that maximizes the margin

(i.e., the distance between the hyperplane and the nearest data point of each class). This

hyperplane is viewed as an Optimal Separating Hyperplane (OSH). If the data are not

linearly separable in the input space, a non-linear transformation function Φ(•) is used to

project xi from the input space R n to a higher dimensional feature space R d . An OSH is

constructed in the feature space by maximizing the margin between the closest points

Φ(xi ) . The inner-product between two projections is defined by a kernel function

K(x, y) = 4)(x) • Φ(y). The commonly used kernels include polynomial, Gaussian Radial

Basis Function (RBF), and a Sigmoid kernels.

Constructing an optimal hyperplane for SVM is a quadratic programming

problem which maximizes

(5.5)
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and C is a positive value determining the constraint violation during the training process.

After training, the decision function of the SVM can be written as

where w is the constructed support vector in feature space, which can be obtained by

where s is the number of support vectors and d is the dimension in feature space.

An upper bound for the expected error of an SVM classifier is given by [67]

(5.8)

where D is the diameter of the minimum sphere enclosing all the training samples in the

feature space, and M is the margin of the SVM classifier. If the training samples are

separated without errors by an optimal hyperplane, another upper bound for the

expectation value of error for SVM on the test examples is given by the ratio between the

expectation value of the number of support vectors and the number of training samples

[14]

where s is the number of support vectors.

Therefore, there are three ways to estimate the test error for SVM by using

Equations (5.3, 5.8, and 5.9). Using Equation (5.3), the values of η and the VC dimension

h are needed. The value of η is from 0-1, and usually it is a small number. The value
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77 = 0.01 is used, which means with probability 99% Equation (5.3) holds. Since the VC

dimension of the set of oriented hyperplanes in R" is n+1 [5], the VC dimension for

SVM in feature space R d is h = d +1. If the dimension d can be obtained explicitly, then

the Equation (5.3) can be used to calculate the upper bound of the actual error. For a

linear SVM, it is obvious that the VC dimension is h= n +1 . For a second-degree

polynomial SVM: with kernel

the corresponding vector in feature space is given by

with dimension ofd = n(n + 3)/ 2 . Therefore the VC dimension for the second-degree

polynomial SVM is h= n(n + 3)/2 +1. For a Gaussian RBF SVM with kernel

the value for h could not be obtained, since the pattern in the input space could not be

projected to the feature space explicitly and the VC dimension can be infinite.

Using Equation (5.8), the values of D and M are needed. To compute the diameter

D of the smallest sphere in feature space which encloses the mapped training data,

(DI 2) 2 is needs be minimized subject to:

where 0 is the unknown center of the sphere. This is a convex quadratic programming

problem. For large data sets with high dimensionality, it requires large memory space and

it is time consuming. To avoid solving the quadratic programming problem, each
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attribute of the training data is normalized in the range between 0 and 1. For linear SVM,

if each sample has n normalized attributes, all of the training set will be within a n-

dimensional cube of length 1. The diameter D can be approximated as 1,; . For a second-

degree polynomial SVM with the input space of dimension n and kernel as Equation

(5.10), the dimension in feature space will be d = n(n + 3) / 2 as shown in Equation

(5.11). Since the original input space is normalized to be in the range between 0 and 1 for

each dimension, in feature space all the training samples will be within a d-dimensional

cube of length-2 . Therefore, the diameter D can be approximated as -2d . The margin

M in Equation (5.8) can be computed as [14]

where Ilwll is the norm of the support vector w. For linear SVM and second-degree

polynomial SVM, the support vector w can be constructed using Equation (5.7). For

Gaussian RBF SVM, since the projected vector in feature space could not be obtained

explicitly and the values for D and M could not be calculated.

The calculation of Equation (5.9) is simple; it is not related to the dimension of

the feature space. Therefore, it is easily applicable to linear, polynomial and Gaussian

RBF SVMs. In the training process, the purpose is to select a subset of the whole training

set and achieve similar performance as using the whole training set. To estimate the

actual error of the SVM in each incremental step using only a selected subset of training

samples, Equation (5.8) is adjusted as
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and Equation (5.9) as

In Equations (5.3, 5.15, and 5.16), the e, is calculated from the whole training set, and 1

is the number of the set of training samples. In Equation (5.16), s is the number of

support vectors for the current training set. The term ept is added in Equations (5.15 and

5.16) because only a subset of the whole training set is used at each incremental training

step and the assumption on Equations (5.8 and 5.9) is that the training samples can be

separated by the optimal hyperplane without error.

The minimum of Equations (5.3, 5.15 and 5.16) is taken as the actual error, that is

Another term eopt is defined as the error for the optimal hyperplane based on the whole

training data set estimated from the current SVM using only a subset of the whole

training set. Since the hyperplane of SVM is obtained by minimizing the train error and

maximizing the margin, the eopt is estimated by

where m is the number of samples tested as errors from the current training sample set,

and 1 is the number of training samples of the whole training set. The observation is used

that the optimal hyperplane based on the whole training set could not be better than the

current one using a subset assuming that all the unused samples are classified correctly by
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the current SVM. Note that if the current SVM can classify the current training samples

without error, then eopt = 0.

A confidence factor to control the selection of new training samples is defined as

Figure 5.2 shows how a varies with C. The value 0.5 is put in Equation (5.17), which

means the worst performance of the trained classifier is 50%. This can ensure the

confidence factor C > 0.5 and the parameter a > 0 .

Figure 5.2 a varies with C.
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After each incremental training step, every unused sample receives a weight that

determines its probability of being selected for the next training set. The weight is

defined as

where f (x,) is the decision value of pattern x, using the trained SVM by Equation (5.6).

From Equation (5.21), the chance of a pattern being selected for training is controlled by

the a and decision value. From Equation (5.20) and Figure 5.2, it can be seen that the

value of a increases as C increases, while high C value means high confidence for the

current classification, such as when a =0.5, C=0.7311, when a =1, C=0.8808, when a =3,

C=0.9975. If a pattern is classified correctly, its weight is low if both a and the decision

values are high. Otherwise, if a pattern is not correctly classified, when a <1, a high value

will be assigned, which means that the wrongly classified patterns are more important

when the confidence is low. When a >1, the wrongly classified patterns near the OSH are

more important. New training samples will be selected according to their weights.

In AdaBoost learning algorithm [16], a similar strategy is used to assign weights

to each training sample. The difference between the proposed method and the AdaBoost

is that in AdaBoost the final classification decision is based on the combination of the

outputs of a chain of different classifiers, while the proposed method obtains only one

final classifier. The proposed method also differs from other near-boundary methods. The

near-boundary methods select the samples nearest the current separating hyperplane,

while the proposed selection method is controlled by the confidence factor. From

Equation (5.21), it can be seen that when a <1, the wrongly classified patterns are first
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selected, with the higher the If (x)1 value, the higher the weight. When a >1, the wrongly

classified patterns near the OSH are selected first, then the correctly classified patterns

near the OSH, and the weights are also controlled by the decision values. The training

process will stop until no more informative training samples are available. For

informative training sample, the threshold value for weight is set to be e -2 according to

the experimental results by considering both the confidence factor and the distance

between the sample and the current separating hyperplane.

5.2.3 Elimination of Non -informative Training Samples

In the incremental training step of active learning for the SVM, keeping only the

support vectors of previous training samples for next step may lead to bad performance.

On the other hand, keeping all the previous samples may lead to large active training

samples. A method is designed to actively eliminate some training samples that are not

informative. Firstly, a threshold value is set using the decision value. If for one sample

with If (x)1 < 1.1, it is near the hyperplane and it is kept. Secondly, according to the

Equation (5.21), a weight is assigned to each sample in the current training set. A

threshold value t = e -2 is set. If the weight of one training sample is higher than t, then it

is kept for the next step training. By this strategy, these samples with decision value

higher than 1.1 and weight less than e -2 are eliminated from the active training samples.

Note that the second condition is not enough to eliminate samples. In some cases, during

the training, high a value may be obtained when the confidence factor C is high, such as

when C > 0.9975, a > 3. If only t = e -2 is used as the threshold value, all the current

training samples may be eliminated.
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5.3 Experimental Results

In this section, the proposed improved incremental training algorithm is applied

on the SVMs with three types of kernels: linear, second-degree polynomial SVM as

shown in Equation (10), and the Gaussian RBF SVM as shown in Equation (12). Note

that o =1 is used in Equation (12).

The test sets are listed in Table 5.1. The face data set contains 2,429 faces and

15,228 non-faces. The 2,429 faces are downloaded from the Center for Biological and

Computational Learning (CBCL) at Massachusetts Institute of Technology (MIT).

Totally 15,228 non-face training samples are randomly collected from the images that do

not contain faces. The size of all these samples is 19 x 19. Each sample is represented as

the top 60 PCA values. All the other data sets are available in the University of

California, Irvine (UCI) machine learning repositories [4].

Table 5.1 Number of Attributes and Number of Samples for the Data Sets

Data Set Num of Attributes Num of Class 1 Num of Class 2 Total Num

Face 60 2,429 15,228 17,657

Cancer 9 444 239 683

Diabetes 8 500 268 768

Ionosphere 34 225 126 351

Heart 13 150 120 270

German 24 700 300 1,000

The proposed method is compared with five other methods. The first method is

batch learning which is using all the available positive and negative training samples to



104

train SVM. It is indicated as BatchSVM in the tables. Notice that in real world, if there

are too many training samples, this method could be used. The second method is that at

each incremental step, a number of new training samples are just randomly selected. It is

indicated as IncrSVMRandom in the tables. The third method is to query new training

samples by collecting the samples near the current separating hyperplane. It is indicated

as QuerySVM in the tables. The fourth one is the method in [65], it is indicated as

SubsetSVM in the tables. The fifth one is the method proposed in [39]. The whole

training samples are used to calculate the confidence factor. It is indicated as QueryStat

in the tables.

As shown in Table 5.1, each dada set contains two classes. The value of each

attribute is normalized in the range between 0 and 1. The experiment is performed 10

times, with each time take different 90% samples from Class 1 and Class 2 as the training

samples, and the rest of 10% samples are taken as test samples. The average of the 10

classification rates is taken as the overall classification rate. As described in Section

5.2.2, for linear and second-degree polynomial SVM, the VC dimension h, the diameter

D enclosing the training set, and the margin M can be calculated. Therefore Equation

(5.17) could be used to calculate the error. The comparison of performance of different

methods of using linear SVM to do the training and testing is shown in Table 5.2. The

results of using second-degree polynomial SVM are shown in Table 5.3. For Gaussian

RBF SVM, the values for h, D and M could not be obtained, since the pattern in the input

space could not be projected to the feature space explicitly and the VC dimension can be

infinite. Therefore, only Equation (5.16) is used to estimate the actual error. The results

of using radial basis function SVM are shown in Table 5.4.
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The BatchSVM is used as the basis to do comparison. For each other method, the

average of the differences of the classification rates of all the data sets compared with the

BatchSVM is calculated. The average values of differences are shown at the last rows of

Table 5.2, 5.3, and 5.4. The results show that the overall performance of the proposed

methods outperforms other methods. For IncrSVMRandom method, the same number of

training samples as QuerySVM method are used. It can be seen that in most cases,

IncrSVMRandom method performs worse than QuerySVM method. For linear SVM and

Gaussian RBF SVM, the proposed method even outperforms the BatchSVM slightly. The

QueryStat performs badly in the experiments because this algorithm only keeps the

support vectors of the previous training samples. For some cases, this may perform well,

such as the Cancer data set using linear SVM, the Diabetes data set using Gaussian RBF

SVM. However, for other cases, it may perform badly, such as Face data set using linear

SVM and the German data set using polynomial SVM.

Table 5.2 Comparison of Classification Rates of Different Methods Using Linear SVM

Method

Data Set

BatchSVM IncrSVM
Random

QuerySVM SubsetSVM QueryStat The Proposed
Method

Face 0.9618 0.9392 0.9594 0.9447 0.9096 0.9616

Cancer 0.9716 0.9701 0.9716 0.9687 0.9716 0.9731

Diabetes 0.7684 0.7524 0.7605  0.7711 0.7763 0.7711

Ionosphere 0.8824 0.8559 0.8706  0.85 0.8676 0.8824

Heart 0.8407 0.8222 0.8444 0.8407 0.8407 0.8407

German 0.7660 0.7440 0.7510 0.7510 0.7060 0.7720

Ave. Diff 0 -0.0178 -0.0056 -0.0108 -0.0198 +0.0017
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Table 5.3 Comparison of Classification Rates of Different Methods Using 2n d-degree

Polynomial SVM

Method

Data Set

BatchSVM IncrSVM
Random

QuerySVM SubsetSVM QueryStat
The

Proposed
Method

Face 0.9858 0.9077 0.9815 0.9689 0.9605 0.9863

Cancer 0.9716 0.9701 0.9701 0.9716 0.9642 0.9716

Diabetes 0.7789 0.7611 0.7671 0.7724 0.7303 0.7763

Ionosphere 0.9176 0.8647 0.8618 0.8676 0.8824 0.9176

Heart 0.8148 0.8037 0.8037 0.7741 0.7852 0.8259

German 0.7460 0.7030 0.7280 0.7030 0.6850 0.7310

Ave. Diff 0 -0.0341 -0.0171 -0.0262 -0.0345 -0.0010

Table 5.4 Comparison of Classification Rates of Different Methods using Gaussian RBF

SVM

Method

Data Se
BatchSVM IncrSVM

Random
QuerySVM SubsetSVM QueryStat

The
Proposed
Method

Face 0.9864 0.9533 0.9854 0.9789 0.9334 0.9863

Cancer 0.9716 0.9701 0.9731 0.9731 0.9687 0.9731

Diabetes 0.7750 0.7684 0.7789 0.7645 0.7763 0.7750

Ionosphere 0.9380 0.9312 0.9412 0.9324 0.9265 0.9382

Heart 0.8185 0.8037 0.8148 0.8000 0.8111 0.8185

German 0.7340 0.7290 0.7310 0.7380 0.7290 0.7340

Ave. Diff 0 -0.0113 +0.0002 -0.0061 -0.0131 +0.0003

To justify the strategy to eliminate non-informative training samples presented in

Section 5.2.3, the experiment is performed on the face data set that contains 2,429 face
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and 15,228 non-face samples. Linear SVM is used to do training and testing. Around

10% of samples are taken as testing samples. The initial training samples are selected

according to the method in Section 5.2.1, and new samples are queried according the

strategy in Section 5.2.2. In each incremental training step, 200 new samples are selected.

Table 5.5 shows the comparison of the numbers of training samples for each step of

keeping all and eliminating the non-informative training samples in the experiment. It

can be seen that some non-informative training samples can be eliminated in each step,

and this leads to smaller training subsets and a faster training process. Note that both

methods achieved the same performance.

Table 5.5 The Numbers of Training Samples of Each Incremental Training Step by
Keeping All the Previous Samples, the Newly Queried Samples, and by Eliminating the
Non-informative Samples

Step
Num of Keeping All

Samples

Num of Newly Queried

Samples

Num of Eliminating Non-

informative Samples

1 1579 1579

2 1779 200 458

3 1979 200 658

4 2179 200 856

5 2379 200 1020

6 2579 200 1119

7 2779 200 1261

8 2979 200 1432

9 3179 200 1587

10 3379 200 1761

11 3579 148 1961

12 3739 2109



CHAPTER 6

SUMMARY AND FUTURE RESEARCH

6.1	 The Summary of the Contributions of his Dissertation

In this dissertation, several important issues in image processing and pattern classification

areas are explored. The summary of the contributions is given as follows.

An efficient seeded region growing method for color image segmentation is

developed. The seeds are automatically selected according to the properties of images. In

region growing, strategies are applied to avoid order dependencies. By controlling the

size of regions and the color difference of regions, the region merging method can adjust

dynamically according to different images to obtain satisfactory segmentation results.

Experimental results show that our algorithm can produce better results as compared to

some existing algorithms.

An adaptive morphological edge-linking algorithm using the elliptical structuring

element has been presented. Adaptive dilation is applied at each endpoint. The orientation

and size of the elliptical structuring element are changed according to local properties.

Gaps between broken edges can be filled gradually by extending along their slop

directions. The experimental results show the success of the proposed algorithm.

An improved feature reduction method in the combinational input and feature

space for Support Vector Machines (SVMs) is presented. In the input space, a subset of

input features is selected by ranking their contributions to the decision function. In the

feature space, features are ranked according to the weighted support vector in each

108
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dimension. Combining input and feature space feature reduction, a fast non-linear

SVM is developed without a significant loss in performance.

An efficient face detection algorithm using two-layer support vector machines is

designed. Integral images are used to normalize each scanned window quickly. Two-eye

patterns are firstly detected using a linear SVM to eliminate most background. Two-layer

2nd-degree polynomial SVMs are developed for further face verification to achieve higher

accuracy than a single SVM. The detection process is implemented directly on feature

space that leads to a fast SVM.

An incremental training algorithm for support vector machines has been

presented. A weight is assigned to each sample according to its distance to the current

separating hyperplane and a confidence factor indicating the degree that the current

separating hyperplane is the optimal one. The performance of the proposed method is

compared with several other methods using several data sets, and the linear SVM, the 2nd-

degree polynomial SVM, and the radial basis function SVM are tested. The experimental

results showed the robustness of the proposed method compared with other methods.

6.2 Future Research

There are many actively ongoing research areas in image segmentation and pattern

classification. To extend the research work that has been done in this dissertation, the

following future research work is proposed.

The SRG algorithm proposed in this dissertation is for color image segmentation

based on color similarity. In many applications, texture information is needed to obtain

satisfactory segmentation results. Chen et al. [9] proposed an approach for image



110

segmentation based on low-level features for color and texture. It is an interesting

research topic to extend the SRG algorithm for texture-based segmentation. It is also

attractive to improve the segmentation results by combing different features, such as

color, texture, shape, etc.

Researchers have shown that combining the results of multiple classifiers can

improve the classification performance [29, 31, 32, 38, 40]. It is interesting to investigate

how to combine the results of different classifiers and to combine the results using

different features to improve the performance. The research issues are how to do the

combination and how to prove theoretically that the performance is improved by the

combination.

Speed and accuracy are two main factors to judge an object detection algorithm.

For face detection, the research in this dissertation is limited to frontal view face

detection. Algorithms to detect multi-view faces [33, 75] and faces with in-plane rotation

[30, 52, 73] have been proposed. Faces in different views need to be detected

individually, and all the results are combined to form the final result. This will slow down

the detection process and the false positive rate will be increased since the detection

results from different views are combined to form the final result. Future research will

explore how to design an efficient face detector for different views and investigate how to

extract more efficient features for face detection.
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