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ABSTRACT

QT VARIABILITY CALCULATION USING A TEMPLATE MATCHING
ALGORITHM AND POWER SPECTRAL ANALYSIS

by
Theodore Sami Rizkalla

ECG interval measurement and variability analysis has proven to be a useful tool in

investigating autonomic nervous system function. Traditionally, the R to R interval has

been the thrust of research conducted in this field. QT variability is another topic on

which little research has been done.

This thesis uses an algorithm proposed by Dr. Berger, published in 2003. The

algorithm stretches the template in the time domain, and composes a sum-squared error

function, which is minimized to find the scaling factor for that beat. These scaling factors

are compiled into an array, and an interpolated signal is generated of QT interval times.

Using LabVIEW and MATLAB, the algorithm was put into place, and frequency spectral

analysis conducted on patients with normal sinus rhythm and those with arrhythmias.

This system has been tested statistically, showing a less than 10 percent deviation from a

standardized database of QT interval lengths (Physionet MIT/BIH databases) in all cases

and less than 5 percent in most. In addition, power spectral analysis was conducted on

patients with normal sinus rhythms and those with arrhythmias. However, major

differences between patient populations were not observed with the performed

techniques.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to present an algorithm for the calculation of the QT

interval variability and utilize its results for variability analysis. This paper will also

discuss the robustness of the algorithm through discussions of the validation methods, as

well as results of empirical analysis of ECG records. For the purpose of this thesis, we

have selected a template-matching algorithm developed by Dr. Ronald Berger of Johns-

Hopkins [1], initially to investigate sudden cardiac death.

1.2 Background Information

The following section will present a brief introduction to the cardiac system, the basic

concepts of interval measurement, and a review of previous work with the QT interval,

also referred to as the ventricular repolarization interval.

1.2.1 Physiology of the Heart

The heart is both an extremely important and unique organ in the human body. As such,

a short synopsis of its features and functions will help the reader understand the concepts

presented herein.

1.2.1.1 Physical Features. The heart is located centrally with the chest cavity, with its

apex pointing toward the left-hand side. It is a hollow muscle composed of special

1
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1.2.1.1 Physical Features. The heart is located centrally with the chest cavity, with its

apex pointing toward the left-hand side. It is a hollow muscle composed of special

myocytes, different from both striated and smooth muscle, which are arranged in a mesh

or grid layout to provide even, complete, and functionally simultaneous contraction of the

muscle. The heart is composed of four chambers: the left and right atria and left and right

ventricles. The sequential contraction of each of these chambers leads to a pumping

effect, and as such, the heart moves blood throughout the body, both delivering chemicals

to cells and removing waste [1].

Figure 1.1 Cross-sectional view of the heart [1].

The cardiac cycle, as typically described, begins in the right atrium. The

contraction of this atrium moves oxygen-deficient blood from the systemic circulation

into the right ventricle, where the power contraction of the right heart is performed. The

blood then continues through the pulmonary arteries into the lungs to oxygenate the

hemoglobin in the red blood cell. From the lungs, the blood returns to the heart via the
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pulmonary veins into the left atrium. The blood is pumped into the left ventricle during

diastole, where the "final" contraction of the cardiac cycles takes place, and the blood

reenters the systemic blood vessels for conduction around the body.

1.2.1.2 Cardiac Electrophysiology. The heart is unique in its mechanism for enervation.

Throughout the heart there are no afferent nerves for the purpose of muscle contraction;

instead, there is a complex system of excitable cells that are not quite neurons, and non-

contractile, unlike the surrounding muscle cells. The existence of this system is a

testament to the importance of sequential contraction and regulation of cardiac function.

The genesis of the contractile impulse begins at the sino-atrial (SA) node, located

within the right atrium. The node is simply a connection of excitable cells that receives,

under normal conditions, a regulatory signal to "fire", which is mediated by baroreceptors

and other components of the autonomic nervous system (ANS). When this impulse is

missing, the SA node has a natural resting frequency of 60-100 discharges per minute.

The impulse spreads across the atrial septum to activate both left and right atria [2].

After a short delay to allow full atrial contraction, the atrio-ventricular (AV) node

begins the process of enervating the ventricles. As opposed to the simplicity of atrial

contraction, the ventricles require a more precise method of pumping. From the AV node,

the signal travels down the Bundle of His, located centrally within the ventricular septum,

down to the apex of the heart through the left and right bundles, and then back upwards

through the cardiac muscle within enervating channels called Purkinje fibers. The

resulting action is a contraction of the ventricles starting at the apex and moving up. This
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creates a wrenching motion within the heart, which "wrings" the blood out of it like a wet

towel, which is a surprisingly effective movement.

From this, one can see that the function of the heart as a muscle is very strongly

connected to the pulsatile signals that it receives and the order and timing of those

signals. In order to further understand how this relates to current medical practices, such

as cardiac diagnostics and medical evaluations, a brief introduction to the

electrocardiogram (ECG) and electrocardiography will be given.

Figure 1.2 Sample ECG with corresponding functions [3].

The ECG is a time series of voltages recorded from electrodes placed on the

chest, typically over multiple cardiac cycles. It is the primary tool used in the non-

invasive diagnosis of many cardiac conditions such as congestive heart failure, various
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arrhythmias, and valvular disease. Given its temporal nature, the ECG is also a useful

tool for referencing specific cardiac events.

The ECG is composed of various subwaves, denoted by the letters P, Q, R, S and

T (note: the U wave is sometimes included, however, its relation to cardiac contraction,

and even its very existence, are contested, and as such, it is left out of this discussion),

which are related to the major features of the typical ECG (see figure 1.2). The P wave,

the first voltage noted on an ECG, is a relatively small (approximately 0.25 mV) voltage

that signifies the depolarization of the atrial myocardium. The next major feature of an

ECG recording is the QRS complex. This is the result of the repolarization of the atria

and depolarization of the ventricles to create a large voltage peak, which is the R wave.

The QRS is normally referred to as one feature rather than separate waves because the Q

wave may not be present at all times, or the S and R have different shapes or do not stick

to their typical amplitudes (for the R wave, this is around 1.6 mV). Following the QRS

complex is the T wave, which is a result of the repolarization of the ventricles. Though it

is beyond the scope of this paper, it is important to note that the shape and amplitude of

these waves change with the position of the electrodes with reference to the heart. A

typical clinical recording will use multiple leads to obtain many different perspectives of

the electrical activity to obtain a better composite picture [4].

1.2.2 ECG Interval Variability

Other than simply looking at the ECG morphology and basing diagnoses on it, interval

variability is an offshoot of traditional ECG signals, created by interpolating the interval

values obtained from the ECG. These signals are taken by finding the time (typically in
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milliseconds) of an interval on the ECG (R-wave to R-wave, P to T, etc.), then recreating

a signal and performing analytical steps on that function to find more information not

readily apparent on a conventional ECG recording. These signals and their creation

process will be covered in detail in chapter 2. These intervals are closely related to many

different cardiac phenomena; for example, the PQ interval is a measurement of the delay

set by the AV node.

1.2.2.1 Heart Rate Variability. Heart rate variability (HRV) is a measurement of R-R

variability. It was first realized as a clinically important quantity in the 1960s by Hon and

Lee [5], and later further codified in 1977, when Wolf and colleagues [6] presented data

pointing to reduced HRV as an indicator of post-MI mortality. Several years later,

Akselrod et al [7] began the present day task of frequency power spectrum analysis as a

measure of activity in the autonomic nervous system. There are many uses for the R-R

interval as a diagnostic tool, the most simple of which is the heart rate of a patient.

Statistical time-domain measurements provide a picture of recorded ECG signals,

giving quantities that can be used to compare general patient states such as paced

breathing, sleep, activity or illness. Paced breathing is a process by which the breathing is

set to a standard rhythm by use of a visual or aural metronome counting inhalations and

exhalations. This is done to understand the effects of the respiratory rhythm on the heart

rate by providing a known rhythm that the patient adheres to, thus reducing the unknowns

for the researcher. Some sample quantities used in time-domain analysis are the standard

deviation of normal-to-normal intervals (SDNN), the standard deviation of average NN

intervals (SDANN), or the root mean squared difference of successive NN intervals



(RMSSD) [13]. These methods, while providing insight into the importance of HRV in

cardiac diagnostics, do not provide detailed interpretations of variability, nor much

information on the link between this variability and instantaneous changes in autonomic

nervous system function, which regulates the electrical impulse of the heart.

From this aspect of R-R interval analysis, we shift directions to the frequency-

domain. These methods do not use the ECG signal in the frequency domain, as it would

not contain information about the beat-to-beat interval values. Instead, one popular

method of frequency domain analysis is to create an inter-beat interval signal (IBI). This

signal is a derived signal of the ECG, created by assigning each successive time point (7)

in the interpolated signal a value equal to the R-R interval time in milliseconds between

beat (N) and beat (N +1) .

7



Figure 1.3 Steps from ECG signal to IIBI R-R interval signal.

As shown in figure 1.3, the IIBI signal, or interpolated inter-beat interval, is

constructed by taking the value in the sequence of R-R interval values (the

inter-beat-interval, or IBI), then repeating the value for the length of the value. For example, if the

RR time for beat one is 350 ms, then the value 350 will be repeated for 350 ms, and if

beat two is 338 ms, the value 338 will be repeated for 338 ms. This does not mean that

the value will be repeated for 338 points; it is dependent upon signal sampling frequency.

8
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If the sampling frequency is 1000 Hz, then the value will be repeated for those 338

points, but if the sampling frequency is 250 Hz, the value will be repeated for 84 points.

This system gives more weight to larger values, and also provides for even sampling in

the time domain, without which the frequency analysis will be incorrect. This signal can

be manipulated further by subtracting the mean value from each point to center the signal

around zero.

After the desired signal is created, the next step is frequency spectral analysis,

where a Fourier transform is performed on the time domain signal, and a power spectrum

for the signal is obtained. The spectral range of interest for HRV is between 0.05 Hz and

0.4 Hz. This range is chosen because it is the frequency band that shows autonomic

nervous activity. Researchers then look for any outstanding differences in frequency

content between two multiple types of records to try and generate information pertaining

to the patient's health or current activity, such as varying states of sleep or comparing

anxiety to calmness.

1.2.2.2 Implications for the Autonomic Nervous System. As stated earlier, the

autonomic nervous system regulates the heart rate. The ANS is composed of two parts,

the sympathetic and parasympathetic nervous systems (SNS and PNS respectively). The

PNS is the dominant system during rest, as it slows down the heart rate, while the SNS is

active in a "fight or flight" situation, as it speeds up the heart rate and activates other

systems necessary for conditions of high activity or anxiety. Both these systems enervate

the heart through separate means. PNS enervation is achieved through the vagus nerve,

while the SNS uses a network of nerves termed the sympathetic plexus, as shown in



figure 1.4. During rest conditions, the PNS is the major force controlling heart rate,

keeping it well below 100 beats per minute [1].

10

Figure 1.4 Sympathetic and parasympathetic enervation of the heart [9].

Since the heart rate is moderated by two opposing systems, and adjusted

constantly, the heart rate has a degree of variability to it, as already discussed. The two

main frequency bands, LF (0.05-0.15 Hz) and HF (0.15-0.4 Hz), each correlate to activity

within the ANS. The summation area of HF activity over the band of interest relates

closely to vagal nerve activity, while the summation of LF activity is a combination of

both PNS and SNS enervation. Not only are these components monitored to achieve

some understanding of ANS function and health in patients, but their ratio (LF/HF) is

also an important quantity in determining which branch of the autonomic nervous system

is dominant [8].
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1.2.3 QT Interval Measurement

From the encouraging results obtained analyzing the R-R intervals using various

methods, researchers have been branched into other types of interval measurements. QT

interval measurement and variability have become a popular choice for seeking answers

to complex problems like sudden cardiac death or the onset of mortal cardiac conditions.

However, this field remains largely untouched in terms of power spectral analysis.

There has been a good deal of work conducted by researchers on the statistical

analysis of QT variability as well as physiological investigations of the QT interval.

Frljak et al [10] have shown that QT variability increases after cardiac surgery,

suggesting that the cardiac conduction system has been disrupted as a result of the

procedure. Another study conducted by researchers at Vanderbilt University [11] has

shown that ANS blockade increases QT interval length, and patients with pre-existing

autonomic failure, when residual ANS activity is suppressed, showed even longer QT

intervals.

Work conducted on comparing QT variability to HRV has shown mixed results.

In a subject with LQTS (long QT syndrome), Nakagawa [12] has shown differing

relationships between QT interval length and LF/HF quantities depending on the position

of the subject, while Malik [13] has shown that in healthy volunteers, the relationship

between QT and RR intervals vary greatly between subjects, but remain fairly consistent

for individual records from the same subject, which has also been noted by Batchvarov

and colleagues [14].

Ventures into spectral analysis of QT interval lengths have shown potential as

another indicator of ANS function. Yeragani, Berger, Pohl and Balon [15] have
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demonstrated in a study that there are diurnal fluctuations of QT variability, and these

fluctuations are quantifiable within the familiar frequency bands used in HRV analysis.

From these previous studies, we can infer two things: QT variability is a viable method of

judging ANS function, and it is more complex than HRV analysis, though this last

observation may only be due to a poor understanding of the relation between ventricular

repolarization lability and autonomic activity.



CHAPTER 2

TEMPLATE MATCHING ALGORITHM

2.1 Overview

Chapter 2 presents the reader with a description of Dr. Berger's template matching

algorithm, which is currently used by the majority of published researchers in QT

variability. In addition, it contains a detailed presentation of the methods employed to

develop this algorithm for the purposes of this thesis, including equipment used, and

program code.

2.1.1 Berger Method

The template matching algorithm used for this thesis was first developed in 2003 by Dr.

Berger [1] for the investigation of sudden cardiac death. His subsequent statistical

analysis methods are useful in gauging the method's efficacy, but not important to the

purposes of this paper because two different aims are sought; that is, this thesis is

searching for spectral analysis, and is also not interested in sudden cardiac death per se,

but disease vs. health. This method was followed faithfully with the exception of a few

minor differences due mainly to a shift in application purposes.

The method, as described by Dr. Berger, proceeds as follows:

1. The operator selects an ECG record, x(n), to analyze. If multiple leads are
present, the lead with the best signal quality (i.e. most prominent Q, R and T
waves) is selected.

2. The time of each R-peak is identified using an automatic R-wave detection
program (in this case developed by Dr. Ronald Rockland and Pierre Asselin
[16], both of NJIT). These R beats are noted as Ti .

13
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Figure 2.1 Graphical summary of Berger method. a) Operator selects beginning and end points of QT
interval (0 and 1). b) The R-peak is found within this template, and 50 ms beyond this point are removed.
c) This new template (dark blue) is then fit on each successive beat starting 50 ms after the R peak.

3. The operator selects the beginning and end of the QT interval template from
one ECG cycle, denoted as beat k. This template becomes φ(n) , where n is the
sample number. Thus,

φ(n) = x(n) from n = no to n1 	 (2.1)

where no and n1 are the user-defined endpoints of the QT template. After the
template is selected, the R peak within the template is detected, and a point 50
ms (no ) beyond the peak is found. This point becomes the new beginning of
the QT template (it is important to note that the method ignores the actual
QRS complex for simplicity and matches the ST segment of the wave).
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4. For each successive heart beat, an error function e i (a) is defined.

where a is a time stretching factor. e(a) is a sum squared error function
between the ECG signal, and the template scaled by a for beat i.

5. A search of alpha values between 0.9 and 1.1 is performed to minimize e, (a)
and obtain a, . A step size of 0.0001 is suggested.

6. The QT interval for the ith beat, QT i, is given to be

where NAt is the duration of the initial QT template [15]. The time sequence
of subsequent QTi is what is later used for the calculation of power spectral
density.

2.1.2 Reasons for Using the Method

This method was selected for a few prominent reasons. First, the method itself is

extremely simple and straightforward. It is also programmatically less intensive than

other methods, such as identifying Q and T wave separately using decomposition

techniques or differentiation, and provides relatively quick computation times.

2.2 Algorithm — A detailed explanation

This section will show, in detail, how the algorithm was put into use, and the methods

used to accomplish it. For the purposes of this paper, all computations were performed on

an HP pavilion ze4430 running Microsoft Windows XP. "LabVIEW" refers to Texas

Instruments' LabVIEW 7 Express, and MatLab refers to MathWorks Inc.'s MatLab 7.0.



16

2.2.1 R-wave Detection

R-wave detection for use in this thesis was conducted using a utility developed

previously, as mentioned above, and was written in LabVIEW [16]. It uses multiple

methods to recognize R peaks and minimize missed beats and false positives.

Initially, a single lead ECG recording is provided to the program, where it is

passed through a band pass filter (0.5 Hz — 40 Hz) and generates an array of points above

a threshold (40% of maximal value). This array, with the initial ECG and a "start" group

(defined as the next group of points above 40% whose index is greater than 150ms after

the current index), is passed through a second level of detection based on the first

derivative of the ECG and comparison with the first group of points. This information is

then compared, validation checks are performed, and the process is iterated for 30 second

blocks of data for the signal. After this is completed, duplicate R peak indexes (due to

program looping) are removed from the array of R peak indexes (Note: this process is

modified slightly. The original R peak detector provided an array of RR interval values. It

was subsequently modified to present the index points of the R peaks).

This R wave detector is a fairly robust program, able to cope with noisy ECG

recordings, significant baseline wander, changes in R peak height, and negative R peaks.
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2.2.2 Template Selection

Figure 2.2 Block diagram of template selection VI.

The template matching portion of the algorithm implementation was written in

LabVIEW. The program accepts the same single-lead ECG as the R wave detector. It

displays to the user the ECG, and asks the user to denote the beginning and end of the

template interval with two cursors (0 and 1, respectively). From here, an array is

composed of the points on the ECG record between cursor position 0 and cursor position

1. This is displayed as the QT interval to the user. After this, the data, along with the

sampling rate, is passed into the QT interval modifier, as shown below. During the course

of this thesis, the beginning of the Q wave was defined as the final isoelectric point

before the QRS complex, while the end of the T wave was defined as the first isoelectric

point after the T wave.
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Figure 2.3 Block diagram of QT interval modifier.

The QT interval modifier takes the array of the base QT template as its input.

First, it finds the R peak within the template. Finding that position, it then creates an RT

interval by finding the next peak in the signal. The sampling rate is used to determine

how many points 50 ms would be equivalent to, and then the RT interval is shortened by

removing that many points from the beginning. The removal of these 50 ms of data is

performed so that the entire QRS complex will be removed from the template. This step

reduces the error that will be calculated later during template scaling due to the QRS

complex. If the QRS is not identical each time in both voltage and temporal position, the

error calculated will be large, and as such, its inclusion in the QT template is a detriment

rather than a benefit in calculating the error during template scaling. The final result of

this is the modified QT interval, which is then redisplayed to the user (figure 2.1). Since

array manipulation in LabVIEW are complex and time consuming, as can be seen in

figure 2.2, only portions of the algorithm that require user input were coded using

LabVIEW, which in this case is only template selection.
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LabVIEW, which in this case is only template selection.



19

2.2.3 Template Scaling

Template scaling is handled through a MatLab function script (c ompare . m).

This script performs the calculation of the error function e(a). This function takes as its

inputs the ECG file, an array of R peak positions (generated from the R wave detector),

the modified QT template, and the sampling frequency. From there, a for loop is used

incrementing alpha from 1.35 to 0.65 using a step size of -0.0001. Berger [1] suggests

that a range of 0.8 to 1.2 should be sufficient, but to test this method, the range was

increased in order to see if accurate alpha values are being calculated outside of this

arbitrary range. The new array length (c_l en) is then calculated by multiplying the

original template length (o_l en) by alpha (if this quantity is not an integer, the value

is floored). Next, a null array is created of length c_l en, and the corresponding values

from the template are inserted into their scaled position in the array.

After this new, scaled array (QT_s cal ed) is composed, it is then compared with

an array of identical length taken from the current beat on the ECG, starting 50 ms after

the respective R peak. A typical summed squared error value (total_e2) is calculated,

and this number is placed in an array indexed by alpha. This process is repeated for all

values of alpha in the range. The resulting array of alpha vs. error numbers is then

searched sequentially to find the lowest value of total_e2. This alpha value is said to

be the scaling factor a, as described by Berger [1]. The results of this calculation (a

graph of error vs. alpha) are displayed to the user for visual verification. For the source of

compare .m, reference Appendix A, section 1.
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2.2.4 Interpolated Signal

The interpolated signal is generated by another MatLab script, ias . m. This script is the

main application script, as it calls the function compare from compare . m. This step is

of importance to this thesis because it will later be used in the calculation of the power

spectrum, however, it is not necessary if frequency analysis is not to be performed. The

first role of this script is to repeat the alpha generating function for each successive beat

in the ECG record and compile an array of alpha values by beat number. Next, the script

calculates the length of the QT intervals in the following manner: for each value in the

alpha array, the base time of the template (QTi)is multiplied by the alpha value. Next, 50

ms is added to account for the missing QRS complex. This value is written to an array of

strictly QT interval times, and also written to an array to create the interpolated signal.

This gives an interpolated signal to provide variance with respect to the initial ECG

recording, which is the focus of the investigation.

After this array is created, the mean is taken, and then subtracted from each value

in the array to center the signal around zero for easier frequency analysis. From here, the

signal can be manipulated in any manner necessary, which will be covered in greater

depth later. The interpolated signal, as well as beat by beat QT interval values, is

displayed for visual verification by the user. For the source code of this script, reference

Appendix A, section 2.

2.2.5 Outliers

One issue that it is important to note is the occurrence of outliers in the interpolated

signal. When the algorithm has finished matching the QT intervals to the template, there
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are invariably some outliers in the data. These outliers are very easy to spot visually, as

they are much lower than the lowest true interval value. When the template matching

algorithm fails to match an interval, for reasons such as a noisy signal or a change in T-

wave morphology, it returns the lowest error computed. This will always be the lowest

value of alpha available; since the error function will be summing the error over the

shortest interval, it will have the least error.

As stated earlier, the range of alpha was increased to outside what was proposed

by Dr Berger. The claim that alpha will vary by no more than ±20 percent proved to be

correct. Therefore, the alpha values that fall outside of the Berger range (between 0.65

and 0.8 and between 1.2 and 1.35) were determined to be outliers. If the QT template

selected was actually too large or too small in comparison to the average value of QT

intervals for that record, it can be said that anything beyond 20 percent above or below

the mean QT value is an outlier.

It is important to note that this is a non-standard definition of outlier

identification. More traditional methods of outlier identification would utilize a threshold

of standard deviations away from the mean as a cutoff point, but given how frequently

the outliers occur, and their patently obvious appearance, this method was not used. A

simple visual review of the IIBI signal, in addition to the criteria here described, clearly

shows these outliers and they can then be manually removed.

Once the outliers have been identified, the next step is to remove them from the

interpolated signal. Two techniques were tried in relation to outlier removal — removing

the outlier and condensing the signal, and removing the outlier and replacing its empty



space with the average of the neighboring intervals. These two techniques will be

explained in more detail in section 3.2.1.
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CHAPTER 3

RESULTS

3.1 QT Interval Validation

Validation of the implementation of the template-matching algorithm must be performed.

This validation was completed by using statistical testing between two groups of QT

intervals, one generated using the algorithm described in this thesis, and one obtained

from the QT interval database found at Physionet, an online resource for physiological

signal research.

3.1.1 Selection of Samples

All data used for validation was obtained from Physionet. Within Physionet, there are

many databases containing different types of physiological signals. With respect to ECG

data, there are many options, from patients with ST depressions to atrial fibrillation. One

such database contains pre-annotated ECG records containing markers for the

beginnings, peaks, and ends of the P, QRS, and T wave. This database was used for

testing against because it is a verfiable source of QT interval values.

Four records were chosen from this database for three reasons — clarity of signal,

visibly identifiable T-waves, and stability of R wave height. These are important

considerations because if the signal is noisy, the template-matching algorithm will not

work to its optimal performance, or may not work at all. The T-waves must be

pronounced. This is due to the nature of the template-matching algorithm. If the T-waves

do not have significant peaks, or are not visible on the lead with the clearest QRS

23
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complexes, the template-matching algorithm will not be able to calculate the QT

intervals. One can see these criteria are important to the function of the algorithm by

remembering that the process involves creating an error function as the template is

scaled. If the T-wave is small, or exists where there is ambiguity in the QRS complex,

then the template will have similar error values over the range of scaled templates, or will

have skewed error readings because the position of the R wave or Q notch are not easily

detected. Stability of R-wave height is a minor concern, but aids in the R-wave detection

portion of the algorithm, as varying R-wave height creates missed beats and requires

more operator input.

The four records chosen are: se1231, se116273, sell 6420, and se116483. The first

record, se1231, was taken from a 73 year-old male experiencing ventricular tachycardia.

This record is also available, minus annotations, in the MIT-BIH arrhythmia database,

also found on Physionet. The other records, se116273, se116420, and se116483, are

annotated copies of records available in the MIT normal sinus rhythm database on

Physionet. All records were either initially recorded at 250 Hz (se1231), or resampled to

250 Hz using applications available through Physionet's waveform database (WFDB)

toolkit.

3.1.2 Processes

This section presents the methods used and steps taken to validate the template-matching

algorithm. The steps, which will be explained in detail, are as follows:

1) Access records using WAVE, a graphical program written specifically
to manipulate files found in the MIT ECG databases at Physionet.

2) Obtain intervals from annotated files



25

3) Run records through template-matching algorithm to obtain interval
values

4) Compare overall interval values using Student's T-test for statistical
significance.

5) Compare individual interval values using statistical tests for significant
difference.

In the first step, a program called WAVE is used to view and export the

annotations from the records. WAVE is a program native to Unix-type operating systems,

as are all programs in the WFDB toolkit. However, they can be run under Microsoft

operating systems using a third-party Unix emulator such as Cygwin. Once the record is

read in, it can be manipulated, data analysis can be performed (only if the analysis

routines are tailored for working within WAVE), and annotations can be added and

edited.

A QT-annotated record contains 12 files, many of which contain annotation

information which are compiled into a large annotation file. Detailed information on the

format of an annotated record can be found in Table 3.1.
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File Type	 Purpose

.DAT	 Contains the digitized signal values

.HEA	 Header file containing information such as patient age, sampling frequency, and any
other notes the recording operator deemed pertinent to the record

.MAN	 File related to commentary of record

.ATR	 Attribute file. This contains non-marker annotations, or annotations not
related to temporal position in the file

.PU	 The main annotation file. Contains markers for P, QRS, T, and U waves for
leads one and two

.PUO	 Similar to .pu, but only for lead one

.PU1	 Similar to .pu. but only for lead two

.Q1 C	 Contains data for QRS complexes of lead one

.Q2C	 Contains data for QRS complexes of lead two

.QT1	 Contains data for T waves of lead one

.QT2	 Contains data for T waves of lead two

.XWS	 WaveScript file. This allows for graphical display of information in the .dat
file.

Table 3.1 Details of a Physionet QT interval record.

When WAVE is called, it accesses the record . dat and record . pu files.

After this, the intervals annotated in the . pu file are exported to a text file. In actuality,

this process is quite involved due to the availability of specific marker exports in WAVE.

Though programs can be written to export only the QT interval from a record read into

WAVE, there are currently none in existence. To get around this problem, the entire

record of annotations is sampled (in this case to at least 30 seconds or 30 R-R intervals,

whichever is longer). Then this annotation record, which contains time of incident, data
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point of incident, the marker type (as displayed on the WAVE screen), and which lead it

is on, is copied to a text file. Once this record is attained in an easy to use ASCII text

format, the file is parsed for occurrences of the QRS marker, and the end-of-T marker.

Time values of these points are subtracted for successive beats, and the QT interval array

is obtained.

These intervals are technically RT intervals. The reason for this is due to the way

the template-matching algorithm works. Since it works by finding the R beat, and moving

50 ms forward to compare the template, the fiduciary point which is referenced after the

interval time is calculated is the R peak, not the Q wave. To simplify validation purposes,

the MIT QT database was modified to display RT intervals instead of QT intervals. This

is not as large of a concern as may seem, since the Q wave may be non-present, and the

QRS complex itself is of such a short interval that the loss of the QR portion of the larger

QT interval is insignificant. Initially, template-matched QT interval arrays were to be

compensated for by replacing the missing QR interval with an average QR interval

length; however, there has been little research into QR interval lengths, due to the varying

morphologies of QRS complexes, and the small size of the QR interval. To rectify this,

one can simply utilize the unmodified QT template from section 2.2.2 instead of its

modified counterpart. This unmodified template (before removal of the 50 ms blanking

period) is the true QT template, however, this point was not well conveyed in [1]. An

alternative method is to utilize the modified template obtained at the end of 2.2.2, include

the 50 ms period removed, and then utilize an average QR interval obtained from the

record itself, however, this is much more tedious and almost unnecessary in light of the

fact that a true QT interval length is available in the process of template generation. There
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is one benefit of using the RT interval over the QT interval; that is, the R peak is a much

easier point to identify than the Q wave as it is a peak, and the Q-wave is a change from

an isoelectric component to a minimum.

After the interval values are obtained from the test records using WAVE and the

pre-annotated QT files, the same records, across the same time period, are run through

the template-matching algorithm, which is described in chapter 2. Before the statistical

analysis is performed, outliers are removed from the array, though not as described in

section 2.2.5. These outliers are removed manually from the array of QT interval values

(no manipulation is made to the interpolated signal, as it is not used in this portion). This

is accomplished by visually inspecting the array for the lowest value available. This

value, when graphed, is typically repeated multiple times, and is not within proximity of

the surrounding values, and corresponds to sixty-five percent of the original QT template

length. The corresponding value from the annotated QT array is removed to preserve the

pairing of data.

These two sets of QT interval values are then compared using Student's T-test,

which is a statistical test for finding the probability that two samples of numbers are from

the same parent population, given as

(3.1)

where

(3.2)
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This test is relevant to this work because the end purpose of generating the QT intervals

is to calculate a power spectrum of the variability of the QT intervals, and as such, the

variance and means of the template-matched and annotated QT intervals should be

statistically similar. This test assumes that the variances of the sample populations are

equal, as they should be, since they are of the same physical record. For all tests, the null

hypothesis is the two samples are from the same parent population, and the alternative

hypothesis is that the two samples are from different parent populations, which shows

that the QT template matching algorithm lacks the ability to find the correct length of the

QT interval.

To test individual QT intervals, a percent difference between the Berger and

Physionet intervals was taken, and then a z-test was performed. Z-tests are a statistical

tool used to compare a sample set of data to a given mean. In this case, the sample

averages were tested at three threshold levels to see if the mean percent difference was

less than a given percent difference; here, these three levels are three, five and ten

percent. The equation for a z-test is given below.

(3.3)

where ,u0 is the threshold value for comparison, in this case, the mean percent difference

between Physionet and algorithm-generated interval lengths, 37 is the mean percent

difference, and sigma and n are the standard deviation and number of data points,

respectively. From this z-score, one can calculate the probability that the mean y is less

than μo by using a lookup table.
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3.1.3 Conclusion

The results of the validation test will be presented in this section. First, the data and

probabilities will be presented, and afterwards, commentary and explanation of the

results will be given. For analysis purposes, when a probability is given, it means that the

means are equal for any significance level less than a given probability P. T-test scores,

Z-test scores, and beat-to-beat data are available in Appendix B.

The first record, se1231, started out as a set of 42 QT intervals, but after outlier

removal, 19 intervals were left to perform statistical analysis on, giving 18 degrees of

freedom. The Physionet data had an average of 0.454, and a standard deviation of 0.0122,

while the template-matched QT intervals had an average of 0.445, and a standard

deviation of 0.189. T-tests for this record give a t-value of 1.809, which supports the null

hypothesis for a significance level of 0.05. For individual interval testing, the z-test

yielded the following results: for μo = 0.03 , a z-score of 1.809 was obtained, correlating to

a probability of 0.0352 that the mean percent difference is less than three percent. For

,u, = 0.05 , a z-score of -1.303 was obtained, correlating to a probability of 0.9037 that the

mean percent difference is less than five percent. For go = 0.10 , a z-score of -9.084 was

obtained, correlating to a probability of 1.0 that the mean percent difference is less than

ten percent. A probability of 1.0 is reached when the z-score is significantly more

negative than -4, which correlates to a probability of 0.99997.

The next record, se116273, started out as a set of 38 QT intervals, and after outlier

removal, 32 intervals were left, giving 31 degrees of freedom. The Physionet data had an

average of 0.323, and a standard deviation of 0.0042, while the template-matched QT

intervals had an average of 0.298, and a standard deviation of 0.0162. T-tests for this
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record give a t-value of 8.6501, upon which the null hypothesis is rejected for all

significance levels. For individual interval testing, the z-test yielded the following results:

for μ, = 0.03 , a z-score of 6.34 was obtained, correlating to a probability of 0.0000000001

that the mean percent difference is less than three percent. For A, = 0.05 , a z-score of

3.912 was obtained, correlating to a probability of 0.00004 that the mean percent

difference is less than five percent. For go = 0.10 , a z-score of -2.157 was obtained,

correlating to a probability of 0.9844 that the mean percent difference is less than ten

percent.

The next record, se116420, started out as a set of 36 QT intervals, with no

intervals requiring removal, giving 35 degrees of freedom. The Physionet data had an

average of 0.371, and a standard deviation of 0.03402, while the template-matched QT

intervals had an average of 0.366, and a standard deviation of 0.0103. T-tests for this

record give a t-value of 0.4802, which supports the null hypothesis for a significance

level of 0.05 or greater. For individual interval testing, the z-test yielded the following

results: for go = 0.03 , a z-score of -6.603 was obtained, correlating to a probability of 1.0

that the mean percent difference is less than three percent. For 11c  = 0.05 , a z-score of -

11.051 was obtained, correlating to a probability of 1.0 that the mean percent difference

is less than five percent. For ,u, = 0.10 , a z-score of -22.0103 was obtained, correlating to

a probability of 1.0 that the mean percent difference is less than ten percent.

The last record, se116483, started out as a set of 40 QT intervals, but after outlier

removal, 36 intervals were left to perform statistical analysis on, giving 35 degrees of

freedom. The Physionet data had an average of 0.339, and a standard deviation of

0.00252, while the template-matched QT intervals had an average of 0.349, and a
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standard deviation of 0.00375. T-tests for this record give a t-value of 13.386, upon

which the null hypothesis is rejected for all significance levels. For individual interval

testing, the z-test yielded the following results: for μo = 0.03 , a z-score of 0.07998 was

obtained, correlating to a probability of 0.5301 that the mean percent difference is less

than three percent. For μ0 = 0.05 , a z-score of -9.611 was obtained, correlating to a

probability of 1.0 that the mean percent difference is less than five percent. For μ o = 0.10 ,

a z-score of -33.839 was obtained, correlating to a probability of 1.0 that the mean

percent difference is less than ten percent.

One benefit of the beat-to-beat analysis is the ability to check the most erroneous beats

(the beats with the largest percent difference from the Physionet values). For example,

beat 31 of record sell 6273 (Appendix B) shows a 21.875% difference from the Physionet

data. This is 80 ms shorter than the accepted value. Graphical review of that beat in the

ECG data shows that 250 ms (the Berger-generated value) is, in fact, off from the true

length of the QT interval.

The results of the statistical validation show disconcerting and conflicting results.

Percent difference of individual QT interval values showed that for all records, the mean

percent difference of interval values is less than ten percent, and for three of those

records, the mean percent difference is less than five percent at the 0.10 significance

level. Even more so, one record, sell 6420, showed at the 0.20 significance level a mean

percent difference of less than three percent. This shows that over all, there is little

difference between the QT intervals calculated by the Berger template matching method

and the intervals obtained from the Physionet file annotations.
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However, the t-tests conducted to judge the statistical probability of two data sets

being from the same parent set had less positive results. Two of the records, se1231 and

sell 6420, are shown, at the 0.05 significance level or higher, to have similar means,

while the other two records, se116273 and se116483, are significantly different. What

does this mean to the validity of the template matching algorithm? At first glance, it

shows that fifty percent of the tested records return statistically similar results, which is

not encouraging, and may lead one to believe that the template matching algorithm fails

to accurately represent the variance of the QT intervals in a given ECG record. However,

there are numerous reasons to explain these results.

Record 	 se/231 N = 19

Threshold 	 P Z-score
Number above

threshold
0.0300 	 0.0352 1.8094 12
0.0500 	 0.9037 -1.3031 5
0.1000 	 1.0000 -9.0845 1

Record 	 se116273 N = 32
Number above

Threshold 	 P Z-score threshold
0.0300 	 0.0000 6.3401 29
0.0500 	 0.0000 3.9124 27
0.1000 	 0.9845 -2.1569 9

Record 	 se116420 N = 35
Number above

Threshold 	 P Z-score threshold
0.0300 	 0.8034 -6.6031 8
0.0500 	 1.0000 -11.0051 2
0.1000 	 1.0000 -22.0103 1

Record 	 sel16483 N = 35
Number above

Threshold 	 P Z-score threshold
0.0300 	 0.5302 0.0800 10
0.0500 	 1.0000 -9.6112 3
0.1000 	 1.0000 -33.8390 0

Table 3.2 Summary of mean percent difference (MPD) statistical validation
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First is the inherent difference of interval calculation. The Physionet data obtained

their QT intervals using traditional decomposition techniques, filtering the signal to find

the QRS complexes and T waves, and using further processes such as first-derivative

analysis to find the beginning and end of the wave. This method provides undeniable

identification of the T and Q waves, and exact locations for their beginning and end. The

template matching algorithm is dependent upon the least error given by comparing the

template against a sampled section of the ECG record. This method is much more

susceptible to error due to signal noise and changes in T wave morphology.

Both methods are dependent upon operator interaction, but in different ways. The

calculated QT intervals from Physionet are automated detections of component waves,

but the operator had the final option to move the points for annotation should the

automatic detection fail in any way. Even though the primary means of determining the

wave locations is through automatic detection, the end result is still a manually annotated

record, though by a trained operator. In contrast, the template-matching algorithm is

dependent upon operator interaction only initially, and afterwards, it is a fully automatic

calculation. The operator, as explained in chapter 2, selected the template QT interval to

be matched against all other QT intervals. If the operator selects a smaller QT interval, all

subsequent matches will be shortened. This leads to skewed data. While the interval

times encountered may be different, the matching algorithm still works to match the

template. This presents one interesting feature about the template matching algorithm —

the absolute QT intervals may or may not match up with the accepted length of the QT

intervals, but their variations will be the same, because the shortened or lengthened QT

template will return proportionally shorter or longer QT intervals.



35

Another reason for these results is the normality of the QT interval distribution. If

the QT interval values are not normally distributed, the t-test will not operate properly,

and will return incorrect results as to the matching of the data sets. This will become

apparent in situations where the ECG interval observed spans periods of paced to non-

paced breathing, episodes of arrhythmia to normal rhythm, or other state changes. Data

for these tests can be found in Appendix B.

These conclusions must be qualified with a not about the data. The records chosen

were manually selected from a large population of records available at Physionet, and

were heavily edited beyond their initial condition due to outlier removal. As such, the

data is the result of a selective process involving the selection of high-quality records

(prominent R and T features) and removal of inconsistent and detrimental data points. As

such, the data used and conclusions drawn are only applicable to the data used here and

may not be able to be extrapolated to the population at large.

After receiving these results, it became necessary to compare them to the results

obtained by Dr. Berger in his validation of the method, but he did not perform any

comparable statistical analyses comparing his QT interval values to an accepted method

of calculating the QT interval. In his paper [1], he reports only on the reproducibility of

his results, and their comparison to heart rate variability, which does not address the issue

of whether or not the intervals being reported by the method are accurate. It reports the

coefficient of variation, given by the standard deviation over the mean, as 0.22 for the QT

interval in 30 patients. From this thesis' results, an average QT coefficient of variation is

shown as 0.034, however, this sample population was much smaller (four records), and

his sample population contained patients with no organic heart disease, patients with
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coronary artery disease, and nonischemic dilated cardiomyopathy, so as such, the patient

populations are different and are not suitable to be compared to each other.

3.2 Comparative Analysis

Section 3.2 presents the steps taken to perform the power spectral analysis using the

template-matching method. 3.2.1 discusses the sample selection criteria, 3.2.2 discusses

the processes involved in analyzing the data, and 3.2.3 discusses the results and notes any

observations made about the data analysis.

Data analysis was performed to investigate the power spectra of the interpolated

QT interval signal. Investigations were carried out with respect to two main concerns —

self-similarity and health vs. illness.

3.2.1 Sample Selection

Samples for the data analysis portion were selected using slightly different criteria than

for validation. A total of 21 records were initially selected from the Physionet databases —

9 from the normal sinus rhythm database (NSR), 6 from the congestive heart failure

database (CHF), and 6 from the arrhythmia database (ARR). Out of these records, 10

were rejected for various reasons. Two records were rejected because there was

significant intermittent signal noise, probably created by a nearby machine being turned

off and on. This created difficulties in the error function tabulating a reliable

measurement for many of the beats in the signal, and reduced the initially 500 beat

records down to a small number of useable QT intervals (10 and 13 respectively). Five

were rejected due to latent 60 Hz noise that was of such a high voltage that it dwarfed the
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T wave morphology, and made template matching impossible. Three were removed due

to significant events of either arrhythmia or other ventricular incidents such as temporary

fibrillation. This created difficulties of the template-matching algorithm to pick an

appropriate QT interval length, and since the incidents happened frequently, the

manipulations necessary to create a useable signal were very involved, and would

represent a severely manipulated version of the interpolated signal, with the majority of

the intervals being created by processes other than the template matching method. After

these ten files were removed, twelve records remained — three ARR records, four CHF

records, and four NSR records.

The ARR records were recorded from patients experiencing continues or sporadic

arrhythmias. The records used were 100, 102, and 103. The CHF records were taken from

patients with severe congestive heart failure. Patients exhibited changes in QRS complex

morphology, but the morphologies were consistent throughout the record, and as such,

their records were used to test the method's ability to compute the QT interval length on

non-standard morphologies. The records used were 01, 02, 05, and 06 as found online at

www.physionet.org . The normal records were taken from patients with natural normal

sinus rhythm. They ranged from youthful patients with no history of heart disease to

patients on medications affecting cardiac health, but still considered healthy by

physicians. The records used for analysis were 16265, 16273, 16483, and 16539.

After these records were selected, they were run through the template-matching

algorithm to generate the interpolated signal to later be analyzed. Unfortunately, the CHF

records provided a problem. Since the ECG morphology was so drastically different than

the standard ECG morphology witnessed in healthy patients, the template-matching
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process failed. The general shape of the ECG was an inverted R wave, normal ST

interval, and a small T-wave following. The key reason for this failure was the lack of a

defined T-wave. This meant that the algorithm was comparing only the rise from the R

trough to the T wave, which was so small in some cases it was invisible. The matching

procedure returned outliers for almost all beats in the CHF records. For this reason, all

CHF records were excluded from the data analysis. This does not mean that CHF patients

with drastically non-standard morphologies cannot use this type of method for calculating

QT variability, but that the records that were selected were unable to be used because no

single lead contained the necessary information for the calculation process.

This meant that there could be no evaluation of the method for non-standard

morphologies, and only comparisons can be made between patients with arrhythmias and

normal sinus rhythms to see if frequency content is the same. The analysis process is

explained in detail below.

3.2.2 Processes

This section consists of three main parts — analysis performed on the signals before

outliers are removed, analysis with removal and no replacement, and analysis with outlier

removal and average replacement.

First, the interpolated QT signal with outliers intact was analyzed utilizing a

MATLAB script called analysi s . m. The first step of the analysis program is to rectify

the signal to a number of points equivalent to 2". This maximizes the efficiency of the

Fast Fourier Transform (FFT), which is the method of obtaining the power spectrum used

in this thesis. If the signal is longer than 65536 points, it truncates the signal to that
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length. If it is shorter, the signal gets zero-padded up until that number of points. This is

to ensure there is sufficient resolution, due to the fact that the areas of import to this work

are of a very low frequency (0.05-0.4 Hz). Without zero-padding, there are only a few

points within that range, and as such, one can only tell the greatest of differences in the

records. With the zero-padding, the time of the interpolated signal is increased, and the

signal therefore has more data points between 0.05 and 0.4 Hz. This is due to a property

of Fourier transforms that states

(3.4)

Next, the program obtains the FFT of the signal, and begins to compute the

summed power bands of the signal. Two different groups of sums are calculated. The first

group sums the power spectrum from 0.05 to 0.15 Hz and from 0.15 to 0.4 Hz. These are

the traditional two bands used for heart rate variability analysis. Since this thesis partially

aims to compare QT variability to heart rate variability, these numbers will be useful. The

second group of summations is a seven band decomposition of the power spectrum.

Bands are summed at intervals of 0.05 Hz. In addition, the power spectrum is graphed for

visual inspection.

For the records where outliers are simply removed, the process is as follows. The

interpolated signal is taken from the file ias . m, outliers are identified, and then those

intervals containing outliers are removed from the signal. The blank spaces where the

outliers were are removed, and the signal is effectively shortened. The new interpolated

signal is now put through the same process as above.

In the case where the outliers are replaced with an averaged value, the process is

slightly different. This process is automated, as opposed to the manual removal of
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outliers previously discussed. The procedure is carried out in a MATLAB script

rectify . m. This program first finds the outliers. This is done by a simple check for the

minimum value of the signal. The operator, however, must check if the record needs

rectification, or else valid intervals will be removed simply because they are the lowest

interval value encountered. After this value is set aside for exclusion, the program finds

all occurrences of this value, and stores their position in an array. Next, this array is

parsed to compile an array, posi ti on, of interval start points and end points. This is

achieved by checking if the next point in position is one plus the current value in

position. If it is, the function continues. If not, it then marks the current point as the

end of the interval, and the next point as the start of an interval.

After these interval boundaries are identified, the surrounding values are found,

and an average of them is taken. Next, the script replaces the values in between the two

boundary points with this average. This is performed for all intervals containing the

exclusion value. After this rectification process is performed, data analysis steps as

discussed above are performed to obtain the summed power spectra. The code of

rectify .m is available in Appendix A.

These analyses were conducted with two aims in mind. The first is to compare the

normal sinus rhythm records to the arrhythmia records to see if there is any quantifiable

difference in power spectra. The idea for this comparison is seated deep within cardiac

interval measurement. In heart rate variability, comparisons are routinely made between

healthy individuals and sick individuals, or individuals at rest in comparison to rest,

sleep, meditation, or other different states [8]. In addition, it has been shown that QT

interval variability changes after surgery, indicating that autonomic nervous system
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function plays an important role in QT interval regulation [9, 17]. Researchers [1, 11, 12,

and 18] have also shown that QT variability differs with different disease states in

comparison to healthy subjects.

The second purpose of analysis was to judge statements made by some

researchers [13, 14] that QT interval predictability is high within subjects, but low

between subjects. More specifically, they assert that the QT-RR relationship is stable

between records of a single patient, but quite variable between subjects. This method was

tested in a round about way — breaking a single six-minute record into four 150 second

parts and viewing the power spectra for similar patterns.

3.2.3 Conclusion

The data analysis conducted yielded some expected and some unexpected results.

Patterns were observed in both two-band and seven-band power spectra summations,

which will be discussed presently.

As seen in figures 3.1 and 3.2, the arrhythmia data shows evidence of a general

pattern to QT interval power spectra. In the two-band summation, it appears that the high

frequency (HF) region tends to be higher than the low frequency (LF) region. Using

Student's T-test, the mean value of the HF region is significantly larger than the LF at the

0.05 significance level. In addition, when one looks at the seven-band summation, there

is a general shape of high power in the lower frequencies, sloping to the lowest power in

the higher end of the frequency range.



Figure 3.1 Uncorrected Arrhythmia Power (Two-Band).
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Figure 3.2 Uncorrected Arrhythmia Power (Seven-Band).
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When the outlier corrected power spectra (figures 3.3-3.6) are viewed, the results are

slightly more encouraging than uncorrected. Specifically, figure 3.4 shows the corrected

power spectra for arrhythmia patients without replacing the outlying interval with an

average. It can be seen that each individual record has a distinct shape, though the

reasons for these differences of similar records is unknown at this time. Replacement

corrects this occurrence, and returns the shape of the power spectrum to that obtained in

the records without outlier removal. One interesting note that the record arr-102 is quite

different from the others in both corrected graphs (figures 3.4 and 3.6) as it shows a very

high power level in the upper regions of the frequency range (0.25-0.4). As can be seen in

the figures 3.2, 3.4, and 3.6, arr-102 shows different behavior, giving some weight to the

argument that QT interval variability differs greatly between subjects.

Figure 3.3 Corrected ARR Power - no replacement, two-band.



Figure 3.4 Corrected ARR Power - no replacement, seven-band.
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Figure 3.5 Corrected ARR Power - replacement, two-band.
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Figure 3.6 Correct ARR Power - replacement, seven-band.

Normal sinus rhythm records yielded similar results with data analysis, as shown

in figures 3.7-3.12.



Figure 3.7 Uncorrected Normal Sinus Rhythm Power — two-band.

NSR Pow e r
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Figure 3.8 Uncorrected NSR Power - seven-band.



Figure 3.9 Corrected NSR Power - no replacement, two-band.

47

Figure 3.10 Corrected NSR Power - no replacement, seven-band.



Figure 3.11 Corrected NSR Power - replacement, two-band.
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Figure 3.12 Corrected NSR Power - Replacement, seven-band.
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Figures 3.13 and 3.14 show averaged values for the seven-band summation of the power

spectra. Here, the patterns of both patients with arrhythmia and with normal sinus

rhythms can be seen, as well as the effects of correction. It is interesting to note that when

outliers are removed, but no averaged value is replaced, the power spectra become very

equally distributed.

Figure 3.13 Average ARR Power Spectra.
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Figure 3.14 Averaged NSR Power Spectra.

From these figures, and the data presented in Appendix B, it can be seen that the power

spectral analysis did not yield obviously different spectra between patients with

arrhythmias and those with a normal sinus rhythm with respect to shape; that said, the

power spectral analysis did show some patterning with the QT power spectrum. (A

detailed method for analyzing these data for differences is presented in section 3.3.) After

replacement of the outlying intervals with an average, the arrhythmia patients show high

power content between 0.05-0.15 Hz, and then an evening out of the curve between 0.15-

0.4 Hz, while the normal sinus rhythm patients show a steady decrease in power from

0.05-0.4 Hz. In addition, arrhythmia records exhibited higher frequency power than
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normal sinus rhythm records (on the order of four times higher). This is especially

interesting considering that the NSR records were twice as long as the arrhythmia records

(300 seconds vs. 150 seconds).

However, these results are not entirely encouraging. The individual records show

little similarity to these averaged curves, and the steps taken to correct the outlying

intervals have not indicated whether they had brought the power spectra closer to their

actual values or not. There are two possible reasons for this. One simple option is to

declare the template-matching algorithm non-functional. However, this method ignores

the fact that many researchers [10, 15, 18, 19] have used this template-matching

algorithm effectively in their respective research. The second possible cause for the

failure of the data analysis could be the files themselves. Some of the records experienced

state changes in the middle of the record; however, these points were not properly

identified, such as changes to paced breathing, drug delivery, or cardiac episodes such as

mild tachycardia. These influence the records to be a combination of QT interval

variability during multiple states, in which case the records themselves do not accurately

reflect the categories they are a part of. Once again, these conclusions are made with

respect to the fact that the data used is highly selective and accordingly, the conclusions

presented herein are only useful for the purposes explicitly stated.

3.3 Discussion of Future Work

It is clear that much work needs to be done on QT variability. The author proposes many

suggestions for further work on this subject. First is modifications to the template-

matching algorithm. One example could be resampling the ECG data to a standardized,
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high frequency version (for example, taking the 360 Hz MIT records and resampling

them at 1000 Hz). This may prevent resolution issues with matching the QT interval.

When the template matching algorithm works, it picks the best alpha value, and then

judges how many points it would take to replicate the interval value in the interpolated

signal. When the sampling frequency is low, the algorithm must choose the number of

points closest to the calculated value. A higher sampling frequency will allow more

freedom for the algorithm to properly identify the QT interval.

Another aspect of algorithm modification would be to add a second step to the

scaling. In addition to stretching the template along the time axis, the template can also

be scaled across the voltage axis. Though this step may be trivial, and may not add much

to the ability of the algorithm to find the QT interval, it may be able to cope with changes

in T-wave morphology within the record more easily. This method would run through

each prescribed stretch-interval as the algorithm does now, but for each iteration, it would

also scale the wave larger or smaller along the y-axis, which will pinpoint the exact

dimension of the QT interval in relation to the template. This may also lead to some

correlation between vertical variability and health, though this is only speculations.

Additionally, there are some questions about the algorithm's details. For example,

Dr. Berger chose 50 ms to remove from the signal beyond the R-peak to eliminate the

QRS complex, however, this process has shown to be ineffective. When the 50 ms are

removed, typically, portions of the R peak were left, and in almost all cases, the S wave

was remaining in the signal. From the S minima onward until the T-wave is a useful

interval, however, the inclusion of parts of the R-peak only adds to the difficulty in

calculating a reliable error number. A larger period, such as 100 or 120 milliseconds is
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most likely a more appropriate number if the intent is to remove the QRS complex. This

does however reduce this method to less of a measure of QT variability, and more a

measure of T-wave variability.

The second suggestion for further work involves the samples chosen for analysis.

The pre-recorded signals available at Physionet were used solely because of their quick

availability. As stated earlier, patients with normal sinus rhythm were not all healthy, just

possessing a normal contraction sequence and no obvious arrhythmias. This presents a

problem because the control group of this small data study really was a conglomeration

of various types of patients and records, which makes comparative analysis much more

difficult. In addition, the disease population, patients with arrhythmias, may not be the

best group to contrast against a healthy patient. Perhaps patients with long-QT syndrome

or post-MI subjects may provide larger differences in QT interval times. Also, a younger

subject population might be better, because in general, young people are healthier, and

when there is one health problem, there is a higher chance that it is not compounded by

other health factors, either known or unknown.

One step left untouched by this thesis is the quantification of differences between

patients with arrhythmias and those with normal sinus rhythms. A method for

determining these differences is presented below. First, all data collected on patients with

arrhythmias and patients with normal sinus rhythms is broken into three groups —

uncorrected, corrected without replacement, and corrected with replacement. Next, these

are grouped into 2-band summations and 7-band summations. From this, three tests can

be performed. First, using the first records in each set (nsr16273 and arr100), t-tests can

be utilized to judge how self similar the signals are (as these records already contain four
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different sections of data from the same patient and same record). After that, the averaged

signals of the arrhythmia and NSR data can be normalized and subtracted to create an

error function. This error function can then be squared to provide the maximization of

difference, and then statistically analyzed to tell how different these two sets of numbers

are from each other. This will allow future researchers to learn where within the

frequency spectrum the greatest differences between sick and healthy patients lie. A final

step would be to take all the data in one set (arrhythmia or normal sinus rhythm) and

compare the records to each other statistically to determine any trending information.

Another step that can be taken in this direction is the spectral analysis of IIBI

signals generated from the Physionet data directly, and then a comparison against the data

taken from the Berger method. If the two sets of spectral data are similar, then it will lend

some insight into the power content of QT variability, however if they differ

considerably, this may show that the Berger method is an ineffective process for

accurately calculating the QT interval.

On a final note, this new field of research shows much promise of giving insight

into autonomic nervous function in tandem with and apart from heart rate variability.

Whether or not the template matching techniques presented here will be of importance is

not known to the author; however, this method deserves more attention in the future, as it

is a quick and simple method for calculating QT variability.



APPENDIX A

PROGRAM MATERIALS

A.1 — Compare.m MATLAB Code

function [alpha_match] = compare(ECG,RPOS,QT_template, f_s)

o_len = length(QT_template); % length of 'QT_template'
e_a = []; % NULL error array
a_a = []; % NULL alpha array
c = 1; % counter
SCALE_A = [];

for alpha = 1.35:-0.0001:0.65
c_len = o_len * alpha; % new length of scaled array

% create scaled array
if isinteger(c_len)

c_len = c_len;
true_alpha = alpha;

else
c_len = floor(c_len);
true_alpha = c_len / o_len;

end

QT_scaled = [];
for i = 1:1:c_len

j = i / alpha;
j = floor(j) + 1;
if j <= o_len

QT_scaled(i) = QT_template(j);
else

QT_scaled(i) = QT_template(o_len);
end

end
% plot(QT_scaled)
% hold all

% compare template to ECG
point = RPOS; %RPOS(6); % R BEAT NUMBER --- SET TO SIX AS EXAMPLE
delay = int16(floor(((f_s / 1000) * 50)));
begin = point + delay;
take = int16(begin) + int16(c_len);
comp_a = ECG(begin:take); % select ECG data; length of scaled

template
plot(comp_a)
hold all

total_e2 = 0;
if (c_len > length(comp_a))

int_len = length(comp_a);
else
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int_len = c_len;
end
for i = 1:1:int_len

error = comp_a(i) - QT_scaled(i);
e2 = error^2;
total_e2 = total_e2 + e2;

end
a_a(c) = true_alpha;
e_a(c) = total_e2;
c = c + 1;

end

% error vs. alpha array creation
e_a = rot90(e_a);
a_a = rot90(a_a);
% figure('Name','QT Error Function (A11)')
% plot(a_a, e_a)
% hold all

mini = min(e_a); % find lowest error
position = strmatch(mini, e_a); % find position in array of 'min'
h = size(position);
if h(1) -= 1

position = position(1);
end
alpha_match = a_a(position) % find corresponding alpha value

A.2 — IAS.m MATLAB Code

% File I/O
QT_file = 1 C:\val\qt\se116483.txt';
QT_template = load(QT_file); %4open data file into 'QT_template' array
ECG_file = 'C:\val\se116483 -mod.txt 1 ;
ECG = load(ECG_file);
RPOS_file = 'C:\val\rbi\se116483.txt ';
RPOS = load(RPOS_file);
f_s = 250;

ar = [];
for a = 1:1:(length(RPOS)-1)

alpha_out = compare(ECG,RPOS(a),QT_template,f_s);
ar(a) = alpha_out;

end

IQTS = []; % interpolated alpha signal
VA = []; % DIAGNOSTIC PURPOSES
p = 1; % position
base_time = (length(QT_template) * f_s);
fms_offset = 0.050 * f_s;
base_time = length(QT_template);
for a = 1:1:length(ar)

value = ar(a);
value = base_time * value;
value = value + fms_offset;
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VA(a) = value / 250;
for b = 1:1:value

IQTS(p) = value;
p = p + 1;

end
end

avg = mean(IQTS);
for a = 1:l:length(IQTS)

IQTS(a) = IQTS(a) - avg;
end

dlmwrite("C:\icits.txt ',IQTS, 'delimiter', "\n . );

figure("Name','Interpolated QT Signal')
plot(IQTS) % recentered interpolated signal

figure("Name',"RT interval lengths')
plot (VA)

A.3 — Rectify.m MATLAB Code

% file array
f_array = struct('filename",'N','f_s",'F');

%Contents of file array

for count = 1:1:13
IQTS_file = strcat("c:',rec\icits_mod2\', f_array(count).filename,

".txt"); % Interpolated QT signal
IQTS = load(IQTS_file);
f_s = f_array(count).f_s; % sampling frequency

points = length(IQTS); % length of signal file

new_array = [];
if points < 65536

new_array = IQTS;
for a = 1:1:(65536-points)

new_array(points+a) = 0;
end

end
IQTS = new_array;
points = length(IQTS);

time = points / f_s; % time of signal file in seconds
hz_pt = 1 / time; % Hertz per point
lb = floor(0.05 / hz_pt); 	 % index for 0.05 Hz
mb = round(0.15 / hz_pt);% index for 0.15 Hz
ub = ceil(0.40 / hz_pt); 	 % index for 0.40 Hz

fft_iqts = fft(IQTS); % fast fourier transform of IQTS
mod_fft = fft_iqts(lb:ub); % fft between 0.05-0.40 Hz
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mod_fft = abs(mod_fft);

% adjust boundaries to new fft array
mb = floor(mb - lb);
ub = floor(ub - lb);
ab = floor(round(0.10 /hz_pt) 	 - lb);
cb = floor(round(0.20 / hz_pt)- lb);
db = floor(round(0.25 / hz_pt) - 	 lb);
eb = floor(round(0.30 / hz_pt) - 	 lb);
fb = floor(round(0.35 / hz_pt) - 	 lb);

figure('Name','FFT between 0.05 and 0.4 Hz')
plot(mod_fft)

% 2-band sum
1_sum = sum(mod_fft(l:mb));
u_sum = sum(mod_fft(mb:ub));

% 7-band sum
a_sum = sum(mod_fft(1:ab));
b_sum = sum(mod_fft(ab:mb));
c_sum = sum(mod_fft(mb:cb));
d_sum = sum(mod_fft(cb:db));
e_sum = sum(mod_fft(db:eb));
f_sum = sum(mod_fft(eb:fb));
g_sum = sum(mod_fft(fb:ub));

% output array
out = [1_sum u_sum a_sum b_sum c_sum d_sum e_sum f_sum g_sum]
file_out = strcat('C:\out\mod2\out_ ', f_array(count).filename,

'.txt');
dlmwrite(file_out, out, 'delimiter', '\t');

end

A.4 — Analysis.m MATLAB Code

% file array
f_array = struct('tilename','N', 1 f_s','F');

% Contents of File Array

for a = 1:1:13
file_string = strcat('c:\rec\icits\ ', f_array(a).filename, '.txt');
file = load(file_string);

exclude = min(file); % value of outlier
position = strmatch(exclude, file); % find location of outlier

% this section blocks out groups of outliers for replacment
count = 1;
beg_array = []; % array to find blocks of outliers
end_array = [];
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beg_array(1) = position(1); % assign first instance of outlier to
first value in array

for b = 1:1:length(position)
if b+1 <= length(position)

if (position(b) + 1) == position(b + 1)
b;

else
end_array(count) = position(b);
count = count + 1;
beg_array(count) = position(b + 1);

end
end

end
end_array(count) = position(length(position));

% this section replaces outliers with the average of neighboring
values

for c = l:i:length(beg_array)
posl = beg_array(c) - 1;
pos2 = end_array(c) + 1;
if post > 1

vail = file(pos1);
else

vail = va12;
end
if pos2 < length(file)

va12 = file(pos2);
else

val2 = vail;
end
average = (val1 + val2)/2;
for d = beg_array(c):1:end_array(c)

file(d) = average;
end

end

% truncate erroneous tail of file
for e = 1:1:length(file)

f = length(file)-e;
g = f - 1;
if file(f) -= file(g)

filet = file(1:g);
break

end
end

% write to new file
file_out = strcat('C:\rec\icits_mod2\ ', f_array(a).filename,

'.txt');
dlmwrite(file_out, file, 'delimiter', '\n');

end
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APPENDIX B

DATA

B.1 - Statistical Validation Data

This section gives the QT intervals in seconds obtained from the template-matching

algorithm (BERG), and the annotated Physionet records (PHYS). Absolute differences

and percent differences are given, in addition to T- and Z- test scores.

Record - se1231

BEAT BERG PHYS ABS DIFF % DIFF
1 0.430 0.460 0.030 6.522%
2 0.438 0.460 0.022 4.783%
3 0.470 0.460 0.010 2.174%
4 0.430 0.464 0.034 7.328%
5 0.470 0.456 0.014 3.070%
6 0.438 0.456 0.018 3.947%
7 0.478 0.480 0.002 0.417%
8 0.438 0.456 0.018 3.947%
9 0.438 0.452 0.014 3.097%
10 0.466 0.460 0.006 1.304%
11 0.434 0.444 0.010 2.252%
12 0.430 0.468 0.038 8.120%
13 0.462 0.452 0.010 2.212%
14 0.422 0.432 0.010 2.315%
15 0.430 0.456 0.026 5.702%
16 0.434 0.440 0.006 1.364%
17 0.430 0.456 0.026 5.702%
18 0.478 0.428 0.050 11.682%
19 0.430 0.444 0.014 3.153%

AVG 0.445 0.454 0.019 4.163%
STDEV 0.019 0.012 0.012 2.801%

T-test 	 -1.80918

Threshold P Z-score
0.03 0.0352 1.8094
0.05 0.9037 -1.3031
0.1 1.0000 -9.0845
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Record - se116273

BEAT BERG PHYS DIFF % DIFF
1 0.322 0.316 0.006 1.899%
2 0.330 0.320 0.010 3.125%
3 0.318 0.320 0.002 0.625%
4 0.306 0.328 0.022 6.707%
5 0.270 0.324 0.054 16.667%
6 0.306 0.324 0.018 5.556%
7 0.278 0.320 0.042 13.125%
8 0.294 0.328 0.034 10.366%
9 0.294 0.316 0.022 6.962%
10 0.298 0.324 0.026 8.025%
11 0.294 0.324 0.030 9.259%
12 0.310 0.328 0.018 5.488%
13 0.306 0.312 0.006 1.923%
14 0.294 0.320 0.026 8.125%
15 0.306 0.328 0.022 6.707%
16 0.310 0.328 0.018 5.488%
17 0.298 0.324 0.026 8.025%
18 0.306 0.324 0.018 5.556%
19 0.302 0.324 0.022 6.790%
20 0.282 0.328 0.046 14.024%
21 0.294 0.328 0.034 10.366%
22 0.306 0.324 0.018 5.556%
23 0.306 0.324 0.018 5.556%
24 0.294 0.324 0.030 9.259%
25 0.298 0.320 0.022 6.875%
26 0.306 0.332 0.026 7.831%
27 0.282 0.324 0.042 12.963%
28 0.270 0.324 0.054 16.667%
29 0.282 0.320 0.038 11.875%
30 0.310 0.324 0.014 4.321%
31 0.250 0.320 0.070 21.875%
32 0.306 0.324 0.018 5.556%

AVG 0.298 0.323 0.027 8.223%
STDEV 0.016 0.004 0.015 4.660%

T-test 	 -8.65013

Threshold P Z-score
0.03 0.0000 6.3401
0.05 0.0000 3.9124
0.1 0.9845 -2.1569
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Record - se116420

BEAT BERG PHYS DIFF % DIFF
1 0.378 0.368 0.010 2.717%
2 0.366 0.364 0.002 0.549%
3 0.346 0.360 0.014 3.889%
4 0.370 0.360 0.010 2.778%
5 0.370 0.360 0.010 2.778%
6 0.362 0.372 0.010 2.688%
7 0.342 0.376 0.034 9.043%
8 0.362 0.360 0.002 0.556%
9 0.370 0.364 0.006 1.648%
10 0.354 0.396 0.042 10.606%
11 0.378 0.364 0.014 3.846%
12 0.378 0.364 0.014 3.846%
13 0.366 0.360 0.006 1.667%
14 0.354 0.364 0.010 2.747%
15 0.370 0.364 0.006 1.648%
16 0.374 0.372 0.002 0.538%
17 0.362 0.368 0.006 1.630%
18 0.342 0.352 0.010 2.841%
19 0.366 0.356 0.010 2.809%
20 0.366 0.352 0.014 3.977%
21 0.378 0.368 0.010 2.717%
22 0.366 0.364 0.002 0.549%
23 0.366 0.352 0.014 3.977%
24 0.374 0.364 0.010 2.747%
25 0.362 0.360 0.002 0.556%
26 0.354 0.360 0.006 1.667%
27 0.370 0.368 0.002 0.543%
28 0.370 0.368 0.002 0.543%
29 0.374 0.384 0.010 2.604%
30 0.378 0.368 0.010 2.717%
31 0.378 0.360 0.018 5.000%
32 0.382 0.372 0.010 2.688%
33 0.362 0.364 0.002 0.549%
34 0.366 0.360 0.006 1.667%
35 0.354 0.364 0.010 2.747%

AVG 0.366 0.365 0.010 2.688%
STDEV 0.010 0.009 0.008 2.162%
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Threshold P Z-score
0.03 0.8034 -6.6031
0.05 1.0000 -11.0051
0.1 1.0000 -22.0103
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Record - se116483

BEAT BERG PHYS DIFF % DIFF
1 0.354 0.340 0.014 4.118%
2 0.350 0.344 0.006 1.744%
3 0.346 0.340 0.006 1.765%
4 0.350 0.340 0.010 2.941%
5 0.350 0.340 0.010 2.941%
6 0.350 0.340 0.010 2.941%
7 0.350 0.340 0.010 2.941%
8 0.350 0.340 0.010 2.941%
9 0.346 0.336 0.010 2.976%
10 0.350 0.340 0.010 2.941%
11 0.350 0.340 0.010 2.941%
12 0.346 0.344 0.002 0.581%
13 0.354 0.340 0.014 4.118%
14 0.350 0.336 0.014 4.167%
15 0.350 0.336 0.014 4.167%
16 0.350 0.332 0.018 5.422%
17 0.342 0.336 0.006 1.786%
18 0.346 0.336 0.010 2.976%
19 0.354 0.344 0.010 2.907%
20 0.354 0.340 0.014 4.118%
21 0.350 0.340 0.010 2.941%
22 0.350 0.340 0.010 2.941%
23 0.350 0.344 0.006 1.744%
24 0.342 0.340 0.002 0.588%
25 0.350 0.340 0.010 2.941%
26 0.342 0.340 0.002 0.588%
27 0.350 0.340 0.010 2.941%
28 0.358 0.340 0.018 5.294%
29 0.358 0.340 0.018 5.294%
30 0.350 0.336 0.014 4.167%
31 0.346 0.340 0.006 1.765%
32 0.350 0.340 0.010 2.941%
33 0.350 0.340 0.010 2.941%
34 0.354 0.340 0.014 4.118%
35 0.350 0.340 0.010 2.941%

AVG 0.3497 0.3395 0.0102 3.017%
STDEV 0.0037 0.0025 0.0041 1.221%
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Threshold 	 P 	 Z-score
0.03 0.5302 0.0800
0.05 1.0000 -9.6112
0.1 1.0000 -33.8390

B.2 — Power Spectral Summation Data

This section presents the summation data from the data analysis. Corrected data with no

replacement is denoted by *-mod. Corrected data with replacement is denoted by *-mod-2.



RECORD

arr-100-0-150
arr-100-300-450
arr-100-600-750
arr-100-900-1050

arr-102-0-150
arr-103-0-150

0.05 - 0.15

6.06E+05
6.07E+05
2.84E+05
3.01 E+05
1.08E+06
4.47E+05

0.15 - 0.4

9.89E+05
5.60E+05
4.60E+05
4.53E+05
8.91E+05
9.36E+05

0.05 - 0.1

4.39E+05
3.57E+05
1.69E+05
1.95E+05
6.46E+05
2.55E+05

0.1 -0.15

1.98E+05
2.78E+05
1.39E+05
1.24E+05
4.97E+05
2.17E+05

0.15 - 0.2

3.36E+05
1.06E+05
1.23E+05
1.08E+05
2.27E+05
2.26E+05

0.2 - 0.25

2.29E+05
1.45E+05
1.11E+05
1.27E+05
1.17E+05
2.65E+05

0.25 - 0.3

1.32E+05
1.45E+05

80408
1.36E+05
1.77E+05
1.61E+05

0.3 - 0.35

2.06E+05
97147
53021
63909

2.59E+05
2.60E+05

0.35 - 0.4

1.50E+05
1.19E+05
1.14E+05

63143
2.09E+05
1.31E+05

norm-16265-0-300 1.54E+05 3.28E+05 95781 60221 50738 86647 57608 77947 65717
norm-16265-300-600 59607 1.78E+05 32697 28768 42095 36467 49396 21810 32942
norm-16265-600-900 1.10E+05 2.45E+05 45399 65533 60329 43511 49827 63567 38347

norm-16265-900-1200 2.39E+05 4.48E+05 1.14E+05 1.30E+05 1.04E+05 1.32E+05 99615 57468 74993
norm-16273-0-300 89906 2.36E+05 36389 54046 62490 59149 35499 36431 48881
norm-16483-0-300 1.42E+05 1.68E+05 87574 59508 49997 42207 27981 22416 29628
norm-16539-0-300 3.00E+05 4.95E+05 1.71 E+05 1.32E+05 1.24E+05 86941 86432 80243 1.33E+05

arr-100-0-150-mod 43394 2.32E+05 28832 17439 42254 81364 50993 36980 42207
arr-100-300-450-mod 2.47E+05 4.52E+05 72528 1.89E+05 69509 98728 1.19E+05 1.02E+05 1.08E+05
arr-100-600-750-mod 1.04E+05 2.53E+05 52432 55406 60152 41723 37491 50970 81506

arr-100-900-1050-mod
arr-102-0-150-mod 1.71E+05 4.16E+05 1.00E+05 79353 57550 42870 30706 1.36E+05 1.89E+05
arr-103-0-150-mod 75554 2.54E+05 26664 52298 51340 68449 28737 53354 71816

norm-16265-0-300-mod 1.32E+05 2.62E+05 86647 45679 52313 61495 38317 64375 52640
norm-16265-300-600-mod 59607 1.78E+05 32697 28768 42095 36467 49396 21810 32942
norm-16265-600-900-mod 1.10E+05 2.45E+05 45399 65533 60329 43511 49827 63567 38347

norm-16265-900-1200-mod 2.39E+05 4.48E+05 1.14E+05 1.30E+05 1.04E+05 1.32E+05 99615 57468 74993
norm-16273-0-300-mod 89906 2.36E+05 36389 54046 62490 59149 35499 36431 48881
norm-16483-0-300-mod 27969 63440 14146 14338 11369 14133 14324 13495 11128 0

a\
N

norm-16539-0-300-mod 95754 1.70E+05 42632 54214 41086 46691 20797 25261 40229



RECORD 0.05 - 0.15 0.15 - 0.4 0.05 - 0.1 0.1 - 0.15 0.15 - 0.2 0.2 - 0.25 0.25 - 0.3 0.3 - 0.35 0.35 - 0.4

arr-100-0-150-mod-2 3.50E+05 3.29E+05 2.12E+05 1.64E+05 95224 87507 70027 52441 56836
arr-100-300-450-mod-2 3.53E+05 5.34E+05 2.38E+05 1.33E+05 1.37E+05 1.26E+05 1.14E+05 91417 1.11 E+05
arr-100-600-750-mod-2 2.08E+05 2.67E+05 1.37E+05 76116 69047 51371 29651 53864 78225

arr-100-900-1050-mod-2 1.58E+05 2.35E+05 1.03E+05 68842 37036 58569 77995 46180 30301
arr-102-0-150-mod-2 2.96E+05 5.69E+05 1.47E+05 1.64E+05 68475 1.03E+05 1.26E+05 1.53E+05 1.86E+05
arr-103-0-150-mod-2 3.23E+05 3.14E+05 2.28E+05 1.20E+05 96109 80419 49755 57939 56929

norm-16265-0-300-mod-2 1.48E+05 2.93E+05 93404 56515 51729 75238 42096 69252 63401
norm-16265-300-600-mod-2 1.15E+05 1.90E+05 66633 50832 40001 40802 50534 33656 31401
norm-16265-600-900-mod-2 1.48E+05 1.92E+05 99385 51068 60336 35107 47028 34727 21573

norm-16265-900-1200-mod-2 3.04E+05 3.86E+05 1.53E+05 1.58E+05 1.09E+05 71792 84136 60762 69708
norm-16273-0-300-mod-2 1.60E+05 3.02E+05 87481 76603 78869 78485 58901 47896 47495
norm-16483-0-300-mod-2 32756 64988 16331 16969 12469 14049 14428 14266 11290
norm-16539-0-300-mod-2 1.57E+05 3.37E+05 81011 77829 72900 66319 64950 64770 75458
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