

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

MODEL DRIVEN ARCHITECTURE — A TOOL FOR
ENTERPRISE ARCHITECTURE:

A LOOK AT EMERGENCY RESPONSE SYSTEMS

by
Ritu Lamba

Today's fast changing markets and technology drive software industry to deliver high

quality enterprise software solutions. The enterprise system architecture should be

designed to keep business functions separate from technological implementation to

accommodate the fast changing business environment.

In this thesis we have studied the current best practices in defining enterprise

architectures and Zachman's framework in particular. We have further examined the

Model Driven Architecture (MDA) approach and its application to enterprise architecture

definition. MDA separates the business logic from the underlying platform technology

and defines a representation model based on precise semantics. Zachman's framework

defines a set of views and category of models to describe complex objects as a

combination of simple logical cells independent of each other. We mapped the two

approaches into a model driven framework for enterprise architecture definition, which

leverages the abstraction levels of MDA and the exhaustive views of Zachman's

framework. We also examined the current work on designing Emergency Response

Systems and customized our generic method to address their specifics. This thesis

describes an ideal emergency response system, which we define as a virtual enterprise

system, and articulates an Emergency Response System Design (ERSD) Framework that

is a checklist of views for comprehensive system definition

MODEL DRIVEN ARCHITECTURE — A TOOL FOR
ENTERPRISE ARCHITECTURE:

A LOOK AT EMERGENCY RESPONSE SYSTEMS

by
Ritu Lamba

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science

January 2006

MODEL DRIVEN ARCHITECTURE — A TOOL FOR

ENTERPRISE ARCHITECTURE:

A LOOK AT EMERGENCY RESPONSE SYSTEMS

Ritu Lamba

Dr. Vassilka Kirova	 Date

Research Professor, Department of Information Systems, NJIT

Date/Dr. Fadi P. Deek

Dean, College of Science and Liberal Arts, Professor of Information Systems and
Mathematical Sciences, NJIT

Dr. James A. McHugh 	 Date

Professor, Department of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author:	 Ritu Lamba

Degree:	 Master of Science

Date:	 January 2006

Undergraduate and Graduate Education:

• Master of Science in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2006

• Bachelor of Engineering in Electronics

Tatyasaheb Kore Institute of Engineering and Technology, India, 2000

Major:	 Computer of Science

iv

To my beloved family for their support and encouragement

v

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Vassilka Kirova for being my

thesis advisor. This work would not have been possible without her in dispensable efforts

and involvement. I appreciate her insightful guidance and encouragement that inspire me

at every step of my study.

I would also like to express my appreciation to Dr. Fadi P. Deek and Dr. James A.

McHugh for serving as member of my thesis committee.

Special thanks go to my husband, Roopak Gupta for his understanding and

encouragement.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 SOFTWARE DEVELOPMENT LANDSCAPE 	 1

1.1 Introduction 	 1

1.2 Raised Level of Abstraction in Software Development 	 2

1.3 What are Models? 	 5

1.4 Why Modeling? 	 6

1.5 Introduction to MDA	 9

1.6 Models and Platform in MDA 	 12

1.7 Metamodels 	 14

1.8 UML — Unified Modeling Language 	 14

1.9 Meta Object Facility (MOF) 	 17

1.10 XML Metadata Interchange (XMI) 	 19

1.11 Common Warehouse Metamodel (CWM) 	 19

1.12 Summary 	 20

2 MODEL DRIVEN ARCHITECTURE IN ACTION 	 21

2.1 Introduction	 21

2.2 Capturing Requirements in CIM 	 21

2.3 Creation of Platform Independent Model 	 22

2.4 Mapping of PIM to PSM 	 23

2.5 PSM to Code and Deployment 	 24

2.6 Roles Defined in MDA Process 	 24

2.7 Summary 	 25

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

3 INDUSTRY SUPPORT AND FUTURE COURSE OF MDA 	 26

3.1 Industry Views about MDA 	 26

3.2 Tools Supporting MDA Modeling 	 28

3.3 Summary 	 33

4 ENTERPRISE ARCHITECTURE AND MDA 	 34

4.1 Overview 	 34

4.2 Importance of Enterprise Architecture 	 36

4.3 EA Design Principles 	 38

4.4 The Zachman Framework 	 40

4.5 Mapping of MDA and Zachman Framework 	 45

5 EMERGENCY RESPONSE SYSTEM 	 48

5.1 Overview 	 48

5.2 Types of Emergency Events 	 50

5.3 Requirements of an Ideal Emergency Response System 	 51

5.4 Design Principles 	 58

5.5 Summary 	 64

6 FRAMEWORK 	 65

6.1 	 Design Process 	 65

6.2 ERSD Framework 	 67

7 CONCLUSIONS 	 79

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

8 CONTRIBUTIONS 	 81

REFERENCES 	 82

ix

LIST OF FIGURES

Figure Page

1.1 Abstraction Levels 	 4

1.2 Overview of Model Drive Architecture 	 11

1.3 Evolution of UML 	 16

1.4 MOF Metadata Architecture [8] 	 18

4.1 Enterprise Architectural Relationships 	 34

4.2 Zachman Framework 	 41

4.3 Mapping of MDA Models to Zachman Framework 	 46

4.4 Mapping of UML Diagrams to Zachman Framework 	 47

5.1 Emergency Response System 	 55

6.1 Design Activities 	 66

6.2 Directory's Functional Model 	 69

6.3 Directory Information Model 	 70

6.4 Directory DSA Design 	 71

x

LIST OF TABLES
Table 	 Page

6.1 ERSD Framework 	 ..68

xi

CHAPTER 1

SOFTWARE DEVELOPMENT LANDSCAPE

1.1 Introduction

At the dawn of computing era Mainframe systems were considered the best for high end

computing and heavy data handling. This large centralized computer managed data and

automated business practices. Corporations benefited while the individual user had to be

contented with computers systems that were slow and not much fun to work with.

The next era brought a paradigm shift in computer science and introduced us to

the personal computer. The advent of Personal computers generated a new wave of

handling the software application in a large enterprise world. The users became more

productive and capable. The systems were totally disjointed and the data was shared with

help of media drives. Still it was not much of use but a major break though in

perseverance of computer science.

Then the personal computer started talking to each other though a network and the

whole scenario changed drastically. It bought in the new words like LAN and by magic

the new network of personal computers was ready to replicate the massive power of

mainframe systems. Programming language such as Visual Basic and Turbo Pascal

enabled the easy creation of custom application.

Then came the era of pervasive computing where all the computers of the world

can be connected through information super highway known as "Internet". The primary

difference in this era to its predecessor is that all the devices are widely linked, perhaps

even globally, allowing them to be used in ways that part from their original purpose.

1

2

These devices are not only linked, but everywhere, the "system" is now the entire

environment of the individual.

This new information medium has shifted business from the traditional brick-and-

mortar infrastructures to a virtual world where they can serve customers not just the

regular eight hours, but round-the-clock and around the world. The new business

requirements have raised a need of software that provide enterprise wide support in a

distributed environment with the capability to integrate all different piece of software as a

single big enterprise system. Such new systems have to deal with a myriad of the

complex interdependent dependability concerns like robustness, security, and reliability,

ability, error recovery, service integrity which raised the complexity of these systems to a

new high.

This higher complexity of the software systems has made the development of

such software's as an error-prone and arduous task. Such software needs higher

abstraction for smooth manageability. Software developers are in constant search of good

abstractions that can help them to reduce the time and effort required to evolve and create

new dependable and robust systems.

1.2 Raised Level of Abstraction in Software Development

The history of Software engineering is marked by ever raising level of abstraction.

Journey of software development began with the binary coding, machine centric

computing writing sequence of 1 's and 0's. This laboriously writing out the bit pattern

that corresponded to the native CPU later replaced by assembly language, a set of

mnemonics designed for each hardware platform. The next phase of computing came

3

3GLs like FORTRAN and COBOL and now the effort involves more expressive

traditional languages such as Java, C, C++ as well as domain-specific 4GLs.

The level of abstraction increased as we move from one language to another

requiring software developer to learn a new higher-level language that may be mapped

into lower-levels one from 3GLs to assembly code to machine code to the hardware. This

increased level of abstraction improved software industry viability which is determine by

the extent we can produce systems whose quality and longevity are in line with their cost

of production.

Study on design abstractions has produced structuring techniques that are based

on functional abstractions (e.g., Structured Design), data abstractions that encapsulate

behavior and state of a conceptual entity (Object-Oriented development), and service-

based abstractions in which data and functional elements pertaining to a set of provided

services are encapsulated in units called components (Component-Based development).

There are numerous quantitative context-specific evidences how effectively these

abstractions can be used to manage complexity.

Today, we are on the cusp of a new era in computing, middleware grew out of

sockets and other networking utilities thanks to Internet and rapidly changing Information

technology and its infrastructure. The development environment, originally command-

line tools, integrated compilers and linkers, is no longer just a matter of programming

against an operating system, but rather writing against middleware, which is, in effect, a

distributed, concurrent and secure operating system that works at a higher level of

abstraction.

Application modeling using the Object Management Group's Unified Modeling

Language, and application generation via Model Driven Architecture (MDA), are only

the latest steps on this ladder of abstraction [1]. MDA models are even more abstract, in

that they are farther away from the computer and closer to the business point of view. It

still takes a person with technical knowledge to construct them, but a small model can

correspond to hundreds or even thousands of lines of 3GL code. The models bear enough

resemblance to the business information and processes that they automate to make it

possible to train some business analysts to read them.

MDA is the latest in the series of moves to raise the level of abstraction at which

we develop software. Unlike previous efforts to raise abstraction level, however, MDA

seeks to continually push it higher. It is not satisfied with having narrowed the gap

between the business and IT. It seeks opportunities to narrow it further. [3]

Figure 1.1 Abstraction Levels

5

1.3 What are Models?

Software modeling means visualizing the design of the system before getting started with

the application development just like when building a house an architect produce the

detail blue print. Models helps, by letting us work at a higher level of abstraction. Model

is an abstraction of the system representing the essential characteristics of the system. A

model may do this by hiding or masking details, bringing out the big picture, or by

focusing on different aspects of the prototype. Models are more abstract in a sense that

they are further away from the computer and closer to business point of view.

Modeling is not a new concept for the software industry. Model exists for a long

time but software developers use them mostly as simple sketches of design ideas, often

discarding them once they've written the code. There has been a strong tendency in the

software industry to view formal design as superfluous to the production process, or as

something that would be nice to do but that is unrealistic given the realities of short-term

time pressures.

MDA tends to break down this resistance. It promotes the use of models that are

not simply design artifacts but are actually production artifacts that drive code generators

or are directly executed by virtual machines. Gradually, IT people stop looking upon

MDA modeling as competing for time with production activities and start to see it as a

productivity booster. [3]

It is useful to characterize the models in different categories depending upon the

abstraction criteria that determine what information is included in these models. A model

that is based on specific abstraction criteria is often referred to as a model from the

viewpoint defines by those criteria or in short the view of the system.

6

Models have been classified into three different categories

• Conceptual Models: These models describe the real world situation such as a

business process. These models represent domain modeling. This model can be

viewed at a higher level of abstraction.

• Specification Models: These models describe what software system must do,

what information it holds and what behavior system must exhibit. These models

assume ideal computing platform.

• Implementation Models: These models describe how system must be

implemented considering all the computing environment constraints and

limitation. This model can be viewed at a lower level of abstraction.

Model simply describes the system from a different viewpoint that corresponds to

different level of abstraction.

1.4 Why Modeling?

In the previous section we established the definition of model. In this section we'll

discuss the benefits of developing software by help of models.

Jim Rumbaugh, one of the three leading designers of UML and a Rational

Software methodologist, says: "The brave new e-world has turned previous assumptions

on their head, and old approaches to business or software will no longer succeed. The e-

world is now distributed, concurrent and connected. Concurrent, distributed systems have

extremely complex interactions that can be hard to understand, let alone predict. Vague

specifications are a major problem. In the past, the specifications for a monolithic system

only affected the single system, and if it didn't work exactly as specified, nobody really

7

cared. But now a business system may have to interoperate with another system halfway

around the world; people who have never heard of each other write both. A failure to

follow specifications can introduce errors that propagate around the world." [4]

The world has indeed changed, placing new, more stringent demands on software

development teams. Rumbaugh describes 'e-world' that is distributed, concurrent and

connected, and he is right. It is distributed, because information vital to a company's

business can be located all over the world. It is concurrent, because business processes

are no longer centralized and rarely simultaneous. As Rumbaugh points out that "Neither

business decision making nor software programs can live with a single thread of control."

Finally it is connected, because an action in one place can produce effects anywhere else

within the organization today. Put succinctly, the basic computer systems, languages, and

models of the past are simply inadequate for today's needs. [4]

The ever evolving software system and their complexity requires that developers

need a better understanding of what they are building, and modeling offers an effective

way to do that. In this complex e-world, Modeling brings the business and technical

people close. Modeling helps to ensure that they are speaking the same language. It

provides architects and others with the ability to visualize entire systems, assess different

options and communicate designs more clearly before taking on the risks -- technical,

financial or otherwise -- of actual construction. If you build a house, the customer needs

to speak to an architect and the architect needs to speak to the builder.

Understanding requirements before developing the system is very essential part of

any software development. Modeling helps taking customer requirements and putting

8

them together so that all parties can understand. Thus models facilities the

communication between technical and business people.

Companies models complex software applications because in the long run, a

detailed blue print saves time and money. It allows developers to consider alternatives,

select the best option, work out details, and achieve agreement before anyone starts

building the application. Using a model, those responsible for a software development

project's can assure themselves that business functionality is complete and correct, end-

user needs are met, and program design supports requirements for scalability, robustness,

security, extendibility, and other characteristics, before implementation of code. A good

model documents the application's structure and simplifies modifications. This is critical

when you consider that 90 % of the costs involved in large applications occur when they

are changed, extended and otherwise maintained. [6]

By modeling software, developers can:

• Create and communicate software designs before committing additional

resources

• Trace the design back to the requirements, to ensure that they are building the

system as per the requirements.

• Practice iterative development, in which models and other higher levels of

abstraction facilitate quick and frequent changes

• Decrease development cost

• Manage risk of mistakes

Modeling is a viable and efficient way to create high-quality, adaptable

applications that more closely align to business objectives.

9

1.5 Introduction to MDA

Model Driven Architecture is an evolutionary step in the development of the software

field. The Model Driven Architecture (MDA) developed by the OMG is a framework for

software development using a system modeling language. The MDA aims to enhance

portability by way of separating system architecture from platform architectures. MDA

focuses on the evolution and integration of applications across heterogeneous middleware

platforms. It provides a systematic framework using engineering methods and tools to

understand, design, operate and evolve enterprise systems. It promotes modeling different

aspects of software systems at levels of abstraction and exploiting interrelationships

between these models. The most significance of MDA approaches exists in the

independence of the systems specification from the implementation technology or

platform. These specifications will lead the industry towards interoperable, reusable,

portable software components and data models based on standard models. The three

primary goals of MDA are portability, interoperability and reusability through

architectural separation of concerns [12].

Model is the most important concept of the model driven architecture. By

separating technology dependent concepts from independent concepts, MDA limits the

problems of platform dependencies and increases portability of the software. This

separation is supported at model level to avoid platform dependencies in al phases of the

life cycle. The primary components of MDA technologies are the Platform Independent

Model (PIM), and the Platform Specific Model. Platform Independent Models describe

the structure and function of a system, but not the specific implementation. MDA can

also be visualized as an approach to system development, which increases the power of

10

models. It is model-driven because it provides a means for using models to direct the

course of understanding, design, construction, deployment, operation, maintenance and

modification.

MDA has the capability to define templates that map transformations from

Platform Independent Models to Platform Specific Models. This facilitates the

development of a system in abstraction, and simplifies implementation of that system

across a variety of platforms.

A key aspect of MDA is that it addresses the complete software development life

cycle, including analysis and design, programming, deployment and management. UML,

XML, MOF and CWM are the four main components that affect the interchange of

information between tools and applications.

For instance, an MDA Transform from PIM to a DDL will create DDL table

elements from a class, whereas the same class transformed to an EJB Entity Bean will

result in a package containing the class and interface elements required by EJB.

Enterprise Architecture helps to manage such transformations and even write your own

transformation rules for any language. It will also aid you in keeping as many Platform

Specific Models as you need synchronized to a single Platform Independent Model.

Enterprise Architecture has built in support for MDA transforms to C#, DDL, EJB, Java

and XSD.

In essence, the foundations of MDA consist of three complementary ideas:

• Direct representation: Shift the focus of software development away from the

technology domain toward the ideas and concepts of the problem domain.

Reducing the semantic distance between problem domain and representation

11

allows a more direct coupling of solutions to problems, leading to more accurate

designs and increased productivity.

• Automation: Use computer-based tools to mechanize those facets of software

development that do not depend on human ingenuity. One of the primary

purposes of automation in MDA is to bridge the semantic gap between domain

concepts and implementation technology by explicitly modeling both domain

and technology choices in frameworks and then exploiting the knowledge built

into a particular application framework.

• Open standards: Standards have been one of the most effective boosters of

progress throughout the history of technology. Industry standards not only help

eliminate gratuitous diversity but they also encourage an ecosystem of vendors

producing tools for general purposes as well as all kinds of specialized niches,

greatly increasing the attractiveness of the whole endeavor to users. Open source

development ensures that standards are implemented consistently and

encourages the adoption of standards by vendors.

.Appleton Requirements

Business 	 Build a Platform
Strategies 	 Independent Model

Enterprise Distributed
	Object Computing-, (EDOC)

Existing
Applications
(including
legacies)

I nfrastructure
Technologies
(CORBA, J2EE,
Web Services,
WAP)

Build a Platform
Specific Model

Collaborative
Computing Architecture

CORBAImplementation J2EE
Implementation

Servicesimplementation WAP
Implementation

Figure 1.2 Overview of Model Drive Architecture

12

1.6 Models and Platform in MDA

A current trend in the development of distributed applications is to separate platform-

independent and platform-specific aspects, by describing them in separate models. In

MDA, the term platform is used to refer the technological and engineering details that are

irrelevant to the fundamental functionality of the software components. Platform

independence is a relative concept. It has meaning only with respect to some specified

platform or platforms.

Platform-independence is a quality of a model that relates to the extent to which

the model abstracts from the characteristics of particular technology platforms. The

articulation of platform-independence is the most centric concept in MDA development.

MDA is all about transformation between models, each of which captures one or

more subject matters and which are expressed in a language with a specific degree of

abstraction. The MDA separates certain key models of the systems, and brings a

consistent structure to these models. From MDA's point of view it is politically correct to

think that there are two kinds of models

• Platform Independent Model (PIM) — This is the formal specification of the

structure and function of the system that abstract away technical details.

Business and modeling experts working together express the business

functionality and rules undistorted by technology build these models. Because

these models are independent of technology they retain their value over the

years and require change only when business condition mandate.

• Platform Specific Model (PSM) — It provides a formal specification expressed

in concepts of the specification models of the target platform. A platform

13

specific model is a view of a system from the platform specific viewpoint. A

PSM combines the specifications in the PIM with the details that specify how

those systems use a particular type of platform. A platform model provides a set

of technical concepts, representing the different kinds of parts that make up a

platform and the services provided by that platform. It also provides, for use in a

platform specific model, concepts representing the different kinds of elements to

be used in specifying the use of the platform by an application. [12]

Three important benefits of abstracting out the fundamental precise structure and

behavior of a system in the PIM from implementation specific concerns in PMS are

• Simpler and more uniform models in PIM make it easier to validate the

correctness of the model uncluttered by platform-specific semantics.

• In platform- independent terms integration and interoperability across systems

can be defined more clearly then mapped down to platform specific mechanism.

• Defining business goals and policies in a computation independent manner make

it easier to produce implementations on different platforms while conforming to

the same essential and precise structure and behavior of the system.

OMG support different modeling standards for generating PIM and PSM models.

The most commonly used standard is Unified Modeling Language (UML). Three keys

OMG modeling technologies, based on UML, are MOF, CWM and XMI. In the next

sections we will explore the above-mentioned key OMG modeling technologies.

14

1.7 Metamodels

Metamodels are the models of modeling language. They specify the concept of modeling

languages that are used to create models. Metamodels simplifies the communication

about models. We can view metamodels as the model whose instances are the types in

other models or as mapping of meta-models elements to the modeling language's

elements. This allows us to capture the other model and manipulate it. A well known

meta-model is the specification for UML, which captures the classes in a developer's

model. Metamodels may themselves be captured in meta-Metamodels. Metamodels

facilitates the mapping and transformation between models.

1.8 UML — Unified Modeling Language

The Unified Modeling Language (UML) is a family of design notations that is rapidly

becoming a de facto standard as software design language. OMG specification defines

UML as "a graphical language for visualizing, specifying, constructing, and documenting

the software intensive system. UML provides a variety of useful capabilities to the

software designer, including multiple, interrelated design views, a semiformal semantics

expressed as a UML metamodel, and an associated language for expressing formal logic

constraints on design elements.

OMG's UML is based on common UML metamodel. Metamodel is in fact a class

diagram and a set of semantics and syntactic rules that defines the core elements and

relationship used in UML. In addition to core symbols, the metamodel contains

supplementary symbols, called extensions.

15

UML Extensions are predefined set of Stereotypes, Tagged Values, Constraints,

and notation icons that collectively extend and tailor the UML for a specific domain or

process. An extensive package of stereotypes is referred to as a UML Profile. To specify

the constraints on any diagram OMG has selected the Object Constraint Language (OCL)

1.8.1 Brief History

Back in late 80's there were different modeling methodology. Number of competing

methodology appeared (Booch Rumbaugh, Shlaer-Mellor...). These approaches share

many common features and also have arbitrary differences. The problem was that if

different people were using different notations, somewhere along the line somebody had

to do a translation. A lot of times, one symbol meant one thing in one notation, and

something totally different in another notation. In 1991, everybody started coming out

with books. Grady Booch came out with his first edition. Ivar Jacobson came out with

his, and Jim Rumbaugh came out with his OMT methodology. Each book had its

strengths as well as its weaknesses. OMT was really strong in analysis, but weaker in

design. The Booch methodology was stronger in design and weaker in analysis. And Ivar

Jacobson's Objectory was really good with user experience, which neither Booch nor

OMT really took into consideration back then. [7]

In 1996 OMG announced it was interested in creating an open, standard object-

oriented notation and called for proposals. Rational software submitted UML version 1.0

which had been developed by Booch, Rumbaugh, and Jacobson. Ultimately 21 other

companies sent proposals. The OMG board approved the UML Version 1.1 specification

resulted by blending the proposals of different companies like Hewlett Packard, IBM,

Microsoft, Brest, France etc. and that covered most user and vendor needs. Since then,

OMG has managed UML as an open standard. An OMG task force gathers information

about problems and improvements, and also schedule revisions. [6] OMG revision task

force schedule minor changes frequently and major changes only at intervals that would

enable developers and tool vendors to keep up with the changes and would also guarantee

that the language evolved systematically.

Figure 1.3 Evolution of UML

1.8.2 Goals of the UML

The primary goals in the design of the UML were as follows:

• Provide users with a ready-to-use, expressive visual modeling language so they

can develop and exchange meaningful models.

• Provide extensibility and specialization mechanisms to extend the core concepts.

• Be independent of particular programming languages and development

processes.

• Provide a formal basis for understanding the modeling language.

• Encourage the growth of the 00 tools market.

• Support higher-level development concepts such as collaborations, frameworks,

patterns and components.

17

• Integrate best practices.

1.9 Meta Object Facility (MOF)

Meta Object Facility (MOF), OMG standard, is a model for specifying, constructing,

managing, interchanging and integrating metadata in software system [8]. Interoperability

of Metamodels across domains is required for integrating tools and applications across a

development lifecycle using common semantics [9]. The main of aim of MOF is to

provide a framework that support any kind of metadata and that allows the new kinds to

be added as required. In order to achieve this goal MOF uses layered metadata

architecture. The key feature of this architecture is the meta-meta-modeling layer that ties

together the Metamodels and models. The four layers of metamodels architecture are

• MO Layer — Information Layer defines the data of the application.

• Ml Layer — Model Layer contains the metadata that describes the data in

information layer. This is the layer at which application modeling takes place.

• M2 Layer — Meta-Model Layer contains the meta-metadata that describes the

structure and semantics of metadata. This is the layer at which CASE tools

operate.

• M3 Layer — Meta-metamodel Layer comprised of description that defines the

structure and semantics of meta-metadata.

Figure 1.4 MOF Metadata Architecture 181

The Key features of MOF are

• The MOF Model (the MOF's core meta-metamodels) is object-oriented, with

meta-modeling constructs that are aligned with UML's object modeling

constructs. [8]

• The MOF Model is self-describing. In other words, the MOF Model is formally

defined using its own meta-modeling constructs.[8]

• The meta- levels in the MOF metadata architecture are not fixed. While there are

typically 4 meta- levels, there could be more or less than this, depending on how

MOF is deployed. [8]

18

19

1.10 XML Metadata Interchange (XMI)

XMI is a protocol that defines rules for deriving an XML Document Type Definition

(DTD) from a MOF-compliant modeling language as well as rules for rendering a

compliant model into a compliant XML document [9]. In short, XMI is mapping that

expresses UML models into XML document. These XMI DTD rules that do the

transformation are used like syntax for the construction of document. These rules are

corresponds to metamodels of Layer M2 in MOF Metamodel architecture and the

XML/XMI documents that are produce by the transformation corresponds to the Layerl

data. It is a standard interchange mechanism used between various tools, repositories and

middleware [5]. XMI allows system developers to share models and metamodels over

Internet on HTTP, IIOP or other wire protocols. XMI has the advantage of enabling

exchange of models and metadata as files or as standard format based XML documents.

UML visual modeling tools are currently adding XMI capabilities so that they can pass

UML models from one tool to another [6].

1.11 Common Warehouse Metamodel (CWM)

CWM is the OMG defined standard language for data modeling, data warehousing, data

transformation, and data analysis. It defines how the different data warehouse models

relate to each other and enables exchange of data models, data transformation rule and

data specification between tools from different vendors. CWM models are defined in

terms of UML and their metamodels are defined in terms of MOF. Vendors like IBM,

Oracle, Unisys Corp, Blue Bell, etc have already release their CWM complaint

20

warehouse. CWM database users can pass information between CWM complaint

databases via XML because CWM is MOF complaint.

1.12 Summary

In this chapter we have explored the history and the current trends of software

development. We established the benefits of standardization of the software development

by using models. The contribution of Object Management Group is quite evident in

establishing the modeling languages like UML that is generally used and accepted by

software community. We also discussed the Model Driven Architecture and established

its advantages. In the next chapter we will explore the software development process

using Model Driven Architecture.

CHAPTER 2

MODEL DRIVEN ARCHITECTURE IN ACTION

2.1 Introduction

The software life cycle following the concepts of MDA consists of the following steps:

• Capturing requirements in a Computational Independent Model (CIM).

• Creation of Platform Independent Model (PIM) that represents the functional

model of the system independent of specific technology.

• Mapping of PIM to one or more Platform Specific Models (PSM) by adding

platform specific rules and code.

• Transforming the PSM to code

• Deploying the system in a specific environment

2.2 Capturing Requirements in CIM

Computational Independent Model (CIM) is used to model the requirements of a system.

CIM captures the environment in which the system is actually going to working. This

model is not concerned about the implementation details. It can be seen as a business

model. It helps in setting the correct expectations of an enterprise system. It gives a

common shared vocabulary to be used across the complete software development life

cycle.

Capturing of requirements is the most fundamental aspect of the project design.

The PSM model's foundation is laid on CIM. We do not need an expert in UML

modeling. This can be documented with average skill programmer. The requirements

21

22

capture the general business process flow of the system along with the specific needs of

the business.

2.3 Creation of Platform Independent Model

The next step is to create a model from the requirements. Platform independent model

describes the system without showing its details of its use on a platform. This model

presents the complete system without looking into its implementation details. It gives

business functions a name and separates them as class in a model. We can use any kind of

development environment like the ones that support complete MDA process or a visual

modeling tool that does not support transformation but allows us to export the PIM model

to a standard tool. An example from MDA guide illustrates the concept further:

A PIM is prepared using a platform independent modeling language. The architect

chooses model elements of that language to build the PIM, according to the requirements

of the application. These mappings may also specify mapping rules in terms of the

instance values to be found in models expressed in the PIM language. Examples

• If the attribute "sharable" of class "entity" is true for a particular PIM model

instance of type entity, then map to an EJB Entity, otherwise map to a Java

Class. These kinds of rules may also map things according to patterns of type

usages in the PIM.

• If pattern exists where an instance of class "entity" has a "manages" association

to an instance of class "document", whose attribute "persistent" is set, then map

the "entity" instance to an EJB Entity that manages whatever is mapped from

the "document" instance identified by the pattern.

23

The system architects then chooses a platform for which the system will be

modeled. The tools are used with the chosen platforms templates to generate the PIM

models. We can capture PIM model by using UML, a graphical tool or also by OMG's

XMI that is a text-based tool. Also they use different methods they capture the same

model semantics.

2.4 Mapping of PIM to PSM

This intermediate layer is introduced by MDA to separate the decisions related to choice

of deployment technology, programming language, protocols and operating system from

code generation. Tools are used to distinguish and apply patterns to convert PIM to PSM.

We need to give these tools a platform target and then they use the templates for the said

target to develop a PSM.

One such tool, which can be used for conversion, is "Optima1J". PSM can include

database specific attributes and relationships and lists specifics about data types for each

entity.

Mapping is the key issue in converting PIM to PSM. The choice of the platform

decides which transformation maps should be used to convert platform independent

model to the platform specific model. The architect of the system has documented many

types of mapping whose choice depends on the type of platform chosen. Two examples,

taken from MDA guide illustrate different approaches:

A platform model for EJB includes the Home and Remote Interface as well as Bean

classes and Container Managed Persistence.

24

• Example: A UML PIM to EJB mapping provides marks to be used to guide the

PIM to PSM transformation. It may also include templates or patterns for code

generation and for configuration of a server. Marking a UML class with the

Session mark results in the transformation of that class according to the mapping

into a session bean and other supporting classes.

2.5 PSM to Code and Deployment:

The next step in the development life cycle of MDA project is to generate the code

implementation from PSM and then the deployment of the generated code. The PSM to

code generation is analogous to PIM to PSM generation. Again we can use tools to do the

process. Here we may want to support different environments like development, test,

staging and production. Each environment will have its own specifications and database

connectivity's. Using the tool the team can then deploy the code in the application server.

2.6 Roles Defined in MDA Process

In a MDA process development lifecycle the roles of the people can be defined as under:

• Architects concentrate towards validating models and on create transformations

to convert one model into another. They are also responsible for maintaining a

health of the models. .

• Developers study the requirements and then crate Platform Independent models

for the same. They then use these PIM's to crate PSM's by choose appropriate

transformation.

25

• Programmers implement platform specific code for business rules that a PIM

cannot express or a PIM generated by a transformation

2.7 Summary

In this chapter we discussed the development of software by using the approaches as

laid down by MDA. We learned the system design guidelines as established by the

MDA framework. MDA is slowly being widely accepted in the software development

world. In the next chapter we will explore the industry support, which is being offered

in favor of adoption of MDA as a standard framework.

CHAPTER 3

INDUSTRY SUPPORT AND FUTURE COURSE OF MDA

3.1 Industry Views about MDA

MDA gives the option of code reuse and this is a very attractive proposition for the

companies. They will not be wasting their resources in re-engineering the code whenever

there is a hard ware shift or there are changes to business. MDA gives the ability to work

at the model level and generating code automatically, software teams will be able to keep

the model in step with the debugging process. "You won't see the tendency to toss the

model away in the middle stages of the project" said Cris Kobryn, co-chairman of the

OMG's analysis and design task force and chief technologies at tools supplier Telelogic.

The above advantages have eluded many companies to adopt the OMG standards and

follow the software development guide lines as laid in MDA development.

Sam Greenblatt, Senior Vice President, Systems Strategy, Computer Associates

says that "OMG's new Model Driven Architecture fits our needs, integrating with our

software that manages e-business, and Computer Associates sees this as key to its

infrastructure that will enable our clients over the next several years." Many "gurus" of

the industry have raised similar opinions about MDA.

Software development productivity is the main essence of using new technologies

to implement a solution. The determinants of productivity can be broadly classified as

framework, tools and development methodologies. To this end MDA's emphasis on

modeling provides acknowledged benefits, including long term flexibility to incorporate

changes to a PIM, update or create new PSM's and deploy to multiple platforms without

requiring substantial code rewrites. MDA also have its critics who are concerned about its

26

27

impact on the software development process as well as its reliance on UML for automatic

code generation. Mr. Michael Jesse Chonoles the Chief of Methodology of Lockheed

Martin Advanced Concepts Center says "By taking a modeling-centric approach, MDA

gets us much closer to that ultimate goal of platform independent development and

transparent reuse -- and it finally looks feasible and soon."

MDA supports the full life cycle by not only generating code from the initial

model but also by allowing changes and regenerating code. The models and

transformation languages used by MDA meet the open standards. Use of open standards

allows the organizations to customize these languages to suit their environment.

One of the offspring benefits of MDA is that it allows the merging of work from

related fields because it uses higher level of abstraction. In its current state MDA may not

be the golden bird but there its definitely is a silver lining in the horizon of software

development which can make the software development task much more streamlined and

aliened as a manufacturing assembly.

Development of tools that enable automatic code generation from UML models in

the next step of this paradigm shift of software development. The standardization teams

will have to tighten up the semantics of UML to achieve consistent code across different

tool suppliers. UML 2 was a major project of OMG in this direction. The development of

tools that support MDA is also essential to generate a repository of models that will

further reduce the development time of the new systems as they can leverage from the

previously developed system.

28

3.2 Tools Supporting MDA Modeling

Over the past year or so, a number of tool vendors and service providers have extended

their support to MDA. There are at least 40 tools that incorporate at least one of the major

aspects of MDA: UML-based modeling; transformation between the app's overall design

models and the models that are specific to the underlying computing architecture (.NET,

EJB and so on); and the generation of code in a specific language.

Iona, InferData, Codagen Technologies, Eltegra, Hewlett-Packard and IBM are

just a few of the companies that are either developing MDA tools or adopting and

promoting the use of MDA. While evaluating or selecting MDA complaint tools, it has

been found that tools are still not matured enough to support the complete MDA process.

In most cases, it would be necessary to modify the generated source code or to write the

code manually. Fortunately as more companies are supporting MDA, specifications will

evolve and the tools will mature.

Some commonly used tools and their features are described below

3.2.1 IBM Rational Rose

IBM Rational® Software Architect is an integrated design and development tool that

leverages model-driven development with the UML for creating well-architected

applications and services. With Rational Software Architect, unify all aspects of software

design and development.

Main Features:

• UML 2.0 modelling support for analysis and design using Use Case, Class,

Sequence, Activity, Composite Structure, State Machine, Communication,

Component, and Deployment diagrams.

29

• Support for the visual modelling with content-assist.

• Apply and author patterns and transforms.

• UML Class diagram editing for Java, Enterprise Java Beans, and Database

objects.

• Support for the UML Sequence diagram editing for Java.

• Java method body visualization using UML 2.0 Sequence diagrams.

• UML Class diagram editing for C++.

• Uses transformations to generate Java, C++, or EJB code.

• Asset Browser for accessing reusable assets.

• Establish Traceability links from requirements through implementation.

• Automatically detect patterns and anti-patterns (ex: design, 00, structural, and

system) in Java code.

• Template based rules for monitoring and enforcing application structure.

• Enterprise class IDE powered by Eclipse technology.

• WS-I compliant Web services and service oriented architectures.

• Rapid application development tools and wizards.

• Drag-and-drop UI components, point-and-click database connectivity.

• Automated tools for coding standards enforcement; component testing of Java,

EJB, Web services; and multi-tier runtime analysis.

• Built-in Crystal Reports tools.

• C/C++ development environment with syntax highlighting editor and

customisable build and debugger framework.

30

• Requirements perspective for browsing requirements in Requisite Pro and

creating links to model elements.

• RUP configuration for Software Architects with context-sensitive and dynamic

process guidance.

• Open API to support customizing and extending the modelling environment.

UML profile creation and editing to customize the properties stored in UML

models.

• Generate HTML, PDF, and XML reports from UML designs.

• Generate Javadoc with detailed design diagrams.

• Scripting support with Java.

• Team support with multi-model support, compare merge, and SCM integrations.

3.2.2 IBM Rose RT

Rational Rose Real Time is a comprehensive visual development environment that

delivers a powerful combination of notation, processes, and tools to meet these real-time

challenges. Through the industry standard UML, real-time design constructs, code

generation, and model execution, Rational Rose Real Time addresses the complete

lifecycle of a project; from early use case analysis, through to design, implementation,

and testing.

Main features of Rose RT are:

• UNIFY your teams by describing your real-time embedded systems using the

Unified Modeling Language, the industry standard notation championed by

Rational Software

31

• Optimize your software development by generating complete, high-performance

executables directly from UML design models -targeted to real-time operating

systems

• Simplify tool-chain complexity by providing seamless integration to leading

real-time operating systems, compilers, symbolic debuggers, and other market-

leading Rational Software products.

• Executable models let you compile and observe simulations of your UML

designs

• Model execution encourages early design refinement and continuous validation.

• Complete, deployable executables can be generated directly from UML design

models - targeted to real-time operating systems.

• Automated generation of complete C++ applications eliminates the need for

manual translation and avoids costly design interpretation errors.

• Improve communication between all members of your team through the power

of the UML.

• Capture your architecture more effectively and make it part of the

implementation.

• Software Configuration Management end Version Control tool integration

allows you to use products like Rational Clear Case to even more effectively

manage your UML application development.

3.2.3 I-Logix Rhapsody

Rhapsody is the industry's leading Model-Driven Development environment based on

UML 2.0 and SysML for systems, software, and test, and has the unique ability to extend

32

its modeling environment to allow both functional and object oriented design

methodologies in one environment.

Model-Driven Development (MDD) technology enables you to achieve

unparalleled gains in productivity over traditional document driven approaches by

enabling you to specify your systems and software design graphically, simulate and

automatically validate the system as you build it, and ultimately produce full production

code from the model for the embedded system.

• Seamless Environment for Systems and Software Development

• Advanced Graphics Engine to allow Domain Specific Modelling

• White Boarding (free sketch)

• Custom Bitmaps

• Advanced Layout and Ergonomics

• Profile Formatting "skins"

• Requirements Modelling and Traceability

• Full Behavioural Model Simulation

• Model Driven Test Generation

• Requirements Based Testing

• Automatic and Customizable document generation

• Model Execution on Embedded Target

• Directly Deployable C, C++, Java, and Ada Code Generation

• Code Visualization and Reverse Engineering

33

3.3 Summary

This chapter emphasizes the importance of MDA in current software industry by showing

the industry support for MDA. We have also explained the various tools available for the

designer to develop the software systems using MDA. A brief description of the common

tools was also characterised. All the above discussion in the previous chapters is to

design a software system. In next chapter we will discuss the Enterprise Architecture in

the light of MDA.

CHAPTER 4

ENTERPRISE ARCHITECTURE AND MDA

4.1 Overview

Enterprise is defined or viewed as a complex system with a defined boundary and

consists of differentiated and interdependent components. It is surrounded by an external

environment which influences the enterprise operations and provides the various inputs

that are transformed by the enterprise components to produce the output in the form of

products and services that are returned to the external environment. [35]

Enterprise Architecture is a framework or "blueprint" which describes the linkage

between the components of an enterprise and defines how an enterprise achieves the

current and future business objectives. It analyzes the key business, information,

application, and technology strategies and their impact on business functions. Each of

these strategies is a separate architectural discipline and Enterprise Architecture is the

glue that integrates each of these disciplines into a cohesive framework as shown in Fig.

4.1.

Figure 4.1 Enterprise Architectural Relationships

34

35

Enterprise Architecture is a logical link between enterprise business, information, and

technical architectures and thus acts as a planning, structuring and integrating guideline

for creating and maintaining the enterprise-wide information systems.

The EA is a top-down, business strategic driven process in a sense that analysis

begins by looking out the window at the new market, competitive and other

environmental forces that affect the organization. Creation of EA is an iterative process,

which involves refinement of various artifacts that represents the holistic view of the

enterprise's key business, information, application, and technology strategies and

identifies the gap between the current and future state of an enterprise

EA provides the basis for organizing the information management resources and

enterprise-wide review and oversight mechanism for different policies and projects. The

hierarchal linkage from business strategy level to IT implementation level enable

organizations to align business goals and IT investment plans and facilitates

communication and decision making between Business strategy and IT investment

groups. EA has been recognized as an approach that drives both business and technology

strategies.

In 1987 John A. Zachman, an IBM researcher, proposed what is now popularly

called the Zachman Framework, a way of conceptualizing what is involved in any

information system architecture. [36] It is an analytic model that organizes descriptive

representations without describing an implementation process and is independent of

specific methodologies.

The Object Management Group's Model Driven Architecture (MDA), as

described in earlier chapters, is an approach to create models, and generate code from

36

models. The MDA approach also includes technology to facilitate the transport of models

and code from one implementation to another, and the ability to reverse engineering code

into models. It is a generic approach that can be used with any existing methodologies

including Zachman Framework.

The objective of this chapter is to establish the importance of enterprise

architecture and its design principles, Zachman Framework and it's mapping with MDA.

4.2 Importance of Enterprise Architecture

Maturity of Industrial age and globalization of industries brought a paradigm shift in data

access. Information is no longer being accessed by just few top executives of the

enterprise but is accessed globally through out the enterprise. Data needs to be captured

once and reused throughout the enterprise in different processes and applications. The

concept of the local market is defunct. Products and services have to be produced and

integrated to fulfill customer requirements. This results in large and complex distributed

enterprise systems enabling business to engage in global market place. Enterprise

requires extensive automation to compete in this global information age. Systems are no

longer discretionary support for the enterprise they are mandatory.

The customization of information and services provided to the customer is

becoming the key of the success of the business world. This brings us the requirement of

changing or modifying the existing systems following the fastest route and having the

minimum impact on different components in the chain of the enterprise systems. To

accomplish this we'll need enterprise architecture that describes the enterprise, as it exists

at a given point in time and helps to focus the efforts in the area that require immediate

37

attention or a change. The impacts resulting from any change in one area are more readily

discerned when a blueprint of a business is available for the analysis.

EA provides the readily available documentation of the enterprise. These

documents helps the shareholders to see the enterprise not only as it is but as it is

envisioned to be, assuming its owners wish to bring about changes and need to

communicate a common understanding of them to stakeholders who are not only affected

by the changes but are also expected to participate in bringing them out. [15]

For large organizations, it is impossible for people to retain and work with so

many variables to bring about meaningful change unless information about them is

documented through EA. [15] In the past, the development of IT systems was more ad-

hoc. There was no common language among the designers of the enterprise in the

meeting rooms. This made the development of different systems disparate and non inter-

portable. The development using the framework of EA, leverage the idea of templates

and avoid difficulties that used to arrive due to absence of reference model for processes

data and technology .The concept of reference models gave a pivotal point that can be

used by the designers of the system.

From our previous discussion, we can deduce the following advantages of

Enterprise Architecture

• EA harmonizes the linking of strategic and business planning to business

architecture, from BA to IT architecture, and from IT architecture to IT

implementation. EA forces this because EA requires all this knowledge to be

made explicitly visible and to be used as a basis for approving IT investments.

[15]

38

• It defines the mechanism to seamlessly integrate all the artifacts of an enterprise

to achieve an effective information flow.

• It enables an integrated vision and a global perspective of informational

resources. [8]

• It enables the discovery and elimination of redundancy in the business processes

reducing information systems complexity. [15]

• It contributes to having information systems that reflect common goals and

performance measures for all managers, to encourage cooperation rather than

conflict, and competition within organizations. [38]

• It becomes the bridge between the business and technical domains. [13]

4.3 EA Design Principles

The architectural design of the enterprise wide information system is the integral element

in the success and prosperity of the company. A sound and well thought design of the

system will give a vision to the designers to develop the system in conjunction with the

business requirements. The root of information system lies in building a sound Enterprise

information technology architecture (EITA).

Architectural design is usually a complex process as it has to consider a vast

number of parameters and it lays foundation of the design of multi-vendor and

heterogeneous systems. The two critical and important tasks that the designers of EA

have to accomplish prior to building enterprise architecture are

39

• To identify the process which will be best suited for the enterprise. The process

must be flexible to accommodate and accept a wide range of architectures and

functional areas. It must also be able to handle multiple iterations for refinement.

• To identify an architectural framework on which enterprise architecture will be

build upon. Designers can build the framework either from the s either from

scratch or they can use the existing framework. Designing from scratch takes

time, effort, energy and money. A good alternative is to leverage upon existing

frameworks and customizing them to achieve the vision of the company.

After identifying the process and the framework for an enterprise we can follow the

following steps iteratively to develop the complete enterprise architecture.

• Initiate the Process: We start the process by defining the scope of the project

and getting together the architecture team. This step will also initiate the process

of identifying and influencing the stakeholders, encouraging participations and

involvement in discussions about the project. This also helps in overcoming

resistance to change and creating readiness for architecture.

• Characterize the baseline architecture: The next steps involve establishing the

baselines by describing the current platforms. Expectations are established. All

the stakeholders are also briefed about the reasons for the changes and what will

be its valued outcome after the development is complete. The infrastructure view,

functional views and informational views are base lined by conducting user

surveys.

• Develop the Target Architecture: We will establish the target architecture. It

helps creating the vision of the system and also generates enthusiasm among the

40

stakeholders. Many models are discussed to generate a feasible future model of

the enterprise system. The target architecture views base lined in step 2 are

defined. Iteration between step 2 and 3 refine the gaps in the baseline architecture

views.

• Plan Architectural Transitions: Next step is to develop the transition plan and

execute the target architecture. In this phase a sound management structure is put

into place and support for the architect is established.

• Plan Architecture Implementation: This phase maps the resources budgets

schedule, people and products to the choices made in previous steps. The

program management plan is defined and updated as per the availability of

resources.

4.4 The Zachman Framework

One of the objectives of the enterprise architects is to identify a framework as described

in the previous section. Zachman framework is the common choice among enterprise

architects. In this section we'll explore Zachman more into detail.

Zachman defines "Architecture as the set of design artifacts or descriptive

representations that are relevant for describing an object such that it can be produced to

requirements as well as maintained over the period of its useful life." He suggested that

an organization does not have a single architecture, but has, instead, a whole range of

diagrams and documents representing different aspects or viewpoints and different

stages. Figure 4.2 provides an overview of current Zachman Framework. [36]

Figure 4.2 Zachman Framework

42

Zachman states, "The Framework for Enterprise Architecture is a two

dimensional classification scheme for descriptive representations of an Enterprise."[2]

The rows of the framework are known as the "Perspectives" of the model and defines the

views of the IS participants who uses the models contained in the cells. The top row of

the framework represents the most generic perspective of the organization while the

lower rows are more concrete. The Six perspective as show in figure 1.2 are described as

under

Scope: (Contextual) The Planner's Perspective: This row defines the models,

architecture and representation that define the scope and boundaries of the enterprise

system. It provides the high level contextual view of an organization and its interaction to

the outside world as perceived by the senior executives.

Business Model: (Conceptual) The Owner's Perspective: This row is used to

identify the facilities, objects and the assets of the system. The business process owners

describe the models in this row like the semantic model, business process model, logistics

system or the workflow models. These models help to allocate responsibilities and focus

on the characteristics of the enterprise system.

System Model: (Logical) The Designer's Perspective: This describes the

models and architectures used by technical architects and engineers. They decide the

feasibility and the desirability of the required system. The owner perspective addresses

the desirability of the system and the designer perspective lays down the practical

possibility of achieving it technologically.

Technology Model: (Physical) The Builder's Perspective: This describes the

models, architectures and descriptions used by technicians, engineers and contractors

43

who design and create the actual product. The emphasis is given to the identification of

the constraints and the actual construction of the system.

Detailed Representations (Out of Context Perspective): This describes the

actual elements or parts that are included in, or make up, the final product. Using the

construction metaphor, Zachman refers to it as sub-contractor's perspective, and this

makes sense to software developers when the design is implemented with modules of

components acquitted from others.

Functioning Enterprise: This is the functional model of the enterprise in the real

world. The cell of this row defines the actual components, which can be combined to

make the enterprise system work.

The horizontal dimensions or the columns of the framework define the types of

abstraction for each perspective. They are built upon the frequently asked questions while

designing an enterprise application. The horizontal columns are data, function, network,

people, time and motivation.

Data: - The perspectives of this column concentrate on the material composition

of the enterprise system. Zachman goes on to elaborate model for each. For the Data

column he follows the model Thing-Relationship-Thing.

Function: (How) - The main focus is on the functionality of the system and how

to achieve the required. The Zachman model is: Process- Input/Output — Process.

Network: (Where) - This focuses on the physical locations of the entities of the

system. It also defines the communication about different modules of the system. The

Zachman model is: Node-Line-Node

44

People: (Who) - This defines the distribution of tasks among the people. It lays

down the responsibilities of the people involved in the enterprise system. The Zachman

model is: People-Work-People

Time: (When) - The focus in this column is on the event sequence. It defines the

schedule for all events. The Zachman model is Even- Cycle-Event.

Motivation: (Why) - This defines list of goals and strategies for each perspective.

It says why a particular item is being done and what can be achieved by it. Zachman

model is End-Means-End.

We can characterize the Zachman Framework as:

• Simple - It's easy to understand non-technical and pure logical.

• Comprehensive - It addresses the enterprise in its eternity.

• A language - It helps to think about complex concepts and communicate them

precisely with few, non-technical words.

• A planning tool - it helps to make better choices, as you are never making a

choice in vacuum.

• A problem solving tool - It helps you to work with abstractions and define

simple modules without losing the vision of the complex enterprise architecture.

• Natural - It is not defined based on any tool or methodology.

The framework for Enterprise Architecture is not the answer. It is a tool for

thinking. If it is employed with understanding, it should be great benefit to technical and

non-technical management alike in dealing with the complexities and dynamics of the

Information Age Enterprise. [37]

45

4.5 Mapping of MDA and Zachman Framework

In this section we'll explore how MDA can be used to capture and use the information

defined by Zachman Framework in the section 1.4. Zachman Framework describes all the

architectures, models and representation that managers and developers need to keep track

of and the MDA approach is designed to support the creation and management of

enterprise architecture. [38]

The goal of MDA is to create an enterprise architecture modeling capability that

analyst and developers can use to describe a company's business and software assets.

[38] As discussed in earlier chapters MDA describes how an IT group can derive models

from software descriptions and business processes. MDA models are classified as

Computational Independent model (CIM), Platform Independent Model (PIM) and

Platform Specific Model (PSM). (Refer Chapter 1 & 2 for more details). Computational

Independent Model (CIM) describes and captures the business requirements of the

enterprise. This model reflects the business owner perspective and maps to Business

Model Row of the Zachman Framework. Similarly, Platform Independent Model

represents the perspective of technical designers and map to System Model row and

Platform Specific Model describes the view of system builders as per Zachman

Framework These models mappings to the rows of the Zachman Framework is shown in

fig 4.3.

Figure 4.3 Mapping of MDA Models to Zachman Framework

Model Driven Architecture is supported by number of UML models and standards

.All these models are derived from a very abstract Metamodel know as

MetaObjectFacility (MOF). These UML models map to Zachman Framework as show in

Fig 1.4. An architect or an analyst using UML would probably capture information from

different Zachman cells using simpler UML diagrams and then add details to turn the

initial diagram into a more complex diagram to achieve the specific purpose. For example

a single activity diagram can incorporate elements that are described within different cells

on the Zachman Framework or a very general class diagram depicts the important

concepts to the business and entity relationship diagram represent entity important to the

business.

Figure 4.4 Mapping of UML Diagrams to Zachman Framework

Zachman framework can be implemented in many different ways but

implementing it by MDA approach offers the breath and consistency that allow

managers, architects and developers to use the resulting framework in a consistent

manner over the course of year.

CHAPTER 5

EMERGENCY RESPONSE SYSTEM

5.1 Overview

In the previous chapters we learned about development of information systems using

modeling techniques and developed an understanding of Zachman Framework. The

modeling techniques described in the previous chapters are very effective in developing

an elaborate and complex system like Emergency Response System. In this chapter we

will discuss Emergency Response System and develop the major requirements and design

principle of such system.

Emergency response system is the integral part of human response to any crisis

situation. The response of the team will have far reaching implications on every aspect of

human civilization, depending on the severity of the crisis. A good information system

can dramatically improve the degree of preparedness for, respond to and recover from

disaster across geographical domains.

The recent emergency crises like hurricane Katrina, terrorist attack of 9/11 have

brought great sorrows and taken their toll on the economy and life. These crises have

highlighted the major flaws in our emergency response. There were three key issues in

the response to disasters that are recurring in jurisdictions across the nations. Firstly,

there was too much reliance on voice-oriented communications. Secondly it was

observed that there is limited awareness of the situation among the emergency personals

that hindered in their judgment and decisions. Thirdly there was lack of interoperability.

There was no defined process for interdepartmental communications either. In addition,

technological limitations impeded interoperability, situational awareness, and rapid

48

49

coordination of activities between emergency response departments resulting in

confusion, inefficiency, and costly response time and reduced quality of care. Emergency

response communications require an alternative means of communication and

information sharing flexible enough to support the dynamic nature of emergency

response. [41]

The inefficiency of the emergency response system, which came to light by the

recent past, has put forth the need for modeling and developing an emergency response

system that will rectify the current deficiency of the Emergency Response System. The

Committee on Science and technology for Countering Terrorism of the National

Research Council identified "systems analysis, modeling and simulation" as the first of

the seven crosscutting challenges to be addressed to counter the terrorism threat. The

report states: Systems analysis and modeling tools are required for threat assessment;

identification of infrastructure vulnerabilities and interdependencies; and planning and

decision making particularly for threat detection, identification and response

coordination. Modeling and simulation also have great value for training first responders

and supporting research on preparing for, and responding to, biological, chemical and

other terrorist attacks. (National Research Council (2002))

The emergency response system should target two types of audiences. First, who

participate in decision-making, second, the people who are first responders. The focus

will be on systems and data that dramatically improve coordination, planning, situation

awareness, and decision making of geographically dispersed multi-organization response

teams before, during, and after a disaster.

50

An ideal emergency response system can also be used for training and exercising

members of the emergency operations unit, simulating the most vivid and lively

situations happening in real world. They are also increasingly used to simulate crises

requiring humanitarian assistance, natural disasters or man make distracters. Emergency

response training tool should be able to train emergency responders for dispersion of

radiological, chemical and bio chemical agents. It also should be able to effectively

handle a terrorist attack, fire outage, storm breakout etc. Most important to the success

emergency response system is the capability to share information and results across

simulation tools and across different agencies in real life scenarios. This can be achieved

by leveraging the technological tools offered by the computer science in today's era.

Such system should improve the procedures used in a crisis situation by leveraging the

past information and using it as the intelligence to the current emergency crisis.

5.2 Types of Emergency Events

Emergency response agencies have to respond to a number of man-made and natural

disaster events. Some of areas of man-made system where emergency may arise either

due to natural calamities or human errors can be classified as follows:

• Nuclear and radiological plants.

• Human and agricultural health systems.

• Toxic chemicals and explosive materials.

• Information technology, telecommunications.

• Energy systems.

• Transportation systems.

51

• Cities and fixed infrastructure.

• Response of people to terrorism.

The natural emergency situation can be listed as:

• Earthquakes

• Storms

• Fire

• Building collapse

The nature and extend of the catastrophe will decide the extent of the response of

the team. It can be a small isolated incident or it can be a widespread phenomenon

engulfing a wide geographical area and affecting many people.

Most of the emergency situation will not need the widespread communication

between different agencies. This ideal emergency response system should be capable of

handling very small emergencies, involving only one or two agencies, to big catastrophe,

which may involve multiple agencies.

5.3 Requirements of an Ideal Emergency Response System

The characteristics of the ideal emergency response system can be classified as the

following:

5.3.1 System Response

An emergency response system should be able to quickly adapt it self to the requirements

of the situation and tailor its objects around people, actions, relevant information and

discussion. It should also learn and use the knowledge of similar incidents in the past to

leverage the current situation with past intelligence.

52

Emergency response system requires development of simulated environments,

which integrates the potential human subject issues, and has a well defined objectives and

metrics involving cross functional teams participating in the possible scenarios.

5.3.2 System Integration

The integration of the distributed environment of the all the agencies is the core of this

emergency response system. The interaction and acknowledgment of the current

development to the authorities during crisis is of one of the most important consideration

that accounts for reduction in of the casualties during a catastrophe.

We will leverage the technology to support a reliable network between various

servers of different agencies and personal computers, mobile devices and laptops of the

field agents to coordinate the actions. The integration will also allow reports to flow

through the system and all agencies are apprised of the current real field situation. The

system should support communication with multiple media centers like radio, TV, phone,

Internet, e-mails, pagers etc.

5.3.3 System Training

The emergency systems are not like regular systems that are used on a day-to-day basis.

This makes even more important to train the emergency personal to assist transfer of

learning from classroom to job. This is different from normal training, as the training has

to be practiced in a crisis situation where many factors are against normal scenarios.

The system should be easy to learn and it should be complex enough to create

possible situations of a given scenario. This will allow the people to understand their

53

roles and responsibilities in an emergency situation. It should have the ease of use that

can be utilized by non-technical staff handling the crisis situation.

5.3.4 System Intelligence and Planning

A fast and easy search of the database should be available to extract the relevant

intelligence by using the past date of the similar occurrence of the situation. It should

extract the organizational memories, event memories of the past and build upon them to

create scenarios during training and to offer alternatives during real life situation.

The roles and responsibilities cannot be decided in a pre-defined manner. The

system should be able focus on a concise and self-evident design demanded by the small

screen orientation and the need to minimize learning.

The interfaces of the response should be spontaneous and it should be able to

handle bulk load of data. This should support planning, training, evaluations and system

updates between crises.

Tapping the correct information to avoid any information over load during the

emergency situation is a critical feature for any emergency systems. This avoids over

burning of the emergency personals are they are already over worked during crisis.

It should have templates to fit into situation that can be utilized during a crisis

situation. We should remember the fact that during emergencies nothing is normal and

the system should be able to generate data due to unusual human responses.

5.3.5 System Interface

The emergency response system will be connected to various other systems of different

agencies. The integration between various systems is an essential characteristic of the

emergency response system.

54

It should create the event logs and notification that can be shared by all the

involved agencies. The interface of the emergency personals to the information system

should be robust which allows interaction between all agencies, depending on the

severity of the crisis.

The system should be able to communicate the requirements of the field agents

and then get them approved and processes. The system should be able to assign the right

privileges dynamically so that it's not waiting for taking an action by the authorized user

only.

The system can have some templates for the communication that can be

automatically defined by the system by the nature of crisis. These notifications can then

be further utilized to the responses of the team.

Emergency Response System

55

Figure 5.1 Emergency Response System

56

5.3.6 System Communications

An emergency situation would require communication and coordination among different

individual agencies and also many independent aspects of the situation. A typical

emergency system should be capable of communicating with police department, fire

department, hospitals, local administration, central administration, FEMA, emergency

task force, emergency planning institutes, traffic control, weather control center,

geographical information center, Telecommunication center, Mass media communication

center and mass transport center.

It should be able to support and alert the parties which are drafted as the best

resource by the planning section of the emergency response system. According to the

Amer Action Report, communication at the scene was an impediment to efficient

emergency response. "Radio traffic overwhelmed the system to the extent that foot

messengers became the most reliable means of communicating. Radio communications

inside the Pentagon were, for the most part, impossible. Where line of sight could be

achieved, 'talk around' was minimally effective" [Titan Systems Corporation, 2002].

Emergency Medical Service (EMS) providers stated they did not reply on radios to

transmit information because "ambient noise sometimes made it hard or impossible to

talk on the radio" [Titan Systems Corporation, 2002]. Parallel to that, cellular telephones

were not useful as calls jammed local towers. The report also noted that deployment

information from the Emergency Communications Center (ECC) to emergency response

units was delayed and incomplete due to jammed voice oriented communications. It is

recommended, "Every firefighter and EMS responder should have a pager to receive

dispatch notices both on and off shift" [Titan Systems Corporation, 2002]. It was also

57

recommended that the EMS units should be equipped with mobile data terminals to

transmit and receive information. The After-Action report also suggested that the

Emergency Operations Center (EOC) should incorporate computer-based

communications that would enable "roistering, automated notification, operators

checklists and journals, action tracking, and report generation" [Titan Systems

Corporation, 2002]. [40]

5.3.7 Information Management

Conduct the exercise and gather performance assessment of the data. This data can be

used to identify the weakness of a particular response and then can be analyzed to

improve the response time by incorporating the lessons learned in each exercise.

The system should be able to do meaningful data analysis that can be readily used

by the emergency personals during the crisis. It should also analysis the "memories" of

individual's actions and alerts them of their common mistakes. This may help the people

to respond in a better "learned" manner to the situation.

The system should also be able to identity the best response team for a particular

crisis. This can be done with the help of the vast database of the system that stores data

about the actions of the people involved in past crisis. Getting the subject matter expert is

equally important. The identification and notification upon approval can improve the time

required to contact the SME. Such type of response team building can improve the

chances of having the best knowledgeable team available.

5.3.8 Role Based Access

The system should avoid information over load to the field officers. There has to be a

balance between the information access and the information available to the officers. If

58

there is less information then it will hinder in making the right decision and if there is

more information then the officer might over look the relevant information. The

communication system should be able to give role-based access to the information. For

example, a fireman would receive not only information relevant to firefighters, but also

information on police and EMS activity. This could cause the firefighter to be overloaded

with information and possibly cause relevant information to be overlooked. [40] There

are multitude of information sources and destination. The role based access with also add

the added security required in such big information sharing system.

Once information segregation is introduced in an emergency response system, a

need for administration arises. In such a system, there must be an administrative

interface, which allows a user or users to determine the necessary groupings of

information, and allow/deny access to these groups based on need. The administrative

interface must provide both a means for monitoring current group configurations, user

privileges, and subsequently changing them.

5.4 Design Principles

In the paper design of DERMIS Dr. Turoff describes the design principles that take care

of all the requirements of an ideal Emergency Response System. In this subsection we

will describe the design principles as described by Dr. Turoff and discuss them with our

view also.

Design Principle 1 - System Directory: The system directory should provide a

hierarchical structure for all the data and information currently in the system

and provide a complete text search to all or selected subsets of the material. [39]

59

Dr. Turoff explains a very vivid directory structure for Emergency Response system. He

states

A possible structure for the system we have been describing is:

Directory

• People

Background and Expertise

Group Memberships

Conference Memberships

Bulletin Board Editorships

Roles

Responsibilities

Log Event Creation Privileges

Current active log events

Completed log events

Notifications

Resource Concerns

Authorities

Roles

Events

Groups (e.g. medical, firefighters, volunteers, etc)

Conferences (topic discussions)

Bulletin boards (Policies, Plans etc)

Databases (resources, information, local, national, etc)

60

Learning materials an scenario game generators

Other Emergency Systems

Clearly their needs to be a way to form specialized groups that are focused around

certain areas of concern and to have supporting group conferences and message list for

these groups. Bulletin Boards represent the semi-static material that a small group of

people is responsible for updating.

There is lot of opportunity in this system for smart software to aid the members of

the system:

• Letting individuals know who is the subgroup concerned at some point in time

with the same situation.

• Finding information that a given individual is not aware of but should be.

• Helping the user to adapt their linkage filters to meet a changing situation and

requirements.

The long term success of the system is clearly dependent on features like

"smartness" being evolved as part of an on going development process with feedback

from real users and real applications [39]

Design Principle 2 - Information Source and Timeliness: In an emergency it is

critical that every bit of quantitative or qualitative data brought into the system

dealing with the ongoing emergency be identified by its human or database source,

by its time of occurrence, and by its status. Also, where appropriate, by its location

and by links to whatever it is referring to that already exists within the system. 1391

We learnt from the recent Katrina disaster the importance of transfer of information

across the entire group to enable a better coordination about the working groups. The

61

system should be able to determine the source of information. This information can be

used in resource planning by the core team. The allocated resource is answerable for the

data it has shared and also can be queried for any updates specifically. Hence the system

should be able to trace the data path and the resources at all time. It should be able to

generate report on an ad-hoc basis.

Design Principle 3 - Open Multi-Directional Communication: A system such as

this must be viewed as an open and flat communication process among all those

involved in reacting to the disaster. [39]

The duration and type of emergency is unpredictable. The system should be able to

exchange information between any of its modules. It should be able to transfer data from

one resource to another. If the emergencies go for longer time then the responsibilities of

individual have to be rotated. The system should be capable of transferring the data

between individual irrespective of location and type of interface used by the emergency

personals. The system should allow greater decision power to more people and should not

be following hierarchical order. In emergency situations it's observed that it's not prudent

to have a hierarchical decision tree as it takes longer to complete critical functions.

Design Principle 4 - Content as Address: the content of a piece of information is

what determines the address. [39]

The information needs to be duplicated and shared among many resources. The system

should be able to send the information to the required destinations depending on the type

of event that generated the data. This will enable all the responsible personals to be

updates of the latest events and information to reach a decision. The system should be

capable enough to share the information on its own and intelligently make decision about

62

the stakeholders of an event. One-way in which a computer system adds a different

dimension to data and information that is difficult to duplicate with other forms of

communication (Hiltz and Turoff 1978; Turoff 1993). The user should be able to do text

searches as and when required to retrieve the required information.

Design Principle 5 - Up-to-Date Information and Data: Data that reaches a user

and/or his/her interface device must be update whenever it is viewed on the screen

or presented verbally to the user. [39]

System should be able to synchronize data between the master copy of the information

and all other systems using it. The information with all the sub-systems should be up-to-

date and emergency response system should be capable of adding or deleting new clients

on the run.

This is a form of what might be termed "dynamic" linking in that all data exists as

a master copy located somewhere in the system which also tracks where in the network

of users it also resides. [39] The user does not have time to search for an event of concern

and a change of status in an event of concern should just be delivered and presented. [39]

Design Principle 6 - Link Relevant Information and Data: An item of data and

its semantic links to other data are treated as one unit of information that is

simultaneously created or updated. [39]

The system should be able to link and correlate the information to have a meaningful use.

The concept of linking data is critical to the emergency response operation. Any single

item of data is associated with numerous attributes and other pieces of data. The user

cannot spend the time to contemplate and devise complex search queries. [39]

63

Design Principle 7 - Authority, Responsibility, and Accountability: Authority in

an emergency flows down to where that action is taking place. [39]

The hierarchical structure of authority is not advisable in emergency situation as this

creates lot of delays due to trickling of the information from top to down. The field

personals should have authority for taking some actions but at the same time they should

be accountable for their decisions. The system should give them updated information to

help them to make decisions. The system should keep track of the decisions taken by

each personal. This data will also help in future learning. There ahs to be clear

accountability of who is taking what actions and it should also be clear to all involved

when a conflict occurs and how it is being handled. In disaster situations authority is

always flowing downwards (Dynes and Qarantell 1977).

Design Principle 8 — Psychological and sociological factors: Encourage and

support that psychological and social need of the crisis response team. [39]

Emergency crisis are nothing about normal situations. The unforeseen circumstances and

unusual activities bring lot of pressure on the field officers. The system should assist in

encouraging social activities by allowing people to know each other and relax. The

system must allow for a "team spirit" to develop. People must get to know one another

well enough so that they have no qualms about handling over their role to another person.

[39] There should be feeling of trust among the persons.

When an emergency system is employed as a dispersed virtual command center,

this consideration becomes critical. There is a strong need to be able to rely on one

another and to accept frankness in viewpoints as the common norm. The user should be

64

able to adapt the system to his or her method of cognitive problem solving and not inhibit

creativity or improvisation in unique problem situations.

Design Principle 9 — Notification and correlation: System should have multiple

ways of sending the notifications to the emergency personals. It should support

addition of new ad-hoc networks.

Notifications are the pivotal point in any emergency situation. The system should support

sending notifications to the field officers in multiple ways. If one type of communication

fails then there should be a fail over means to communicate to field officials. The

notifications should be send using pagers, cell phone, text messages, voice messages,

emails and it should also make sure that it's not using the same network to send all the

messages as there is a danger of information over flow at the communication towers if all

info flows thru them.

5.5 Summary

In this chapter we studies about Emergency Response System. We outlined and discussed

the requirements of such a system. We established that the communication is one of the

most important concepts of any Emergency Response System. The design principles were

also formulated at a conceptual level. We tried to club the information established in

various papers at one place to present a complete picture of the requirements and design

of Emergency Response.

CHAPTER 6

FRAMEWORK

In the previous chapter we had discussed the overview of an emergency response system

and had also established the functional requirement and design principle of an ideal

Emergency Response System. In this chapter we will propose a framework; we will call

it as ERSD Framework (Emergency Response System Design Framework) for designing

an Emergency Response System based on our study of Model Driven Architecture and

Zachman Framework.

We'll map the major activities that will be required for the design of the

emergency response system to Zachman Framework. This new ERSD framework will act

as a checklist for designers of emergency response systems.

6.1 Design Process

The most common activities that a designer need to perform while designing and

developing any software system is shown in fig 6.1.

65

66

Figure 6.1 Design Activities

A designer will enlist the domain characteristics and gather business

requirements. He may do it with some help of artifacts for e.g. Use Cases. From the

business use cases developed during the phase of requirement gathering he can then

design the business model that will identify the key business processes and the internal

and external entities that are important to an enterprise. Next logical step is to analyze the

data that will be processed by the system under design. From our Business and data

model we can derive the design of the system model that will be the technical view of the

system. System models are independent of the technology and implementation details.

The view from the above models can be used to design the actual implementation

framework of the system. These are the high level activities for designing a system as

67

defined by the MDA process. In the next section we will break these high level system

design activities as per Zachman's framework for an emergency response system.

6.2 ERSD Framework

The ERSD framework is the bird's eye view of the artifacts required to develop an

emergency response system. This framework will act as the "list of things" to implement

such a system. Table 6.1 highlights the activities that one need to perform while

designing an emergency response system.

Cell Definitions

Column 1: The "What" or "Data" Column

Row 1: List of Business Things

Zachman's view: This is simply a list of things that the enterprise is interested in — the

"universe of discourse" relative to things. [42]

ERSD view: The universe of Emergency Response system revolves around

information like Demographic information, System Information, Emergency personnel

information, Historical information, Real-time event information.

68

ERSD
FRAMEWORK DATA FUNCTION NETWORK PEOPLE TIME MOTIVATIO

N

CONTEXTUAL
MODEL

Past event
memories,
Authority
details

System
capabilities

Commands
Center
Locations

Emergency
personnel

Type of
Disasters

Criteria of
Activating the
systems

BUSINESS
MODEL

Directory
Functional
Model

Use Case
Model
(Requirements)

Interconnection
s details

Roles and
their
relationships

Service Level
Agreements
/ETA

Requirements

SYSTEM
MODEL

Directory
information
al and
naming
structure

Data Flow
diagrams or
sequence charts
or activity flow
diagrams

Network
Diagrams

Interface
Design

Event
Transitions

Design
Principles

TECHNOLOGY
MODEL

LDAP /
X.500

Detailed Design
based on
Specific
technology

Hardware &
software
specifications
& Types of
links

Interface
Technology
like pagers

Event
processing
cycles

Design
principles /
domain patterns

Data Model Directory
schema

Implementation
or Low level
Design

Network Map,
Node Address
& link protocol

AAA
specifications

Response
Time

Design patterns

Table 6.1 ERSD Framework.

69

Row 2: Semantic Model

Zachman's view: This is model of the actual enterprise things that are significant to the

actual enterprise. [42]

ERSD view: This will contain the directory structure of emergency response

system. More specifically this will contain the functional model of the directory of the

system. An example of such a view is shown in the figure 6.2 below:

Figure 6.2 Directory's Functional Model

Row 3: Logical Data Model

Zachman's view: This is the technology neutral logical representation of the things of the

enterprise about which it records information. [42]

ERSD view: This will represent the directory information tree structure and also

describes the information model of the emergency response system central directory. Fig

6.3 shows one such example of directory naming and information model.

70

Figure 6.3 Directory Information Model

Row 4: Physical Data Model

Zachman's view: This is technology constrained, or physical representation of the things

of the enterprise. [42]

ERSD view: This cell will contain technology specific design of directory.

Directory can be based on LDAP or X.500 standards. Both of these standards will have

their own constraints that a designer need to follow while designing technology specific

DSA and their distribution model like replication details. Fig 6.4 shows one such

example

71

Server B
Figure 6.4 Directory DSA Design

Row 5: Data definitions

Zachman's view: This would be the definitions of all the data objects specified by the

physical data model and would include all the data definition language required for

implementation. [42]

ERSD view: This cell will contain directory schema definition.

Column 2: The "How", or "Process" column

Row 1: Semantic Model

Zachman's view: This is simply a list of processes (or functions) that the enterprise

performs — the " universe of disclosure" relative to process, the " transformation" of

enterprise " inputs" or "outputs".[42]

ERSD view: This cell will contain the main capabilities of the emergency

response systems. Example few of such business processes are sending and receiving

notifications , remote database searching capabilities, self learning capability of the

system, simulation of events for training purposes, seamless communications between

72

different departments involved in emergency. These functionalities are described in detail

in the previous chapter under the section of characteristics of ideal emergency response

system

Row 2: Business Process Model

Zachman's view: This model of the actual business processes that the enterprise

performs, quite independent of any "system" or implementation considerations and any

or organizational constraints. [42]

ERSD view: This will define the use cases for the required functionality described

in row 1 column 2 of the framework. For example in case of fire emergencies who all

will receive notification. How will system respond to the search started by a field agent?

Such kind of use cases should be elaborated in this cell.

Row 3: Application Architecture

Zachman's view: This is a model of the logical (implementation —technology neutral)

"systems" implementation (manual and or automated) supporting the business processes

and would express the "human/machine" boundaries. [42]

ERSD view: This cell will elaborate the data flow for the application functions

and established architecture for each function. For example, this cell will describes how a

notification will be received and transmitted to all the required parties. This will show

how a particular notification will decided its destinations by the help of the sequence

diagrams. Such sequence diagrams should be developed for all business processes

described in use cases in row 2 column 2 of the framework.

Row 4: System Design

73

Zachman's view: This is a model of the logical (implementation — technology neutral)

"systems" implementation supporting the business processes and would express the

"human/machine" boundaries. [42]

ERSD view: This will decide the technology implementation for the functions

described in previous cells. For example how an existing wireless network will be

leveraged to send the data / voice notifications to the remote user. An interface build in

Java using J2ME APIs will be modeled to provide a simple interface on the mobile

devices. The name of the APIs should be identified in this cell.

Row 5: Program

Zachman's view: These would be the programs that derive from the "Action Diagram" —

style or Object-style specifications for the implementations. [42]

ERSD view: This cell will contain actual implementation design.

Column 3: The "Where" or "Network" column

Row 1: List of Business Locations

Zachman's view: This is simply a list of locations in which the Enterprise operates, or

relates to-the "universe of discourse" relative to location. [42]

ERSD view: For emergency response system this cell defines the command center

location, field locations and back office locations. For example city halls, moveable

command center, locations of police stations, fire stations and hospitals.

Row 2: Business Logistics System

Zachman's view: This is a model of the locations of the enterprise and their connections

whether the connection are voice , data , post or truck ,rail , ship.[42]

74

ERSD view: This cell will describe the nodes and the hierarchal structure of each

location. The emergency command center locations and their linkages are identified and

established. Each node is given a priority for service in case of emergency.

Row 3: Distributed System Architecture

Zachman's view: This is a logical model of the system implementation of the business

logistics system depicting the types of the systems facilities and controlling software at

the node and lines. [42]

ERSD view: Here the architecture is drawn linking each node established in

previous steps. The network architecture describes the type of storage and connectivity.

For example a nodal diagram is drawn for the servers of police department and fire

department. Protocols are established for the communication between them.

Row 4: Technology Architecture

Zachman's view: This is the physical depiction of the technology environment for the

enterprise showing the actual hardware and system software at the nodes and the lines

and their systems software including operating systems and middleware. [42]

ERSD view: This cell will contain the detail specification of each hardware and

software that will be the part of the system. For example server at police headquarter has

how much, memory, processing speed, operating system details and so on. It will also

specify the link details whether it's Ti or T3 or VPN link over public network and so on.

Row 5: Network Architecture

Zachman's view: This is the specific definition of the node and the line identification.

[42]

75

ERSD view: This cell will contain the address details of each node for example

the MAC address and IP address of each server located at the police headquarter. It will

also specify the protocol of each link whether its ATM or Frame Relay or IP.

Column 4: The "Who" or "People" Column

Row 1: List of Business Organizations

Zachman's view: This is simply a list of organizations to which the Enterprise assigns

responsibility for work — the "universe of discourse" relative to people. [42]

ERSD view: This cell defines the list of all the departments and people who will

interact during an emergency response.

Row 2: Work Flow Model

Zachman's view: This is the model of the actual Enterprise allocations of responsibilities

and specifications of work products. [42]

ERSD view: This cell lays down the structure in which the departments and

people interacts which each other. In emergency system it recommended not to follow the

conventional hierarchal structure for communication.

Row 3: Human Interface Architecture

Zachman's view: This is the logical "systems" expression of work flow which would

include the specifications of the "roles" of responsible parties including management,

administration, knowledge-worker, engineering, marketing etc. as well as the logical

specification of the work products like, voice, text, graphics, video, etc . [42]

ERSD view: This view will explain vividly the roles of each personal during the

emergency. The authority of people is established and they are joined to network with

their specialty.

76

Row 4: Presentation Architecture

Zachman's view: This is the physical expression of work flow of the Enterprise including

the specific individual and their ergonomic requirements and the presentation format of

the work product. [42]

ERSD view: This view describes the privileges of each person and the type of

interfaces which they will be using to access the information.

Row 5: Security Architecture

Zachman's view: The "out-of-context" specifications of work flow would be the

identification of the individual accessing the system and the specification of the work or

job they were authorized to initiate. [42]

ERSD view: This view will describe Authentication, Authorization and

Accounting details of all the nodes. It will also specify how the role base access

requirements will be met and implemented

Column 5: The "When" or the "Time" Column

Row 1: List of Business Events

Zachman's view: This is simply a list of events to which the Enterprise responds — the

"universe of discourse" relative to time. [42]

ERSD view: This view will enlist the events what that will trigger the emergency

response. Like in the event of major fire a different subnet of emergency response system

will be invoked.

Row 2: Master Schedule

Zachman's view: This is a master of the business cycles that is comprised of an initiating

event and an elapsed time. [42]

77

ERSD view: The timing is very critical in any emergency response system. The

cell defines the timing definition for triggering each event.

Row 3: Processing Structure

Zachman's view: This is the logical systems specification of points in time and lengths

of time (processing cycles). [42]

ERSD view: This cell will specify how the triggering event changes the state of

the emergency system. This can be elaborated by State Charts.

Row 4: Control Structure

Zachman's view: This is the physical expression of system events and physical

processing cycles, expressed as control structures, passing controls from one to another

processing module. [42]

ERSD view: This cell will describe the event processing cycle of an emergency

response system.

Row 5: Timing Definition

Zachman's view: This is the definition of interrupts and machine cycles. [42]

ERSD view: This cell will define the calculated response time of the emergency

response system with respect to an event.

Column 6: The "Why" or "Motivation Column"

Row 1: List of Business Goals /Strategies

Zachman's view: This is simply a list of major business goals that are significant to the

Enterprise and defines the "universe of discourse". [42]

ERSD view: This cell contain the list of the disaster events that can happen both

natural and man made.

78

Row 2: Business Plan

Zachman's view: This is a model of the business objectives and the strategies of the

enterprise that constitute the motivation behind Enterprise operations and decisions. [42]

ERSD view: This cell will contain the requirements of the ideal system that has

been proposed in the previous chapter.

Row 3: Business Rules

Zachman's view: This is a logical model of the business rules of the enterprise terms of

their intent and the constraints. [42]

ERSD view: This cell will contain the design principles outlined in the previous

chapter.

Row 4: Rule Design

Zachman's view: This is a physical specification of the business rules. The rules are not

presently factored out from their implementations and therefore are found as cardinality

and optionality in the data models, as procedural code or as policy specification. [42]

ERSD view: This cell will contain the design principles and also the design

patterns.

Row 5: Rule Specification

Zachman's view: This will be the "out-of-context" specification of the business rules.

[42]

ERSD view: This cell will contain the low level design patterns.

CHAPTER 7

CONCLUSIONS

We have described a software development landscape. In this discussing we laid down

the advantage of abstraction in a software development lifecycle. Modeling is powerful

concept to visualize any system. It is established why modeling is important and how can

it be leveraged to achieve a more coherent soft wares. Unified Modeling Language is a

set of specification defined by Object Modeling Group. We have defined various profiles

which derived from UML.

Model Driven Architecture defines modeling the enterprise around system

independent model and system specific model. The requirements are captured in

Computational Independent Model and then platform independent model is created. The

next step is to map the platform independent model to a platform specific model. Here we

have tool support which can model a particular technology independent model to a

technology specific model. We learnt that we have lots of industry support for MDA.

Various modeling tools like IBM Rational Rose, Rose RT, and I-Logix Rhapsody. There

are standard profiles defined by OMG to achieve such modeling goals.

We established the importance of enterprise architecture and how it can be

achieved. We learnt that MDA is a very important concept in achieving today's enterprise

architecture as it helps us separate the business logic from the implementation

methodology in a clear way. Enterprise Architecture design principles were describes to

develop the appreciation of the architecture. Zachman's framework is one of the most

commonly used frameworks in today's industry. We discuss the reasons to its popularity

and its guidelines to develop and enterprise architecture were also laid. The framework

79

80

was established which can use the artifacts described by MDA to describe the cells of the

Zachman's framework in an architecture.

We did a case study of developing an Emergency Response System Design

Framework. This framework can act as a checklist for development of any emergency

system. An ideal emergency response system was established and then the MDA artifacts

and Zachman's framework was used to develop an ERSD Framework.

CHAPTER 8

CONTRIBUTIONS

Emergency response system has always been an important aspect of human life in case of

crisis. The recent disastrous events like the 9/11 and hurricane Katrina have brought the

importance of emergency response system to the forefront. Leveraging the current

technologies to efficiently develop reliable emergency response systems with high

availability can be very beneficial and help saving many lives as we can achieve well

coordinated efforts in less time.

Based on the literature review we know that well defined architectures and

enterprise architectures in particular are critical to the successful development,

deployment and maintenance of complex, scalable integrated systems with multiple

users, responsibilities, and goals. We have studied the state of the art in defining

enterprise architectures. We have further examined the current approaches to defining

and designing Emergency Response Systems and the application of MDA approach to

support this task and have defined an Emergency Response System Design Framework,

which can provide guidance when architecting, developing and deploying an Emergency

Response System. Our ERSD Framework is a check list of views, recommended models

and best practices that allow for a comprehensive definition of an Emergency Response

System.

81

REFERENCES

1. Grandy Booch, MDA: A Motivated Manifesto and Software Development, Software
Development Magazine, August 2004.

2. John Daniels, Modeling with a Sense of Purpose, IEEE Software, February 2002.

3. David S. Frankel, BPT Column, MDA Journal, September 2003.

4. Anders Lidbeck, Super Models, CBR Research, October 2002.

5. Gray Crenosek, The Value of Modeling, Rational Developers Works, Oct 2004.

6. Paul Harmon, UML Models E-Business, Softwaremag.com , January 2005.

7. Terry Quatrani, Introduction to UML, Rational Software, June 2003.

8. OMG: Object Management Group, Meta Object Facility Specification V 1.4, April
2002.

9. Stephen J. Mellor, MDA Distilled: Principles of Model-Driven Architecture.

10. Ruiz Francisco, Using XMI and MOF for Representation and Interchange of
Software Processes, IEEE, 2003.

11. Caruso Francesco, Architectures to Survive Technological and Business
Turbulences, Information Systems Frontiers, September 2004.

12. Joaquin Miller, MDA Guide Version 1.0.1, OMG Press, June 2003.

13. Frank J. Armour, A Big-Picture Look at Enterprise Architecture, IEEE IT Pro, Feb
1999.

14. Frank J. Armour, Building Enterprise Architecture Step by Step, IEEE IT Pro,
August 1999.

15. Tony Brown, Value of Enterprise Architecture, www.zifa.com .

16. Michael Chung, Enterprise Architecture, Implementation, and Infrastructure
Management, IEEE Conference, 2002.

17. Kaisler, Enterprise Architecture: Critical Problems, IEEE Conference 2005

18. Frank J. Armour, A UML-Driven Enterprise Architecture Case Study, IEEE
Conference, 2002.

82

83

19. Robert France, Bernhard Rumpe, In Search of Effective Design Abstractions,
Springer-Verlag 2004.

20. Zudin Dzafic, Mevludin Glavic, and Sejid Tesnjak: A Component Based Power
System Model-Driven Architecture. IEEE Transactions on power systems Vol 19
Nov.2004.

21. James Skene and Wolfgang Emmerich, A Model Driven Approach to Non-
Functional Analysis of Software Architectures, Proceeding of the 18th IEEE
International Conference on Automated Software Engineering 2003.

22. Jana Koehler, Rainer Hauser, A Model Driven Transformation Method, Proceedings
of the Seventh IEEE International Enterprise Distributed Object Computing
Conference 2003.

23. Kevin L Moore and John K Abraham, An Architecture for Intelligent Decision
Support with Applications to Emergency Management, IEEE 1994.

24. Barry M Horowitz, Stephen D Patek, Integrated Peer-to-Peer Applications for
Advanced Emergency Response Systems Par II Technical Feasibility,
Proceedings of the 2003 Systems and Information Engineering Design
Symposium.

25. Leo Frishberg, Looking Back at Plan AHEAD: Exercising User Centered Design In
Emergency Management, CHI 2005.

26. Murray Turoff, Assuring Homeland Security: Continuous Monitoring, Control and
Assurance of Emergency Preparedness, http://web.njit.edu/~turoff/#a5, Oct.
2005.

27. Sisi Zlatanova, Proposed System Architecture for Emergency Response in Urban
Areas in Direction Magazine Oct 2005.

28. J. T. Ryan and C. N. Dillard, A Computer Model of the Total Emergency System,
ACM 2002.

29. Ingmar Rauschert, Pyush Agrawal, Rajeev Sharma, Designing a Human-Centered,
Multimodal GIS Interface Support Emergency Management, ACM 2002.

30. Yufei Yuan & Brian Detlor, Intelligent Mobile Crisis Response System,
Communications of the ACM February 2005.

31. K. K. A. Zahid, L. Jun, M. Matsumoto, IP Network for Emergency Service, ACM
International Conference Proceedings, 2004.

32. Murray Turoff, Past and Future Emergency Response Information Systems,
Communications of the ACM April 2002Nol. 45, No. 4.

84

33. J.A.Zachman. "A Framework for information Systems Architecture," IBM Systems
Journal, Vo126, No.3, 1987.

34. Published in the electronic book The Zachman Framework. The book is available at
www.zachmaninternational.com, 2005.

35. John A.Zachman, A Framework for Information Systems Architecture, IBM Systems
Journal, Vol. 26, No. 3, 1987.

36. John A.Zachman, The Framework of Enterprise Architecture: Background,
Description and Utility, www.zifa.com , Oct. 2005.

37. David S. Frankel, The Zachman Framework and MDA, OMG White Paper, Sep
2003.

38. Murray Turoff, Design of DERMIS, JITTA, http://web.njit.edu/~turoff/#a5, Oct.
2005.

39. Altaf S. Bahora, Integrated Peer-To-Peer applications for Advanced Emergency
Response System-Part1: Concepts of Operations, IEEE 2003.

40. Altaf S. Bahora, Integrated Peer-To-Peer applications for Advanced Emergency
Response System-Part2: Technical Feasibility, IEEE 2003.

41. John A.Zachman, The framework of Enterprise Architecture Cell Definitions,
www.zifa.com , Oct 2005.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment Page
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Software Development Landscape
	Chapter 2: Model Driven Architecture In Action
	Chapter 3: Industry Support And Future Course Of MDA
	Chapter 4: Enterprise Architecture And MDA
	Chapter 5: Emergency Response System
	Chapter 6: Framework
	Chapter 7: Conclusions
	Chapter 8: Contributions
	References

	List of Figures
	List of Tables

