

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

NEXT GENERATION SATELLITE ORBITAL
CONTROL SYSTEM

by
Thomas Gerard Nowak

Selection of the correct software architecture is vital for building successful

software-intensive systems. Its realization requires important decisions about the

organization of the system and by and large permits or prevents a system's

acceptance and quality attributes such as performance and reliability. The correct

architecture is essential for program success while the wrong one is a formula for

disaster.

In this investigation, potential software architectures for the Next

Generation Satellite Orbital Control System (NG-SOCS) are developed from

compiled system specifications and a review of existing technologies. From the

developed architectures, the recommended architecture is selected based on

real-world considerations that face corporations today, including maximizing code

reuse, mitigation of project risks and the alignment of the solution with business

objectives.

NEXT GENERATION SATELLITE ORBITAL
CONTROL SYSTEM

by
Thomas Gerard Nowak

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science

January 2005

APPROVAL PAGE

NEXT GENERATION SATELLITE ORBITAL
CONTROL SYSTEM

Thomas Gerard Nowak

Dr. Ali Mili 	 Date
Professor of Computer Science, NJIT

Dr. Alexander Thomasian, Committee Member 	 Date
Professor of Computer and Information Science, NJIT

Dr. Robert M. Klashner, Committee Member 	 Date
Assistant Professor of Information Systems, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Thomas Gerard Nowak

Degree: 	 Master of Science

Date: 	 January 2005

Undergraduate and Graduate Education:

• Master of Science, Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2005

• Bachelor of Science, Electrical Engineering,
Manhattan College, Riverdale, New York, 1985

Major: 	 Computer Science

Patents:

• US patent # 6,154,15. General Frame-Based Compression Method.

• US patent # 6,597,892. Automated ground system with telemetry initiated
command assistance.

iv

To my wife, Kate and children, T.J., Chad and Kevin

ACKNOWLEDGMENT

I would like to express my sincere appreciation to Dr. Ali Mili, who not only

served as my research supervisor, providing valuable insight, resources, and

intuition, but also gave me support, encouragement, and reassurance. Special

thanks are given to Dr. Alexander Thomasian and Dr. Robert M. Klashner for

their astute recommendations and active participation in my committee.

Many of my fellow associates at SES-Americom and SES-Astra are

deserving of recognition for their support, specifically Phil Schramm, Pascal

Wauthier and the entire Computer Systems Engineering group.

I also wish to thank my wife, Kate, for her continued love, support and

encouragement over the years.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Objective 	 1

1.2 Background Information 	 2

2 REQUIREMENTS COMPILATION AND DEVELOPMENT 	 5

3 EXISTING ARCHITECTURES 	 7

3.1 Flight Dynamics System (FLD) Architecture 	 7

3.2 PC-Satellite Orbital Control System (PC-SOCS) Architecture 	 8

4 TECHNOLOGY INVESTIGATION 	 9

4.1 Programming Languages 	 9

4.1.1 ADA Programming 	 9

4.1.2 C Programming 	 10

4.1.3 C++ Programming 	 11

4.1.4 C# Programming 	 12

4.1.5 FORTRAN Programming 	 13

4.1.6 Java Programming 	 14

4.1.7 Visual Basic Programming 	 16

4.2 Categories of Computing Platforms and Operating Systems 	 17

4.3 Operating Systems 	 18

4.3.1 Windows 	 18

4.3.2 VMS and OpenVMS 	 18

4.3.3 UNIX 	 19

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.3.4 Solaris 	 20

4.3.5 HP-UX 	 20

4.3.6 SCO UnixWare 	 21

4.3.7 Linux 	 21

4.3.8 GNU 	 22

4.3.9 OS Comparisons 	 22

4.4 Database Technologies 	 23

4.4.1 Oracle 	 23

4.4.2 MySQL 	 24

4.4.3 DB2 	 24

4.4.4 SQL Server 	 25

4.5 Web Servers and Web Technologies 	 25

4.5.1 Apache Web Server 	 25

4.5.2 Microsoft Internet Information Server 	 26

4.5.3 WebSphere 	 26

4.5.4 Common Gateway Interface 	 26

4.5.5 Active Server Page 	 27

4.5.6 ASP.NET 	 27

4.5.7 Java Servlets 	 27

4.5.8 JavaServer Pages 	 28

4.5.9 PHP Hypertext Preprocessor 	 28

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.6 Inter Process Communication Techniques 	 29

4.7 Development Environments/Active Frameworks 	 30

4.7.1 Common Object Request Broker Architecture 	 30

4.7.2 .NET 	 32

4.7.3 Java 2 Platform Enterprise Edition 	 34

5 HETEROGENEOUS PLATFORMS AND DIFFERENT PROGRAMMING
LANGUAGES 	 37

6 CANDIDATE ARCHITECTURES 	 40

6.1 Tier'd Approach 	 40

6.2 Candidate Architectures 	 41

6.2.1 BULUT ARCHITECTURE 	 41

6.2.2 J2EE & .NET Approach 	 43

6.2.3 CORBA Approach 	 46

6.2.4 Selected Approach 	 47

7 MERGER PLAN AND REQUIREMENTS COMPLIANCE 	 50

8 APPENDIX 	 52

9 WORKS CITED 	 93

ix

LIST OF TABLES

Table 	 Page

4.1 Comparison of TCO Between Linux and Microsoft OS 	 23

6.1 	 Trade Off of Proposed Architectures 	 49

LIST OF FIGURES

Figure Page

1.1 Generic Satellite Orbit Control System. 	 3

3.1 Flight Dynamics System (FLD) Architecture 7

3.2 PC-Satellite Orbital Control System (PC-SOCS) Architecture. 	 8

4.1 Participants in a CORBA request. 	 31

4.2 Components of Microsoft .NET- Software 	 33

4.3 Clients and Java Servlets. 	 35

4.4 Servlets and application tiers 	 36

6.1 Architecture selected as part of previous work. 	 42

6.2 Architecture using either .NET or J2EE. 	 44

6.3 Architecture using CORBA approach 	 47

xi

LIST OF ACRONYMS AND DEFINITIONS

AGI 	 Corporation that markets the STK product

DEC 	 Digital Equipment Corporation

Epoch 	 Specific point in time

FLD 	 Flight Dynamics Software

Fleet 	 Collection of geosynchronous satellites

FTP 	 File transfer Protocol

GUI 	 Graphical User Interface

ISI 	 Integral System Corp. Markets satellite control software

JDK 	 Java Development Kit

NG-SOCS 	 Next Generation Satellite Orbital Control Software

Object 	 An entity that has state, attributes and services

OOP 	 Object Oriented Programming

OS 	 Operating System

PC 	 Personal Computer

PC-SOCS 	 PC Satellite Orbit Control System

SES 	 Company full name is Societe Europeenne des Satellites

SES-Americom 	 One of the divisions of SES, also known as Americom

SES-Astra 	 One of the divisions of SES, also known as Astra

SRS 	 Software Requirements Specification

STK 	 Satellite Tool Kit, application produced by AGI Corp.

TCO 	 Total Cost of Ownership

UML 	 Unified Modeling Language

xii

VAX 	 Virtual Address Extension. A computer platform

VMS 	 OS that runs on VAX and DEC Alpha computers

Servlet 	 A small program that runs on a server

CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this dissertation is to determine the most appropriate

architecture for the Next Generation Satellite Orbital Control System (NG-SOCS)

that will be jointly developed SES-Americom and SES-Astra.

The NG-SOCS system will be based upon two legacy systems presently

in use, Flight Dynamics System (FLD) and PC Satellite Orbital Control System

(PC-SOCS). This effort included the compilation of system requirements, an

investigation into existing technologies, investigation of merger strategies,

development of approaches to deal with heterogeneous platforms and different

programming languages, proposing candidate architectures and the plan to

ensure that the proposed solution meets the system requirements.

The proposed architectures were not restricted to the use of existing

legacy hardware architecture and were free to consider fundamental changes to

the existing system architecture. In particular, the new system must allow for the

capability of stand alone operation of core system functionality from computers

(mostly laptops) which are frequently not connected to the corporation's

computer network, yet support a centralized paradigm in order to ensure that all

critical satellite information is available to the entire departmental personnel.

In addition, the possible use of third party software to satisfy portions of

the system requirements were examined. Presently, two vendors claim to provide

1

2

off-the-shelf software systems for satellite orbital control. It was ensured that the

proposed solutions support mechanisms that would allow for the potential use of

portions of these products sometime in the future.

1.2 Background Information

In general, a satellite orbital control system is used to determine the precise orbit

of a satellite, plan for orbit correction maneuvers and provide support tools as is

depicted in Figure 1.1. The PC-SOCS and FLD systems are in use at SES due to

the merger of SES-Astra and GE-Americom in 2002. The two systems presently

employ different architectures, programming languages and computing platforms

to accomplish these tasks.

3

Figure 1.1 Generic Satellite Orbit Control System.

FLD is composed of various modules and input/output files. The modules

are written in FORTRAN 90 and ADA mainly due to the various legacy concerns

at the time of development of FLD. Additional FORTRAN modules were devised

as part of a SES-Astra relationship with a German aeronautics company in the

early 1990s and represent many man-hours of mathematical algorithm

development and verification. ADA modules were used to tie the system together

in a near real-time architecture.

PC-SOCS is composed of C and assembly language modules that were

4

initially developed by GE-Americom and Integral Systems (ISI) to visually

determine and depict the satellite orbits. The choice of architecture was due

primarily to the fact that ISI had a government contract to provide a similar

system at the time.

CHAPTER 2

REQUIREMENTS COMPILATION AND DEVELOPMENT

The initial steps of this effort focused on the collection and documentation of the

NG-SOCS system requirements. Existing FLD and PC-SOCS specification were

obtained and disseminated to the NG-SOCS stakeholders. A series of meetings

were then held with the different stakeholders to develop and shape the

requirements. From the original specifications and stakeholder inputs, the system

requirements were finalized. This specification is contained within the Appendix

of this document.

The specification followed the recommend software requirements

documentation practices of IEEE Std. 830-1984. Stakeholders included the

original system developers, business managers and the end users of the system

(satellite controllers, satellite analysts, earth station managers and satellite

engineers).

Obtaining the final set of requirements was a difficult process for many of

the reasons that are identified by Sommerville (124-125). Some stakeholders

were sometimes not sure what they needed from the new system or found it

difficult to articulate what they required. Specifically, this was the case when

discussing the user interface and graphical representation of much of the data. In

some cases, it was agreed that the best course of action would be to generalize

a requirement and then agree to use a rapid software prototype development

5

6

approach to elicit end user feedback at the appropriate time, later in the

development cycle.

Also, as acknowledged by Markus (430), end users will resist a new

system that is envisioned to be "non-user friendly". This could explain the

difficulties that were experienced while trying to obtain agreement from the

stakeholders on the manners in which end-users will interact with the new

system.

In addition, conflicting requirements from different groups had to be

overcome. For example, the centralized system approach, where the main

application resides on the server vs. the distributed model where users can run

the full featured application when not connected to the central server. In this

case, architectures that support both requirements had to be developed.

As discussed in Zwass (550-558), the development of high quality, reliable

and accepted systems hinges, to a large degree, on the proper elicitation of

stakeholder requirements. For this effort, numerous passionate exchanges of

viewpoints provided a foreshadowing of poor end-user acceptance levels if the

developed system did not address the concerns that were raised in these

meetings.

CHAPTER 3

EXISTING ARCHITECTURES

3.1 Flight Dynamics System (FLD) Architecture

FLD, depicted in Figure 3.1, is composed of various modules and input/output

files. The modules are written in FORTRAN 90 and ADA primarily due to the

various legacy concerns at the time of development of FLD. FORTRAN modules

were developed as part of a SES-Astra relationship with a German aeronautics

company in the early 1990s and represent many man-hours of mathematical

algorithm development and verification. ADA modules were used to tie the

system together in a near real-time architecture.

Figure 3.1 Flight Dynamics System (FLD) Architecture.

7

8

3.2 PC-Satellite Orbital Control System (PC-SOCS) Architecture

PC-SOCS, depicted in Figure 3.2, is composed of C and assembly language

modules that were initially developed by GE-Americom and Integral Systems to

visually determine, depict and control the satellite orbits. The choice of

architecture was due primarily to the fact that Integral Systems had a government

contract to provide a similar system at the time.

Figure 3.2 PC-Satellite Orbital Control System (PC-SOCS) Architecture.

CHAPTER 4

TECHNOLOGY INVESTIGATION

This chapter documents a study of the state of the industry that was completed in

order to examine the existing tools, platforms and operating systems that were

under consideration for use in NG-SOCS. The data contained in this chapter was

used to support the architecture studies described later in this document.

4.1 Programming Languages

4.1.1 ADA Programming

Ada is a block-structured programming language originally designed for the US

Dept. of Defense. As part of the initial concept, Ada designers emphasized

software reliability and program safety. It was designed to contain several object-

oriented programming features and intended to support large-scale programming

efforts. Some of Ada's more powerful features include: nested procedures,

nested packages, strong typing, multi-tasking, generics, exception handling, and

abstract data types.

To support program safety and reliability, Ada was designed as a strongly

typed language requiring that all data elements be declared as a particular type

or subtype. Type enforcement is strictly enforced both within and between

modules. Ada supports comprehensive exception handling and full complement

of sequential control structures. A strict validation of all Ada compilers is adhered

9

10

to by use of an official test suite. Ada is strictly standardized and well

documented as a language.

Ada was first standardized in 1983, with updates published in 1995. These

two versions are generally referred to as Ada 83 and Ada 95.

4.1.2 C Programming

C is a high-level block structured language with good support for system

programming. Originally designed as a systems programming language, it has

proven to be a powerful and flexible language that can be used for a variety of

applications. The first major program written in C was the UNIX operating system

and for many years C has been tightly linked to the UNIX operating system.

However, C has become an important language independent of UNIX, and is

widely used in PC, Mac, mainframe and other computing environments.

C was extremely popular in academic and industrial computing from the

late 1970s through the early 1990s, and still has a very large user community.

Free and commercial C implementations are easily obtained; one of the most

popular free implementations is the GNU C Compiler (gcc). C was standardized

in 1990; currently the ANSI ISO/IEC 9899 defines the C language

While it is a high-level language, C is closer to assembly language than

most other high-level languages. This closeness to the underlying machine

language allows C programmers to write very efficient code. The low-level nature

of C, however, can make the language difficult to use for some types of

applications.

11

4.1.3 C++ Programming

The C++ programming language is derived from C and is a fairly complicated

object-oriented language that is a popular language for application development

on UNIX systems and PCs. The syntax of C++ is similar to that of C and contains

a mixture of extensions and extra keywords needed to support 00 features.

C++ offers a wide range of OOP features like multiple inheritance, strong

typing, dynamic memory management, templates, polymorphism, exception

handling and overloading. Some newer C++ systems also offer run-time type

identification and separate namespaces. C++ also supports the expected

features of an application programming language: a variety of data types

including strings, arrays and structures, full I/O facilities, data pointers and type

conversion. The C++ Standard Template Library (STL) provides a set of

collection and abstract data type facilities.

C++ has dynamic memory allocation, but does not have Java like garbage

collection. This allows developers to misuse and potentially leak memory. C++

also supports hazardous low-level facilities like raw memory pointers and pointer

arithmetic, which are useful when writing tight code, but can increase the time

needed for software development and testing.

Some free C++ compilers are widely available, the most significant of

which is the GNU C/C++ compiler, GCC. C++ was standardized by the ISO and

ANSI in November 1997.

12

4.1.4 C# Programming

C# is an object-oriented language derived from C, with some similarities to C++,

Java and Visual Basic. C# supports single inheritance, overloading, overriding,

reflection, and polymorphism. Developed by Microsoft, the C# object model is

designed to correspond directly with Microsoft's COM/DCOM object mode

because it was the intent of the language to mainly support development on

Windows operating systems.

Microsoft claims that C# offers the power and richness of C++ with the

productivity of Visual Basic. C# does provide garbage collection and automatic

memory management. GUI events and other external triggers are handled by a

novel and complex form of delegation. Attributes support communication from the

programmer to the complier and runtime environment via meta-data about code.

Attributes are much richer than any similar capability in comparable languages

yet also add a very complex side to the language if used by the programmer.

C# is strongly typed and provides extensive compile-time and run-time

checking. Unlike Java and C++, C# hides some of the distinction between

primitive types and object types by automatically 'boxing' and 'unboxing' primitive

as objects. C# supports C-style unsafe pointers, but only within designate code

sections. Like C, C# offers the expected complement of primitive types: integers,

reals, booleans, and characters while supporting objects and arrays. Similar to

Java, C# supports a string type that is an object and tightly integrated with the

entire language.

13

An investigation into the availability of a C# complier determined that the

only compiler which fully supports the C# language is provided by Microsoft via

the Microsoft .net compilers. Microsoft does make a command-line compiler

available for free, under the name of the ".Net Framework SDK".

4.1.5 FORTRAN Programming

FORTRAN was developed in the late 1950s and is still in use, especially in

applications geared towards engineering and mathematics. Numerous

FORTRAN versions have been released over the years that have added more

modern programming paradigms. The more popular version being FORTRAN I,

FORTRAN II, FORTRAN IV, FORTRAN 77, and FORTRAN 90. The current

standard is FORTRAN 95 (ISO/IEC 1539-1), and it includes modern structured

programming features in a traditional FORTRAN framework.

FORTRAN has good support for mathematics, especially floating-point

computation and lacks modular programming structures and implicit declarations.

For these reasons, it has been a staple language in the scientific community for

complex scientific calculations, engineering models, statistics, and signal

processing. In addition, its relatively simple code structure and static data

structures make it highly compatible to compiler optimization and targeting to

special hardware (e.g. vector supercomputers).

FORTRAN is normally case-insensitive. An early limitation of the language

was that the position of text on lines was significant, however, FORTRAN90 and

later versions support free-form input.

14

Some free FORTRAN compilers are available, the most significant of

which is the GNU FORTRAN compiler, g77. Free compilers for FORTRAN 90 or

FORTRAN 95 are under development by GNU. FORTRAN was standardized by

ANSI in 1978 and is under the auspices of the Committee for Information

Technology Standards (INCITS).

4.1.6 Java Programming

Java is an object-oriented language similar to C++ yet simplified, in some

respects, to eliminate language features that caused frequent C++ programming

errors. Java was designed and developed by Sun Microsystems.

The feature set of Java is fairly broad: it has inheritance, strong type

checking, modularity (packages), exception handling, polymorphism,

concurrency, dynamic loading of libraries, arrays, string handling, garbage

collection, and an extensive standard library. The Java standard library packages

include extensive I/O facilities, a comprehensive GUI toolkit, collection classes,

date/time support, cryptographic security classes, distributed computation

support, and system interfaces.

The fundamental structural component of Java is the class. All data and

methods in Java are associated with some class; global data or functions do not

exist in Java as in C++. Developers of the language did not include features that

would jeopardize the simplicity or safety of the language, for these reasons Java

has no true pointers, no true multiple inheritances, no operator overloading and

no macro preprocessor. To circumvent the serious shortcoming of the lack of

15

multiple inheritances, Java supports the definition and inheritance of multiple

stateless "interfaces", which covers most of the areas where multiple

inheritances is usually desired. Similarly, while Java contains no facility for

generic functions, the need for such functions is greatly reduced since the

language imposes a rooted class hierarchy whereby all object classes inherit

from the root class 'Object'.

Java version 1.1 added significant features of reflection and object class

manipulation to support object serialization I/O. The newest version of the

language, Java 1.2 added nested classes, persistence, and reflection as well as

many additional standard libraries.

Java is often compiled to platform-independent byte-codes. A Java Virtual

Machine (JVM) running on the target computer interprets these byte-codes. A

strict definition of the byte-code format exists thereby supporting portability to

multiple platforms because JVMs exist for most of the popular operating systems,

like UNIX, Macintosh OS and Windows.

Compiled byte-code can also be converted directly into machine language

instructions by a just-in-time (JIT) compiler. The advantage is that Java programs

compiled a JIT usually run much faster than when the bytecode is executed by

an interpreter.

In additional to the normal application development support, Java can also

be used to develop embedded programs, called 'applets', for web browsers and

other Java-enabled platforms. This capability continues to play an important part

in Java's acceptance and proliferation. A key aspect of the acceptance of this

16

approach is that Java's standard library package includes a security manager to

restrict the capabilities of Java applets to ensure safety of end-users computers.

Commercial Java compilers and development environments are readily

available. The most popular are products from Sun, Symantec and Microsoft. In

addition, a GNU Java compiler is available at no cost.

4.1.7 Visual Basic Programming

Microsoft developed Visual Basic as an application development tool. Visual

Basic uses an advanced structured dialect of the standard Basic programming

language.

Visual Basic supports the following primitive data types: integers, reals,

strings, booleans, currency, dates, and object references. It is a loosely typed

language since variables may be declared, but typing is not required. Composite

data types such as arrays and user-defined records are available. Control

structures include conditional and iteration constructs and rudimentary error

handling capabilities.

Visual Basic was initially designed to be an interpreted language, however

newer implementations include native code compilers. It is not presently

considered an advanced language appropriate for rigorous scientific

computation, yet that seems to be wearing down as more advanced enterprise

applications are being developed based on Visual Basic. It is a commercial

product that runs only on Microsoft Windows platforms. A limited capability

subset edition is available for free.

17

4.2 Categories of Computing Platforms and Operating Systems

Supercomputers are used primarily for specialized scientific computing

applications that require enormous amounts of mathematical calculations.

Examples of such applications are weather forecasting, animated graphics, fluid

dynamics, and nuclear energy research.

Mainframes are large centralized computers that in the past provided the

bulk of business computing through time sharing applications. Mainframes and

comparable systems, namely computer clusters, are still useful for large scale

tasks, such as centralized billing systems, inventory systems and database

operations. One important difference between supercomputers and mainframes

is that supercomputers are designed to run just a few large intense applications

concurrently whereas a mainframe is designed to execute many different

applications concurrently.

The term 'server' usually refers to a computer or groups of computers

used for tasks like application serving, intranet serving and/or internet serving.

Servers can be sized to act as mainframe replacements yet are often dedicated

to just a few applications or tasks. The term server can also refer to a particular

application that is performing a task or managing resources rather than referring

to the entire computer itself.

Workstations are more powerful versions of personal computers. Generally

targeted for use by only one person, workstations generally run a more powerful

version of a desktop operating system and run on more powerful hardware.

18

Real time operating systems are specifically designed to handle events that

happen in real time. Real time systems are grouped according to the response

time that is acceptable (seconds, milliseconds, microseconds) and according to

whether or not they involve systems where failure can result in loss of life.

4.3 Operating Systems

4.3.1 Windows

Windows 32 bit operating systems were originally designed and marketed for

higher-reliability business needs. Versions include Windows NT 3.1, NT 3.5, NT

3.51 and NT 4.0. Microsoft then moved to combine their consumer and business

operating systems with the release of Windows 2000, Windows XP and Windows

Server 2003 and the soon to be released Windows Longhorn. Windows 2003 has

had some recent success in running larger business class server systems for

larger applications than was possible with previous versions of Microsoft

operating systems.

4.3.2 VMS and OpenVMS

Virtual Memory System (VMS) is a multi-user, multitasking, virtual memory

operating system that runs on Digital Equipment Corp (DEC) VAX and Alpha

minicomputers and workstations. VMS was introduced in 1979 along with the first

VAX minicomputer. VMS has undergone many changes over the years and it is

still widely used in legacy systems.

19

The OpenVMS operating system is a descendant of the VMS operating

system. OpenVMS is a multi-user, multiprocessing operating system designed by

DEC that is now owned and supported by Hewlett-Packard. OpenVMS is

designed for use in time-sharing, batch processing and transaction processing

systems. It has been ported to the DEC Alpha and Intel Itanium platforms and is

still a viable operating system for server type business applications yet is no

longer an industry leader and continues to lose market share to more popular

operating systems.

4.3.3 UNIX

UNIX is a multi-user, multitasking operating system that was developed by Bell

Labs in the early 1970s. It was designed to be a small, flexible system to be used

exclusively by programmers. UNIX was one of the first operating that could be

installed on almost any computer since the main prerequisite was that a C

compiler was available. The cost of UNIX was low when compared to other

operating systems of the time due to anti-trust regulations limiting Bell Lab from

marketing it. Due to the portability and low cost, the popularity of UNIX soared.

Bell Labs distributed the operating system in its source language form, so

other companies have been able to create other versions that were tightly

integrated with their own platform products. Due to its portability, flexibility, and

power, UNIX has become a leading operating system for many different

computer workstations. AT&T began to market UNIX in earnest after its breakup

in the early 1980s. AT&T also began the long and difficult process of defining a

20

standard version of UNIX. Historically, it has been less popular in the personal

computer market. Today, the Open Group owns the trademarked "UNIX" and the

"Single UNIX Specification" interface. An operating system that is certified by The

Open Group to use the UNIX trademark conforms to the Single UNIX

Specification.

4.3.4 Solaris

Solaris is a UNIX variant developed by Sun Microsystems to run on Sun's

popular workstations. The most recent versions are powerful natural 64-bit

systems written to run on SPARC (Scalable Processor Architecture) processors

developed by Sun. When released in December of 2004, Solaris 10 is expected

to be available for SPARC, x86 and the AMD64 processors. In addition, Sun

advertises that Solaris 10 will allow native Linux binaries to run since they are

incorporating the Linux standard base into the Solaris 10 kernel. Solaris is

presently proprietary software but Sun has allowed both binary and source

versions to be freely downloadable at various times. Sun has recently confirmed

their intention to make Solaris open source, but details have not been finalized

(CNETAsia News).

4.3.5 HP-UX

HP-UX is Hewlett-Packard's proprietary implementation of UNIX. It presently runs

on the HP PA-RISC processors and Intel's Itanium processor. HP-UX has been a

leader in advancing the capabilities of UNIX such as being the first to use access

21

control lists for file access permissions and the first to include a built-in Logical

Volume Manager designed to be more flexible than normal physical partitioning.

4.3.6 SCO UnixWare

SCO UnixWare is a UNIX operating system sold by the Santa Cruz Operation

Corp. The SCO group is currently involved in a dispute with various Linux

vendors and users, with the assertion that Linux violates some of SCO's

intellectual properties surrounding UNIX. Although there are many skeptics of

SCOs claims, the SCO initiated lawsuits, if upheld by the courts, may impact the

future of both Linux and UNIX. The success or failure of the claims will also

impact the financial future of the SCO Group. SCO has, to date, made little

progress in this dispute.

4.3.7 Linux

Linux is an open source implementation of UNIX initiated by Linus Torvalds,

which runs on many different hardware platforms including Intel, Sparc, PowerPC

and Alpha processors. Open source refers to software source code that is

available to the general public, free of charge, for use and/or modification. The

open source approach sprouted from within the technical community as a

response to proprietary software owned by corporations. Because the source to

Linux is open source, it is easy to customize and to update quickly. This flexibility

has allowed Linux to be ported to a wide variety of platforms ranging from

embedded systems to clusters of hundreds of servers. Hundreds of application

programs have been written for Linux, some of these by the GNU project.

22

4.3.8 GNU

GNU operating system is a UNIX-compatible software system. GNU is a

recursive acronym for "GNU's Not UNIX. The GNU project was started by in

1983 Richard Stallman at the Massachusetts Institute of Technology with the

initial goal of creating a complete and free operating system. The GNU project is

now managed by the Free Software Foundation (FSF). The FSF states that the

Linux operating system is actually a version of GNU using the Linux kernel, and

should therefore be called GNU/Linux. The present philosophy of the GNU

project is to produce software that is non-proprietary and free to use. Anyone can

download, modify and redistribute GNU software with the only restriction being

that further redistribution cannot be limited. Over 3,000 programs are presently

available, free of charge, from their web site.

4.3.9 OS Comparisons

The operating systems studied provide excellent connectivity, stability and

scalability. There is little doubt that the modern versions of these systems would

be able to provide a stable platform for the NG-SOCS system. Differentiators

would be how well each system supports the possible development

environments and the overall cost impact. As argued by Fink (90-96), the use of

Linux for mission critical applications has become more prevalent as the stability

of the system grows and the business community becomes more comfortable

with notion of open source. Table 4.2 shows a comparison between the TCO

between Microsoft and Linux operating systems over a 3 year period for a

23

modeled company with 250 users. As would be expected, the total cost of any

system is not due simply to one or two line items like the initial purchase price of

an OS or the continued maintenance agreement, but on a series of well-

documented and definable costs. Linux, being open source, has a clear

advantage over a proprietary OS.

Table 4.1 Comparison of TCO Between Linux and Microsoft OS

Microsoft
Solution

(TCO Over 3
Years)

Linux/Open
Source

Solution
(TCO Over 3

Years)

Savings
Achieved
by Using

Linux (Over
3 Years)

Percent Saved
(Over 3 Years)

Existing
Hardware &
Infrastructure is
used

$733,973 $482,580 $251,393 34.26%

New hardware
& Infrastructure
is purchased

$1,042,110 $790,717 $251,393 24.69%

Source: Cybersource. "Linux vs. Windows Total Cost of Ownership Comparison." 2002. Oct. 12,
2004. Retrieved Nov 12, 2004:
http://www.cybercom.au/cyber/about/linux_vs_windows_tco_comparison.pdf

4.4 Database Technologies

4.4.1 Oracle

Oracle Database is an industry leading relational database produced by the

Oracle Corporation. Historically, Oracle has targeted high-end workstations and

minicomputers as the server platforms to run its database systems. Its relational

database was the first to support the SQL language, which has since become the

industry standard. Oracle database is used for application support in large and

small enterprises and has an excellent reputation for a highly reliable and stable

24

platform. The latest version, Oracle Database 10g, is the first relational database

designed for Grid Computing. Oracle versions exist for all major operating

systems, including Windows, UNIX and Linux.

4.4.2 MySQL

MySQL is an open source relational database management system that relies on

SQL for processing the data. MySQL provides APIs for many languages

including C, C++, Eiffel, Java, Perl, PHP and Python. MySQL can run on UNIX

and Linux operating systems. In addition, Microsoft environment operation is

possible by using OLE DB and ODBC providers. A MySQL .NET Native Provider

is also available, which allows native MySQL to .NET access without the need for

OLE DB. MySQL is often used for Web applications and for embedded

applications and has become a popular alternative to proprietary database

systems like Oracle because of its speed, reliability and open source approach.

The database is available for free under the terms of the GNU General Public

License (GPL) or for a fee to those who do not wish to be bound by the terms of

the GPL.

4.4.3 DB2

IBM DB2 is a family of relational database products offered by IBM. DB2

provides an open database environment that runs on a wide variety of operating

systems including OS/390, UNIX, Linux, HP-UX, Solaris, SCO UnixWare and

Window 2000. DB2 includes a range of application development and

management tools. DB2 databases can be accessed from any application

25

program by using SQL, Microsoft's Open Database Connectivity (ODBC)

interface, the Java Database Connectivity (JDBC) interface, or a CORBA

interface broker. According to IBM, DB2 is an industry leader in terms of

database market share and performance. Although DB2 products are offered for

UNIX and Windows based systems, DB2 trails Oracle's database products in

UNIX-based systems and Microsoft's Access in Windows systems.

4.4.4 SQL Server

SQL Server is Microsoft's relational database system targeted for enterprise

class operation. SQL Server provides core support for Extensible Markup

Language (XML), SQL and Internet queries. It also is designed to support the

rapid development of enterprise-class business applications. Drawbacks are that

it runs only on Windows operating systems.

4.5 Web Servers and Web Technologies

4.5.1 Apache Web Server

Apache Web Server is a public-domain open source Web server developed and

maintained by the Apache Group. The first version of Apache, based on the

NCSA httpd Web server, was developed in 1995. Since it has become a

successful open-source product, significant public libraries of Apache add-ons

have been developed and are also free to the public. In many respects, Apache

has similar open source lineage and history to that of Linux. Present versions of

Apache run on UNIX, OS/2 and Windows. As part of the Apache Web Server,

26

Apache Tomcat is the servlet container that is used for support of Java Servlets

and JavaServer pages.

4.5.2 Microsoft Internet Information Server

Microsoft Internet Information Server (IIS) is a set of Internet based services for

Windows machines and contains a HTTP web server. IIS is tightly integrated with

the Microsoft operating systems, which gives it the advantage of being relatively

easy to administer. A downfall is that IIS cannot be used on other operating

system platforms like UNIX or Linux.

4.5.3 WebSphere

The WebSphere Application Server is the IBM solution for the integration and

operation of applications across multiple computer platforms. The target user

community is e-business applications with solutions for web servers, application

servers and the like. Many portions of the Websphere product could be classified

as middleware. All WebSphere products use open standards like the Java 2

Platform, Enterprise Edition (J2EE) and XML. Present versions run on UNIX,

OS/2 and Windows.

4.5.4 Common Gateway Interface

A Common Gateway Interface (CGI) program is used to dynamically provide web

server based information to the end-user. The program can be written in any

programming language, including C, Perl, Java, or Visual Basic. CGI is a server-side

technology for providing dynamic information compared to client side technologies

27

such as Java applets, Java scripts or Active X controls. A limitation of the CGI is that

a new server process is started every time a CGI script is executed, adding

substantially to server overhead and reducing response time.

4.5.5 Active Server Page

Active Server Page (ASP) is a Microsoft implementation for a dynamically

created web page utilizes ActiveX scripting, usually from either VB Script or

JScript. The mechanism for this technology is that the web server servers an

ASP to a browser by generating a page with HTML code at the time of the

request. For this reason, ASP is similar to CGI scripts, but they enable Visual

Basic programmers to work with familiar tools.

4.5.6 ASP.NET

ASP.NET is the latest Microsoft server-side Web technology that improves on the

speed of standard ASP. In ASP.NET , each page is compiled into an intermediate

language by a .NET compiler. A JIT compiler then translates the intermediate

code to native machine code which is run on the processor. The native code

running on the processor equates to pages loading much faster than classic ASP

pages where embedded VB Script or Jscript had to be continuously interpreted.

4.5.7 Java Servlets

Java servlet technology is a component-based, platform-independent method for

building Web-based applications. Servlets have access to the entire family of

Java APIs, including the JDBC API to access enterprise databases. Servlets can

28

also access a library of HTTP-specific calls and receive all the benefits of the

mature Java language, including portability, performance, reusability and crash

protection. This technology has overcome the performance limitations of CGI

programs. Third-party servlet containers are available for Apache Web Server,

Microsoft IIS, IBM's WebSphere and others.

4.5.8 JavaServer Pages

JavaServer Pages (JSP) is a server-side extension of Java servlet technology

that allows for the dynamic generation of HTML and XML web pages. It allows

Java code and certain pre-defined actions to be embedded into static content.

JSP allows for the creation of JSP tag libraries that act as extensions to the

standard HTML or XML tags and provide a platform independent way of

extending the capabilities of a web server. To accomplish this, JSPs are

compiled into the servlets by the JSP compiler.

4.5.9 PHP Hypertext Preprocessor

PHP self-referentially stands for PHP Hypertext Preprocessor is an open source,

embedded scripting language used for the creation of dynamic web pages. PHP

code is embedded within an HTML document by the use of special tags. The

syntax of PHP is similar to that of Perl and C and is therefore favored by UNIX

developers. In a fashion similar to that of ASP, the programmer can jump

between PHP and HTML code, which provides flexibility to use the most

appropriate language to accomplish a task. PHP can perform any task that any

CGI program can do, but its strength lays in its compatibility with many types of

29

databases. Also, PHP can talk across networks using IMAP, SNMP, NNTP,

POPS or HTTP.

4.6 Inter Process Communication Techniques

It was necessary to research the topics contained within this section to ensure

that there was the proper foundation and understanding of the underlying

available technologies.

The Component Object Model (COM) is a software architecture developed

by Microsoft to assist in the building of component based applications. COM

objects are discrete components that provide interfaces that allow other

components and applications to access their features. COM objects can be built

from multiple programming languages and can easily communicate between

themselves and are therefore referred to as being 'language independent'. COM

objects have built-in interprocess communications capability that previous

technologies from Microsoft did not support. Distributed Component Object

Model (DCOM) is an extension of COM that allows DCOM components to

communicate across networks. DCOM uses the Remote Procedure Call (RPC)

mechanism to transparently send and receive information between COM

components (i.e. clients and servers) on the same network. RPC is a protocol

that allows an application to execute a program on a different computer and have

the results of that execution returned to the calling application.

An architecture developed by IBM, System Object Model (SOM), allows

binary code to be shared by different applications. SOM is a complete

30

implementation of CORBA. DSOM is a distributed version of SOM that allows

binary objects to be shared across networks. SOM and DSOM serve the same

purpose as Microsoft's competing COM and DCOM standards.

Remote Method Invocation (RMI), is a set of protocols developed by Sun

Microsystems that enables Java objects to communicate remotely with other

Java objects. In comparison to DSOM and DCOM, RMI is a much simpler

protocol, yet only works with objects written in Java.

4.7 Development Environments/Active Frameworks

4.7.1 Common Object Request Broker Architecture

Common Object Request Broker Architecture (CORBA) is an architecture that

enables program objects to communicate with one another independent of the

programming language used for the objects or the operating system that the

objects run on. The Object Request Broker (ORB) is a component in CORBA that

acts as the middleware between clients and servers. In the CORBA model, a

client can request a service without any knowledge of the server(s) on the

network. The various ORBs receive requests, forward the requests to the

appropriate servers and return results back to the client. Interface Definition

Language (IDL) is used to define an interface for each object. For example, a

legacy application, such as a billing system, can be wrapped in code with

CORBA interfaces and opened up to clients on the network. The IDL interface

definition is independent of programming language due to the use of

31

standardized mappings from IDL to C, C++, Java, Ada, COBOL, Smalltalk, Lisp,

Python, and IDLscript (see Figure 4.1).

Interoperability is supported by the standardized protocols GIOP and 110P.

It is the use of these well-defined protocols that allows for the interoperation of

CORBA objects independent of the programming language or operating platform.

A long list of idiosyncrasies for different servers has required the development of

the Portable Object Adapter (POA). The POA allows or the creation of a very

stable environment for the server side CORBA implementation.

Figure 4.1 Participants in a CORBA request (IBM, 2000).

An industry consortium known as the Object Management Group (OMG)

maintains the CORBA specification. There are many implementations of

CORBA, with the IBM SOM and DSOM architecture a leading product. Two

competing models are Microsoft's COM and DOOM and Sun Microsystems' RMI.

As reported by Wang, Schmidt and Levine, well-documented performance

bottlenecks have existed in conventional CORBA implementations. While the

industry continues to address and develop solutions to this issue, continued

32

research is needed in this area in order for this technology to be considered

appropriate for high performance, real-time applications.

4.7.2 .NET

.NET is a wide-ranging family of products that provide for the aspect of

developing distributed applications and managing the underlying servers and

systems. .NET is provide by Microsoft and built on industry and Internet

standards. From a developer's viewpoint, Visual.NET is a comprehensive series

of products containing a suit of software technologies used for development of

both small and enterprise class applications that can be integrated as needed.

When defining .NET, Microsoft claims that it enables a high level of software

integration through the use of Web services. Web services being defined as

small discrete building blocks that connect to each other, as well as to other

larger applications over the Internet.

33

Figure 4.2 Components of Microsoft .NET- Software (Microsoft, 2003).

.NET is highly integrated with other Microsoft products that provide web

services, general server applications and system security etc. Microsoft touts one

main advantage of using .NTE technologies is that users will have access to their

information on the Internet from any device, anytime, anywhere. This is obviously

a key advantage that modern applications can provide, if not necessarily a key

requirement.

In .NET, multiple programming languages can easily be used to within one

application. Languages presently supported are C#, VB.NET , Jscript, ASP.NET ,

C++, FORTRAN, Perl, and Python. Source code is converted to an intermediate

language code (IL) by the appropriate language compiler, which is then

converted to native code at execution time by the .NET JIT compiler. Since all

code gets converted to IL first, components written in different languages can

34

easily be used within a particular application. This is generally referred to as

language independence.

.NET for software development is only compatible with Microsoft Windows

operating systems although the developed applications are platform-

independent. The latest versions contain many built-in features including Internet

integration and features intended to enhance security.

Specifically for web applications, .NET allows for the creation and use of

XML-based applications, processes, and websites as services that share and

combine information and functionality with each other by design, on any platform

or smart device.

4.7.3 Java 2 Platform Enterprise Edition

Java 2 Platform Enterprise Edition (J2EE) is a platform independent software

environment from Sun Microsystems. It is used for developing, building and

deploying enterprise applications based on web and other standard technologies.

The J2EE platform contains of a set of services, APIs and protocols that provide

the functionality for developing multitiered applications using web technologies.

Database connectivity is achieved using Java Database Connectivity (JDBC), the

Java equivalent to ODBC. Transparent services such as threading, concurrency,

security and memory management are provided by Enterprise Java Beans (EJB).

At the client, J2EE supports HTML as well as Java applets. It relies on Java

Server Pages and Servlet technologies to create HTML or other formatted data

for the client. JBOSS is an open source application server, written in Java, which

35

can host business components developed in Java. It uses the Enterprise Java

Beans specification as the underlying technology.

J2EE is considered by many in the field to be the leading enterprise

platform today, and is well documented to be the leading solution for web based

application development (Sun Microsystems).

Clients may range in complexity from simple HTML forms to sophisticated

Java applets. Servlets will frequently use some kind of persistent storage, such

as files or a database (see Figure 4.3).

Figure 4.3 Clients and Java Servlets. (Sun Microsystems, White Paper).

Combined, the J2EE technologies allow developers to create enterprise

applications that are platform independent and scalable, while providing for the

integration of legacy technologies and systems if needed (see Figure 4.4).

Another benefit of J2EE is that it is possible to get started with little or no cost.

Sun allows free download of the J2EE implementation and many open source

36

tools are available from independent developers and groups that extend the

platform or simplify development.

J2EE is compatible with most versions of UNIX, Linux and Windows.

Figure 4.4 Servlets and application tiers (Sun Microsystems, White Paper).

CHAPTER 5

HETEROGENEOUS PLATFORMS AND

DIFFERENT PROGRAMMING LANGUAGES

As with many modern applications, it is important the NG-SOCS solution address

the heterogeneous platform issue. NG-SOCS must be able to run client

applications on Windows operating systems since end-users use company

provided laptop computers. In addition, the system must also interface with

existing satellite control systems at Astra and Americom, which run of different

platforms.

The NG-SOCS solution must also take into account the re-use issue of

existing FORTRAN, C and Ada software to ensure that cost and schedule

impacts due to re-design, re-testing and the creation of new documentation is

kept to a minimum.

Given the existing technologies documented in the previous section, three

viable approaches exist.

First, the use of CORBA technologies as middleware between the server

and clients is a viable solution for the development of a robust system given the

re-use desire of the existing legacy components. With respect to the desire for

supporting heterogeneous platforms and multiple programming languages,

research of existing CORBA capabilities supports the notion that these issues

have been overcome by this technology.

37

38

Secondly, the use of .NET technologies as the umbrella environment for

the development and maintenance of the new application would allow for

connectivity to the client application running on laptop PCs using windows.

Complete platform independence would not be achieved with this approach since

the new server would have to be a Microsoft operating system for it to be able to

act as the initial .NET development platform and then as the final application

server. Also, .NET simplifies the use of source code from multiple languages via

the language independence aspect of the environment. For this reason, use of

using C and FORTRAN software would greatly reduce development time since

porting of these modules to a common language would not be required.

However, .NET support for Ada does not presently exist and therefore could be a

potentially significant limitation that would require a significant code porting

activity.

J2EE is the third software development environment robust enough for

consideration. The J2EE platform consists of a set of services, APIs and

protocols that provide the functionality for developing multitiered applications that

can be integrated with legacy systems as required. Like the .NET solution, J2EE

can provide applications that are platform independent. Yet unlike .NET, the

J2EE development environment is also platform independent thereby providing

additional flexibility to the programming team. Use of the existing Ada,

FORTRAN and C software can be accomplished in this environment.

Specifically, the Ada language has existing libraries that allow for the call of C

routines from the Ada code. In this manner, the use of any VMS environment

39

variable or VMS specific system call could be replaced by C routines which

provide the same functionality of the VMS environment routines in the target

environment. In a similar manner, the same can be done for the existing

FORTRAN code.

CHAPTER 6

CANDIDATE ARCHITECTURES

In this chapter, four approaches are presented and are reviewed to determine

how well they would meet the developed requirements and how well they would

address other concerns of the company. Only one solution can be deemed the

most appropriate when weighted with real-world concerns such as the support for

heterogeneous platforms, language independence, maximum reuse of legacy

code, skill match with the existing development team and the total cost of

ownership.

6.1 Tier'd Approach

In development of the proposed architectures, a tier'd approach to the

division of tasks was reviewed and considered the most appropriate due to the

logical division of the specified requirements and the given architecture of the

existing FLD and PC-SOCS systems. Separation of responsibilities in this

manner also supports an iterative development approach by allowing the

incorporation of new functionality after the end-users have a chance to interact

with initial capabilities. In addition, by using a tier'd approach, future modifications

are more easily supported since changes would mostly likely be limited to one

tier (i.e. change of the RDBMS from SQL to Oracle).

40

41

6.2 Candidate Architectures

As discussed in Sommerville (219-224), three standard architectural designs of

software systems are the repository model, the client-server model and the

abstract machine model. In some cases, the models are melded together to form

a new model that fits the needs of an individual system. In the case of this NG-

SOCS effort, a combination of the repository and client-server model is needed

to address the requirements of stakeholders documented in Chapter 2 and the

Appendix of this document. As reported by Wang, Schmidt and Levine and in

Chapter 4 of this document, middleware technologies beside CORBA include

products from Microsoft and Sun Microsystems, namely the .NET and J2EE

product labels. The proposed NG-SOCS architectures use CORBA, .NET and

J2EE technologies. In addition, the architecture proposed in the Bulut Thesis,

from 2003, is reviewed.

6.2.1 Bulut Architecture

Bulut did previous work in this area as part of a CIS Thesis, Figure 6.1 depicts

the architecture select as part of that effort. It is important to note that the

requirements for the system designed by Bulut were significantly different than

that for this NG-SOCS effort. Due to an enlarged stakeholder group, more

complicated requirements were identified in this later, NG-SOCS, effort that Bulut

did not have to address.

Figure 6.1 Architecture selected as part of previous work (Bulut, 2003).

The Bulut architecture correctly satisfies the requirements that were levied

at the time for a new web browser interface for the front-end of the FLD system.

It was well demonstrated that the approach selected was sound and met that

short-term goal.

Since the Bulut work was limited to development of a new web interface

only, it did not consider steps forward in the incorporation of graphical

representation of the data, as is presently employed in PC-SOCS or 3 rd party

software solutions like those provided by AGI or ISI. In addition, this previous

work was not tasked with development of a standalone capability to assist the

business in leveraging laptop investments. For these reasons, it was not required

for Bulut to consider fundamental changes to the orbital control system

architecture, including the porting of modules to other languages.

42

43

Since this architecture cannot meet the requirements specified as part of

the NG-SOCS effort, it is not considered as a potential solution.

6.2.2 J2EE & .NET Approach

The architecture depicted in Figure 6.2 can be supported by either a Microsoft or

Sun Microsystems approach. Both vendors have a suit of technologies, under the

.NET or J2EE banners, that would allow for successful fulfillment of the identified

NG-SOCS requirements. Within each approach, some options on the selected

product to meet a need are possible (i.e. Apache or WebSphere web server in

the J2EE approach).

As discovered and discussed in Chapter 4, the Microsoft suit of

technologies are geared to interaction with other Microsoft products while the

Sun and IBM products are more supportive of industry standards, not just

company proprietary ones. For this reason, if a Microsoft technology were

selected to satisfy one development need, some program risk could be reduced if

the rest of the solution were also satisfied using Microsoft products. Otherwise, a

rapid-prototype approach would be recommended where the operation of

intermixing of Microsoft with non-Microsoft products could be verified early in the

development effort.

44

Figure 6.2 Architecture using either .NET or J2EE.

Performance measurements used to measure the speed of .NET and

J2EE solutions were reviewed to determine if either product has a significant

advantage. The data from both companies show that their particular product is

faster and that their testing is more accurate than their competitors. For

example, Microsoft states, " In short, the .NET results are actually more than two

45

to three times than Sun reported" (Microsoft Corporation, July 2004). In

summary, for this application, performance differences of this size are not

perceived to have a serious effect on the operation or response time of this

application. In addition, final server platform selections will be based on

performance tests performed on the development platform.

The UNIX, Linux, Windows and VMS operating systems have advantages

and disadvantages and each can satisfy the needs of this effort. It is arguable

that UNIX popularity stems from the fact that it can run on many available

computer platforms. VMS and Window were limited in the platforms supported, at

least originally. Linux stability and acceptance has grown to the point where it is a

strong candidate for this system.

A review of the AGI and ISI software capabilities for graphical

representation of the data in both 2D and 3D viewpoints shows that a client

application with full access rights can interface with the appropriate modules. The

AGI suite of modules have well defined APIs that would allow a client application

to control and display graphically computationally intense data. Specifically, a

viewpoint from behind a satellite in orbit, with the earth and other satellites also in

the field of view, is possible. The depiction of the propagation of satellite orbit is

also possible, either with AGI supplied propagation tools or with date supplied by

the FLD/PC-SOCS modules.

46

6.2.3 CORBA Approach

The architecture depicted in Figure 6.3 shows how CORBA could be used to

satisfy the requirements of this system. Since the client application will be a

subset of the server code that runs the main application, insertion of CORBA

between them does not seem to add much overall value. In addition, since the

two other proposed architectures gracefully solve the web server to client

browser aspect, the benefits of a CORBA approach is further diminished.

47

Figure 6.3 Architecture using CORBA approach.

6.2.4 Selected Approach

The criterion used in selecting the most appropriate solution is identified in Table

6.1. A total of fourteen criteria were used in the evaluation of the approaches. In

addition to the specific technical concerns identified, additional criterion of staff

competency and skill were considered due to fact that this is a corporate

development effort. As stated by Roepke, Agarwal and Ferratt (8), development

leaders must weight heavily their workforce competence and workforce

48

development prospects in the selection and design of new systems so that they

are in position to support their systems and department strategic role within the

business.

Given the identified criteria, the J2EE framework solution scored the

highest compared to CORBA and .NET solutions. Additional analysis was

considered where the relative weights of each criterion would be taken into

account, however, that was not deemed to be needed since one solution scored

so strongly.

Table 6.1 Trade Off of Proposed Architectures

Trade Off Matrix

Criteria CORBA .NET J2EE Comments

1 Mature Technology 3 3 3 Each technology has demonstrated the ability
to create apps of this size

2 Able to Meet Functional Requirements 3 3 3 Review of each technology indicates that
requirements can be met

3 Heterogeneous Platform Support 3 2 3 .NET development must be done on Windows
Platform

4 Language Independence 3 3 1 Native J2EE is Java only but linking of Ada
and FORTRAN modules possible

5 Legacy Code Support 3 1 3 No .NET ADA support. Either port to C# or use
middleware for glue to ADA

6 Maintainability 3 2 3 Maintainability of ADA is excellent since it is a
highly readable language

7 IT Support 1 3 3 Americom IT dept. has limited relationship or
knowledge of IBM products

8 CSE Skilled in Technology 0 1 3 CSE dept. has experience with J2EE, not with
CORBA or .NET

9 Staff Competence 2 3 3 Difficult to maintain CORBA expertise

10 Proven Throughput Solution 1 3 3 CORBA solutions have had known bandwidth
problems in earlier versions

11 Security Concerns 3 2 3 Microsoft products with known security issues

12 3rd party graphical support (i.e. AGI) 3 3 3 APIs can support 3rd party satellite graphics

13 Initial Cost 0 0 3 Only J2EE is completely free

14 Total Cost of Ownership (TCO) 2 2 3 J2EE approach uses open source solutions

Total Score 	 30 	 31 	 40 	 Maximum possible is 42

Notes: 1) Criteria scale is 0 to 3
2) Further weighting of each criterion was not deemed necessary since the J2EE architecture scored strongly.

CHAPTER 7

MERGER PLAN AND REQUIREMENTS COMPLIANCE

The next steps in this effort address normal iterative development activities with

proof of concept milestones to ensure that risks to the successful completion of

this effort are retired early. Additionally, the iterative development approach will

be used to ensure that functionality is delivered and can be used as soon at it is

available. This approach has the continued benefit that developers and

stakeholders interact, review functionality and test the application more often

than in more traditional development approaches like the waterfall model.

Requirements compliance will be monitored via the use of a compliance

matrix that identifies, for each requirement, where in the code each specific

requirement is satisfied. Additionally, acceptance tests will be defined to ensure

that the specific functionality is fully operational and meets any new requirements

that are uncovered during the iterative development approach.

During this effort, it became clear that since FLD and PC-SOCS had to

solve the same problems, the underlying mathematical algorithms were very

similar. For this reason, the selection of specific FLD and PC-modules was not

critical at this stage of development. Selection will be explored and reviewed

during the development phase to ensure that the most appropriate module is

used. Since the FLD system has gone through more rigorous and well

documented testing, the prevailing thought is to leverage that code whenever

possible in order to reduce the number of coding errors introduced and lessen

50

51

the overall acceptance test time required. In addition, by using the maximum

amount of FLD code in NG-SOCS, the effort to update existing documentation

will be kept to a minimum.

APPENDIX

COMPILED REQUIREMENTS FOR THE NG-SOCS SYSTEM

This Appendix contains the requirements specification for the Next Generation

Satellite Orbital Control System (NG-SOCS). The effort to develop this

specification is detailed in Chapter 2 of this document.

52

Common Orbital Control System
Combined Requirements Specification

53

September 29, 2004

Table of Contents
1 INTRODUCTION 	

1.1 	 PURPOSE 	 1
1.2 	 SCOPE 	 1
1.3 	 DEFINITIONS, ACRONYMS AND ABBREVIATIONS 	 1
1.4 	 REFERENCES 	 4
1.5 	 OVERVIEW 	 5

2 OVERALL DESCRIPTION 	

2.1 	 PRODUCT PERSPECTIVE 	 6
	2.1.1	 System Interfaces 	 6

2.1.1.1 SES-Americom Daily Operations Plan (DOP) Database, API Specification 	 6
2.1.1.2 SES-Americom, TT&C Ground Control System, API Specification 	 6
2.1.1.3 SES-Astra, Operations Planner, API Specification 	 6
2.1.1.4 SES-Astra, Raytheon Ground Control System, API Specification 	 7
2.1.1.5 SES-Astra, FLD Tracking Data Interface Specification 	 7

	

2.1.2 	 User Interfaces 	 7
2.1.2.1 General User Interface 	 7
2.1.2.2 System Administrator Interface 	 7
2.1.2.3 Orbital Analyst Window Interface 	 7

	

2.1.3 	 Hardware Interfaces 	 7

	

2.1.4 	 Software Interfaces 	 7

	

2.1.5 	 Communications Interfaces 	 8

	

2.1.6 	 Memory Constraints 	 8
2.2 PRODUCT FUNCTIONS 	 8

	

2.2,1 	 Orbit Determination Function 	 a
	2.2.2	 Ephemeris Propagation Function 	 8

	

2.2.3 	 Maneuver Planning and Evaluation Functions 	 9

	

2.2.4 	 Plotting Function 	 9

	

2.2.5 	 Antenna Functions 	 9

	

2.2.6 	 Database Function 	 9

	

2.2.7 	 Display Function 	 9
2.3 	 USER CHARACTERISTICS 	 9
2.4 	 CONSTRAINTS 	 10
2.5 	 ASSUMPTIONS AND DEPENDENCIES 	 11

3 SPECIFIC REQUIREMENTS 	 12
3.1 	 EXTERNAL INTERFACES 	 12

	

3.1.1 	 System Interfaces 	 12
3.1.1.1 SES-Americom Daily Operations Plan (DOP) Database, API Specification 	 12
3.1.1.2 SES-Americom, TT&C Ground Control System, API Specification 	 12
3.1.1.3 SES-Astra, Operations Planner, API Specification 	 12
3.1.1.4 SES-Astra, Raytheon Ground Control System, API Specification 	 12
3.1.1.5 SES-Astra, FLD Tracking Data Interface Specification 	 12

	

3.1.2 	 User Interfaces 	 13
3.1.2.1 General User Interface 	 13
3.1.2.2 System Administrator Interface 	 13
3.1.2.3 Analyst Window Interface 	 13

SES AMERICOM CONFIDENTIAL PROPRIETARY
The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in

whole or in part, without the prior written consent of SES Americom is prohibited.

54

55

3.2 	 FUNCTIONAL REQUIREMENTS 	 13
3.2.1 	 Orbit Determination and Estimation Function 	 14

3.2.1.1 	 General 	 14
3.2.1.2 User Interface Requirements 	 14
3.2.1.3 Input Requirements 	 15
3.2.1.4 Output Requirements 	 15

3.2.2 	 Ephemeris Propagation Function 	 16
3.2.2.1 	 General 	 16
3.2.2.2 User Interface Requirements 	 16
3.2.2.3 Input Requirements 	 16
3.2.2.4 Output Requirements 	 17

3.2.3 	 Maneuver Planning & Evaluation Function 	 18
3.2.3.1 	 General 	 18

3.2.3.1.1 Astra Function 4 Requirements 	 18
3.2.3.1.2 Astra Function 5 Requirements 	 19
3.2.3.1.3 Astra Function 6 Requirements 	 19
3.2.3.1.4 Astra Function 7 Requirements 	 20
3.2.3.1.5 Astra Function 8 Requirements 	 20
3.2.3.1.6 Astra Function 9 and 10 Requirements 	 20
3.2.3.1.7 Astra Function 11 Requirements 	 21
3.2.3.1.8 Astra Function 12 Requirements 	 21
3.2.3.1.9 Astra Function 13 Requirements 	 21

3.2.3.2 User Interface Requirements 	 21
3.2.3.3 Input Requirements 	 23
3.2.3.4 Output Requirements 	 25

3.2.4 	 Plotting Function 	 25
3.2.4.1 General 	 25
3.2.4.2 User Interface Requirements 	 25
3.2.4.3 Input Requirements 	 25
3.2.4.4 Output Requirements 	 26

3.2.5 	 Antenna Functions 	 28
3.2.5.1 General 	 28
3.2.5.2 User Interface Requirements.. 	 28
3.2.5.3 Input Requirements 	 28
3.2.5.4 Output Requirements 	 29

3.2.6 	 Database Function 	 29
3.2.6.1 General 	 29
3.2.6.2 Input Requirements 	 31
3.2.6.3 Output Requirements 	 31

3.2.7 	 Display Function 	 31
3.2.7.1 General 	 31
3.2.7.2 User Interface Requirements 	 31
3.2.7.3 Input Requirements 	 31
3.2.7.4 Output Requirements 	 31

3.3 PERFORMANCE REQUIREMENTS 	 32
3.4 	 LOGICAL DATABASE REQUIREMENTS 	 32
3.5 	 DESIGN CONSTRAINTS 	 32
3.6 SOFTWARE SYSTEM ATTRIBUTES 	 32

3.6.1 	 Reliability 	 32
3.6.2 	 Availability 	 32

11
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

56

	3.6.3	 Security 	 33

	

3.7 	 OTHER REQUIREMENTS 	 33

	

3.7.1 	 GUI Interface 	 33

	

3.7.2 	 Transaction Information 	 33
4 APPLICATION GROWTH 	 34

	

4.1 	 HIGHLY INCLINED ORBIT 	 34
	4.2 	 LOW EARTH ORBIT 	 34
	4.3 	 SPINNER FUNCTIONALITY 	 34

5 APPENDIX A: USER INTERFACE PROTOTYPE 	 35

	5.1	 MAIN PAGE 	 35

	

5.2 	 DATA DISPLAYS . 	 36

	

5.3 	 ORBIT DISPLAY 	 37

iii
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

1 INTRODUCTION

1.1 PURPOSE

The purpose of this document is to clearly present the requirements for the creation of common orbital
control software. This document is a result of meetings between stakeholders at SES-Americom and
SES-Astra and represents an agreement on the functional and performance requirements of the system.
The systems design and interface needs are also outlined, as well as a basis for the validation and
verification of the completed system. The document will serve as a reference for all stakeholders;
especially as confirmation that all requirements have been acknowledged and as a reference throughout
the design and implementation stages to ensure that the requirements are being met.

1.2 SCOPE

This document describes the requirements for the creation of a common orbital control system. The
system will also be referred to as NG -SOCS In this document. NG -SOCS will be packaged as a complete
system and can be regarded as being composed of three distinct parts:

Near Real-time software system: This system will be designed to operate in a server environment
and be capable of supporting end user graphics displays and intense mathematical computations.
The system will be able to register transactions to satellite system databases for the interchange
of information with other systems and will also exchange information via direct TCP/IP
connections with other satellite operations and engineering systems.

Software documentation: This will be intended for those computer professionals responsible for
maintaining or modifying the system, and will contain a complete and unambiguous description of
the system and its operation.

Online user support: This will serve as a user's manual, covering general purpose users and
administrative users. It will be available online, within the real-time software itself. There will be
several parts to it: a frequently-asked questions page (FAQ), searchable index of common
problems and how-to's and several tutorials for common tasks. The online user support will also
contain documentation regarding security policies.

1
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and Its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom Is prohibited.

57

1.3 DEFINITIONS, ACRONYMS AND ABBREVIATIONS

A list of terms, acronyms and abbreviations that are used in this document follows, and their
meaning is included here for reference.

API 	 Application Program Interface - a set of routines, protocols, and tools
for building software applications.

CDR 	 Critical Design Review
CFE 	 Customer Furnished Equipment
COTS 	 Commercial Off-the-Shelf
Delta V 	 Delta Velocity, the require velocity change in a satellites orbit (3 axis) to

effect a desired orbit change.
DOP 	 Daily Operations Plan
FLD 	 Flight Dynamics System in use at SES-Astra
GUI 	 Graphical User Interface
HTML 	 Hypertext Markup Language
IEEE 	 Institute for Electrical and Electronics Engineers
Intranet 	 Similar to the Internet, yet that portion of a private network that only

internal (i.e. employees) can access.
Internet 	 An interconnected system of networks that connects computers around

the world via the TCP/IP protocol
MB 	 Megabyte
NG-SOCS 	 Next Generation Satellite Orbital Control System. Also know as

Common Orbital Control System.
PC-SOCS 	 PC Satellite Orbital Control System in use at SES-Americom
PDR 	 Preliminary Design Review
RAM 	 the most common computer memory which can be used by programs to

perform necessary tasks while the computer is on; an integrated circuit
memory chip allows information to be stored or accessed in any order
and all storage locations are equally accessible

Secure Socket Layer A protocol designed by Netscape
Communications Corporation to provide encrypted
communications on the Internet. SSL is layered beneath
application protocols such as HTTP, SMTP, Telnet,
FTP, Gopher, and NNTP and is layered above the
connection protocol TCP/IP. It is used by the HTTPS
access method.

SOCS 	 Satellite Orbital Control System
SRS 	 Software Requirement Specification
SSL 	 Secure Socket Layer -
TCP/IP 	 A protocol for communication between computers, used as a standard

for transmitting data over networks and as the basis for standard
Internet protocols.

TT&C 	 Telemetry Tracking and Control
Wi-Fl 	 Short for wireless fidelity and is meant to be used generically when

referring of any type of 802.11 network, whether 802.11b, 802.11a,
dual-band, etc. The term is promulgated by the WI-Fi Alliance.

Web 	 World Wide Web

2
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

58

59

Web Portal 	 A Web site that offers numerous services and resources, often directing
users to different stores [Webopedial

World Wide Web 	 Computer network consisting of a collection of Internet sites that offer
text and graphics and sound and animation resources through the
hypertext transfer protocol

WWW 	 World Wide Web

3
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

1.4 REFERENCES

ASTM E1340-96, Standard Guide for Rapid Prototyping of Computerized Systems.'

IEEE Std. 830-1984 (1993, 1998) IEEE Recommended Practice for Software Requirements
Specifications. 2

IEEE Std. 730-1989, IEEE Standard for Software Quality Assurance Plans.

IEEE Std. 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology.

IEEE Std. 828-1998, IEEE Standard for Software Configuration Management Plans.

IEEE Std. 1012-1988, IEEE Standard for Software Verification and Validation.

IEEE std. 1028-1997, IEEE Standard for Software Reviews

Webopedia Dictionary. http://www.webopedia.com/, online dictionary for computer and Internet
technology definitions

SES-Americom, Daily Operations Plan (00P) Database, API Specification, Version 1.2

SES-Americom, TT&C Ground Control System, API Specification, Version 3.5

SES-Astra, Operations Planner, API Specification, Doc Number 573345, Version 4.05

SES-Astra, Raytheon Ground Control System, API Specification, Doc Number 573921, Version
2.02.1

SES-Astra, FLD Tracking Data Interface Specification, Doc number [001 — Rev 2]

' ASTM publications are available from the American Society for Testing and Materials, 100 Barr Harbor Drive, West
Conshohocken, PA 18428-2958, USA. 	 -
2 'IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, PO, Box 1331,
Piscataway, NJ 08855-1331, USA.

4
SES AMERICOM CONFIDENTIAL PROPRIETARY

The Information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or In part, without the prior written consent of SES Americom is prohibited.

60

1.5 OVERVIEW

This document is divided into three major sections, and includes one appendix. It is the intent of this
requirements specification to address the services, performance, attributes, user interfaces and
constraints of the system to be developed. In addition, all external interfaces will be identified within this
document. All appendices of this document are to be considered, in whole, as part of the overall system
requirements. Below is an outline of the major headings and a summary of what each covers.

Section 1 (Introduction): this includes an introduction to this requirements
document.

Section 2 (Overall Description): this provides an introduction to system that will be
developed. It covers the following topics:

Product perspective
Product functions
User characteristics
Constraints
Assumptions and dependencies

Section 3 (Specific Requirements): this is the most extensive section, and includes
a detailed discussion of the requirements.

Functional requirements
External interface requirements
Performance requirements
Design constraints
Attributes
Other requirements

Appendix A (User Interface Recommendations and Prototype): this section lists
the recommendations regarding the user interface, and provides a
prototype of the various screens of the system.

61

5
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

2 OVERALL DESCRIPTION
This section describes the system's characteristics and the limitations that impact the product and which
will need to be considered in the requirements.

2.1 PRODUCT PERSPECTIVE

This system is a totally self-contained, allowing end-user use of all functionality independent of the status
of other systems. Other systems in use by Spacecraft Operations and Engineering can provide data to
this system and also receive data from this system as specified herein.

2.1.1 SYSTEM INTERFACES

2.1.1.1 SES-Americom Daily Operations Plan (DOP) Database, API
Specification

The DOP Database will be updated, as new satellite orbital information is available from the NG-SOCS
system, so that the satellite event and action levels are kept current at all satellite controller locations
within the SES-Americom ground control network.

2.1.1.2 SES-Americom, TT&C Ground Control System, API
Specification

Certain NG-SOCS data will be provided to all SES-Americom TT&C ground systems. This satellite data is
critical to the Satellite Operations Department and will be given priority over the Americom/Astra computer
network. At a minimum, the following data will be exchanged:

1. Range Files
2. Thruster Data Files
3. Orbital Elements for each satellite
4. Daily Operational Plan information
5. Moon and Sun hits predictions
6. Fuel calculations and associated information

2.1.1.3 SES -Astra, Operations Planner, API Specification

The Operations Planner will be updated as new satellite orbital information is available from the NG-
SOCS system, so that the satellite event and action levels are kept current at all satellite controller
locations within the SES-Astra ground control network.

6
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

62

63

2.1.1.4 SES-Astra, 	 Raytheon Ground Control System, API
Specification

Certain NG-SOCS data will be provided to all SES-Astra TT&C ground systems. This satellite data is
critical to the Satellite Operations Department and will be given priority over the Americom/Astra computer
network.

2.1.1.5 SES -Astra, FLD Tracking Data Interface Specification

Astra's standalone ranging system provides highly accurate range data on the satellites of interest and
provides that data in accordance with this specification. NO-SOCS shall be able to receive this data for
orbit determination purposes.

2.1.2 USER INTERFACES

A Graphical User Interface (GUI) will make all end-user functionality available. There will be three main
interfaces with the system as identified in the following sections.

2.1.2.1 General User Interface

This interface shall be available to Satellite Controllers, Orbital Analysts, Earth Station Managers and
System Administrators. This shall be the default view for Satellite Controllers and Earth Station Managers.

2.1.2.2 System Administrator Interface

This interface shall be available to NG-SOCS Administrators only. This shall be the default view for
System Administrators and give the administrator access to system level control functions.

2.1.2.3 Orbital Analyst Window Interface

This interface shall be available to Orbital Analysts, Earth Station Managers and Administrators. This
Interface provides access to all the low level functions required to safely plan the satellite missions. This
shall be the default view for Orbital Analysts.

2.1.3 HARDWARE INTERFACES

This system shall support standard Commercial Off-the-Shelf (COTS) external devices such as printers,
monitors, keyboards and mice as needed to allow full use of system by any end user. If the system
design is such that support of such external devices is the responsibility of the native operating system,
the operation of such will be verified during system verification testing. This system has no interface to
custom hardware.

2.1.4 SOFTWARE INTERFACES

It is expected that the NG-SOCS system will contain some internal COTS software interfaces in order to
meet the requirements in this specification (i.e. relational database system, an operating system, or a

7
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

mathematical package). These COTS software applications must be explicitly identified at PDR and
written approval given from the customer immediately thereafter.

2.1.5 COMMUNICATIONS INTERFACES

Networking and inter-process communications shall use TCP/IP communication protocols whenever
possible. Use of other communications methods must be explicitly identified at PDR and written approval
from the customer immediately thereafter.

Client-Server communications shall use pre-defined port numbers.

Use of Registered ports or Private Ports shall be limited to those services or communications requiring
special functions that cannot otherwise be made available. Intended use of such ports requires specific
disclosure during PDR and written approval from the customer immediately thereafter.

2.1.6 MEMORY CONSTRAINTS

The maximum memory usage for the system computers is 50% of the total memory available during
anticipated peak usage periods of the system. The peak usage period shall be determined using NG-
SOCS software functionality, operating system usage and any other application(s) executing that are
intended to be resident on the NG-SOCS computer(s) (i.e. thin clients for external software applications).

For client computes delivered as part of this system, the maximum memory usage for operating system
and NG-SOCS functionality shall not exceed 50% of the total memory available. A minimum of 256MB of
RAM is required on client computers.

2.2 PRODUCT FUNCTIONS

This subsection of the SRS provides a summary of the major functions that this software will perform.

2.2.1 ORBIT DETERMINATION FUNCTION

The Orbit Determination (OD) capability will determine a particular satellite's orbit using the range and
pointing data generated by other systems such as the real-time TT&C system in use at SES Americom or
the SES Astra Ranging system. This data will be processed by this function and a set of orbital elements
describing the satellite orbit will be generated.

2.2.2 EPHEMERIS PROPAGATION FUNCTION

This function will take a set of orbital elements that describe the motion of a satellite, apply various
perturbing forces, and propagate the motion of the satellite to a designated time in the future. Based upon
the location of the satellite and the time, this function will also predict the occurrences of predefined
events (i.e. moon hits), which may effect the operation of the satellite.

8
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

64

2.2.3 MANEUVER PLANNING AND EVALUATION FUNCTIONS

Planning and evaluation capability for East-West (EW), North-South (NS), relocation and de-orbit
maneuvers will be accomplished by this function. This function will also track the amount of fuel used for
all executed maneuvers.

2.2.4 PLOTTING FUNCTION

This function will take selected data provided by other functions within the application and provide an on-
screen or hardcopy graphical presentation of the data. Use of a third party graphics package is
permissible.

2.2.5 ANTENNA FUNCTIONS

This is a collection of utilities that facilitate the computation of various antenna related information.
Capabilities provided are antenna predicts, look angle computation and conjunctivity predictions.

2.2.6 DATABASE FUNCTION

A database will be maintained and used by all functions of this system. The database will be accessible
from any terminal/workstation/computer, which is running this application, from any location that has
connectivity to the company network and appropriate access rights.

2.2.7 DISPLAY FUNCTION

This function shall act as a file management capability within the application. It allows the user to
rename, copy, move, edit and delete files without having to exit the program.

2.3 USER CHARACTERISTICS

Spacecraft Analysts will be the primary end-users of this system and are expected to have good
experience with computers and networks, but not necessarily be advanced computer users. The
Spacecraft Analysts will receive complete rigorous training in the use of this system.

Spacecraft Controllers will be casual users of the system and are expected to have good experience with
computers and networks, but not necessarily be advanced computer users and will receive basic training
in this system. They will be able to generate reports from the system.

Administrators are the application developers, and will be responsible for ensuring the day-to-day
operation of the system. They are expected to have detailed knowledge of the system and have full
access to reconfigure any part of the system to ensure its operation.

Earth Station Managers - These are a special case of Spacecraft Analysts, with additional access
privileges. Managers of the system are expected to be competent computer users, have some familiarity
and experience with the tools, and will be able to generate reports from the system.

9
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

65

2.4 CONSTRAINTS

This subsection provides a general description of all items that will limit the developer's options.

1. This system shall allow all end users to run and access all functionality, as identified herein,
from a PC running standard XP Windows operating systems. System server platforms, if
used, may use other operating systems (i.e. UNIX) to run any portion of the system, so tong
as the above connectivity is possible.

2. The end user shall have the ability to run all functionality from any LAN/WAN connection at
any SES Americom or SES Astra location. In addition, all functionality will be available from
any remote location via a phone line using existing authentication systems (i.e. secure ID).
Access to all information (range files etc) shall be capable when connected remotely.

3. The system shall support Spacecraft Operations on a 24x7 schedule.

4. The system shall be implemented as a secure application with usemames, passwords and
timeout periods.

5. This system will consist of Commercial Off-the-Shelf (COTS) hardware and operating
system(s). Custom hardware or operating system components shall not be used in any part
of this system without prior written consent of the customer.

6. In order to keep the SES Americom and SES Astra systems aligned after deployment, a list
of common source code modules and other items as needed, shall be defined. This
common list shall include as a minimum any of the generic modules of Figure 1 that remain
in the new system.

7. A configuration control (e.g. s/w change request, assignment of application managers) and
change approval process shall be put in place in consequence.

8. Design of the system shall allow as much portability as possible to different platforms,

9. Since the modules in the FLD system (Figure 1) have been fully validated and used
successfully for years, any change to the modules shall require full acceptance testing.

10. Due to the limited documentation on past PC-SOCS validation and verification, use of any
PS-SOCS module or rewrite, requires full acceptance testing.

10
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

66

Figure 1: Current FLD software architecture

2.5 ASSUMPTIONS AND DEPENDENCIES

These requirements are based on the approach that the existing FLD and PCSOCS software modules
can be used in the NG-SOCS system. If this were not possible, the requirements contained herein would
have to be revisited.

11
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

67

3 SPECIFIC REQUIREMENTS
It is intended that this section of the SRS contain all of the software requirements to a detailed level that
enables software engineers to design the system such that the requirements are met, and for testers to
verify the operation of the system.

3.1 EXTERNAL INTERFACES

3.1.1 SYSTEM INTERFACES

3.1.1.1 SES-Americom Daily Operations Plan (DOP) Database, API
Specification

The DOP Database will be updated as new satellite orbital information is available from the NG-SOCS
system, so that the satellite action levels are kept current at all satellite controller locations within the
SES-Americom ground control network.

3.1.1.2 SES-Americom, TT&C Ground Control System, API
Specification

Certain NG-SOCS data will be provided to all SES-Americom TT&C ground systems. This satellite data is
critical to the Satellite Operations Department and will be given priority over the Americom/Astra computer
network. Means to verify data synchronization will be provided.

3.1.1.3 SES-Astra, Operations Planner, API Specification

The Operations Planner will be updated as new satellite orbital information is available from the NG-
SOCS system, so that the satellite action levels are kept current at all satellite controller locations within
the SES-Astra ground control network.

3.1.1.4 SES-Astra, Raytheon Ground Control 	 System, API
Specification

Certain NG-SOCS data will be provided to all SES-Astra TT&C ground systems. This satellite data is
critical to the Satellite Operations Department and will be given priority over the Americom/Astra computer
network. Means to verify data synchronization will be provided.

3.1.1.5 SES-Astra, FLD Tracking Data Interface Specification

Astra's standalone ranging system provides highly accurate range data on the satellites of interest and
provides that data in accordance with this specification. NG-SOCS shall be able to receive this data for
orbit determination purposes.

12
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Arnericom is prohibited.

68

3.1.2 USER INTERFACES

A Graphical User Interface (GUI) will make all end-user functionality available. It shall have the look and
feel of Microsoft Windows products. There will be three main interfaces with the system as identified in
the following sections.

In general, the GUI shall

1. Provide tips to the user (information box appears when mouse is over key data)

2. Provide online hypertext help/documentation.
3. Create error and warning dialog boxes

3.1.2.1 General User Interface

This interface shall be available to Satellite Controllers, Orbital Analysts, Managers and System
Administrators. This shall be the default view for Satellite Controllers and Managers.

3.1.2.2 System Administrator Interface

This interface shall be available to NG-SOCS Administrators only. This shall be the default view for
System Administrators.

3.1.2.3 Analyst Window Interface

This interface shall be available to Orbital Analysts and Administrators. This shall be the default view for
Orbital Analysts.

3.2 FUNCTIONAL REQUIREMENTS

This section, organized by functions, contains the necessary information for the software engineer to
design the detailed specifications for the overall NG-SOCS system.

It is recognized that this section should include, at a minimum, a description of every input into this
system, every output from the system and every function performed by the system in response to an input
or in support of an output.

It is also recognized that this SRS will be complete, if and only if, definitions exist for the software
responses to all realizable classes of input data and in all realizable classes of situations. This includes
specifying the system response to both valid and invalid input values.

13
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

69

3.2.1 ORBIT DETERMINATION AND ESTIMATION FUNCTION

3.2.1.1 General

The Orbit Determination (OD) capability will use the range and pointing data generated by the Americom
real-time TT&C system or the Astra standalone ranging system to determine a set of orbital elements that
describe a particular satellite's orbit.

This function will also support orbit estimation using continuous thruster bums, with the possibility to input
time-varying thrust profile for each bum.

In addition, this function will support simultaneous estimation of the maneuvers Delta-V components with
the initial orbital elements using tracking data before and after the maneuvers (so called orbit
determination through maneuvers)

3.2.1.2 User Interface Requirements

1. The user will select the satellite for which the OD is to be run.
2. All ranges available for the selected satellite in the range storage area will be

copied to the OD work area.
3. As ranges are copied, they are checked for reasonableness using existing SOCS

algorithms.
4. The ranges are processed to put them in the appropriate format for processing

by the OD function, and biases from the database are applied.
5. A plot of the range residuals is created for user evaluation/editing of the range

files.
6. The user will have the ability to edit the range files used by the OD function. This

will include the ability to delete files; delete range, azimuth, or elevation data from
the files; and edit the phase calibration data within the files.

7. The OD function will use either the time of the first range (default), or a time
specified by the user as an epoch for the OD.

8. The OD function will use as a starting point, orbital elements corresponding to
the epoch. The elements will be either derived from the active ephemeris, OD
file, maneuver file, or other user input.

9. The OD function should process the ranges to determine a new set of orbital
elements using either a batch method, or Kalman filter method, as indicated by
the user.

10.The OD function will determine range residuals and display as a text file and plot.
These residuals will indicate how well the range data agrees with the orbit. The
plot, or file, will also be used to remove/insert ranges for subsequent runs if
necessary. The header of the plot shall contain RMS, mean, and full-scale
values.

14
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein Is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

70

11. The OD will output a set of orbital elements for the input epoch. The element type
shall be selectable by the user, and saved for subsequent runs. It shall be
possible to convert to different element types conveniently. The element types
shall be selectable from the following list:

a. Kepler
b. F/G
c. Geodetic
d. Rectangular ECF
e. Equinoctial
f. Rectangular ECI
g. Polar ECI
h. Intelsat 11- element set
I. NORAD 2-line

12. Standard deviations shall be calculated for the elements and provided as part of
the output.

13. Range, azimuth, and elevation biases shall be calculated as required by the user.
In addition, it should be possible to calculate range biases to fit a given element
set.

14.The user shall have the means to have the OD function iterate, using the
elements, range, azimuth, and elevation biases that were output from the present
run as input to the subsequent run.

15.The user shall have the ability to have the OD function solve for solar pressure to
improve the relationship between the orbital elements and the ranges.

16.A means shall be provided to have the output of the OD function update the
database.

17. The orbital elements generated shall be directly usable as input for ephemeris
generation.

3.2.1.3 Input Requirements

1. Range data with or without azimuth and elevation.
2. Spacecraft specific data such as mass and area.
3. Station specific data such as location and antenna biases.
4. Global parameters such as solar pressure, gravity model, sun and moon gravity

effects.
5. Epoch and initial elements.
6. Choice of batch, or sequential Kalman filter processing.

3.2.1.4 Output Requirements

1. Ability to calculate station biases, solar pressure and orbital elements.
2. Ability to update database with output.
3. Ability to use output directly as input to the next OD, or ephemeris run.
4. Orbital elements will be of the type specified by the user.
5. Ability to convert orbital elements to different types.
6. Standard deviations for output.
7. Range residuals as a text file and plot.

15
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

71

8. Ability to plot any orbit specific parameters, such as elements, biases, ranges.
9. Covariance matrix, or other indicator of the quality of the solution.
10. An Orbit determination report shall be available with screen, file, or printer output.

3.2.2 EPHEMERIS PROPAGATION FUNCTION

3.2.2.1 General

This function will take a set of orbital elements that describe the motion of a satellite, apply various
perturbing forces, and propagate the motion of the satellite to a designated time in the future.

Based upon the location of the satellite and the time, this function will also predict the occurrences of
events (i.e. moon hits), which may effect the operation of the satellite.

Upon user selection, a center-of-box based event prediction shall be possible. Center of Box defined as
the area in the middle of the station-keeping control window.

3.2.2.2 User Interface Requirements

The user interface will allow specification of the source(s) of input data, propagation parameters, output
parameters, output device/media, output file name and events templates to be created. The ability to
select the perturbing force(s) to be applied during propagation shall also be provided.

3.2.2.3 Input Requirements

1. Orbital elements supplied by
a. Orbit determination function and stored in database
b. Element set contained within a specified file.
c. Manual input (along with modifiable defaults for spacecraft mass

and surface area).

2. Start and stop times for propagation or duration from start time (epoch).

3. Element set desired.

4. Output interval.

5. Output file name.

6. Event templates desired
a. Start and stop times (subset of the ephemeris)
b. Event template to be fulfilled.

7. Perturbing forces to be applied during propagation
a. Solar pressure
b. Earth gravity
c. Lunar gravity
d. Maneuver force vectors (single or multiple)

16
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

72

3.2.2.4 Output Requirements

The normal output from the ephemeris propagation function would be time-tagged, time-ordered table of
orbital elements written to a user-named disc file and stored in the database. The file name will be user-
selectable, but a default name would be provided.

This function shall generate the necessary information to operate the satellite as well as to produce the
following input ASCII data files required by the real time systems at Astra and Americom for properly
configuring the satellite:

1. On-board orbit propagator initialization or update
2. Sensor inhibit information
3. Orbital elements

This function will be capable of displaying this table on a split screen with all events and also capable of
merging the two on request.

This function will provide the data for review and save the data to the database as directed. The
ephemeris data will be available to the display function and therefore available for:

1. Screen plots
2. Hardcopy to designated printers
3. Off-line processing (ASCII format)
4. Saving to disc

A capability is required whereby multiple generated ephemerides can be compared. The comparison will
provide spatial separation over a given period of time and also specify the time and distance of closest
approach.

The ephemeris propagator will complete multiple event templates previously defined. Each template will
be a time-tagged, time-ordered series of events selected from the following list

1. Ascending node
2. Descending node
3. Apogee
4. Perigee
5. Maximum longitude
6. Minimum longitude
7. Maximum latitude
8. Minimum latitude
9. Sun enter/exit primary ESA FOV
10. Sun enter/exit secondary ESA FOV
11. Moon enter/exit primary ESA FOV
12. Moon enter/exit secondary ESA FOV
13. Enter/exit earth eclipse of the sun
14. Partial earth eclipse of the sun
15. Enter/exit total earth eclipse of the sun
16. Enter/exit lunar eclipse of the sun
17. Partial lunar eclipse of the sun
18. Enter/exit total lunar eclipse of the sun
19. Enter/exit eclipse at specified longitude (assume box center)
20. Enter/exit sun interference

17
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

73

21. Enter/exit station keeping box
22. Enter/exit station keeping box center
23. Time of closest passage
24. Enter/exit "close pass window"
25. Pre/post maneuver related information

Each template could be configured to meet requirements of a different customer. The user named output
file will be delivered to the display function for standard handling (available for hardcopy, plotting,
manipulation, or electronic delivery).

It shall be possible to convert the units being displayed to another element set. This will be available in
two steps. A global change will convert all numbers displayed. The second option will be a more specific,
but temporary conversion where the user will be able to highlight a select group of parameters and
convert only those specific parameters. Whenever the function is exited, or even if a new screen is
selected, the parameters will revert to their original system of units.

Antenna predicts and pointing data are a direct output of ephemeris generation. Once the ephemeris file
is available to the display function, antenna predicts and pointing data can be computed and output as
desired.

The processing of this function should be such that once an ephemeris set is generated the user can, at a
later time create a new events template without having to setup and rerun the entire ephemeris
calculations and redo all of the existing templates associated with that ephemeris.

3.2.3 MANEUVER PLANNING & EVALUATION FUNCTION

3.2.3.1 General

Planning and evaluation capability for East-West (EW), North-South (NS), station keeping, relocation and
de-orbit maneuvers will be accomplished by this function. This function will also accomplish all fuel
tracking requirements.

3.2.3.1.1 Astra Function 4 Requirements

1. Computation of the velocity increments and times of impulsive and continuous
maneuvers for more than one full station-keeping cycle (period between two
longitude/eccentricity control maneuvers) in a single run. This implies that the
longitude/eccentricity control maneuvers shall be computed considering the cross-
coupling components of the inclination control maneuvers as well as the orbit
perturbations generated by other maneuvers like spin control maneuvers for spinners.

2. Support different cycles for inclination control (e.g. 4 weeks) and longitude/eccentricity
control (e.g. 2 or 3 weeks).

3. Support the following inclination control strategy: determination of the inclination
control direction minimizing the propellant consumption.

18
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein Is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

74

4. Support the following eccentricity control strategies: (1) Sun-pointing perigee strategy
with possibility to specify the control circle center and radius and to bias the
eccentricity targets, (2) user's input of end of cycle eccentricity targets.

5. Computation shall ensure that the following constraints are satisfied: maximum burn
duration, maneuver time constraints.

6. Computation of re-location to other orbital positions based on some or all of the
following inputs: re-location start date, duration, new orbital position and maximum
mean eccentricity during the drift.

7. The output plots shall show the propagated longitude and eccentricity elements
supposing nominal maneuver performances as well as the predicted 2-sigma
maneuver performance uncertainties (along the three Delta-V components).

3.2.3.1.2 Astra Function 5 Requirements

Compute station-keeping maneuvers for all operational modes supported by the satellite
design. In particular, following requirements shall be satisfied:

1. Compute all thruster actuations required to achieve a specified velocity increment at a
specified time and according to a given maneuver mode, and to generate a
corresponding maneuver message ASCII file containing all information necessary to
generate the maneuver commands list.

2. In order to minimize the number of manual inputs, the application shall retrieve
information from the historical maneuver database (e.g. get initial masses), from the
real-time systems to get the required telemetry inputs (e.g. pressure, temperature)
and from satellite platform specific databases (e.g. calibration factors). The
computation results shall be saved in the historical maneuver database.

3. Perform all checks required to ensure compliance with maneuver constraints
(maneuver duration and time, maximum thruster on-time (number of pulses at given
pulse-length), maximum Delta-V for chose mode), with attitude control constraints
(e.g. sensor interferences, sensor transitions, angle to Su n for yaw computation, spin
speed limits (if applicable)) or other power/thermal constraints (e.g. eclipses), or day-
of-the week limitations.

3.2.3.1.3 Astra Function 6 Requirements

Maneuver calibration supporting following requirements:

1. Calibration of the Delta-V thrusters based on computed Delta-V and assessed Delta-
V resulting from orbit estimation of past maneuvers. The application shall support
data modeling based on Fourier fit versus parameters to be selected by the user (e.g.
burn center time, solar array angle, date...), as well as the generation of plots and,
after user confirmation, the update of the calibration table

2. The function shall support all the maneuver modes (primary and backup modes) and
determine dedicated calibration factors for each mode.

19
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein Is proprietary to SES Americom and Its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

75

3. Model the cross-coupling components of the station-keeping maneuvers and update
the cross-coupling table in consequence.

3.2.3.1.4 Astra Function 7 Requirements

Maneuver reconstruction (based on the thrusters telemetry) supporting following
requirements:

1. Based on the maneuver telemetry data file generated by the real-time system the
application shall estimate the Delta-V components, the fuel used, the CG position,
the Is', and thrust per thruster for all maneuvers and thruster firing events, as well as
the momentum integrated over the maneuver.

2. Be able to reconstruct all maneuvers since satellite hand-over with minimum input
from the users.

3.2.3.1.5 Astra Function 8 Requirements

Historical maneuver database supporting following requirements:

1. Store all data resulting from maneuver computation and reconstruction.

2. Support following functions: maneuver creation and update, retrieve of maneuvers
using parameters (e.g. maneuver mode, thruster used...) or time interval, print
maneuver report.

3. Export of data into spreadsheets to allow further processing (e.g. computation of
accumulated thruster firing), data modeling and plotting of key parameters.

3.2.3.1.6 Astra Function 9 and 10 Requirements

Propellant lifetime prediction satisfying following requirements:

1. Estimate the nominal as well as 3-sigma low satellite propellant lifetime.

2. The error propagation shall include errors on following components: propellant
loading, transfer orbit consumption, mixture ratio, thruster Isp, Delta-V, attitude
control.

3. Support all the maneuver modes, as well as following events: de-orbit maneuvers, re-
location, re-pressurization events, tank switches as well as attitude control related
maneuvers.

4. The thruster thrust and Isp shall be calibrated based on past maneuvers stored in the
historical maneuver database.

5. Estimate the remaining propellant in the tanks, based on propulsion subsystem
telemetry information.

20
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

76

3.2.3.1.7 Astra Function 11 Requirements

Satellites co-location supporting following requirements:

1. Support following co-location strategies: longitude separation, eccentricity and
inclination separation.

2. Support computation of following information/predictions: inter-satellite distance and
separation along the radial, tangential and normal components, inter-satellite sensor
interference and RF signal shadowing. For each prediction, the application shall
generate both tables and plots.

3.2.3.1.8 Astra Function 12 Requirements

Integrated Monitoring and Alarm system supporting following functions:

1. Provide near-real time orbit determination functionality to continuously perform orbit
estimations, evaluate maneuver performance (autonomous selection of the tracking
interval) and evaluate the OD quality.

2. Provide near-real time co-location monitoring system to check the station-keeping
and co-location parameters for the next 48 or 96 hours.

3. The Alarm system issues alarms (email, message to portable phone)

4. Combined with the event predict tool, the system provides also continuously orbital
control related data to other applications or to the Intranet and Internet.

3.2.3.1.9 Astra Function 13 Requirements

Satellite momentum propagation and control utility satisfying following requirements:

1. Estimation of the satellite external torque based on satellite telemetry values.

2. Propagation of the momentum through maneuvers.

3. Computation of the momentum targets for dedicated momentum control maneuvers
or as part of station-keeping maneuvers. Display on a plot of the results with
possibility to bias the targets.

3.2.3.2 User Interface Requirements

1. Upon entry to the maneuver planning function, the user will enter the type of
maneuver to be planned (NS, EW, drift and eccentricity, station change or fuel
tracking).

2. For each maneuver type, this function will offer for selection the various thruster
combinations appropriate to that maneuver. If only one set is appropriate, that set
will be selected as default, and the next step in the process initiated.

21
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or In part, without the prior written consent of SES Americom is prohibited.

77

3. Thruster combinations are to be maintained in a database with the capability of
being edited, either manually, or automatically, and additional thruster
combinations added, or deleted as necessary.

4. The user will have the option of entering the day of the maneuver either
manually, or by selection from a plot of appropriate parameters (longitude vs.
time for east west and drift and eccentricity maneuvers, inclination vs. right
ascension of ascending node for north south maneuvers).

5. It shall be possible to change the start date of a maneuver.
6. This function will use the ephemeris indicated by the user to determine satellite

position and drift rate at the epoch chosen for the maneuver.
7. The user will have the ability to indicate, either manually, or graphically, the

target of the maneuver. Doing this will determine the bum duration, and, for NS
maneuvers, the time of the bum. For manual entry, entering a target position will
yield a bum duration, or entering a bum duration will yield a position.

B. For NS maneuver, the time of day for the maneuver will default to the time that
corresponds to the Mean Annual Drive (MAD). The time shall be adjustable,
either by manual entry, or graphically.

9. For EW maneuvers, the time of the bum is determined by manual, or graphical
entry. For graphical determination of the maneuver time a polar plot of
eccentricity vs. argument of perigee is required. This plot should be "filtered" to
provide a clear representation of the data.

10. Drift and eccentricity maneuvers are a special case of EW maneuver planning
requiring multiple burns spaced several hours apart. In almost all circumstances,
these will be two bums, twelve hours apart, however the timing must be
selectable. The goal of the drift and eccentricity maneuver is to perform a large
correction to eccentricity and time of perigee, with a small change in drift rate,
without exiting the boundaries of the station-keeping box. The total burn duration
determines the change in the eccentricity "vector, while the difference between
the bum durations will determine the drift rate.

11.The targets for the drift and eccentricity should have manual and graphical entry
capability.

12. Station change maneuvers are a special case of drift and eccentricity maneuver.
In this case, a new station location is the goat, while maintaining eccentricity
control.

13.The user will input the target longitude either manually or graphically, and the
lapsed time, or arrival date. The time of the burns will either be entered manually
or graphically as Is done for the drift and eccentricity. This function will output
bum durations, and fuel estimates. Stopping the satellite at its new longitude is
considered part of the station change maneuver planning.

14. For all maneuver plans, this function will output a maneuver date and time, bum
duration and orbital elements that reflect the post maneuver orbit. These
elements shall be directly usable to run an ephemeris to validate the maneuver
plan.

15. It shall be possible to plan multiple maneuvers with the Input of a single
ephemeris. This can be either different burn durations, or maneuver time for
modeling purposes. Or the maneuvers can be of different types, such as a NS
followed by and EW.

16.An estimate of fuel consumption shall be a part of all maneuver planning.
17. Fuel usage shall be estimated based on relevant data in the database, and bum

durations from the maneuver planner output.

22
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

78

18. Fuel accounting shall be part of this overall function.
19.This function shall use as input a thruster data file indicated by the user, or

manual entry of bum durations of individual thrusters. The fuel calculations shall
take into account burn durations and pulse widths that affect ISP and thrust.

20. The fuel accounting data shall be kept in a file for archiving. This file shall be
accessible by other programs for maneuver evaluation, and updating of the
spacecraft database.

21. Entries to this file shall be on a per maneuver basis, with fuel consumption for
individual thrusters, consumption for this maneuver, and fuel remaining.

22. The user will indicate an ephemeris file for use in evaluating the current
maneuver plan.

23. Thruster data information, including thruster pulse widths and burn time shall be
used as part of the input to the maneuver evaluator.

24. With the input of the maneuver plan, thruster data file and post orbit
determination ephemeris, the evaluator will calculate, the change in drift rate,
vector change in eccentricity, and vector change in inclination. With these values
the evaluator will determine fuel consumption, thrust, "thrust values" (change in
drift rate per second of burn, change in inclination per minute of bum, change in
eccentricity per second of bum).

25. It shall be possible to use the same ephemeris file for both maneuver planning,
and maneuver evaluation, i.e. "ephemeris file A" which followed "maneuver A"
can be use to evaluate the results of "maneuver A", and to plan the next
maneuver, "maneuver B".

26. The evaluator shall have the capability of determining corrections to the thruster
parameters used by the maneuver planner, and updating these values in the
database at user request.

27. The maneuver evaluator shall generate a report that includes maneuver type,
date and time, thruster bum durations, pre maneuver elements and actual post
maneuver elements, change in drift rate, eccentricity, and inclination, thrust
achieved, fuel consumption, and any database parameters updated.

3.2.3.3 Input Requirements

1. An ephemeris to determine satellite position and velocity at maneuver time.
2. Maneuver type.
3. Spacecraft parameters such as mass, fuel pressure and mass, thruster

performance parameters.
4. Thruster selection.
5. Maneuver epoch (date and time, or target).
6. Maneuver burn duration, or target.
7. Plots of longitude vs. time, eccentricity vs. time of perigee, and inclination vs.

right ascension of ascending node.
8. Calculation of Mean Annual Drive,
9. Thruster data file containing burn durations of individual thrusters.
10. For station change maneuvers the time allowed to achieve station.

3.2.3.4 Output Requirements

1. A post maneuver ephemeris is input for maneuver evaluation.

23
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

79

2. A maneuver plan providing date and time of maneuver, thrusters to be used,
bum duration, orbital elements at the epoch of the maneuver for the pre and post
maneuver conditions, expected fuel consumption. In addition, for Spacebus 2000
maneuver planning the appropriate sun sensor to be used during the maneuver
will be part of the output.

3. An ephemeris for validation of the maneuver plan and as input for the orbit
determination function.

4. Fuel consumption file to document fuel consumption by maneuver, for each
thruster and a total remaining.

5. Updates to the database for mass and fuel remaining.
6. A maneuver evaluation report that includes maneuver type, date and time,

thruster burn durations, pre maneuver elements and actual post maneuver
elements, change in drift rate, eccentricity, and inclination, thrust achieved, fuel
consumption, and any data base parameters updated.

7. The ability to update the relevant thruster parameters (i.e. flow rate, thrust, Iv,
etc.) in the database with the values determined by the evaluator.

8. The Display function shall be capable of plotting those outputs from the
maneuver planner/evaluator that are appropriate to plotting, such as orbital
elements, fuel remaining, thrust, etc.

3.2.4 PLOTTING FUNCTION

3.2.4.1 General

This option will take selected data provided by other functions within this system and provide an on-
screen or hardcopy graphical presentation of the data, or interface with a third-party graphics package to
provide similar functionality.

3.2.4.2 User Interface Requirements

A setup screen will enable the user to select the data to be plotted, define the plotting parameters and
select the output device. A standard Windows user interface, including left/right mouse button operation,
shall be implemented.

3.2.4.3 Input Requirements

1. Database information or file names containing the data to be plotted
2. Selection of plotting coordinates
3. Maximum and minimum values of the parameters along both axes (for Cartesian

plots)
4. Maximum radial component for polar plots
5. Type of filtering of data

a. averaging
b. sampling (specify 1/n)
c.	 bounded

6. Bounds (limits) within the set extremes
7. Orientation of plots
8. Automatic scaling of output

24
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

80

3.2.4.4 Output Requirements

1. Plot single traces of parameters
2. Plot multiple traces of parameters with like units (but not necessarily of identical

parameters on the same plot.
3. Plots will be available in either Cartesian or polar coordinates
4. Ability to modify maximum/minimum values on plot, or select autoscale
5. The user will select if a hardcopy plot is desired (Screen plot will always display)
6. For longitude plots, the user will have the capability to insert on demand (or

remove on demand) the ascending and descending nodes.
7. Allow different scaling of unsplined longitude plots. The user will have the option

of selecting angle data "wrapped" to either -180 to 180 or 0 to 360 degrees.
8. The following parameters will be available for plotting

1. universal time
2. ephemeris time
3. semi-major axis
4. eccentricity
5. inclination
6. right ascension of the ascending node
7. argument of perigee
8. mean anomaly
9. altitude
10. latitude
11. longitude
12. speed
13. flight path angle
14. heading
15. magnitude of geodetic acceleration vector
16. elevation of the geodetic acceleration
17. azimuth of the geodetic acceleration
18. ephemeris time of perigee
19. ephemeris time of the ascending node
20. eccentricity at perigee
21. inclination at the ascending node
22. equinoctial longitude of perigee
23. local solar time of perigee
24. filtered longitude (daily oscillations removed)
25. filtered eccentricity (daily oscillations removed)
26. filtered inclination (daily oscillations removed)
27. filtered equinoctial longitude of perigee (daily oscillations removed)
28. filtered local solar time of perigee (daily oscillations removed)
29. K (esin(arg of perigee + raan)
30. H (ecos(arg of perigee + raan)
31. Q (tan(inclination/2)*sin(raan)
32. P (tan(inclination/2)*cos(raan)
33. mean longitude
34. orbital period
35. x position ECI
36. y position ECI
37. z position ECI

25
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

81

38. x velocity ECI
39. y velocity ECI
40. z velocity ECI
41. x acceleration ECI
42. y acceleration ECI
43. z acceleration ECI
44. x position ECF
45. y position ECF
46. z position ECF
47. x velocity ECF
48. y velocity ECF
49. z velocity ECF
50. x acceleration ECF
51. y acceleration ECF
52. z acceleration ECF
53. east west drift
54. north south drift
55. east west acceleration
56. north south acceleration
57. maximum longitude
58. maximum latitude
59. minimum longitude
60. minimum latitude
61. magnitude of position vector
62. spacecraft right ascension
63. spacecraft declination
64. magnitude of the velocity vector
65. angle down of velocity vector from radius vector
66. azimuth of the velocity vector
67. magnitude of the acceleration vector
68. right ascension of the acceleration
69. declination of the acceleration
70. F (esin(arg of longitude)
71. G (ecos(arg of longitude)
72. mean motion (angular rate of the mean anomaly)
73. argument of longitude (raan + arg of perigee)
74. chi (tan(inc/(1+cos(inc))*sin(raan))
75. psi (tan(inc/(1+cos(inc))*cos(raan))
76. acceleration magnitude due to solar pressure
77. acceleration magnitude due to solar gravitation
78. acceleration magnitude due to lunar gravitation
79. acceleration magnitude due to geoid gravitation
80. right ascension of the sun
81. declination of the sun
82. slant range to the sun
83. right ascension of the spacecraft to sun vector
84. declination of the spacecraft to sun vector
85. range from spacecraft to the sun
W. right ascension of the moon
87. declination of the moon

26
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

82

88, slant range to the moon
89. right ascension of the spacecraft to moon vector
90. declination of the spacecraft to moon vector
91. distance from spacecraft to the moon
92. local solar time of spacecraft
93. potential energy
94. kinetic energy
95. total energy
96. spacecraft mass
97. spacecraft slant range versus time from a given earth station
98. azimuth to spacecraft versus time from a given earth station
99. elevation to spacecraft versus time from a given earth station
100. MAD angle

3.2.5 ANTENNA FUNCTIONS

3.2.5.1 General

This is a collection of utilities that facilitate the computation of various antenna related information.
Included are:

1. Antenna predictions
2. Look angles
3. 	 Conjunctivity predictions

3.2.5.2 User Interface Requirements

A set-up screen will enable the user to specify the earth station antenna to be used in all computations,
as well as the celestial coordinates of the target(s).

3.2.5.3 Input Requirements

1. Earth station antenna coordinates — either by manual input of station name,
longitude, latitude, and altitude or by entering the earth station database and
selecting a set of existing stored coordinates. If manual input is selected, the
program will ask if the new coordinates are to be added to the database.

2. Location of celestial body — either manually input, from an existing ephemeris file
or from the public domain accessible database of geostationary satellites. A
satellite can be specified using only a longitude, in which case inclination and
drift are assumed to be zero.

3. Start and stop times for the data generation.

4. Specification of the interval between successive coordinates.

5. If the sun or moon is specified as the target, their locations for the specified time
period are to be calculated internally.

27
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom Is prohibited.

83

6. For conjuctivity computations, the user must also specify the window (+/-
degrees) within which commanding is prohibited.

3.2.5.4 Output Requirements

For antenna predicts, a digital antenna drive file will be generated that can be read by the antenna control
units at the TT&C sites.

The look angle function will generate an ASCII output of azimuth and elevation versus time, given the
coordinates of an earthbound antenna and a celestial body. If the coordinates of the space-based object
are input manually, a single set of pointing angles will be generated. If an ephemeris file is used to define
the location of the space-based object, a series of pointing angles will be generated for the specified
period of time and at the specified interval.

The conjunctivity option will output the date/time of the conjunctivity window along with the size of the
window and an identifier of the other satellite.

3.2.6 DATABASE FUNCTION

3.2.6.1 General

The database serves as a repository for pertinent information, which is used on a recurring basis by the
system. A single active database will be maintained but shall be divided into logical areas using standard
schema techniques. All system users will access the same active database.

The database can be thought of as being divided into segments according to the type of information
contained within the segment. Some of those segments are satellite specific, TT&C site specific, global
parameters, earth station coordinates, general satellite locations, sun & moon orbits etc.

The concept of scratch areas and best-knowledge database shall be used for all database parameters.
Data is saved or updated In the best-knowledge area only when explicitly selected by the user. This area
shall reflect the best-known present situation of the satellite fleets. Scratch areas are used to plan and
adjust operational situations until such time they are deemed to be elevated to best-knowledge status.

The database will be accessible from any terminal/workstation/computer, which is running the satellite
orbit management software. When first started the system should interactively ascertain which satellite
the user wants to work with and load the appropriate database information.

The database shall have the ability of handling a minimum of 16 earth stations and 50 satellites.

The system shall prevent more that one user updating the best-knowledge or identical scratch areas
during the same sessions. Error messages shall be provide to the appropriate users alerting them of the
potential problems when such situations arise.

3.2.6.2 Input Requirements

The database will contain items that are updated as a normal course of operations by other functions of
this system, such as range biases, fuel remaining, orbital elements etc.

28
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, In
whole or in part, without the prior written consent of SES Americom is prohibited.

84

A method will be available to examine the contents of the database and to make manual updates. The
user shall have the ability to specify the default units in which various parameters will appear. These
units will be changeable in real-time, but will default to the database units each time the program is
exited.

3.2.6.3 Output Requirements

Display of the database values to the screen and/or print segments of the database.

3.2.7 DISPLAY FUNCTION

3.2.7.1 General

This function shall provide a general purpose file management capability within the application. It allows
the user to rename, copy, move, edit and delete satellite data files without having to exit the program.

In particular this would be used to rename generated output files to give information about the contents of
the files.

Ephemeris, antenna predicts and other report fifes could be shortened or merged without having to rerun
them.

A method to construct event templates shall be provided. These templates allow for pre-canned report
formats to be identified that simply need to be `run' by the system so as to fill in the most recent variable
values contained in the template.

3.2.7.2 User Interface Requirements

Within a windows-like environment, this function will provide a user interface similar to Windows Explorer.

3.2.7.3 Input Requirements

All application related data files on local and server hard drives.

Template files are inputs that depict the report format and variables.

3.2.7.4 Output Requirements

All event templates will be available for transmittal and/or manipulation.

Reports may be produced as a single template or constructed out of several existing templates to provide
the needed data.

3.3 PERFORMANCE REQUIREMENTS

The system shall be capable of handling up to 25 simultaneous users without noticeable system
performance degradation given expected user workload requests.

29
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

85

The system shall be capable of providing all functions for a maximum of 50 active satellites.

3.4 LOGICAL DATABASE REQUIREMENTS

The information maintained within the database shall be all satellite parameters needed to provide the
functionality identified in other sections of this document.

Every satellite shall have its own, complete set of data associated with that satellite in the database.

The database system shall be designed to allow for daily delta backups and complete weekly backups
that minimize system down time.

The database shall use RSA Key Pair Authentication or equivalent security techniques.

Minimum database storage shall be 50% larger than the worst-case calculated maximum database size.

Users shall be able to easily access the information in the orbital databases: both scratch and best-
knowledge areas.

User shall be able to easily access and edit the information pertaining to collocation configurations.

3.5 DESIGN CONSTRAINTS

System functionality shall be accessible from any PC that is connected to the corporate network. This
includes use of general Internet access points (i.e. Wi-Fi) using existing corporate LAN security access
methods.

3.6 SOFTWARE SYSTEM ATTRIBUTES

3.6.1 RELIABILITY

A full Acceptance Test will be completed prior to delivery and installation of the system. This test will
establish that the delivered system meets all requirements contained within this specification.

3.6.2 AVAILABILITY

This system shall exceed 99.999% ('five nines') availability per year. Scheduled upgrades or maintenance
does not count against this availability requirement.

3.6.3 SECURITY

This system will be located behind corporate firewalls and operate on the already isolated and secure
TT&C network. For these reasons, the following security measures are adequate for this system:

Root passwords

30
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates, Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

86

Admin passwords
User passwords

To ensure that all passwords used to control access to this system and not easily guessed, the following
shall be implemented:

1. Passwords shall expire every 30 days, requiring users to create new passwords.

2. The last six passwords cannot be re-used.

3. Passwords must be a minimum of eight characters in length and incorporate three of the following
characteristics:

• Any lower case letters (a-z)
• Any upper case letters (A-Z)
• Any numbers (0-9)
• Any punctuation or non-alphanumeric characters found on a standard ASCII keyboard (1.

@#$%"& * ()_ - *={}[]:; - 1\/?<>- - ‘)

3.7 OTHER REQUIREMENTS
3.7.1 GUI INTERFACE

Most GUI panels should be contain two levels of configuration options:

1) Parameters frequently changed by the user

2)"Advanced' parameters.

3.7.2 TRANSACTION INFORMATION
The history of user initiated actions will be maintained for a period of the most recent 4 weeks.

This data will include:
User entered information
The user's IP address
A time stamp of the action
Login and logoff time

31
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

87

4 APPLICATION GROWTH
This section describes functionality that may be required in the future, but has no absolute requirement at
this time. A systems design that allows for such expansion in the future would be considered the better
approach.

4.1 HIGHLY INCLINED ORBIT

The ability to use the OD, ephemeris propagation and maneuver planning functions defined in earlier
sections for satellites in a highly inclined orbit. A highly inclined orbit is defined as an inclination angle
greater that 10.0 degrees.

4.2 LOW EARTH ORBIT

The ability to use the OD, ephemeris propagation and maneuver planning functions specified for satellites
in a low Earth Orbit (LEO).

4.3 SPINNER FUNCTIONALITY

(Similar to Astra Function 14 requirement)

For a 2 axis stabilized satellite (i.e. spinner), the following functions shall be supported:
1. Attitude data processing
2. Attitude estimation and propagation, including the estimation of sensor related biases

and precession
3. Attitude and Spin control maneuvers planning. In particular, the application shall

support the planning of all the attitude control maneuvers considering the orbital
maneuvers schedule. A spin maneuver planner based on spin speed propagation
through maneuvers shall be provided also.

88

32
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

5 APPENDIX A: USER INTERFACE PROTOTYPE
This section outlines potential approaches to the Graphical User Interface (GUI) for the NG-SOCS
system. Satellite orbit control parameters need to be displayed to the user in a special reference frame so
that a quicker and better understanding of the satellite motion can be obtained when reviewing the data.

All GUI windows will be designed by the system developers and presented at PDR for stakeholder review
and acceptance. This appendix is intended to give guidance to the system developers so as to foster a
basic understanding of the anticipated user interface.

Examples in this section are from FLD, PC-SOCS or STK screen shots.

The system GUI shall have a Windows look and feel, with standard and custom controls as needed. The
GUI should be user-friendly, which means it should be simple and familiar to all of the users. It has
consequently been broken into several screens, each of which is dedicated to a single task to keep the
risk of information overload down. Standard Windows-style interaction is maintained with textboxes,
combo boxes and buttons. The color scheme will avoid eye-straining combinations such as red and green
next to each other. There will be no more than two fonts on any given screen. Both the color scheme and
the fonts will be consistent among all screens.

5.1 MAIN PAGE

An example of the main window for Satellite Analysts in shown in figure A-1. Three general panes are
employed in this approach, namely the worldview, the application tool bars and the scenario pane. The
user can select graphical items or choose from menu items in order to drill down into the underlying data.

89

33
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

SEsA.AMERICOM
.-... ~n; c;r_ c,"...-.Al '::)O-,.._~ SEsAASTRA

Figure A-1, Example of a Main Satellite Analyst Window

5.2 DATA DISPLAYS

An example of a data display is shown in figure A-2, Combo boxes are used to allow the user to save
changes to the default satellite ephemeris data, The window displayed is for 'Satellite l' (highlighted in
the scenario pane) and would be populated with the most recent data from the database,

SES AMERICOM CONFIDENTIAL PROPRIETARY
34

The information contained herein is proprietary to SES Americom and its affiliates. Disclosure or reproduction, In
whole or in part, without the prior written consent of SES Americom is prohibited,

90

SEsAAMERICOM
.lWoU,"'I;iJ..~I c;....~J.,. SESAASTRA

Figure A-2. Example of a Data Display - Satellite Elements

5.3 ORBIT DISPLAY

An example of an Orbit display Is shown in figure A-3. Once the satellite(s) orbit is known, the user has
the ability to display the data on the map. Multiple satellites can be depicted on the map. Figure A-4
depicts the ability to zoom onto any area of the map.

SES AMERICOM CONFIDENTIAL PROPRIETARY
35

The information contained herein is proprietary to SES Americom and Its affiliates. Disclosure or reproduction. in
whole or in part. without the prior written consent of SES Americom is prohibited.

91

SES.A .AMERICOM SESAASTRA

Figure A-3, Example of an Orbit Display

36
SES AMERICOM CONFIDENTIAL PROPRIETARY

The information contained herein Is proprletery to SES Amelicom and its affiliates. Disclosure or reproduction, in
whole or in part, without the prior written consent of SES Americom is prohibited.

92

WORKS CITED

1. Bulut, Evren. "Memoire de Travail de Fin d'Etudes" MS Thesis Centrale
dLyon, France, 2002.

2. Carr, Nicholas. "IT Doesn't Matter." Harvard Business Review (May 2003):
41-50.

3. Chiang, Chia-Chu. "A Distributed Object Computing Architecture for
Leveraging Software Reengineering Systems." Communications of
the ACM Volume 22 (May, 2001): 653-657.

4. Elmasri, Ramez, and Shamkant Navathe. Fundamentals of Database
Systems. Massachusetts: Addison-Wesley, 2000.

5. Fink, Martin. The Business and Economics of Linux and Open Source. New
York: Prentice Hall, 2002.

6. Garkal, David. "Software Architecture: a Roadmap." Communications of the
ACM Volume 26 (June 2000): 93-101.

7. Institute of Electrical and Electronics Engineers. "IEEE Recommended
Practice for Software Requirements Specifications". IEEE Std. 830-
1984 (1998).

8. Logsdon, Thomas. Orbital Mechanics Theory and Applications. New York:
John Wiley & Sons, 1998.

9. Markus, M. Lynne. "Power, Politics, and MIS Implementation."
Communications of the ACM Volume 26 (June 1983): 430-444.

10. Public Agenda. "Defining the Basic Elements of .NET." Microsoft. January
24, 2003. Retrieved 1 Oct. 2004 from the World Wide Web:
http://www.microsoft.com/net/basics/whatis.asp

11. Public Agenda. "Exploring the range of CORBA technology." IBM. 6 July
2000. Retrieved 10 Oct. 2004 from the World Wide Web: http://www-
128.ibm.com/developerworks/webservices/library/ws-exploring-
corba/index.html.

12. Public Agenda "The J2EE 1.4 Kickoff, Part One." Sun Microsystems. 18 May
2004. Retrieved 2 Nov. 2004 from the World Wide Web:
http://java.sun.com/developer/technicalArticles/releases/j2ee14kickoff
/.

93

94

13. Public Agenda "The Java Servlet API White Paper" Sun Microsystems.
Retrieved 2 Nov. 2004 from the World Wide Web:
http://java.sun.com/products/servlet/whitepaper.html.

14. Public Agenda. "Sun confirms plans to open source Solaris." CNETAsia
News. 2 June 2004. Retrieved 1 July 2004 from the World Wide Web:
http://asia.cnet.com/news/software/0,39037051,39181540,00.htm.

15. Public Agenda. "Web service Performance: Comparing Java 2 Enterprise
Edition (J2EE platform) and the Microsoft .NET Framework."
Microsoft Corporation. 12 July 2004. Retrieved 15 Nov. 2004 from the
World Wide Web:
http://msdn.microsoft.com/vstudio/java/compare/default.aspx.

16. Roepke, Robert, Ritu Agarwal, and Thomas W. Ferratt. "Aligning the IT
Human Resources with Business Vision: The Leadership Initiative at
3M." MIS Quarterly Volume 24 No. 2 (June 2000): 327-353.

17. Sommerville, Ian. Software Engineering. Massachusetts: Addison-Wesley,
2001.

18. Wang, Narbor, Douglas Schmidt, and David Levine. "Optimizing the CORBA
Component Model for High-performance and Real-time Applications."
Dept. of Computer Science, Washington University, Boeing, NSF
Grant NCR-9628218, DARPA contract 9701516, Siemens. 15 Oct.
2004
http://www.research.ibm.com/Middleware2000/WiP_Papers/wang.pdf.

19. Wohlstadter, Eric, and Brian Toone. "A Framework for Flexible Evolution in
Distributed Heterogeneous Systems." Communications of the ACM
Volume 38 (Sept. 2002): 39-42.

20. Wohlstadter, Eric, and Stoney Jackson. "DADO: Enhancing Middleware to
support Crosscutting Features in Distributed, Heterogeneous
Systems." Institute of Electrical and Electronics Engineers (March
2003): 174-186.

21. Zwass, Vladimir. Information Systems. New York: McGraw-Hill, 1998.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Requirements Compilation and Development
	Chapter 3: Existing Architecture
	Chapter 4: Technology Investigation
	Chapter 5: Heterogeneous Platforms and Different Programming Languages
	Chapter 6: Candidate Architectures
	Chapter 7: Merger Plan and Requirements Compliance
	Appendix
	Works Cited

	List of Tables
	List of Figures
	List of Acronyms and Definitions (1 of 2)
	List of Acronyms and Definitions (2 of 2)

