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ABSTRACT

ELECTROSPINNING OF BIPHASIC BIOPOLYMER AND POLYMER:
A FEASIBILITY AND CHARACTERIZATION STUDY

by
Sherry Hsiu-Ying Wang

Electrospinning of polymeric materials have been experimented to achieve nanoscaled

diameters. The approaches to the current study are to combine a natural material such as

collagen with synthetic materials and determine if the interactions between the materials

can be used in the electrospinning process. Collagen is a material of choice due to its

biocompatibility. When collagen is combined with polymer, Polyethylene Oxide (PEO),

the fiber diameters ranged from 150nm to one micron. The fibers produced have shown

drastic phase separation. The next study involved using a duel solvent system to

electrospin fibers. The polymer of choice is Poly (1-lactic acid) (PLLA) combining with

collagen. This approach has given fibers with diameter ranging from 650nm to over a

micron. This method of electrospinning is the least successful due to the poor solvent

miscibility and evaporation. The third approach to electrospin PLLA with collagen is

through the use of a single solvent Trifluoroacetic acid (TFA). This is a common solvent

for collagen and PLLA and it is very volatile. The diameter of fibers produced through

this process is around 350nm to 500nm. This method showed the most promise in

producing excellent fiber mats. When thermal analyses are performed the results

indicated rapid densification and reorientation of PLLA. This is determined to be

interactions that are occurring between collagen and PLLA resulting in rapid enthalpic

recovery of PLLA.
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To my dearest ones

We have climbed through some insurmountable hills

Here at the top of one hill I have spotted the next hill

Let's go!
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CHAPTER 1

INTRODUCTION

1.1 Prologue

As the importance of biomedical technologies are becoming more prominent, attention

has been placed heavily on continuing discovery and development of future technologies.

The possibility of using materials in replacing damaged components of the human body

have been a practice for thousands of years going back to the fifth Egyptian Dynasty. The

oldest known artificial limb, dating from 300 B.C., was a copper and wood leg unearthed

at Capri, Italy in 1858 [1]. As time advances and because of the turmoil of war, came the

need for more artificial replacements. These replacements are deemed essential and

necessary to improving quality of life. In this country artificial replacements became a

growing industry during the time of the Civil War where the demand was pushed for

advancements and innovations in the biomaterial field. Thousands of total joint

replacements are being done that have returned normal function to patients young and old.

The once deadly conditions of atherosclerosis can now be alleviated by the insertion of

stents or vascular grafts. These are just some examples of biomaterials in action today.

With emergence of new and more powerful technologies the field of biomaterials has

become diverse, where it is no longer limited to just artificial replacements for

extremities, but has gone into sophisticated areas such as internal tissue replacements.

The ability to replace or induce growth of new skin tissue through the aid of artificial

replacements is no longer a concept but a reality.
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applications in stem cell research. The structural design of artificial matrices or scaffolds

that mimic the supra molecular structure and biological functions of the extracellular

matrix is a key issue in tissue engineering and the development of artificial organs [2].

Because of the nature of the stem cells, it is optimal to provide an environment that is

similar to the cell in size to stimulate cell growth. The cells favor a highly porous

microstructure with interconnected pores and a large surface area for adhesion and

differentiation [3]. In most cases a nanoscaled environment is preferred to satisfy the

conditions described. One example of tissue regeneration process is that of bone

regeneration. It has been discovered that the optimal growth of cells are in scaffolding

with pore sizes between 100 and 350 gm and porosities of more than 90% [4]. Working

with such small scales, development of nanotechnology is necessary to enhance stem cell

and tissue engineering research.

The idea of electrospinning was not a new concept especially in the polymer fiber

industry. The advantages of nanofibers are its high surface area to volume ratio,

flexibility in surface functionalities, and excellent mechanical performance such as

stiffness and tensile strength [5]. There are many other methods of producing fibers in the

fiber industry that have been attempted to produce nanofibers. However, methods such as

drawing, template synthesis, phase separation, self-assembly, have many limitations in

producing the desired size of fibers. Electrospinning as a result is considered to be the

most logical method to pursue in producing consistent quality nanofibers.
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1.2 Objective

The objective of this research is to produce composite electrospun fiber of

collagen and polymer. The electrospun fibers can be part of the tissue engineering

approach for cell growth and differentiation in vitro and specific tissue formation. In

addition, the electrospun fibers can serve as controlled drug delivery devices. An

important aspect of the scaffolding is in the materials being used. The scaffolding should

be of natural, biocompatible material that will not interfere with cell growth and

aggregation while seeded onto the scaffolds.

The polymer selection for the study is based on their individual unique properties.

Collagen as a biopolymer is the main polymer of interest in the current study.

Polyethylene oxide is chosen for its hydrophilic properties. Poly(1-lactic acid) is chosen

for its hydrophobic properties. Both polymers are known to be excellent biodegradable

polymers that have various applications in the biomaterials industry. The solvent

selection is very important in the electrospinning process. The degree of volatility is a

major factor in producing small diameter fibers. The solvents used in this study ranged

from the least volatile, lactic acid, to trifluoroacetic acid.

During this study three different solution forming techniques have been developed

for a comparative approach to electrospin collagen and a polymer. The process for

making the scaffolds varies in the different types of polymers and solvents used.

• Polyethylene oxide (PEO) and collagen using D.I. water as solvent for the non-

volatile solvent electrospinning technique
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• Poly (1-lactic acid) (PLLA) and collagen in chloroform and lactic acid for biphasic

solvent electrospinning technique

• Poly (1-lactic acid) (PLLA) and collagen in trifluoroacetic acid for biphasic

component with volatile solvent electrospinning technique



CHAPTER 2

BACKGROUND

2.1 Collagen

Collagen is the most abundant protein in the human body. There are roughly 19 types of

collagen discovered with Type I being the most common. Type I collagen is the major

fibrillar collagen that account for 25% of the dry protein found in mammals. Different

types of collagen have been categorized by their function. The fibrillar collagens type I, II,

III, V, and XI consists of a central uninterrupted triple-helical region of about 1000 amino

acids [6]. The second functional category is the non-fibrillar type IV collagen, which

forms antiparallel sheet-like structures that are the principal components of the basement

membrane in the skin. The third functional category place collagen type IX, XII, XIV,

XVI as fibril associated collagens where the triple helical structures are interrupted and in

various lengths [7]. Many medical applications involving Type I collagen have been

successful. However, even Type I collagen within itself has many different properties

depending on the location from which the collagen is derived. Ranging from the most

sophisticated implantable devices to smoothing wrinkles, collagen has a solid presence.

5
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2.1.1 Chemical Structure of Collagen 

Collagen is a protein with the most unique structure. It is an amino acid consisting 

of about 33% glycine and 25% proline and hydroxyproline. The intrinsic viscosity of 

collagen is about 1000m1Jg and 1200m1Jg [8]. The molecular length is about 300nm by 

rotary shadowing. It has a translational diffusion coefficient of about 0.85 x 10-7 cm2/sec 

with the ability to form fibrilar elements with a macroperiod of between 65 to 67nm 

[9,10]. Rotational diffusion coefficient for type I collagen has been found to be 1082 sec- l 

[11]. The molecular weight of collagen is determined to be 285,000; which reflects the 

presence of crosslink:s between molecules or physical associations [2]. 

ta) (b) 

Copyright C2000 Benjamln.'Cummlrtgs, a.n imprint 01 A<:Idlson WeSIE!'Y LGnglilan, h'lc.. 

Figure 2.1.1a Structure of collagen a) molecular structure, b) triple helical structure, c) 
molecular chain distribution, d) collagen fibril banding pattern, f) image of collagen fibril 
[12]. 



7 

The molecular sequences of collagen are composed of approximately 1,000 amino 

acids in the form of Gly-X-Y with small nonhelical ends before and after the sequences. 

With the Gly-X-Y sequences of collagen they form fibrous networks that prevents 

premature mechanical failure of most tissues. The triple helical structures that are unique 

to collagen pack laterally into a quarter-stagger structure in tissues to form characteristic 

D-periodic fibrils. The fibrils range in diameter from about 20nm in cornea to more than 

100 nm in tendon. The collagen fibrils in tendons are packed into bundles that are aligned 

along the tendon axis. In skin, types I and type III collagen fibrils form a nonwoven 

network that aligns with the direction of force. In the cartilage, type II collagen fibrils 

form oriented networks that are parallel to the surface and perpendicular alignment in the 

deeper zones relative to the surface layer [6]. The different orientations of collagen offer 

an array of mechanical properties to differ~nt tissue types. 

Figure 2.1.1b Banding pattern of collagen fibrils under SEM. 
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2.1.2 Mechanical Properties of Collagen

Collagen is one of the most important stress-carrying protein structures of the

mammalian body. These proteins collectively form connective tissues that function to

maintain shape of tissues. The mechanical aspects of collagen is usually observed and

measured through the stress and strain relationship of the tendon fibrils. The stress and

strain relationship of fibrillar Type I collagen varies from tissue to tissue but the ultimate

tensile stress is correlated with the diameter of the fibril and fiber. The classic stress and

strain curve of collagen can be divided into 3 distinct regions where each region

represents a state of fibril arrangement. (Figure 2.1.2a) The region of small strains "toe

region" is the removal of microscopic crimps in the collagen fibril [13]. At this stage the

light microscope can observe the uncrimping. However, when at larger strains, the heel

and linear region, the light microscope can no longer allow for visible observation of the

changes in the structure. The changes are, therefore, at the submicron range.



- 2.00+ 
~m+ 

STRAIN 

FIGURE 2.1.2a Stress and strain curve of collagen rat-tail tendon [12]. 
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b 

In the heel region the collagen fibrils appear to align in parallel this phenomenon 

is interpreted as a reduction of the disorder in the lateral molecular packing within fibrils, 

resulting from the straightening of kinks in the collagen molecules [14]. Experimentation 

using X-ray scattering technique to study the structural changes occurring in the heel 

region of the stress and strain curve is conducted to observe the changes [15]. The result 

showed that the intensity of the diffused equatorial scattering of the X-ray is due to the 

lateral arrangement of the collagen molecules inside the fibrils and it increases with the 

strain [16,17] 
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The linear region of the stress and strain curve indicated that the kinks in collagen

are straightened where the load is directly loaded onto the collagen fibrils and no further

extension is possible [8]. It is believed that the triple-helices or the cross-links between

the helices are being stretched and gliding with the neighboring molecules. In an

experiment conducted using synchrotorn radiation diffraction to investigate this

phenomenon, the results indicated that gliding of neighboring molecules indeed occur in

the linear region [18]. A separate study conducted on the mechanical properties of

collagen fibers of diameter from 50 to 100 mm yielded ultimate tensile strength of 40

MPa with strain up to 10% [19]. These properties reflect the stiffness of the collagen

triple helix, which has been estimated to have stiffness as high as 4 GPa, based on

solution properties [20].

2.1.3 Immunogenicity of Collagen

Collagen as a safe and effective biomaterial for in-vivo use has been approved for

use in many different medical applications. Since collagen is a material that is abundant

in the human body it rarely causes any immunological or toxicological responses when

implanted. However, some concern has risen over the years where autoimmune responses

have been exhibited in some patients. Cases of rheumatoid arthritis, systemic lupus

erythematosus, dermatomyositis, and polymyositis appeared in some patients after

collagen injections while the patients exhibit no previous symptoms before the injections

[2]. Although such statements are made for injectable collagen content there are no direct

correlations of collagen induced autoimmune diseases.
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With recent concern over bovine spongiform encephalopathy and the cross

contamination into humans causing degeneration in the central nervous system has give

rise to doubts in the safety of collagen related products. However, contamination of

collagen related medical devices are of no danger to patients.

2.1.4 Applications of Collagen

In many instances collagen has been the biomaterial of choice due to its

biocompatibility and minimal immunological responses. Collagen as a biomaterial has

always been processed into a powder form or into slurries for further usage. Other forms

that collagen can be processed into include hydrogel or as a porous matrix after freeze-

drying. As a connective tissue, collagen consists of fibers that are organized into protein

networks ranging from twenty to several hundred nanometers in diameter [21]. Collagen

networks act to resist high strain deformation and in the process transmit forces, dissipate

energy, and prevent premature tissue mechanical failure. Due to this aspect, collagen has

always been sought after for ligament repair and replacement. Many different research

studies have been conducted to manufacture ligament from collagen to achieve the same

flexibility and strength as natural ligaments. However in most cases it proves to be

difficult to match the natural strength.

Collagen in the cardiovascular graft industry serves as a natural sealant for woven

grafts. Although finely woven there are pores in the grafts that can cause serious leakages

once implanted. Utilizing collagen as a coating substance allows for complete sealing of

the graft and yet is bioresorable where the collagen is gradually replaced by the tissues of

the patient.
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2.2 Polyethylene Oxide PEO

Polyethylene oxide (PEO) is a crystalline, non-ionic, hydrophilic polymer. The

chemical structure of PEO is identical to that of polyethylene glycol (PEG), the PEO is

distinguished by significantly higher molecular weights relative to PEG. The molecular

weight of PEO ranges between 100,000 and 7 million daltons. PEO has a melting

temperature of about 74°C and a glass transitions temperature of -54°C [24]. Water-

soluble polymers fall into two main categories: polyelectrolytes and neutral polymers that

are soluble in aqueous media because of the formation of hydrogen bonds with water

[25,26]. PEO is modeled as a flexible linear polymer such as a polymer. However, PEO

is not a simple polymer. It can exist in different numbers of distinct and introconverting

configurations characterized by their dimensions and by their interaction free energies

with water, other monomers and solutes such as proteins [25].

In biomedical applications PEO has generated special interest due to its good

biocompatibility and low toxicity. Scaffolding in tissue engineering applications must

direct the arrangement of cells in an appropriate three-dimentional configuration and

present molecular signals in appropriate spatial and temporal manner so that the

individual cells will form the desired tissue structures and do so in a way that can be

carried out reproducibly, economically, and on a large scale. PEO is most commonly

used to create protein-resistant surfaces [27]. However, surface modifications remain an

area of active interest and research where the polymer can mimic the hydrophilic, non-

adhesive oligosaccharides protruding from the cell surfaces [28].
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2.3 Poly (L-lactic acid) PLLA

Enantiomerically pure PLA is a semicrystalline polymer with a glass transition

temperature (T5) of about 55°C and melting point (Tm) of about 180°C [29]. Solubility of

lactic acid based polymers is highly dependent on the molar mass, degree of crystallinity,

and other comonomer units present in the polymer. Good solvents for enantiomerically

pure poly(lactide) are, for example, chlorinated or fluorinated organic solvents, dioxane,

dioxolane, and furane. Typical non-solvents for lactic acid based polymers are water,

alcohols (e.g. methanol, ethanol, propylene glycol), and unsubstituted hydrocarbons (e.g.

hexane, heptane) [29]. The miscibility of PLLA with other polymers allows for flexibility

in manipulating the properties of PLLA. Blending of different polymers with PLLA can

change the degradation rate, permeability characteristics, drug release profiles, and

thermal and mechanical properties. As a general rule of thumb the polymers chosen for

blending should be miscible with PLLA to avoid phase separation. However, immiscible

blends are useful when rubber toughening of PLLA is desired [29].

Mechanical properties of PLLA can be varied to a wide extent which is dependent

on the application. Semicrystalline PLLA is preferred to the amorphous polymer when

higher mechanical properties are desired. Semicrystalline PLLA has an approximate

tensile modulus of 3 GPa, tensile strength of 50-70 MPa, flexural modulus of 5 GPa,

flexural strength of 100 MPa, and an elongation at break of about 4% [30.31,32,33]. It

has been shown that tensile strength and modulus of PLLA increases by a factor of 2

when the weight-average molar mass is raised from 50 to 100 kDa [34]. Further increase
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in molar mass to 300 kDa has no influence on the properties of the polymers in any

significant way but the degree of crystallinity does change [29].

Aromatic polyesters are known to undergo thermohydrolysis due to the ability to

absorb water [35]. Thermal stability of lactic acid based polymers is poor at elevated

temperatures such as PLLA. Semicrystalline poly(L-lactic acid) tends to increase its

weight by water uptake with only a few percents [36]. The amorphous parts of the

polyesters have been noticed to undergo hydrolysis before the crystalline regions because

of a higher rate of water uptake. The first stage of the hydrolytic degradation is

accordingly located to the amorphous regions where the molecule fragments, that are

tying the crystal blocks together by entaglement, are hydrolyzed. The remaining

undegraded chain segments therefore obtain more space and mobility, which lead to

reorganizations of the polymer chains and an increased crystallinity [37].

PLLA of high molar mass has sufficient strength for use as load bearing materials

in medical applications, but the material degrades slowly because of the reinforcing

crystalline domains [38,39].
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2.4 Electrospinning

2.4.1.History

The term "electrospinning" is derived from "electrostatic spinning" which is first

used by Formhals in 1934 in the United States Patents [40]. The experimental setup

proposed by Formhals utilized the electric field that is generated to draw the polymer

solution into filaments. Two electrodes bearing electrical charges of opposite polarity are

set up having one electrode inside the polymer solution while the other is situated a short

distance away as the collector. The behavior observed has shown that the electrospinning

process depends on the potential difference depended on the properties of the spinning

solution, such as polymer molecular weight and viscosity. When the distance between the

spinneret and the collecting device was short, spun fibers tended to stick to the collecting

devices as well as to each other, due to incomplete solvent evaporation [41].

Vonnegut and Neubauer in 1952 refined the process where they are able to

produce streams of highly electrified uniform droplets of about 0.1 mm in diameter [42].

A glass capillary tube is filled with liquid with electrified wire is powered to 5-10 kV.

The liquid is charged and drawn out of the capillary tube. Drozin in 1955 investigated the

process proposed by Vonnegut and Neubauer. He found that for certain liquids and under

proper conditions, the liquid was issued from the capillary as a highly dispersed aerosol

consisting of droplets with a relatively uniform size. He also captured different stages of

the dispersion [43]. A patent appeared in 1966 for production of ultra thin and light

weight non-woven fabrics using electrical spinning [44]. This system incorporates a

conveyer belt that serves as collector for the electrospun polymer fibers. Simons
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discovered that viscosity of the polymer solution could influence the diameter of the fiber

and the consistency of the fibers. The fibers from more viscous solutions produce

continuous fiber while less viscous solutions yield thinner and shorter fibers. In 1971,

Baumgarten was able to electrospin acrylic fibers with diameters in the range of 0.05-1.1

microns [45]. His method of electrospinning utilizes a stainless steel capillary tube with a

constant solution feed by a pump that can control the speed in which the solution is being

extruded. A high voltage current is attached to the capillary tube that charges the

solutions. The grounding is a metal mesh on which the fibers are grounded and collected.

In recent times, the emergence of nanotechnology has pushed electrospinning

forward in producing ultrafine fibers that are down to the nanoscale. However, with many

precedence of the electrospinning concept, methods, and devices in existence the

understanding for it is limited.

2.4.2 Concept and Theory

The basic concept of electrospinning involves of an electrically charged jet of

polymer solution that is being drawn toward a grounded source. Three major components

fundamental to the electrospinning method include: high voltage supply, tubing for

solution extrusion, and metal collecting plate with proper grounding. The applied high

voltage on the polymer solution will induce mutual charge repulsion and the attraction of

the surface charges to the ground cause a force directly opposite to the surface tension.

As the intensity of the electrical charge increase the hemispherical surface of the fluid tip

elongates to form a conical shape know as the Taylor cone [46]. Once a critical point is

reached the electrostatic force overcomes the surface tension and the charged jet of the
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fluid is ejected from the tip of the Taylor cone (Figure 2.4.2a). The polymer that is

discharged travels to the ground in an unstable, whipping motion. This instability allows

for the elongation of the polymer solution. It is important that from the time the fluid jet

leaves the Taylor cone to the point of collection, that the solvent should evaporate leaving

only the polymer on the grounding plate.

Figure 2.4.2a The schematics of charges in the Taylor Cone [46].

Electrospinning seems to be a straightforward method of producing ultrafine

fibers from any solution. However, there are many parameters that govern the formation

of fibers through this process. These parameters include: (a) the solution properties such

as viscosity, elasticity, conductivity, and surface tension, (b) governing variables such as

hydrostatic pressure in the capillary tube, electric potential at the caplillary tip, and the

distance between the tip and the collecting plate, and (c) ambient parameters such as

solution temperature, humidity, and air velocity in the electrospinning chamber [46]. One

of the most significant parameters influencing the fiber diameter is the solution viscosity.

A higher viscosity results in a larger fiber diameter [38,45,48]. When a solid polymer is
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It is part of the electrospinning system that the fibers are deposited in a random,

non-woven fashion. However, attempts have been made to collecting the fibers in an

aligned fashion or into spools. Thus far it has prove to be difficult to single out fibers and

align them in any uniform way. Different methods proposed and attempted have had

some degree of success include a high speed, rotating drum (Figure 2.4.2c) that attempt

to wind the fiber as it is extruded. The difficulty in having the rotating drum to collect

aligned fibers is the whipping motion that occurs at a high rate of speed. The drum has to

match the deposition speed of the fibers to continuously collect fibers in aligned fashion.

Figure 2.4.2c Schematic of a rotating drum as ground source and fiber collector.

Others have proposed auxiliary electrodes and electrical fields to align the fibers.

The idea is to introduce additional electrical fields that can direct the stream of the jet and

limit the whipping motion. The limitation to this method is the amount of additional

applied field that can be introduced to the system without interfering with the primary

grounding source that is collecting the aligned fibers. Having additional applied fields

can cause the jet to be directed away from the main collector plate.
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collagens. The collagen fibrous structures are organized into the mesoscopic three-

dimensional fiber network composed of nanoscale multifibrils of collagens. Therefore, a

significant guideline for designing the artificial ECM or scaffold maybe for formation of

nanoscale building blocks such as nanofibers and its appropriate spatial organizations on

the mesoscopic scale. From this viewpoint, electrospinnig has provided a basis for the

fabrication of unique matrices and scaffolds for tissue engineering.

Medical uses for electrospun polymer fibers are not limited to scaffoldings for

tissue engineering applications. Wound dressings composed of electrospun fibers can

also provide enhanced wound healing and scar reduction. It is proposed that the fibers be

electrospun directly onto the wound and be able to provide a protective layer from the

environment while promoteing healing. At the same time medications can be

incorporated into the polymer solution that can be used not only for conventional wound

healing but can be used as controlled drug delivery devices internally.

Other applications such as filtration can greatly benefit from the reduced diameter

of the fibers. Fibrous materials used for filter media provide advantages of high filtration

efficiency and low air resistance. The filtration efficiency is dependent on the fineness of

the fibers, the reduction in diameter can greatly enhance filtration performance. This

filtration system can also be applied to clothing where protection from aerosols can be

possible due to the great surface area of the nanofibers that are capable of the

neutralization of chemical agents and without impedance of the air and water vapor

permeability to the clothing.



CHAPTER 3

MATERIALS AND METHODS

3.1 Materials

3.1.1 Bovine Collagen Tendon Derivation and Purification

Raw bovine tendon is packaged into a plastic sleeve each about 1000 grams and frozen

before further processing. The sleeve is sliced with a deli slicer and the thin slices are

than ground using a meat grinder. Potassium phosphate monobasic solution buffer

solution is prepared by adding 41.25 grams of KH 2PO4 to 8.4 liters of distilled water.

NaOH in the amount of 1.77 grams is added to the solution in order to maintain the pH at

6.15±0.15. The ground tendons are placed in the solution.

The buffer prepared bovine tendon is then placed under enzyme treatment of Ficin

for 1 hour. The enzyme treatment bath is composed of 10 grams of Ficin dissolved in the

previously prepared buffer solution and heated to 37°C. The temperature is maintained

while the tendon is in solution.

After 1 hour of Ficin treatment deactivation is necessary to prevent further

denaturation of the tendon. The deactivation solution is prepared by adding 84 grams of

NH4NO3 and 10 grams of NaClO2 . The pH of the solution must be strictly monitored and

that is should be kept between pH of 6 and 7. The tendons are hand washed and squeezed

to eliminate the enzyme solution from the tendon before placing into the deactivation

bath. The tendons must remain in the deactivation bath for 1 hour for full deactivation.

After 1 hour 3 batches of distilled water of 3 liters each are used to wash the tendons and
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eliminate the remaining traces of the deactivation bath. Each washing must last no less

than 15 minutes.

Alkalai treatment is essential to further cleanse tendons of impurities. The alkalai

treatment bath is prepared by adding 1400 grams of anhydrous sodium sulfate and 350

grams of sodium hydroxide to 6.8 liters of distilled water. The temperature of the bath is

kept at 25°C for 42 hours.

Deactivating the alkalai treatment requires 3 baths of sodium sulfate washes. First

bath requires 400 grams of Anhydrous Sodium Sulfate and washing for 15 minutes.

Second and third bath is with 600 gram of Anhydrous Sodium Sulfate and washing for 15

minutes each. Three acid baths pH of 4.6 is prepared by adding H2SO 4 into water.

The remaining treatment of isopropanol is intended to dry the tendons by driving

out excess solution taken in by the tendons. The tendons are soaked in 100% isopropanol

for 2 hours at 60°C and followed by a second bath of 100% isopropanol for 1 hour at

60°C. The tendons are taken out of the treatment and hand squeezed and teased into fine

fibers. The teased fibers are then placed in 45°C oven and dry overnight. The tendon that

is harvested is type I bovine tendon collagen and elastin.

3.1.2 Collagen Suspension

Collagen suspension is made from Type I bovine collagen tendon fiber that is

made by the process mentioned above. Different concentrations of collagen suspension

are made according to weight percentages. Two different weight concentrations of

collagen suspensions are produced and used for this study.
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Taking 16 grams of dry collagen tendon fibers and combineing with 2 ml of lactic

acid and 2 liters of D.I. water makes a suspension of 1.6 wt %. The collagen tendon fibers

are blended in the blender for several short bursts of no more than 3 seconds for further

refinement of the suspension. A long blending time will tend to heat up the suspension

and subsequently denature the collagen. This must be avoided to preserve the properties

of collagen. The material is removed from the blender and stored in the refrigerator for 15

min. This process is repeated two more times and the finished suspension is centrifuged.

The purposed of the centrifuge is to remove the air bubbles that are trapped in the

suspension during the blending process. The suspensions are kept in refrigeration until

the time of use. The 2.0 wt % collagen suspension is prepared the same way with 2 ml of

lactic acid and 1 liter of D.I. water.

3.1.3 Polymers and Solvents

The polymers and solvents used during this study are listed below:

• Poly(ethylene oxide) from Aldrich [Mv 2,000,000; Mv 600,000; My 300,000]

• Poly(1-lactic acid) from Purasorb®

• Deionized water from Ricca Chemical Company

• Chloroform, 99% from Sigma

• Dichloromethane, A.C.S reagent (methylene chloride) from Sigma-Aldrich

• Trifluoroacetic acid, 99% from Acros Organics [M w 114,02]
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3.2 Methods

3.2.1 Electrospinning set up

The electrospinning set up used is based on the basic concept of electrospinning.

Stainless steel needles of diameters: 18 gauge and 20 gauge are used. A 10m1 plastic

syringe is used as the container and extruder of the polymer solution. A syringe pump

with speed control is placed in isolation to prevent creating an additional electrical field

that can serve as a grounding source for the polymer solutions. A hydraulic system was

developed where a duel syringe filled with water serves as the hydraulics between the

syringe pump and the piston of the syringe. A high voltage supplier is connected to the

syringe through an alligator clip. A metal plate is used as the ground and collector of

polymer fibers. Connecting the ground wire back to the power supply accomplishes the

grounding of the metal plate.

Figure 3.2.1a Electrospinning set-up.
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3.2.2 Scanning Electron Microscope

For analysis of the diameter and morphology of the electrospun fiber and mats the

Scanning Electron Microscope (SEM) is the tool of choice for such application. The

ability of SEM to image micron and nano scaled materials is based on the emission and

absorption of electrons under the electron beam. The surface may or may not be polished

and etched, but it must be electrically conductive; a very thin metallic surface coating

must be applied to nonconductive materials.

Electron microscopes were developed due to the limitations of light microscopes.

Which are limited by the physics of light to 500x or 1000x magnifications and a

resolution of 0.2 micrometers. In the early 1930's this theoretical limit had been reached

and there was a scientific desire to see the fine details of the interior structures of organic

cells (nucleus, mitochondria, etc.). This required 10,000x plus magnification which was

just not possible using a light microscope. The first Scanning Electron Microscope (SEM)

debuted in 1942 with the first commercial instruments around 1965. Its late development

was due to the electronics involved in "scanning" the beam of electrons across the sample.

The concept and inner workings of SEM are not very much different from the

light microscope. The "Virtual Source" (Figure 3.2.2a) at the top represents the electron

gun, producing a stream of electrons.
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Figure 3.2.2a The schematics to the inner workings of SEM with electron gun details.

The stream is condensed by the first condenser lens (usually controlled by the coarse

probe current knob). This lens is used to both form the beam and limit the amount of

current in the beam. It works in conjunction with the condenser aperture to eliminate the

high-angle electrons from the beam. The beam is then constricted by the condenser

aperture eliminating some high-angle electrons. The second condenser lens forms the

electrons into a thin, tight, coherent beam and is usually controlled by the fine probe

current knob. A user selectable objective aperture further eliminates high-angle electrons

from the beam. A set of coils then scan or sweep the beam in a raster (like a television),

dwelling on points for a period of time determined by the scan speed (usually in the

microsecond range). The final lens, the objective, focuses the scanning beam onto the

part of the specimen desired. When the beam strikes the sample (and dwells for a few

microseconds) interactions occur inside the sample and are detected with various

instruments. Before the beam moves to its next dwell point these instruments count the
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number of interactions and display a pixel on a CRT whose intensity is determined by

this number (the more reactions the brighter the pixel). This process is repeated until the

raster scan is finished and then repeated, the entire pattern can be scanned 30 times per

second.

3.2.3 Differential Scanning Calorimetry

The Differential Scanning Calorimetry (DSC) , measures the amount of energy

(heat) absorbed or released by a sample as it is heated, cooled, or held at a constant

temperature. Typical applications include determination of melting point temperature

and the heat of melting; measurement of the glass transition temperature; curing and

crystallization studies; and identification of phase transformations. The DSC works by

having a pair of cells placed in a thermostated chamber. The sample cell is filled with the

fiber mat and the other is left blank as the reference. The two cells are heated with a

constant power input to their heaters during a scan. Any temperature difference between

the two cells is monitored with a feedback system so as to increase (or decrease) the

sample cell's power input. Since the masses and volumes of the two cells are matched, the

power added or subtracted by the cell feedback system is a direct measure of the

difference between the heat capacity of the sample and reference solutions. The cell

feedback power is the raw data, expressed in units of cal/min. By knowing the scan rate

(typically 1 K/min) and the sample concentration, these units are converted to cal/mol-K

(or cal/g-K). Another system that can be employed in the DSC system is by measuring

the temperature difference between the cells instead of the power output by the cells. The
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instrument constantly monitors the change in heat flow (W/g) in relation to changes in

temperature to determine T g and T..

3.2.4 Thermogravimetric analysis

The Thermogravimetric Analysis (TGA) allows for precise measurement of the

weight change of a solid as it is heated at a controlled rate can be used to determine the

amount of chemically attached water or the organic content of an otherwise inorganic

substance. This analysis can be valuable if used in conjunction with methods such as

DSC in order to not only investigate a weight loss due to degradation or decomposition

upon thermal changes, but also to distinguish what chemical structures are given off.
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3.2.5 Solution Preparation

Polyethylene oxide and collagen solution is prepared by weight percentages. For a

6 wt % solution, 3 grams of collagen suspension and 3 grams of PEO is mixed with 94

grams of D.I. Water. Different concentrations of this combination are prepared with the

same method.

Poly (l-lactic acid) in chloroform and collagen (tendon collagen) in lactic acid

solution is prepared separately. PLLA in chloroform is maintained at 2 wt % for all

solutions. The 2 wt % is prepared with 1 grams of PLLA in 49 grams of chloroform.

Collagen in lactic acid solutions are prepared in three different concentrations. The

concentrations are as follows: 1 gram collagen in 49 gram of lactic acid, 1 gram of

collagen in 19 grams of lactic acid, and 1 grams of collagen in 9 grams of lactic acid. The

two solutions are combined by adding the collagen solution by weight into the PLLA

solution.

Poly (1-lactic acid) and collagen (tendon collagen) in trifluoroacetic acid solution

is prepared by keeping the amounts of TFA and PLLA as constant. Combining 2 grams

of PLLA with 1 grams of collagen in 10 ml of TFA produce a solution with

approximately 5 wt % of collagen in the solution. Subsequently the 8 wt% and 10 wt %

collagen solution is prepared by increasing the amount of collagen added from 1 gram to

1.5 gram and to 2.0 grams.



CHAPTER 4 

RESULTS 

4.1 Collagen and Polyethylene Oxide with D.I. Water · 

Electrospinning of collagen and Polyethylene Oxide (PEO) in D.I water has often 

produced water droplets and film structure as seen in figure 4.1.1. The formation of water 

droplets on the grounding plate is contributed by poor evaporation rate of water in the 

electrospinning application. Formation of film structure is also due to water droplets. The 

fine spray of the polymer solution onto the ground plate is such that each droplet is 

positioned so that it builds on top of each other. When the solution subsequently dried a 

film is produced. The fanning out or the flake like images that are captured through the 

polarized light microscope in figure 4.1.1 has indicated as such. 

Figure 4.1.1 PEO and collagen film captured under polarized microscope. 

32 
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On rare occasions when fibers are formed the mats produced are delicate and 

difficult to handle. The mats that are analyzed under SEM displayed a dense bundle of 

fibers that appeared fairly aligned and uniform under lower magnifications (Figure 4.1.2). 

Figure 4.1.2 PEO and collagen fibers under SEM. 

Figure 4.1.3 is an image capture by SEM showing fiber formation of PEO and collagen 

solution. The fibers are in the range of 151 nm to 1 f.lm. The solution is of equal 

concentration of PEO and collagen. In this image fibers are clearly displayed without any 

visible film formation. 
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Figure 4.1.3 Area with less density of fibers in the PEO and collagen mat. 

Overall collagen and PEO in D.I. Water combinations is a difficult method in 

producing consistent and uniform fibers. At higher magnifications as seen in figure 4.1.4, 

the evidence of gross phase separation is very apparent. The fibers appeared to be 

linkages of collagen by PEO. PEO in figure 4.1.4 appeared as a casing holding collagen 

sections together where the thinner sections of the fibers are PEO only sections and the 

thicker sections contain collagen. To confirm that collagen is not a continuous fiber in 

this instance the mats are placed in a water bath. PEO would readily dissolved in the 

water bath while collagen, as a water insoluble protein, should remain. The result is a 

complete dissolution of the fiber mats. This complete dissolution of the mats indicated 

that collagen is not in a continuous fiber form while being electrospun in this technique. 
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Figure 4.1.4 Evident phase separation of the PEO and collagen fibers. 
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4.2 Collagen and PLLA with chloroform and lactic acid solvents 

PLLA and collagen dissolved in chlorofonn and lactic acid produced 

unconventional fiber networks. The fiber diameter is of large size above 1 micron as seen 

in figure 4.2.1. The unconventional mat fonnation stems from the unique method of fiber 

deposition onto the ground during the electrospinning process. It is observed that the 

fibers do not adhere on the mat in one plane. They grow on top of each layer giving a 

"cotton candy like" effect. The resulting mat is a puffy network of fibers that can be 

compressed into a flat mat. Very often at higher concentrations the mat produced is sticky 

with thick fibers being fonned. The sticky substance is the lactic acid being coated onto 

the fibers. Ideally lactic acid should evaporate with chloroform, however, lactic acid is a 

non-volatile solvent compare to other solvents used for the electorspinning processes. As 

a result the fibers are coated with the lactic acid that remains. 

Figure 4.2.1 Collagen and PLLA in biphasic solvents. 
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Figure 4.2.2 Micron sized fibers produced with unifonn diameter. 

The fiber diameter is large ranging from 600nm to over 1 f.lm (Figure 4.2.1 & Figure 

4.2.2). The solvent is not able to evaporate properly. This interferes with the whipping 

motion of the unstable jet and limits the amount that the solution is being drawn. This 

results in the large diameter. 
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4.3 Collagen and PLLA with trifluoroacetic acid 

Collagen and PLLA in TF A mats produced mats with fiber of constant diameters 

(Figure 4.3.1 & Figure 4.3.2). In figure 4.3.1 the thin bundle of fibers in mat area of less 

density has shown to have diameter consistently at a little over 300nm. The mats 

produced do not contain droplet structure. In other dense areas of the mats (Figure 4.3.2) 

the images captured also showed the consistency in the fiber diameters. 

Figure 4.3.1 Collagen and PLLA in TF A fibers under SEM. 

Ii 
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Figure 4.3.2 Scaffolds of collagen and PLLA electrospun with higher density. 

It is observed that solutions placed under ambient temperature for more than 42 

hours are unable to yield fiber mats. The solution that is electrospun will not yield fibers 

instead the material deposited on the ground is that of a powder. A visual inspection of 

the mat that is produced is indiscernible between solution ages. However, upon handling 

it is apparent that the mat of new solutions yield fibrous mats but the aged solution mats 

crumble into powder. This could be the direct effect of continuing hydrolysis of collagen 

and PLLA by the TF A while they remain in solution. This phenomenon can also be 

observed in mats that are not placed under vacuum to eliminate TF A that did not 

evaporated during the electrospinning process. The mats that are stored immediately after 

electrospinning without the vacuuming process became brittle after 3 days of storage. 

Fractures of the mats are evident when the mats are handled. Therefore, it is critical that 

the solvent be eliminated as much as possible to ensure the life span of the scaffold. 

As the collagen and PLLA in TF A fibers are produced the question of phase 

separation in the fibers is considered. In the case of collagen and PEO electrospinning, 

phase separation is very apparent as seen in figure 4.1.4, but the mat in figures 4.3.1 & 
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4.3.2 is not. Looking closely at figure 4.3.4 some banding patterns can be seen and be 

interpreted as the presence of phase separation of materials. Areas pointed out by arrows 

are indications of phase separation in the fibers. After discovering these banding patterns 

it is believed that these fibers are similar to the PEO and collagen fibers (Figure 4.1.3). 

Another image is captured using different contrasts (Figure 4.3.4), the separations in 

some areas are more apparent. The appearances of thinning in the fiber diameter have 

appeared, shown by arrows in figure 4.3.4. 

Figure 4.3.3 Banding pattern on the collagen and PLLA in TFA fibers. 

• 
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Figure 4.3.4 Phase separation in fibers.

Following on the thought that the fibers contained phase separated materials and

thus yield fibers that does not have uniform amounts of collagen and PLLA, a further

investigation is followed to determine the location and the content of the collagen and

PLLA. It is known that collagen is not soluble in chloroform or methylene chloride but

PLLA can be readily dissolved in either solvent. A 3cm x 3cm electrospun mat of only

PLLA and another 3cm x 3cm electrospun mat of collagen and PLLA is prepared. Both

mats are placed in their individual bath of chloroform to observe and confirm the

presence of collagen. Within the first 3 second of immersion the PLLA only mat

completely dissolved while the mat containing collagen remained even after 24 hours in

the chloroform bath.
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This method is repeated on the collagen and PLLA mat and observed under

microscope to determine the locations of collagen in the fibers. The mat is placed onto

microscope slides and slowly washed with chloroform that is introduced onto the slide

through a syringe. The result is that PLLA quickly dissolved away leaving collagen in

place. Figure 4.3.5 is an image captured by polarized light microscope showing fibrous

structures of collagen with PLLA dissolved away. Another image taken from denser

areas of electrospun mat also showed that the fiber formation is retained (Figure 4.3.6).

Certain areas rich in collagen retain the fiber diameter and other areas that are PLLA rich

the diameter of the fiber reduced. This indicates that collagen is present in the fiber and

without PLLA it is still able to maintain the structural integrity of the mat.

Figure 4.3.5 Fibrous structure retained by collagen after PLLA is leeched
out.
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Figure 4.3.6 Denser collagen mat after PLLA is leeched out.

To determine that the electrospinning process did not interfere or destroy the raw

material DSC analysis is carried out. DSC analysis is conducted on: collagen tendon

fibers, PLLA, PLLA electropun mats, and collagen & PLLA electrospun mats. When the

collagen tendons ran under DSC curious features appeared. In figure 4.3.7 the DSC curve

for collagen tendon that is analyzed has a broad and large peak that occurred at about

130°C. This is uncharacteristic of collagen denaturation. It is inferred that the curve is the

result of moisture in the tendons. The collagen tendons retain this moisture during the

purification process.



Sample: Collagen tendon stiff
Size: 5.2000 mg
Method: Heat/Cool/Heat
Comment: Collagen tendon using stiff portions run #2 (1st run incomplete

File: C:...\DSC\Sherry\Collagen tendon s05.001
Operator: Sherry
Run Date: 2004-11-11 10:12
Instrument: DSC Q100 V8.2 Build 268
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DSC

Figure 4.3.7 DSC of collagen tendon fibers.

DSC analysis heating cycle is modified to isotherm at 100°C to allow the water to

evaporate. Results indicated that the broad curve has reduced in intensity by comparing

figure 4.3.8 & 4.3.9. In figure 4.3.6 the tendons are placed under isotherm for 1 minute

while in figure 4.3.9 the tendons are placed under isotherm for 2 minutes. The change in

heat flow between the two figures is approximately 0.7 W/g. This dramatic reduction in

heat flow prompted a more systematic approach to determine the point in which the broad

peak is eliminated.
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Sample: Collagen tendon stiff with evap 	 File: C.... \Collagen tendon s02 evap.001
Size: 6.1000 mg 	 DSC 	 Operator: Sherry
Method: Heat/Cool/Heat 	 Run Date: 2004-11-09 11:23
Comment: Collagen tendon using stiff portions under evaporation conditio 	 Instrument: DSC Q100 V8.2 Build 268

0.5

Figure 4.3.8 DSC with isotherm at 100°C testing the effect of
evaporation on the tendons.

Sample: Collagen tendon solvent evap 	 File: O... \Sherry \Collagen tendon iso05.001
Size: 6.0000 mg 	 DSC 	 Operator: Sherry
Method: Heat/Cool/Heat 	 Run Date: 2004-11-08 13:14
Comment: Collagen tendon evaporation heat/cool/heat 	 Instrument: DSC Q100 V8.2 Build 268

Figure 4.6.9 DSC of isotherm at 100°C for 2 minutes showing peak
intensity reduction.
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Further DSC analysis of tendon where the tendons are placed under isotherm for 1

minute, 2 minutes, and 3 minutes. The results indicated once again that large, broad peak

begin to reduce in intensity and eventually the peak disappeared all together (Figure

4.3.10). A TGA analysis is followed up to confirm the moisture loss in the tendons

(Figure 4.3.11). The moisture loss is approximately 15% of the original weight as seen in

figure 4.3.11. Confirming that the board peak is contributed by moisture loss the

denaturation temperature of collagen can be determined. The denaturation temperature of

collagen is determined to be around 225°C and it can be seen in all collagen tendon

analysis.

Figure 4.3.10 The collective DSC of 4 runs with isotherm from 0 minutes to 3 minutes.
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Figure 4.3.11 TGA showing the moisture lose on the collagen tendons.

The PLLA DSC analysis yielded the classic T m and Tg curves. The Tg of the PLLA

tested is around 55°C and the T m is around 180°C (Figure 4.3.12). The analysis for PLLA

and collagen mats yielded the features that are seen in the individual materials (Figure

4.3.13). The Tg and Tm peaks of PLLA have consistently appeared at the temperature

around 55°C and 180°C as seen in figure 4.3.13. Figure 4.3.13 is an overlay graph of 3

consecutive DSC analyses on PLLA and collagen electrospun mats. When comparing

figure 4.3.12 and figure 4.3.13 the peak that indicated collagen denaturation temperature

is not present in figure 4.3.12 but in figure 4.3.13 the denaturation peak is present. This is

an excellent indication that collagen also retained its original properties after the

electrospinning process.
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Sample: PLLA pure #3 	 File: C:...\Sherry\PLLA pure methylene #1.001
Size: 6.1000 mg 	 DSC 	 Operator: Sherry
Method: Heat/Cool/Heat 	 Run Date: 2004-11-11 15:05
Comment: PLLA pure polymer electrospun in methylene chloride 	 Instrument: DSC Q100 V8.2 Build 268

Figure 4.3.12 Second heat cycle of PLLA mat.

Figure 4.3.13 First heat cycle of DSC on the 5 wt % Collagen & PLLA
mat.
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Figure 4.3.14 Second heat cycle of DSC on the 5 wt % Collagen &
PLLA mat.

TGA are conducted on the composite mats with the results seen in figure 4.3.15.

The most weight loss in the mats is around 8%, which compared to the collagen TGA

weight loss of 15% seen in figure 4.3.11 is significantly less. Figure 4.3.12 is an overlay

of all TGA data on the composite mats in comparison to collagen tendons. The purpose

of this overlay is to show that the moisture that is once present in the tendons are not

present after the electrospinning process. The solvent evaporation is sufficient in carrying

the moisture off during electrospinning.



Figure 4.3.15 TGA of 5 wt % Collagen and PLLA mat.
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Figure 4.3.16 Combination of 5 wt% and 8 wt % TGA with the collagen
tendon TGA comparing weight lose.



51

An interesting aspect has appeared on the DSC analysis of the composite mats.

The sharp peak that appeared at the T g of PLLA suggested that something is occurring at

that peak. Normal PLLA DSC curve will have the Tg where there is change in heat

capacity such as in figure 4.3.12. The sharp endotherm peak appears consistently in the

DSC of electrospun composite mat analysis. Typically this type of behavior is indicative

of enthalpic recovery, which an indicator of densification of the non-crystalline phase.

The densification usually thakes place over long periods of time. The easiest way to find

out if electrospinning is the cause of the enthalpic recovery on PLLA is to perform DSC

aging analysis on pure PLLA that has not been electrospun. The PLLA pure polymer and

the PLLA electrospun mat without collagen were analyzed. The results indicated that

there is no visible difference or the appearance of the enthalpic peak in the curves.

Since there are no visible differences in the curves the other conclusion is tested.

The method employed to determine the origin of the enthalpic recovery peak are carried

out by having the pure PLLA polymer and the electrospun PLLA mat isotherm at 40°C

for 3 hours. By having the materials isotherm for extended periods gives the polymer

chance to organize and orient itself to try to force the enthalpic peak to appear. However,

the enthalpic peak did not appear (Figure 4.3.17 & 4.3.18).
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Sample: PLLA pure iso3hr 	 File: C:...\DSC\Sherry\PLLA pure iso3hr.001
Size: 5.7000 mg 	 DSC 	 Operator: Sherry
Method: Heat/Cool/Heat 	 Run Date: 2004-12-08 11:08
Comment: PLLA pure polymer unelectrospun, in isotherm 3 hours 	 Instrument: DSC Q100 V8.2 Build 268

Figure 4.3.17 First heat cycle of PLLA pure polymer after isotherm at
40°C for 3 hours.

Sample: PLLA pure spun iso3hr 	 File: C:... \DSC\Sherry\PLLA pure iso3hr.002
Size: 5.1000 mg 	 DSC 	 Operator: Sherry
Method: Heat/Cool/Heat 	 Run Date: 2004-12-09 11:14
Comment: PLLA pure spun iso3hr 	 Instrument: DSC Q100 V8.2 Build 268

n 	

Figure 4.3.18 First heat cycle of PLLA electrospun mat after isotherm at
40°C for 3 hours
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This indicats that PLLA did interact with collagen in a manner has driven molecular

recrystallization to occur at exceedingly accelerated rate. The time it takes for enthalpic

peak to appear in polymers usually takes long periods of time sometimes as long as

several months. The enthalpic peak for the collagen and PLLA electrospun fibers appear

immediately on spinning. Enthalpic recovery is not the consequence solely of

electrospinning because figure 4.3.17 and figure 4.3.18 both did not display any enthalpic

recovery in the polymer. The comparison of the figures points to collagen as the key

element in densification of the PLLA polymer.



CHAPTER 5

DISCUSSION

The potential of combining a biopolymer and synthetic polymer in electrospinning is

mostly unexplored. Various other applications utilizing a biopolymer such as collagen

with a synthetic material has been available in the medical fields. Electrospinning as a

technique can be considered as one of the most economical and effective applications in

producing consistent micron and nano diameter fibers. The Virginia Commonwealth

University research group has set precedence in electrospinning collagen where they

showed the feasibility of producing fibers with 100nm diameter [21]. With this in mind

the idea of adding modifications to the collagen electrospun fibers to give it more unique

characteristics is the next step in improving the versatility and compatibility to

biomaterial processes.

Collagen is the type of polymer that requires strict processing techniques to

enhance its workability in different applications. In this current study collagen as a

suspension where the main component is water proves to be difficult to work with. The

high water content of the collagen and PEO electrospinning and the further usage of

water as the solvent in the electrospinning process, the fibers that can be produced are

scarce and difficult to handle. Although, it is possible to electrospin collagen with PEO in

high water content solutions, the group at the Emory University and the results presented

here show that the hydrophilic nature of PEO will not be the best choice in certain in-vivo

applications [22]. PEO as a polymer is readily dissolved in water with elevated

temperature. For in-vivo applications that require the polymer to remain for extended
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periods, PEO and collagen composites will not be the ideal choice. However, for

applications where quick dissolution of the polymer material is required PEO would be

the material of choice. In the scaffolding applications PEO would be a poor choice, which

is also due to the hydrophilic nature of PEO.

Because of its hydrophobic nature PLLA is chosen as the next material to test.

PLLA has already shown that it is a viable biodegradable polymer that has seen many

successes in the biomaterial industry. Electrospinning applications utilizing PLLA also

have been extensively studied and tested both in-vitro and in-vivo. The bioerosion rates

have also been closely studied. It would serve as more ideal scaffolding material where it

will retain the fibrous structure in aqueous environments for extended periods of time for

the cells to adhere and aggregate. Combining collagen with PLLA in this instance would

require the use of solvent that are capable of rendering the two solid materials into liquid

form and at the same time will not destroy the materials. The solvent selections for PLLA

is not a difficult choice based on the various studies that have been done with good

successes. Collagen and solvent selection is more difficult to determine. The key issue is

that collagen must be dissolved into liquid form and still retain its characteristics and

properties. The initial choice of dissolving each material that is going to be electrospun in

their individual solvents the purpose is to retain their original properties. The volatility of

lactic acid is low in comparison to chloroform but in this study the assumption is made

that chloroform will be able to enhance the evaporation rate of lactic acid during the

electrospinning process. However, this assumption is incorrect where chloroform that is

used is insufficient in carrying the lactic acid and evaporating it during the

electrospinning process. Although, fibers can be produced through this method, the
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results are poor. Successful runs of electrospinning through this method can only be

achieved with small amounts of collagen in lactic acid. This type of biphasic solvent

electrospinning might be of great application if the problem of the solvent miscibility can

be solved. At the current time this approach to electrospinning collagen and PLLA is

suspended.

Trifluoroacetic acid as a highly volatile solvent is ideal for electrospinning

applications. It is first tested in spinning PLLA with much success in producing small

diameter fibers. Tendon collagen is then added to the mixture and is able to mix nicely in

with PLLA and be electrospun. The results that are obtained is that of fairly uniform

diameter fibers in non-woven mats that has retained both properties of the materials.

These properties are confirmed through various analysis using DSC and TGA and

observed under SEM. The most significant findings in these fibers is the possibility of

interactions of collagen and PLLA which normally would not have been possible due to

the immiscibility of the materials. The appearance of the enthalpic recovery peak in the

DSC has suggested that electrospinnng of PLLA with collagen has resulted in a

interaction that has facilitated densification of non-crystalline PLLA. Since this enthalpic

recovery does not appear when PLLA and TFA is electrospun, the enthalpic recovery is

either of the interaction between PLLA and collagen on the complex interaction of PLLA;

collagen and the electrospinning process itself. It can be speculated that the rapid

densification occurs because of an orientation in the PLLA phase. It is important to note

that the Tg and Tm of PLLA have consistently appeared as well as the denaturation of

collagen. Enthalpic recovery is a physical aging or structural recovery in amorphous and

semi-crystalline polymers. Usually this phenomenon occurs in polymers only after
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several months in room temperature. Through the combinations with collagen this can be

observed in less than two days. This signifies that collagen has interacted with PLLA

during the process and has affected the structural properties in a significant way in

relatively short periods of time. The possibility of interaction between two immiscible

material has brought new possibility in biopolymer and polymer blends. The significance

is in the fact that the physical and mechanical properties of PLLA through interactions

with collagen have been modified.

The discovery of this modification to PLLA through collagen interactions has set

precedence to future biopolymer and polymer blends. It is apparent that in the

combination that is tested in this study that the original characteristics of the materials are

not destroyed but enhanced. The possibilities of combining existing polymers with

biopolymers and inducing changes in properties will allow for possible new polymer

blending to occur.



CHAPTER 7

CONCLUSION

From the process of electrospinning collagen with PEO in D.I. water the formation of

films is the predominant result. Obtaining fiber structures during this process only occurs

on occasion. Fibers that are produced have large diameters with apparent phase

separation. The explanation for the gross phase separation occurring during this process

is directly related to the immiscibility of the polymers. The phase separated fibers served

as a basis for comparison for the subsequent studies.

The electrospinning of collagen and PLLA in lactic acid and chloroform is an

attempt in alleviating the immiscibility issue that occurred in the previous study. By

dissolving the materials in the solvent that each is most suited the electrospinning

solution can be more uniform in material distribution. The volatility of lactic acid is very

low compared to chloroform but it is believed that chloroform is able to carry lactic acid

and evaporate during electrospinning. This assumption is incorrect where chloroform is

unable to achieve the desired effect of carrying lactic acid and evaporate. The result

indicated that with small quantities of collagen in lactic acid in the electrospinning

solution fibers are produced but at higher concentrations thick fibers of PLLA are

produced but the fibers are coated with collagen in lactic acid. The phase separation is

very apparent in solution where two layers of solutions can be clearly seen.

From observing the shortcomings in the previous two studies solvent selection is

of utmost importance. By using trifluoroacetic acid the problems of solvent miscibility is

solved. By using only one volatile solvent in the process, solvent elimination is no longer
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a problem. Another advantage of using trifluoroacetic acid is that both collagen and

PLLA can be readily dissolved. The resulting fibers are small and relatively uniform in

diameter. Interesting findings revealed by DSC analysis on the electrospun mats has

pointed to possible influence of collagen on PLLA resulting in PLLA densification and

orientation in accelerated rate. This enthalpic recovery of PLLA is thought to be solely

under the influence of collagen and not of the electrospinning process. Since PLLA pure

polymer is electrospun in TFA and yet did not show the enthalpic recovery peak that are

seen in all collagen and PLLA mats. The significance of this finding has suggested

interactions between a biopolymer and a synthetic polymer to be possible.



CHAPTER 7

FUTURE WORK

Applications of the non-woven mats with the collagen and PLLA blends in the tissue

engineering field is the next step toward a more complete study of the feasibility of the

bicomponent electrospinning techniques. In addition a more detailed imaging analysis

must be carried out to determine the surface morphology of the fibers as well as porosity

determinations on the mats. The porosity of the mats is significant in enhancing cell

viability once seeded onto the mats. The amounts of pores will determine the possibility

of penetration of the cells through out the mats beneath the surface. Although the DSC

and TGA analysis has shown that the characteristics of the collagen and PLLA are

retained but further analysis into the enthalpic recovery phenomenon should be continued

to determine the magnitude of interaction of collagen and PLLA. Base on the possibility

and feasibility of creating biopolymer and polymer blends other such combinations

should be attempted for varieties of possibility of enhancements in properties in the

materials.
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