
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.



ABSTRACT

ENERGY EFFICIENT ORGANIZATION AND MODELING OF WIRELESS
SENSOR NETWORKS

by
Jin Zhu

With their focus on applications requiring tight coupling with the physical world, as

opposed to the personal communication focus of conventional wireless networks, wireless

sensor networks pose significantly different design, implementation and deployment

challenges. Wireless sensor networks can be used for environmental parameter monitoring,

boundary surveillance, target detection and classification, and the facilitation of the

decision making process. Multiple sensors provide better monitoring capabilities about

parameters that present both spatial and temporal variances, and can deliver valuable

inferences about the physical world to the end user.

In this dissertation, the problem of the energy efficient organization and modeling

of dynamic wireless sensor networks is investigated and analyzed. First, a connectivity

distribution model that characterizes the corresponding sensor connectivity distribution for

a multi-hop sensor networking system is introduced. Based on this model, the impact

of node connectivity on system reliability is analyzed, and several tradeoffs among various

sleeping strategies, node connectivity and power consumption, are evaluated. Motivated by

the commonality encountered in the mobile sensor wireless networks, their self-organizing

and random nature, and some concepts developed by the continuum theory, a model is

introduced that gives a more realistic description of the various processes and their effects

on a large-scale topology as the mobile wireless sensor network evolves. Furthermore, the

issue of developing an energy-efficient organization and operation of a randomly deployed

multi-hop sensor network, by extending the lifetime of the communication critical nodes

and as a result the overall network's operation, is considered and studied.



Based on the data-centric characteristic of wireless sensor networks, an efficient

Quality of Service (QoS)-constrained data aggregation and processing approach for

distributed wireless sensor networks is investigated and analyzed. One of the key features

of the proposed approach is that the task Qom requirements are taken into account to

determine when and where to perform the aggregation in a distributed fashion, based on

the availability of local only information. Data aggregation is performed on the fly at

intermediate sensor nodes, while at the same time the end-to-end latency constraints are

satisfied. An analytical model to represent the data aggregation and report delivery process

in sensor networks, with specific delivery quality requirements in terms of the achievable

end-to-end delay and the successful report delivery probability, is also presented. Based on

this model, some insights about the impact on the achievable system performance, of the

various designs parameters and the tradeoffs involved in the process of data aggregation

and the proposed strategy, are gained. Furthermore, a localized adaptive data collection

algorithm performed at the source nodes is developed that balances the design tradeoffs

of delay, measurement accuracy and buffer overflow, for given Qom requirements. The

performance of the proposed approach is analyzed and evaluated, through modeling and

simulation, under different data aggregation scenarios and traffic loads. The impact of

several design parameters and tradeoffs on various critical network and application related

performance metrics, such as energy efficiency, network lifetime, end-to-end latency, and

data loss are also evaluated and discussed.
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CHAPTER 1

INTRODUCTION

With the development of the information society, the requirements for detection and

monitoring of the physical world are becoming more and more complicated and diver-

sified. They trend from single variable to multiple variables, from one point to a plane, from

one sensor to a set of sensors, from simple to complex and cooperative. Networking the

sensors to empower them with the ability to coordinate on a larger sensing task will revolu-

tionize information gathering and processing in many situations. Networked microsensor

technology, seen as one of the most important technologies for the 21st century {1j,

may provide unprecedented potential in sensing, instrumenting and controlling our world

and environment. Networks of sensors can greatly improve environment monitoring for

many civil and military applications. Furthermore, many environments may be unsuitable

for humans and thus the use of sensors is the only solution; in some places, although

accessible, in general it is more effective to place small autonomous sensors than to use

humans for collection of data.

By integrating sensing, signal processing, and communications functions, a sensor

network provides a natural platform for hierarchical and efficient information processing. It

allows information to be processed on different levels of abstraction, ranging from detailed

microscopic examination of specific targets to a macroscopic view of the aggregate

behavior of targets.

1.1 Wireless Sensor Networks

A distributed sensor network is usually a self-organized system composed of large number

of sensor nodes, which are used to measure different parameters that may vary with time

and space, and send the corresponding data to a sink or base station for further processing.

1
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mmart sensors can be deployed around buildings, on ground, on bodies, in vehicles, under

water even in the air according to different applications. There are far-ranging potential

applications of sensor networks, including: (1) system and space monitoring [x]. (x) habitat

monitoring [3] [4]. (3) target detection and tracking [5] [6]. (4) biomedical applications [7]

[8] [9]

The progress of hardware technology in low-cost, low-power, small-sized processors,

transceivers and sensors has facilitated the development of wireless sensor networks.

In order to achieve cost-effectiveness and small sensor size, in general the individual

sensor nodes present several limitations, such as limited energy and memory resources,

small antenna, and limited processing capability. Several experimental sensor nodes

and networks have been developed, including Smart Dust mote developed by UC

Berkeley [ 10], WINS (Wireless Integrated Network Sensors) ONG (Next-Generation)

node by UCLA [11],  AMPS node (micro-Adaptive Multi-domain Power-aware Sensors)

developed by MIT [ 1x] and GNOMEm node by Rice University [ 13]. The cutting-edge

technologies have been used to lower the cost and power dissipation and minish the node

size. For example, the size of Smart Dust mote nodes is comparable with a coin and even

envisioned to be small enough to float in the air. Currently a GNOMES node with x-axes

of acceleration sensing costs around $50 without GPm and $80 with GPm component.

The cost of sensor nodes is expected to drop ( less than $x5 ) along with the advance of

semiconductor industry and MEMOS technology.

1.2 Sensor Network Architecture

With respect to the communication mechanism adopted, there are three basic architectures

of sensor networks, as shown in figure 1.1: direct connected, flat ad hoc or peer-to-peer

multi-hop, and cluster-based multi-hop. Because of the fact that the number of sensor nodes

is usually large and the transmit range of sensor nodes may be limited due to the battery

capacity limitations, in general it is energy-inefficient, and in many cases impossible, for
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each small sensor to communicate directly with the collector. Thus the direct connected

mode is not suitable for large-scale deployed sensor networks.

Multi-hop mode is an apt alternative mainly due to its energy-efficiency consider-

ations. In addition to solving the problems associated with the limited direct transmission

range of nodes, multi-hop short-range transmission usually consumes less power than the

power required by one large hop transmission for a given pair of source and destination,

since in general the average received signal power is inversely proportional to the n-th

power of the distance, (usually 2 < n < 4). In a flat ad hoc multi-hop network as shown

in figure 1.1(b), some sensor nodes have routing capabilities playing the role of relaying

packets besides sensing and sending out their own data. Although this mode is flexible

and energy efficient, scalability is still a problem. The nodes closer to the collection and

processing center will be primarily used to route data packets from other nodes to the

processing center. If the network size is large, these nodes will relay a large number of

data and their energy will be exhausted very fast, resulting finally in disconnection of the

network.

Cluster-based multi-hop sensor networks attempt to address the scalability issues

associated with the flat ad hoc multi-hop networks. In a cluster-head system, sensor nodes

form clusters and a cluster-head for each cluster is selected according to some negotiated

rules [14]. mensor nodes only transmit their data to their immediate local cluster-head.

In figure 1.1(c), only one level clustering is depicted, however, in general a hierarchical

clustering scheme may be used. Local data fusion and classification at cluster heads can be

used to reduce the amount of information that must be transmitted to the collection center,

thereby reducing the overall energy consumed for transmission. The main disadvantage

of this mode of operation is that the communication highly relies on the cluster head thus

placing a lot of burden on the higher-level cluster heads and the energy depletion of cluster

heads is faster than other nodes. These issues can be addressed through the rotation of the

roles of the various nodes.



Figure 1.1 Architecture of sensor networks.
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1.3 Design Challenges and Motivation

As mentioned before, the sensors are usually used to measure and monitor some parameters

that may vary with place and time. Therefore, a large number of sensors is required in order

to obtain samples of these parameters at different locations and times. As a result wireless

sensor networks are complex systems in which the system behavior involves a large number

of individual cooperating sensor nodes. A self-organized wireless sensor network provides

the ability to adapt to diverse environment and unforeseeable situations. While the shelf-

organisation feature is critical to achieve the wide applicability of sensor networks, it

also makes more difficult the modeling and prediction of the system behavior. Modeling,

designing and verifying the architecture and organization of a distributed wireless sensor

network with such complicated nature requires sophisticated system analysis methods and

tools.

With their focus on applications requiring tight coupling with the physical world, as

opposed to the personal communication focus of conventional wireless networks, wireless

sensor networks pose significantly different design, implementation and deployment

challenges. For example, the individual sensor nodes usually have several limitations

such as limited energy and memory resources, small antenna size, and weak processing

capabilities, due to cost-effective considerations and miniature size requirements. Energy

efficiency is closely related to several critical operational aspects of the sensor networks,

and therefore is required in all stages of the sensor network design. meveral critical

operational parameters and processes, such as the network connectivity and the lifetime

of the network, need to consider the issues of energy availability and efficiency. In many

applications of sensor networks, the data transmission is relative small compared to the

Internet or other types of networks, and therefore letting the sensors go to "sleep" mode

periodically can help extending the lifetime of a sensor, especially when the traffic is

low and the delay constraint is not rigid. However, at the same time, some time-crucial

applications such as those in the battlefield, may have very strict performance requirements
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and the sensor nodes are required to achieve specific Quality of mervice (Q0S) in data

collection and transmission, so that the measurement task can be fulfilled within the corre-

sponding latency and resource requirements. Therefore, the sensor nodes in a distributed

sensor network have to collaborate with each other, and as a result, effective information

gathering and dissemination strategies need to be deployed.

Although traditional wireless cellular networks are mature and the mobile ad hoc

networking technology has been developed, the corresponding architectures and protocols

still need to be tailored to the unique features of distributed wireless sensor networks.

The behavior and evolvement of a sensor network depends on many system parameters

that are tightly related to the corresponding organizations and architecture forms. These

parameters include: 1) total number of sensors which indicates the size of a system; 2)

density that is related to deployment pattern; 3) connectivity that describes the communi-

cation link arrangements and related reliability; 4) sensing coverage range and transmit

range (radius) of sensor nodes; 5) power consumption of each unit and energy avail-

ability; 6) movement pattern such as speed and direction. Before building and evaluating a

sensor network, the communication mechanism and corresponding media access protocols,

routing protocols adapting to the self-organized networks, data storage scheme, and data

fusion mode (data dissemination/aggregation approaches) have to be designed and the

corresponding parameters need to be determined.

1.4 Related Literature Review

Unlike the traditional cellular systems where each mobile needs to have a wireless link to

one base station, the situation in multi-hop wireless networks is usually more sophisticated

and complicated. It has been shown in [ 15] that to ensure network connectivity the expected

number of nearest neighbors of a transmitter must grow logarithmically with the area of the

network. Furthermore, several issues associated with the critical ranges of transmitters for

coverage and connectivity purposes are discussed in [16]. In ad hoc wireless networks,
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the nodes in the network are assumed to cooperate in a decentralized fashion, routing and

relaying packets from other nodes, and thus each node should transmit with enough power

to guarantee connectivity of the overall network. In [ 17] the authors determined the critical

power at which a node in the network needs to transmit in order to ensure that the network

is asymptotically connected with probability one, as the number of nodes in the network

goes to infinity. For an one-dimensional network in [ 18] the authors obtained the exact

formula for the probability that the network is connected under the assumption of uniform

distribution of nodes in [0, π], and extended this result to obtain the upper bound of the

connected probability for a two-dimensional network. The connectivity of wireless multi-

hop networks with uniformly randomly distributed nodes was investigated in [ 19], under

the assumptions of a free-space radio link model and bi-directional links. For the scenario

without border effects, the required transmit ranges to achieve a connected or reconnected

network with high probability (the probability must be close to 1) for homogeneous case

were obtained as a function of both the number of nodes and the system area.

As mentioned before, the collaboration between different sensor nodes is mostly

realized through multi-hop network architectures due to their energy-efficiency and scala-

bility features [14, x0, x1, xx]. Since in sensor networks the data in the neighboring

nodes are considered highly correlated due to the fact that the observed objects in the

physical world are correlated, localized data processing and aggregation on the fly may

dramatically decrease the amount of information to be transmitted. Therefore, hierarchical

infrastructures have been studied to reduce the network traffic, save the energy of sensor

nodes, distribute the computation load, and improve the measurement quality in multi-

hop sensor networking environments. In these cases, intermediate sensor nodes may be

selected to perform data aggregation from the measurement results delivered from different

neighboring sensors.

meveral recent efforts have noted the importance of data aggregation in wireless

sensor networks, and have studied and discussed some of the benefits that can be achieved,
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by exploiting the features of data correlation [x3] and data aggregation [x4]. Data aggre-

gation comparison studies have demonstrated the effect of network parameters and the

utility of aggregation mechanisms in a wide variety of applications [x5, x6]. In [x7],

an information retrieval protocol, UMPTEEN, for cluster-based sensor networks that can

implement data aggregation, has been presented, while the impact of data aggregation

on sensor networks is discussed in [x6]. In [x8] an mQL-like declarative language for

expressing aggregation queries over streaming sensor data is proposed, and it is demon-

strated that the intelligent distribution and execution of these aggregation queries in

the sensor network can result in significant reductions in communication compared to

centralized approaches. Recent work on data aggregation [x9], proposed an application

independent data aggregation (HUMIDUM) protocol that resides between the media access

control layer and network layer. The HUMIDUM module combines network units into a single

aggregate outgoing payload to reduce the overhead incurred during channel contention

and acknowledgement. Furthermore, since in sensor networks the data in the neighboring

nodes are considered highly correlated [23, 30, 31 ], localized data processing [32, 33, 34]

and data aggregation [x4,35,36,x6] might dramatically decrease the amount of information

to be transmitted.

However, although several research works in the literature have discussed the

problems of developing efficient routing and data aggregation processes mainly for energy

savings or minimization in sensor networks (e.g. [37, 38, 6, x4, 39, 40]), several issues

associated with the data aggregation process with the specific objective of meeting the task

requirements (i.e. QoS-constrained data aggregation) are not yet well addressed.

1.5 Dissertation Contributions and Outline

This dissertation emphasizes on the energy efficient organization and modeling of dynamic

wireless sensor networks. mpecifically, in Chapter x, a connectivity distribution model

that characterizes the corresponding sensor connectivity distribution for a multi-hop sensor
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networking system is presented. Based on this model, some insights are gained about

the tradeoffs among the node connectivity, power consumption and data rate [xx]. The

impact of node connectivity on system reliability, as well as several tradeoffs among various

sleeping strategies, power consumption and transmission scenarios, for given connectivity

requirements, are also analyzed and evaluated.

Furthermore, since large-scale dynamic sensor networks can be described as time-

varying composition of dynamically changing components and entities, additional features

such as uncertainty, interaction and collaborations should be considered in the modeling

process. Towards that direction, an enhanced model is also developed that gives a more

realistic description of the various processes and their effects as the mobile wireless sensor

based network evolves [41,4x], and facilitates the understanding of the effect of the various

events on the large-scale topology of a wireless sensor network. The proposed model

stems from the commonality encountered in the mobile sensor wireless networks, their self

organizing and random nature, and some concepts developed by the continuum theory [43].

In Chapter 3, the issue of developing an energy-efficient organization and operation

of a randomly deployed multi-hop sensor network, by extending the lifetime of the commu-

nication critical nodes and as a result the overall network's operation, is considered and

analyzed [44].

Motivated by the data-centric characteristic of wireless sensor networks and by

the fact that some time-crucial applications may have specific performance requirements,

Chapter 4 introduces and investigates an energy-efficient Qom-constrained data aggregation

and processing approach for wireless sensor networks [45, 46]. UMmong the key features

of the proposed approach is that the network does not have to be formed into clusters

to perform the data aggregation, while the task Q0S requirements are taken into account

to determine when and where to perform the aggregation in a distributed fashion, based

on the availability of local only information. Data aggregation is performed on the fly

at intermediate sensor nodes, while at the same time the end-to-end latency constraints
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are satisfied. much an approach maintains the flexibility of the network architecture and

simplicity in the protocol design, which are essential for the applicability of wireless

sensor networks that need to adapt to diverse, unforeseeable and sometimes hostile

environments and situations. Furthermore, a localized adaptive data collection algorithm

performed at the source nodes is developed that balances the design tradeoffs of delay,

measurement accuracy and buffer overflow, for given Qom requirements. The performance

of the proposed approach is analyzed and evaluated, through modeling and simulation,

under different data aggregation scenarios and traffic loads. The impact of several design

parameters and tradeoffs on various critical network and application related performance

metrics, such as energy efficiency, network lifetime, end-to-end latency, and data loss are

also evaluated and discussed.

Finally Chapter 5 concludes the dissertation by summarizing the main contributions

and conclusions of this work, and presenting some current and future open research issues.



CHAPTER 2

MODELING OF WIRELESS SENSOR NETWORKS

The definition and development of models in order to analyze and evaluate sensor networks

can help not only to systematically study the network behavior and predict the evolvement

of the system, but also direct the deployment and implementation of these networks. This

chapter addresses the modeling of sensor networks from the aspect of connectivity.

2.1 Motivation

Connectivity is a fundamental property of wireless networks. In these networks, connec-

tivity relies on the actual physical conditions such as transmit power range, network

density and node positions, and provides a good indication of the network status. The

in-depth study and modeling of the connectivity distribution facilitates the development

of guidelines regarding several processes involved in the design and operation of sensor

networks, such as the deployment pattern and density of sensors, communication strategies

among individual sensors, distributed information processing algorithms and finally

routing and/or information dissemination strategies. For example an algorithm based on

multidimensional scaling which uses connectivity information to derive the locations of

the nodes in the network, has been proposed in [47].

In this chapter, first a model that characterizes the connectivity distribution in a

multi-hop sensor networking system is provided, and based on this model, the energy

consumption of a sensor network under periodical sleeping strategies is investigated.

Furthermore, based on some concepts developed by the continuum theory [43], a connec-

tivity model is developed that gives a more realistic description of the various processes

and their effects as the mobile sensor based network evolves. It provides an analytical

11
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Figure 2.1 Multi-hop vs. direct communications.

approach that describes the dynamics of the network, and facilitates the understanding of

the effect of the various events on the large-scale topology of a wireless sensor network.

2.2 Connectivity Distribution of Multi-hop Sensor Networks

mince in general the average received signal power is inversely proportional to the nth

power of the distance (usually 2 < n < 4), for a given pair of source and destination

the multi-hop short-range transmission consumes less power than the power required by

one large hop transmission. However, at the same time due to connectivity and reliability

requirements the transmit range can not be reduced arbitrarily. For instance, in Figure. x.1,

if the transmit range (by reducing the corresponding power) of the source node A from r to

r' reduces, the number of neighbors of node Α reduces as well. The connectivity problem

of the whole network is a key part for the network reliability. Here the connectivity of a

node is defined as the number of nodes within its transmit range (e.g. neighbors - nodes

that can be reached directly in one hop). In this section the connectivity distribution of a

node is modeled, and its relation and impact on network reliability, power consumption,

transmission data rate are investigated.
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2.2.1 System Model and Connectivity Distribution

In the following assume that there are Μ sensors randomly deployed in an area of c

units. Denote by D the density of the active sensors in the area, i.e.,

1, be the sensor set, where (xi , yi) denotes the coordinates

of sensor ci By denoting with ribthe radius of coverage of any node cif, the transmit

coverage area for each node is Hai = ter?. UMlso assume that all transmissions have fixed

data rate, all nodes have the same transmit power (that can be adjusted), and that the

required transmit power Ρ Τ  is inversely proportional to the transmit distance between them

(i.e. the system is power-limited). Thus all nodes have the same transmit range radius:

. UM small area a within c (where a is a circle plane and a = ιrr2 )

is randomly selected. Since the sensors are assumed to be randomly deployed, the proba-

bility that any node is within the coverage range a

Let N be the total number of sensors which are within the range a, then given c, Μ

and a, the probability that there are k sensors within the range a is

In a large scale deployment it can be assumed that the transmit range of each sensor

is much smaller than the whole coverage area c, i.e. p = a/c —i 0, and the total number

of sensors is very large, i.e. Μ —i ooh. Since AM = πr 2 D is a constant for given r and

D, the distribution in (x.1) approaches the Poisson distribution with parameter Θ = πr2 D.

Therefore, for a given power level, the distribution of the number of neighbors of a node

and the probability that the number of neighbors

per node is no less than some specific value k, which is determined by the reliability and

connectivity requirements, is given by



Figure 2.2 Probability density function of the node connectivity.

In the following, some numerical results regarding the node connectivity distribution

of a sensor network based on the aforementioned model are presented. For demonstration

purposes, a coefficient μ, defined as μ = τ'/D, is introduced, and a set of curves for

different values of μ are shown(since Θ = πμ2 , the corresponding distribution depends

only on μ). The validity of the proposed analytical model was confirmed via a series

of simulation experiments for different scenarios. Specifically in Figures x.x and x.3 the

corresponding comparative numerical results for both the analytical study and simulation

study are depicted for a system with 2000 sensors randomly deployed in an area of 1000

units, for five different values of μ.

2.2.2 Power Consideration

Utilizing the above model and corresponding figures, the appropriate transmit radius r and

the required sensor power level can be determined, according to the required connectivity

specifications. For instance, if more than 90% of nodes to have connectivity of at least 2 is

required, then μ > 1.2 can be selected. Once the appropriate transmit range r is determined,



Figure 2.3 Complementary cumulative distribution function of the node connectivity.

then the minimum transmit power level can be adjusted as follows. The average received

signal power at distance d can be written as [48]

where n is the path loss exponent; do is the reference distance that is selected according the

propagation environment and the reference path loss can be calculated using the free space

nth lnςς formula
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Let the minimum required received signal power (receiver sensitivity for a given

system performance (e.g. bit error rate)) be Sreq, then the minimum required transmit

power for the given connectivity requirement is

Conversely, given the transmit power and the minimum required receiver power level,

the corresponding μ and r can be determined, and furthermore, the connectivity distribution

is obtained. Increasing μ, the average connectivity Θ increases as well and the system

reliability improves, however, the required transmit power also increases; on the other hand,

if μ decreases, the required transmit power decreases while at the same time Θ decreases

and thus the system reliability degrades. Relation (x.6) provides a simple way to quantify

this tradeoff between the energy conservation and the system reliability.

2.2.3 Variable Data Rate

In the analysis provided above the problem how to minimize the transmit power via

minimizing the transmit range under a specific connectivity requirement is addressed, for a

fixed data rate system. However, in the case of flexible data rate transmissions, the data rate

can be introduced in the proposed method as another adjustable parameter for the analysis

of power and reliability tradeoff. Denote the signal energy per bit by Ebb, the bit-rate by R,

the noise power spectral density A0 and the available bandwidth W, according to channel

capacity formula [49], the relationship between them is given by

UMccordingly power efficient modulation schemes can be selected, such as UWB

(Ultra Wide Band) communications where small Eb/No suffices to meet the quality of

service requirements. UMssuming that the required signal energy per bit in order to provide



required received signal power is S Teq = Ε R, i.e. STeq decreases as the data rate R

decreases. Then relation (x.6) that determines the minimum required transmit power for

the given connectivity requirement can be modified as follows

In this case the transmit power 1T can still be reduced via reducing the corresponding

transmit data rate while the transmit radius r remains unchanged, and therefore, the battery

lifetime can be extended while maintaining the connectivity requirement. Similarly the

flexible data rate allows the system to easily adjust itself to the various characteristics and

specifications. For instance, if the maximum possible transmit power is limited by the

system design, its data rate can be reduced in order with the use of the same power to

enlarge the corresponding transmit range and increase system reliability and/or minimize

the probability of node isolation.

2.2.4 Overall System Connectivity and Reliability

In wireless sensor networks, the communication links between nodes are more likely to fail

(than wired links) and as a result the system reliability is an important issue. Furthermore,

sensors may be deployed in some unfriendly environments and as a natural result the

nodes are more prone to failure. UMs mentioned before in distributed self-organizing sensor

networks [50] [51], sensors usually communicate with each other in a multi-hop ad hoc

mode, without the support of centralized base stations. In the previous subsections the

node connectivity distribution and its relationship with the transmit power were analyzed

and discussed. In this section the relation of the connectivity of the entire network with the

node connectivity distribution is investigated. In the following it is assumed that each pair

of nodes has the same probability of communicating with each other, and each node can be

either source or destination or a relay point. Figure x.4 presents the statistical results of the



Figure 2.4 End-to-end connections versus node connectivity.

behavior of the end-to-end attempted connections as a function of the node connectivity.

mpecifically in Figure 2.4 the horizontal axis (μ) reflects the node connectivity

condition (the average connectivity number of a node is Θ = πK2), while the vertical

axis presents the statistical average of the probabilities that the end-to-end connections

are successful, which reflects the reliability and accuracy of the entire system. If this

probability is equal to 1 then the system is fully connected, i.e. there exist at least one

path between each pair of nodes. From Figure x.4, it can be seen that the end-to-end

connection probability increases as μ increases; especially when μ is in the range [1, 1.5],

the corresponding increase is very rapid.

2.3 Periodic Sleeping Strategies

UMs mentioned earlier in sensor networks power/energy conservation is a very important

design issue and consideration [5x] [53] [54] [55]. In most applications of sensor networks,

the data transmission is relative small compared to the Internet or other types of networks,

and therefore letting the sensors go to "sleep" mode periodically can help extending



Figure 2.5 Periodical sleeping strategy for sensor nodes.

the lifetime of a sensor, especially when the traffic is low and delay constraint is not

rigid. Based on the model and results developed in section x.x.1, in the following the

power/energy consumption problem is studied under both the "sleeping" and "sleepless"

scenarios fora given connectivity requirement.

2.3.1 Assumptions and Functioning

In sleepless strategy the nodes only have two energy states: transmission or reception.

When there is some data to be transmitted or relayed, the node will be at the transmission

state. Otherwise the node will be at the reception state (idle listening or receiving data).

It is assumed the idle listening consumes the same power required for receiving data, base

on the fact that in some cases the energy consumption in idle listening mode is comparable

with that in receiving data. For example, Stemm and Katz [56] measure that the energy

consumption ratios in (idle: receive: send) modes are (1 : 1.05 : 1.4) respectively. In the

sleeping strategy it is assumed that the sensor nodes will go to sleep periodically (Figure

x.5) with probability p5  (denote by ρ„ = 1 — ps  the probability of a sensor being active) for

every time interval T, and the power consumption during sleeping mode is negligible. In

order to keep the same connectivity, the transmit power of each node has to be increased so

that the corresponding transmission range can be increased as well.

In the following for simplicity only the power consumed during transmission and

reception are considered and the processing power is assumed to be negligible. Let the
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average transmission time ratio be Rtx (i.e. time during transmission over total system

runtime) and reception time ratio be R rx(time during reception over total system runtime),

If the total number of nodes in the sensor network is Μ and the whole coverage of

the network is c, then the density of the sensor network in sleepless case is D = ΜΙΑ.

For the sleeping strategies since each node goes to sleep with probability B8 , the average

number of active nodes is Μα = Μ (1 — Ps), and the average density of the active sensor

nodes is DB = D(1 — Bs ).

It is assumed that a specific connectivity requirement is needed to satisfied in order

to avoid nodes isolation and due to reliability consideration. Following the notation

introduced in section x.x.1, if let the transmission range and transmit power for the

sleepless case denoted by r and Ντ respectively, and the transmit range and transmit power

for the sleeping strategy by r' and 1%, then the parameter of connectivity distribution for

the sleepless case is Θ = πr2 D, while the corresponding parameter for the sleeping case is

Based on these results, observations and assumptions the average consumed power

can easily be obtained for the two different strategies (sleepless and sleeping) as follows.
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2.3.2 Average Consumed Power Analysis and Numerical Results

1. Average consumed power for the sleepless strategy

UMs mentioned before in sleepless strategy the nodes only have two states: trans-

mission or receiving. When there is some data to be transmitted or relayed, the node

will be at the transmission state. Otherwise the node will be at the receiving state

(listening or receiving). In this case Rtx = 1— Rtx , and the average consumed power

can be written as

2. Average consumed power for the sleeping strategy

In this case there will be three states: transmission, reception and sleep. Denote

the corresponding consumed power in each stage by: Ν , Ρ , and Rsleep, respec-

tively. In the following, without loss of generality, it is assumed that the power

consumption during sleeping is negligible. Therefore, based on the previous relations

spending time ratios of a node being in transmission, reception and sleep states are

power can be expressed as

If the whole lifetime/runtime of the network is much greater than T, then Asleep is

approximately equal to ρ8 , and
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Figure 2.6 UMverage consumed power as a function of α for various Ρα (Rtx = 0.01, 0.2).

Figure 2.7 Normalized average consumed power as a function Of Ρα (Rtx = 0.1, n = 3, 4).
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Figure x.6 presents the normalized average consumed power (the powers are

normalized by Atx and n = 3) as a function of the power ratio parameter α, for the

sleepless strategy and various versions of sleeping strategies (the different versions refer to

the sleeping/activity probability), for two different cases regarding the transmission time

ratio Rtx . It can seen that for ποω transmission ratio (i.e. when traffic is ποω) there is almost

always some benefit from the periodical sleep strategy. For instance, when Atx = 0.01,

and A , is greater than 0.04Atx , the average powers with sleep strategies are significantly

lower than the ones for the sleepless case. However, if Rtx  is relatively large, the results

indicate that the power conservation in the sleeping strategies can be obtained only under

limited conditions. It can be seen that when Rtx  is 0.2, the benefit may be gained only for

values greater than 0.6. However, for current technologies, the power consumed during

reception can be less than half of the power consumed during transmission (e.g. [57]).

Figure x.7 presents the normalized average power versus Ρα , for a given power ratio α.

It can be seen that the average power consumed decreases as α decreases, and that the

optimal Ρα corresponding to minimum average power increases as α decreases for the same

values of the parameters of R tx and n. The optimal value of the design parameter Ρα and

the corresponding minimum average consumed power is shown in Table x.1 for different

values of parameter α.

From these results it can be observed that sleeping strategy is in general beneficial

when traffic is low, while if the traffic is high, it is beneficial only when α is large. The
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reason is that when the traffic is low, the node is in reception state for most of time and

therefore the conserved power due to the sleeping strategies is much larger than the increase

in the transmission power due to the need for increased transmission range (and power)

to maintain the pre-specified connectivity requirements. When traffic is high, since the

increased transmit power is proportional to R tx , the increased power to keep the same

connectivity during transmission due to the density decrease of active nodes is greater than

the power conservation due to the use of the sleeping strategy.

2.4 Continuum Theory-based Connectivity Modeling

In this section, in order to provide a more realistic description of the various processes

and their effects as the mobile sensor based network evolves, a more complicated model

is introduced [41]. The proposed model stems from the commonality encountered in

the mobile sensor wireless networks, their self organizing and random nature, and some

concepts developed by the continuum theory [43].

The objective of this modeling approach is to create and investigate an extended

model of wireless sensor evolution that gives a more realistic description of the local

processes, incorporating the addition of new sensors, new links, rewiring of links, etc. In

a wireless mobile sensor network such events are tightly coupled with the actual physical

events such as node movement, network density, power coverage, energy availability etc.

In this section a model with fixed number of nodes is proposed and evaluated under three

different scenarios that present several tradeoffs between accuracy and complexity. Specif-

ically the three scenarios are: a) Scenario 1: New links preferentially point to popular

nodes, while the more links the node is with, the higher the probability that the node remove

a link; b) Scenario x: New links preferentially are deployed evenly, while the more links

the node is with, the higher the probability that the node remove a link; c) mcenario 3: The

probability of removing links is relative to the connectivity conditions of the system.
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2.4.1 Basic Model

In the following it is assumed that the number N of sensors is constant, that is there are

neither new nodes joining the system nor existing nodes leaving the system. It is also

assumed that the links are bidirectional. In general one of the following operations is

performed at each time-step.

when a node begins to contact other nodes and build new links, or when a node moves

within the coverage of another node and would like establish a new link. Randomly

select a node as the starting point of the new link; the end point is selected with

Q 1 (Oki), where Qv  (kid) denotes the probability that a node i currently associated with

kidlinks is selected. This process is repeatedm1times.

when a node find that one or more new links are better than the existing ones for

routing or data gathering. For this case, randomly select one node i, and one link

lip that is between node i and node j, then rewire the link to another node ii, where

times.

happen when a node finds out that it has too many links or its energy is being depleted

faster than its schedule. Select one node i with probability Q3(k), and randomly

select one of its links to be released. This process is repeated m3 times.

on ki , i.e. the number of links of node i at a given time. Thus, the probability that a

node i changes its connectivity k id depends only on k id and the characteristic quantities of
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the whole network, e.g. parameters p, q, r, N, m l , m2, m3. To analytically estimate

the topology changes and the dynamics of the network, it is also assumed that kidchanges

rate at which kidchanges. Therefore, the processes (p 1)-(p3) described above contribute to

kid , and process (p4) makes no contribution to kid. UMpplying the continuum theory [43] [58],

the rates at which kidchanges, according to processes (p 1)-(p3), are as follows:

The first item is due to the random selection of start point of a link, while the second

item corresponds to the end point selection which based on probability Q 1 (ki).

(rx) Rewiring of m2 links with probability q

The first item corresponds to the decreasing of the number of links of the node where

the link was removed from, and the second item corresponds to the increasing connectivity

of the node that the link is reconnected to.

The first item corresponds to the case that the node itself select to remove one of its links,

while the second item corresponds to the decreasing connectivity because other nodes

connected with this node select to remove their link with this node.
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Since at each time step, all these three processes may have contribution, the change

of the connectivity k id, of a node i is given by the following equation (x.13)

where Q1(k), Q2(ki) and Q3(k) denote the probability that a link or a node is selected

in process (p1), (px) and (p3), respectively. The actual values of them depend on the

sensor network behavior and organization. In the following the representation of these

probabilities for three different scenarios.

2.4.2 Preference on Popular Nodes

Scenario 1: New links preferentially point to popular nodes, while the more links the node

is associated with, the higher the probability that the node removes a link

For this scenario, the probabilities Q1(k) and Q3(ki) can be expressed as

Equation (x.14) reflects that the more links the node has, the higher the probability that

other nodes selected to point at it. This scenario reflects cases where nodes usually prefer to

join a subnetwork with more nodes. Usually nodes that belong to relative large networks

have more links than other relatively isolated nodes. Equation (2.15) reflects the obser-

vation that the nodes with higher connectivity most likely select to decrease their connec-

tivity, in order to reduce the associated overhead and power consumption. UMs a result it is

likely that they may remove one or more of their links. The combination of these behaviors

and observations balances the number of links and the power consumption between the

various nodes.



Substituting equation (x.15) into the expression of Αi, then

28



Figure 2.8 UMverage connectivity evolvement as a function of t for scenario 1.

Constant C can be decided based on the initial condition k i (tο ) = ni . Since it starts with

an isolated system, the initial condition assumed here is kid (1) = 0.

Figure (x.8)—(2.10) present some simulation results regarding the sensor network

connectivity for different parameters p, q and r. It can be seen that the results agree with

the analytical results obtained above. Specifically from Figure 2.8, it can be seen that

the connectivity approximately increases linearly with t, while the slope is proportional to

(pml — rm3 ) for the same N. In Figure x.9, the connectivity is resealed by (alit) and as

expected based on the analysis it approaches to 1. The connectivity distribution at different

time instances is shown in Figure x.10. From this Figure it is observed that the mean value

of the connectivity distribution approaches to (tail  ), when t is very large. For example,

mean value is around tail = 60.



Figure 2.10 Probability density function of the connectivity for scenario 1.
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2.4.3 Even Deployment

Scenario 2: New links are preferentially deployed evenly, while the more links the node is

associated with, the higher the probability that the node may remove a link.

In this scenario, Q3(ki ) is the same as in scenario 1 while Q1(ki) and Q2(ki) are as

From this equation it can be observed that the probability that a node is selected to

add a new link is inversely proportional to (kid + 1), which means that the less links the node

has, the higher is the probability that the node adds new links. The reasoning behind such

a consideration is that assuming that each node has the same energy and capabilities, if the

goal is to maximize the minimum of the life of all node, it would be more appropriate to

assign the tasks and organize the network as evenly as possible.

In this case equation (x.13) can be rewritten as



Furthermore, the kid (t) can be obtained from this differential equation and the corre-

sponding initial conditions. For this scenario, since the links are assigned more evenly, it is

expected that all the nodes will approach to the same average number of links. Figure x.11

shows the evolution of the connectivity distribution. It can be seen that the distributions

has mean value (t/aj  ), but their variances are much smaller than the corresponding ones

in scenario 1. For example, in Figure 2.11, for t = 100000 and mean value 60, the kid of 61

percent of nodes is between 55 to 65, while 99 percent of the nodes have 45 to 75 links.

2.4.4 Removing Links Based on System Connectivity

Scenario 3: The probability of removing links is relative to the connectivity conditions of

the overall system.

In this scenario, the same Q 1 (ki ) and Q2(ki) as in scenario 1 are used, while
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The total number of removed links during t-th unit time can be obtained as follows

The Dot) equals to rm3 when μ = 0, as in scenario 1 and x, however, here Dot) is not

fixed but depends on the number of existent links at the given time, i.e. Dot) increases as

Lot) increases. So the total number of links at t is



Figure 2.13 Probability density function of the connectivity for scenario 3.
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It is expected that the connectivity distribution will achieve a specific distribution

with the mean value equal to μΙ ov — 1) after the transient period. In Figure x.1x, the

average connectivity as a function of time is presented, when μ = 1, v = rm3 Ιpm l = 1.2.

In this case the balance point predicted by our analytical model is μΙ ov — 1) = 5. From

Figure x.1x, it is observed that based on the obtained simulation results k not) increases

rapidly at the beginning and arrives at a dynamic balance k = 5 around t = 100000, which

agree with our analytical model. In Figure 2.13, the corresponding connectivity distribution

is provided for μ = 5, v = 1.5. In this case the predicted balance point is k = 10. It can

be seen from this Figure that the distribution moves toward the balance point and after the

system achieves the balance point, the connectivity distribution with mean value 10 does

not change any further.



CHAPTER 3

LIFETIME AND ENERGY-EFFICIENT ORGANIZATION OF MULTI-HOP
SENSOR NETWORKS

UMs we discussed before, the sensor nodes are typically battery operated and have

constrained energy resources, therefore the energy-efficiency at various levels (i.e.

physical, network layer etc.) is a critical consideration in sensor networks. The goal

of various energy-efficiency methods is to extend the lifetime of the network as long as

possible.

Networked sensors provide better monitoring capabilities about parameters that

present both spatial and temporal variances, and can deliver valuable inferences about

the physical world to the end user [59]. In [60], upper bounds on the lifetime of sensor

networks were derived and discussed, while in [61] the lifetime of a cluster-based sensor

network that provides periodic data is studied. In this chapter the problem of developing an

energy efficient operation of a randomly deployed multi-hop sensor network, by extending

the lifetime of the communication critical nodes and as a result the overall network's

operation lifetime, is considered and analyzed.

3.1 Energy Model

Let us consider a sensor network consisting of N randomly deployed nodes that are used

in order to sense, collect and disseminate the data to a collector site for further processing

and analysis. Let us also denote by s ibthe i-th sensor and bySthe corresponding sensor

node set S = {Sj, ski  ... , AN}, where 1S = N. The analysis provided here assumes a

multi-hop sensor network where all sensors have the same capabilities and can perform the

same sensing and communication functions. The energy consumption related parameters

at various phases of the network operation are defined as follows:

36
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• E0 : the initial energy/total energy of a sensor node.

• Εb,sense : the energy needed to sense a bit. It depends on the power dissipation of the

sensors and corresponding AA/D circuits and in the following is assumed equal to Ν3 .

• Εb,Rχ : the energy needed to receive a bit. It accounts for the power dissipation of

the receiver electronics, and in the following is assumed to be equal to εrx .

• Εb,ΤΧ : the energy needed to transmit a bit. It can be divided into two parts: the

transmitter electronics energy dissipation Eb,txe that is similar to Eb,ρ, and the RF

transmit power Eb,RF that is related to the transmission distance d. If the path loss

exponent is n, then Eb,Τx = Eb,txe + Eb,RF = εtx + Ν,. f oΙ )n , where Ντ  f is the energy

consumed to transmit a bit to the reference distance do .

• E ,ρ,.ο ess : the energy consumed per bit for data processing, such as aggregation, and

special functions required to relay data (other than receiving and transmitting data).

Let us denote by η the data aggregation ratio. For the end nodes that do not relay data

from other nodes, η is equal to 1 since there is no aggregation. The energy per bit

for aggregation is a function of -y, that is: Eb,ρ,.oεess = Αρ + Να f oή), where f o7) = 0

when η = 1.

In this model multi-hop communication is adopted, and therefore a sensor node can

generate data or relay data from other nodes. Denote by Torg,i and λre,i (packets per unit

time) the corresponding rates of the traffic originally generated and the traffic relayed by

sib, and it is assumed that the packet length is L bits. It should be noted that multi-path

transmission which has been used in ad hoc networks to achieve energy efficient routing

and load balance, is not appropriate for the scenarios under consideration here. The main

reason is that in sensor networks the data collected by some neighboring nodes may exhibit

certain degree of correlation. Furthermore, in order to achieve efficient data fusion and

dissemination techniques, preliminary data processing may take place at some intermediate
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nodes. Based on these assumptions and definitions, the power dissipation of node s i can be

expressed as:

3.2 Lifetime Definition

Depending on the sensor network topology and the corresponding applications, several

definitions of the network lifetime have been reported in the literature. mome of them

define the network lifetime as the time interval from the point that the sensor network

starts its operation until the point that the sensing coverage falls below than a pre-specifled

threshold, or until the point that the number of active nodes is less than a pre-specifled

threshold. It should be noted here that the main objective of energy efficient organizations

and power conservation policies in large-scale sensor networks, is to extend the network

lifetime as long as possible. Therefore in this chapter the network lifetime is defined as the

time interval from the point that the sensor network starts its operation until the point that

loss of communication to the collector site by all sensor nodes occurs.

3.3 Node Lifetime

Before proceeding with the calculation and estimation of the sensor network lifetime, the

lifetime of individual sensor nodes is studied first. mince the expected lifetime of a sensor

node depends on the traffic model, in the following two scenarios are considered: (1)

periodical traffic. This scenario may occur for instance when the sensor nodes measure

periodically various environment parameters (such as temperature, pressure, etc.) and sent
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Figure 3.1 Cumulative distribution function of the node lifetime.

the data back to a central site for further analysis. In this case it is assumed that there is

a steady flow of data from sensors to the collector, and the lifetime ti of sensor node Si is

t i = Eο/Pi . (x) In the second scenario the packet origination process is assumed to form

a Poisson process. Furthermore, it is assumed that the packet arrivals at a relay node from

other nodes still follow Poisson processes, i.e. the traffic originally generated by sensor

node i and the relay traffic at node i are Poisson processes of rate ^oTi and λτe,i , respec-

tively. Then it can be shown that the lifetime of sensor node i is described by Gamma

distribution as follows:



40

traffic is 10 packets/hour; εtx and εtx are 50nJ/bit; Αρ and As are 20nJ/bit; packet length is

statistical results of x00 simulations are indicated by the histogram.

3.4 Critical Nodes and Energy-efficient Organization

In most of the cases the operation of the sensor network is completely disrupted if and

only if all of the nodes that can directly communicate with the collector site (e.g. one-hop

communication from the collector site) "expire", and as a result the lifetime of these nodes

is more critical to the network lifetime.

Let G be the set of sensors that can communicate directly with the collector and that

all traffic has to be transmitted to the data process center through one of the members of

and the collector, and r is the maximum transmission range of a node. It is easy to conclude

that the lifetime of set G determines the lifetime of the network. Furthermore, it should be

noted that the lifetime of set G depends not only on the traffic generated by these nodes,

but on the traffic generated by other nodes outside G, since they are used as relay nodes

for the latter traffic as well. In a large-scale sensor network with hundreds or thousands of

nodes, the small low cost sensor nodes, due to hardware and cost constraints, have limited

transmission range which is in general considerably less than the diameter of the whole

network. Therefore in general it can be expected and assumed that G is much smaller

than the total number of nodes A.

Since the lifetime of set G determined the lifetime of the whole network, the objective

is to minimize the energy consumption at the critical nodes i E G. The basic idea here is

let other nodes outside G transmit data as far as possible within their transmission range to

save energy needed to relay the data at critical nodes. The reason is that while the traffic that

goes through these nodes is considerably less compared to the traffic of the nodes i E G

and the lifetimes of these nodes do not directly affect the network lifetime as defined here.
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Figure 3.2 UMn example of the sensor network used to estimate network lifetime.

3.5 Network Lifetime

Without loss of generality, it is assumed that the distances between the sensor nodes of set

the collector is assumed to be located at the origin of the coordinates. In the remaining for

simplicity let the aggregation rate η be 1.

UMssuming that the total energy in each node is the same and fixed, the problem of

extending the lifetime of a node can be converted to the problem of minimizing the total

energy used to transmit each bit. It is considered that each node in set G first selects

the route that consumes the least energy to transmit a bit to the collector site, and then

based on that, the traffic can be determined that should be sent through these nodes. Let

Aibe the optimum route for node i ΕGandenbe the corresponding energy required to

transmit a bit from i to the collector. The energy needed to transmit a bit from a node
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to the collector can be divided into two parts: the transmit energy that is related to the

transmission distance, and the consumed power for relay processing if packets need to be

relayed. Let εTe be the additional energy required at each hop due to the need for relaying

(this element includes only the energy for sensing and processing): are = Eb,Rx + Eb,process

Then Ai can be determined according to the following procedure, which is executed in the

same order indicated in the ordered set G:

node A2 belonging to G the traffic is composed by three different parts: traffic generated

by itself, which in the following is assumed to be the same for all nodes and equal to λ 8 ,

traffic received from other nodes that belong to G which is denoted by λv , i , and traffic

received from nodes outside G that are not able to communicate directly with the collector

site, which is denoted by λ T , i . UMs explained before, all the data received or originated at

node i (i E G) will be transmitted to collector via the route Ai . Therefore it should be

determined which part of traffic outside G will be relayed to each node i Ε G. mince

the maximum transmission range of nodes is limited, only a certain restricted number of

nodes are able to communicate with a given node i E G. For instance the nodes within the

transmission range of S d but outside G can transmit data to Ad . Let Αρ denote the area where

nodes are able to communicate with the collector and Αί denote the area that is within the

transmission range of node i (i E G) but outside Α; , j < i. Since Add < A2 < ... < AM , as



43

much traffic as possible should be assigned to A 1 , then to A k ,... and finally to AM. It follows

that node i should relay all traffic from Α. Based on the assumptions that the sensor nodes

are uniformly distributed in the area, the total traffic in c i is given as follows:

Then Ai , the traffic at i , can be determined in terms of the selected routes {A A}: AMA =

node in route A3 . Therefore the energy consumed by the critical nodes i Ε G is minimized

at the possible cost of increasing the energy consumption at other nodes, since the nodes

outside G transmit data as far as possible within their transmission range. However the

lifetimes of these nodes do not directly affect the network lifetime as defined here, while

the traffic that goes through these nodes is considerably less compared to the traffic of the

nodes i E G. Based on this argument and relation (3.1) the expected lifetime of each node

can be obtained as:

UMssuming that the energy consumed to transmit a packet is much smaller than the

total energy of a node, as expected in any realistic case, i.e. the number of packets that a

node is able to transmit is quite large, then, relatively to the expected value, the deviation

of t i will be quite small and the probability that the lifetime approximates the expected

value is high. With reference to Figure 3.1, the expected node lifetime is 662 hours and the

probability that the lifetime is in the range of [649, 675] and [643, 681] hours are 0.955 and

0.997, respectively.

In order to calculate the total expected lifetime T of set G, an iterative process is

employed. Specifically it starts with all the nodes in set G and at every iteration the

expected lifetime of the set is calculated as described above. Then the node with the

minimum expected lifetime is eliminated and the same process is applied again for the
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CHAPTER 4

ADAPTIVE QOS-CONSTRAINED DATA AGGREGATION AND PROCESSING
IN DISTRIBUTED SENSOR NETWORKS

UMlthough several research works in the literature have discussed the problems of developing

efficient routing and data aggregation processes mainly for energy savings/minimization

in sensor networks, several issues associated with the data aggregation process with the

specific objective of meeting the task requirements (i.e. Q0S-constrained data aggregation)

are not yet well addressed. Given the fact that many sensing tasks present some strict

reporting quality requirements (e.g., in a time critical application an obsolete sensor report

that may exceed a given time threshold is discarded), development of efficient and feasible

strategies that perform data aggregation in a distributed manner and with energy efficiency,

in order to meet various quality requirements such as end-to-end latency and measurement

accuracy, is of high research and practical importance.

4.1 Objective

Therefore, in this chapter the data gathering and aggregation process in a distributed, multi-

hop sensor network under specific Q0S constraints is studied. For a sensor network, the data

collection and dissemination is basically divided into two parts: the original data collection

at the end nodes (i.e. source nodes) and the data transmission from the source nodes to

the collector center through the intermediate nodes. The end nodes are the ones that are

responsible for performing the actual measurements and for the collection of the required

samples, while the intermediate nodes receive, process and forward samples originated

from other nodes to the collector center.

Since in a distributed multi-hop sensor network the resulting end-to-end Q0S heavily

depends on the actual system conditions, traffic load, and the actions taken by each

intermediate node, in the following the emphasis is placed on the operations performed
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at the intermediate sensor nodes. Therefore, this chapter first presents and analyzes a

Q0S-constrained Data UMggregation and Processing approach (Q-DUMPP) that is performed

at the intermediate nodes in a totally distributed fashion. Each intermediate sensor node

determines independently whether or not to perform data aggregation randomly with some

specific probability that is precalculate according to the resource conditions and the

specific task requirements. One of the main principles of the proposed scheme is that the

network does not need to be formed into clusters to perform the data aggregation, while

the task Q0S requirements are taken into account to determine when and where to perform

the aggregation in a distributed fashion, based on the availability of local only information.

Furthermore, taking into account that each sensor operates autonomously and without

any central control, a Localized UMdaptive Data Collection and UMggregation (LUMDCUMUM)

approach for the end nodes is also proposed. The objective is to balance the tradeoffs

among energy-efficiency, delay requirement, accuracy and buffer overflow probability. It

provides a method of adjusting measurement accuracy related parameters at the source

nodes, in order to allow the system to adapt to the changing conditions.

It should be noted that in the literature the study of Q0S guarantee in sensor networks

is usually focused on the routing protocols tailored to meet the requirements (e.g. [x4, 37,

6x,63]), while in this chapter the emphasis is placed on the study of localized data collection

and aggregation strategies that should be implemented at each individual sensor node in a

distributed fashion, which is complementary to the applied Q0S routing protocols, and can

enhance the capability of Q0S guarantee in sensor networks.

4.2 Q0S-constrained Data Aggregation and Processing (Q-DAP) at Intermediate

Nodes

The proposed Q-DUMPP approach aggregates data on the fly at intermediate sensor nodes,

while satisfying the latency and measurement quality constraints with energy-efficiency.

One of the main principles of the proposed schemes is that the network does not need to be
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formed into clusters to perform the data aggregation, while the task Q0S requirements are

taken into account to determine when and where to perform the aggregation in a distributed

fashion, based on the availability of local only information.

In the following it is assumed that when a sensor node receives a packet or message

from its neighbor, it is able to either perform local processing and aggregation or just

forward (relay) it, according to the Q0S requirements of the corresponding applications.

Here the procedure that a sensor node locally generates and/or processes a measurement

packet in which new data may be aggregated is referred to as reporting, while the corre-

sponding new/updated packet is referred to as a report.

4.2.1 Q-DAP Approach

The operation of the Q-DUMP approach can be described as follows. When a sensor node

receives a report from its neighbor, it first determines whether or not it would perform

data aggregation on the report. The following different cases may occur. a) If the delay

constraint can be satisfied, the sensor node defers the report for a fixed time interval τ with

probability 7, during which the node processes and aggregates any reports that arrive, and

generates a new report before transmitting it to the next hop. With probability of (1— η) the

sensor node will directly try to forward the report without introducing any deferred period.

b) If the delay constraint can be satisfied only if the report is not deferred, the sensor node

simply tries to forward this report to the next hop. c) If the delay constraint cannot be

satisfied in any case, the sensor node will discard the report, to avoid further wasting of any

additional resources.

In this chapter, the considered end-to-end Q0S constraint is the end-to-end latency

requirement D of a report, that may aggregate other data or reports along its path from the

source to the collector center. If the report is delivered to the collector center within the

given latency constraint D after its initial generation, it will be considered as a successful

delivery. UMt intermediate nodes, the delay from the origination of a report to the interme-
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deathly receiving of the report is checked, and the report will be discarded if the delay is

larger than the requirement D. The actual procedure of performing this check and making

the appropriate decision is an implementation specific issue. For instance, assuming that the

nodes can be synchronized, time stamps can be added in the packets and the intermediate

nodes can calculate the delay between the current time and the time when the packets are

generated, and then compare this delay with the delay constraint to determine whether to

discard or forward the packet. UMlternatively a time to live field, with an initial value equal

to each packet's delay requirement can be used, which will be reduced appropriately as the

packet is forwarded through other nodes towards the collector center.

It should be also noted that at a sensor node, for a received report, in addition to the

possible deferred period τ, there is some additional waiting time caused by the transmission

of the previous report at the node. The relation between these delays depends actually

on the traffic load and system conditions, and is linked to the performance of the data

aggregation process. The energy-efficiency that is achieved via aggregation during the

deferred periods along the transmission path, is mainly due to the traffic reduction that is

achieved by the data aggregation. In some cases under light load the end-to-end delay may

increase due to the introduction of the deferred period τ, since some packets that otherwise

could have been transmitted, may have to wait for the aggregation. However, as the traffic

load increases, in a system without data aggregation the network becomes congested and

the waiting time at each node becomes the dominant factor. Since in principle the waiting

time is significantly affected by the network load, performing data aggregation and thus

reducing the network traffic load, will result in reduction of the end-to-end delay in the

sensor network. In the proposed algorithm, 'y and τ are configurable system parameters,

and their actual impact on the achievable system performance is analyzed and studied in

detail later in this chapter.
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4.2.2 Data Aggregation Modeling

It is assumed that by using proper routing mechanisms, each report goes through each

node only once, and nodes always forward the report to other nodes that are closer to the

collector center. Therefore, assuming that 1 nodes are visited from the source node to the

collector center, denote the set of these sensor nodes as 01 = {A i , saki ..., A i }. Without

loss of generality it is also assumed that the distances between the sensor nodes and the

collector site are arranged in decreasing order, i.e., d 1 > d2 > ... > d1 , where d i is the

distance between node i and the collector center.

Let us also denote by t^R) the reporting time at node i which includes the time

period for data aggregation, by t^F) the forwarding time at node i to next node 5i+1

which accounts for the transmission time including the potential retransmission time due to

channel contention (this time is related to the report length, the bandwidth and the commu-

nication success probability), and by t^P) the propagation time from node s ibto next node

i+1 which depends on the distance between the two nodes. Time periods t!F) , t!F) and t^P ^

are random variables and in the following their corresponding probability density functions

interval between the point that node i receives a report to the point that this report is

delivered to node i+1. If node i does not perform data aggregation the corresponding
n\ 	 / n\ 	 ID' 	 1 i" 	 ID'



In the following, first assume that no reports will be discarded due to the delay

constraint, and obtain the end-to-end delay distribution, which can be used to obtain

the probability Psucc that the report is delivered to the collector center within the delay

constraint D. Then the probability that the report is discarded due to unsatisfactory end-

to-end delay performance can be obtained as (1 — Psucc). Denote the end-to-end delay of a
L

nd its corresponding pdf by fΤL ot), where the random variable L is

the number of hops that are involved in the transmission of a report from the source node

to the collector center (including the source node). Thus, the Laplace transform of fΤL ot),

denoted by FTL oA), is given by

where pL o1) is the probability mass function of L, where the random variable L represents

the number of hops that are involved in the transmission of the report from the source node

to the collector center (including the source node). The pdf of TL can be obtained by using

the inverse Laplace transform of FTL oA), i.e.,
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When fTL ot) is obtained, the successful probability Psuec that a report can reach the

collector center within the delay constraint D is given by

4.2.3 End-to-End Delay Distribution Under Poisson Report Arrivals

In this subsection, it is assumed that the report arrival at each sensor node follows Poisson

process with arrival rate A. therefore, the report interarrival time X is exponentially

distributed with parameter A 1 and Ak, respectively. In the sequel the node index of t,

t^F) and tn are suppressed for notational convenience. There are two possible operations

(cases) to handle a report at a sensor node: case 1: directly forward the report without using

a deferred period (this happens with probability 1 — η); and case x: wait for a deferred

period τ to perform aggregation (this happens with probability 'γ). In the following the

delay distribution is studied by analyzing these two different cases.

Case 1 A sensor node does not use a deferred period τ to perform data aggregation.

In this case, when a report arrives, if the system is idle, there is no waiting time for

the report to be forwarded; otherwise, it has to wait for the previous report to finish its

transmission and therefore some additional waiting time is introduced. Denote by P1 the

probability that upon its arrival a report finds that another report is still in transmission,

then



Therefore, the corresponding pdf is given by

Case 2 A sensor node uses deferred period τ to perform data aggregation.

In this case, when a report after the deferred period τ finds the system idle, the waiting

time is 0; otherwise it has to wait for the end of the transmission of the previous report. Let

us denote by pk the probability that after deferred period τ, a report finds the previous report

still in transmission, then
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In this subsection, the pdf of TL is derived under the assumption that the report arrival

process is Poisson, while t^ and t^ are exponentially distributed. However, it is difficult

to obtain an analytical expression for Psucc in practice, since the distribution of TL is

generally unknown. In the next subsection the lower-bound of the probability Psucc  is

investigated.
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4.2.4 Lower Bound on Psucc

The end-to-end delay of an independent report that meets the delay constraint and passes

through 1 hops can be represented by

where in general t be lower-bounded based on the largest report length and the

corresponding data rate of the sensor network, and t^ can be upper-bounded by the range

of the sensor network and the longest distance between two sensor nodes. Thus, D can be

decomposed as

where D,. o1), D f p(1) , and Dp(Ι) are the lower bounds on the end-to-end reporting time,

forwarding time and propagation time, respectively, when the report needs to be delivered

to the collector center using 1 hops. UMs a result, in our study the constraint that needs to be

satisfied regarding the reporting time can be represented as

Noted that t^F) is a function of τ and γ, and (4.13) provides a worst-case bound on the

reporting time under the constraint (4.11). Therefore, the upper bound on the probability

psu,ccp(11) that a specific independent report is delivered to the collector center within the end-

to-end constraint, when the distance between the source node and the collector center is 1

hops, is upper-bounded by
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Note that (4.15) provides a upper bound to the probability of a successful report delivery

within the Q0S constraint for sensor networks with and without data aggregation schemes.

When η = 0, Psucc is reduced to the probability of a successful delivery in a sensor network

without any data aggregation scheme, in which each received report will be forwarded as

is (without any deferred period). mince the Q0S routing algorithm deployed in the sensor

network is independent of the proposed Q-DUMP approach, it can be assumed that if there

is no data aggregation scheme deployed in the sensor network, the report can be delivered

to the collector center within its end-to-end delay constraint D, through the use of the

deployed routing algorithm. Otherwise the sensor node will not participate in the specific

measurement task. That is, assuming Psucc,nouag gregatjon = 1. Furthermore, it is assumed

that under the Q-DUMP approach, the generated reports will follow the same path as in the

case without data aggregation.

In the Q-DUMP approach, if data aggregation is not performed at node i, the reporting

time t,F = 0 while if data aggregation is performed with probability -γ , t^ = a. It is clear

that the longest delay that a report may experience due to data aggregation is l7, when the

number of hops between the source to the collector center is l. If la < Dr(l), the end-

to-end delay can be guaranteed even if at each node data aggregation is performed, i.e.,

= 1. Thus psu,cC ol) = 1 when lab < Dr(1). When la > Dr(1), if all the intermediate nodes

perform data aggregation and reporting with a deferred period a, the end-to-end delay of

a report may exceed the delay constraint. The maximum number of data aggregation and

reporting that can be performed to guarantee the delay constraint, determined by the upper

bound on the reporting time Dr(1), is given by

That is, the lower bound of Psucc is equal to the probability that a report experiences at most

Col) times of data aggregations and reporting along its path. Therefore, the probability



4.2.5 Numerical Results and Discussions

In the remaining of this section, based on the developed models, the impact of parameters

and τ on the data aggregation model and the performance of Q-DUMP algorithm is studied.

UMmong the objectives is to identify the various trade-offs that these parameters present, in

order to provide guidelines to choose the appropriate values of these design parameters that

achieve the desired performance. In the folupping, let us consider a sensor network where

the sensor nodes are uniformly distributed in a disk area with radius R, and each node has

a fixed limited transmission range r, as shown in Figure 4.1. It is assume that each node

always transmits a report as far as possible within its transmitting range. Therefore, the

maximum number of hops is M = [ Ί . If the total number of sensor nodes N is large, the

probability PL o1) can be approximated by

Let us assume the report arrival process at each sensor node folupps Poisson distribution

with rate A.

In the first numerical example presented here, our objective is to demonstrate how the

upper bound approximation of given by (4.18), is affected by different values of 'y

and τ. mpecifically, Figure 4.x shows the upper boundPSF ',B) for different values of 'y and τ,

for the case with A = 20, M = 20, and Dr(1) = 2 seconds. It can be seen from this figure



Figure 4.1 Α sensor network with uniformly distributed nodes.
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Figure 4.2 Probability of successful report delivery as a function of η and r.
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that ρ^ cc) decreases with 'y and a, since larger values of γ will result in more frequent

data aggregation and reporting during the delivery of the report, and larger values of a will

increase the end-to-end delay. UMs these values both increase, there is higher probability that

the end-to-end delay is larger than the constraint, which results in the decrease of P suec .

UMs shown before, expression (4.18) provides a simple upper bound on the successful

report delivery probability Psuec. In the folupping the relation between this upper bound

approximation and the actual value of P suec is discussed and evaluated. In Figure 4.3 the

curves of the corresponding probabilities are plotted as functions of the deferred period

a, for a sensor network with M = 10, A = 20, and 'y = 0.5. In this figure the upper

is obtained by using (4.17) and (4.18), and the actual Psuec

is obtained from (4.4) and (4.10) for Poisson report arrivals. In this figure four different

curves are plotted, which represent the corresponding probabilities for delay constraints

D = 4 and D = 2 seconds respectively. Correspondingly in the lower bound calculation,

it is assumed 1 that Dr (1) = 3.4 and Dr(l) = 1.4. The results in Figure 4.3 demonstrate

that, in general smaller D will result in upper while the lower bound approximation

demonstrates similar trend with the actual performance of Psuec . Based on these results

it can be concluded that  ̂
c) provides an accurate lower bound approximation of the

probability of successful report delivery for all values of a.

UMs can be seen from the above discussions, for a given sensor network with specific

delay requirement D, Ν ' depends on parameters a, γ and the arrival rate A. From Figures

4.x and 4.3 it becomes clear that in order to meet the required quality objectives, there are

many different choices for parameters a and γ, while A is determined by the nature of

the measurement task. Furthermore, it can be noted that if a report is deferred at a node

for the time period a, while no other reports arrive during that period, and as a result
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no aggregation is actually performed, benefits can not be gained from such an approach,

although 1 Psucc decreases. In order to enhance the efficiency of the Q-DUMP algorithm and

maximize its benefits, when determining the optimal a and η, Psucc can be specified as a

Q0S requirement of the task or application, together with the delay constraint D. Then

the objective function can be to maximize Pa99, the probability that a node determines to

perform data aggregation and the data aggregation occurs during the deferred period a. The

optimal values of a and η can be determined by

where Pre  is the minimum required probability of successful report delivery to the

collector center within the end-to-end delay requirement D. When the report arrival

process folupps Poisson distribution with rate A, the probability that there is at least one

report arrival during the deferred period a is 1 — A -λτ. In this case, the probability that data
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aggregation occurs during the deferred period a is given by

Figure 4.4 shows the upper bound ^8 ) , and Aa99, for different combinations of a

and under the assumption of Poisson report arrivals with A = 20. From this figure it

is observed that there is a tradeoff between Pagg and the probability of successful report

delivery, since they folupp opposite trends with the change of a. That is, as a increases,

Fagg increases as well - which means that more data will be aggregated in a single report

and therefore energy savings will be achieved - while, on the other hand, the probability

of successful report delivery decreases. Therefore, if Preq  is known, the set of oa, 'y) can

be selected that can provide the maximum F lagg, while the resulting Ps,LB ) > Preq Since

approaches η and is insensitive to a for large values of a. Finally although the objective

function considered in this study is the maximization of Aa99 so that aggregation efficiency

can be maximized, other objective functions, such as the maximization of the number of

reports aggregated, can be considered, depending on the metrics of interest.

It should be noted that the objective and contribution of the proposed approach and

the corresponding models introduced here, is two fold. On one hand, for a system with

given design parameters, such as the deferred period a and the aggregation probability η,

based on the models and the strategies developed, various performance metrics, such as the

expected successful report delivery probability and the expected end-to-end measurement

delay, can be evaluated. More importantly, on the other hand, given some specific Qom

requirements (such as measurement end-to-end delay constraint and successful report

delivery probability requirement) imposed by the task/application under consideration, the

proposed approach can be used to accordingly adjust the design parameters τ and ·y, in

order to fulfill the required Q0S and achieve the desired objective (e.g. maximize number of

reports aggregated, reduce communications overhead, achieve significant energy savings,



extend the sensor network operational lifetime etc.)

4.3 QoS-constrained Data Collection and Aggregation at the End Nodes

It is known and documented in the literature that transmitting or receiving a bit is much

more expensive than processing a bit in local CPU [65]. For instance, in Sensorial sensors

and Berkeley motes, the ratio of energy consumption for communication and computation

is in the range of 1000-10000 [66]. Hence in order to maximize the sensor network lifetime

it is expected that the sensor network architecture will converge towards a localized and

adaptive approach. In section 4.x data aggregation at intermediate nodes has been used as

an effective way to improve energy efficiency, and its impact on wireless sensor networks

has been investigated. However, the process of data collection at end nodes and the impact

of this process on energy-efficiency and latency has not yet been exploited. In this section,

taking into account that each sensor operates autonomously and without any central control,

an adaptive localized algorithm for the data collection and aggregation at the end nodes is
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introduced, with the objective of balancing the tradeoffs among energy-efficiency, delay

requirement, accuracy and buffer overfupp probability.

In a sensor network, whenever the sensor nodes measure some environmental

variables, the analog signals have to be converted to digital through UM/D components,

before their transmission. For instance 10-16 bits analog-to-digital conversion can be

executed [x, 67]. The sampling rate depends on the bandwidth of the sensed signals and

the accuracy requirements. UMfter the sample is collected, the sensor node has to determine

when to transmit the data and how frequently the data should be transmitted. It can be

easily argued that it is not cost efficient (both from energy and communication point of

view) to transmit each sample individually. Compared with the one or two bytes of data for

each sample, the corresponding overhead could be very high. For instance, with 26 bytes

of the MUMC layer header of IΕΕΕ80x.11, the overhead is over 90%. Therefore, aggregating

multiple samples before a transmission occurs can result in significant energy savings. On

the other hand the limitation of the buffer size at the individual nodes and the task delay

constraints pose different and contradicting design requirements and challenges.

The goal of this section is to investigate and analyze the tradeoffs among several

parameters that are involved in the data collocation process, such as delay, energy

efficiency, accuracy and buffer overflow. mpecifically, a flexible weighted cost function

is defined first to balance the tradeoffs of delay, accuracy and energy-efficiency in the

data collection process in sensor networks. Furthermore, a localized adaptive algorithm is

proposed that balances the afore mentioned design tradeoffs for given Q0S requirements

at the end nodes. The proposed algorithm provides a method of adjusting the measurement

accuracy related parameters at the source nodes based on the communication conditions,

as they are observed and interpreted through local only information, in order to allow the

system to adapt to the changing conditions.
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4.3.1 System Model

The procedure adopted here in order to collect the appropriate samples is described as

folupps. One sample is collected every ΤΑΕ unit times. However, if at some point the

change of the sensed signal is beyond a predefined threshold Ο , a sample is also collected

independent of the time. It is also assumed that a sensor node will collect and save a

total number of Ash samples before it originates a packet transmission to disseminate this

information to the appropriate destination. Based on this data collection procedure the

measurement quality or accuracy is determined by parameters 8 Α and ΤΑΕ. It should be

noted that for energy efficiency purposes multiple samples are collected and aggregated

together in a single packet.

Intuitively, it can be argued that there is a tradeoff among the various parameters

and performance metrics involved in this scenario, such as: A8 , ΤΑΕ , 8Α' delay, energy

efficiency, and node buffer size. mpecifically as A sh or ΤΑΕ increase, the energy efficiency of

the data collection and transmission increases, while the corresponding delay and buffer

size requirements at each sensor increase as well. On the other hand the accuracy of the

collected data increases as 8Α and ΤΑΕ decrease. Therefore, an adaptive algorithm that

realizes the data collection process by taking into account the system conditions and the

task related quality of service requirements (in terms of accuracy, delay, etc.) can be

summarized as folupps. The initial values of parameters Ν αι ΤΑΕ and 8Α are first determined

according to the delay requirements, the desired accuracy, and certain other criteria.

Then based on the communication conditions, as they are expressed and represented by

some local measurements (e.g. observed data departure rate με ), these parameters may

be adjusted according to some desired objectives. One such objective is to adjust the

parameters so that the expected probability of buffer overfupp is lower than some pre-

specified overfupp threshold Ρ0 f, th. Figure 4.5 depicts a block diagram that represents this

adaptive algorithm for a sensor node.



65

Figure 4.5 Block diagram of adaptive collecting algorithm.

4.3.2 Flexible Cost Function

In order to balance the tradeoffs between the various elements of the data collection process,

a general cost function is considered and defined as the summation of the costs of the

different elements involved in the overall data collection process, for a given data collection

policy π:

The optimal collection policy is selected to minimize the corresponding cost. Weight coeffi-

cients can be assigned to control the impact of each part on the total cost. Here the cost

components of the delay, accuracy and energy are considered, and will be evaluated quanti-

tatively by utilizing the model provided in section 4.3.1.

Delay

Let us denote by T the time interval from the point that a sample is collected till the point

that this sample is successfully transmitted out of the sensor node. If Dq denotes the corre-

sponding average delay requirement, then we nee(

defined as

where w 1 is the weight coefficient of delay. Using the ratio between the average delay and

the delay constraint, the Q0S requirement (delay) can be taken into account, while at the
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same time eliminating the effect of the delay units.

Delay Τ can be divided into two parts. Let Τ,t be the time interval required to collect

A samples in order to generate a packet, and fst be the time interval from the point that a

packet is ready for transmission till the point that is actually transmitted successfully. Then

The expected delay E(Τ) can be obtained when the two delay components

are evaluated, respectively.

Τ,, depends on the sample arrival patterns. Based on the system model described

in the previous section, the sample arrival process consists of two components: a periodic

arrival process with rate To , and a non-deterministic arrival process which depends on

threshold ΘΔ . In the following it is assumed that the latter folupps a Poisson distribution

with rate A shoΒΑ) . Denoting the random variable of the interarrival time between two

consecutive samples as Υ. we obtain the probability density function (pdf) of the Ginter-

arrivals time Y as folupps:

fst includes the possible queueing delay as well as the transmission time. In order to

obtain Τ8t we need to calculate the queueing delay and take into account the characteristics

and behavior of the adopted MUMC protocol. The calculation of E(Τ, t) is shown for a

simplified scenario later in this chapter.

Accuracy

UMccording to the system model, the measurement quality or accuracy is determined by

parameters 8 Α and ΤΑΕ. Let us denote by 8o and To  the desired accuracy. That is: 0Α < 8o



Here we also use the ratio between the accuracy parameters and the desired accuracy, in

order to take into account the impact of the task requirements on the collection policy.

Energy

It has been argued that in wireless sensor networks the communication dominates the

energy consumption. Therefore, here it is assumed that the energy consumption for compu-

tation is negligible, and only the energy consumption for data transmission is considered.

The energy-efficiency coefficient ref is defined as:

In order to evaluate the degree of energy-efficiency, in the cost component that corresponds

to the energy, the ratio between the energy consumed to transmit the overhead and that

used to transmit the data (payload) is used, other than the absolute value of the energy

consumption to transmit a bit. Therefore, the cost of energy is defined as:

UMssuming that the average overhead of data packets is L am, bits and the size of a sample is

b bits, the synergy coefficient ^ef =fficient is obtained as: bNbΝ+
Lo„ . The overhead as defined here

includes the control packets and the headers of the data packets. Furthermore, the value

of Lo„ also depends on the retransmission probability and the implementation of the MUMC

protocol.
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4.3.3 Overall Cost and Parameter Optimization

Rαea^ on the above discussion and ιλafinitinne the 	 '-"t of α ιiαtι collection  policy

energy-efficiency.

Then the optimal values of parameters A , ΤΑΕ and 8Δ can be selected to minimize the

above weighted cost, as folupps:

where ΒSZ is the buffer size for storing the collected data.

In the folupping an instance is provided on the optimization of the corresponding

parameters. First E (Τ,8t ) will be evaluated. For demonstration purposes first it is assumed

that the probability of buffer overflow is very small and therefore the system can be treated

as a system with infinite buffer. Later on the buffer size is taken into consideration as well.

mince there are two patterns of sample arrivals, one periodic with rate rob and one Poisson

with rate A 8 , the system can be viewed as a combination of an

system. Thus the average queueing delay E(W) is given by

where WD and WNW are the corresponding queueing delays of the D/L/ 1 and M/G/ 1

systems, respectively. The service time depends on the transmission rate and the probability
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of collisions, while the queueing delay can be obtained when the average service time and

the second moment of service time are given. Under the assumption that at the beginning

no collision occurs and the service time depends only on the transmission rate, denoted by

R (bits per unit time), the average data departure rate μ is constant for given N 37 L and b:
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Figure 4.6 Cost as a function of Ash for different ΤΑΕ and 8Δ values.

In Figure 4.6, the data collection process cost is depicted as a function of A 3 for

different values of ΤΑΕ and 86 • The corresponding tradeoffs among the various parameters

involved in the overall process can also be seen and evaluated by this figure. For a given

set of ΤΑΕ and 8Δ the optimal value of Ash can be identified. For example, given w =

8q = 0.02 and α = 10, the optimal parameters can be selected as B o = 0.0026, ΤΑΕ = 0.0006

and Ash = 182.

4.3.4 Adaptive Data Collection

When the initial values of parameters (A8 , ΤΑΕ and 8Δ ) are determined as explained above,

the sensing nodes will collect data using these parameters. The actual data departure rate is

upper than the ideal value μ, since collisions may occur under realistic scenarios (when the

network load increases or the channel conditions deteriorate). When the data departure rate

decreases, the probability of buffer overflow will increase. The tradeoff that arises here is

that we can upper the buffer overflow probability by decreasing the provided accuracy of
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the sensed variables. By letting De be the actual departure rate, the probability of overfupp

If we denote by Bo  f , th the buffer overflow threshold, i.e. Ρ0 f < o f the, then an adaptive

data collection algorithm, based only on local information, can be described as folupps:

• UM sensor node periodically checks its current Ρ0 f ;

mince sensor nodes have only limited computation capabilities, an alternative method to

optimize the cost function periodically is to use the initial Ns and find suboptimal values

for ΤΔ and 8Δ that satisfy the above requirements of P o f.

4.4 Performance Evaluation

In this section the overall performance of the proposed quality-driven data aggregation

approach in multi-hop sensor networks is evaluated through modeling and simulation. First,

the achievable performance in terms of the end-to-end delay and overall network energy

savings is evaluated, under different data aggregation scenarios and traffic loads. Then the

impact of several design parameters and tradeoffs on various critical network and appli-

cation related performance metrics, such as the energy efficiency, network lifetime, end-to-

end latency, are also evaluated and discussed. Finally, the impact of LUMDCUM algorithm on

the data loss due to the buffer overflow at the end nodes is evaluated as well.



Figure 4.7 The reference multi-hop sensor network for simulations.

4.4.1 Assumptions and Network Reference Topology

Throughout this study a sensor network consisting of 18 nodes and one collector center,

distributed in an 100m x 200m area as shown in Figure 4.7, is considered. In order to

better focus on the study of the impact of the Q-DAP approach on the end-to-end delay

and the network energy consumption, we assume that the routing paths are predetermined

during the whole network operation. The corresponding routes from the individual sensor

nodes towards the collector center are identified by the edges between the various nodes

as shown in Figure 4.7. The transmission range of each node is assumed to be 50 meters.

When a node begins to transmit, all the neighbors within its transmission range will receive

the signal, which is considered as interference for a node if the packet is not destined for it.

The media access control (MAC) protocol adapted here is CSMA/CUM. Rts/Cts messages

are exchanged before a data packet is transmitted if the length of the data packets is more

than 64 bytes, otherwise the data packet is transmitted without Rts/Cts exchange. The

corresponding power consumption of a node under idle/listen, receiving and transmitting

modes is assumed to be 10mW, 100m and 36mW, respectively [57]. Furthermore, we

assume that the data transmission rate is 1Mbps. Let us also denote by β the aggre-

gation coefficient, which represents the ratio of the new report length after aggregation
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and reporting, to the total length of all the received packets/reports before aggregation. i.e.,

4.4.2 End-to-End Delay

In this subsection, we compare the end-to-end delay of the sensor network under the Q-

DAP approach with the corresponding results obtained by a system that does not perform

any data aggregation. In the folupping, for demonstration purposes, we assume that

the packet length is exponentially distributed with mean 100 bytes, and the aggregation

coefficient is considered to be 0.9. In order to compare the achievable delays under

different scenarios, we first set the delay constraint D to a very large number, so that

there are no packets discarded at the intermediate nodes due to the delay constraint. The

corresponding average end-to-end delays, for two different data generation processes at

each node, are shown in Figure 4.8. Specifically, in Figure 4.8(a) the data generation at

each node folupps a Poisson process with rate A, while in Figure 4.8(b), the data generation

folupps an ONE-OFF burst process where packets are only generated while the process

is in the ΟΝ state. For the ONE-OFF case we consider two different traffic modes. For

traffic mode 1, the duration for which the process stays in the ON and OFF states follows

exponential distribution with mean x and 8, respectively, while for traffic mode x, the

duration for ON state is uniformly distributed between 1 and 50 and the duration for OFF

state is exponentially distributed with mean 50 seconds. It can be seen from these figures

that without data aggregation, the delay increases exponentially with the increase of the

network load (indicated by A), while under the Q-DAP approach, the delay increases at

a much supper rate, since performing data aggregation reduces the network traffic load

significantly. When the network load is light, the delay introduced by the Q-DAP strategy

is the dominant factor, due to the fact that the sensor node introduces a deferred period

of r to perform the data aggregation, while the corresponding waiting time at each node

is negligible. Therefore, in this case, the delay in the sensor network under the Q-DAP
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Figure 4.8 Average end-to-end delay as a function of A. (a) Poisson packet arrival (γ=1) = 1).
(b) Burst packet arrival ('y = 0.9).
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approach is larger than the one that can be achieved by a system without aggregation.

However, when the network load increases, the waiting time at each node becomes the

dominant factor (as compared to a). Therefore, since the waiting time is significantly

affected by the network load, performing data aggregation can reduce the network traffic

load and therefore result in the reduction of the end-to-end delay in the sensor network.

Therefore, as we can observe from Figure 4.8, for heavy traffic loads the average end-to-

end delay under the Q-DAP is significantly upper than the corresponding delay of a system

without any data aggregation.

In Figure 4.9 the corresponding cumulative distribution functions (CDF) of the end-

to-end delay are shown for A = 10 pks/s and A = 20 pks/s. This can be used to estimate

the successful report delivery for a system with the delay constraint comparable to the end-

to-end delay. For instance, based on this, we can choose a delay constraint of D = 0.6

seconds for the system with deferred period a = 0.25 seconds, and a delay constraint of

D = 1.1 seconds for a = 0.5 seconds, and then perform experiments in order to obtain the

probability of successful packet delivery and actual packet dropping probability Ρά„ρ, due

to the imposed delay constraint.

The corresponding results are shown in Figure 4.10. For comparison purposes only,

we also present the probabilities that the packets arrive at the collector center within a

certain end-to-end delay equivalent to the corresponding delay constraints imposed by

the Q-DAP, under a strategy that performs data aggregation (similar to Q-DAP) without

discarding packets at the intermediate nodes due to any delay constraints (in the folupping

graph we refer to these cases as no-packet-drop). As we expected, the successful packet

delivery probability of the system with delay constraint D = 0.6 and D = 1.1 seconds is

better than the estimated probability under the strategy that does not discard any packets due

to the delay constraints. This happens because the packets that can not satisfy the imposed

delay constraint have been discarded at the intermediate nodes, and therefore the overall

traffic has been reduced. Furthermore, as can be observed by this figure, the successful
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Figure 4.9 Cumulative Distribution Function (CDF) of the end-to-end delay. (a) A = 10
packets/second. (b) A = 20 packets/second.



Figure 4.10 Probability of successful packet delivery for different delay constraints.

packet delivery probability increases as a decreases, however, as we see later this happens

at the cost of higher energy consumption.

4.4.3 Energy Efficiency

Since the energy consumption for communications is usually considered as the dominant

factor compared to that for data processing [66], the proposed Q-DAP approach will result

in upper energy consumption and thus extend the lifetime of the sensor network, due

to the resulting reduced communication traffic that is achieved by the data aggregation.

Throughout this experiment, the energy consumption for the local data processing and

aggregation is set to 0.1 nJ/bit. Figure 4.11 depicts the total energy consumption in the

sensor network under four different scenarios. The first one corresponds to the system

where no aggregation is performed, while the other three scenarios correspond to imple-

mentations of the Q-DAP approach with different deferred period a. As can be seen from

this figure, the Q-DAP approach outperforms the system without data aggregation, and

achieves significant energy savings in the sensor network. For instance, when A = 20
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packets/second, the Q-DAP system with 'y = 1 and a = 0.5 seconds can save around 50%

of the total consumed energy when compared to the system without any data aggregation.

Furthermore, it can be also observed from this figure that the energy consumption decreases

as a increases, since when a increases the average number of packets that can be used for

data aggregation increases as well (even for the same traffic load A).

4.4.4 Critical Nodes and Network Lifetime

In a sensor network with large number of small upp cost sensor nodes, due to hardware

and cost constraints, there exist several limitations on the sensor node transmission range

and available energy capacity. In most of the cases the operation of the sensor network

is completely disrupted, if and only if all the nodes that can directly communicate with

the collector center (e.g. one-hop communication from the collector center) "expire", and

as a result the lifetime of these nodes is more critical to the network lifetime [22]. In the

folupping we refer to these nodes as critical nodes. Here we define the network lifetime as

the time interval from the point that the sensor network starts its operation until the point



Figure 4.12 Energy consumption rate at each node for A= x0 packets/second.

where loss of communication to the collector site by all sensor nodes occurs.

With reference to the network topology of Figure 4.7, only nodes sal and sn2 can

communicate directly with the collector center, and therefore they are the critical nodes. In

this case, according to the definition of the network lifetime presented above, the network

lifetime of the reference network equals the maximum lifetime of nodes sn1  and 2. The

corresponding results regarding the energy consumption of all the sensor nodes, for A =20 20

packets/second and different values of a, are shown in Figure 4.1x. As it is expected, the

energy consumption rates of sensor nodes sal and 2 are significantly larger than the rest

(almost twice the rate of the other nodes).

In order to study the impact of the deferred time a on the network lifetime, we

performed several experiments which correspond to different values of parameter a, as

shown in Table 4.1. Case a = 0 represents the system without any data aggregation.

mpecifically, Table 4.1 presents the network lifetime (normalized by the lifetime of a

system without any data aggregation for A = 10 packets/second) and the corresponding
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average end-to-end delays, under two different traffic loads (A = 10 packets/second and

A = 20 packets/second), for different configurations of parameter a. From the results

presented in this table, we observe that the network lifetime increases as the deferred

period a increases. This happens because the average number of packets that can be

used to perform data aggregation increases with a as well, therefore resulting in reduced

communication traffic. We also notice that there exists some value of a above which the

network lifetime increases very supply as a increases. For the cases under consideration

here, this value is about a = 1 second for A = 10 packets/second and a = 0.5 second

for A = 20 packets/second. Furthermore, it can be seen that the average end-to-end delay

increases significantly with the increase of a, and as can be concluded from the results that

were presented in Figure 4.10, the larger the parameter a, the higher the probability that a

packet may not be delivered within the delay constraint. Therefore, large values of a will

mainly benefit those tasks with loose delay constraints, while the proper value of a should

be identified so that the lifetime of a network can be extended and most of the packets will

be delivered to the collector center within the imposed delay constraint.

The network lifetime may be even further extended by alupping different nodes to



Figure 4.13 Average end-to-end delay and energy consumption for different values of a.

have different deferred periods. For example, for A = 20 packets/second, if we let a of

nodes sail and sn2 be 0, a of nodes sn4, sn6, sf8 and sn9 be 0.5 seconds and a of the

rest of the nodes be 0.25 seconds, the resulting network lifetime is 0.9854, which is longer

than the lifetime (0.922) of a system with a = 0.25 for all nodes, while at the same time

it achieves smaller average end-to-end delay (0.35 seconds) than the corresponding delay

(0.538 seconds) of the system with a = 0.25 for all the nodes. The optimal a configuration

depends on the network topology and the traffic pattern and load, and it is part of our current

research work.

4.4.5 The Impact of

In Figure 4.13, the energy consumption and average end-to-end delay as a function of

parameter 'y are shown, for A = 10 packets/second, r = 0.9 and a = 0.25, 0.5 and 1

second, respectively. The results for 'y = 0 correspond to the case that no data aggregation

is performed. It can be seen from this figure that as η increases, the system consumes

less energy during the same operation period, while at the same time the average delay
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increases. So there is also a tradeoff between energy consumption and end-to-end delay.

Therefore, the provides another adjustable factor for the appropriate design according to

the system design requirements and available resources.

4.4.6 Buffer Overflow and Energy Efficiency at End Nodes

In this subsection, the impact of LADCA on the data loss due to the buffer overflow at

the end nodes is evaluated and discussed. The data transmission rate is assumed to be

Mbps, each sample is 16 bits (i.e. R = 1 Maps and b = 16), while the buffer size

for collected samples is Βsz = 256 kbits. For demonstration purposes in the following

experiment the sample collection requirements are set to: 7' o = 0.01, 8o = 0.02, α = 10,

Do = 0.2 second. The simulation for each scenario lasts for 1800 seconds, while each

simulation scenario is repeated 5 independent times (i.e. each run starts with a different

random number seed) and statistical averages are calculated. The initial accuracy related

system parameters are selected as ΤΑ = 0.0005 and 8Δ = 0.001. Figure 4.14 presents

the average data loss ratio due to buffer overflow, as a function of the total number of

samples s that are collected before a packet is generated at the source (end-node), under

the proposed adaptive collection algorithm. The results are shown for two different buffer

overflow requirements: o f,th = 0.1, 0.05.

For comparison purposes the corresponding data loss ratio for a strategy without such

adaptation capabilities is also depicted (we refer to this strategy as "without adjustment"

strategy). It can be seen by this figure that through the adaptive method introduced by

the LADCA approach, the buffer overflow is well controlled and the corresponding data

loss due to buffer overflow decreases significantly. Therefore, when the sensor network

traffic and conditions change (i.e the network load increases or the channel conditions

deteriorate), each end node via the proposed localized adaptive collection approach will

attempt to readjust the corresponding measurement related parameters based on the inter-

pretation of local information (e.g. Ρ0 f and D e ), in order to balance the tradeoffs between



Figure 4.14 Data loss ratio at the end nodes as a function of the number s of the
aggregated samples.

delay and accuracy, and thus decrease/mimimize the actual data loss.

Furthermore, we observe from this figure that the data loss decreases when the value

of A,8 increases and after some point the data loss increases as s increase both under the

adaptive adjustment and the "without adjustment" strategy. This happens because when

s is small, as the number of collected samples that are aggregated in a single packet for

transmission increases, the traffic load injected in the network by each end node as well

as the corresponding communication overhead decrease. Therefore, when the network

load is heavy the congestion can be reduced and the achievable throughput may improve.

However, as s keeps increasing the decrease of the overhead becomes supper, while when

s becomes large the dropped data increases as well once buffer overflow occurs.
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4.5 Concluding Remarks

This chapter introduced and analyzed an efficient Q0S-constrained data aggregation and

processing approach for distributed wireless sensor networks. The proposed approach

consists of: a) a Q0S-driven data aggregation algorithm (Q-DAP) that aggregates data on

the fly at the intermediate nodes in a distributed fashion, therefore reducing the traffic load

and the consumed communication energy while at the same time satisfying the latency

and measurement quality constraints; and b) an adaptive localized algorithm (LADCA) for

the data collection and aggregation at the end nodes, that balances the design tradeoffs of

delay, measurement accuracy and buffer overflow, and provides a method of adjusting the

measurement accuracy related parameters at the source nodes.

An in-depth evaluation of the proposed approach, under different data aggregation

scenarios and traffic loads, was performed via modeling and simulation, and the corre-

sponding numerical results demonstrated the significant performance improvements that

can be achieved, in terms of several critical operational metrics, such as energy efficiency,

improved network lifetime, reduced traffic load, end-to-end delay etc. In conclusion given

some specific Q0S requirements imposed by the task/application under consideration, the

proposed approach can be used to accordingly adjust the design parameters r and 'y at

the intermediate nodes, as well as the measurement accuracy related parameters at the end

nodes, in order to fulfill the required Qom, while at the same time achieve significant energy

savings and extend the sensor network operational lifetime.



CHAPTER 5

CONCLUSIONS

5.1 Summary and Contributions

It is envisioned that a mobile sensor based communications and processing infrastructure

will significantly enhance and facilitate the data gathering, information-based detection,

prevention, and response processes, under several scenarios and applications. Networking

a set of sensors to empower them with the ability to coordinate on a larger sensing task

will revolutionize information gathering and processing in many situations. A certain set

of applications require that sensor nodes collectively form an ad hoc distributed processing

network and provide information about the environment they monitor. Due to hardware,

energy, cost and other physical constraints, sensor-based networks present various design,

implementation and deployment challenges. In this dissertation, several issues associated

with the energy efficient organization and modeling of dynamic wireless sensor networks

were investigated.

mpecifically, in Chapter 2, we investigated the design tradeoffs between the connec-

tivity, reliability and power/energy efficiency in wireless ad hoc sensor networks. We first

proposed and developed a model to obtain the connectivity distribution for a power limited

sensor networking system. Based on this model we investigated the qualitative and quanti-

tative relations between the various involved design parameters and tradeoffs, and studied

their impact on the overall system connectivity and reliability. Furthermore, since most

of the wireless sensors have limited power resources as they are usually battery-operated,

we investigated the power/energy savings that can be obtained by the introduction and use

of periodical sleeping strategies. The corresponding numerical results demonstrated and

confirmed that if the traffic is upp, there is almost always some benefit from the periodical

sleeping in all the realistic systems; however if traffic is high, the power conservation

85
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could be obtained only under limited conditions, since in order to keep some pre-specifled

connectivity requirements, the power consumed during transmission increases faster than

the power savings due to the use of the sleeping strategy.

Furthermore, since large-scale dynamic sensor networks can be described as time-

varying composition of dynamically changing components and entities, additional features

such as uncertainty, interaction and collaborations should be considered in the modeling

process. Towards that direction, in Chapter x we proposed and developed a model that

gives a more realistic description of the various processes and their effects as the mobile

wireless sensor network evolves. The proposed model stems from the commonality

encountered in the mobile sensor wireless networks, their self organizing and random

nature, and some concepts developed by the continuum theory. Based on this analytical

model we investigated the corresponding connectivity distribution of the sensor network

for different scenarios regarding the way that various links are added, rewired or removed.

The proposed model and obtained results, facilitate the understanding of the effect of the

various events on the large-scale topology in wireless sensor networks.

In Chapter 3, the energy-efficient organization of a randomly deployed multi-hop

sensor network was considered, and an analytical model to estimate and evaluate the node

and network lifetime was provided. Based on this, a procedure for the creation of an

energy efficient sensor network organization, that attempts to extend the lifetime of the

communication critical nodes, and as a result the overall network's operation lifetime, is

also provided.

In order to meet and fulfil the various task requirements, individual sensor nodes in

a distributed sensor network, have to collaborate with each other, and as a result, effective

information gathering and dissemination strategies need to be deployed. In order to address

this problem, in Chapter 4 of this dissertation, a Q0S-constrained data aggregation and

processing (Q-DAP) approach was introduced. The proposed method aggregates data on

the fly at intermediate sensor nodes, while satisfying the latency and measurement quality
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constraints with energy efficiency. One of the main features of the proposed approach

is that the task Q0S requirements are taken into account to determine when and where

to perform the aggregation in a distributed fashion. Furthermore, an analytical statistical

model was introduced, to represent the data aggregation and report delivery process in

sensor networks, with specific delivery quality requirements in terms of the achievable

end-to-end delay and the successful report delivery probability. Based on this model some

insight is gained about the impact on the achievable system performance, of the various

design parameters and the tradeoffs involved in the process of data aggregation and the Q-

DAMP strategy. Furthermore, a localized adaptive data collection and aggregation (LADCA)

approach used at the source nodes was developed. mpecifically, a flexible weighted cost

function was defined first to balance the tradeoffs of delay, accuracy and energy-efficiency

in the data collection process in sensor networks. A localized adaptive algorithm was

proposed that balances the afore mentioned design tradeoffs for given Q0S requirements at

the end nodes. The proposed algorithm provides a method of adjusting the measurement

accuracy related parameters at the source nodes based on the communication conditions,

as they are observed and interpreted through local only information, in order to alupp the

system to adapt to the changing conditions. Furthermore the simulation results presented in

this dissertation demonstrated the effectiveness and efficiency of the proposed approaches,

in terms of the network energy savings and the achievable end-to-end delay.

5.2 Future Work

It should be noted that the proposed Q0S-constrained Data Aggregation and Processing

(Q-DAP) approach is evaluated here for a fixed sensor network. However, since this is

an adaptive Q0S-oriented data aggregation method, it is expected that combined with the

appropriate routing mechanism, it would be ideal for deployment in sensor networks with

dynamic configuration. Extending it to support dynamic and mobile environments, by

alupping the dynamic adjustment of several operational parameters such as the deferred
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period and the aggregation probability, is part of our current and future research.

Furthermore, additional energy efficiency may also be achieved by considering

multiple node energy states based on the relaxation phenomena of the batteries and other

possible battery renewal modes (e.g. for solar batteries). For instance, the proposed

Q-DAP approach can be combined with adaptive topology configurations by introducing

another state for the sensors, namely the relaxation state. In this case, depending on its

energy levels an active sensor node is assumed to be in one of the folupping two states

at a given instant: normal state and relaxation state. In the normal state, a sensor node

will participate in the process of forwarding and/or aggregating data from other nodes

(as explained before), in addition to transmitting its own data; while in the relaxation

state it only transmits data generated by itself, in order to reduce its power consumption.

Periodically each sensor may check its energy level. When its energy level is beyond

a certain threshold, the sensor node remains in the normal state, otherwise it switches

to the relaxation state. When its energy is replenished a sensor node will switch back

to the normal state. Each sensor node may also notify its neighbors about its decisions

regarding its current state. The thresholds of the energy levels that determine the sensor

node states can be pre-set in the sensor nodes or broadcasted by the collector center. These

values may also be adjusted dynamically during the network operation. For instance, the

current discharge rate [68] can be used to determine whether or not a node should go into

the relaxation state. Alternatively, neighboring sensors can also dynamically adjust the

corresponding thresholds to extend the network lifetime.

Finally, the relationship among the aggregation coefficient, data correlation and

packet concatenation, as well as its corresponding impact on the performance of the

proposed approach needs to be further investigated and evaluated. The degree of data

aggregation and its relation to the data aggregation coefficient is closely related to the

corresponding savings that can be achieved due to both the MAC overhead reduction and

the corresponding payload savings of packets with correlated data. It should be noted that



89

a frame aggregation scheme is one of the possible components considered in the future

80x.11n MAC, where a transmitting station may concatenate multiple packets into a single

frame thus reducing the corresponding overheads. The optimization of the MAC overhead,

that depends on several related timers and thresholds, based on the aggregation coefficient

is a very interesting issue of high research and practical importance.
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