
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.



ABSTRACT

VARIABLE PERMITTIVITY DIELECTRIC MATERIAL LOADED
STEPPED-HORN ANTENNA

by
Özgür Ozdemir

Stepped-horn antenna loaded with dielectric material of variable permittivity is proposed

to improve radiation characteristics and/or to increase the electrical dimensions of the

radiating structure compared to unloaded empty one. A hybrid numerical technique is

used to analyze such an antenna. The tapered section of the horn antenna is modeled

by multi-stepped waveguide structures filled with variable dielectric constant material.

Generalized scattering matrix representation of the tapered section of the horn antenna is

obtained using mode matching technique. The radiating aperture problem is solved by the

method of moments, under the assumption that the horn is terminated by an infinite metallic

flange. Input return loss, gain, aperture efficiency and cross-polarization characteristics

are studied. Comparisons indicate that any kind of loading with dielectric material along

the taper tend to improve the gain level for the entire bandwidth, aperture efficiency may

increase and cross-polarization level may decrease for relatively narrow bandwidths. It is

observed that this is partly due to increase in the electrical size of the aperture and partly

due to excitation of higher order modes. The goal of the optimization in a stepped-horn

antenna is to adjust the magnitude and phase of the excited TE 30 mode to achieve more

uniform aperture field distribution. This has been accomplished by optimizing step length

and permittivity of the enclosed dielectric material. As a result of optimization, improved

gain, reduced cross-polarization and enhanced aperture efficiency characteristics have been

achhieved in a stepped-horn antenna. Instead of loading only one material, using materials

with different permittivities gave extra parameters to control characteristics such as the

input return loss. These study can be extended for further multi-stepped structures with

variable dielectric materials.
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CHAPTER 1

INTRODUCTION

One of the most widely used microwave antennas is the horn antenna. In general, it

is a simple radiating aperture used to provide a smooth tapered transition for a wave

traveling from a feed waveguide into the free space. Horn antennas are used in satellite

communications, as a feed element for radio astronomy reflector antennas and as a standard

antenna for calibration and gain measurements in the laboratory. Horn antennas also find

use in aperture phase array systems. When used as radiating elements in an array, it is

desirable that a horn antenna have higher aperture efficiency in order to achieve favourable

gain characteristics. Extensive research work has been made as a goal of improving the

cross-polarization level and aperture efficiency of horn antennas. The use of dielectric

loading, hybrid modes or multimodes, and corrugations on the walls of the horn are all

consequences of such research efforts [1] -[7]. Dielectric loading approach has the advantage

over corrugated horns. It has comparable performance to corrugated horns but is much

simpler to construct. In the work of Tsandoulas and Fitzgerald [3], dielectric loading

was used to enhance the aperture efficiency of a rectangular horn antenna. In that work,

dielectric material was only placed along the walls and assuming that only the dominant

mode was propagating. Clarricoats et.al. [6] and Lier [8] have proposed inserting a conical

dielectric core inside the conical metal horn that is separated from the metal wall by a

dielectric layer with lower permittivity rather of the core material.

In this thesis, loading the horn antenna with variable dielectric material is proposed

to accomplish to improve cross-polarization, aperture efficiency and gain characteriscs

without increasing the size. Dielectric material is assumed to be filling the entire cross-

section of the part or the whole of the antenna structure. Multi-mode rectangular horns

employ TEmo(m=1,3,5) modes with approximate amplitude 1/m to improve the aperture

1
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field uniformity and this results in higher aperture efficiencies than horns with fundamental

mode alone. Optimization routine is introduced to implement desired modes at the aperture.

Rigorous theoretical approaches to analyze an empty horn were reported in the literatur

[9]-[11]. In Chapter 2, as a mathematical model for dielectric loaded horn analysis, hybrid

numerical approach is used. In the analysis, the overall geometry is separated into two

parts. The tapered region is divided into a number of rectangular waveguide sections filled

with lossless dielectric material. Change in a dielectric permittivity within each step has

been included in the mode matching analysis in the tapered region. The method of moments

solution is applied across the radiating horn aperture.

Following the standard mode matching technique [12]-[14] all possible TE and TM

modes (both propagating and evanescent) in each section are taken in account and the

transverse electric and magnetic fields on both sides of junction are matched. A set of

simultaneous matrix equations for each junction is obtained by making use of the orthogonality

of waveguide modes and the continuity of the transverse fields through an aperture and zero

tangential electric field at conducting walls. The elements of these equations are coupled

power integrals of all the propagating and evanescent modes on both sides of the junction.

The overall scattering matrix of the horn is determined by cascading the scattering matrices

of the involved junctions, iteratively.

It is known that significant mode generation and reflection may occur at the aperture.

In accurate design of a horn antenna, the effect of the aperture should be included. In the

analysis of a junction of a dielectric loaded horn and free space, it is assumed initially that

the horn is placed in an infinite metallic ground plane. To facilitate the analysis, equivalent

field distributions are assumed for the interior and exterior regions of the horn antenna, by

closing the aperture with a perfectly conducting plate having the same size and shape as

that of an aperture and introducing unknown surface magnetic currents on either side of

the aperture. Next, the magnetic field boundary conditions are imposed at the aperture and

the integral equation is obtained with magnetic surface current distribution as an unknown.
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The integral equation is solved numerically via the method of moments [15],[16]. The

generalized reflection matrix of an aperture is combined with the generalized scattering

matrix of the horn. This procedure yields the complex weighting coefficient of each mode

at the horn aperture in terms of the power of the incident TE 10 mode. Furthermore, the

results are used to determine the input reflection coefficient of the antenna and radiation

patterns.

In Chapter 3, the performance optimization routine is presented. Both, the loaded and

the empty horn antenna dimensions, are optimized independently in respect to the cross-

polarization and the aperture efficiency. To excite the higher order modes at the aperture

with proper amplitude, a stepped-horn antenna design is introduced. Using appropriate

step sizes, the desired amplitude of the modes can be implemented. The length of the

uniform waveguide between the step and aperture is optimized in order to achieve in phase

relation of the propagating modes at the aperture to yield uniform phase distribution. This

is important for improving the aperture efficiency and cross-polarization levels. Loading

antenna with dielectric material, without increasing the size, leads to an improvement

of the gain characteristics. Introducing the different dielectric material in the tapered

section and step section of the horn result in additional parameter to control the input

reflection coefficient. The characteristics of a horn antenna loaded with dielectric material

are compared with those of an empty horn antenna in Chapter 4. The important result of

this comparison is that loading the horn antenna with dielectric material increases the gain

for the entire bandwidth. In general, dielectric loading increases the reflection from the

aperture, therefore the input reflection coefficient increases, too. However, step dielectric

loading allows to keep the input reflection coefficient on the same level as the one of the

empty horn antenna or even to reduce it to a smaller value in a narrow frequency band.

The results for optimized stepped-horn antennas are presented. As expected, the aperture

efficiency, cross-polarization and gain characteristics are improved by optimization. Apart
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from improving the gain, dielectric loading enables the reduction of the physical size of the

stepped-horn antenna.



CHAPTER 2

MATHEMATICAL MODEL

Typical pyramidal horn antenna geometry is shown in Figure 2.1. Analysis of this radiating

structure is done by separating the antenna into two parts. The first part is the tapered

section of the horn starting at the feed waveguide and ending at the aperture. This section

is modelled by a set of NI cascaded dielectric loaded uniform waveguide sections as shown

in Figure 2.2. The mode matching method is performed to obtain the generalized scattering

matrix at each step discontinuity. The overall scattering matrix of the tapered region is then

computed by cascading the scattering matrices of the junctions involved in the model.

The second part of the problem is an aperture radiating into the half-space assuming

the horn to be terminated by an infinite metallic plane as shown in Figure 2.3. The method

of moments is then invoked to determine the generalized reflection matrix of this aperture

and then the unknown aperture field distribution.

2.1 Mode Matching

The tapered region of the horn antenna is approximated in terms of NI rectangular waveguide

sections each of length A/ LINT filled with dielectric material of permittivity, εi εriεo ,

i 1, 2, . . . , NI. Each section begins at zi (i — 1)A/ where z = 0 corresponds to

the junction adjacent to the feed waveguide (i 1), and the aperture plane is located at

z = L. The cross-sectional dimensions of the i-th waveguide section, a i and bi being the

waveguide dimensions in the transverse (x, y) plane, are defined as

5
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Figure 2.1 Geometry of pyramidal a horn antenna.

Figure 2.2 Stepped-waveguide model of tapered region of horn antenna.



Figure 2.3 Radiating aperture of a horn antenna.

where c and d are given as

and sectoral angles as and αb are given as

The presence of an abrupt discontinuity between the i-th and (i + 1)-th waveguide sections,

as shown in Figure 2.4, requires representation of electromagnetic fields in each waveguide

sections in terms of the sum of TE and TM modes (propagating and evanescent).

7
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Figure 2.4 Step discontinuity between i-th and i + 1-th waveguide sections.

TE modes are derived from the axial z-component of the magnetic Hertzian vector

potential Hh and TM modes are derived from the axial z-component of the electric Hertzian

vector potential tie . Hence, complete modal field in the i-th waveguide section can be

written in form as

Hertzian vector potentials are expressed as sums of the complete set of eigenmodes

with the wave impedance of TE mode, Zihmn , , and admittance of TM mode, Yiemn given by,



where the propagation constant 	 is expressed as

k is the cut-off wavenumber of the mn-th mode and k i = k0.1 is the wavenumber

in the i-th waveguide section. k, is the free space wavenumber.

Thmn and Ten,„ are the cross-sectional eigenfunctions for the given boundaries in

Figure 2.4

where δmn  is the Kronecker delta symbol.

The eigenfunctions are normalized so that for a wave amplitude of unity, the total

power carried by the corresponding mode is

(2.9)
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From (2.4), the transverse electromagnetic fields are represented in each waveguide

section as

where Aimn and Bimn 7, are the complex amplitudes of the incident and reflected waves for the

mn-th mode as

Subindices h and e are used to differentiate T E and T M modes, respectively. Mode indices

in the summations are m = 1, 2..., M and n = 0, 1, 2, N. In the above equations ( due

to the closed nature of the model), in the i-th waveguide section, the integers M and N

tend to infinity, i.e., N —> oo and M —> oo . eihmn and hihmn are the transverse electric and

magnetic fields of the mn-th T E mode in the i-th waveguide section and eiemn and hiemn nare

the transverse electric and magnetic fields for the mn-th T M mode in the i-th waveguide

section

At the overlapping aperture regions over the junction, the boundary conditions impose

the continuity of the tangential electric and magnetic fields and on non-overlapping region

over the larger cross-section, the tangential electric field is assumed to be equal to zero.



The boundary conditions relating the two adjacent waveguides are

for the magnetic field. In above equations, S i is the cross-section area of the smaller

waveguide section and S i+¹  is the cross-section area of complimentary larger waveguide

section. Mode matching of the tangential electric and magnetic fields at the junction and

using the orthogonality property of T E and T M modes [17] yields a matrix equation for

the mode amplitude vector for the larger guide in terms of the mode amplitude vector of

the smaller waveguide section. Then combined mode-matching with generalized scattering

matrix representation, the scattering matrix corresponding to i-th junction between two

neighboring dielectric-loaded waveguides is shown to be equal to

where Ai, A i+ ¹ are incident waves and Bi , Bi+ ¹ are reflected waves represented by the

column matrices containing amplitudes of the modes in the i-th and (i 1)-th waveguide

sections, respectively.

2.2 Generalized Scattering Matrix

Matching the transverse electric and magnetic fields due to imposing the boundary conditions,

at the common interface of general waveguide step discontinuity leads to the set of following

equations for the electric field



and for the magnetic field

In the summation, NTE is the total number of T E modes and NTM is the total number of

TM modes. Total number of modes NT is the sum of NTE and NTM. Here, to reduce

the complexity in the notation, in (2.17) and (2.18), i-th waveguide mode numbers mn are

replaced by k and (i + 1)-th waveguide mode numbers mn are replaced by 1.

To determine the unknown coefficients, the equation system in (2.17) and (2.18)

has to be multiplied by testing functions. The proper choice for the testing functions

for enforcing the electric field continuity are the transverse magnetic fields of the larger

waveguide and for enforcing the magnetic field continuity are the transverse electric fields

of the smaller waveguide [18]. Multiplying each side of the electric field in continuity

equation (2.17) by hi+¹hI* and h ie+, ¹* and integrating over the waveguide cross-section Si ,

results in

12
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Multiplying each side of magnetic field in equation (2.18) by 4k and eiek and integrating

over the waveguide cross-section leads to

In the i -th waveguide with perfectly conducting walls, k-th T E mode and l -th TM

mode are satisfied the following orthogonality properties,

Using these orthogonality relations, equation system (2.19)-(2.22) can be rewritten

as
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where * shows complex conjugate. In equation system (2.24), Vhh 7 Veh and Vee represent

the TE to TE,TE to TM and TM to TM mode coupling coefficients, which are evaluated

repectively, as

At each junction between two waveguide sections power is coupled between the

different modes on either side of the junction, including evanescent modes. This coupling

is evaluated by integrating the fields over the surface. These coupling integrals have been

evaluated analytically in closed form to reduce the compuational burden. Furthermore, it is

assumed that TE waves are coupled with the TM waves; TM waves are not coupled with

TE waves (Vh e = 0). This effect is rigorously taken into account in (2.24). The equation

system in (2.24) can be expressed in matrix form as
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where ITE and ITM are unit matrices of the size NTE x NTE and NTM x NTM, respectively.

K2 and K¹ can be simplified as

where I is unit matrix of the size NT x NT, P is coupling matrix of the same size NT x NT.

NT is the sum of the number of T E modes, NTE and T M modes, NTM in the waveguide.

Then, the scattering matrix of the i-th step discontinuity is obtained as

Elements of scattering matrix of the junction can be expressed as

Once the scattering matrices of the discontinuities are known, the overall scattering

matrix of the tapered section ST is obtained by cascading the generalized scattering matrices

corresponding to the discontinuities between the waveguide sections. Overall scattering

matrix relates the field in the feed waveguide to the radiating aperture field. The scattering

matrices of two adjacent discontinuities are expressed by S i and Si+ ¹ , respectively. They

are combined into one overall scattering matrix ST using the following equations,
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where D is a diagonal matrix of the size NT x NT whose diagonal elements are given as

due to the uniform waveguide sections of length A/ between the steps. The process is

repeated iteratively to include all discontinuities into an equivalent taper representation in

terms of the input and output ports. The input port corresponds to the feed waveguide while

the output port is the radiating aperture of the horn antenna. This permits us to determine

the incident fields at the aperture in terms of the complex amplitudes of the modes exciting

the horn.

In order to preserve numerical accuracy, the direct combination of the involved scattering

matrices at all step discontinuities of the total tapered section are used as opposed to

the common treatment by transmission matrices. Although analytically more extensive,

such as a need to take the inverse of 2NT x 2NT matrix twice, this technique leads to

matrix elements only containing exponential functions with negative argument, [13] where

evanescent modes decrease relatively quickly with distance between adjacent discontinuities.

This direct combination of scattering matrices avoids numerical instabilities caused by the

otherwise known situation of interacting discontinuities. There are two important factors

which affect the accuracy of the stepped-waveguide aproximation: the size of the step,
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Figure 2.5 Scattering matrix representation of cascaded discontinuities.

Al, and the number of modes in the expansion, NT. The number of sections along the

horn antenna must be chosen so that the pyramidal tapered section is accurately modeled

and modes excited by the artificial steps do not influence the radiating aperture fields. It is

important to notice that the elements of the generalized scattering matrix [8] are in the form

of infinite series summations. In reality, the series must be truncated with finite number of

terms. Selecting the number of terms is very critical from convergence point of view. A

simple formula derived for determining M and N for convergence [11], is the nearest

higher integer of

where A and B are the dimensions of the horn aperture.

2.3 Method of Moments

The generalized reflection matrix SA of the aperture as shown in Figure 2.6, is formulated

by incorporating the mismatch between the aperture section of the horn antenna and the

free space.

The approximation of the horn aperture terminated by an infinite ground plane is

based on negligible effect of the induced current on the horn metallic walls. For practical
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Figure 2.6 Generalized reflection matrix representation of an aperture.

horn sizes the contributions of the outside wall currents to the input reflection coefficient are

negligibly small and can be ignored to avoid the complexity of formulation and numerical

evaluations.

The equivalence principle is used on the radiating aperture by dividing the original

problem into two decoupled parts as waveguide region and half-space region, as shown in

Figure 2.7. This is accomplished by closing the aperture with a perfect electric conductor

and placing sheets of equivalent magnetic current density. By the equivalence principle,

the electromagnetic fields in both regions remain unchanged if the aperture is closed by a

conductor, a sheet of magnetic current If is placed on the inner side of the aperture and a

sheet of —M is placed on the outer region. Magnetic current density is given by

In (2.35), ft is the unit normal vector pointing into free space and EA is the unknown

electric field on the aperture plane of the original problem.

Equivalent magnetic current sheet in waveguide is +M and that in half-space is —M

ensures that the tangential component of electric field is continuous across the aperture

of the original problem. The other boundary condition is the continuity of the tangential

component of the magnetic field across the aperture which is
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where Ht g is the tangential component of the magnetic field in the waveguide over the

Figure 2.7 (a) Original problem (b) Equivalent problem (valid only in waveguide section)
(c) Equivalent problem (valid only in half space section ).
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aperture region and 11Ps is the magnetic field in the half-space. The expression for the

magnetic field in the half space Hhst is constructed by means of the electric vector potential

and magnetic scalar potential ensuring that Maxwell's equations and the radiation condition

are satisfied. Since magnetic field is linearly dependent on the magnetic current density,

it can be written as fits (—M) = (la). fit" is the superposition of that due to

impressed field due to modal fields in the waveguide region radiating in the presence of the

closed aperture, 11:7" , and that due to the equivalent current, denoted as Hwgt (M)

If (2.36) is rewritten using (2.37)

To apply the method of moments, the unknown magnetic current density M is expanded in

terms of a set of linearly independent basis functions, Mn

where 1/n, are unknown expansion coefficients. Here, NM is the number of unknown

coefficients 142, to be determined by using the subdomain basis function. Substituting (2.39)

into (2.38) leads to

Enforcement of the continuity equation of magnetic fields by linearly independent testing

functions Wm leads to the set of linear equations system. Solution of this system of linear

equations determines the set of unknown coefficients Vn , leading to determination of M.

Linear equations system obtained from (2.40) can be written in a matrix form as



where Ywg is the admittance matrix for waveguide region and its size is NM x NM , with

elements defined as
..	 ..

and Yhs is the admittance matrix for half-space region and its size is NM x NM and its

elements are

and Iim is an excitation vector with size NM x I. Its elements are

In the method of moments solution, the aperture is subdivided into Lx and Ly segments

in the x and y directions, respectively, resulting in patches of size AxAy. Two orthogonally

polarized sets of overlapping rooftop basis functions Mxn and /11,g, are used to model the

magnetic surface currents across the aperture (2.39), as shown in Figure 2.8. The total

number of expansion functions is NM = (Lx — 1)Ly + (Ly — 1)Lx .The set of x directed

magnetic current basis functions Mxn and the set of y directed magnetic current basis

function Ay are defined by



where T; (x) and T: (y) are triangular functions defined by
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and P; (x) and 11 (y) are pulse functions defined by

In the original problem, unknown aperture fields can be expressed as a sum of all

possible modes, including evanescent modes

are the transverse electric and magnetic fields for the k-th

T E and k-th T M mode across the aperture. 4k and AAek are the complex amplitudes of

incident k-th mode to the aperture and B[1,,, and BAek are the complex amplitudes of reflected

k-th mode from the aperture. Same as in mode matching method calculation, indices h and

e represent T E and T M modes, respectively.



Figure 2.8 Rooftop expansion function for MX and M.

To evaluate elements of the aperture admittance for the waveguide region, Yw gmn, a

single expansion function Mn is considered on the aperture plane in the waveguide region.

The tangential field produced by Mn will be of the same form as (2.51) and (2.52) except

only reflected waves are present on the aperture. Therefore, the fields are decomposed into

corresponding TE and TM parts as,
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where Γwghnk and r wg enk are the complex modal amplitudes of the k-th reflected mode produced

by Mn , for T E and T M modes, respectively.

Using (2.35) and (2.51), a single element of the magnetic current density on the

aperture plane is expressed as,

Multiplying each side of (2.55) by (ft x eh , ) and (ii x eel ) and integrating over the

aperture cross section and from orthogonality, all terms in the summation are zero except

k = 1 term, leads to

Admittance matrix of waveguide region Ywgmn (2.42)is then expressed as

If testing function is chosen as the same as expansion function (also called Galerkin method),

Wm = Mn , aperture admittance can be expressed as

Utilizing the image theory, the tangential magnetic field of incident wave on the conducting

surface that replaces the aperture is twice of the tangential component of the incident

magnetic field



Therefore, using (2.60), the components of the excitation vector can be expressed as

From (2.41), coefficient vector V can be expressed as

Incident vector in the matrix form is given as

Since, magnetic current distribution on aperture is known in terms of the modal amplitudes

of incident field AA , one can calculate the reflection matrix of the aperture. Magnetic

current density on the aperture plane is expressed by using (2.35)
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Substitution of (2.39) into (2.64) yields



ti

To determine the unknown coefficients 14„ multiply each side of (2.65) by 	 and h,,, and

integrate over the waveguide cross section, resulting in

Using equations (2.67), (2.62) in the matrix format, leads to

(2.68)

(2.69)

Since BA SA11AA, one can express BA as a function of AA in (2.68),

From (2.70), the reflection matrix of aperture SA can be written as

where I is a unit matrix of size NT x NT. The tapered section and the aperture are connected

through a uniform waveguide section of length Al, as shown in Figure 2.3.

In the previous section, the generalized scattering matrix, ST , of the tapered section

and diagonal matrix of last uniform waveguide section of the horn antenna were presented

using mode matching technique. Combining ST and D with SA, the amplitudes of the

incident and reflected modes in the aperture A A and BA , and the reflected modes at the
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input of the horn B° are obtained for any incident field A° using following formulas

Equation (2.72) uniquely determines the aperture field. Since we know the aperture fields,

exact solution of magnetic current distributions on the aperture can be found using either

(2.62) or (2.64). Antenna characteristics then can be calculated using the equivalent magnetic

current density.

2.4 Half-Space Admittance

The expressions for the magnetic field are constructed by means of the electric vector

potential and magnetic scalar potential which ensures that Maxwell's equations and the

radiation condition are satistified. Also, image theory is invoked, thereby causing the field

expressions to satisfy the boundary conditions on the screen. Half-space magnetic field can

be obtained from
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An electric vector potential F and magnetic scalar potential c1) are given by,

(2.76)

where 7-I' and r are respectively the vectors to the field and source points on the aperture, w

is the angular frequency, ε 0 is the electric permittivity of the free space.

Using (2.43), the admittance of half-space region isexpressed as,

(2.77)

If we expand the x and the y components of the electric vector potential and substitute

magnetic current expansion (2.39) in (2.76),

(2.78)

(2.79)

(2.80)

The magnetic charge and current are related through the continuity equation as

(2.81)
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Finite difference approximations can be applied to take derivatives in the continuity

equation (2.81). This approximation produces

Using (2.82), scalar magnetic potential (13 will be expressed in the following form as,

where G(r, r¹) is the free space Green function given by

Testing function, Wm is chosen same as the expansion function, Wm = Mn
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Using midpoint rule to evaluate integrals over the electric vector potential and magnetic

scalar potential results in

If we rewrite (2.89), using (2.79), (2.79), (2.83) bla



Similiar procedure applied to Hy , results in

31

If one can arrange (2.90) and (2.91)



where

32

Green function integrals, 4, 4, Iy , are evaluated using Taylor expansions as shown in the

APPENDIX.
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2.5 Antenna Characteristics

Antenna characteristics are determined based on the solution for the magnetic current

density across the aperture and the aperture field coefficients. Far field pattern computation

is done using electric vector potential with the knowledge of magnetic current density

across the aperture.

The input reflection matrix at the feed waveguide including the aperture discontinuity

is given by _

Reflection coefficient due to the incident TE 10 mode is defined as

The radiation intensity in normalized form is calculated using far field components of

electric field as following

Gain is defined a:

where Pin is the incident power at the input section of the horn.

The directive gain of the antenna is

where Prad isis radiated power. The aperture efficiency is a figure-of-merit which indicates- 

how efficiently the physical area of the antenna is utilized. The aperture efficieny is a

function of many factors. Among them is the most prominent parameters are the amplitude
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taper and the phase distribution across the aperture. Aperture efficiency, Cap is defined as

where A is the physical area of the aperture and Do is the directivitiy.

The maximum radiation intensity (Umax) occurs at 6 = 0, therefore directivity of the

aperture

The cross-polar radiation characteristics are dependent on the difference between the

E- and H- plane patterns. The co- and cross-polarization pattern components Eco(θ, q5)
and Ecross(θ , 0) are given by the relations, with a definition of cross-polarization based on

' Ludwig's third definition' [19],



CHAPTER 3

PERFORMANCE OPTIMIZATION

The optimization objective is to reduce cross-polarization and improve aperture efficiency

characteristics of a horn antenna. Figure 3.1 shows the proposed stepped-horn antenna

configurations subjected to optimization. Stepped-horn antenna consists of three major

sections:

- Tapered region of length L 1 ,

- Symmetrical step on the horn wall,

- Uniform waveguide region of length L2 between step and the aperture.

The cross-polarization characteristics depend on the difference between the E— and H—

plane patterns. If identical E— and H— plane aperture field distributions can be realized,

it would result in minimized cross-polarization level. Aperture efficiency is a measure

how efficiently the physical area of the aperture is utilized. Since gain linearly depends on

the aperture efficiency, improving the aperture efficiency implies an increase in gain, too.

Aperture efficiency is mainly a function of the aperture field amplitude taper and phase

distributions. Maximum efficiency can be achieved by excitation of uniform amplitude

and phase distribution over the aperture. Therefore, if identical uniform field distributions

along the E- and H- plane can be implemented, both cross-polarization level and aperture

efficiency characteristics can be improved simultaneoulsy. For uniform aperture field distribution

across the aperture, T M modes should not be present and also T Emn, modes where n 0

should not be exited. TEm0 modes should have an approximate amplitude relation of 1/m

to satisfy the uniform aperture field distributions as

35
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Even though, TE10 mode is an incident wave at the feed waveguide, higher order

modes are generated along the horn taper. The amplitude and phase of these induced modes

depend on the size of the aperture and flare angle of the antenna. But amplitude of higher

order modes usually remain small compared to a dominant mode if flare angle is not so

large. To excite the higher order modes in desired amplitude levels as given in (3.1), there

should be proper adjustment in the size of the symmetrical step on the horn wall. Since

symmetrical H-plane step is used in this study, only TEm0 , m = 1, 3, 5... modes are excited

at the step and T Emn , n 0 and T Mmn modes are not excited. The step should be located

at the horn wall where its cross-section size should be about 7-72-1 A to allow the higher order

TEm0 mode to propagate.

Figure 3.1 Stepped-horn antenna with variable dielectric loading for excitation of TE30
mode at the aperture with 1/3 amplitude ratio of TE10 mode
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It should be mentioned that even though the step does not excite T Em„, n 0 and

T M modes, they might be still present at the aperture if the size of aperture is large enough

to support these modes, because of reflection from aperture and the presence of the tapered

section of the horn antenna.

The H-plane step dimension for TEn0 mode excitation is determined as a function

of the step ratio, a, which is defined as a = a s/aA . as is the vertical dimension of the

last section of the tapered region and a A is the vertical dimension of the step waveguide

adjacent to the aperture as shown in Figure 3.1. Using continuity of the electromagnetic

fields across the aperture of step, the coupling integral of TEm0 mode with unit amplitude

in the smaller waveguide, last section of the tapered part, to TEn0 mode amplitude in step

waveguide is evaluated analytically as a function of a, εn  and εr2 as

where b, is the y-dimension of the smaller waveguide, and bA is the y-dimension of the step-

waveguide. Since in this study of H-plane step, only x dimension is changed symmetrically,

b, = bA . Zhn0  is the wave impedance of the T En0-th mode in the step waveguide (aperture)

and Zhm0 is the wave impedance of the T Em0-th mode at the smaller waveguide (tapered

section) as

where j = m,n and k is the wave number in the step waveguide as k = ko εEri for smaller

waveguide, j = n, and k = loo εr2 for step waveguide, j = m. k0 is the free space

wavenumber. k, kcj0is the cut-off wavenumber of theTEj0-thmode.

The formula given above is valid for all TEn0 mode excitations from the incident

TEm0 mode. In this study, only TE30 mode optimization is considered. The goal is to
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satisfy the amplitude ratio of 1/3 for TE30 mode to TE10 mode at the aperture. Here, it is

assumed that aperture size is large enough so that the TE30 mode propagates and only TE10

mode is incident to the step waveguide. To evaluate the ratio of the amplitude of TE30 to

TE10 mode, the coupling coefficient from TE10 to TE10 mode and TE10 to TE30 mode

across the step discontinuity was evaluated analytically. Then, the ratio of this coupling

coefficient is determined as

By equating this ratio to 1/3, (3.4) is solved numerically to obtain step ratio a. Since

aperture size, aA is known, step size can be calculated by a = as/aA . Figure 3.2 shows

the relation of sizes a 3 and aA in wavelength to excite the amplitude of TE 30 mode in

ratio 1/3 of amplitude of TE10 mode. Figure 3.2 depicts typical relation between a 3 and

aA , independent from dielectric constant of the smaller waveguide. Also notice that, even

though coupling coefficient depends on the dielectric constant of both smaller and step

waveguide, when the ratio of the coupling coeffients is taken, Zh10 which is a function of

εri will not be used anymore. Hence, smaller waveguide dielectric constant does not affect

the ratio of the mode amplitudes. As a summary, smaller waveguide dielectric constant

changes the amplitude of the aperture modes but does not affect their ratio.

Length of stepped-waveguide section, L2, is used to adjust TE10 and TE30 modes

in phase relation at the aperture which is important for reducing cross-polarization level

and increasing the aperture efficiency. Input reflection coefficient significantly affected

by reflection from the aperture and the reflection from the flare cross-section at the input

waveguide to. Here, the length of the tapered section, L 1 is used to minimize the input

reflection coefficient by making the aperture reflection coefficient and the feed-flare section

reflection contributions to yield coefficient out of phase realtions. The phase of each mode



39

Figure 3.2 a, and aA width of H -plane step for TE30 mode amplitude in the ratio 1/3 to
the TE10 mode excitation.

along the tapered section can be determined by

(3.5)

where /3m„ is phase change coefficient of the T Emn mode, L 1 is the length of the tapered

section, A = λo εr1 is the wavelength. The physical dimensions, a(z) and b(z) are

It should be mentioned that (3.5) is not a rigorous relation since the multiple reflections

between the step and the feed were not included. Also, amplitude ratio of modes is not

implemented exactly by 1/3 using (3.4), due to the presence of multiple reflections, there
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would be slight deviation from this value, but it has been checked that this difference is

small enough to not to change the overall design procedure.

The complete optimization steps are:

- Define the input waveguide dimensions a 1 ,b1 and the aperture dimensions aA and bA,

- Define dielectric constants, εl and ε2,

- To determine step dimension a8 , calculate step ratio a from (3.5), Since H-plane step

is used in this example, b, remains same as bA

- Calculate the length L2 so that TEm and TE30 modal coefficients are in phase. Note

that at the step discontinuity, TEm mode excites TE30 mode out of phase 180°,

- Determine the length L 1 so that overall reflection of the TE10 mode along the tapered

section includes step discontinuity and reflection of TE 10 mode from the aperture

should be 180° out of phase at the feed waveguide plane to minimize the input return

loss.

Since formulas used in the optimization routine are quite simple, it is very fast to

obtain results unlike the commercial optimization software tools. However, numerical

electromagnetic simulators can be exploited to optimze overall solutions which may include

higher order modes higher than the TE30 mode.



CHAPTER 4

NUMERICAL RESULTS

In Chapter 2, the hybrid numerical technique is presented to analyze stepped-horn antenna

loaded with variable permittivity dielectric material. In this model, mode matching technique

is used in step approximated tapered section of the horn modeled with NI uniform rectangular

waveguide sections. Hence, it is very important to choose the size of each waveguide

section, A/ = L/NI properly so that the pyramidal tapered section is accurately modeled.

Choice of 30 steps per wavelength has been found to work well in numerical evaluations.

As a first example, empty pyramidal horn antenna with input waveguide section size

a l = 0.675A, b1 = 0.3A and aperture size aA = 1.25A, bA = 0.5A, length of the tapered

section, L = 2.5A is considered. It is assumed that TE10 mode in an incident wave at the

input of the feed waveguide has a power density of 1 Watt/m² . Table 4.1 shows amplitude

and phase of reflection and transmission coefficient of TE10 mode and the total power

Ptot, Ptot = Prad Pref where Pradrad and Pre f are radiated and reflected power densities,

respectively. Total number of modes used in this example were 3. As it seen from Table

4.1, A/30 waveguide section size is enough for convergence to until fifth significant digit.

Notice that power conservation check is also satisfied for every waveguide section size.

Same study is repeated for dielectric loaded horn antenna and the similiar results were

obtained as seen in Table 4.2. Notice that the wavelength, A inside the dielectric medium

is smaller than the wavelength of the empty horn, the number of waveguide section, NI

should be bigger compared to the empty one. As it was expected, power conservation is also

satisfied for dielectric loaded horn antenna. However, there is a small difference compared

to the the empty horn antenna, decrease in the wavelengths necessitated to include higher

order modes which were excited at the aperture. Hence, the chosen total mode number

41
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increased to 15. Scattering matrix size became 30 x 30 which is much larger than 6 x 6

used in the case of an empty horn.

Table 4.1 Amplitude and Phase of Reflection and Transmission Coefficients of TE10
Mode in an Empty Horn of Length L = 2.5A and Free Space Wavelength A = 0.03m.

Table 4.2 Amplitude and Phase of Reflection and Transmission Coefficient of a TE N
mode in a Dielectric (εr = 2.5) Loaded Horn Antenna of Length L = 2.5A. A is the
Wavelength Inside the Dielectric Medium.

The magnitude and phase of the reflection and transmission coefficients of the dominant

TE10 mode at the feed section are checked to examine the overall convergence of the mode

matching technique versus the total mode number, NT. Consider horn antenna with the

input feed section dimensions of x 1 = 0.75A and y 1 = 0.3A and aperture dimensions of

a2 = 2.7A and b2 = 1.2A and the length of the tapered section L = 2.5A. Number of

steps are chosen as A r = 75. Power density carried by the incident TE10 mode is assumed
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to be equaled to 1 Watt/m ² . Table 4.3 shows convergence of the magnitude of the input

reflection coefficent, its dependence on the total mode number used in calculations for an

empty and εr = 3 dielectric loaded horn antennas. As seen from Table 4.3 and Table

4.4, 10 modes for the empty horn and 20 modes for the dielectric loaded horn antenna are

enough to observe convergence. Total number of modes, NT in each waveguide depend on

the physical dimensions and the permittivity of loading dielectric material. Total number

of sections, NI and number of modes, NT used in all the subsequent calculations, were

determined based on above mentioned criteria.

Table 4.3 Amplitude and Phase of Reflection and Transmission Coefficient of TE 10 Mode
in an Empty Horn Antenna of Length L = 2.5 A. A is a Free Space Wavelength.

The entire analysis were coded in MATLAB. The validity of the code developed in

this dissertation has been verified using experimental data available in the literature. Since

there is no study available pertaining to a dielectric loaded horn antenna, verification is

carried out in two phases. First, 20 dB standard gain horn antenna gain and VSWR are

compared with the experimental results [11] . It can be seen from Table 4.5 that the theory

and measured results agreed well.
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Table 4.4 Amplitude and Phase of Reflection and Transmission Coefficient of a TE10
Mode in a Dielectric (εr = 3) Loaded Horn Antenna of Length L = 2.5A. A is the
Wavelength Inside the Dielectric Medium.

Table 4.5 Comparison of VSWR's and Gains of the 20 dB Standard Gain Horn Antenna.

Numerical validation of the developed code was carried out also on a dielectric loaded

waveguide [20]. Numerical simulations for the input reflection coefficient corresponding

to an open-ended loaded waveguide with dielectric material εr = 2.63, the length of

waveguide L = 9.51mm, are compared with experimental results. Figure 4.1 shows

excellent agreement between the computed model and measured results.

The presence of a dielectric material loading in a 10dB standard gain antenna is

chosen as a test antenna to study the proposed method. Input waveguide section sizes are

chosen as a l = 22.86 mm and b 1 = 10.16 mm. Aperture sizes are aA = 40.13 mm
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Figure 4.1 Input reflection coefficient versus frequency for dielectric (εr = 2.63) loaded
open-ended waveguide radiator with length of L = 9.51mm

and bA = 29.21 mm and length of the horn is L = 51 mm. Three different dielectric

loading configurations are compared. First uniform dielectric loading is applied. In this

configuration, both feed waveguide and tapered section of the horn are loaded with the

same dielectric material, εr . Then step loading is applied. This configuration leaves the

feed waveguide empty and loads the tapered section with dielectric medium (εr). And last

configuration that was tested is a linear profile configuration. From feed waveguide toward

the aperture, dielectric constant εr changes linearly from 1 to pre-determined value of εr .

The value of a dielectric constant εr = 1.5 is chosen to load the 10 dB standard gain horn

antenna.

Results presented in Figure 4.3 to Figure 4.6 depict comparison for input reflection

coefficient, gain, aperture efficiency and cross-polarization characteristics between these

three configurations and an empty horn antenna. From input reflection coefficient comparisons
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Figure 4.3, it is obvious that the empty horn has better characteristics for entire bandwidth.

Reason for the observed increase in the reflection coefficient at the input due to loading is

that the increase in aperture reflection coeficient. Dielectric loading increases the contrast

between the aperture (modes) and free space impedance and resulted in higher aperture

reflection coefficient. Step loading might improve the input reflection coefficient within

a narrow bandwidth. The other two configuration have no advantage over the empty

horn for this comparison. However, Figure 4.4 shows any kind of loading has better

gain characteristics values compared to the empty horn antenna. This is mainly due to

increase in an electrical size of the aperture because of dielectric loading. It is observed

from Figure 4.5 that aperture efficiencies exhibit similiar increases for step and uniform

dielectric loading. The extreme change in aperture efficiency can be explained due to

excition of higher order modes in these particular frequencies and/or resonance effects of

higher order excited modes. Cross-polarization level observed to improve with dielectric

loading forrealtively narrow bands as seen. It can be concluded from these results that

better loading configuration is a step configuration.

As a next example, step loading is applied to a 10 dB standard gain horn antenna

with relative dielectric constants, εr = 1.2, ,εr = 1.5 and εr = 1.7. Results in Figure 4.7

to Figure 4.10 depict comparisons for input reflection coefficient, gain, aperture efficiency

and cross-polarization characteristics between three different dielectric constant loading

and of the empty horn antenna. As it expected, bigger the dielectric constant, fluctuations

tend to show increase in the input reflection coefficient. Gain increase is proportional to

a dielectric constant. From Figure 4.9 and Figure 4.10, εr = 1.5 and εr = 1.7 dielectric

constant loading, cross-polarization levels yield better characteristics for relatvely narrow

bandwidth. However, εr = 1.2 does not have better cross-polarization and aperture efficieny

compare to the empty horn antenna. This is due to that dielectric constant, εr = 1.2

dielectric constant loading for this particular horn antenna can not excite the higher order

modes. Figure 4.11 and Figure 4.12 shows E- and H-plane pattern comparisons of different
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dielectric loaded and emtpy horn antenna at f = 10 GHz. Notice that in both plane, relative

beamwidth show slight shrinkage with increased permittivity. Dielectric loading also cause

the increase in sidelobe levels in E-plane patterns.

Figure 4.2 Stepped-horn antenna model.

In Chapter 3, optimization routine is presented. Stepped-horn antenna under consideration

is shown in Figure 4.2. As a first example of optimization, input waveguide section of the

stepped-horn antenna is chosen as a l = 0.73A, b1 = 0.34A and aperture size is aA = 1.8A,

E

bA = 0.77λ.The optimization is done at f = 10 Ghz. Four different optimization routine

were run to compare the effect of dielectric loading, (.-r1 = 1.0 and 5r² = 1.0), (εri = 1.2

and 5r² = 1.2 and 5r² =1.2), (εri = 	 1.0), (εri = 1.0 and εr1 = 1.2). Length of

tapered section ,L 1 , length of step waveguide section, L², step size as and b8 , according the

optimization results are presented in Table 4.6. It can be seen from Table 4.6 that smallest

length of the overall stepped-horn antenna can accomplished by using (\εri = 1.2 and

εr2=1.2) as expected due to the highest value of the realative dielectric constant. Optimize

stepped-horn antennas are compared with empty test horn antenna. Test horn antenna is

chosen such has the same aperture, same input waveguide size and same overall length of

and1.0. an 5r² =(εri = 1 	 1.0) as an optimized antenna. Therefore, its input waveguide size is
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a l = 0.73A, b1 = 0.34A and aperture size is aA = 1.8A, bA = 0.77A and lengths,L = 80.2

mm.

Table 4.6 Optimization Values of Stepped-horn Antenna for Input Waveguide Size, a l =
0.73A, b1 = 0.34A and Aperture Size aA = 1.8A, bA = 0.77A.

Figure 4.13-Figure 4.16 show the comparison results of the input reflection coefficient,

gain, aperture efficieny and cross-polarization level for optimized dielectric loaded horn

antennas and the empty horn antenna. It can seen that from Figure 4.13, optimized dielectric

loading of the step region with εrg 1.2 leads to improved input reflection coefficient

IΓl <0.03 in a relatively wide band(9.6 to 10.35 GHz) compared to an empty horn

IF < 0.1 throughout the band of 9.0-11.0 GHz. It is possible to get even further reduction

of IΓl < 0.02 within a very narrow band around 9.2 GHz. Figure 4.14 shows that inclusion

of a step region to an empty horn results of an increase of gain by 1 dB over the entire band.

However further increase by additional 1 dB (2 dB overall) is observed in the presence of

dielectric loading. It was observed that gain performance of a fully loaded step-horn versus

step region only dielectric loaded horn were identical. Presence of a dielectric can be

attributed to an increase in gain due to enhancement of the equivalent aperture size in terms

of electrical dimensions.

One of the goals for optimization was to reduce the cross-polarization characteristics.

The presence of a step region helps to reduce cross-polarization by almost 5 dB, Figure

4.15. Further, inclusion of a dielectric can be used to tune cross-polarization to desired
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—30 dB at the expense of significant narrowing of the frequency band. Similar effect was

observed in Figure 4.16 in the aperture efficiency enhancement from 40% to 50% in average

over the band. Figure 4.17 shows the co- and cross-polarziation levels of test horn antenna

and (εri = 1.2 5r² = 1.2) loaded stepped-horn antenna are presented at f = 10 GHz.

To show the effect of optimization, amplitudes of x-component of aperture magnetic

field and y-component of aperture electric field for test horn antenna and stepped-horn

antenna are presented in Figure 4.18 to Figure4.21. It can be seen from Figure 4.18 and

Figure 4.19that aperture field distributions of test horn antenna exhibits tapered nature of

the aperture fields along x-direction due to TE 10 mode. As the step region included in

the horn antenna, tapered nature of the aperture fields tend to smooth out leading to more

uniform characteristics in x-direction, as seen in Figure 4.20 and Figure 4.21.

As a second example in optimization, input waveguide section of the stepped-horn

antenna is chosen as a i = 0.73A, b ¹ = 0.34A and aperture size is aA = 2A, bA = 0.82λ.The

optimization is carried out at f = 10 Ghz. Four different optimization schemes were

executed to compare the effect of dielectric loading, (εri 1.0 and 5r² = 1.0), (εr]. = 1.4

= 1.4 and εr² =and εr2 = 1.4), (F.9 \--r¹ 1.2), (εri = 1.2 and εr1 = 1.4). Notice that for this

optimization, both aperture size and dielectric constants, εri and 5r² are chosen larger than

the first example. Optimized length of tapered section L ¹ , length of step waveguide section

L², step dimensions a s and b8 , according the optimization results are presented in Table

4.7. It can be seen from Table 4.7 that smallest length of the overall stepped-horn antenna

can accomplished by using (εri = 1.4 εrg = 1.4)) as expected. Optimized stepped-horn

antennas are compared with empty test horn antenna. Test horn antenna is chosen such that

has the same aperture, same input waveguide size and same overall length of by optimized

antenna (εri = 1.0 5r² = 1.0). Therefore, its input waveguide dimensions are al = 0.73A,

b¹ = 0.34A and aperture size is aA = 2A, bA = 0.82A and has a of length L = 91.1 mm.
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Table 4.7 Optimization Values of Stepped-horn Antenna Input Waveguide Size, a l =
0.73A, b 1 = 0.34A and Aperture Size, aA = 2A, bA = 0.82A.

Figure 4.22 - Figure 4.25 show the comparison of results for input reflection coefficient,

gain, aperture efficieny and cross-polarization level for optimized stepped-horn antennas

and the empty horn antenna.

Loading the taper with a dielectric while keeping the feed waveguide empty results

in increased input reflection coefficient as seen in Figure 4.22 due to the creation of a

mismatched boundary at the feed. Simultaneously, the mismatch on the aperture plane

due to dielectric loading also contributes to this increase. However, interference effects

due to mistmached both boundaries could produce standing wave effects and thereby may

result in a reduced input reflection coefficient in a narrow frequency band. The dielectric

loaded stepped-horn antenna produced increased gain as seen Figure 4.23 From Figure

4.24 and Figure 4.25, it can be seen that cross-polarization level was reduced and aperture

efficiency was increased. Notice that at f = 10.6 GHz, there is anamalous increase in

cross-polarization and similiar decrease in aperture efficiency. Reason for this is excitation

of TE12/TM12² modes at this frequency across the aperture as shown in Figure 4.26.

Optimization was focused not to excite these modes at the aperture. It is worth to remember

that optimization was done at f = 10 GHz. As aperture dimensiona and dielectric constant

εr2 is getting larger, bandwidth of optimized region is getting smaller. Figure 4.27 and

Figure 4.28 depict aperture field distributions of test horn antenna and Figure 4.27 and
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Figure 4.28 depict aperture field distributions of stepped-horn antenna are exhibit that

aperture distributions tend to become more uniform.



Figure 4.3 Input reflection coefficient versus frequency of εr = 1.5 dielectric loading of
horn antennas with uniform loading, step loading, linear loading and empty horn antenna.
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Figure 4.4 Gain versus frequency of dielectric (εr = 1.5) loaded horn antennas with
uniform loading, step loading, linear loading and empty horn antenna.
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Figure 4.5 Aperture efficiency versus frequency of dielectric (εr = 1.5) loaded horn
antennas with uniform loading, step loading, linear loading and empty horn antenna.
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Figure 4.6 Cross-polarization level versus frequency of dielectric (εr = 1.5) loaded
antennas with uniform loading, step loading, linear loading and empty horn antenna.
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Figure 4.7 Input reflection coefficient versus frequency of the dielectric (εr = 1.2, εr =
1.5, εr = 1.7) loaded horn antennas and empty horn antenna.
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Figure 4.8 Gain versus frequency of the dielectric (εr = 1.2, εr = 1.5, εr = 1.7) loaded
horn antennas and empty horn antenna.
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Figure 4.9 Aperture efficiency versus frequency of the dielectric (εr = 1.2, εr = 1.5 and
εr = 1.7) loaded horn antennas and empty horn antenna.
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Figure 4.10 Cross-polarization level versus frequency of the dielectric (εr = 1.2, εr =
1.5, 67- = 1.7) loaded horn antennas and empty horn antenna.
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Figure 4.11 E-plane pattern versus 6° of the dielectric (εr = 1.2, εr = 1.5, εr = 1.7)
loaded horn antennas and empty horn antenna.
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Figure 4.12 H-plane pattern versus e° of the dielectric (εr = 1.2, εr = 1.5, εr = 1.7)
loaded horn antennas and empty horn antenna.
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Figure 4.13 Input reflection coefficient versus frequency of the stepped-horn antennas for
(εr1 = 1 . 0 εrg = 1 . 0), (εri = 1.2 5r2 = 1 . 2), (εr1 = 1 . 0 5r2 = 1 . 2), (εn = 1- 2 εrg =
1.0), and empty horn antenna with length L = 80.2 mm.



63



64

Figure 4.15 Cross-polarization level versus frequency of the stepped-horn antennas for
(εr1 = 1.0 εrg = 1.0), (εr1 = 1.2 5r2 = 1.2), (εr1 = 1.0 5r2 = 1.2), (εr1 = 1.2ε 7-2 = 1.0)
and empty horn antenna with L = 80.2 mm.
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Figure 4.16 Aperture efficiency versus frequency of the stepped-horn antennas for (εn =
1.0 εrg = 1.0), (εr1 = 1.2 5r2 = 1.2), (εr1 = 1-0 67-2 = 1 . 2), (εr1 = 1.2 5r2 = 1.0) and
empty horn antenna with L = 80.2 mm.
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Figure 4.17 Co- and Cross-polarization patterns for stepped-horn antenna (εr1 = 1.2
εrg = 1.2) and empty horn antenna with L = 80.2 mm at f = 10 GHz.
-- Empty horn antenna,
— — Stepped-horn antenna



67

Figure 4.18 Amplitude of aperture magnetic field distribution,Hx versus x and y for
empty horn antenna with L = 80.2 mm at f = 10 GHz.
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Figure 4.19 Amplitude of aperture electric field distribution,Ey versus x and y for empty
horn antenna with L = 80.2 mm at f = 10 GHz.
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Figure 4.20 Amplitude of aperture magnetic field distribution,H x versus x and y for
(εn = 1.0 εrg = 1.0 )stepped-horn antenna at f = 10 GHz.
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Figure 4.21 Amplitude of aperture electric field distribution,E y versus x and y for (ε n  =
1.0 εrg = 1.0) stepped-horn antenna at f = 10 GHz.



Figure 4.22 Input reflection coefficient versus frequency of the stepped-horn antennas for
(εn = 1.0 6r2 = 1 . 0), (εr1 = 1.4 5r2 = 1.4), (εr1 = 1.2 5r2 = 1.4), (εr1 = 1.4 5r2 = 1.2)
and empty horn antenna with L = 91.1 mm.
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Figure 4.23 Gain versus frequency of the stepped-horn antennas for (ε r1 = 1.0 εr2 =
1.0), (εn = 1.4 εr2 = 1.4), (εn = 1.2 εr2 = 1.4), (εn = 1.4 εr2 = 1.2) and empty
horn antenna with L = 91.1 mm.
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Figure 4.24 Cross-polarization level versus frequency of the stepped-horn antennas for
(εr1 = 1.0 5r2 = 1.0), (εr1 = 1.4 57-2 = 1.4), (εr1 = 1.2 5r2 = 1.4), (εr1 = 1.4
εrg = 1.2) and empty horn antenna with L = 91.1 mm.
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Figure 4.25 Aperture efficiency versus frequency of the stepped-horn antennas for (εr1 =
1.0 5r2 = 1 .0), (εr1 = 1.4 5r2 = 1.4), (εr1 = 1.2 5 7-2 = 1.4), (εr1 = 1.4 5r2 = 1.2) and
empty horn antenna with L = 91.1 mm.
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Figure 4.26 Amplitude of aperture modes versus frequency, for (εr1 = 1.4 ε,.2 = 1.4)
stepped-horn antenna.
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Figure 4.27 Amplitude of aperture magnetic field distribution,H x versus x and y for
empty horn antenna with length L = 91.1 mm at f = 10GHz.



0.8

Figure 4.28 Amplitude of aperture electric field distribution,Ey versus x and y for empty
horn antenna with length L = 91.1 mm at f = 10 GHz.
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Figure 4.29 Amplitude of aperture magnetic field distribution, 1-4 versus x and y for
(εn = 1.0 εrg = 1.0) stepped-horn antenna at f = 10 GHz.
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Figure 4.30 Amplitude of aperture electric field distribution, Ey versus x and y for (εr1 =
1.0 6-7,2 = 1.0) stepped-horn antenna at f = 10 GHz.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Stepped-horn antenna with variable permittivity dielectric material loading is proposed and

analyzed using hybrid numerical method. In the analysis, tapered region including stepped

waveguide section is divided into a number of rectangular waveguide sections filled with

the lossless dielectric material. Following the standard mode matching, a set of generalized

scattering matrix equations in each junction are obtained. The overall scattering matrix

of the horn is evaluated by cascading the scattering matrices of individual steps. The

generalized reflection matrix of the aperture is determined using the method of moments.

Then the generalized scattering matrix of the horn is combined with reflection matrix of

the aperture. This analysis extended to determine yields the complex weighting coefficient

of each mode at the horn aperture in terms of the power of the incident TE10 mode.

Finally, the results are used to determine the input reflection coefficient of the antenna

including the radiation patterns. Different dielectric materials are applied to achieve better

performance characteristics. It was observed that the dielectric material loading improves

gain characteristics. Due to the optimization of stepped-horn antennas, aperture efficiency,

cross-polarization and gain characteristics were improved. Dielectric material loading to

stepped-horn antenna reduced of physical dimensions of the antenna and also improved

gain level. It is observed that for higher dielectric constant material and larger apertures,

higher TEm0 modes are needed to be included into the optimization. However, undesired

modes would also be excited at the aperture. For future work, multi-stepped horn antenna

loaded with dielectric materials has to be investigated to excite the higher order TE m0

modes and to cancel the undesired modes at the aperture.
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Dielectric materials of various permittivities based on TiO2 has been fabricated and

are currently being characterized. These materials will be used in optimum horn antenna

design to validate numerical results with the experimental measurements.



APPENDIX

TAYLOR EXPANSION OF GREEN FUNCTION INTEGRALS

The integrals (4, 4, Iy) are evaluated by using the following four term Taylor expansion

approximation of the Green function,
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The indefinite integrals associated with the rest of the required integrals are

83



84

The definite integral is obtained from the indefinite integral by adding the indefinite

integral evaluated at the upper limits to that at both lower limits and subtracting both

evaluations of the indefinite integral at the mixed (one upper,one lower) limits.
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