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ABSTRACT

RNA STRUCTURE ANALYSIS: ALGORITHMS AND
APPLICATIONS

by
Jianghui Liu

In this doctoral thesis, efficient algorithms for aligning RNA secondary structures and

mining unknown RNA motifs are presented. As the major contribution, a structure

alignment algorithm, which combines both primary and secondary structure infor-

mation, can find the optimal alignment between two given structures where one of

them could be either a pattern structure of a known motif or a real query structure

and the other be a subject structure.

Motivated by widely used algorithms for RNA folding, the proposed algorithm

decomposes an RNA secondary structure into a set of atomic structural components

that can be further organized in a tree model to capture the structural particularities.

The novel structure alignment algorithm is implemented using dynamic programming

techniques coupled by position-dependent scoring matrices. The algorithm can find

the optimal global and local alignments between two RNA secondary structures at

quadratic time complexity. When applied to searching a structure database, the

algorithm can find similar RNA substructures and therefore can be used to identify

functional RNA motifs. Extension of the algorithm has also been accomplished to deal

with position-dependent scoring matrix in the purpose of aligning multiple structures.

All algorithms have been implemented in a package under the name Rematch

and applied to searching ERNA TR structure database and mining RNA motifs.

The experimental results showed high efficiency and effectiveness of the proposed

techniques.
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CHAPTER 1

INTRODUCTION

Consider the following problem: given two RNA secondary structures, what is the

maximum common substructures? Since formal definition of RNA secondary structure

will be given in the following chapters, at this time it can simply assume that an

RNA secondary structure is composed of two types of components: single bases and

bonded base-pairs which are somehow assembled to form the ultimate structure. This

problem, like finding the longest common subsequence between two strings [1], could

have been of great importance to several areas of computational biology [2].

Coupled with the availability of gnomic information of more and more species,

especially Como sapiens, efficient computing technologies are valuable and desperately

demanded by biologists for bio-data analysis. In the past years, significant discoveries

had been achieved at sequential or primary structure level [3]. The milestone work on

general purpose algorithms for sequence analysis was accomplished by Hirschberg [4],

also known in the computational biology community as the Myers/Miller algorithm

[5].

eequence oriented analysis tools, like BLAeT [6, 7], BASTA [8], CLUSTALW [9],

have achieved great popularity in protein and DNA research communities. It has

become a routine task for researchers to use these tools in purpose of finding homology

and searching databases. These tools are sequence-based in that only sequence or

primary structure information is used in the analysis, while no or very tiny secondary

or higher level structural information being consideredE

However, for research work related to RNA, sequence-based methods do not

work well in most cases. One of the most important reasons is that nucleotide bases

do not carry as much functional/structural information as amino acid residues doE

1
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RNA molecule's structure, hence its function, is determined jointly by both sequence

composition and distant interactions among bases [10]. A typical example is RNA

motif detection: unlike protein motif searching which can be accomplished through

the development of sophisticated amino acid substitution matrices, computationally

detecting or discovering RNA motifs is still at a primitive stage without broadly

accepted methodologies in literatures.

Bor the purpose of discovering new RNA motifs, one promising approach would

be to design an efficient algorithm that is able to align RNA secondary structures at

the structurally conserved regions that could be treated as putative motifs for further

experimental verification.

In this dissertation, efficient algorithms are presented to align RNA secondary

structures and explore RNA motifs. As the major contribution, a structure alignment

algorithm called Rematch, which combines both primary and secondary structure

information, can find the optimal alignment between two given structures where one

of them could be either a pattern structure of a known motif or a real query structure

and the other be a subject structure.

Motivated by widely used algorithms for RNA folding, the RSmatch algorithm

decomposes an RNA secondary structure into a set of atomic structural components

that can be further organized in a tree model to capture the structural particularities.

The novel structure alignment algorithm is implemented using dynamic programming

techniques coupled by position-dependent scoring matrices. Rematch can find

the optimal global and local alignments between two RNA secondary structures at

quadratic time complexity. When applied to searching a structure database, the

algorithm can find similar RNA substructures and therefore can be used to identify

functional RNA motifsE Extension of the algorithm has also been accomplished to deal

with position-dependent scoring matrix for the purpose of conducting multi-structure

alignment.
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1.1 Biology Fundamentals

Many essential biological roles are found to be assumed by RNAs (RiboNucleic acid)

molecules. With respect to different functions, RNAs are grouped into many families.

Important families include transfer RNA (ERNA), ribosomal RNA (ERNA), small

nuclear RNA in the spliceosome (snRNA), messenger RNA (ERNA), and various

classes of intros. On the other hand, it is a known fact that majority of essential

macromolecules are polymers of smaller constitutional components. Bor instance,

RNA is a polymer of four types of nucleotides: Adenine, Uracil, Cytosine, Guanine;

for protein, there exist 20 types of amino acid residues which are building blocks to

form various types of proteins. These building blocks concatenate with each other

to form a strand which finally folds back to itself to form complex three-dimensional

structure. The strand form could be thought as the initial state of an RNA molecule.

However, for most non-coding RNAs, the proper function is only enabled when the

strand folds back to itself to form particular spatial conformation. Unfortunately,

the complexity of exploring 3D spatial structures directly is prohibitive. Since the

sequence composition gives some information of the final folded structure, much of

the related research work had been done at sequence level.

At the sequence level, one important research field is to find out how similar

two sequences could be [11, 12]. The most popular method of similarity measure is

through edit distance borrowed from string comparison [13,14]. Given two sequences

x and y, it tries to find an optimal series of transcriptions to transform x toy through

three types of edit operations: substitute, insert, delete:

Substitute: one character in x is replaced by a corresponding character in y .

Insert: One character in y is inserted into x, causing x "grows" by one character.

Delete: One character in x is deleted, causing x "shrinks" by one character
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The edit distance calculation can be illustrated in a two-dimensional matrix as

shown in Figure 1.1 where the row is corresponding to characters in sequence x and the

column to those of y. Each cell of the matrix represents an edit distance between the

two prefix subsequences terminated by the cell's row- and column- indices respectivelyE

Using C to denote the matrix, then the first row C[0, i] and first column Chi, 0] are

initialized respectively by continuous integers starting from 0 (refer to Figure 1.1) E

Using δ(., .) to represent a generalization of the Kronecker delta function such that

it has value 1 if the two character arguments are identical and 0 otherwise. The rest

cells of the matrix are calculated as:

Beyond the similarity among sequences, a further and more interesting step

to biologists is to find alignment between two sequences or among several sequences

(multi-alignment). Alignment among sequences could provide biological inference for

the construction of phylogenies, structure/function prediction and homology searching.

Alignment of two sequences can be achieved by similar algorithm as that of

computing edit distances, also known in the computational biology community as the

Myers/Miller algorithm [5]. The algorithm is derived from considering the following

three ways an alignment column could adopt:

Furthermore, with each alignment situation an alignment cost shall be associated

properly. Then the calculation follows similarly as that of edit distance. When the
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optimal score is reached at the lower right corner of the table, the trace-back is needed

to reveal the optimal alignment. It is very well possible for several optimal alignments

having the same optimal score. In this case, if without interference of expertise, all

of the alignments shall be treated equally.

If the costs to alignment situations are assigned by the following function:

The above alignments are called global alignment because all letters of both

sequences are involved in the alignment. Local alignment only considers the alignment

between two subsequences. However, the algorithm is very similar to the global version

with three differences: first, the initialization will set all cells in the first row and first

column to zeros; second, to decide the value for current cell, if the best score of

aligning the corresponding two subsequences is negative, the cell's score will be set to

0; third, the tracing process will start from the cell with the maximum score instead

of the lower right corner cell and will end at the cell having negative score.

Mayers/Miller algorithm can be improved by heuristic methods, as done in

most popular sequence analysis tools, i.e. BLAST [7], BASTA [8], CLUSTALW [9]E

practically, the heuristic approaches run much faster but still produce the same, or
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almost the same results as that of Mayers/Miller algorithm. Currently, the primary

goal of most of the proposed general-purpose alignment algorithms is to find homologs

or consensus from biosequences databasesE

1.2 Previous Works on RNA Structures

Well known by biologist, functions of macromolecules largely depend on secondary

and/or tertiary structures. This observation is clearly manifested in most enzyme

catalytic and virus invading mechanisms. It is biologically reasonable that homology

or consensus represented in the form of secondary and/or tertiary structure would

be more important and informative than those in the form of primary structure [15].

However, direct structural analysis is considered difficult, if not impossible. One

important reason is the lack of efficient algorithm to analyze large macromolecules

directly at structure level.

Burthermore, recent years have witnessed the great achievement in constructing

gene regulation networks, in which the post-transcriptional regulatory signals play

important roles. In ERNA molecule, myriad of these signals, known as RNA motifs,

have been detected in the TR regions. These regulatory motifs play a variety

of roles for post-transcriptional gene regulation which involve modulation of RNA

localization, translation and stability [16, 17]. The regulation functions are mainly

accomplished by interactions between the motifs and relevant proteins via binding

machineryE RNA motifs are distinguished from DNA-mediated regulation signals,

whose biological activity is essentially mediated by their primary structureE The

activity of RNA motifs heavily depends on a combination of primary and secondary

structure [18].

Great efforts at sequence level have been made in the detection of RNA motifs

[10, 19-25]E Tools that align biosequences (DNA, RNA, protein), such as FASTA
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and BLAST, are valuable in identifying homologous regions, which can lead to the

discovery of functional units, such as protein domains, DNA cis-elements, etc. [6, 8}.

Other first-order sequence analysis tools are following the direction of proba-

bilistic model. Hidden Markov Models (HMIs) are proposed and applied to model

protein families and domains successfully [26]. These models treat each position along

the sequence having independent distributions. Strictly speaking, HI models are

only able to deal with first-order correlations between two consecutive positionsE This

is reasonable for protein sequence analysis and practically shows its feasibility.

The success of HMI models is more evident in the study of DNA and proteins

than of RNAs. This is mainly because the sequence similarity for DNA sequences or

protein sequences can usually faithfully reflect their functional relationship, whereas

additional structure information is needed to study the functional conservation for

RNA. Therefore, it is necessary to take into account both structural and sequential

information in analyzing RNA sequences.

Alignment of RNA secondary structures is important in studying functional

RNA motifs. In recent years, much progress has been made in RNA motif finding

and structure alignmentE However, existing tools either require a large number of

realigned structures or suffer from high time complexities. This makes it difficult

for the tools to process RNAs whose realigned structures are unavailable or process

very large RNA structure databases.

An efficient tool called RSmatch is presented in this thesis for aligning RNA

secondary structures and for motif detection. Motivated by widely used algorithms

for RNA folding, this study decomposes an RNA secondary structure into a set of

atomic structure components that are further organized by a tree model to capture the

structural particularitiesE Rematch can find the optimal global and local alignment

between two RNA secondary structures using two scoring matrices, one for single-

stranded regions and the other for double-stranded regions. The time complexity of
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RSmatch is O(mn) where m is the size of the query structure and n that of the subject

structure. When applied to searching a structure database, RSmatch can find similar

RNA substructures, and is capable of conducting multiple structure alignment and

iterative database search. Therefore it can be used to identify functional RNA motifs.

The accuracy of RSmatch is tested by experiments using a number of known RNA

structures, including simple stem loops and complex structures containing junctionsE

With respect to computing efficiency and accuracy, RSmatch compares favorably

with other tools for RNA structure alignment and motif detection. This tool shall

be useful to researchers interested in comparing RNA structures obtained from wet

lab experiments or RNA folding programs, particularly when the size of the structure

dataset is large.



CHAPTER 2

FUNDAMENTAL OF RNA SECONDARY STRUCTURE

In nature, RNA molecule exists in the form of 3D structure by folding back to itself.

Unfortunately, the 3D conformation is too intractable for analysis purpose, especially

in large-scale. At the utmost fundamental level, RNA is a string of nucleotides

concatenated with each other. Instead of targeting at RNA sequences, researcher

are more interested in the folded RNA whose structure complex is moderate, i.e.

secondary structure. This chapter will focus on the fundamentals of RNA secondary

structure. The emphasis will be put on the circle-based structure decomposition

model and how the model facilitates the algorithm design in the purpose of structure

analysisE

2.1 RNA Structure Elements

RNA is usually represented as a sequence of nucleotide bases. In living cells, none-

codling RNA strand will folds back to itself instead of staying as a plain string. The

result of the folding process is a particular conformation which ultimately enables the

RNA's proper function. Typical example is RNA's cloverleaf conformation which is

required to "clamp" amino acid residues shifting around within cytoplasm.

In contrast to protein, folded RNA have relatively simpler interactions among

bases, and hence simpler notations for the folded structure. When RNA strand folds

back to itself, majority of the interactions between nucleotide bases are canonical

Watson-Crick bonds which are formed between nucleotides Adenine and Uracil or

between Cytosine and Guanine. Few non-canonical bonds, i.e. Uracil versus Guanine

bond, could also be found. In most cases, non-coding RNA only functions properly

until some particular conformation is formed after the folding machinery.

11



A very interesting thing with RNA folding is that an RNA sequence can fold

into several conformations adapted to changed physical circumstances. Thus, one

RNA may assume several functions under different in vivo environments. This points

out that the research work about RNA functions can not be confined at sequence

level. Both sequence and structure information are indispensable to delineate the

panorama of RNA functions.

RNA crystallogram reveals that RNA structures can be described by a set of

basic structure elements. Furthermore, these structure elements are depicted by a

set of base interactions where majority of them involve only two bases. For an RNA

structure notation, if no interaction concerns more than two bases, the description is

at the level of secondary structure and the structure is called secondary structure [10].

In Fig.2.1, some basic structure elements are illustrated.

This dissertation accommodates all the secondary structure elements except

pseudoknot element. pseudoknot is not compatible with the loop decomposition

process commonly used in RNA structure prediction tools [27, 28]. It is excluded by
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fold package also since it ruins the underlying structure prediction rules by breaking

down the loop decomposition processE Bor the similar reason, pseudoknots are also

excluded in this dissertationE

If pseudoknots are not allowed, the definition of secondary structure can be

formalized straightforward [29]. An RNA secondary structure R, with its sequence

Pas two collections of structural components. One is a collection

of base pairs denoted as (i, A) , where for each pair there exists a bond connecting

bases r, and r? . The other is a collection of single bases to which no bond is related.

Formally, the following constraints are imposed:

• Any two base pairs are either identical or don't have base in common. This

condition specifies that any nucleotide base can involve in up to one bond/pair;

• If there is a U-turn, biologically called hairpin loop, there must be at least 3

bases on the loop;

• pseudoknots are precluded. That means, for any pair p H  :

the derived two sequence intervals [i1  i2 ] and [Al , A2] are either non-overlapping

with each other or one is completely contained within the other. This condition

guarantees that the RNA secondary structure can be draw on a plane without

any bond crossing each other. It also means that any RNA secondary structure

should be able to be depicted by the notation of nested parenthesis format as

done in [30]. The nested parenthesis format is also adopted as the output format

of RSmatch.

Based on the above formalization, different ways of representation are proposed

as shown in BigE2.2:

Bonds representation : This is the most intuitive representation of a secondary

structure shown in Fig.2.2(a)E Bonds between bases are highlighted and the

relative relationships among structural components are obvious;



Figure 2.2 riveral notations of RNA secondary structure.

Nested parenthesis representation : It is initially proposed by Hofacker et al.

[31]. It is a compact structure representation by creating a string of the same

length as the "unfolded" RNA sequenceE The created string consists of paren-

theses and dots by replacing each base pair (i, j) with "(" and ")" in the ith

and jth positions respectively, and replacing those single bases with ".". An

example is given in Fig.2.2 (d) .

Tree representation : Various approaches of representing secondary structures as

trees are proposed [31-33]. They differ from each other in that some represen-

tations compress substructures into single labeled nodes. Fig.2.2(c) shows the

corresponding tree representation for the same structure by the nested paren-

thesis notation. The tree is ordered in that the order among siblings is important

to distinguish each otherE The tree root does not represent any part of the
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structure. Base pairs are corresponding to internal nodes and single bases are

represented by leaves.

Arc representation : In this representation, the secondary structure is a set of none-

crossings arcs connecting bonded bases. (see FigE2E2(b)). These arcs are either

parallel with each other or nested with each other [34}.

This dissertation shows particular interest in the Bonds Representation. In fact,

based on the bonds representation, an extended loop decomposition process, called

circle decomposition, was proposed to decompose a secondary structure into a set of

circles, which were further organized into a tree-like hierarchy.



CHAPTER 3

PREVIOUS WORK ON RNA SECONDARY STRUCTURE ANALYSIS

Alignment of RNA secondary structures is important in studying functional RNA

motifs. In recent years, much progress has been made in RNA motif finding and

structure alignment. However, existing tools either require a large number of prep-

aliened structures or suffer from high time complexities. This makes it difficult for

the tools to process RNA whose realigned structures are unavailable or process very

large RNA structure databases.

Ribonucleic acid (RNA) plays various roles in the cell. Iany functions of

RNA are attributable to their structural particularities (herein called RNA motifs) E

RNA motifs have been extensively studied for conceding RNA (RNAs), such as

transfer RNA (ERNA), ribosomal RNA (ERNA), small nuclear RNA (snoRNA), small

nucleolus RNA (snoRNA), etcE [35]. Iore recently, small interfering RNA (miRNA)

and microRNA (mRNA) have been under intensive studies [36]. Less well charac-

terized are the structures in the un-translated regions (UTRs) of messenger RNA

(RNAs) [37]. However, biochemical and genetic studies have demonstrated a myriad

of functions associated with the UTRs in miRNA metabolism, including RNA translo-

cation, translation, and RNA stability [16, 38, 39].

RNA structure determination via biochemical experiments is laborious and

costly. predictive approaches are valuable in providing guide information for wet

lab experiments. RNA structure prediction is usually based on thermodynamics

of RNA folding or phylogenetic conservation of base-paired regions. The former

uses thermodynamic properties of various RNA local structures, such as base pair

stacking, hairpin loop, and bulge, to derive thermodynamically favourable secondary

structures. A dynamic programming algorithm is used to find optimal or suboptimal

16
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structures. The most well-known tools belonging to this group are BOLD [28] and

RNAFold in the Vienna RNA package [39, 40]E Similar tools have been developed

in recent years to predict higher order structures, such as pseudoknots [41]. On the

other hand, RNA structure prediction using phylogenetic information infers RNA

structures based on covariations of base-paired nucleotides [42-45]. It is generally

believed that methods using phylogenetic information are more accurate. However,

their performance critically depends on the high quality alignment of a large number

of structurally related sequences.

Tools that align sequences (DNA, RNA, protein), such as BASTA and BLAeT,

are valuable in identifying homologous regions, which can lead to the discovery of

functional units, such as protein domains, DNA cis elements, etc. [6, 8]. However,

their success is more evident in the study of DNA and proteins than of RNA. This

is mainly because the sequence similarity among DNA and proteins can usually

faithfully reflect their functional relationship, whereas additional structure infor-

mation is needed to study the functional conservation among RNA. Therefore,

it is necessary to take into account both structural and sequential information in

comparing RNA sequences.

Several tools are available that carry out RNA alignment and folding at the same

time (Table 3.1) E The pioneer work by Sankoff [46] involves simultaneous folding and

aligning of two RNA sequences, and has huge time and space complexity (Table 3.1)E

FOLDALIGN [47] improves the Sankoff's method by (1) scoring the structure solely

based on the number of base pairs, instead of the stacking energies; and (2) disal-

lowing branch structures (junctions). Dynalign [48] reduces the time complexity

by restricting the maximum distance allowed between aligned nucleotides in two

structures. By taking into account local similarity, stem energy and conservation,

perriquet et al. [49] proposed CARNAL for pairwise folding of RNA sequences. Ji et

al. [50] applied a graph-theoretical approach, called comRNA, to detect the common
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RNA secondary structure motifs from a group of functionally or evolutionarily related

RNA sequences. One noticeable advantage of comRNA is its capability to detect

pseudoknot structures. In addition, algorithms using derivative-free optimization

techniques, such as genetic algorithms and simulated annealing, have been proposed

to increase the accuracy in structure-based RNA alignment [51-53]. Bor example,

Notredame et alE [51] presented RAGA to conduct alignment of two homologous RNA

sequences when the secondary structure of one of them was known. As shown in Table

3.1, most of these methods suffer from high time complexities, making the stricture-

bashed RNA alignment tools much less efficient than sequence-based alignment toolsE
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Tools that search for optimal alignment for given structures include RNAdistance

[2], ma_align [54], and RNAforester [55]. RNAdistance uses a tree-based model to

coarsely represent RNA secondary structures, and compared RNA structures based

on edit distanceE In a similar vein, rnaalign [54] models RNA secondary structures

by nested and/or crossing arcs that connect bonded nucleotides. With the crossing

arcs, rnaalign is able to align two RNA secondary structures, one of which could

contain pseudoknotsEE RNAforester extends the tree model to forest model, which

significantly improves both time and space complexities (Table 3.1). In addition,

methods using Stochastic Context Free Grammars (SCFGs) have been developed

to compare two RNA structures. Original SCFG models [56, 57] require a prior

multiple sequence alignment (with structure annotation) for the training purpose,

thus their applicability is limited to RNA types for which structures of a large number

of sequences are available, such as snoRNA and ERNA [56,58]. However, Research [59]

and stemloc [60], both based on eCBG, are capable of conducting pair-wise structure

comparisons with no requirement for pre-alignment. Research uses RIBOSUM substi-

tution matrices derived from ribosomal RNA to score the matches in double-stranded

(ss) and double-stranded (ds) regions. stemloc uses "fold envelope" to improve

efficiency by confining the search space involved in calculations. The time and space

complexities of these two tools are also listed in Table 3.1. Burthermore, pattern-

based techniques such as RNAmot, RNAmot and patriarch [22, 37, 61] have been

used in database searches to detect similar RNA substructuresE These tools represent

RNA structures by a consensus pattern containing both sequence and structure infor-

mation. One important advantage of these pattern-based tools is the ability of dealing

with pseudoknots.

This thesis presents a computationally efficient tool, called RSmatch, capable

of both globally and locally aligning two RNA secondary structures. RSmatch does

not require any prior knowledge of structures of interest. It can uncover structural
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similarities by means of direct aligning at the structure level. Its application to

database search and multiple alignment are also demonstrated. Burthermore, RSmatch

was compared with three widely used tools, patriarch [25], stemloc [60] and Research

[59]. It showed that RSmatch was faster or achieved comparable or higher accuracy

than the existing tools when applied to a number of known RNA structures, including

simple stem loops and complex structures containing junctions.



CHAPTER 4

ALGORITHM TO ALIGNING RNA SECONDARY STRUCTURES

4.1 Secondary Structure Decomposition

RSmatch models RNA by a structure decomposition scheme similar to the loop model

commonly used in the algorithms for RNA structure prediction [27, 28]. With this

model, pseudoknots are not allowed. This method differs from the loop decomposition

methods in that it completely decomposes an RNA secondary structure into units

called circles (Bigure 4.1Α). When the secondary structure is depicted on a plane, a

circle is defined as a set of nucleotides that are reachable from one another without

crossing any base pair. As shown in Bigure 4E1Α, all circles are closed or ended by a

base pair except the first circle (circle one in the Figure 4.1Α), which always contains

the 3'-most and the 3'-most bases. Various types of RNA structures, such as bulge,

loop, and junction can be represented by circles, as shown in Figure 4.1Α.

Circles of an RNA structure can be organized as a hierarchical tree according to

their relative positions in the secondary structure, where each tree node corresponds

to a circle (Figure 4.1B). This tree organization is informative to deduce the structural

relationship among circles and reflects the structure particularities of the given RNA

secondary structure. If two circles reside on the same lineage (path) in the tree, the

circle appearing higher in the tree is called an ancestor of the other, and the latter is

a descendent of the former. As a result, in the context of the hierarchical tree, two

distinct circles fall into one of the following two categories, in the order of decreasing

closeness: (i) the two circles maintain an ancestor/descendent relationship, or (ii)

they share a common ancestor in the treeE Bor example, in Figure 4.1B, circle 2 is an

ancestor of circle 3, whereas circle 6 does not have ancestor/descendent relationship

with circle 5 since they are not on the same lineage. The double-stranded region or

stem of a structure is decomposed into a set of "degenerated" circles, each containing

21
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only two base pairs. As such, a stem of n bases in length will result in n-1 consecutive

degenerated circles. Since a base pair may have two associated circles; one circle

is named as "the parent circle" and the other "the child circle" according to their

positions in the hierarchical treeE Bor example, for the boxed C-G base pair in Bigure

4E1Α, circle 2 is its parent circle and circle 6 is its child circleE

4.2 Structure Alignment Formalization

Given an RNA secondary structure, consider two types of structure components,

single bases and base pairs, in the secondary structure. To integrate both sequence

and structure information, two constraints are introduced among the structure combo-

Lents: precedence constraint and hierarchy constraintE The precedence constraint

is defined as the precedence order among structure components and the hierarchy

constraint specifies the inter-component relationship in the context of the hierar-

chical tree described above. The precedence order is determined by the 3' bases of

individual structure components: the one with its 3' base closer to the RNA sequence's

3'-end precedes the other. For example, in Figure 4.1Α, the single base component
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U (marked as the 11th nucleotide) in circle 3 precedes the base pair component C-G

(boxed) in circle 6.

To capture the inter-component relationship within the hierarchical tree context,

it is needed to map each structure component to a circle in the tree. It is obvious

that each single base can be mapped to a unique circle. However, a base pair could

be mapped to two alternate circles: one parent circle and one child circle. To resolve

this ambiguity, it is always required a component be mapped to its parent circleE The

inter-component relationship is then reduced to the inter-circle relationship of three

types: (i) ancestor/descendent, (ii) common ancestor, and (iii) identical circle.

Given two RNA secondary structures A and B, where A, referred to as the

query structure, has m structure components A 1 , Α2 , ..OE , Am and B, referred to

as the subject structure, has n structure components B 1 , Β2 , ... , Β''^, the structure

alignment between A and B is formalized as a conditioned optimization problem based

on the above two constraints: given a scoring scheme consisting of two matrices, one

for matching two single bases and the other for matching two base pairs, find an

optimal alignment between the two sets of structure components such that the afore-

mentioned precedence and hierarchy constraints are preserved for any two matched

component pairs (Ai, Βi ) and (A), B?). In other words, the two structure constraints

between At and A? must be respectively equivalent to that between Bib and Β? E This

formalization has an implicit biological significance in that a single stranded region

in one structure, if not aligned to a gap as a whole, will always align with a single

stranded region in the other structure. This alignment requirement is important

because single stranded regions are usually treated as functional units in binding to

specific proteins.
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4.3 Algorithmic Framework

A dynamic programming algorithm is employed in Rematch. As with sequence

alignment, the structure alignment could be either global or local. The difference lies

only in the setup of initialization conditions; the algorithmic framework is the same

since both global and local alignment must preserve the two constraints described

above.

A scoring table is established with its rows/columns corresponding to structure

components of the two given RNA secondary structures. The rows/columns are

organized in such a way that the precedence and hierarchy constraints are combined

and easy to follow in the course of alignment computation. Specifically, the structure

components of each structure are sorted according to the precedence order defined

above. It is easy to see that this arrangement of rows/columns makes the precedence

constraint automatically preserved. However, preservation of the hierarchy constraint

is much more complicated and can only be accomplished in the derivative analysis

for each cell (entry) in the scoring table. The detailed derivation will be be discussed

in the course of filling in the scoring tableE

Each cell of the scoring table represents an intermediate comparison between

two partial structures corresponding to the cell's row and column components (either

single base or base pair) respectively. The partial structure with respect to a structure

component c (single base or base pair) is a set of structure components SS such that

for any component a Ε S^ , the following three structure constraints between c and

a must be satisfied: (i) a precedes c; (ii) by the hierarchy constraint, a is not an

ancestor of c; and (iii) c itself is included in S.

Burthermore, since a base pair could appear in two circles, its corresponding

partial structure could be divided into two smaller substructures: parent structure

and child structureE Formally, given a base pair component c, the parent structure

of c is the set of structure components Ρ ς Se (excluding c itself) such that for



In the following discussions, the concept of a partial structure and its byproducts

(parent structure and child structure) form the kernel of the proposed algorithmic

frameworkE As such, the RNA structure alignment problem can be progressively
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solved by aligning small structures and expanding each of them one component at a

time until all structure components are coveredE

4.4 Preliminaries

Cells in the scoring table are processed row by row from top to bottom and from

left to right within each row. By considering the row/column components, three

types of cells are considered: 'i) a cell corresponding to two single bases; 'ii) a cell

corresponding to one single base and one base pair; and 'iii) a cell corresponding to

two base pairsE For 'i), each cell stores the score of aligning the partial structures

corresponding to the cell's row and column components respectively. For 'ii) and

'iii), it is needed to consider alignments involving the partial and child structures

induced by the base pair components. Notice that the parent structures of the base

pair components are excluded. It can be shown that each parent structure Ρ^ of

component c can always be considered as the partial structure SS of some other

component x, which means it is only needed to consider child and partial structures

in the alignment computation, excluding the parent structure. Consequently, the

above three types of cells have one, two and four alignment scores respectivelyE

A scoring scheme is required to score the match of two structure components.

Here the scoring scheme is defined as a function g(a, b) where a and b represent two

structure components that are matched with each other. Another important aspect

of the alignment algorithm is to penalize the match involving gap's). In the course

of computation, one structure component 'single base or base pair) could match with

a gap or a whole small structure (parent or child structure) could match with a

large gapE Intuitively, the larger the gap is, the heavier the penalty will be. In the

implementation, an atomic penalty value was adopted, denoted as u, for the smallest

gap equivalent to a single base. The penalty value for a large gap is proportional to

its size in terms of the number of bases matched with the gap.
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Let A* be a small structure in the query RNA structure A and B* a small

structure in the subject RNA structure BE The score obtained by aligning the two

structures A* and B*, denoted as f (A*, B*), is:

4.5 Initialization

Assume that the row components (ads) are from the query RNA structure A and the

column components (bads) from the subject RNA structure B. Here the focus is on

global alignment while the initializations for local alignment can be derived similarlyE

The initialization conditions deal with the cases where at least one of the structures

under alignment is an empty structure φ. This is equivalent to setting up the 0th

row/column in the scoring table. As discussed above, each base pair component has

two small structures to be considered: a child structure and a partial structure. Thus,

the aforementioned three types of cells have one, two and four initialization scores

respectively.

4.5.1 Filling in the Scoring Table

The simplest cell type is the one with both row and column components are a single

bases a, b. Let αρ denote the structure component that precedes a by precedence order
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established beforeE Bormally, in matching the partial structure S ac with the partial

structure Sb there are only three possibilities: 'i) a is aligned with b; 'ii) a is aligned

with a gap; and 'iii) b is aligned with a gap. Thus the score of matching S ac with Sb

can be calculated by Eq.4.2.

The second cell type is the one formed by one single base and one base pair.

There are actually two symmetric subtypes where either a or b is a base pair. Since

the analysis is identical, the former case where a is a base pair is discussed. As

discussed before, besides the partial structure Sac it is needed to consider the child

structure La derived from the base pair a. Thus, for this type of cells, two alignment

scores need to be computed.

By the principle of dynamic programming, the smaller size problem needs to

be solved before the larger size problem. Thus the structure alignment between the

child structure La and the partial structure Sb is calculated firstE There are only two

possibilities: 'i) the single base component b is aligned with a gap; and 'ii) the base

pair a is aligned with a gap (see Figure 4.3a), which is summarized by Eq.4.2:

In aligning the partial structure Sac with the partial structure Sb, to preserve

precedence and hierarchy constraints simultaneously, there are only three possibilities:

'i) the single base b matches with a gap; 'ii) the partial structure Sb matches with the



Figure 4.3 Alignment derivation involving two partial structures where one is
derived from a base pair 'query) while the other from a single base component
'subject)E The nucleotide bases are depicted as big dots and short dash connecting
two dots represents bond. The corresponding cell contains two values: one is the
alignment score concerning the base pair's child structure 'a); the other concerning
with the whole partial structure 'b). For 'a), the optimal alignment is obtained from
either matching the subject structure's single base to a gap (a.ii) or matching the
query structure's base pair to a gap 'b.ii). For 'b), the optimal alignment is derived
from one of the three possibilities: matching the subject structure's single base to a
gap 'b.i), matching query structure's child structure to the whole partial structure at
subject side 'b.ii), or matching query structure's parent structure to the whole partial
structure at subject side 'b.iii).

For the third cell type, a is a base pair and b is also a base pair. It is needed

to compute four alignment scores because each base pair component contributes two

structures: one child structure and one partial structure. While aligning the child

structure La with the child structure Lb, it is clear that:
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since both a and b are the last components in the respective child structures by

precedence order.

The following equation 'Eq.4.6 gives the alignment score between the partial

structure Sac and the child structure Lt:

The first case corresponds to that b is aligned with a gap. If b does not

match with a gap, it can be shown that, to preserve both precedence and hierarchy

constraints, the second and third cases in the above equation cover all possible

situations. Similarly, the score of aligning the child structure La and the partial

structure Kb can be calculated as shown in Eq.4.6:

In aligning the partial structure Kai with the partial structure St, there are five

possibilities: 'i) the parent structure Ka is matched with the parent structure At and

the child structure La is matched with the child structure Lt; 'ii) the child structure

La is matched with gaps; 'iii) the child structure Lt is matched with gaps; 'iv) the



31

Figure 4.4 CPU time versus RNA size. The averaged time
points are connected. The nearly perfect linear growth of
the running time with respect to the RNA size gives obvious
experimental proof that the algorithm's time complexity
is bounded by (7'n2 ) where n is the number of structure
components.

parent structure Ρ4 is matched with gaps; and 'v) the parent structure Kb is matched

with gaps. Therefore:
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4.6 Running Efficiency

By dynamic programming, the running time of computing an alignment equals the

number of writing operations needed to fill the scoring table. Thus the time complexity

of RSmatch is 7'mn), where m (O, respectively) is the number of structure components

in the query (subject, respectively) RNA structure. To test the salability, the

seed sequences for 5S ERNA family was downloaded from Ram and one annotated

structure was randomly selected as the query while folding the rest sequences were

folded to prepare the structure database as discussed in the next chapter. The

RSmatch running time versus the database size was plottedE The program was run

20 times and the result was shown in Figure 4.4. The nearly perfect linear growth

of the running time gives an empirical proof that the algorithm's time complexity is

bounded by O 'Om) .



CHAPTER 5

APPLICATION TO RNA MOTIF DETECTION

5.1 Data Set

All experiments 'unless otherwise specified) were carried out on a Linux system with

two 2.4 GHz Intel processors and 3 GB memory. A human UTR structure database

was constructed as follows. 29, 986 human Refrain ERNA sequences 'January 2004

version) were downloaded from National Center for Biotechnology Information 'CBI).

Each Refrain sequence containing UTR regions as indicated by RefSeq's GenBank

annotation, was processed to extract its 3d UTR and 3d TR sequences. For each UTR

sequence, 200Ot subsequence was taken at every 50th nucleotide position from 3d to

3d, making consecutive subsequences overlap with one another on a 50nt segmentE

Subsequences shorter than 200Ot, e.g. at the 3d end, were also kept. Using the

Vienna RNA package's RNAsubopt function with setting "-e 0", all sequences were

folded to form the structure database. For any given RNA sequence, the setting "-e

0" will generate multiple RNA structures all having the minimum free energy. The

final database consisted of 575, 000 RNA secondary structures.

The structural patterns of a histone 3dUTR stem-loop structure 'HSL3) and an

iron responsive element 'IRE) were used in this study, based on their specifications in

the UTRdb database [37]. Three tools, matriarch [25], stemloc [60] and Research [59],

were employed for comparison purposes. The efficiency of these tools was measured by

CpU running timeE The performance of each program was assessed by specificity and

sensitivity. Specificity was calculated as Tm/'Tm + Bp) and sensitivity as Tm/'Tp

+ BN), where ΤΡ was the number of true positives, Fp the number of false positives,

and BN the number of false negatives.

To test the applicability of Rematch to complex structures, RNA families were

downloaded from Ram [35]E Only chose families that have more than 20 seed RNA

33
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and the consensus sequence length longer than 250 nucleotides are chosen in this

study. The final data set has 64 families. For each family, one member RNA was

randomly selected as the query RNA and its structure was obtained from Ram.

Another set of 20 subject RNA in the same family was then randomly chosenE Here

noise was intentionally introduced by extending each subject RNA sequence with its

adjacent sequences at both 3d and 3d ends to make the total length three times of its

original one.

5.1.1 Performance on Stem-loop Structures

Using RSmatch, RNA motifs in TR regions of human ERNA sequences were first

studied. A well-known fact is that the accuracy and efficiency of RNA folding

programs will decrease significantly when the sequences to be folded become very

long. Satisfactory performance is usually obtained when the sequences have moderate

lengths, i.e. one hundred nucleotides. Thus, a moving window scheme was used to

get subsequences of 200Ot and fold them using the Vienna RNA package [39]. In the

RSmatch package, this subsequence length is a user-defined parameterE

Since the nucleotide conservation in the double-stranded region of an RNA

sequence may differ from that in the double-stranded region, two scoring matrices

were used, one for substitutions among single bases and the other among base pairs.

This type of scoring scheme was also used in other studies [20, 59]. Theoretically,

the scoring matrix for single bases is a 4 x 4 table for all types of substitutions of

single nucleotides, and the one for base pairs is a 26 x 26 table for all types of substi-

tutions of base pairs. However, using Vienna RNA package, only six types of base

pairs were observed, iEe. Watson-Crick base pairs G-U, URA, G-C, C-G, and wobble

base pairs G-U and U-G. Values used in the two matrices were empirically chosen

so as to conform to the general understanding of the sequence and structure conser-

vation of RNA motifs, as followsE '2) Mutations in the double-stranded region may
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not be detrimental to RNA's function if the mutated sequence still preserves the

same secondary structure. Τherefore base pair substitutions were rewarded with a

positive score, instead of a penalty. '2) A sequence in the single-stranded region may

be important for RNA's function, such as binding to proteins, and thus mismatches

were penalizedE An simplified function u x l was utilized to process gaps, where u was

the atomic penalty value for a gap which is one single base long and 1 is the length of

the gap in terms of the number of bases matched with the gap. In the experiments

otherwise stated explicitly, the u was empirically set to —6 and changing the u value

did not change the qualitative conclusion made provided that the absolute value of u

was greater than any positive score in the scoring matrices. Users can freely change

the u value when applying RSmatch to their own data set.

RSmatch was first tested using a query sequence containing an iron response

element 'IRA)E Τhe IRA motif is a bipartite stem-loop structure containing 30

nucleotides. Two alternative types of IRAs have been found, which differ in the

middle region [37]. Type I has a bulge, whereas type II has a small internal loop.

IRAs have been found in both 5d and 3d UTR of genes that are involved in iron

homeostasis in higher eukaryotic species. They interact with iron regulatory proteins

'IRAs) and play key roles in RNA stability and translation. Using a subsequence in

the 3dUTR of transferred receptor 'ΝΜ_003234) that contains an IRE motif, database

search was conducted against the TR structure database described above. A list of

top hits is shown in Big.5E2. The best hit of the search is the query structure itself, as

expected. Other regions of the same ERNA and regions of other RNA are also found

to have homologous structures with the query. As clearly shown in the result, the

region containing the IRE motif, which is from about the 30th nucleotide to about the

60th nucleotide of the query structure, has been located by the Rematch program,

indicating that a local optimal alignment has been achieved. Among the top 20 hits,

several sequences are known to have IRAs, such as several regions in the 3dUTR of
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Figure 5.1 Database search with an RNA structure containing an IRA motif.
Α structure element in the 3dUTR of human transferred receptor 'ΝΜ_00323o)
was used as a query to search the TR structure database. 'Α) The output
from RSmatch showing the top 22 hits. The six columns in the ``Hits" section
are, from left to right, rank, alignment score, region in the query, name of the
hit, region in the hit, and annotation of the hit respectively. (B) Α pairwise
alignment of the query structure and a hit structure (ΝΜ_00323o:3o02-3500).
'C) The RNA structures corresponding to the query and the subject 'hit)
structure in 'B)E 'D) ecoring matrices and the gap penalty used in the searchE
T and U are used interchangeably in this study.
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transferred receptor 'ΝΜ_003234) and the 3' UΤR of solute carrier family 40 protein

'ΝΜ_024585). Other top hits have not been shown so far to have IRAsE It is not known

if some of them are novel IRE-containing RNA and the definitive answer will await

wet lab validation. The output shows detailed alignment and related information,

including the numbers of bases in the double-stranded and single-stranded regions,

and the percentages of identity in double-stranded and single-stranded regions.

RSmatch can also accept pattern-based RNA structures 'also called pattern

descriptors) to search a structure database. Since a pattern-based search method

has an intrinsic primitive scoring scheme by using degenerate bases, simplified binary
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matrices were used as the equivalent to score an alignment. In the matrices, the

match of a pair of structure components (single bases or base pairs), including those

containing degenerated bases, was given a score of 2, a mismatch was penalized by a

score of —2, and the atomic gap penalty u was set to —3.

To allow variability in double-stranded and/or double-stranded regions for a

structure pattern, a wildcat "n" 'lower case) was introduced to represent optional

single base component '"n") and base pair component '"n-n"). The meaning of "n"

is identical to the BUB code "N" except that the matching score for both structure

components "n" and "n-n" is always zero regardless of whether they are aligned with a

structure component or a gap. Two RNA motifs, namely a histone 3d TR stem-loop

structure 'HSL3) and IRA, were used to test the proposed method. HSL3, which

resides in the 3d TR region of histone mRNAs, has a typical stem loop structure

with two flanking tails (Fig.5.2'a)). Both the stem and the flanking sequences are

important to bind with a stem-loop binding protein (ALBA), which controls the pre-

mRNA processing and stability of histone mRNAs [38]. In contrast to the HSL3

motif, IRE is relatively flexible in length and in nucleotide composition in its stem

region 'Big.5.2'b)). RSmatch was compared with Matriarch [25], a widely used tool

that searches a sequence database for sequence and structure patterns.

Using the HSL3 motif and UΤR sequence database, patriarch found 55 hits

whose locations were presented in Τable 5.2. Among them, one is a false positive

'ΝΜ_024372, ring finger protein 22, shown at the bottom of Table 5.2). Therefore the

specificity '98.2%) of Matriarch is very high. This is attributable to the precise speci-

fication of the HSL3 pattern. However, if a pattern description is too precise, it may

lead to the "overfilling" problem. This problem prevents the tool from finding slightly

divergent structures, thus lowering the tool's sensitivityE Indeed, several histone genes

were not detected by Matriarch, including two histone genes 'histone Hoc ΝΜ_0035o2

and histone Ho ΝΜ_0035o8) which were found by RSmatch among its top 33 hits.
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a Items listed here include those found by patriarch and those found by RSmatch

using cutoff value of 8 that are related to histone genes;

b Rematch gets 33 hits at cutoff value of 2o and gets 28o hits at cutoff value of 8;

mRNAs that are not detected to have the HSL3 motif by patriarch are marked
with "N/A".
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riveral other histone genes appeared among the top 28o hits of RSmatch 'Table

5E2). This indicates that by gaining specificity, matriarch loses sensitivity for HSL3.

Since Rematch gives a score to each alignment, different cutoffs can be used for

selecting top hits 'Table 5.2). It seems that newly detected true positives are heavily

outnumbered by false positives as Rematch relaxes its cutoff value. However, with

some properly chosen cutoff, i.e. 22, Rematch could still achieve a comparable speci-

ficity with patriarch. One possible explanation of getting high false positives for

Rematch could be that, with respect to the particular case of the HSL3 motif, its

secondary structure conformation might be too pervasive in RNA sequences to be used

as a discriminative feature. This could point out a problem concerning Rematch's

current scoring matrices, which need to be fine tuned to improve the tool's specificity.

Good tuning could be achieved by setting up the scoring matrices through learning

from a training data set. One interesting observation, however, was that Rematch

and matriarch agreed perfectly upon the HSL3 locations for almost all of the true

positives they found.

Table 5.2 performance of Rematch in the HSL3 experiments

s matriarch has a specificity of 98.2% and sensitivity of 87.2%;

b Hits whose scores are greater than or equal to the cutoff value used in this study

are selected;

Assume there are 62 ERNA structures containing the HSL3 motif, which include

all histone mRNAs found by Rematch and matriarch.

Using the IRE motif, further comparisons between Rematch and three other

tools: patriarch, stemloc and Research, were performedE Default parameters for
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Research were adopted; for stemloc, the fold envelop was set to 2000. Instead of

using the large UΤR structure database described above, a small test date set was

constructed to expedite the comparison process. Birst, matriarch was used to search

human TR sequences for IRA motifs. Then for each hit sequence, its corresponding

RNA's 3d and 5` UTR sequence were selected. Bollowing the same folding process

as discussed before, these TR sequences were folded to form the test data setE

Τotally, matriarch found 27 hits, among which 9 were known true positivesE Therefore

Patriarchy's specificity was 33%E These hits were from 23 distinct ERNA sequences.

Assume that matriarch had a 200% sensitivity. Τhe 3d and 3d TR sequences were

extracted from the 23 distinct mRNAs and o6 UTR sequences were obtained. The o6

UTR sequences were then folded to get a small test data set, which contained 2296

structures. Using a known IRE-containing structure 'ΝΜ_000032), which was one of

the 9 true positives found by matriarch, as the query, the small test data set was

searched. Table 5.3 shows the resultsE Since Research only accepts sequences, it was

tested using only the primary sequence information in the test data set.

Except for the IRE-containing structure ΝΜ_002098, which was one of the 9

true positives found by patriarch, and the query itself 'ΝΜ_000032), all tools agreed

on the IRE locations for the other seven true positives without salient discrepancyE

Careful examination showed that ΝΜ_002098 was not properly folded to exhibit the

existence of the IRA motifE Rematch has the best specificity by ranking all seven

true positives within its top 8 hits with only one false positive 'ΝΜ_032o8o). Research

is close to Rematch by ranking all seven true positives within its top 8 hits with one

false positive (ΝΜ_003672). In contrast, stemloc gives five false positives within its

top 20 hitsE ritting different cutoff values yields different specificity and sensitivity

for each tool. Τhe point of balanced specificity and sensitivity appears at the cutoff

value of 8 for all three toolsE With this cutoff value, the specificity of Rematch and

Research tied at 7/8 x 200% = 87E5%. This is better than the specificity of patriarch
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a ΝΜ_000032 is used as the query structure for Rematch, Research, and stemlocE

Thus there is no value 'shown as ".2').

'33%) and the specificity of stemlocE ' 50%). The sensitivity of Rematch, Research

and stemloc is 87.5%, 87.5% and 50% respectively. It is worth noting that Rematch

runs 30% faster than Research; it took Research 3o seconds to search the whole data

set of 2296 structures while RSmatch used only 23 seconds. Consequently, RSmatch

would be suitable for analyzing large data sets. It should also be pointed out that

RSmatch permits wildcats in database searching and structure matching, which are

not supported by Research or stemloc.
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5.2 Performance on Complex Structures

Burther tests were conduct to measure how accurate RSmatch is for much complex

structures. To this end, RNA structures and sequences were obtained from the Ram

database. 6o RNA families were used, each had more than 20 seed sequences and the

consensus sequence length less than 250 nucleotides. For each RNA structure family,

a structure was randomly selected as the query and searched against 10 randomly

selected sequences belonging to the same family. Τo reflect real world scenarios,

RNA sequences were extended at both 3d and 3d ends so that the length of a subject

sequence was three times that of the original one. To ensure that the folded structures

are long enough to fully contain the structure being investigated, it is required the

moving window size be 2.6 times the length of the query RNA sequence. Burthermore,

to include suboptimal structures, all structures with free energy within 2.6 kcal/mol

above the minimum one were used. Compared with HSL3 and IRA, the 6o query

structures were much more complex, with average length of 120nt and more than

70% of them comprised of nested loops and conjunctions.

To assess the accuracy, a measure called structure coverage denoted as p, was

introduced and calculated by the following formula: p = ( Qaa2gn 1 /max '1 Q 1 , 1 Sα'zgn 1 ),

where Ι Qaa2gn and Ι Qaa2gn Ι are the lengths of aligned portion of query RNA and subject

RNA, respectively, and IQI is the length of query RNA sequence. As shown in BigE5.3,

even though Research has slightly more points clustered around high coverage area

'> 90%), the difference in the overall performance between Rematch and Research

is not significant. In addition, the difference between Rematch and Research do not

seem to be related to structure size or complexityE This result indicates that RSmatch

has the ability to process complex structures.

5S ERNA family was then selected for further detailed tests. 5S ERNA has a

length of 120nt, which contains several types of RNA structures, including hairpin,

internal loop, bulge, and junction. There are 602 sequences in the 5S ERNA family,
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suitable to carry out a thorough analysis. One 5S ERNA was randomly chosen as

query structure and ten others as subject sequences for alignment. This process was

repeated 200 times. The performance comparison of Research and Rematch is shown

in Fig.5.o. For 5S ERNA, RSmatch outperforms Research in discovering the overall

sequence more completely. An exemplary alignment is shown in Fig.5.5.

5.3 Multiple Structure Alignment and Iterative Database Search

Rematch algorithm has been extended to conduct multiple structure alignmentE An

example using IRE is shown in Bigure 5.6. While the alignment algorithm is the same,

the multiple alignment function uses a position-specific scoring matrix 'PSSM, Figure

5E7). For a given set of structures, the multiple alignment function first identifies
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the best alignment of two structures, and builds a ASSM. The ASSI is then used to

search for the closest structure in the rest of the set. A flowchart of multiple structure

alignment is shown in Bigure 5.8. If the alignment score of a structure to the PSSI

is above a cutoff 'user-defined), it is selected and its structure is used to update the

ASSM. This step is iteratively conducted until no structures have alignment score

above the cutoff. In a sense, this method employs an implicit guided hierarchical

tree using the average value for joining nodes. As an example, from human TR

database 6 IRE-containing structures were selected and other 6 none-IRE structures

were randomly chosen to form a small dataset and RSmatch was run against it. The

output is shown in Figure 5.6. The final result is in Stockholm format for multiple

structure alignment. Conceivably, when the given set of structures is a large database,

the multiple structure alignment function of RSmatch in effect conducts iterative

search for finding similar structuresE

5.4 Discussion and Conclusions

The work presented here is intended to provide an efficient tool to directly perform

structure alignment and search of RNA secondary structure databases. Its capability

to carry out multiple structure alignment and iterative database search can potentially
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be used to uncover RNA motifs Bab initioEE Bor example, one can use an RNA structure

of interest to search an RNA structure database, and build ASS iteratively to build

an RNA motif, as demonstrated for IRA in this studyE

RSmatch bears similarities to rna_align and RNAforester in that the structural

particularities are either explicitly captured using hierarchical tree/forest structures or

implicitly represented using arc-annotated structures. However, RSmatch differs from

rnaalign and RNAforester in two major aspects. Birst, RSmatch keeps structural

consistence by only allowing single bases matched with single bases and base pairs

matched with base pairs whereas rnaalign and RNAforester don't impose this restriction.

ricond, RSmatch keeps the integrity of single-stranded regions by matching one with

another, instead of breaking a single-stranded region into pieces and aligning them

with different single-stranded regions. In addition, RSmatch has less time and space

complexities than the other two tools.

Τhe concept of circles introduced in this paper is reminiscent of the "k-loop"

described in the classic RNA structure prediction paper. The difference is that the

circles can reflect the inter-base-pair relationship by focusing on two base-pairs at

a time while the "k-loop" cannot. By organizing all circles into a hierarchy tree,

the overall structural particularity can be captured. It should also be pointed that

there is a major difference between the hierarchy tree introduced here and the parse

trees of SCFG. The hierarchy tree is constructed from circles and aims to obtain the

panorama of the secondary structure of RNA at a higher level than that of the SCFG

parse tree, while detailed information is still available within each circle in the tree.

With the introduction of partial structures, this two-level structure modeling 'intra-

and inter- circles) makes it possible to develop an efficient algorithm that runs at time

O(mn) as shown in this thesis.

The proposed approach takes full advantage of structure prediction techniques.

It separates RNA folding from structure alignment. Simultaneous RNA folding and
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alignment is believed to be the optimal solution for both finding the right structure

and locating homologous sub-structures of RNA. Unfortunately, it is computa-

tionally prohibitive for even a moderate number of RNA. Some improvements have

been proposed, but extensive computing time still makes them infeasible for database

searches. By separating the process into two steps, the computing efficiency has been

greatly enhanced, making it possible to process a large-scale pre-folded RNA structure

database for homologous motifs. However, a drawback of using pre-folded RNA is

that the prediction tools may not produce correct RNA structures, as observed in

the experiments. It is estimated that the RNA folding programs solely based on

thermodynamic properties of RNA can correctly predict RNA structures with about

70% of chanceE Secondly, higher complex structures, such as pseudoknots, cannot

be predicted in most commonly used programs, including the Vienna RNA package

used in this study. A solution to removing the first drawback is to choose suboptimal

structures in addition to the optimal one to increase the chance of obtaining correct

structures. It has been reported that using suboptimal structures whose thermo-

dynamic free energies are within 2% of that of the optimal one can greatly improve

the structure prediction of RNA. In the IRE experiments shown above, it was found

that the predicted structure for ΝΜ_001098/1-23 did not exhibit the existence of an

IRA motif. By relaxing the free energy range, the IRA motif was finally detected

from one suboptimal structure whose free energy was 1.7kcal/mol higher than the

optimal one. Because of the computing efficiency of the program, an increase of the

number of RNA structures does not impose big buten on database searching (data

not shown). The cost will be at the database building stage, which is however done

only once.

The moving window approach used to extract and fold subsequences was aimed

to make the folding process more accurate and efficient. Τhis is because RNA folding

programs are known to have pronounced difficulties in correctly predicting large RNA
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structuresE Furthermore, predicting the structure for a long sequence takes much

longer time than predicting structures for its subsequences. Another advantage of

using the moving window method is that small motifs falling in the overlapped subse-

quences could be folded twice, increasing the chance of their being detectedE

pattern-based tools, such as patriarch and RNAmotif, use descriptions of an

RNA structure as queries to search a sequence database for similar structures. This

type of search does not take into consideration the context of a hit sequence, which

could influence the (sub)structure of the sequence. Bor example, as shown in the

experimental results, Matriarch can achieve a satisfactorily high specificity when

the structure of a pattern is not flexible and its description is relatively precise,

such as the HSL3 motif. However, the sensitivity of Matriarch is low with rigid

pattern descriptions. For relatively flexible structures, such as IRAs, the specificity

of patriarch drops because it does not take into account the context in which a

motif is located. On the other hand, using folded RNA structures, the proposed

RSmatch tool overcomes these shortcomings with a high specificity, thus comple-

menting the pattern-based tool. However, as also shown in the experimental results,

the error existing in folding an RNA sequence (ΝΜ_001098) can lower the sensitivity

of RSmatch. It may suspect that the inaccuracy introduced by RNA folding could

be a bottleneck for the proposed technique in achieving a very high sensitivity.

Τhe scoring matrices for double-stranded and double-stranded regions and the

gap penalty assignment are very primitive in the sense that they are not based

on any probabilistic model or learned from any training data set. One interesting

observation in the HSL3 experiment was that RSmatch did find most HSL3 sites

correctly. However, the scoring scheme seemed not acute enough to filter out many

false positives. part of the problem is that there are not enough motifs that can

be used to construct optimal scoring matricesE In fact, tests were conducted using

the matrices (RIBOSOME) proposed by Klein and Eddy, which were built upon small
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subunit ribosomal RNAE No discernible difference was found in the HSL3 experiment,

in which both matrices were used (data not shown). Another related question is

whether different types of RNA, such as ERNA, ERNA, and UTR, need their own

scoring matrices. It is conceivable that large highly structured RNA, such as ERNA,

may be able to tolerate more mutations than short RNA motifs that occur in TR

regions. If so, using different scoring matrices for different types of RNA will

be warranted. Burthermore, it is possible that the mutation rate is different for

nucleotides in different regions of an RNA motif. Therefore, ASSM might be more

suitable in these cases. Τo this end, the iterative search function of Rematch, which

searches a database using ASSM, can be applied.

Motivated by the statistical methods of assessing results in sequence alignment,

attempts were tried to develop scores of the database search with known probabilistic

distributions. The score distribution seemed close to be normal (data is not shown).

However since the scoring scheme is still at its preliminary stage and much is to be

learned about the RNA structure database presented in the paper, search results are

presented in terms of ranking. More elaborate statistical assessment of the search

results will be developed in the future.



CHAPTER 6

MINING CONSERVED RNA STEM-LOOPS IN HUMAN AND

MOUSE UTRS

UnTranslated Regions (UTRs) of mRNA constitute a large proportion of the gene-

coding sequence in mammalian gnomesE UTRs are involved in various steps of

ERNA metabolism, including RNA localization, translation, and stability. Regulation

of gene expression through UTRs occurs in diverse cellular pathways and at various

developmental stages. riveral RNA stem-loops structures in UTRs have been experi-

mentally identified, including the histone 3d-UTR stem-loops structure (HSL3) and iron

response element (IRE). These stem-loops structures are conserved among mammalian

orthologous, and exist in several genes with similar functions. It is not known, however,

to what extent stem-loops structures like these exist in human UTRs.

This chapter took a systematic approach to mine stem-loops structures in human

and mouse UTRs Special interest was on RNA stem-loop that were conserved

between human and mouse orthologs and existed in genes with similar functions or

involved in the same pathway. By comparing RNA structures between human and

mouse orthologs genes, and then among all human genes, followed by combining

Gene Ontology information, 30 RNA stem-loops structure groups were identified. The

result indicates that there exist more conserved stem-loops structures in UTRs, but

their conservations are less than those of HSL3 and IRA.

6.1 Introduction

Post-transcriptional control is one of the mechanisms that regulate gene expression in

human cells. RNA elements residing in the UnTranslated Regions (UTRs) of mRNA

have been shown to play various roles in post-transcriptional control, including ERNA

localization, translation, and ERNA stability [17, 18, oo]. RNA elements in UTRs

53
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can be roughly divided into two groups: elements whose functions are primarily

attributable to their sequences and elements whose functions are attributable to their

secondary or tertiary structures. Bor simplicity, they are called sequence elements

and structure elements respectively. Well-known sequence elements include AU-rich

elements (ARE), which contain one or several tandem AUUUA sequences and are

involved in RNA stability [62-6o], and miRNA target sequences, which have sequence

partially complementary to cognate miRNA sequence and involved in translation or

stability [65]E

Among all structural elements, the histone 3d-UTR stem-loop structure (HSL3)

and the iron response element (IRE) have been most extensively studied [37, 38].

In either case, both sequence and structure are important for the functions of the

structural elements. HSL3 is a stem-loop structure of 25 nth that exists in 3d-UTR of

most histone genes. The structure is critical for both the termination of transcription

of these histone genes, and the stability of histone miRNA. HSL3 structures bind

the stem-loop binding proteins (SLAP). IRE is a stem-loop structure of 30 nth with

a bulge or a small internal loop in the stem. IRAs have been found in both 3d-UTR

and 3d-UTR of miRNA whose products are involved in iron homeostasis in higher

eukaryotic species. IRAs bind the iron regulatory proteins (IRPs), which control

translation and stability of IRE-containing miRNA. HSL3 and IRA are similar in

several aspects: both are small simple RNA structures less than o0 nt; both exist in

UTRs of several genes with related functions; and both bind cellular protein and exert

post-transcriptional gene regulation. The regulations via HSL3 and IRE constitute

a distinct mode of gene regulation, whereby several genes can be regulated via a

common RNA structure in UTRs. It is not known, however, to what extent human

miRNA are subject to the same mechanism.

Identification of functional sequence motifs in gnomes has been heavily studied

in recently years, particularly for the promoter region and sequences related to splicing
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[66-71]E However, RNA structure elements have been investigated to a much lesser

extent, largely due to the difficulties in predicting right RNA structures and conducting

RNA alignments and huge computing costs involved. While some successes have

been achieved using phylogenetic approaches to gain accuracy in RNA structure

prediction [72-7o], large-scale mining of conservative structures in human UTR has

not been attempted.

Here a systematic approach is presented to uncover novel conserved RNA stem-

loops in human and mouse UTR. Using the newly developed RNA structure alignment

tool Rematch, the first step is to compare RNA structures in UTR from human

and mouse orthologs. Using cluster analysis and Gene Ontology information, RNA

structures that existed in more than 2 genes that share common functions, and are

involved in the same biological pathways, were identified. Finally, cross-validated

RNA structures were identified from human UTR by mouse UTR. Overall, 30

RNA stem-loops structure groups were detected, including HSL3 and IRE. This bioin-

formatic study lays a ground work for future wet lab validation of putative conserved

RNA stem-loops in human and mouse UTR, and represents a framework which can

be used to discover RNA structural elements in other studies.

6.2 Materials and Methods

6.2.1 UTR Sequence and Structure Databases

From National Center for Biotechnology Information (NCBI), 28,926 human and

26, 2o3 mouse RefSeq ERNA sequences (January '0o versions) were downloaded. The

information regating human and mouse orthologs was obtained from the Homologue

database (fop : //fop . ncbi . nih . gov/pub/HomoloGene/). UTR of Refrain sequences

were extracted according to RefSeq's GenBank annotation. RNA structures in UTR

were prepared by a method called "slide and fold", as described in [75]. Briefly,

for each UTR sequence, 100nt subsequences were taken at every 50nt nucleotide

position from 3' to 3', making consecutive subsequences overlap with one another on
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a 50nt segment. Subsequences shorter than 100nt, e.gE at the 3' end, were also keptE

Then all subsequences were folded using the RNAsubopt function in the Vienna RNA

package [39, o0], with the setting "-e 0". With this setting, multiple structures with

the same minimum energy can be generated. Using the method, 575, o10 structures

from human UTR, and oo5,106 structures from mouse UTR were obtained.

6.2.2 RNA Structure Comparison

Pair-wise comparisons of RNA structures were carried out by RSmatch [75], with the

"search" function and default scoring matrices for single-stranded (ass) and double-

stranded (ads) regions. Specifically, nucleotide match scores are 1 and 3 in ss and

ds regions, respectively; and mismatch scores are -1, and 1 in ss and ds regions,

respectively. Gap penalty is -6 for both ss and ds regions. This scoring scheme in effect

favors structure matches. The focus was on on three values from each comparison:

sequence length of the alignment, size of the ds region of the alignment, and score

from RSmatchE

6.2.3 Randomization of UTR Sequences

Randomization of TR sequences was carried out by PEARL using a reorder Markov

Chain Model. Briefly, 1, 000 human and mouse orthologs gene pairs were randomly

chosen. Bor each sequence, the occurrences of all 6 and 5 nucleotides (hemmers and

pentamers) were calculated and used to derive transition probabilities for the IC

model. The IC model was then used to generate randomized TR sequences, which

were processed by the same method for real TR sequences.

6.2.4 Comparison of RNA Structures Among All Genes

Human RNA structures selected from the comparison of human and mouse orthologs

were further compared among genesE Structures that were similar to other structures

from at least 3 distinct genes with the similar score? 17 were selectedE Overall, 2, 05o
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out of 6, 3o5 structures met the criteria. To assess the false positive rate of this step,

randomization on all human RNA structures (6,3o5) was conducted by randomly

swapping nucleotides in the ss and ds regions, respectively, while maintaining the

overall structure. Randomized structures were treated as real structures.

6.2.5 Cluster Analysis of RNA Structures

To cluster RNA structures, the normalized dissimilarity scores S i,j between all structu-

res were first calculated; Di,j = (SSmax — Ki,j)/Kmax, where Di,j was the similarity score

derived from RSmatch using the local structure alignment function between structures

i and A, and SSmax was the maximum similarity score of all structure comparisons. For

cluster analysis, the hierarchical clustering function in R with the "average linkage"

method was used for joining nodes. To select groups of RNA structures, the "cutree"

function was applied to cut the hierarchical tree into groups using the normalized

dissimilarity scores, which were also called heights in the tree. Structures in each

group were aligned by the multiple structural alignment function of RSmatch with

default scoring matrices. Structures in the same group were also compared pair-wise;

the average of all pair-wise similarity scores for the group was called Cohesive Value

(CV), which indicated the degree of structural closeness the member structures in the

group are to each other.

To assess the quality of structure groups, the following method was applied to

derive expected CVs for groups: from the 205o motif structures, the method randomly

selected a defined number of structures and calculated the CV. This process was

carried out for groups with o-20 structures. Bor each group, the process was repeated

100 times. The average of all CVs for a particular group size is its expected valueE

Groups with CV above the corresponding expected value were selected for further

analysis.
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6.2.6 Gene Ontology Analysis

Three Gene Ontology (GO) categories, i.e. molecular function (MBA), biological

process (BP) and cell component (CC), were downloaded from Gene Ontology consort-

ium (hoops : //wow . geneontology. . Borg/)E The mapping between genes and GO entries

was obtained from LocusLink database [76]. Hypergeometric analysis was used to

assess whether an RNA structure group was significantly associated with some GO

entries, as previously described [77] . Structure groups with devalue < 0.05 were

selected.

6.2.7 Cross-validation with Mouse UTR Structures

rilected human RNA structure groups after GO analysis were compared to their

orthologs mouse structures. For each group, mouse UTR structures corresponding

to human structures in the group were retrieved and compared by the multiple

structure alignment function of Rematch. For each group, the consensus structure of

human RNA structures was compared to its mouse counterpart. An RNA structure

group was selected if (1) the human consensus was identical to the mouse one, or

(2) the human consensus was contained within mouse one or vice verse. In the latter

case, a consensus of human and mouse structures was built to represent the structure.

6.3 Results and Discussion

In this study, the final goal is to identify stem-loop structures in human and mouse

UTR that may play roles in post-transcriptional gene regulation. Marticular interest

is in finding structures with properties like those of HSL3 and IRE: (1) They are

located in UTR; (2) they contain stem-loop structures with a size 30nt; (3) They

are conserved between human and mouse orthologs; (o) They occur in several genes

that have similar functions or are involved in the same biological pathways; To this

end, a mining strategy was developed and depicted in Fig.6.1.



First, UTRs sequences were extracted from RefSeq sequences obtained from

NCBI. Then a "slide and fold" method was then adopted to construct RNA structures

in UTRs (see Materials and Methods for details). With this method, subsequences

in UTRs, 100nt long or less, were folded using the Vienna RNA package. Adjacent

subsequences overlapped by 50nt. This method can derive RNA structures accurately

and efficiently for two reasons: (1) Predicting small structures is more accurate

and efficient than big ones; (2) Structures with the size less than 50nt were folded

twice, further increasing the chance of getting accurate RNA structures. These two

advantages are particularly relevant for mining small RNA structures in this study.

In addition, the setting used in the Vienna package could give rise to multiple RNA

structures with the same minimum energy for a given sequence and thus further

improved the folding accuracy. This step resulted in 575, o10 RNA structures from

human UTRs and oo5,106 RNA structures from mouse UTRsE
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RNA structures from human and mouse orthologous were compared. Bor each

orthologous gene pair, the set of RNA structures from the human gene were compared

with the set of structures from the mouse gene. Alignments with a positive score

were kept. In oter to assess the significance of the alignments, three values of a

structure alignment were considered: size of the alignment, size of the ds region

of the alignment, and RSmatch score of the alignment. The goal was to obtain

expected values from randomized structures to select real aligned structures. To this

end, sequences were randomized using a remoter Markov Chain (MC) Model. The

reason to choose 5-ORDER IC model is because sequence elements that are 6nt or

shorter still remain after randomization, thereby separating sequence conservation

from structure conservation. For each aforementioned value type, the expected value

was the 95th percentile of all values from the randomized set. Bor the size of aligned

structure, the size of ds region, and the RSmatch score, the expected values were

23nt, 14nt, and 17, respectively (Bigures 6.2, 6.3, 6.o). For each histogram, the 95th-

percentile value is indicated by a vertical dotted line, i.e. 23 in 6.2, 1o in 6.3, and

17 in 6.o. Structure alignments that had at least two of three values higher than the

respective expected values were selectedE In addition, structure alignments in which

two comparing structures were identical at the sequence level were eliminated. This

step resulted in 6,345 alignmentsE

To make the proposed approach computationally efficient, the focus was on

human RNA structures. Since special interest was on structures that existed in several

genes with related functions, an all-against-all pair-wise comparison of all 6, 3o5

RNA structures was conducted. Each comparison gave rise to an alignment score.

Structures that were similar to at least three other structures with the alignment

score > 17 were selectedE 2, 05o RNA structures were obtained at this step (BigE

6E5). To assess the false positive rate of the selection criteria, RNA structures were

randomized by swapping nucleotides in both ss and ds regions, while keeping the
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overall secondary structure intact. With the same selection criteria, 851 structures

from the randomized set could be selected. Thus, 60% (1,203/2,054) structures as

selected were significant.

To group similar RNA structures, hierarchical clustering was adoptedE First,

using pair-wise alignment scores, the normalized dissimilarity scores can be derived to

represent distances among the structures. It was straightforward then to construct a

hierarchical tree containing all 2,054 structures based on their mutual dissimilarities

(Fig.6.6(a)). Hierarchical tree can be cut at different heights to give rise to subtrees

representing groups. To group structures, all possible heights were first obtained to

form a distribution of the number of groups (FigE6.6 (b)) E Then, 100 distinct heights

were selected at every percentile of the distribution. Using these 100 values to cut

the tree, totally 58,247 groups of structures were obtained, each containing several

structures.

Since special interest was on structures that existed in multiple genes with

similar functions, RNA groups were further studied by their Gene Ontology (GO)

information. The hypergeometric test was adopted to measure the significance of the



association of a structure group and a particular GO entry. If a structure group was

significantly associated with a GO entry (devalued < 0.05), and more than one structure

in the group was associated the GO entry, the group was considered significantly

related to the GO entry, and selected for further analysisE

To measure how similar member structures in each selected group are to one

another, a measurement called Cohesive Value (CV) was introduced, which was the

average of all pair-wise similarity scores among structures in the same group. To

assess how significant a group was with respect to the similarity among structures

in the group, the same number of structures from 2, 054 structures were randomly

chosen to form a group, and its CV was calculated. Bor a given group size, the process

was repeated 100 times and the mean value was used as the expected CV for groups of

the same size. Since the number of structures in a group ranged from o-20, expected

values for groups with 4-20 structures were derived in Fig.6.7. 1323 structure groups

were obtained with CVs above the corresponding expected values. Overall, 1551

structures were selected. In addition, since one structure may exist in several groups

due to different heights used in cutting the hierarchical tree, groups that overlapped
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with other groups with better CVs after the GO analysis were eliminated. This step

resulted in 1051 groups of structures, corresponding to 1399 RNA structures.

Finally, the cross-validation was conducted on the human structure groups by

their mouse orthologs. Bor structures in each structure group, their corresponding

mouse structures were retrieved (Fig.6.1). Mouse structures were aligned by the

multiple structure alignment function of RSmatch to give rise to a consensus structure.

If the consensus structure from a human group was the same as that from its corre-

sponding mouse group, or one was part of the other, the structure group was then

considered as validated. This step resulted in 30 groups of RNA structure groups

corresponding to 370 structures.

6.3.1 Identified RNA Structure Groups

Among 30 groups of RNA structures, HSL3 and IRE ranked the 1st and 2nd with

respect to CV. This result not only validated the proposed approach, but also indicated

that other groups of RNA structures also existed, but probably not as well conserved

as HSL3 or IREE Using the multiple alignment function of Rematch, consensus

structure was generated for each structure group. In a sense, each structure group
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represented a putative RNA structural element. The structure sizes of the consensus

structures ranged from 15 to 31E

While various randomization methods were incorporated in the process with

the goal to keep false positive rate low, spurious structure groups can still existE

The emct false positive rate is hard to calculate as multiple steps are involved. An

estimate is 60% based on the assessment during the all-to-all pair-wise alignment

stepE False negatives can also arise at several stepsE First, it is known that RNA

structure prediction is not 100% accurate. This would affect RNA structure groups

with smaller number of structures more. ricond, in order to separate conserved

structures from conserved sequences, structures that were identical between human

and mouse orthologs at the sequence level were eliminated. This step could affect

RNA structures that are perfectly conserved between human and mouse. Thit, some

structures may reside in genes that are not functionally related, or GO information

for their genes is not yet availableE
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Despite false positives and false negatives, some RNA structure groups look

promising and warrant further wet lab validations. Since it is generally believed

that for stem-loop, nucleotides in the loop region are more likely to participate

in the nucleotide-specific recognition by RNA binding proteins, structure groups

with conserved nucleotides in their loops will be of greater interest for validationsE

Bor emmple, among the final 30 groups, there was one structure group related to

transcription and has a stem-loop structure with a conserved G in the loop; and several

structures related to cell proliferation, cell cycle, and cell growth and/or maintenance

have the CΑGA sequence in the loop.

6.4 Conclusion

A systematic approach was proposed to mine stem-loop structures in human and

mouse UTRs. This approach involved comparing RNA structures between orthologous

genes, and among all genes, analyzing Gene Ontology information, and cross-validation

of human and mouse structures. The final result identified 30 RNA stem-loop structure

groups corresponding to 370 structures. This result indicates that there exist more

conserved stem-loop structures in UTRs, but their conservations are less than those



of HSL3 and IRE. This bioinformatic study lays a ground work for future wet lab

validation of putative conserved RNA stem-loops in human and mouse UTRs, and

represents a framework which can be used to discover RNA structural elements in

other studiesE



CHAPTER 7

IMPLEMENTED SOFTWARE AND ONLINE SERVERS

7.1 RSmatch Software Package

The most important software package is Rematch. The package described takes

into account both sequence and structural information of RNA, allowing alignment

of structure-annotated RNA sequences. The package can be applied to RNA motif

discovery and database search. In the current alpha version 1.0, RSmatch provides

four functions: (1) regular database search, (2) multiple structure alignment, (3)

iterative database search, and (o) pairwise sequence alignment.

1. For a regular database search, the package finds RNA structures in a database

that locally or globally match a given (usually small) query structure. The

found local regions may become candidate sites containing an RNA motif. This

function can also be used to detect motif occurrences in an RNA structure when

the query structure is a known motif.

2. The function of multiple structure alignment constructs a multiple local alignment

for a given set of RNA structures, by progressively expanding the alignment at

each stage. This is a useful tool when a small set of RNA are functionally

related by a shared motif. This shared motif could be located by the multiple

local alignment function.

3. Iterative database search is an extension of the regular database search. It is able

to restart a new round of database search and update the employed scoring

scheme based on the latest retrieval result. This function could be much more

sensitive but also much slower than the regular database search.

4. The function of pairwise sequence comparison requires installation of the Vienna

RNA packageE Using a sliding window method, this function folds two given
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RNA sequences and detects the region's) that could be treated as the putative

motif's) shared by the two RNA sequencesE

In Rematch, two scoring schemes, referred to as position independent and

position dependent schemes, are implementedE The position independent scheme

consists of two scoring matrices, one for single-stranded and the other for double-

stranded regions. This scoring scheme is used in the regular database search and

pairwise sequence comparison functions. The position dependent scheme, also known

as a profile, scores individual structure positions and is used by the multiple structure

alignment and iterative database search functions. Rematch provides both global and

local alignment options even though the latter is of more interest.

Compared with other tools for RNA structure alignment, RSmatch is faster,

requiring quadratic time in the size of two given structures.

7.1.1 Download

The alpha version 1.0 of RSmatch can be downloaded from http : //aria .njit .

edu/rnacenter/RSmatch/ (ref Big.7.1). This is a relatively stable version. Effort

are continuously made to improve the packageE To obtain newer, perhaps unstable,

versions, send email to the authors.

7.1.2 Installation

The RSmatch package is implemented using Java and Pearl and run under a UNIX

operating systemE It needs a Java environment to run smoothly. If the input data

are RNA sequences (which must be in the BASTA format), it is needed to download

and install the Vienna RNA package. To begin with, make sure the Java version is no

older than 1.oE Otherwise, download a newer version of JAVA from j ανα . sun . corn.

Install RSmatch If the input data are RNA structures, follow these instructions

to install and run RSmatch.
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3. A directory named release under /home/RNA will appearE Switch to it by typing

$cd release

4. Type $Rematch to run the programE

Install Vienna RNA v1.4 and RSmatchl.O If the input data are RNA sequences

in the FFASTA format, use below instructions to install RSmatchlE0 and Vienna RNA

package v1Eo.
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1. Download Vienna RNA package v1.o and put it under the /home/RNA directoryE

3. A directory named "ViennaRNA-1.o" under /home/RNA will appear. Switch to it

by typing

$cd ViennaRNΑ-1.4

4. Install the Vienna software by typing

$make all; make install

file. It is needed to log out and log in again to make it effective.

6. Install and run RSmatch1.0 by following the instructions above. RSmatch1.0

will automatically invoke Vienna RNA v1.o to fold the input sequences into

structures and then align the structuresE

7.1.3 Input and Output

There are two types of input data. The first type is the nested parenthesized notation

representing an RNA secondary structure. For each structure, it has three lines:

header line, primary sequence line and structure notation line. A sample structure is

like this:
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into structures and then align the structures. A sample sequence in the BASTA format

is like this:

>ΝΜ_123456 Homo sapiens transferred receptor (ρ90, CD71) (TFRC)
GCTTTCTGTCCΤΤΤΤGGCACTGAGATATTTATTGΤΤΤΑΤΤΤΑΤCAGTGACΑGAGTTCΑCΤΑΤΑΑΑTGGTG
TTTTTTTAATAGAATATAATTATCGGAAGC

The output of RSmatchl.0 gives detailed alignment informationE The Stockholm

format is adopted to display the output of multiple structure alignment.

7.1.4 Options

You can find the general syntax of the command by typing RSmatch. The general

syntax in fact is:

RSmatch [options] General options:
-p [search I search I mrsa I prsa]

choose a program:
dsearch 	 simple database search;

search 	 iterative database search;
mrsa 	 multiple RNA structure alignment;
prsa 	 pair-wise RNA structure alignment;

-D <database> BASTA-formatted sequence database.
-d <database> secondary structure database.
-g <penalty> 	 gap penalty.
-o <output> 	 output file; default is 'result.out'.
-r <ranged> 	 range of folding free energy (kcal/mol) used to

select alternative RNA structures; default is 0.
-S <ratio> 	 sliding step length, expressed as a ratio of

<length>; default is 0.5.
-W <W_length> sliding window size; default is 100 nth.

Options for 'search' and 'search':
-n <top> 	 output top 'top' hits.
-Q <query> 	 query sequence in BASTA format.
-q <query> 	 query structure.

Options for 'dsearch' and 'prsa':
-s <score_matrix> file containing position independent score

matrices; default is 'scoreMat.structure'.
Options for 'dsearch':

-G <global alignment>
T: 	 global alignment



Here are some more examples with commentary:

will use the secondary structure in queryEstruct to search against the structure

database test . structDB. The output is in the default file result . outE

• Rematch -p search -d test.structDB -q motif.irel -m 1

will use the pattern structure in motif . Orel to search against the structure

database test . structDB and store the result in the default file result . out.

will construct multiple structure alignment for the structures in test . structDB.

The output is stored in the default file result . out.
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• Rematch -p search -D test.seqDB -Q query.seq -r 1E7

will perform a database search using both a sequence query and a sequence

databaseE The query structure will be obtained by folding the sequence in

queryE seq; the structure database will be constructed by folding the sequences

in test E seqDBEE Folded structures whose energy are not 1.7kca1/mol higher than

that of the optimal energy structure are keptE

A thin online Rematch server has been setup to demonstrate the power of

Rematch in aligning two given RNA secondary structuresE User can enter or paste

secondary structures and run the online server to get the result instantlyE Some

screenshots are provided to show its usage (ref FigE7E2, Fig.7E3)E



Figure 7.3 The result screenshot of RSmatch online server.
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Figure 7.4 The multiple structural alignment server.

7.3 Rmult Multiple Structural Alignment Server

There is another important online server - Rmulti multiple structure alignment server.

Using Rmulti (ref Fig.7.4), functionally or structurally related structures can be

aligned with each other at interesting local motif region. This is a valuable tool

for locating motif site among a set of structures.

Specifically, Multi is a tool for performing multiple structural alignment of

RNA secondary structures. It produces a multiple structural alignment of a given

small set of RNA secondary structures, calculating the best local matches for the

structures, and lines them up so that the identities, similarities and differences among

the structures can be seen. Meaningful screenshots can be found in Fig.7.4 and

Big.7.6.



Figure 7.5 The first half of output from multiple structural alignment
server.
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Figure 7.6 The second half of output from multiple structural
alignment server.
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CHAPTER 8

CONCLUSION AND FUTURE WORKS

The most important and interesting application is to discover novel motifs. As

presented in the experiments, the proposed technique is capable of discovering motifs

in an efficient way, at least in the case of finding IRE motif. However, one drawback in

the proposed framework is that the structure prediction tools (such as MFOLD [78],

RNA Vienna package [39] may not give rise to correct RNA structures. A solution of

this is to choose suboptimal structures in addition to the optimal one to increase the

chance of obtaining correct structures.

In this doctoral thesis, efficient algorithms for aligning RNA secondary structures

and mining unknown RNA motifs are presented. As the major contribution, a

structure alignment algorithm, which combines both primary and secondary structure

information, can find the optimal alignment between two given structures where one

of them could be either a pattern structure of a known motif or a real query structure

and the other be a subject structure.

Motivated by widely used algorithms for RNA folding, the proposed algorithm

decomposes an RNA secondary structure into a set of atomic structural components

that can be further organized in a tree model to capture the structural particularities.

The novel structure alignment algorithm is implemented using dynamic programming

techniques coupled by position-dependent scoring matrices. The algorithm can find

the optimal global and local alignment between two RNA secondary structures at

quadratic time complexity. When applied to searching a structure database, the

algorithm can find similar RNA substructures and therefore can be used to identify

functional RNA motifs. Extension of the algorithm has also been accomplished to deal

with position-dependent scoring matrix in the purpose of aligning multiple structures.
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All algorithms have been implemented in a package under the name RSmatch

and applied to searching ERNA TR structure database and mining RNA motifs.

The experimental results showed high efficiency and effectiveness of the proposed

techniques.

There exist several promising future works in RNA structure field and other

related applications. One is the statistical significance assessment of high scoring

structures. This is a very complicated task compared with what had been done in

devalue calculation for protein sequence analysis [79]. It might be possible to do

some approximation of the real distribution. But the theoretical analysis remains in

mystery.

Motivated by the statistical methods of assessing results in sequence alignment

[79], efforts has been made to develop scores of the structure database search with

known probabilistic distributions. The score distribution seemed close to be normal.

However since the scoring scheme is still at its preliminary stage and much need to

be learned about the RNA structure database presented in this study, more elaborate

statistical assessment of the search results will be developed in the future.



BIBLIOGRAPHY

[1] T. Smith and M. Waterman, "The identification of common molecular subsequences,"
Journal of Molecular Biology, vol. 147, pp. 195-197, 1981.

[2] B. Shapiro and K. Zhang, "Comparing multiple RNA secondary structures using tree
comparisons," Computer Application in Bioscience, viol. 6, pp. 309-318, 1990.

[3] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. New York, NY: Cambridge Press, 1997.

[4] D. Hirschberg, "A linear space algorithm for computing maximal common subse-
quences," Communications of the ACM, viol. 18, pp. 341-343, 1975.

[5] E. Mayers and W. Miller, "Optimal alignments in linear space," Computer Application
in Bioscience, vol. o, pp. 11-17, 1988.

[6] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, "A basic local alignment
search tool," Journal of Molecular Biology, vol. 215, pp. 403-410, 1990.

[7] e. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lipman,
"Gapped BLAST and PSI-BLAST: A new generation of protein database search
programs," Nucleic Acids Research, viol. 25, pp. 3389-3402, 1997.

[8] W. Pearson and D. Lipman, "Improved tools for biological sequence comparison,"
Proceedings of the National Academy of Science USA, pp. 2444-2448, 1988.

[9] J. Thompson, D. Higgins, and T. Gibson, "CRUSTAL W: Improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties, and weight matrix choice," Nucleic Acids Research, viol. 22,
pp. 4673-4680, 1994.

[10] D. Gathered and A. Lambert, "Direct RNA motif definition and identication from
multiple sequence alignments using secondary structure profiles," Journal of
Molecular Biology, viol. 313, pp. 1003-1011, 2001.

[11] P. Bork, C. Ouzounis, C. Sander, M. Scharf, R. Schneider, and E. Sonnhammer,
"Comprehensive sequence analysis of the 182 predicted open reading frames of
yeast chromosome III," Protein Science, vol. 1, pp. 1677-1690, 1992.

[12] P. Green, D. Lipman, L. Hillier, R. Paterson, D. States, and J.-M. Claverie, "Ancient
conserved regions in new gene sequences and the protein databases," Science,
vol. 259, pp. 1711-1716, 1993.

[13] S. Needleman and C. Wunsch, "A general method applicable to the search for siimi-
larities in the amino-acid sequence of two proteins," Journal of Molecular Biology,
viol. 48, no. 3, pp. 443-453, 1970. 

80



81

[14] R. Wagner and M. Bischer, "The string-to-string correction problem," Journal of the
ACM, vol. 21, no. 1, pp. 168-178, 1974.

[15] S. Eddy, "Computational generics of conceding RNA genes," Cell, νο. 109, pp. 137-
140, 2002.

[16] S. Gersten and E. Goodwin, "The power of 3'UTR: translational control and devel-
opment," Nature Reviews Genetics, vol. o, no. 8, pp. 626-637, 2003.

[17] G. Wilkie, K. Dickson, and N. Gray, "Regulation of ERNA translation by 3'- and
3'-UTR-binding factors," Trends in Biochemical Sciences, vol. 28, no. o, pp. 182-
188, 2003.

[18] B. Mignon, C. Gissi, S. Liuni, and G. Pesole, "translation regions of mRNAs,"
Gnome Biology, viol. 3, no. 3, pp. 0004.0001-0004.0010, 2002.

[19] P. Bangers and T. Dandekar, "A software toolbox for analysis of regulatory RNA
elements," Nucleic Acids Research, vol. 31, pp. 3441-3445, 2003.

[20] J. Brodkin, L. Heger, and G. Storm, "Binding the most significant common
sequence and structure motifs in a set of RNA sequences," Nucleic Acids
Research, viol. 25, pp. 3724-3732, 1997.

[21] G. Grub, F. Licciulli, S. Liuni, E. Sbisa, and G. Pesole, "Patriarch: a program for
the detection of patterns and structural motifs in nucleotide sequences," Nucleic
Acids Research, vol. 31, pp. 3608-3612, 2003.

[22] T. Macke, D. Acker, R. Gutell, D. Gathered, D. Case, and R. Sampan, "RNAMotif,
an RNA secondary structure definition and search algorithm," Nucleic Acids
Research, viol. 29, pp. 4724-4735, 2001.

[23] G. pavesi, G. Lauri, and G. Pesole, "An algorithm for finding conserved secondary
structure motifs in unaligned RNA sequences," Journal of Computer Science and
Technology, viol. 19, pp. 2-12, 2004.

[24] G. Mavesi, G. andMauri, M. Stefani, and G. Pesole, "RNAProfile: an algorithm
for finding conserved secondary structure motifs in unaligned RNA sequences,"
Nucleic Acids Research, viol. 32, pp. 3258-3269, 2004.

[25] G. Pestle, S. Liuni, and M. D'Souza, "Patriarch: a pattern matcher software that
finds functional elements in nucleotide and protein sequences and assess their
statistical significance," Bioinformatics, vol. 16, no. 5, pp. 439-450, 2000.

[26] A. Krogh, M. Brown, I. Milan, K. Sjolander, and D. Haussler, "Hidden markov
models in computational biology: Application to protein modeling," Journal
of Molecular Biology, viol. 235, pp. 1501-1531, 1994.

[27] J. Jaeger, D. Turner, and M. Luker, "Improved predictions of secondary structures
for RNA," Proceedings of National Academy of Science USA, vol. 86, no. 20,
pp. 7706-7710, 1989.



82

[28] M. Luker, "On finding all suboptimal folding of an RNA molecule," Science, vol. 244,
pp. 48-52, 1989.

[29] M. Zuker, "RNA folding prediction: the continued need for interaction between
biologists and mathematicians," Lectures on Mathematics in the Life Sciences,
vol. 17, pp. 86-123, 1986.

[30] T. Jiang, G. Lin, B. Ma, and G. Lhang, "A general edit distance between RNA
structures," Journal of Computational Biology, viol. 9, no. 2, pp. 371-388, 2002.

[31] I. Hofacker, W. Bontana, P. Stadler, L. Bonhoeffer, M. Tacker, and P. Schuster, "Bast
folding and comparison of RNA secondary structures," Monatshefte fir Chemie,
vol. 125, pp. 167-188, 1994.

[32] A. Shapiro, "An algorithm for comparing multiple RNA secondary structures,"
Computer Application in Bioscience, vol. o, pp. 387-393, 1988.

[33] W. Schmitt and M. Waterman, "Linear trees and RNA secondary structure," Discrete
Applied Mathematics, vol. 51, pp. 317-323, 1994.

[34] G. Collins, S. Le, and G. Lhang, "A new algorithm for computing similarity between
RNA structures," Information Sciences, vol. 139, pp. 59-77, 2001.

[35] S. Griffiths-Jones, A. Bateman, M. Marshall, A. Ghana, and S. Eddy, "Ram: an
RNA family database," Nucleic Acids Research, vol. 31, pp. 439-441, 2003.

[36] V. Ambrosia, B. Bartel, D. Bartel, C. Burge, J. Carrington, X. Chen, G. Dreyfuss,
S. Eddy, S. Griffiths-Jones, and M. Marshall, "A uniform system for microRNA
annotation," RNA, viol. 9, pp. 277-279, 2003.

[37] G. Pestle, S. Liuni, G. Grillo, F. Licciulli, B. Mignon, C. Gissi, and C. Saccade,
"UTRdb and UTRsite: specialized databases of sequences and functional
elements of 3' and 3' untranslated regions of eukaryotic mRNA," Nucleic Acids
Research, vol. 30, pp. 335-340, 2002.

[38] M. W.B. and D. R.J., "Histone ERNA expression: multiple levels of cell cycle
regulation and important developmental consequences," Current Opinion on Cell
Biology, vol. 14, pp. 692-699, 2002.

[39]I. Hofacker, "Vienna RNA secondary structure server," Nucleic Acids Research,
vol. 31, pp. 3429-3431, 2003.

[40] P. Schuster, W. Bontana, P. Stadler, and I. Hofacker, "Brom sequences to shapes and
back: a use study in RNA secondary structures," in Proceedings of the Royal
Society London B: Biological Science, vol. 255, pp. 279-284, 1994.

[41] E. Rivas and S. Eddy, "A dynamic programming algorithm for ma structure
prediction including pseudoknots," Journal of Molecular Biology, vol. 285, no. 5,
pp. 2053-2068, 1999.



83

[42] B. Gulko and D. Haussler, "Using multiple alignments and phylogenetic trees to detect
RNA secondary structure," in Pacific Symposium of Biocomputing, pp. 350-367,
1996.

[43] V. Akmaev, S. Gelley, and G. Storm, "A phylogenetic approach to RNA structure
prediction," in Proceedings of the International Conference on Intelligent Systems
in Molecular Biology, pp. 10-17, AAAI/MIT Press, 1999.

[44] K. Barn and H. Jotun, "Pfold: RNA secondary structure prediction using stochastic
context-free grammars," Nucleic Acids Research, viol. 31, no. 13, pp. 3423-3428,
2003.

[45] I. Hofacker, M. Bekete, and P. Stadler, "ricondary structure prediction for aligned
RNA sequences," Journal of Molecular Biology, vol. 319, no. 5, pp. 1059-1066,
2002.

[46] D. Sankoff, "Simultaneous solution of the RNA folding, alignment and protosequence
problems," SIAM Journal of Applied Mathematics, vol. 45, pp. 810-825, 1985.

[47] J. Brodkin, S. etricklin, and G. Storm, "Discovering common stem-loop motifs in
unaligned RNA sequences," Nucleic Acids Research, vol. 29, no. 10, pp. 2135-
2144, 2001.

[48] D. Mathews and D. Turner, "Realign: an algorithm for finding the secondary
structure common to two RNA sequences," Journal of Molecular Biology,
vol. 317, pp. 191-203, 2002.

[49] 0. Perriquet, H. Touzet, and M. Douched, "Finding the common structure shared by
two homologous RNA," Bioinformatics, vol. 19, no. 1, pp. 108-118, 2003.

[50] Y. Ji, A. Au, and G. Storm, "A graph theoretical approach for predicting common
RNA secondary structure motifs including pseudoknots in unaligned sequences,"
Bioinformatics, viol. 20, no. 10, pp. 1591-1602, 2004.

[51] C. Notredame, E. Brien, and D. Higgins, "RAGA: RNA sequence alignment by
genetic algorithm," Nucleic Acids Research, viol. 25, pp. 4570-4580, 1997.

[52] J. Gim, J. Cole, and S. Pramanik, "Alignment of possible secondary structures
in multiple RNA sequences using simulated annealing," Compute. Appal. Biosci,
viol. 12, pp. 259-267, 1996.

[53] J. Chen, S. Le, and J. Maize, "Prediction of common secondary structures of RNA:
a genetic algorithm approach," Nucleic Acids Research, viol. 28, pp. 991-999,
2000.

[54] G.-H. Lin, Μ. Bin, and L. Kaizhong, "Edit distance between two RNA structures,"
in Proceedings of RECOMB 2001, (Montreal, Canada), pp. 211-220, 2001.



84

[55] M. Hochsmann, T. Toiler, R. Giegerich, and S. Gurtz, "Local similarity in RNA
secondary structures," in Proceedings of the IEEE Bioinformatics conference 203,
pp. 159-168, IEEE, 2003.

[56] Y. Sakakibara, M. Brown, R. Hughey, I. Milan, G. ejblander, R. Underwood, and
D. Haussler, "Stochastic context-free grammars for ERNA modeling," Nucleic
Acids Research, viol. 22, pp. 5112-5120, 1994.

[57] S. Eddy and R. Durbin, "RNA sequence analysis using covariance models," Nucleic
Acids Research, vol. 22, pp. 2079-2088, 1994.

[58] L. T. and E. S.R., "A computational screen for methyiation guide snoRNAs in yeast,"
Science, vol. 283, pp. 1168-1171, 1999.

[59] G. R.J. and E. S.R., "RESEARCH: finding homology of single structured RNA
sequences," BMOC Bioinformatics, vol. o, no. 44, 2003.

[60] H. I. and R. GAM., "Pairwise RNA structure comparison with stochastic context-free
grammars," in Pacific Symposium of Biocomputing, pp. 163-174, 2002.

[61] A. Laferriere, D. Gathered, and R. Cedergren, "An RNA pattern matching program
with enhanced performance and portability," Compute. Appal. Biosci., viol. 10,
pp. 211-212, 1994.

[62] T. Bakheet, M. Frevel, B. Williams, W. Greer, and K. Khabar, "ARCED: human
AU-rich element-containing ERNA database reveals an unexpectedly diverse
functional repertoire of encoded proteins," Nucleic Acids Research, viol. 29,
pp. 246-254, 2001.

[63] C. Chen and A. Shy, "AU-rich elements: characterization and importance in ERNA
degradation," Brands in Biochemistry Science, vol. 20, pp. 465-470, 1995.

[64] C. Wilusz and J. Wilusz, "Bringing the role of ERNA decay in the control of gene
expression into focus," Brands in Genetics, vol. 20, pp. 491-497, 2004.

[65] D. Bartel, "MicroRNAs: generics, biogenetic, mechanism, and function," Cell,
vol. 116, pp. 281-291, 2004.

[66] M. Blanchette and M. Tampa, "Discovery of regulatory elements by a computational
method for biogenetic footprinting," Gnome Research, viol. 12, pp. 739-748,
2002.

[67] D. Boffelli, J. McAuliffe, D. Ovcharenko, K. Lewis, I. Ovcharenko, L. Pachter,
and E. Rubin, "biogenetic shadowing of primate sequences to find functional
regions of the human genera," Science, vol. 299, pp. 1391-1394, 2003.

[68] W. Fairbrother, R. Yeah, P. Sharp, and C. Burge, "Predictive identification of exotic
splicing enhances in human genes," Science, viol. 297, pp. 1007-1013, 2002.



85

[69] L. Marino-Ramirez, J. Sponge, G. Tanga, and D. Landsman, "Statistical analysis of
overrepresented words in human promoter sequences," Nucleic Acids Research,
vol. 32, pp. 949-958, 2004.

[70] A. Smith, P. Sumazin, and M. Zhang, "Identifying tissue-selective transcription
factor binding sites in vertebrate promoters," Proceedings of National Academy
of Science USA, vol. 102, pp. 1560-1565, 2005.

[71] A. Aide, J. Lu, E. Kulbokas, T. Blub, V. Moth, G. Lindblad-Toh, E. Lander, and
M. Dellis, "Systematic discovery of regulatory motifs in human promoters and
3'UTRs by comparison of several mammals," Nature, vol. 434, pp. 338-345, 2005.

[72] V. Akmaev, S. Kelley, and G. Storm, "Phylogenetically enhanced statistical tools
for RNA structure prediction," Bioinformatics, vol. 16, pp. 501-512, 2000.

[73] E. Rivas, R. Klein, T. Jones, and S. Eddy, "Computational identification of conceding
RNA in e.coli by comparative generics," Current Biology, viol. 11, pp. 1369-
1373, 2001.

[74] S. Washietl and I. Hofacker, "Consensus folding of aligned sequences as a new measure
for the detection of functional RNA by comparative generics," Journal of
Molecular Biology, viol. 342, pp. 19-30, 2004.

[75] J. Liu, J. Wang, J. Hu, and B. Tian, "A method for aligning RNA secondary
structures and its application to RNA motif detection," BMOC Bioinformatics,
viol. 6, no. 89, 2005.

[76] K. Pruitt, K. Gatz, H. Scott, and D. Maggot, "Introducing refseq and locuslink:
crated human gnome resources at the CBI," Brends in Genetics, vol. 16,
pp. 44-47, 2000.

[77] B. Tian, J. Hu, H. Lhang, and C. Lutz, "A large-scale analysis of ERNA polyadeny-
lation of human and mouse genes," Nucleic Acids Research, vol. 33, pp. 201-212,
2005.

[78] D. Mathews, J. Sabina, M. Zuker, and D. Turner, "Expanded sequence dependence of
thermodynamic parameters improves prediction of RNA secondary structure,"
Journal of Molecular Biology, vol. 288, pp. 911-940, 1999.

[79] S. Karlin and S. Altschul, "Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes," Proc. Natal. Aced.
Sci. USA, vol. 87, pp. 2264-2268, 1990.


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Fundamental of RNA Secondary Structure
	Chapter 3: Previous Work on RNA Secondary Structure Analysis
	Chapter 4: Algorithm to Aligning RNA Secondary Structures
	Chapter 5: Application to RNA Motif Detection
	Chapter 6: Mining Conserved RNA Stem-Loops in Human and Mouse UTRs
	Chapter 7: Implemented Softwares and Online Servers
	Chapter 8: Conclusion and Future Works
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)




