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ABSTRACT

OPPORTUNISTIC TRANSMISSION SCHEDULING FOR NEXT GENERATION
WIRELESS COMMUNICATION SYSTEMS WITH MULTIMEDIA SERVICES

by
Chengzhou Li

The explosive growth of the Internet and the continued dramatic increase for all wireless

services are fueling the demand for increased capacity, data rates, and support of different

quality of service (Dom) requirements for different classes of services. mince in the current

and future wireless communication infrastructures, the performances of the various services

are strongly correlated, as the resources are shared among them, dynamic resource allocation

methods should be employed. With the demand for high data rate and support of multiple

Dom, the transmission scheduling plays a key role in the efficient resource allocation process

in wireless systems. The fundamental problem of scheduling the users' transmissions and

allocating the available resources in a realistic CDMA wireless system that supports multi-

rate multimedia services, with efficiency and fairness, is investigated and analyzed in this

dissertation.

Our proposed approach adopts the use of dynamically assigned data rates that match

the channel capacity in order to improve the system throughput and overcome the problems

associated with the location-dependent and time-dependent errors and channel conditions,

the variable system capacity and the transmission power limitation. We first introduce and

describe two new scheduling algorithms, namely the Channel Adaptive Rate Scheduling

(CARm) and Fair Channel Adaptive Rate mcheduling (FCARS). CARS exploits the channel

variations to reach high throughput, by adjusting the transmission rates according to the

varying channel conditions and by performing an iterative procedure to determine the

power index that a user can accept by its current channel condition and transmission power.

Based on the assignment of CARS and to overcome potential unfair service allocation,

CARS implements a compensation algorithm, in which the lagging users can receive



compensation service when the corresponding channel conditions improve, in order to

achieve asymptotic throughput fairness, while still maintaining all the constraints imposed

by the system.

Furthermore the problem of opportunistic fair scheduling in the uplink transmission

of CDMA systems, with the objective of maximizing the uplink system throughput, while

satisfying the users' Qom requirements and maintaining the long-term fairness among the

various users despite their different varying channel conditions, is rigorously formulated,

and a throughput optimal fair scheduling policy is obtained. The corresponding problem

is expressed as a weighted throughput maximization problem, under certain power and

Qom constraints, where the weights are the control parameters that reflect the fairness

constraints. With the introduction of the power index capacity it is shown that this optimiza-

hon problem can be converted into a binary knapsack problem, where all the corresponding

constraints are replaced by the users' power index capacities at some certain system power

index. It is then argued that the optimal solution can be obtained as a global search within

a certain range, while a stochastic approximation method is presented in order to effec-

tively identify the required control parameters. Finally, since some real-time services may

demand certain amount of service within specific short span of time in order to avoid

service delays, the problem of designing policies that can achieve high throughput while

at the same time maintain short term fairness, is also considered and investigated. To this

end a new Credit-based Short-term Fairness Scheduling (CmFm) algorithm, which achieves

to provide short-term fairness to the delay-sensitive users while still schedules opportunis-

tically the non-delay-sensitive users to obtain high system throughput, is proposed and

evaluated.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The continuous growth in traffic volume and emergence of new services has begun to

change the structure of wireless networks. Future mobile communication systems will

be characterized by high throughput, integration of services and flexibility. Mobile users

want to use wireless access for multimedia applications demanding much higher bandwidth

than is available today. 3G systems, although not fully deployed, are supposed to offer at

least 144-384 2Mb/sec for high-mobility users with wide area coverage and 2Mb/sec for low

mobility users with local coverage. In 4G network architectures much higher bandwidth

(e.g 100 Maps) could be provided. In addition to applications calling for higher bit rates,

users will also want to use multiple services simultaneously [1] [2] [3] [4]. Recently,

there has been a trend in wireless networking for increasing demand of network Duality

of Service (QAS). As real time applications become more prevalent, guaranteeing these

parameters is becoming increasingly important. Large-scale deployment of multimedia

services over wireless networks depends heavily on the offered QAS, network reliability

and cost effectiveness of the services.

Wideband CDMA (CDMA) has been proposed as a key air interface technique

for third generation (3G) wireless systems, and will continue to be adopted as a strong

candidate for 4G systems that will provide differentiated services to multimedia traffic.

With the capability of dynamically varying user channel rates, CDMA systems can

provide more flexibility in bandwidth allocation. Although the out-coming new radio

technology will bring more bandwidth at air interface, if not managed properly, the bandwidth

resources will not meet the requirements of future users. Since in the current and future

communication infrastructures, both topologies and traffic evolve and fluctuate on widely

different time scales and the performances of the various services are strongly correlated

1
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as the resources are shared among them, dynamic resource allocation methods should be

employed. With the demand for high data rate and support of multiple Qom, the trans-

mission scheduling plays a key role in the efficient resource allocation process in wireless

systems. The transmission scheduling determines the time instance a mobile user may

receive service as well as how much resources should be allocated to support the requested

service, to make the resource distribution efficient. The fundamental problem of scheduling

the users' transmissions and allocating the available resources in a realistic CDGuA wireless

system that supports multi-rate multimedia services, with efficiency and fairness, is inves-

tigated and analyzed in this dissertation.

1.2 Transmission Scheduling in Wireless Networks

The resource allocation and transmission scheduling problems have been intensively studied

in the wireline networks [5] [6] [7] [8] [9] [10] [11]. Those scheduling schemes are usually

classified into two categories: work-conserving and non-work-conserving policies. Works-

conserving policies attempt to transmit data as long as there are backlogged flows, but

they may distort the traffic patterns. The non-work-conserving policies are devised to

overcome these problems by assigning each packet an eligibility time. The most well

known fair scheduling policy in the work-conserving category is the General Processor

Sharing (GPS) [12]. This ideal fluid fair scheduling model has the property of firm bound

on the service gap, which guarantees the required Dom profile. Based on this model,

many approximate fair scheduling policies for packet switched wireline networks have been

proposed. Examples include Packet General Processor Sharing (PAPS) [12], also known

as Weighted Fair Dueueing (WFD), and Worst-case Weighted Fair Dueueing (WF 2 D) [7] ,

etc.

Traditional scheduling schemes that have been applied in conventional packet switched

networks cannot be applied directly in wireless networks, due to the different and challenging

characteristics that these systems present. The factors that complicate the scheduling problem
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in wireless networks refer to the time-varying channel conditions, the different physical

layer technologies, as well as the multiple types of interrelated resources that need to be

allocated and the corresponding quality constraints that need to be satisfied. Therefore the

actual system capacity, as defined conventionally in wirelike networks, is not fixed and

known in advance, since it is a function of several parameters such as the number of users,

the channel conditions, the transmission powers, etc. Furthermore, due to the varying

channel conditions the utilized resources are not proportional to the achievable data rate

and received throughput, and hence the concept of fairness presents a different meaning in

wireless networks.

Time-varying channel conditions will cause the users to experience time-varying

service quality. Suppose that the same resources, usually the service time in conventional

packet switched networks, is assigned to two users. In wireline networks they are both

expected to receive the same amount of service (transmitted or received data). However in

wireless networks, their obtained service could be very different due to the various channel

capacities under different channel conditions. Obviously, assigning more resources to

compensate for the bad channel conditions will result in low resource utilization. Therefore,

for fixed amount of resources, the different resource allocation schemes and transmission

scheduling policies may result in different system throughput and Dome performance.

Besides the variable channel conditions, the physical layer techniques also impose

their influence on the wireless transmission scheduling policies. For instance, the wireless

networks with CDMA access technology have different available system resources than

the wireline networks, and correspondingly increase the complexity of scheduling. The

achievable throughput in a CDMA system depends not only on the service access time,

but also on the transmit powers and the corresponding users' interference. Furthermore,

multiple users can be scheduled in the same time slot, which is a major difference from

the wireline and some TDMA-like scheduling schemes. Therefore, the simple service time

fair scheduling fails to provide rational fairness in this case. The fair scheduling needs to
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jointly consider multiple factors such as: access time, transmit power and the number of

users to be scheduled at the same time. In addition, the conventional concept of capacity

used in the wireline network, e.g. total bandwidth of the physical media, is not directly

applicable in the CDMA systems. In CDMA systems the actual system capacity is not

fixed and known in advance, since it is a function of several parameters such as the number

of users, the channel conditions, the transmission powers, etc., which makes the general

wireline scheduling policies inapplicable, and complicates the scheduling problem.

Due to the above, the conventional fair access time scheduling, or temporal fairness

[13], is not sufficient to define the criteria of fair scheduling in the wireless networks.

The temporal fairness attempts to guarantee the fair access time, which however cannot

guarantee by itself the required QAS in wireless systems, due to the time-varying service

quality. The throughput fairness on the other hand, aims to provide fair achieved throughput

and solve the unfairness of the received service in the access time allocation which is

introduced by the variable channel conditions. However, to reach this objective flows with

weak channel conditions must obtain much more access time to compensate for the low

throughput, which could result in low system throughput. Therefore, there exists a tradeoff

between the fairness and achievable throughput, and to identify the optimal policy and

point of operation that achieves maximum throughput, while maintaining fairness is of

high practical and research importance.

Although, as mentioned above, the channel variation in the wireless environment

makes the scheduling more complicated, on the other hand it allows the scheduler to

exploit this characteristic and achieve possibly high system throughput. The improvement

in throughput can be obtained by utilizing the multi-user diversity effect ([ 14], [ 15]) in

wireless communications. Specifically, for a system with many users that have independent

varying channels, with high probability there is a user with channel much stronger than

its average SIR requirement. Therefore the system throughput may be maximized by

choosing the user with "relatively best" channel for transmission at a given time slot.
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1.3 Dissertation Objective and Outline

With the capability of dynamically varying user channel rates, CDMA systems can

provide more flexibility in bandwidth allocation and transmission scheduling. Although the

idea of dynamic allocation of bandwidth by varying the channel rate in CDMA system

has been recently studied for supporting multiple Dom [ 16] [ 17], the issue of fairness and

adaptation to the changing conditions and vulnerabilities of the wireless channels has not

been well addressed yet. The fundamental problem of allocating the available resources in

the uplink of a wireless system that supports multi-rate multimedia services, with efficiency

and fairness is investigated in this dissertation. Specifically, several wireless fair scheduling

algorithms and policies that achieve high throughput and fairness are proposed and analyzed.

The basic principle of these policies is the opportunistic transmission scheduling, taking

into consideration various aspects of wireless networks in order to achieve high system

throughput, while still maintaining fairness and satisfying the users' Dom requirements.

The remaining of this dissertation is organized as follows.

In Chapter 2 two new scheduling algorithms are proposed, namely the Channel

Adaptive Rate Scheduling (CARS) and the Fair Channel Adaptive Rate Scheduling (CARS).

First, through an iterative process CARS exploits the channel variations to reach high

throughput, without however achieving fairness. To overcome the potential unfair service

allocation, CARS implements a compensation algorithm, in which the lagging users can

receive compensation service when the corresponding channel conditions improve, in order

to achieve asymptotic throughput fairness. In Chapter 3, the problem of opportunistic fair

scheduling in the uplink transmission of CDMA systems, with the objective of obtaining

the optimal throughput in the uplink scheduling under the long-term fairness constraint, is

analyzed, and a throughput optimal fair scheduling policy is proposed. We first formulate

the multiple constraint optimization problem and then we prove that it can be converted

into a linear knapsack problem, where the final solution becomes a global search within

a range. Furthermore, a stochastic approximation method is presented to estimate the
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fairness control parameters. Since in wireless systems with different quality of service

requirements some types of traffic may demand certain amount of service within specific

short span of time in order to avoid service delays, in Chapter 4 a new Credit-based Short-

term Fairness Scheduling (CSFS) algorithm, which achieves to provide short-term fairness

to the delay-sensitive users while still schedules opportunistically the non-delay-sensitive

users to obtain high system throughput, is proposed and evaluated. Finally, Chapter 5

concludes the dissertation by summarizing the main contributions and conclusions of this

work, and discussing the directions for future work.



CHAPTER 2

SIMULTANEOUS OPPORTUNISTIC SCHEDULING IN CDMA SYSTEM

In this chapter, the problem of opportunistic scheduling with concurrent users in a CDMA

system is studied and analyzed. We adopt the use of dynamically assigned data rate that

matches the channel capacity in order to improve the system throughput. Users with better

channel condition will obtain more bandwidth, while those with worse channel condition

will get less bandwidth, which however may result to fairness violations. In order to

properly compensate these users that lose part of their service we record the excess service

each user receives, and at later time when the lagging user's channel condition improves

it will receive more service to compensate for the lost part. The rest of this chapter is

organized as follows. First we present some issues associated with the rate scheduling in

CDMA networks. We provide some useful observations and definitions and prove some

theorems that are used throughout this chapter. Then we describe the proposed channel-

adaptive rate scheduling method and algorithm to achieve simultaneously the objectives of

high overall throughput and fairness. Finally the performance evaluation of our proposed

algorithm is presented along with some numerical results and discussions. The performance

evaluation is achieved in terms of achievable fairness and throughput.

2.1 Related Work and Motivation

Due to the inert characteristic of wireless links, efficient and fair scheduling in the wireless

system faces new challenges, and it has recently become an active research topic. For

instance [ 18] [ 19] [20] studied the problems of wireless fair scheduling especially in DMA

systems. Most of the current work on scheduling in CDMA systems has mainly focused

on how to transmit the packets effectively, while little work has been done on the aspects

of fairness.

Various schemes have been proposed in the literature ([ 13] [21] [ 14] [ 15] [22]

[23] [24]) to exploit the randomly time-varying channel states and obtain performance

7
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improvements in wireless systems. In general in most of these schemes, the improvement

is obtained by utilizing the multi-user diversity effect ([ 14], [ 15]) in wireless commu-

nications. This means that for a system with many users that have independent varying

channels, with high probability there is a user with channel much stronger than its average

SIR requirement. Therefore the system throughput may be maximized by choosing the

user with "relatively best" channel for transmission at a given slot. In [ 13] [21] a framework

for opportunistic scheduling that maximizes the system performance by exploiting the

time-varying channel conditions of wireless networks is presented. Three categories of

scheduling problems - the temporal fairness, utilitarian fairness and minimum-performance

guarantee scheduling - are studied and optimal solutions are given. Furthermore, for the

EDGE/GPRS system the possibility of trading off efficiency for fairness when exploiting

temporary fluctuations in channel conditions is studied in [24].

Despite the good performance demonstrated by various scheduling schemes that

take into account the varying channel conditions, several problems still exist. In most

of the schemes presented above only the downlink scheduling is considered. Although the

downlink transmission rate assignment is important for several applications, the efficient

uplink transmission scheduling plays an important role as well, especially with the prevailing

of multimedia communications and applications. The uplink transmission scheduling problem

is more complicated and requires further consideration of additional elements to make

the corresponding scheduling policies feasible, due to the interference issues and power

limitations. In addition, most of the scheduling schemes only studied the one server case,

that is only a single user is served in a time-slot. Although it has been shown that scheduling

users one-by-one can result in higher system throughput for high data rate traffic in the

CDMA downlink [23], serving multiple users simultaneously can provide more flexible

service [25] and are necessary to achieve high throughput in the CDMA uplink [26].

Furthermore, some real-time traffic may not tolerate the corresponding delay if they are
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served one-by-one, especially when the scheduling cycle is relatively long compared with

their delay requirements.

In this chapter we exploit and demonstrate the benefits that can be obtained in the

realization of the fair scheduling in the uplink of CDMA systems, by utilizing their inherent

advantage of serving several packets simultaneously, and thus making easier to follow

the general principle of fluid Generalized Processor Sharing (GPS) Algorithm and the

approximations of the Fluid Fair Dueue (FFD) model, which require that flows are served

simultaneously each one with its deserved share of service [12] [7]. In [27] the authors

devised a MAC protocol — WHISPER (wireless multimedia access control protocol with BER

scheduling) in order to accommodate more than one packet in a time slot. Furthermore,

several attempts and methods on the assignment of system resources in order to achieve

fair service allocation and prevent misbehaving users from seizing large portions of the

system resources, have also been reported in the literature ([25] [28] [29] [30]). The basic

idea of [25] [28] is to consider the system capacity as the only resource and schedule the

users transmission data rate by their weight. However in practice the system capacity is not

fixed and changes with the channel quality and number of backlogged users. To overcome

some of these problems [30] [29] considers combinations of the power index and the chip

rate as the system resources.

Although the scheduling methods if [29] [30] may provide a feasible data rate assign-

ment and attempt to take into account the fairness when distributing the system resources,

there are still two main problems: First the obtained resources may not be proportional

to the data rate. When the allocated resources are converted into the transmission rate

in [29] [30], the rate is not proportional to its weight any more. Moreover, power index

assignment only shows the relationship of transmission power of all users. Second most of

the proposed CDMA scheduling methods either assume perfect channel condition without

considering the impact of the channel condition variations or simply model the channel

by the two-state channel model [ 18] [30]. This model is not suitable for CDMA systems,
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since the interference among users, the channel fading and the transmission rate can signif-

icantly affect the bit error probabilities. In a realistic CDMA system however we can take

advantage of the variable rate scheduling capabilities by attempting to transmit at lower

rate which could compensate for the variation of channel condition and meet the required

user's requirements. In this paper we consider and address these two issues by presenting a

technique that provides fair, channel-adaptive rate scheduling in CDMA wireless networks.

2.2 Some Useful Observations, Definitions and Theorems

Generally we use the signal to noise and interference ratio (SIR) to measure the channel

condition. Let W and r2 denote the bandwidth (also known as chip rate in CDMA system)

and the transmission rate of user i respectively. Let also denote by hi the corresponding

channel gain, and by Ai user i's transmission power at a given slot. Then the received SIR

for user i is given by:

where η' is the one-sided power spectral density of Additive White Guassian Noise (AWGN)

and α determines the proportion of the interference from other users. Without loss of

generality, we assume α = 1 for the CDMA system. Please note that the Dom requirement

usually is given by the η _ Eb/NO (the ratio of bit energy to noise power spectrum density),

which is related to the SNIR by

In the following analysis, for simplicity in the presentation, we use the requirement η to

present the corresponding SNIR requirement.

Let us consider the uplink of a CDMA system containing B (t) backlogged users at

time t. Each user is preassigned a weight Ai according to its QoS requirements when

admitted. When scheduling the transmissions of the various users during interval [t, t +
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r], where τ is the scheduling cycle, we consider only the backlogged users Bat) at the

beginning of the scheduling interval. Users that may become backlogged within the interval

[t, t -}- τ] will be included in the next scheduling cycle. Let Gib be the spreading gain of

mobile i and ^i represent the minimal SIR required to satisfy its Dom requirements.

We assume that the chip rate W for all mobiles is fixed, and hence the spreading gain

is determined by the bit rate τ of mobile i , that is: Gib = w . The bit energy-to-equivalent

noise spectral density ratio of general DS-CDMA system is expressed as

where gib represents the power index of user i. In the rest of this paper we assume that the

maximum transmission power is Ρmαχ and same for all users.

Therefore the previous condition (2.2), under which there exists a feasible power

assignment p = [p1 i Ρ2, .. ΡΒ(t)] that meets the DoS requirements under the constraint

that for each user i, pi < Ρmaχ , becomes( [31]):
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2.2.1 Fair Rate Scheduling in the Ideal System

In order to achieve fairness in a system with available uplink capacity R, the assigned data

Let Ψ be the maximum available power index. If Ψ is shared by B(t) backlogged

users, the maximum power index that a single user can obtain in order to satisfy relation

(2.4) is = (1 ώ)Omax _ Next we first give a definition of the reference system and based

on it we prove the following proposition 1.

Definition 1 The reference (ideal) system is defined as the one in which every user channel

gain is h2 = Ι.

Proof. Suppose the maximum available power index is Ψ, and let user k be the one with

the maximum value of the product of weight and SIR,

the N users. Then user k will require the largest power index in the system to satisfy the

GPS service rule. Let us assume that user k is assigned the maximum power index g.



2.2.2 Non-Ideal System

In a realistic system due to path loss, channel fading, and shadowing, it is possible that

some of the users' channel gains h i may not be large enough. Under such environment,

if the scheduler does not utilize any information about the channel quality, and the user

rates as scheduled based on the ideal system are still applied, the throughput inevitably

decreases due to the high error packet loss rate. For instance, let ri and hi be the rate

and the channel gain of backlogged user i in the ideal system respectively. If we denote

by pi the corresponding transmission power, then the minimal received power necessary to

meet the required SNIR - i for every user i is given by:

satisfy inequality (2.4). Once the channel gain of user i becomes very small, the received

power may not reach the minimal required power even if the maximum transmission power

is used, e.g. hipmax < hip, and consequently the actual SIR drops below A i . Thus the

power index vector of the ideal system needs to be adjusted in order to obtain a new and

feasible power index vector.
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Suppose that in the non-ideal system the N backlogged users have the following

channel gain vector [h l , h2 , ... , ha ]. Without loss of generality, we assume that the last

K users experience bad channel condition. This means that if the spreading gain vector

(power index vector) of the ideal system is still applied, i.e. ΣΡN 1 g = Ψ, then for these

K users relation (2.4) is violated. That is: 1 — pmaXh (1+c; /^,) < 
Ψ, Ν — K + 1 < j <

N. We can increase the spreading gains of the K users till each one of them meets the

condition: 1 
pmaXh (1+c; / γ;) = Ψ. At that point we obtain a new spreading gain vector

[Gib, G2, •••, GN-x+1, •••, G'N]. The loss of spreading gain translates to loss of total power

index as well, which can be calculated as: ghost = ΣΡN Ν_Κ+1 ,Y 
ηΡ1 * 	 +'Gti ). However+G .^,t 

we may be able to increase the system throughput by redistributing the lost part to users

with good channel condition. This technique is investigated and studied in detail in the next

section. In the following we first introduce and define a new parameter, namely the Power

Index Capacity (PICA).

Definition 2 In a CDMA system with N backlogged users, given the total power index

constraint ΣΡN 1 gib < Ψ and a feasible spreading gain vector [G 1 , G2 , ..., Gad ], the maximum

allowable power index of a user which does not violate the following condition: Ψ <
η

0W 1-Υ, is defined as the power index capacity (PIG) Ai of this user.1 ρmaxh;.(1+Gi

Please note that the PICA of a user can be found by increasing its power index, while at

the same time other users' power indices will be reduced or remain unchanged to keep the

total power index ΣΡN 1 gib<Ψ. Hence, when a user achieves its PICA, the newly adjusted

power index assignment is feasible.

Theorem 1 Given a feasible spreading gain vector [G 1 , G2 , ..., GNP ] and the total power

index constraint ΣΡN 1 gib< ',if we adjust the power index of users within their power

index capacity π = [71 , 72 , ..., ΠΝ ], the new assignment [gib, 9
, ••• ,

 gad] and corresponding

spreading gain vector [G1, G2, ... , G'a  are still feasible.



the assignment feasible. ■

Therefore based on the above arguments, the power indices can be adjusted within

each user's PICA in order to improve the system throughput under the changing channel

conditions, and as long as the constraint on the total power index is maintained, the corre-

sponding power indices and power assignments are still feasible. Through the Channel

Adaptive Rate Scheduling scheme that we introduce in the next section, the system throughput

may increase if users with bad channel condition give up transmission opportunities while

the corresponding lost power index gΙ°st can be absorbed by users with better channel

conditions and high power index capacity.

2.3 Channel-Adaptive Rate Scheduling

In this section we first introduce and describe an algorithm — Channel Adaptive Rate

Scheduling (CARS), which allocates the available system resources according to the corre-

sponding channel conditions. In fact CARS tries to improve the system resource utilization

under the constraint of each user's power index capacity πΡ i  without however considering

the fairness issue. Then we provide a compensation algorithm (FCARS) and adjust the

allocations achieved by CARS in order to achieve the objective of fairness. CARS exploits

the time-varying channels to achieve high throughput, while guarantees that the power

index capacity constraints are met and the scheduled transmission rates are feasible. In

addition, the redistribution of part of the resources among some users that takes place in

FCARS in order to achieve the fairness, still depends on the rules of CARS to keep the final

assignment feasible, and therefore CARS is an integral component of CARS.
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2.3.1 Channel-Adaptive Rate Scheduling (CARS) Algorithm

Suppose that the total available power index at the beginning of each scheduling cycle

is Ψ. Given the number of users Ν and their weights, we compute the reference power

index by equation (2.5), which represents the ideal fair scheduling model. However, due to

the variation of the channel conditions, this assignment scheme may result in high packet

error rate for some users, and consequently waste the system resources. CARS uses (2.5)

as a reference, and adjusts the final values by each user's power index capacity. In the

following we describe the operation of the proposed CARS algorithm, while in Appendix

A we provide the pseudo-code of the corresponding process.
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subsequent iterations. Our objective in the following rounds of assignment is to make

the increment of users' rates proportional to their weights. Therefore we compute the

reference power index vector and rate vector for users in set B (t) — [H] r . However the

increment of rate does not have linear relationship with the increment of power index. In

order to provide a simple procedure to solve this problem without increasing the overall

operation's complexity we adjust the weight of users such that the increment power index

Therefore in most practical cases with large number of users the corresponding ratio

of increased rates is close to the ratio of the original weights.

Please note that some small variations in the distribution of [CRC] ' do not affect

significantly the system performance. In fact the objective of the service distribution in
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this subsection is that users with larger power index capacities get more service in order

to improve throughput. The unfairness will be compensated in the following scheduling

cycles as described in the next subsection.

2.3.2 Fair Channel-Adaptive Rate Scheduling (CARS) Algorithm

CARS algorithm improves the throughput by giving better transmission chances to the

users with better channel conditions. However, the fairness intended is not fulfilled because

the allocation of resources depends on the randomly changing channel conditions. Here we

propose a compensation algorithm—Fair Channel Adaptive Rate Scheduling (FCARS),

which accomplishes the long-term fairness and at the same time maintains high throughput.

FCARS algorithm builds its operation on CARS scheme. The first step of FCARS

is the rate allocation according to CARS (we refer to this as the initial scheduling). After

the initial scheduling, the power index of users will be adjusted according to the amount

of excess service they received. Let S2 denote the accumulated excess service that user i

received with reference to the service that would be assigned by the ideal GPS algorithm

in the reference system from the beginning of its session, and s ibdenote the excess service

that user i receives in the scheduling cycle under consideration. To distinguish the users

that receive different amount of service with reference to the service provided by the ideal

GPS algorithm, we classify the users into three types [18]: the lagging user, the leading

user and the satisfied user. For a lagging user S 0, since it receives less service than it

deserves in an ideal system, while the leading user receives more service and the satisfied

user receives the same amount of service.

Due to the limitation of the channel condition, not all lagging users are qualified to

receive compensation in a scheduling cycle. Similarly in order to limit the impact on the

leading users, not all leading users have to give up part of their service. We further divide

the users into three groups: lagging group, leading group and normal group. Only users

from the leading group may give up part of their service to be used for compensation to the
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users of the lagging group. The classification of users into different groups depends on the

results of the CARS algorithm and is described in the following definition. For a user-i let

Ai be the power index capacity, g2 the power index of the reference (ideal) system, qj and

qma the queue size and the maximum queue size respectively.

Definition 3 For all backlogged users, considering the service scheduled by the CARS,

the lagging group contains all users that received less service than the service that they

would receive under the ideal GPS algorithm in the reference system, i.e. Se < 0, and

have capacity to accept more power index, i.e. Ai > gib. The leading group contains

those leading users whose excess service AZ > 0, and are assigned power index that is

in CARS in the current scheduling cycle. The rest of the users

are included in the normal group. Function fq (x) is defined as fa (1 — ι) ξ, where ξ is

a constant, which can be adjusted to account for the different requirements of different

classes of service (e.g. real-time vs. non-real-time services). In the following without loss

of generality we assume ξ = 1.

In other words users in the lagging group are those that receive less service while

they have more power index capacity. Users in the leading group are those that can give up

part of their service. Users that are neither in the leading group nor in the lagging group are

included in the normal group. The leading group threshold

leading users only experience graceful performance degradation. Although 118 uses some

measurement to provide limited degradation in service for leading users, it still introduces

large delay for those users with big queue lengths. The CARS algorithm uses a system

parameter ξ and the leading user's queue length to control the amount of service that may

be given up by a user. According to our proposed algorithm the leading user may give up

no more than the service defined by the following relation in terms of power index:
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where Am  is the maximum scheduling cycle. Function f9 (z) converts the power index to

the corresponding data rate by the definition of power index. Since we have assumed that

the chip rate is fixed for all users, the data rate can be determined by the assigned power

index. Relation (2.6) limits the maximum power index the leading users will give up, which

ensures that the leading users will not release more service than their excess service.

converts the reference power index into the reference rate, which is the rate that user i

deserves in the ideal system.

Therefore all services in terms of power index will be collected and distributed

among users in the lagging group according to their power index capacities and queue

lengths. Once the channel condition of a user improves the user may catch up in the next

one or multiple scheduling cycles. This depends on the service it lost before, and on its

current queue length. The lagging users with larger queue length obtain more compen-

sation services. To realize this process a compensation weight AA is defined.

Definition 4 The compensation weight AD of lagging user i in current scheduling cycle Aka

where qj (τΡ k ) is the queue length of user-i at the beginning

of cycle Aka .

The service that is given up by the leading users is distributed among the lagging

users in proportion to their compensation weights following a similar procedure as the one

used in CARS algorithm. In order to realize the compensation procedure the excess service

of every user after each scheduling cycle is collected. The general idea is to compare the

actual assigned service to that of the ideal system. Assuming that the achievable throughput

is R = ΣΡjΕΒ(t) re , the reference rate of the ideal system is: r2 = • R. Let g9 denote

the service given up by the leading group in terms of power index. It is possible that the

lagging group may not absorb g9 completely. In this case the remaining power index is

redistributed among the users of leading group and normal group in proportion to their

weights in order to improve the system utilization. Appendix A gives the pseudo-code of

the complete operation of the CARS algorithm.
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2.3.3 Algorithm's Complexity

In this section we discuss the complexity of our proposed algorithm. Since FCARS is built

on CARS we first give the complexity of CARS. It can be easily seen that CARS algorithm

is of iterative nature. At each iteration we perform the computation of the power index of

the reference system, the comparison of users' estimated power index to their power index

capacities, and the assignment of proper power index, which can be implemented in 0(n),

where n is the number of unscheduled users in this round of operation. Considering a

system with Ν backlogged users, we may need up to Ν rounds of the repeated operation to

distribute the system resources, which makes the worst case algorithm complexity 0(Ν2 ).

In addition to CARS algorithm, FCARS adds the operations of excess service computation,

classification of the three groups, and the computation of power indices that the leading

users have to give up. Each of these operations can be implemented in 0(N), and therefore

the overall worst case complexity of FCARS is still 0(Ν2 ).

In practice in the general case if the number of backlogged users is large enough,

there will be a considerable number of users that are in good channel state at a given time,

and thus the iteration assignment of CARS will be completed within the first few rounds

with high probability. In this case the complexity of CARS as well as of FCARS is reduced

to 0(Ν).

It should be noted here that the proposed transmission scheduling algorithm is perfor-

med at the beginning of every scheduling cycle. Therefore the length of scheduling cycle τ

is a parameter that may affect the system performance. The smaller the scheduling cycle,

the more effective the scheduling algorithm in terms of adjusting the rate according to the

changes of the channel conditions and keeping track of the sudden changes in the conditions

of the users' channels. However, a smaller τ demands more computational power since it

requires more frequent scheduling, and therefore if the changes are smooth a larger value

for will be more efficient from operational point of view. As a result a dynamic scheme

that adjusts the value of τ with the changes of the environment and the number of active
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users is desired. In the next section we obtain an indication of the impact of the scheduling

cycle τ on the achieved performance through a numerical study. However the optimal

choice of the scheduling interval τ is part of our current research.

2.3.4 Design Issues and Modifications of CARS

In this chapter the emphasis is mainly placed on the development of bandwidth/rate schedul-

ing strategies and algorithms, in order to improve the system throughput while provide

fairness among the various users of the network, given their corresponding weights. Each

user is preassigned with a weight according to its Dom requirements. However the various

flows in the network may present different QAS requirements, including differences in

delay sensitivity. Although this paper does not aim to explicitly address the problem of

user weight and/or class assignment, in this section we discuss how specific parameters

and requirements, can be taken into account within the framework presented here, either

explicitly or implicitly.

One implicit way to consider the delay sensitivity of the different flows within the

formulation described in previous sections, is to utilize the concept of effective bandwidth

[32] [33] which represents the amount of bandwidth required by each flow to statistically

achieve the corresponding DES. Effective bandwidth is a scalar that summarizes resource

usage and that depends on the statistical properties and Dom requirements of a source.

Based on this concept the required rate and thus the corresponding weight of a flow can be

determined to achieve the desired DoS. Considering this and taking into account that our

algorithm provides higher compensation to users with higher weights, implicitly we can

consider the delay sensitivity and differences among different flows.

In addition in order to explicitly distinguish between delay-sensitive and non-delay-

sensitive traffic, the basic FCARS algorithm can be modified to provide the compensation

based on the user priorities, which can be defined according to the delay sensitivity of the

corresponding flows. The Modified FCARS (FCARS) algorithm is similar to CARS
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except that the lagging users (as defined in CARS) are divided into classes according

to their delay-sensitivity, and the resources, i.e. power indices, given up by the leading

users, are distributed among the lagging users based on these classes. It should be noted

that here we do not focus on improving the user delay performance when they are experi-

encing bad channel conditions since this would decrease the efficient resource utilization

and achievable throughput. Instead we perform a priority-based compensation procedure,

which shortens the time required for the high priority user to obtain the lost service.

2.4 Performance Evaluation

In this section we evaluate the performance of the proposed algorithms in terms of achievable

fairness and throughput. In order to obtain a better understanding of the improvements

achieved by CARS and FCARS algorithms we compare their performance with the corre-

sponding performances of three other rate scheduling algorithms, namely the WFQ with

Ideal Channel (WFQ-IC), WFQ with Error Channel (WFQ-IC), Channel Adaptive WFQ

(CA-WFQ). The WFQ-EC refers to the case where all channels are in perfect condition and

each user is assigned the data rate according to its weight and the system achievable rate

with the given power index. Obviously this is a non-realistic case, however we consider

it here for comparisons purposes only. In the WFQ-IC although the actual state of the

links may not be good and may vary with the time, the base station is not aware of that,

and assumes them to be in good condition all the time, thus assigning to each user data

rate according to its weight following the WFQ principle as in the ideal system. Therefore

the high packet error rate becomes inevitable and the system throughput decreases. In the

CA-WFQ scheme the scheduler is assumed to be aware of the channel condition variation

of the mobile users and at the same time the strict fairness property of service allocation

is enforced at all time instances. This scheme attempts to enforce the strict fairness rule

and achieve the same fairness as the WFQ and as a result its throughput performance in

some cases may be limited by the worst user's behavior [31]. Furthermore we present some



numerical comparative results of FCARS and a pure throughput maximization scheme [26],

that achieves the maximum total uplink throughput by allowing only the best k users in

terms of their received power to transmit.

In the following we first describe the model and assumptions used throughout our

performance study, and then we present the results of the comparative study.

2.4.1 Model and Assumptions

In general, throughout our numerical study, unless explicitly indicated, we consider a single

cell multi-rate DS-CDMA with seven users. All seven users are continuously backlogged

during the simulation and generate packets with average size of 320 bytes. The available

system power index is assumed to be 0.9, the system chip rate is 10 7chip/second and

the required SIR is 10dB. Perfect power control is used and hence a mobile user may

increase its transmission power to overcome the channel fading until it reaches its pre-

defined maximum power. With the limitation of each individual user's transmission power,

the maximum power index a user can accept is 0.7, which corresponds to the maximum

transmission rate of 2.33Mbit/s.

To compare the performances achieved by the various algorithms two different scenar-

ios are considered. In scenario-l (Table 2.l) all users have the same weight, which allows

us to better understand and compare the achievable performances when users have different

channel conditions. In scenarios the operation and effectiveness of FCARS algorithm is

demonstrated in an environment where users present different weights. For demonstration
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purposes in most of the results presented in this section a scheduling cycle of 0.5 seconds is

assumed. However numerical results that demonstrate the influence of different scheduling

cycles on the achievable performance of CARS algorithm are also presented.

Το better study the effect of our algorithm on the service allocation throughout our

simulation study five of the users are assigned good channels and are able to achieve low

BER of 10-s , while the rest two users have very unstable channels which makes the

corresponding received powervaryaccording to a three-state Markov channel model [34] shown

in Figure 2.l. Table 2.2 lists each state's corresponding parameters. The state occupation

time follows exponential distribution with average times for each state as listed in Table

2.2. When the channel is in one state, it means that the received power resides within a

certain range if the maximum transmission power is used. This received power can be

converted to this user's power index through Definition 2. Table 2.2 provides the range of

the achievable power index capacity for each state. In order to simulate the abrupt channel

condition change that enables us to observe the performance of compensation algorithm

more clearly, the occupation time of state 1 is set to a small value, which means that the

channel hardly stays at state 1 that has the middle range of the received power. Besides

the channel state transition the channel also varies within the received power range of its

current state.
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2.4.2 Numerical Results and Discussion

Throughput Performance Results

We first present the corresponding results under scenario 1 where all the users have

the same weight. Specifically Figure 2.2 demonstrates the achieved total service for all the

five schemes under consideration as a function of time. We can easily see from this figure

that the performance of CARS and CARS approach that of the ideal WFQ-EC, as they are

able to make full use of the available power index by adjusting the assigned transmission

rates to the corresponding channel conditions. Please note that sometimes their values may

even exceed the ideal case because of the uneven allocation of power index. From this

figure we also observe that the performance achieved by both CA-WFQ and WFQ-EC is

considerably degraded due to the reduced throughput to achieve fairness for the CA-WFQ,

and the increased packet loss rate in WFQ-EC.

En Figure 2.3 we present the number of lost packets for five schemes as a function

of time where we can see that the number of lost packets under WFQ-EC is very high.

This happens because due to the ignorance of the channel condition variation in WFQ-EC

the scheduler assigns transmission rates assuming good channel conditions, and thus the

two bad users experience very high packet loss rate which reduces significantly the actual

service received by them. The CA-WFQ taking into account the channel conditions and



Figure 2.2 Total service (in bits) all users received under the different scheduling schemes

attempting to maintain the fairness in the system, schedules low rates not only for the bad

users but also limits the throughput of the five good users. Due to its low throughput the

number of lost packets in CA-WFQ is low, even less than the corresponding results in

FCARS and CARS.

En Figure 2.4 we present the total achievable service (in bits) provided under FCARS

algorithm for five different scheduling cycles. Since we have assumed that the channel

changes states every 0.3 seconds, the performance for the cases with scheduling cycle of

0.1 and 0.3 are very close. Furthermore we notice that, as we expected, the achievable

performance deteriorates as the scheduling cycle increases. This happens because as the

scheduling length increases, given the fast and abrupt changes of the channel conditions,

the scheduling policy does not react fast and does not adjust the scheduled rates in order to

catch up the channel change, and this causes higher packet losses and inefficient resource

allocation.

En Figure 2.5 and Figure 2.6 we present the overall achievable throughput as well as

the corresponding individual users' throughput, under scenario 1, for FCARS and Maximum



uplink throughput (MAX) scheme. The MAX scheme [26] achieves the maximum total

uplink throughput by allowing only the best k users in terms of their received power to

transmit. Parameter k is determined by iteratively comparing the throughput of best i users,

En this experiment, the channels of all users were modeled by the multistate

Markov fading channel models with different average received power (i.e. users 1 to 3

have higher average received power), which enables us to better interpret the influence

of the different schemes on the achievable throughputs. From these figures we can see

that MAX scheme achieves high throughput but biases against the group of users with

low received average power. As we expected, the users with higher average power get

more chances to transmit and they achieve higher throughput. On the other hand although

the total throughput achieved by CARS is slightly lower, due to the effectiveness of its

compensation mechanism, CARS achieves fairness and provides similar throughputs for

all the users.
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Figure 2.4 Total service received (in bits) by all users under FCARS for the different
scheduling cycles

Fairness results

Despite the relatively large volume of traffic served by CARS, Figure 2.7 shows that

this gain is obtained by taking advantage of the users with bad channels. En this figure we

present the excess service received under CARS by the two bad users and a good user. The

service lost by the bad users is not regained even if the corresponding channels improve

and therefore the fairness property is not satisfied by CARS. FCARS on the other hand, as

demonstrated in Figure 2.8 solves this problem successfully through its service compen-

sation process. As we can see from this figure CARS algorithm allows the bad user to gain

its lost service at a later time when its channel condition improves and therefore eventually

both the good and bad user receive comparable (according to their weights) throughput.

Figure 2.9 presents the excess service received by the two bad users and a typical good user

as time evolves under FCARS algorithm. Although the channel condition of bad users vary

the excess service converges to zero. This happens because as explained before the bad user

receives compensation from the good users for its service that was lost at previous times



Figure 2.5 Throughput comparison of different users under FCARS and MAX algorithms

due to the bad channel conditions. Figure 2.10 clearly shows how the bad user acquires

its lost service by receiving very high transmission rate after its channel recovers. Another

advantage of CARS, as can be confirmed by Figure 2.9 and Figure 2.10, is that the excess

service of good users varies only slightly compared to the more abrupt variation of excess

service of bad users. This is because the lost service by the bad users is fairly shared among

all qualified good users, and similarly every good user gives up only small portion of its

service at a later time. As a result the FCARS algorithm manages to provide smooth service

to the good users, while at the same time achieves fairness and high throughput.

En order to obtain a more in-depth understanding of FCARS fairness operation and

study the impact of the various users' different weights on FCARS scheme, in Figure 2.11

we present the excess service received by each user as the system evolves for scenario 2.

We can see from this figure that bad user 2, who has larger weight than bad user l, observes

higher service loss than bad user 1. At the same time the good users that own larger weight

also acquire more excess service accordingly (e.g. good user 5).
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Furthermore Table 2.3 presents the achieved fairness under CARS algorithm for

different number of users in the system. The users were divided into three groups and

different original weights were assigned in each group (the corresponding values are shown

in the first column of the table). From this table we observe that the more the users in the

system the better the fairness achieved by CARS, since as the number of users increases

the system has more flexibility on providing service adjustments. Et should be noted, that

in the case of 3 users the available system power index (resources) is much larger than the

capacities of all users, and since the algorithm first attempts to achieve high throughput by

exploiting the varying channel conditions, the obtained throughput mainly depends on the

respective channel conditions, and thus in this case the scheduler has limited effect on the

adjustment of service allocation. However as the number of users in the system increase

the proposed algorithm achieves fairness and high throughput simultaneously, since it has

more flexibility on the corresponding power index adjustments.
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Figure 2.8 Service received (in bits) by good user and bad user under CARS

Delay Results

Figure 2.12 presents the sample distribution of the delay experienced by the various

packets under the five different schemes for scenario l. As expected the ideal system

(WFQ-IC) presents the best delay performance since it provides steady fixed rate service.

We also observe that a large number of packets have larger delay in the WFQ-IC due to

its high packet loss rate and retransmission. The CA-WFQ scheme achieves to implement

the fairness at the cost of reduced system throughput and increased delay for most of the

packets. En CARS we notice that more packets have smaller delay when compared to

CARS, however at the same time there is a larger number of packets that suffer from larger

delay, and thus CARS provides an unbalanced service. This happens due to the unfairness

in the service allocation and distribution introduced by CARS in an attempt to improve

throughput. As a result some users receive more service and experience smaller delay,

while others receive reduced service and have longer delays. CARS by compensating the

lagging users, reduces the delay caused by the bad channels and achieves to offer a more

fair service.
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As mentioned before in subsection 2.3.4 the M-FCARS, in order to explicitly distin-

guish between delay-sensitive and non-delay-sensitive traffic, performs a priority-based

compensation procedure, which shortens the time required for the high priority user to

obtain back its lost service due to the bad channel conditions. Figure 2.13 present the

corresponding results of the case of two traffic classes – Class 0 represents the delay-

sensitive traffic and gets higher priority than Class 1 in the M-FCARS service compensation

procedure. For this experiment in order to observe more clearly the results, instead of using

the three-state Markov channel model, we intentionally set the error channel model to be

periodically good and bad with the respective power index capacities of 0.7 and 0.01. The

two users with bad channel conditions are assigned to Class 0 and Class 1. They experience

the exactly same channel conditions, and therefore compete for the service compensation

once their channels become good. As we see in Figure 2.13 the Class 0 and the Class 1 users

have the same delays when their channels are in bad state. However once their channels

recover, the delay of Class 0 user drops quickly due to its higher priority in receiving

service compensation. On the other hand the Class 1 user presents relatively slower delay

improvement until the Class 0 user completely recovers.

2.5 Conclusion

Fair scheduling in CDMA system still faces a lot of challenges due to the unique charac-

teristics of CDMA systems, such as: there exist variations in the available system capacity

(rate); the limited transmission power constrains the link capacity; the channel experiences

busty errors and location-dependent errors; multiple users are served simultaneously.

In this chapter we studied the fundamental problem of efficient and fair dynamic rate

scheduling. We first defined an important parameter—Power Index Capacity (PICA), which

indicates the possible power index a user can accept. The power index adjustment among

users within the constraint of PICA was analyzed, which creates the basis for a feasible

rate scheduling and service compensation process. We then proposed two new algorithms,



Figure 2.9 Ixcess service received (in bits) by the good user and bad user under FCARS

CARS and FCARS. Through an iterative process CARS estimates the power index of a

single user starting with reference the ideal system, and then in the following iterations

redistributes the unused power index to the users with better channel condition, in order to

fully utilize the available system resources. Users with better channel condition obtain more

bandwidth, while those with worse channel condition get less bandwidth, which however

may result to fairness violations. To overcome the unfair service allocation CARS imple-

mented a compensation algorithm, in which the lagging users can receive compensation

service when the corresponding channel conditions improve.

The performance of the proposed algorithms in terms of achievable fairness and

throughput were obtained via modeling and simulation and were compared with the perfor-

mances of other rate scheduling algorithms. The corresponding results demonstrated the

significant improvements that can be achieved by FCARS that manages not only to offer

performance that approaches the reference ideal system in terms of throughput, but also to

achieve the long-term fairness by keeping the service received by each user proportional to

its weight despite the users' channel variations.
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Figure 2.11 Excess service received (in bits) under CARS for scenario (users with
different weights)



Figure 2.13 Delay differences of Class Ο and Class 1 users with bad channels under
M-FCARS algorithm



CHAPTER 3

THROUGHPUT MAXIMΙΖΑΤΙOΝ FAIR SCHEDULING

In this chapter we study the problem of opportunistic fair scheduling in the uplink trans-

mission of CDMA systems, with the objective of obtaining the optimal throughput in the

uplink scheduling while still maintaining the long-term fairness. The CARS algorithm

described in the last chapter provides opportunities for transmission for all admitted users in

each slot, despite their possible undesired channel conditions. The throughput improvement

is achieved by limiting the transmit rate (or transmit power) of weak users. These weak

users however are compensated at a later time when their channel conditions improve,

in order to maintain the pre-specified desired fairness. However, the distribution of power

index among all admitted users at the same time may lower the achievable system throughput

due to the convexity of the relationship between the power index and the transmit rate.

Therefore, in this chapter the emphasis is placed on devising an optimal scheduling

policy that reaches the maximum system throughput in the uplink CDMA system, while

satisfying the long-term fairness property. The rest of the chapter is organized as follows.

In section 3.1 the system model that is used throughout our analysis is described, and the

problem of the uplink scheduling in CDMA systems is rigorously formulated as a mufti-

constrain optimization problem. It is demonstrated that this problem can be expressed as

a weighted throughput maximization problem, under certain power and DES constraints,

where the weights are the control parameters that reflect the fairness constraints. Based

on the concept of power index capacity, this optimization problem is converted into a

simpler linear knapsack problem in section 3.2.1, where all the corresponding constraints

are replaced by the users' power index capacities at some certain system power index.

The optimal solution of the latter problem is identified in sections 3.2.2 and 3.2.3, while in

section 3.2.4 a stochastic approximation method is presented in order to effectively identify

38
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the required control parameters. Section 3.3 contains the performance evaluation of the

proposed method, along with some numerical results and discussion.

3.1 System Model and Problem Formulation

In this study we consider a single cell DS-CDMA system with Β (k) backlogged users

at time slot k. The users' channel conditions are assumed to change according to some

stationary stochastic process, while the uplink transmission rate is assumed to be adjustable

with the variable spreading gain technique [35]. Iach user i is associated with some pre-

assigned weight Ad according to its QAS requirement. In the following for simplicity in the

presentation we omit the notation of the specific slot k from the notations and definitions we

introduce. Let us denote by Fri the transmission rate of user i in the slot under consideration.

We assume that the chip rate W for all mobiles is fixed, and hence the spreading gain  Gi

of user i is defined as: Gib = w . Let us also denote by Ad  the required SIN (Signal to

Interference and Noise Ratio) level of user i, by hi the corresponding channel gain, and by

pi user's i transmission power at a given slot, which however is limited by the maximum

power value ρΤαχ. Therefore the received SIN  'i for a user i is given by:

where no is the one-sided power spectral density of additive white Gaussian noise (AWGN)

and α determines the proportion of the interference from other users' received power.

Without loss of generality in the following we assume α = 1. Obviously to meet the

SIN requirement, the received SIN '2 has to be larger than the corresponding threshold

In the following we assume perfect power control in the system under

consideration, while users are scheduled to transmit at the beginning of every fixed-length

slot. The objective of the optimal scheduling policy Q* is to find the optimal number of

allowable users and their transmission rates, which achieves the maximum system throughput

while maintaining the fairness property.
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where r2 = Ε (rib) denotes the mean throughput of user i in the corresponding backlogged

period. It has been shown in [36] [37] that the above constrained optimization problem

can be considered as equivalent to the following problem (3.4), where Z is the minimal



where wig is an arbitrary positive number. Here the crucial observation [36] is that the

optimal scheduling policy will be the one that maximizes the sum of weighted throughputs

and equalizes the normalized throughput. The maximization of mean weighted rate in (3.5)

is obtained by the maximization of the weighted rate in every slot, i.e. max

for every slot k. In conclusion, to obtain the optimal uplink throughput while keeping the

fairness, we must solve the following problem,

The fairness constraint, that is 	 =	 , is represented by the choice of wig. By

adjusting the value of wi , the user will get more or less opportunities to transmit data, and

hence the corresponding normalized throughput is balanced. As we discuss later in this

paper, the value of w i can be approximated by a stochastic approximation algorithm, which

has already found its application in [21] [37] under similar situations. Please note that

since we assume perfect power control in the CDMA system under consideration, only the

equality case of (3.7) is considered here.

The following proposition 2 states that the optimal solution is achieved when a user

either transmits at full power or does not transmit at all.

Proposition 2 The optimal solution that maximizes the weighted throughput of problem

(3.6) is such that
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Proof. : In order to minimize the multiple access interference, users transmit with

the minimum required power to meet the required threshold - i . Therefore we consider

the equality case of constraint (3.7). To maintain exactly the threshold ^ for user i, the

achievable transmit rate is represented as

Since w is positive number, obviously (3.11) is nonnegative, while the objective function

is a convex function of pm . Hence the optimal solution of this problem is that the transmit

power obtains the value of its boundary, i.e. either 0 or pes`• •

In section 3.2 the corresponding optimization problem is transformed to an equivalent

problem of a simpler form, which facilitates the identification of the optimal solution.

However, in the following we first introduce the concept of power index capacity which

is used to represent the corresponding constraints, under the problem transformation.

3.1.2 Power Index Capacity

It has been shown in [31] that by solving the constraints (3.7)(3.8) the following inequality

must be satisfied if there exists a feasible power assignment p = [Αι , Ρ2, • • • , p13(k)] that

meets the DES requirements:



is defined as the power index of user i. Relation (3.12) is the necessary and sufficient

condition such that a power and rate solution is feasible under constraints (3.7)(3.8) [31].

Let us regard Σ gib as the actual system load, which is the sum of power indices

assigned to all backlogged users, while we assume that there is a target system load ψ. It
should be noted that ψ here is not fixed but has value 0 < ψ < 1. If we consider Σ gib =ψ,

then (3.12) can be rewritten as follows:

Hence given the system load ψ the maximum possible power index gib a user can

accept in (3.14) is determined by the maximum transmit power 1` and the channel gain

h i .

Definition 5 In a CDMA system with B (k) backlogged users at time slot k, given the target

system power index ψ, the maximum power index that does not violate (3.12) for a single

user whose channel gain is h i is defined as the power index capacity (PIG) AA (hi, ψ) of this

user.

From (3.14) it can be easily found that the PICA of user i is:

Note that in (3.15) the power index capacity is limited by the target system power index.

This is reasonable since a power index capacity that is greater than ψ will have no practical

meaning and application. Furthermore since our focus in this paper is to find an optimal



44

scheduling policy as well as the optimal system load ψ, the value of ψ in (3.15) is not

determined in advance. Finally it should be noted that in some cases the chosen target

system load ψ, e.g. when ψ is very close to 1, may not be achievable due to the maximum

transmit power limitation. In this case, we still apply the power index capacity definition

of (3.15) with the ψ set to the chosen target system load.

Intuitively, the power index represents the relationship between the transmission

power and the corresponding interference that is caused to other users. If we considered

that the total system power index is fixed to ψ, larger power index gi for user i indicates that

it has relatively higher signal to interference ratio compared to the other users with smaller

power index, while at the same time it causes more interference to them. Accordingly, users

with high power indices may lower their transmission power to reduce the interference they

may cause, which in turn means that they will have smaller power index to limit the intracell

interference of the system, and therefore satisfy relation (3.12) that guarantees the existence

of a feasible transmission power solution.

3.2 Problem Transformation and Optimal Solution

3.2.1 Problem Transformation

The corresponding constraints in terms of the power index can be represented as follows:
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Please note that in the objective function we represent the rate τ = f,, (gi,'i ) as a

function of power index gib, where

and rate vectors that satisfy constraints (3.7) and (3.8), and Ai = {P2,i, P2,i, ..., PB(k),i, r2,i,r2,i

,..., TB(k) , i }. The elements ρ; ,i and rj,A represent the transmit power and rate of the nth user

in the ith vector. Similarly we define another set V' containing the power and rate vectors A'

that satisfy constraints (3.17), (3.18) and (3.19). By definition it is obvious that any power

and rate vector Ai Ε V is feasible. However, since in constraint (3.19), ψ can be infinitely

close to 1, the required transmit power could also approach infinite. The following propo-

sition states that, if perfect power control is assumed, for any rate (or power index) vector

that satisfies constraints (3.17), (3.18), and (3.19), there always exists a feasible transmit

newer vector_
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Hence for any user i, the transmit rate may be chosen within range

which still satisfies the above inequality and proves this proposition. The power control of

the CDMA system will choose the minimal transmit power, that meets the required SIN.

■
The following proposition proves that the two sets Vaned V' contain the same elements,

which means that (3.17)(3.18)(3.19) and (3.7)(3.8) impose the same constraints over our

problem.



The above proposition shows that the optimal solution can also be obtained with the

new constraints since they define the same solution set. Please note that, as mentioned

before, the fairness constraints in the original problem are replaced by parameters wis. The

choice of the proper values of w2 s that maintain the fairness is discussed in detail later in

this paper.

Among the new constraints, the right hand side of inequalities (3.17)(3.18) are not

fixed values, but are functions of the selected target system load ψ. Hence whether or not

the final solution is feasible also depends on the choice of ψ. For any value of ψ Ε [0, 1),

there could be many feasible solutions among which one will be the optimal. Moreover,

there must exist an optimal system load ψ* that can achieve the overall best solution. It is

natural to regard the objective Z as the function of system load ψ, Z = F(ψ), and thus Z

is the local optimal result at some specific ψ. The maximum Z is achieved when ψ =

The ultimate objective of the proposed method is to find this optimal ψ*, and the optimal

power index assignment vector under it.

3.2.2 Optimal Solution for a Given System Load

Before obtaining the best system load, we first discuss how to find the local best solution.

Assuming that the value of ψ Ε [0, 1) is known, the right hand side of (3.17)(3.18) can

be determined. Combining the two constraints together, we can express the optimization

continuous values between Ο and 1. In general solving this type of problem is proven
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to be difficult or even impossible in some cases [38]. However proposition 2 limits the

transmit power of a user i, to either p es` or Ο for the optimal solution. This condition

provides a possible method to solve the above non-linear knapsack problem. Without loss

of generality we suppose that the optimal solution is when the first K users transmit at their

following theorem states that the power index of an individual user is equal to its power

Theorem 2 Let the optimal solution allow K users to transmit at their maximum power

and the system achieves the system load ψ*. The power index that an individual user

received in this case is equal to its power index capacity, that is: gA = A(hi , ψ*).

Proof. For those users whose transmit powers are zero, the corresponding power index

capacities are also zero. Therefore, their power indices are zero as well. Without loss

of generality, we assume that the K users under consideration are identified as follows:

1 < i < K. Based on proposition 2, we have

Performing some manipulations in these K equations, we have

From the definition of power index capacity, we find that gib = A(hi, ψ*). •

With reference to the optimal solution of problem (3.21) we can prove the following

theorem.
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Theorem 3 The optimal solution of the constrained optimization problem (3.21) can be

obtained by solving the following linear 0-1 knapsack problem

Based on proposition 2 we know that the optimal solution is achieved when the

transmit power of a user i is either ρ or Ο. According to Theorem 2, in terms of power

index that means that users are assigned either their power index capacity or 0 for the

chosen system load ψ. In the above relation (3.26), the solution for xA is either 1 or Ο.

Therefore, we can modify (3.26) as follows without changing the final optimal solution.

where xi = {Ο, 1 } . ■

Instead of solving for the optimal solution of the above integer knapsack problem

(3.25), which is in principle NP-hard, we utilize a greedy algorithm (GA) in order to obtain

an approximate solution. Let Zap denote the result achieved by the approximate solution,

while Ζ and Ζ denote the corresponding results of the optimal solutions for the integer and

continuous knapsack problems, respectively. It has been proven that

Furthermore let:
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which is a constant value for an individual user. Lets further suppose that all backlogged

users are sorted in descending order according t

i < n. If it is not the case, these values can be soil

procedure. Thus the optimal continuous solution

An algorithm that finds the critical point s within 0(n) time in a system with n

users, is provided in [39]. Based on solution (3.28), the greedy algorithm (GA) obtains the

approximate solution U as follows:

It has been shown in [39] that in worst case z = 2. Let D represent the result

that corresponds. to the integer solution of (3.27) when ψ is assigned a value from [0, 1),

and Z* be the result when ψ = ψ*. From the definition of ψ* we know that Z* is the

maximum value among all Z, i.e. Z* = max { Z} . Based on proposition 2 and the
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3.2.3 Optimal System Load

As we discussed in the last subsection the optimal solution of problem (3.21) depends on

the selected system load ψ . Relation (3.15) shows that the power index capacity increases

as ψ decreases. At the first point when A A = ψ, the power index capacity reaches its

largest value and then it decreases linearly following the value of ψ . Although a smaller

value of ψ may increase the single user's power index capacity at some range, the finally

achieved objective function could be low due to the small system load ψ. On the other

hand, setting large ψ reduces the individual user's power index capacity as (3.15) indicates.

The consequence of smaller power index capacity is that more users are required to share

ψ, and probably a small objective function should be used due to the convexity of function

f,, (z, χα ) that converts the power index to throughput. Therefore whether or not the objective

function reaches its maximum value depends not only on the value of the system load ψ,

but also on how it is shared among the candidate users. There must exist an optimal value

of system load ψ* that can achieve the maximum weighted rate.

Let the power index vector g denote the optimal solution, which can be found through

the method described in the previous section for a given specific value of ψ. Apparently

g is a function of ψ. The objective function (3.16) is the sum of individual weighted rates

that are obtained from g using function f,, (x, ργi) . Therefore Z can also be regarded as a

function of ψ. Let ΡΖ(ψ) be the function that gives the maximum value of the sum of

weighted rates at ψ. Then the original optimization problem can be rewritten as follows:

he above problem and its corresponding power index

provides the final optimal solution of (3.16).

Problem (3.30) is a simple unconstrained maximization problem that searches for the

maximum Z within the interval [0, 1). The disadvantage of (3.30) is that it does not have



52

an explicit expression. Hence algorithms that rely on the first or second order derivatives

will not be applicable in this case. Therefore the searching process depends on the result

of (3.28). Note that every time when a new value of α is chosen, the order of wi (k)αΡi

will be different from that of previous α. The time of calculating the best result for a

newly chosen α, including the time of reordering the users (if needed), is easily obtained

if n is assumed to be large enough. Moreover, there

are many possible local maximum points within the range 0 < α < 1. The final optimal α
must be a global best value. Although in [40] many searching algorithms on how to locate

the minimum!maximum solution within a range are described, to make these algorithms

effective there must be only one extreme point in the specified range. However in general

it is not possible to know the range which contains only the global optimal value. Thus

an exhaustive search within [0, 1) would be needed. However the following proposition

provides a lower bound α° with respect to the searching range instead of 0, in order to

restrict the corresponding feasible searching range.

Proposition 5 The lower bound of the feasible searching range is given by

Proof. : With the decrease of the target system load α, the individual's power index,

provided by (3.13), will keep increasing till α reaches the point α for user i, that is (1 —

ψJςi = α. With respect to user i, if α < α  its power index A i (hi , 0) = α. α is given

by α = A i /(1 + Ai), which varies with different users since their Ai are not likely the

same. Let 0° be the minimum among all α 's. Once α < α° all backlogged users will

have the same power index capacities Add (hi , 0) = α. Define a small increment Δα and

let α' = α + Δα < 0 ° . Apparently for all users their power indices will all have small

increment Δα, such that A i (hi , α') = α + Δα. Maintaining the previous power index

assignment and giving Δα to any backlogged user will help increase the objective function
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(3.16). We hence can keep adding Δψ to ψ till it reaches 0° = Αα + ι, which proves this

proposition. •

Since the optimal ι can reside between 0° and 1, we need to calculate a series of

sample values after every interval Αα. Apparently the smaller the Αι the more samples

we get and thereby the more accurate is the obtained result. On the other hand, it also

increases the required computational time and power.

3.2.4 Fairness Conditions

As mentioned before, the fairness is controlled by the vector w = {12 , w2 , ..., WB(k) }.

When changing the values of wig, we are actually pursuing a set of optimal fixed values

that balance the rate of users with varying channel conditions

and hence keep the fairness. Since we do not know in advance the exact distribution of

the channel conditions, and the number of users may also change, it is difficult to obtain

vector w* in advance. Therefore, a real time algorithm is required that is capable of

converging w, towards w, while maintaining the asymptotic fairness. Stochastic approx-

imation algorithm has been proven to be effective in estimating such parameters. Note

that this algorithm has been implemented in [21] [37] in order to solve similar problems.

Generally the stochastic approximation algorithm is a recursive procedure for finding the

root of a real-value function f aχ). In many practical cases the form of function f(x
is unknown. Therefore the result with the input variable x cannot be obtained directly.

Instead the observations of the results, sometimes with noise, will be taken. It has been

proven that the root of f(x can be estimated with the observation Υ = f aaxn,) by the

following procedure,



54

noise. In this case, the above approximation approach still applies, with the observed value

where β is the smooth factor which determines how the estimated Ran) follows the change

of actual achieved system throughput. In the remaining of the paper, throughout the perfor-

mance evaluation of our approach, the value β = 0.999 is chosen. The numerical results

presented in subsections 3.3.2 and 3.3.2, with respect to the convergence of wi's and the

achievable fairness, demonstrate that such a method is very effective in approximating the

optimal values of ti and therefore controlling and maintaining the fairness.
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3.3 Performance Evaluation

In this section we evaluate the performance of the proposed method in terms of the achievable

fairness and throughput, via modeling and simulation. Furthermore to better understand the

performance of the proposed scheduling algorithm - in the following we refer to as MANX-

FAIR (Throughput Maximization and Fair Scheduling) - we compare it to the Maximum

Throughput (MAX) scheme [26], which achieves the maximum total uplink throughput by

allowing only the best k users in terms of their received power to transmit, and the HDR

algorithm [15]  [41 ], which is a downlink single user scheduling algorithm. In the MAX

scheme parameter k is determined by iteratively comparing the throughput of best i users,

where Ν is the total number of users. The throughput achieved by MAX

scheme is regarded as the upper bound throughput in the uplink CDMA scheduling. On the

other hand, since DR achieves temporal fairness, we consider it here to mainly observe

the difference between temporal fairness and throughput fairness and their corresponding

advantages in specific cases.

3.3.1 Model and Assumptions

Throughout our numerical study we consider a single cell DS-CDMA multi-rate system

with multiple active users. All active users are continuously backlogged during the simulation

and generate packets with average size of 320 bytes. The maximum transmission power

is the same for all users, i.e. Ad` ` = 2W, while the system chip rate is W = 1.2288 x

106chiρ/ sec and the required SIN is = 8dB, same for all users. The transmission time

is divided into Ems equal length slots, while the simulation lasts for 1.7 x 10 5 slots.

To study the impact of the channel condition variations on the system throughput

and fairness performance, we model the channels through an instate Markov Rayleigh

fading channel model [34]. According to this model the channel has equal steady-state

probabilities of being in any of the eight states. We also assume that the coherent time is

much larger than the length of a time-slot, hence the channel state is assumed to be constant
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within a time-slot. At the beginning of each time-slot, the channel model decides to transit

to a new state, which can only be itself or one of its neighbor states, i.e. from state s to s,

s + 1 or s —1. Table 3.1 summarizes the state transition probabilities for all the eight states.

Furthermore four different cases with respect to the ranges of the average SNRs

that are assigned to the various users are considered. Specifically, Table 3.2 presents the

corresponding ranges, and lists the assignment of the average SNRs for each user for a

seven user scenario, under all these cases. The four different cases represent four different

scenarios with respect to the SNR as follows (from top to bottom): large SNR range with

low SNR users, low SNR, middle SNR and high SNR. In the next subsection we evaluate

the performance of MAX-FAIR, MAX and DR methods under all four cases and compare

their corresponding achieved throughput and fairness.

In most of the numerical results presented in the next subsection, unless otherwise is

explicitly indicated, all users are assumed to have the same weight. Such a scenario allows

us to better understand and compare the achievable performances of the various scheduling

schemes, when users have different channel conditions. However the operation and effec-

tiveness of the proposed MAX-FAIR policy is also demonstrated in an environment where

users present different weights.
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3.3.2 Numerical Results and Discussion

The numerical results presented in subsections 3.3.2 and 3.3.2 refer mainly to the impact of

some of the parameters associated with the proposed MAX-FMR algorithm on its operation

and achievable performance, and allow us to obtain a better understanding of its opera-

tional characteristics and properties. Then in subsections 3.3.2 and 3.3.2 comparative

results about the achievable throughput and fairness of the MAX-FMR, MAX and DR

algorithms, are presented.

Finite System Power Index Samples

Fig. 3.1 shows the sensitivity of the weighted throughput achieved by the MAX-

FMR algorithm as a function of the number of samples used to obtain these values. The

last point in the horizontal axis correspond to the optimal value. Moreover the different

curves provided in this figure correspond to different combinations of the SNR ranges and

the number of active users. As can be seen, the more samples we choose, the closer is the

obtained maximum value to the optimal value, which clearly presents the tradeoff between

the accuracy and the required computational power, as discussed before in subsection 3.2.3.

For instance we observe that in the cases with small SNR range (e.g. [0,1 ]dB), even 20

samples are sufficient to get satisfactory results, while for the cases with larger SNR range,

(e.g. [-3,3]dB), more samples may be required.
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Figure 3.1 The impact of number of samples on the weighted throughput (MAX-FMR

Furthermore, as it can be observed from this figure, for the case of [0,1 ]dB, the larger

the number of active users in the system the less sensitive is the achievable maximum result

to the number of samples (i.e. the slope of the corresponding curve becomes smoother as

the number of active users increases). On the other hand, when there are users with high

SNR values (e.g. [-3]dB), the increasing number of active users makes the achieved

throughput drop slightly for small number of samples. This difference in the system

behavior is closely related to different number of simultaneously served users, under different

SNR ranges and channel conditions, as depicted by the different observed service patterns

in Fig. 3.2.

Specifically, in Fig.3.2, we present the probabilities of the number of simultaneously

served users in each scheduling cycle. For this experiment we consider 40 backlogged

users in the system and perform 200 trials. In each trial, users are randomly assigned the

SNR in the designated SNR range. We observe that when there are users having high

SNR values, e.g. in the cases of [-3, 3]dB and [2,4]dB, only a small number of users (at



Figure 3.2 The service pattern under different channel conditions (i.e. SNR) (MANX-
FAR))

most 2 in this experiment), are served concurrently. However in the case that all users have

small SNR values, e.g. in the case of [-0,1]dB, the number of simultaneously served users

increases significantly (it is distributed between 0 and 17 in our case as can be seen by

Fig.3.2). Such user distribution indicates that in the case that a single user can not consume

all the system resources (e.g. the case where users have low SNR values), more users will

be scheduled simultaneously in order to achieve a more efficient resource utilization and as

a result increase the total system throughput. This also demonstrates the advantage of our

proposed scheduling algorithm over the one-by-one scheduling algorithms that have been

proposed in the literature. As a result, with respect to Fig. 3.1, for the case of [0,1]dB,

multiple users are scheduled to reach the maximal throughput. Increasing the number of

active users enables the system to schedule more available candidates to achieve higher

throughput, and therefore the achievable result is less sensitive to the number of samples.

However, for the case [-3, 3]dB at most only 1 or 2 users are scheduled for simultaneous
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Figure 3.3 The convergence of wigs for different users and different SNR ranges (MANX-
FAR)

transmission. In the following experiments and numerical results we adopt the accuracy of

100 samples, which is sufficient to reach 95% of the optimal weighted throughput.

Parameter Convergence by Stochastic Approximation

As described in sections 3.1.1 and 3.2.4 parameters wig s are used to represent the

fairness constraints in our optimization problem formulation. Fig. 3.3 shows the dynamic

change of parameters wi gs as the system and time evolves, for two different cases that

correspond to two different SNR ranges. For each such case the corresponding values of

two users - one user with strong channel and one user with weak channel - are presented.

As mentioned before, all the users are assigned the same weight in order to more clearly

demonstrate the influence of the channel conditions on w ings. It can be seen by this figure

that the converged values of digs has the effect of compensating users with the weak

channels and reducing the priority of users with strong channels in the scheduling policy.



In fact the converged values of wings will make both users (weak and strong) to gain proper

system resources and therefore achieve fair throughput. Please note that it is the relative

values of wings that control the priority of accessing the system resources, and not their

absolute values. Furthermore it should be noted that the lower the average SNR of a weak

user, the larger the gap between the weak user and a strong user, which has negative impact

on the achievable system throughput, as we will see in the following subsection.

Throughput and Fairness Performance

Fig. 3.4 shows the average throughputs of all the users under the MAX-FMR, MAX

and DR methods, for a seven user scenario where the average SNR range is [-3,3]dB

and the corresponding average SNR assignments to the seven users are as shown in Table

3.2. In order to better demonstrate the tradeoff between the computational complexity and

the achievable throughput of MAX-FAIR approach, we obtained the corresponding results

under two different cases with respect to the number of power index samples (i.e. 20 and
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100 samples). As observed in this figure the MAX-FMR with 100 power index samples

achieves slightly higher throughput, however it requires five times the computational power

of the MAX-FAIR with 20 power index samples.

When compared to other two scheduling schemes, MAX-FAIR presents the best

throughput-fairness performance (balances the achievable throughput of all users) despite

the variable channel conditions of the different users, which indicates that the fairness is

well maintained under the proposed scheduling algorithm. As mentioned before in the

paper, the main objective of DR is to achieve temporal fairness. Therefore, under DR

scheduling each usergs throughput is closely related to its channel conditions. That is

why in figure 3.0 we observe that users 1, 2 and 3 have smaller throughput than users

0, 5 and 6, while user 7 has the largest throughput under the HDR scheme. Under the

MAX algorithm, user 7 consumes most of the system resources and achieves much higher

throughput than the rest of the users due to the fact that the objective of MAX algorithm is

to achieve the highest possible total system throughput, without however considering the

fairness issue. In fig. 3.5 we further measure and evaluate the fairness performance by the

standard deviation of the average throughput under all the four different SNR cases. Among

the three algorithms, MAX-FMR algorithm has the smallest deviation for all the different

cases under consideration, while the corresponding values change only slightly from case

to case. We also find that in general the standard deviation increases as the SNR become

higher. This happens because small fluctuation of w results in larger throughput change, if

all the users have higher SNR levels.

Fig. 3.6 compares the corresponding average system throughputs of the three algo-

rithms under evaluation, for the different SNR ranges (cases). As we expected, MANX-

FAIRS outperforms HDR in most cases due to the simultaneous scheduling of multiple

users, as has been demonstrated in Fig. 3.2, and consequently results in higher resource

utilization. However in the case of SNR range of [-3,3]dB, MAX-FAIR achieves slightly

lower throughput than the DR. The reason of that resides in the different fairness criterions
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Figure 3.6 Achieved system throughput under different SNR ranges
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Figure 3.7 Average throughput under different DoS requirements (weights) by MANX-FAR

considered and satisfied in these two algorithms, namely the throughput fairness and temporal

fairness. If we examine again Fig. 3.3, we notice that users that have low average SNR (

3dB) (e.g. users 1,2 and 3) finally converge to a high w, which enables them to have equal

opportunity to transmit under the MAX-FAIR scheduling policy. Due to their weak channel

conditions, their average throughputs will be low and hence the total system throughput will

become lower because of the satisfaction of the throughput fairness constraint. However,

as explained before since access time is not the only resource to be shared among the

users in these systems, considering throughput fairness instead of temporal fairness is more

meaningful in these systems and environments, despite the slightly lower total throughput

that can be achieved in some cases under this consideration. One possible alternative

solution is to relax the fairness constraint if the DoS permits it. Our experiments have

demonstrated that after relaxing the fairness to 85% of its original requirement, the

MAX-FAIR catches up and outperforms the DR.
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In order to obtain a more in-depth understanding of the MAX-FAIR fairness operation,

in the following fig. 3.7 we present the achieved average throughputs for all the seven users

under MAX-FAIR scheme, for a scenario where the SNR range is assumed to be [-3, 3]dB

and the users are assigned different weights. The different weights can be considered as the

mapping of different DENS requirements. In this scenario, users 1 and 0 have weight 1, users

2 and 5 have weight 2, while users 3, 6 and 7 have weight 4. Fig. 3.7 demonstrates that the

MAX-FAIR successfully schedules the transmissions and distributes the resources so that

the various users achieve throughput according to their corresponding assigned weights.

Specifically users with weight 2 and 4 obtain respectively two times and four times the

throughput achieved by users with weight 1. In this figure we also present (on the right

hand side vertical axis) the converged values of parameters wings. Here the different values

of w gs reflect both the channel condition variations and the weight differences. Please note

that the relationship between w and weight is not linear due to the nonlinearity between

the allocated resources and throughput.

Number of Users

Fig. 3.8 shows the achieved total system throughput under MAX and MAX-FAIR

algorithms as a function of the number of backlogged users, for the case where the usersg

SNR are located within [0, 1 ]dB range. Please note that as mentioned before MAX algorithm

provides the maximum uplink transmission throughput without considering the fairness

property, and therefore is assumed to provide the upper bound throughput in uplink schedul-

ing. From this figure we can clearly observe the great advantage of the proposed MANX-

FAIRS approach and its ability to achieve very high throughput, while still maintaining the

fairness. When the number of backlogged users reaches a certain level, e.g. 35 in this

experiment, the throughput becomes flat for both MAX-FAIR and MAX which means that

the chances of improving the throughput by opportunistic scheduling with multiple users

have been fully utilized.



3.4 Conclusion

In this chapter the CDMA uplink throughput maximization problem, while maintaining

the throughput fairness among the various users was considered. It was shown that such a

problem can be expressed as a weighted throughput maximization problem, under certain

power and DES requirements, where the weights are the control parameters that reflect the

fairness constraints. A stochastic approximation method was presented in order to effec-

tively identify the required control parameters. The numerical results presented in the paper

with respect to the convergence of the the control parameters and the achievable fairness,

demonstrated that this method is very effective in approximating the optimal values and

therefore controlling and maintaining the fairness. Furthermore the concept of power index

capacity was used to represent all the corresponding constraints by the users' power index

capacities at some certain system power index. Based on this, the optimization problem
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under consideration was converted into a binary knapsack problem, where the optimal

solution can be obtained through a global search within a specific range.

The performance of the proposed policy in terms of the achievable fairness and

throughput were obtained via modeling and simulation and were compared with the perfor-

mances of other scheduling algorithms. The corresponding results revealed the advantages

of the proposed policy over other existing scheduling schemes, and demonstrated that it

achieves very high throughput, while satisfies the DENS requirements and maintains the

fairness among the users, under different channel conditions and requirements.



CHAPTER 4

OPPORTUNISTIC SCHEDULING WITH SHORT-TERM FAIRNESS

In this chapter we propose a new Credit-based Short-term Fair Scheduling (CSFS) algorithm,

which exploits the wireless channel variations to obtain high throughput via opportunistic

scheduling, while at the same time introduces into the service scheduling policy the infor-

mation of service interval, in order to provide more flexibility on the control of fairness in

systems that support multiple classes of users with different requirements.

The combined problem of maintaining long-term fairness and still reaching optimal

throughput has been addressed in the previous chapter using opportunistic scheduling policies

that exploit the wireless channel variations. Specifically, the throughput performance improve-

ment is obtained by utilizing the multi-user diversity effect in wireless communications.

Hence there is probability that some users that keep having relatively bad channel conditions,

may be prevented from being selected to receive proper service. However, some types of

traffic demand certain amount of service within specific short span of time in order to avoid

service delays. This objective is referred as short-term fairness. The optimal throughput

by opportunistic scheduling can only provide the long-term fairness property. The high

throughput of opportunistic scheduling is achieved by sacrificing the short-term fairness,

i.e. it delays the transmission of users with bad channel condition temporarily. Although

those users who lose service will be eventually compensated when their channels improve,

their services within a short time interval are not guaranteed due to the randomly time-

varying wireless channels. Such short-term unfairness in low level may result in the timeout

of higher layer protocols and may cause the consequent system and service performance

degradation.

Since the optimal solution to the transmission scheduling problem satisfying the

short-term fairness constraints, is in principle difficult to be addressed analytically, in [02]

the authors analyzed only some special cases and proposed a heuristic scheduling policy
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that tries to satisfy the strict short-term fairness. However this approach is not suitable

for traffic with multiple and different short-term fairness requirements. WCFQ (Wireless

Credit-based Fair Queueing) opportunistic policy which is based on the CBFQ (Credit-

based fair queueing) [03] approach of wirelike fair scheduling, has been proposed in [37].

By mapping the channel conditions into a cost function, WCFQ trade-offs the fairness and

throughput. It has been shown in [37] that this scheduler can provide temporal fairness

with statistical fairness bound.

In this chapter we propose and evaluate a new algorithm - in the following we refer

to as CSFS (Credit-based Short-term Fairness Scheduling) algorithm - which achieves to

provide short-term fairness to the delay-sensitive users, while still schedules opportunis-

tically the non-delay-sensitive users to obtain high system throughput. The remaining of

this chapter is organized as follows. In section 0.1 we first present the system model and

assumptions used throughout this chapter, and then we provide an overview of the WCFQ

algorithm which is the basis for our proposed CSFS algorithm. In section 0.2 a detailed

description of the CSFS algorithm is provided and its fairness property is discussed. Section

0.3 contains the performance evaluation of the proposed CSFS scheduling scheme and

demonstrates the advantages in the scheduling flexibility that can be achieved by the proposed

approach, especially in wireless systems that support users with different quality of service

requirements. Finally section 0.0 concludes the chapter.

4.1 System Model

4.1.1 System Model

In the following we assume that the wireless channel is divided into equal length slots and

shared by all active users. All users may access the channel in a time-division multiple

access manner. In each time slot only one user is served. We also assume that the base

station (BS) has perfect information about each usergs channel condition, i.e. the feasible

transmit rate to this user. The scheduler is assumed to reside in the BS and hence the BS can
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make decisions on which user should receive service at the current time slot. The wireless

channel condition, which is affected by fast fading, shadow fading, and long-time-scale

variation, has multiple states, and at a given time slot the channel can be in any of the states

with the respective feasible transmit rates. The channel condition is assumed not to change

within the duration of a time slot. Here we only consider the case of fixed packet length L

and therefore the packet length has the same meaning as the slot length, which represents

the service (access time) to users. Iach user i is associated with some preassigned weight

ADaccording to its Quality of Service (Qom) requirements, and

used throughout the remaining of this chapter are summarized in Table 0.1.

4.1.2 The Wireless Credit-based Fair Queueing Scheduling Algorithm

As explained earlier Users contending for the wireless medium will have different costs of

transmission depending on their current channel condition. WCFQ provides a mechanism

to exploit inherent variations in channel conditions and select low-cost users in order to

increase the systemgs overall performance.

The following Table 0.2 presents the credit update rule according to the WCFQ

scheduling algorithm.
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where Bat) denotes the user selected for receiving service at slot t as shown in (0.1),

WCFQ guarantees the statistical fairness bound as [37] :

The larger U1 (t) that is chosen, the more opportunistic this scheduling policy would be, and

as a result higher throughput could be achieved. However on the other hand smaller BUZ at)
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makes the scheduler more fair. An extreme case is when BUZ (t) = 0, which corresponds to

the CBFQ fair scheduling policy [43].

It should be noted here that in most of the cases, the statistical fairness bound (0.2)

may not be proper and!or accurate. To demonstrate this let us consider the case where only

statistic fairness with intervals at 2 , t2 ) > M slots is assumed, that is:

Such situations may occur in many delay non-sensitive applications that present only

loose delay requirements, e.g. the timer of MCP connections. In such applications the

unfairness in time range less than M slots is not important and hence the opportunistic

scheduling policy can take advantage of it to improve the system throughput. Apparently, in

opportunistic scheduling the larger the value of M, the smaller the probability of (0.3) will

be. However, in WCFQ the cost function lacks the ability of reflecting various intervals M.

Once the statistic fairness bound is determined, all the above cases will be treated equally.

In fact, all fairness bounds presented in the literature have no restriction on the interval time

at 2 , t2 ). A possible solution for WCFQ is to make the right side of (0.2), i.e. r.+x + r.+x 

to fit the M-slot short-term fairness requirement. However, such method is still unable to

handle the situation where the users have different short-term fairness requirements.

However, with larger M we can utilize larger cost function in (0.2), which favors

the channel condition in opportunistic scheduling and achieves higher throughput. At the

same time we can still satisfy the statistic fairness bound if the new cost function is properly

chosen. It should be noted here that although the weight AA determines the share of service a

user may receive, and has some influence on the fairness bound within certain time interval,

its ability of controlling fairness is limited under opportunistic scheduling policy.
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In this chapter, we do not intend to give an explicit short-term fairness bound as

in [42]. Our main objective is to bring the information of service interval (t 2 , t2 ) into the

scheduling policy which provides more flexibility on the control of fairness and achieve

higher system throughput than the WCFQ method. The new proposed approach is based

on the WCFQ which enables us to inherit its flexibility between the tradeoffs of fairness

and throughput.

4.2 Credit-based Short-term Fairness Scheduling

In this section, using the WCFQ and CBFQ algorithms as the basis, we propose the Credit-

based Short-term Fairness Scheduling algorithm (CSFS). One of the key features of CSFS

is that it achieves to provide short-term fairness to the delay-sensitive users, while still

schedules opportunistically the non-delay-sensitive users to obtain high system throughput.

CBFQ [03] has been introduced in the wirelike scheduling to provide proportional fairness

as WFQ [8] [ 12], but with lower computational complexity. The fairness is maintained by

updating a credit counter for each active flow. It has also been shown in [03] that CBFQ

has the same fairness and delay bounds as SCFQ [6] and PAPS [12].

4.2.1 Scheduling Algorithm Description

The credit update rule used in our scheme is shown in Table 0.2 and is the same one with

that of [03] and [37], which ensures that all backlogged users have fair credit updates

proportional to their weights.

In the following let us denote by W ig (measured in time slots) the observation window

for user i. It should be noted here that different classes of users may have different values of

Wige.g. real-time traffic will have smaller observation window than the non-delay sensitive

data traffic. Let SA (t, Wig) be the service (the number of slots accessed) received by user

i in the observation window W ig slots from slot (t — Wig + 1) to slot t, i.e. S(t , WAD) =

Ai(t — Wig+ 1,t) .Thus the service deviation in the observation window ending at slott
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is given by WAAi SA at, WAD) since a user must receive WAAi  service to maintain absolute

where the function Hat) is non-negative and defined as

where FAAax)is a predefined function according to the requirements of the network.

The exact role of this function is explained in more detail later in this chapter. The value of

ASA at, WA ) depends on the length of interval W. For a larger W ig we expect smaller values

of ΑS, at, Wig) on average. Hence by choosing different values of W ig we may change the

role of ΑSS at, Wig ) in the scheduling policy. The main principle behind the scheduling

policy (0.0) is to introduce the fairness interval information Wig in the new cost function

Aiat). Hat)still plays its role in balancing the fairness and throughput as in WCFQ,

however its control on the selection of the next user to receive service will change with

the influence of Si at, Wig) and function Fibax) .Larger Wigwill make the scheduling policy

turn more towards the channel factor (more opportunistic factor), while smaller W ig will

make the scheduling care more about fairness. F ibaASKSat, Wig)) may grow till it cancels

AAat) . At the point whereHat) =0 the user i will be scheduled following the CBFQ

scheme trying to maintain the fairness, independent of the channel conditions.

An example of the form of function Ε(x) is shown in Figure 0.1, and is described as

follows:

where Max) consists of serval linear lines. By choosing the points A, B, C, D, etc. and the

gradients in the respective range, Ε(x) will control in what speeds and ranges AS (t, W)
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will impose its effect on the scheduling policy. With reference to Figure 0.1, if the scheduler

is to be insensitive to small unfairness, we can give large A and make the gradient of line

ΑΒ small. Similarly, a small A and concave Ε (χ) with large gradient around A is suitable

for applications with more strict short-term requirements.

4.2.2 Fairness Discussion

In this subsection we discuss the fairness property of the proposed CSFS algorithm. From

the definition of the scheduling policy (0.0) we observe that function 72 (t) in CSFS contains

two elements. One of them, i.e. function Ui(t ), represents the transmission cost due

to the channel conditions as in the WCFQ, while the second one reflects the short-term

fairness cost considerations. Following similar steps with the proof in [37] we can obtain

the following result regarding the accumulated credit count of each user.

Proposition 6 For any backlogged user i, there exists a time slot t' < t which bounds the
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Clearly, since the value of A^ (t) is between 0 and υ (t), the accumulated credit count in

CSFS has the same bound as WCFQ. We can also extend this result to the fairness bound,

and therefore we can easily conclude that there exist slots p' and q' satisfying the following

exnreςςίnη

In fact we have not been able to derive the short-term fairness performance directly

from the credit and fairness bounds. However the usersg credit increases under the proposed

CSFS and the WCFQ schemes can be used to reflect their corresponding performances

in achieving the short-term fairness. Therefore the credit accumulation is treated as an

indication of service deficit. Zero credit indicates that the user receives equal or more

than its share of service. However those with large value of credit accordingly receive less

service than their fair share. In WCFQ, such situation can only be mitigated by the changing

of channel conditions, once the cost function B UZ (t) is determined. But in CSFS the large

credit also means the large service deviation function F ti ax) according to the respective

function definition for the specific user. The trend of credit increment will cease or become

slow in such situations. Therefore, in CSFS the credit has less probability of reaching the

bound, which also indicates better short-term performance.

Based on inequality (0.6), the statistic fairness bound can be obtained as follows:

Therefore, since Fib ax) is non-negative, for the same statistic fairness constraint,

larger cost function A2 at) can be applied compared to (0.2) to improve the throughput.
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4.3 Performance Evaluation

In this section we evaluate the performance of our algorithm through modeling and simulation.

In order to better understand and evaluate the underlying principles, of the proposed CSFS

algorithm we compare its performance results with the corresponding results obtained by

the WCFQ algorithm.

4.3.1 Simulation Model and Assumptions

In the following we consider a single cell Time Division Multiple Access (DMA) system

with seven users that are assumed to be continuously backlogged. The service received by

all users is measured in number of slots while the duration of a slot is 10ms. Two classes

of services are considered in this study: the delay-sensitive (real-time) service (in the

following we refer to as class 1) and the delay-non-sensitive data service (in the following

we refer to as class 2). Unless otherwise is explicitly indicated, a user i that belongs to

class 1 (class 2) is assumed to have observation window size WAt = 20 (W 2 = 200) and

regulated by the service deviation function Fd2 ax) (Fdl ax)). The functions Faux) and

Í'Fd2(x) are defined as follows:

Obviously, function Fdl (x) has large gradient and stringent short-term fairness property

which is suitable for delay-sensitive traffic, while 1 2 (x) only keeps relatively loose short-

term fairness which can be applied to non-delay-sensitive traffic.
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The cost function A2 at) used by CSFS and WCFQ algorithms in this study is defined

where AZ at) is the SNR of the pilot signal. Assuming that the pilot signal is trans-

mitted at fixed power the value of PAZ at) represents the instant channel quality. The maximal

value of A at) is 20. Obviously a bad channel will result in higher cost, i.e. larger value

of U2 at). For representation simplicity we use parameter β to control the value of the cost

function. In this study we only consider cases where β > 1 and therefore with larger

β, A at) takes smaller values for the same PAZ at), and thus users are less affected by the

variation of the channel conditions. The instant value of P AZ at) depends on the channel

condition of user i at that time. An eight-state Markov Rayleigh fading channel model [30]

is used throughout our study. The received signal to noise ratio, from zero to 20, is divided

into eight states in a way that a channel has equal steady state probabilities of staying at any

state. To study the performance of various algorithms to the changing channel conditions

users are assigned different average SNR.

4.3.2 Observation Window Size

In this subsection and corresponding experiment our goal is to study the impact of the

various observation window sizes on the achievable throughput. Therefore, for simplicity

in the presentation of the results, in this experiment all seven users are assumed to belong

to class 2 and are assigned accordingly function Fd2aΧ) in the CSFS algorithm. Figure 4.2

presents the average throughput of CSFS with β = 5, WCFQ with β = 5 and WCFQ

with β = 40 for different observation window sizes. As can be seen by this figure the

effect of changing the window size on the achievable throughput is significant for the CSFS

algorithm. When the window size is small, e.g. 10, in an attempt to satisfy the short-term

fairness the freedom of opportunistic scheduling is limited under CSFS, and therefore the
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Figure 4.2 Average system throughput for different observation window sizes

throughput is low. This is actually reflected by the use of the service deviation function

Fi(Εaχ)in relation (0.5). When the window size becomes larger, the scheduler has more

flexibility in providing the fairness which allows it to further exploit the channel variation

and improve the system throughput.

However the achieved throughput under WCFQ is not sensitive to the changes of  Wti

since WCFQ contains no information of the observation window size. Please note that in

the WCFQ case, the larger AZ will also improve the short-term fairness performance, which

makes it possible to use smaller β in (0.8) and obtain higher throughput (e.g. WCFQ with

β = 5). In Figure 0.2 we notice that the throughput performance of WCFQ is better than

that of CSFS for the same β = 5. However this throughput improvement may be achieved

only when all users have the same short-term fairness requirement, which is not suitable

for multimedia traffic. In the situation that strict short-term fairness is required for some

of the users only, WCFQ has to use large β, which will lower the achievable throughput as

can be seen by Figure 0.2 (e.g. WCFQ with β = 40). On the other hand CSFS can still



operate with small β and still provide the required short-term fairness as it is demonstrated

in the following experiment.

4.3.3 Fairness and Throughput

In this subsection we study the tradeoffs in the performance of throughput and fairness

under CBFQ, CSFS (β = 5) and WCFQ scheduling algorithms. In CSFS algorithm, users

1 and 2 are assumed to belong to class 1, while the rest of the users are assumed to belong

to class 2. In the WCFQ algorithm, five scenarios with β = 5, 20, 40, 60, 80 are simulated.

Although WCFQ is not affected by the observation window size, for comparison purposes

we still set a window size AAA = 20 for user l, which is the same as that in CSFS, in order

to measure the short-term fairness performance.

Figure 0.3 presents for user 2 (that belongs to class 1) the corresponding proba-

bilities of unfairness in the observation window Wi = 20 under the different algorithms.

Apparently CBFQ has the best short-term fairness performance, and is used here as bench-

mark. However as can be seen later in this subsection this happens at the cost of low

system throughput. With increasing β, the short-term fairness of WCFQ is improving as

well. In order to reach similar (unfairness performance with the CSFS (β = 5) algorithm,

the WCFQ has to raise its β to 80. As explained before the consequence of high β for

WCFQ is the low system throughput as observed in Figure 0.0, where the total system

throughput as well as the throughput of a class-l user (e.g. user 5) are presented. This

happens because under WCFQ users 3 to 7 (i.e all class-2 users) are also forced to have

unnecessary (not required) short-term fairness similar to the class-1 users (e.g user l). This

point is also confirmed by the comparison of the throughput of user 5 (that belongs to class

l) presented in Figure 0.0. Specifically despite the small β in CSFS, the function d2 (x)

guarantees the quality of service of user 2 while at the same time d2  (x) maintains the

high throughput of user 5. This clearly demonstrates the advantages that can be achieved in

the scheduling flexibility by CSFS mechanism compared to WCFQ scheduling algorithm.



Figure 4.3 Probabilities of unfairness in observation window size of 20 slots for User 2
under different algorithms and choices of β

Finally from this figure we also observe that as mentioned before the achievable throughput

under CBFQ is lower than the corresponding ones achieved under CSFS and WCFQ.

4.4 Conclusion

Due to the inner characteristics of wireless communication, the users may experience

location-dependent and time-dependent errors, that will prevent them from receiving service

and consequently break the fairness. Achieving short-term fairness while still maintaining

maximum throughput could be extremely difficult due to the changing wireless channel

conditions. In this chapter we studied the problem of providing short-term access time

fairness with opportunistic scheduling while still maintaining high system throughput. We

proposed a new Credit-based Short-term Fair Scheduling algorithm which exploits the

wireless channel variations to obtain high throughput via opportunistic scheduling, while

at the same time introduces the information of service interval into the service scheduling

policy. With properly defined service deviation functions for different classes of users,
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we demonstrated that the proposed algorithm provides more flexibility in the control of

fairness in systems with multimedia traffic, while still achieves high throughput.



CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary and Contributions

Wideband CDMA (CDMA) has been proposed as a key air interface technique for third

generation (3G) wireless systems, and will continue to be adopted as a strong candidate

for 0A systems that will provide differentiated services to multimedia traffic. With the

capability of dynamically varying user channel rates, CDMA systems can provide more

flexibility in bandwidth allocation. The integration of multimedia capabilities to wireless

networks, requires the systems to support different DENS requirements and traffic character-

istics. Since in the current and future mobile wireless communication infrastructures, both

topologies and traffic evolve and fluctuate on widely different time scales, and the perfor-

mances of the various services are strongly correlated as the resources are shared among

them, dynamic resource allocation and scheduling methods should be employed.

Mobile users always experience time-varying channel and location-dependent errors,

which could cause lower transmission speed and unexpected longer delay. In many cases

the efforts (or system resources) taken to transmit data may not be proportional to the

actual throughput, if the transmission is not properly scheduled, which may also result in

waste of resources. Therefore, devising new scheduling algorithms play a key role for

the operational effectiveness and efficiency of the next generation wireless communication

systems.

In this dissertation, we first studied the fair scheduling problem in the slotted-CDMA

systems. The difficulties of transmission scheduling in CDMA systems can be summarized

into the following aspects: a) the actual system capacity, as defined conventionally, is not

fixed and known in advance, since it is a function of several parameters such as the number

of users, the channel conditions, the transmission powers etc.; b) multiple users must be

simultaneously scheduled into a slot in order to efficiently and fairly utilize the system
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resources; c) due to the varying channel conditions the utilized resources are not

proportional to the achievable data rate and received throughput.

To overcome the above difficulties, the concept of power index capacity which indicates

the possible power index a user can accept was initially proposed and studied. In our

approach the system power index is regarded as a fixed resource, instead of the conven-

tional system capacity, e.g. the total available transmit rate. The actual service to a single

user is the combined effect of the assigned power index and the access time. The power

index adjustment among users within the constraint of PICA was analyzed, which creates the

basis for a feasible rate scheduling and service compensation process.

To improve the system performance in terms of throughput, in chapter 2 we adopted

the opportunistic scheduling policy that further exploits the variation of channel conditions.

Therefore we designed and analyzed two new scheduling algorithms, CARS and FCARS.

Through an iterative process CARS estimates the power index of a single user starting with

reference the ideal system, and then in the following iterations redistributes the unused

power index to the users with better channel condition, in order to fully utilize the available

system resources. Users with better channel condition obtain more bandwidth, while those

with worse channel condition get less bandwidth, which however may result to fairness

violations. To overcome the unfair service allocation FCARS implemented a compen-

sation algorithm, in which the lagging users can receive compensation service when the

corresponding channel conditions improve. The corresponding results demonstrated that

our proposed approach improves the system throughput and achieves the longterm fairness

by keeping the service received by each user proportional to its weight despite the users

channel variations.

Throughout this part of the dissertation we assumed that all backlogged users are

allowed to transmit simultaneously but with various transmit rates, despite their possible

undesired channel conditions. The throughput improvement is achieved by limiting the

transmit rate of weak users. Although such an approach maintains the fairness it is not
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optimal with respect to the system throughput, due to the convexity of the relationship

between the power index and the transmit rate. Therefore in chapter 3, we considered,

studied and analyzed the optimal throughput opportunistic fair scheduling problem. It

was shown that such a problem can be expressed as a weighted throughput maximization

problem, under certain power and DES requirements, where the weights are the control

parameters that reflect the fairness constraints. A stochastic approximation method was

presented in order to effectively identify the required control parameters. Furthermore the

concept of power index capacity was used to represent all the corresponding constraints by

the usersg power index capacities at some certain system power index. Based on this, the

optimization problem under consideration was converted into a binary knapsack problem,

where the optimal solution can be obtained through a global search within a specific range.

The corresponding results revealed the advantages of the proposed policy over other existing

scheduling schemes, and demonstrated that it achieves very high throughput, while satisfies

the DES requirements and maintains the fairness among the users, under different channel

conditions and requirements

The optimal throughput opportunistic scheduling policy described in 3 can only

provide the long-term fairness property. The high throughput of opportunistic scheduling

is achieved by sacrificing in many cases the short-term fairness. Although those users who

lose service will be eventually compensated when their channels improve, their services

within a short time interval are not guaranteed due to the randomly time-varying wireless

channels. Such short-term unfairness in low level may result in the timeout of higher

layer protocols and may cause the consequent system and service performance

degradation. Therefore in chapter 0 we studied the problem of providing short-term access

time fairness with opportunistic scheduling while still maintaining high system throughput.

We proposed a new Credit-based Short-term Fair Scheduling algorithm which exploits the

wireless channel variations to obtain high throughput via opportunistic scheduling, while

at the same time introduces the information of service interval into the service scheduling



86

policy. With properly defined service deviation functions for different classes of users,

we demonstrated that the proposed algorithm provides more flexibility in the control of

fairness in systems with multimedia traffic, while still achieves high throughput.

5.2 Future Work

It should be noted that the proposed opportunistic scheduling approach presented in this

dissertation, considered only the single cell scenario and did not account for the inter-

cell interference. As a result, an optimal scheduling policy in terms of maximizing the

system throughput while maintaining the fairness among the users has been devised, which

aims to provide a in-depth analysis of the achievable performance, when considering the

throughput fairness constraints in the uplink CDMA scheduling.

However in a realistic system with multiple cells, that may include a large number

of voice and data users, the inter-cell interference would affect the scheduling policy. In

the literature, studies about the scheduling problem in a multi-cell environment have been

mainly conducted based on a large number of voice user scenario, which has uniformly

loaded the cells. For traditional voice service, if the number of active users is large, the

inter-cell interference is usually modeled as a Aaussian process [00], and the fast fluctuation

of the individual inter-cell interference can be averaged out. However this may not be

the case for the high-speed uplink data service where only a relatively small number of

users may be allowed to transmit simultaneously in order to achieve high throughput while

maintaining fairness. In [05] and [06] the authors studied some specific only scenarios

where data users are present along with the voice users. Specifically, in [05] the admission

control of a single data user when many voice users are present is studied, while the inter-

cell interference caused by this data user is combined into that of voice users. The objective

of [06] was to maximize the data throughput with fixed number of voice users. In that

system model the inter-cell interference is treated as constant, in a similar way with the

noise.
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In principle, as argued in [06] and was demonstrated in this dissertation as well, it

is not possible to achieve high-speed uplink transmission if a large number of data users

transmit at the same time due to the high intracell interference. In case where a multi-cell

scenario is considered the SINK of each active user in (3.1) is then represented as follows:

where Tinter denotes the inter-cell interference. In this case additional considerations are

needed in order to accurately account for the inter-cell interference and address the schedul-

ing problem, including the cooperation among cells, interference cancellation techniques,

maximum allowable transmission power adjustment methods, etc. This problem is inter-

esting and challenging, and is part of our current and future research.

Furthermore, as demonstrated in this dissertation there is a tradeoff between the

short-term performance and the achievable total throughput performance. We expect that

the fast channel variation will have better short-term performance, however, in the case

of slow channel condition fluctuation, short-term fairness requires the scheduler to serve

not the throughput optimal candidates but some urgent users with possibly slightly worse

channel conditions. The algorithms that measure the packet deadlines own such properties

and functions. However it is a challenging problem, and of high practical and research

importance, to study to what extent the throughput performance is compromised by satisfy-

ing the short-term performance. For instance by simply allocating resources to the user

with the earliest deadline may not always give satisfactory results. Therefore, as part of our

future research, we will analyze this problem, and we will investigate strategies that can

control this tradeoff for different applications with different QoS requirements.



APPENDIX A

Pseudo Code of CARS and CARS Algorithms

This appendix gives the pseudo codes of CARS and FCARS algorithms, which are described
in Chapter 2.
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Figure A.1 Pseudo-code of CARS algorithm
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Figure A.2 Pseudo-code of CARS algorithm: Part One - Inhanced CARS
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Figure A.3 Pseudo-code of CARS algorithm: Part Two - Compensation
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