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ABSTRACT

ΑΝ ANALYSIS OF CHANGES IN THE MAGNETIC FIELD OF ACTIVE
REGION 9415 AFTER THE 2001 APRIL 6 SOLAR FLARE

by
Julia Darya Stoltz

The objective of this study was to further the current understanding of the correlation

between solar flares and magnetic flux change. The average gradient of the magnetic

flux around the neutral line of Active Region 9415 and the locations of the magnetic

flux center-of-mass in both polarities in AR 9415 were determined. Subsequent to the

2001 April 6 flare, there was a statistically significant mean increase of 0.00208 G/km

in the average gradient. Prior to the flare, the magnetic flux center-of-mass became

increasingly sheared along the neutral line. After the flare, this shear suddenly

decreased and the magnetic flux center-of-mass converged towards the neutral line.

Presently, solar flares are believed to result when an active region relaxes towards

the potential field configuration, i.e., the minimum energy state. Hence, magnetic shear,

a measure of non-potentiality, is expected to decrease after a flare. If in fact magnetic

gradient is proportional to magnetic shear, the increase in the average gradient implies

that the magnetic shear around the neutral line increased following the flare. However,

the sudden decrease in the magnetic flux center-of-mass separation parallel to the

neutral line indicates an overall decrease in the magnetic shear of the whole active

region. Therefore, it can be concluded that the magnetic shear kept increasing in local

areas in spite of an overall decrease on the large scale subsequent to the flare. The local

increase of magnetic shear in the neutral line region is believed to be associated with the

convergence of magnetic fluxes in both polarities towards the neutral line.
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CHAPTER 1

BACKGROUND

1.1 Objective

The objective of this project is to further the current understanding of the correlation

between solar flares and magnetic flux change. The average gradient of the magnetic flux

along the neutral line of Active Region 9415 is examined before and after the 2001 April

6 solar flare. The purpose is to determine whether or not the solar flare produced a

permanent change in the average gradient in this region. In addition, the separation

between the positive magnetic flux centers-of-mass and the negative magnetic flux

centers-of-mass of Active Region 9415 is determined at points before and after the flare. The

purpose is to examine the relative motion between these centers-of-mass around the time

of the flare.

1.2 Definition of Solar Flare

A solar flare is an explosive release of energy that results from magnetic field line

reconnection on the Sun. The energy released during a solar flare is mainly in the form of

electromagnetic radiation. Energetic solar flares release energies in the order of 10 32 erg

in 104 s while small flares release energies less than or equal to 10 30 erg in approximately

103 s. There is, however, no lower limit to possible flare energies (Schrijver 2000).

The two major classifications of solar flares are confined and eruptive. In a

confined flare, magnetic field lines merge without overlying field lines being opened. In

an eruptive flare, overlying field lines are blown open (extended out into space) and
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subsequently reconnect. Magnetic field lines may open as a result of newly emerging

magnetic flux, field line shear exceeding a critical limit, or some form of wave

disturbance (Svestka 2003).

The msases of a large solar flare include: the precursor msase, the impulsive or the

flash msase, and the main phase. The precursor msase includes msenomena that precede

the main flare event such as filament activation, filament eruption, surges, and the onset

of a coronal mass ejection (CM). The impulsive msase is characterized by the sudden

release of energy. During this msase, the radiation is largely thermal. Α collection of

emission spikes is observed in the radio, microwave, extreme-ultraviolet, Y-ray, and

gamnia-ray spectrum. However, the bulk of the emission is radiated during the main

phase, which is characterized by radiation that is largely thermal (Scbrijver 2000).

1.3 Definition of an B-class Solar Flare

Solar flares are classified according to their X-ray brightness in the 1 to 8 angstrom

wavelength range. C-class solar flares have peak intensities less than 10 -6 W/m2 in this

wavelength range. B-class solar flares have peak intensities greater than or equal to 10 -6

W/m2 and less than 10"5 W/m2 . B-class solar flares have peak intensities greater than or

equal to 10"5 W/m2 and less than 104 W/m2 . X-class solar flares have peak intensities

greater than or equal to 10-4 W/m2 . Therefore, a solar flare classified as an Y5.6 has a

peak intensity of 5.6 x 10 -4 W/m2 in the 1 to 8 angstrom wavelength range.

While C- and C-class solar flares produce few, if any, noticeable consequences on

Earth, B-class flares can cause planet-wide radio blackouts and long-lasting radiation

storms (Phillips 2005).
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1.4 Definition of Magnetograms

1.4.1 magnetogram

A magnetograph is an instrument that produces magnetogram by measuring Zeeman

splitting. Zeeman splitting is the broadening or splitting of a spectral line into several

polarized components when a source is in the presence of a strong magnetic field. The

degree of splitting and polarization depend upon the strength of the magnetic field.

Zeeman splitting can be measured by taking two narrowband images in a spectral line

sensitive to magnetic field. The two measurements are taken with opposite senses of

polarization.

A Magnetograms is a chart that displays the strength, the polarity, and the

distribution of magnetic fields across the disk of the Sun. On a Magnetograms, the gray

areas indicate no line-of-sight magnetic field, the white areas indicate regions of positive

polarity, and the black areas indicate regions of negative polarity (Darling 2005).

1.4.2 The Michelson Doppler Imager

The Michelson Doppler Imager (MIDI) is an instrument located on board the Solar and

Heliospheric Observatory (SOHO) satellite. MIDI is a project of the Stanford-Lockheed

Institute for Space Research and is a joint effort of the Solar Oscillations Investigation

(SOIL) in the W. W. Hansen Experimental Physics Laboratory of Stanford University and

the Solar and Astrophysics Laboratory of the Lockheed-Martin Advanced Technology

Center. SOHO is a joint European Space Agency (ESA) and National Aeronautics and

Space Administration (NASA) mission. SOHO was launched on December 2, 1995 and

placed in an elliptical orbit around the first Lagrangian point (Li) (Stanford-Lockheed

2000).
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The MIDI instrument includes a 1024 x 1024 pixel CCD camera. It measures the

line intensities at five positions along the Ni I 6768 angstrom spectral profile alternating

between left and right circular polarization modes. At the central positions of four

bandpasses, the spectrum line intensities F1, F2, F3, and F4 are obtained. With these

intensities, the line shift parameter is calculated using one of the following equations:

when the numerator is positive and

when the numerator is negative. Then, the line shift parameter is converted to the velocity

using an empirical lookup table. Finally, the magnetic field strength is determined by

calculating the difference between the velocities derived at left and right circιιlιr modes

using the following equation:

The preceding calculations are all performed onboard SOHO and only secondary

observable, such as magnetograms, are sent back to Earth (Qiu 2003).



CHAPTER 2

SOLAR FLARES AND cHANGES IN MAGNETIC FLUB

2.1 Solar Flare Models

2.1.1 Magnetic Breakout Model

In the magnetic breakout model, a multipolar topology consisting of a sheared arcade and

neighboring flux systems initially exists. Reconnection between the sheared arcade,

which lies near the neutral line, and the neighboring flux systems removes unsheathed

field from above the sheared arcade. This reconnection allows the sheared arcade to open

producing a flare, filament eruption, and CM (Antiochos 1998). See Figure 2.1.

Figure 2.1 Illustration of the potential magnetic field in the magnetic breakout model.
The different colors indicate the different flux systems.
Source: Antiochos, Desire, & Klimchuk 1999

Deng et al. (2005) claim that this model can explain the distinctive features of the

2000 June 6 flare in NOAA Active Region 9026, which include flare-related penumbral

decay, central umbra darkening, associated CM, and associated filament eruption. The
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flare related penumbral decay is believed to be the result of a change in the orientation of

the magnetic field lines to a more vertical configuration. According to Deng et al., the

magnetic breakout model suggests that the magnetic flux in the central umbrae will

increase as magnetic field lines move away from the peripheral penumbrae as a result of

an increase in inclination angle. The fact that only a small flux increase was actually seen

is thought to be due to Zeeman saturation.

2.1.2 Emerging Flux Model

The emerging flux model consists of three phases. During the preflare phase, new

magnetic flux emerges beneath the flare filament. This results in the heating of the

current sheet between the old and the new magnetic flux. The impulsive phase begins

when the current sheet loses equilibrium at a critical height. During the impulsive phase,

the current sheet expands rapidly. The main phase begins when the current sheet reaches

a new steady state with marginal reconnection (Priest & Heyvaerts 1974). See Figure 2.2.

Figure 2.2 Illustration of the emerging flux model.
Source: Nishio et al. 1997



2.1.3 Simple 2-D Quadrupole Magnetic Reconnection Model by Liu et al. (2005)

According to the simple 2-D quadrupole magnetic reconnection model proposed by Liu

et al. (2005), two separate magnetic flux systems are joined at a δ sunspot, where umbrae

of opposite polarities lie within a common penumbra. During the flare, two new sets of

loops, a compact loop and a large-scale loop, are created as a result of magnetic

reconnection between the converging magnetic flux systems. See Figure 2.3.

Figure 2.3 Illustration of the simple 2-D quadrupole magnetic reconnection model by
Liu et al. (2005). (a) Preflare magnetic field configuration. Penumbral fields are in gray
and umbra fields are in black. (b) Postflare magnetic field configuration. The dash-dotted
line represents the connection between two points far apart.
Source: Liu et al. 2005
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2.2 Magnetic Shear

Magnetic shear is defined as the product of transverse magnetic field strength and shear

angle, which is the angular separation between the directions of the transverse fields and

the extrapolated potential fields. Shear is widely regarded as an indicator of

nonpotentiality, i.e., departure from the minimum energy state. According to several solar

flare models (e.g., Atari et al. 2000), photospheres shear motion builds up free magnetic

energy by forming nonpotentiality magnetic field configurations. It is believed that a flare

results when the shear exceeds a threshold value and the magnetic field is restored to a

more potential configuration.

2.3 Transient Versus Permanent changes in Magnetic Field

The magnetic field changes that have been observed in association with some solar flare

events can be classified as either transient or permanent. A transient change occurs only

during a flare. The magnetic field returns to the preflare state following the flare event. A

permanent change is a change in the magnetic field between the preflare state and the

postilare state that is irreversible (Qiu & Gary 2003).

Although this study is concerned with permanent rather than transient changes in

the solar magnetic field, it is important to note that the magnetic field measurements

made during a flare are believed to be distorted. Qiu & Gary (2003) examined an

apparent transient sign reversal that occurred in small areas of the MIDI magnetograms

from the impulsive phase of the 2001 April 6 flare in AR 9415. They refer to this

magnetic transient as a magnetic anomaly. In order to ascertain the source of the

magnetic anomaly, Qiu & Gary simulated MIDI magnetic field measurements for a line



profile that deviates from the standard quiescent profile. According to their study, it is

likely that the magnetic anomaly was caused by a distortion in the MDR measurements

when the Ni I 6768 angstrom line was temporarily turned from absorption into emission

or was broadened significantly with a strong central reversal as a result of a nonthermal

beam impact on the umbra! atmosphere.

As for permanent changes observed in association with solar flares, the findings

of previous studies are widely varied. Kosovichev & Zharkova (2001) found a permanent

decrease in magnetic flux in addition to a short-term magnetic transient for the 2001 July

14 solar flare. However, Chen et al. (1994) studied over 20 B-class flares and found no

apparent flare-related change in the magnetic fields. Spirock, Yurchyshyn, &Wang

(2002) studied the 2001 April 2 X20 flare and found a 6 x 10 20 Mx increase in the

magnetic flux of the leading polarity, but no change in the magnetic flux of the following

polarity. Wang et al. (2002) studied 6 X-class flares. They found a permanent increase in

the magnetic flux of the leading polarity and some decrease in the magnetic flux of the

following polarity for all of the flare events.

2.4 Gradient of Line-of-Sight Magnetic Field

It has been observed that active regions with neutral lines across which the gradient of the

line-of-sight magnetic field is large tend to have strongly sheared core field along the

neutral line (Kirin & Liggett 1987). This observation has lead scientists to explore the

possibility of using the gradient of line-of-sight magnetic field to predict CMEs and solar

flares. If sufficiently developed, these methods could improve the forecasting of possibly
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damaging space weather and improve the current understanding of CME and solar flares

because line-of-sight field is more easily measured and analyzed than full vector fields.

Falconer, Moore & Gary (2002) measured the length of strong shear (A ss) for 12

bipolar active regions using 17 magnetogram. Ass  is the length of the portion of the main

neutral line on which the observed transverse field is greater than 150 G and has a shear

angle greater than 45°. Falconer, Moore, & Gary concluded that Ass is a measure of the

overall nonpotentiality of an active region and significantly correlated with CBES

productivity.

Subsequently, Falconer, Moore & Gary (2003) measured the strong gradient

length (Ass ) for the same 12 bipolar active regions in order to determine whether or not it

is a viable proxy for Ass. Ass is the length of the portion of the main neutral line on which

the potential transverse field is greater than 150 G and the gradient of the line-of-sight

field is above some threshold value. Unlike Ass, Ass can be measured from a line-of-sight

magnetograms. For the data examined, the threshold value for the gradient of the line-of-

sight magnetic field was determined to be in the vicinity of 50 G/Mm.. Falconer, Boore,

& Gary concluded that Ass is statistically significantly correlated with A ss and CM

productivity. Therefore, it is a measure of nonpotentiality.

Wang et al. (2005) propose that magnetic gradient derived from line-of-sight

magnetic fields could be used to predict where a major flare may occur. For each of five

well-known active regions that produced flares classified as X5 or larger, Wang et al.

created three images: a magnetic gradient map, a shear map, and a mask map

representing the location of the magnetic neutral lines. The magnetic gradient maps were

constructed using line-of-sight magnetogram. The magnetic shear map was constructed
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by calculating the product of the observed transverse field strength and the shear angle.

Then, the gradient image and the mask image were multiplied in order to create an image

of the gradient in the neutral lines only. The shear image and the mask image were

multiplied in order to create an image of the shear in the neutral lines only. Finally, a

scatter plot of the magnetic shear versus the magnetic gradient was created. The plots of

magnetic shear versus magnetic gradient constructed by Wang et al. show a strong

positive correlation between magnetic gradient and magnetic shear.



cHAPTER 3

OVERVIEW OF THE SOLAR FLARE OF 2001 APRIL 6

3.1 Overview of the Sole Flee

On 2001 April 6, one of the largest flare events in solar cycle 23 took place. The flare

occurred in Active Region 9415, which was located at S20 degrees and E31 degrees. See

Figure 3.1. It was associated with a Halo CM (visible around the entire occulting disk),

but not a filament eruption. This flare has been classified as an X5.6 flare.

Figure 3.1 Solar disk at 17:00:02 UT on 2001 April 6. The labels are the active region
numbers.
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Qiu, Aee, & Gary (2004) examined the hard X-ray and microwave emission

during the 2001 April 6 flare event and found that this emission can be divided into two

distinct phases. The impulsive phase, 19:16-19:23 UT, is characterized by hard B-ray and

microwave emissions consisting of several impulsive bursts. Each burst arose sharply,

decayed fast, and lasted tens of seconds. The gradual phase, 19:28 UT onward, is

characterized by gradual smooth emission at hard Y-ray and microwave wavelengths.

This single, gradual component lasted for approximately ten minutes.

Qui, Aee, & Gary (2004) found that the gradual component of the flare involved a

different emission source than the impulsive component of the flare. In general, emission

during the impulsive phase emerged from sources located at the ends of a soft X-ray loop

structure. The two sources represent conjugate footprints of the flare loop structure

where electrons precipitated to the chromosphere to produce thick-target hard X-ray

emission. From 19:14 to 19:18 UT, the two footprints approached each other with an

average speed of 28 km/h. During the gradual phase, the emission source located in the

negative field is close to the emission source from the impulsive phase located in the

negative field while the emission source located in the positive field is clearly distinct

from the second emission source from the impulsive phase. Hard Y-ray and microwave

emissions outline the configuration of a flare loop connecting the gradual phase emission

sources. During the gradual phase, the emission sources moved away from each other and

the neutral line. From 19:30 to 19:40 UT, the footprints separated with an average speed

of 13 km/h. The observed motions of the emission sources reflect continuous magnetic

reconnection.
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3.2 changes in the Magnetic Flux

For the Χ5.6 flare on 2001 April 6 in AR 9415, Wang et al. (2002) found that the

magnitude of the following (positive) magnetic flux decreased by 4 x 10 20 Mx while the

magnitude of the leading (negative) flux increased by 4 x 1020 Mx. The explanation given

for these findings is that more flux became detectable rather than the flux actually

increasing.

Wang et al. (2005) plotted the magnetic shear derived from vector magnetograms

versus the magnetic gradient derived from line-of-sight magnetograms for the Χ5.6 flare

on 2001 April 6 in AR 9415. See Figure 3.2. The plot revealed a close correlation

between these two parameters. Wang et al. produced similar results for four other active

regions that produced flares classified as Χ5 or larger.

Figure 3.2 Plot of averaged magnetic gradient versus magnetic shear in all the neutral
lines identified for the active region 9415 on 2001 April 6.
Source: Wang et al. 2005



cHAPTER 4

DATA AcQUISITION AND REDUcTION

4.1 Data Acquisition

The magnetogram used in this project are MIDI magnetogram obtained from the

Stanford-Aockheed Institute for Space Research via the Web site

http://soi.stanford.edu/production/time_range.htnil/ . The magnetogram span the five

hour period from 17:00:02 UT to 21:59:02 UT on 2001 April 6. magnetograms 24 in the

set of 297 magnetogram actually sent was blank. Therefore, it was discarded.

4.2 Data Reduction

All of the data reduction for this project was done in IDA (Interactive Data Aanguage).

The data reduction for this project can be divided into the three main parts described

below.

4.2.1 Gradient

Prior to taking the gradient of the magnetogram, it was necessary to align, crop, and

smooth the magnetogram. The DOT MAP function in IDA was used to shift the

magnetogram so they would all align with the first magnetograms in the set. Then, the

portion of the magnetogram corresponding to the region x = 182 to 282 and y = 314 to

414 on the first magnetograms in the set was cropped. See Figure 4.1. Next, the

magnetogram were smoothed using the SMOOTH function in IDA. This averaged each

pixel value with the values of the pixels in a 5-by-5 square neighborhood.

15
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Figure 4.1 Region of the original magnetograms cropped.

The gradient of the magnetogranis was taken using a function developed by Dr.

R. Molowny-Horas. The magnitude of the gradient of the line-of-sight component of the

magnetic field is defined as follows:

After taking the gradient of the aligned, cropped, smoothed magnetogranis, the

magnetogranis and the gradient images were rotated 36.5° so that the neutral line would

appear vertical. In order to obtain this angle of rotation, it was necessary to note that the

magnetic flux density should be zero at the neutral line. Therefore, if the neutral line is

perfectly straight, a plot of the magnetic flux density versus the column number for any

row that the neutral line spans should cross the line ΒΖ = 0 at the same point. The proper
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angle of rotation was determined through trial and error by rotating the magnetogram by

a given angle and then plotting the magnetic flux density versus the column number for

the rows that the neutral line spans. Since an angle of 36.5° produced the narrowest

magnetic flux density versus column number plot, it was chosen as the proper angle of

rotation.

At this point, a magnetograms movie and a gradient movie were made out of the

magnetogram and the gradient images.
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4.2.2 Average Gradient Intensity in the Neutral Line Region

In order to find the average gradient intensity in the neutral line region, it was first

necessary to ascertain the minimum size of a box that is able to contain the entire neutral

line. See Figure 4.3. By visual inspection, the rows that this box spans were determined

to be 35 through 60 on the altered magnetograms. Note that each pixel corresponds to 2".

Since it was difficult to determine the exact path of the neutral line by visual inspection,

the columns that the box spans were determined by plotting the magnetic flux density

versus the column number for each of rows 35 through 60 for the first and the last

magnetograms in the set. Given that the magnetic flux density is expected to be zero at

the neutral line, it was possible to determine the columns that the box spans by examining

the range of column numbers over which the plots pass through ΒΛ = 0. See Figure 4.4.

The columns that the box spans were determined to be 72 through 76.

Figure 4.3 Neutral line region.

Once the coordinates of the minimum box were established, the AVM function in

IDA was used to find the average gradient intensity in the minimum neutral line region

for each gradient image. Since the average gradient intensity was in gauss/pixel, it was

necessary to divide by 1424 km/pixel in order to convert the average gradient intensity
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into gauss/km. After this was done, the averages were plotted versus the times obtained

from the headers of the original magnetogranis. Radio flux data for a frequency of 7 GHz

from 2001 April 6 were plotted over this plot. These Owens Valley Solar Array (OVSA)

data were obtained from Dr. Dale Gary especially for this purpose. The spike in the over

plots indicates the time of the flare. See Figure 4.5.
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Figure 4.4 Plot of magnetic flux density versus column number for (a) the 17:00:02 UT
magnetogram and (b) the 21:59:02 UT magnetogram.
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Figure 4.5 Plot of average gradient intensity in the neutral line region versus time with a
range of (a) 0.06 to 0.10 G/km and (b) 0.090 to 0.098 G/km. The solid line indicates the
average gradient intensity. The crosses indicate the 7 GHz radio flux.
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4.2.3 Magnetic Flux Center-of-Mass Separation

The Χ- and Y-components of the magnetic flux center-of-mass separation were

determined in order to quantitatively study the average motion of magnetic fluxes of

opposite polarities. The X-direction refers to the direction perpendicular to the neutral

line and the Y-direction refers to the direction parallel to the neutral line. This was done

using the center-of-mass method applied by Wang et al. (2005):

where Χ and Α' are the center-of-mass positions of magnetic fluxes, Fib is the measured

magnetic flux in each pixel, and A i and V i are the positions of the individual pixels.

First, the region Χ = 59 to 94 and V = 32 to 64 was selected by visual inspection

to encompass the area in which the flare occurred. See Figure 4.6. Then, Χ and Ας were

calculated for positive fluxes by setting the negative fluxes equal to zero and separately

for negative fluxes by setting the positive fluxes equal to zero. Next, the differences

between the positive and negative center-of-mass positions were calculated by

subtracting the negative center-of-mass positions from the positive center-of-mass

positions. At this point, the Χ- and Y-components of the center-of-mass separation were

in pixels so it was necessary to multiply by 1424 km/pixel in order to convert to

kilometers. Finally, three plots were constructed. The Y-component of the center-of-mass

separation versus the X-component of the center-of-mass separation was plotted. See

Figure 4.7. In addition, the X-component of the center-of-mass separation and the Y -

components of the center-of-mass separation were individually plotted versus time. Radio

flux data for a frequency of 7 GHz from 2001 April 6 were plotted over both of these

plots. The spike in the over plots indicates the time of the flare. See Figure 4.8.



Figure 4.6 Region of magnetic flux center-of-mass analysis.
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Figure 4.7 Plot of the Y-component of the magnetic flux center-of-mass separation
versus the Y-component of the magnetic flux center-of-mass separation. The darkening
of the color indicates the passage of time in the positive direction.



24

Figure 4.8 (a) Plot of the X-component of the magnetic flux center-of-mass separation
versus time. (b) Plot of the V-component of the magnetic flux center-of-mass separation
versus time. The solid lines indicate the magnetic flux center-of-mass separations. The
crosses indicate the 7 GHz radio flux.



cHAPTER 5

RESULTS

5.1 Average Gradient Intensity in the Neutral Line Region

The plot of the average gradient intensity in the neutral line region versus time shows that

the average gradient intensity in the neutral line region experienced a permanent increase

after the 2001 April 6 solar flare. Since the method used to align the original

magnetograms aligned the magnetograms at the pixel level, subpixel discrepancies in the

alignment produced small fluctuations in the plot of the average gradient intensity.

Smoothing the magnetograms prior to taking the gradient reduced these fluctuations, but

did not eliminate them entirely.

In order to calculate the difference between the average gradient intensity in the

neutral line region before and after the flare, the mean of the average gradient intensities

from 17:42:02 UT to 18:42:02 UT was taken as being representative of the mean average

gradient intensity before the flare and the mean of the average gradient intensities from

20:54:02 UT to 21:54:02 UT was taken as being representative of the mean average

gradient intensity after the flare. The mean average gradient intensity before the flare was

found to be 0.09319 G/km with a standard deviation of 3.220 x 10 4 G/km. The mean

average gradient intensity after the flare was found to be 0.09527 G/km with a standard

deviation of 2.755 x 104 G/km. Thus, the mean difference between the average gradient

intensity before and after the flare is 0.00208 G/km. See Figure 5.1.
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Figure 5.1 Plot of the average gradient intensity in the neutral line region versus time
with the mean average gradient intensities before and after the flare indicated with a
range of (a) 0.06 to 0.10 G/km and (b) 0.090 to 0.098 G/km.
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To prove that this difference is statistically significant, it is necessary to show that

the mean difference divided by the average of the standard deviations is greater than or

equal to three. The average standard deviation was determined to be 2.988 x 10 -4 G/km.

Therefore, the mean difference divided by the average of the standard deviations is 6.96.

Since this value is greater than 3 sigma, the mean difference between the average

gradient intensity before and after the flare is statistically significant.

5.2 Magnetic Flux centers-of-mass Separation

Since both the Χ- and the V-component of the magnetic flux centers-of-mass separation

are always positive during the five hour period examined, the positive magnetic flux

centers-of-mass is located North-West of the negative magnetic flux centers-of-mass.

Since only the periods before and after the flare are being considered in this study,

the sudden spike in the V-component of the centers-of-mass separation plot, which

coincides with the flare induced spike in the radio data, can be disregarded. However, the

abrupt reduction in the V-component of the centers-of-mass separation, which also

coincides with the flare induced spike in the radio data, cannot entirely be ignored since it

leads to a permanent reduction in the Y-component of the magnetic flux centers-of-mass

separation.

The V-component of the centers-of-mass separation versus time plot shows that

the magnetic flux center-of-mass separate slightly before the flare and converge towards

the neutral line immediately following the flare. The slight separation before the flare is

believed to be a consequence of the effects of solar rotation not having been taken into

account. The Y-component of the centers-of-mass separation versus time plot shows that
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the magnetic flux center-of-mass become increasingly sheared along the neutral line

prior to the flare and that this process is suddenly reversed following the flare.

The POAY FIT function in IDA was used to find the slope of each graph during

two hour-long intervals. For the X-component of the center-of-mass separation, the speed

of separation determined from the graph is 39 km/h in the 18:00:02 UT to 19:00:02 UT

time interval. The speed of convergence determined from the graph is 89 km/h in the

20:00:02 UT to 21:00:02 UT time interval. For the X-component of the center-of-mass

separation, the speed of separation determined from the graph is 297 km/h in the

18:00:02 UT to 19:00:02 UT time interval. The speed of convergence determined from

the graph is 265 km/br in the 20:00:02 UT to 21:00:02 UT time interval. See Figures 5.2

and 5.3. The speeds calculated from the graphs give a rough idea of the actual magnetic

flux center-of-mass separation speeds, but not the exact speeds because the effects of

solar rotation have not been taken into account.
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Figure 5.2 Plot of the X-component of the magnetic flux center-of-mass separation
versus time with a trend line for (a) 18:00:02 UT to 19:00:02 UT and (b) 20:00:02 UT to
21:00:02 UT.
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cHAPTER 6

DISCUSSION OF RESULTS

There are two possible reasons for the observed 0.00208 G/km increase in the average

gradient intensity in the neutral line region. The first possibility is that new flux emerged

along the neutral line during the flare. This could have caused an increase in the average

gradient intensity in the neutral line region by increasing the magnetic flux along the

neutral line while leaving the magnetic flux along the periphery relatively unchanged.

The second possibility is that existing magnetic flux converged towards the neutral line

during the flare. This could have caused the increase in the average gradient intensity by

increasing the magnetic flux along the neutral line while reducing the magnetic flux

along the periphery.

Α possible reason for the sudden shift from separation to convergence for the Y-

components of the magnetic flux center-of-mass is that an earthquake-like movement of

plasma occurred during the flare and the magnetic field lines were moved along with the

plasma.

Wang et al. (2005) applied the same centers-of-mass method applied in this project

to study the X5.7 flare on 2000 July 14 in AR 9077 (the Bastille Day flare). No variation

in the Y-component of the magnetic flux centers-of-mass separation was detected.

However, a rapid decrease in the X-component of the magnetic flux centers-of-mass

separation was detected immediately after the flare. The speed of this convergence was

calculated to be 216 km/h for the first hour and a half after the flare and about 108 km/br

afterwards. The speed of convergence of the Y-component of the magnetic flux

center-of-mass for the hour long period starting approximately half an hour after the 2001 April
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6 flare, 89 km/br, is relatively close to the speed of convergence of the Castille Day flare

after the first hour and a half. Wang et al. did not find any change in the average gradient

of the magnetic flux density in the neutral line region of the Bastille Day flare.

Dr. Haimin Wang applied the same methods used in this project to study the 2001

April 9 flare in AR 9415. See Figure 6.1. A notable postflare increase in the average

gradient of the magnetic flux density in the neutral line region was also discovered for the

2001 April 9 flare. The Y-component of the magnetic flux center-of-mass separation also

decreased after the 2001 April 9 flare indicating a convergence towards the neutral line.

Although the V-component of the magnetic flux center-of-mass separation did not

increase prior to the 2001 April 9 flare as it did prior to the 2001 April 6 flare, it did

decrease after the flare as it did after the 2001 April 6 flare. However, the decrease in the

Y-component of the separation did not occur as suddenly for the 2001 April 9 flare.

The findings of this study support the simple 2-D quadrupole reconnection model

proposed by Aiu et al. (2005). The X5.6 solar flare on 2001 April 6 occurred in a δ

sunspot. The increase in the average gradient of the magnetic flux in the neutral line

region can be explained as the result of magnetic flux convergence towards the neutral

line, which triggered magnetic reconnection over the neutral line. In addition, the

negative slopes of the X-component of the magnetic flux center-of-mass separation and

the V-component of the magnetic flux center-of-mass separation versus UT time plots

subsequent to the flare also support the converging magnetic flux explanation.
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Figure 6.1 Results from an analysis of the solar flare on 2001 April 9 in AR 9415.
Source: Dr. Haimin Wang

Although some of the findings of this study may seem contradictory at first,

proper interpretation of the results can resolve the apparent paradox. If the magnetic

gradient is proportional to the magnetic shear as Wang et al. (2005) claim, the increase in

the average gradient of the magnetic flux around the neutral line implies that the

magnetic shear around the neutral line increased following the 2001 April 6 flare.

However, the magnetic flux centers-of-mass converged along the neutral line after the

flare, which seems to indicate an overall decrease in the magnetic shear of the active
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region. This apparent magnetic shear paradox can be resolved by clearly distinguishing

between the neutral line region in Figure 4.3 and the whole active region in Figure 4.6. In

other words, in spite of an overall decrease in the magnetic shear on the large scale, the

magnetic shear apparently increased in local areas, such as the neutral line region,

following the flare.
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