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ABSTRACT

SNP AUTO-CALLING USING ARTIFICIAL NEURAL NETWORKS

by
Damien Spivak

In recent years feedforward artificial neural networks (ANN) and their training

algorithms have become an effective methodology for the construction of nonlinear

systems that solve the statistical problem of classification. The ability of ANN to solve

this problem is highly germane to making progress in the refinement of DNA microarray

analysis and techniques regarding this issue. This study attempts to deal with the

classification of microarray data and the comparison and validation of simple

feedforward ANN in partitioning high dimensional data. In doing this the efficacy of

using ANN as a genotypic tool will be proven. Furthermore, it has been determined

through extensive testing that the classification abilities of simple feedforward ANN are

at least comparable with that of SVMs.
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CHAPTER 1

INTRODUCTION

In recent decades the use of artificial neural networks (ANN) has experienced a

renaissance. Ants have progressed greatly since their first introduction with the advent

of better training methodologies and better understanding of their capabilities. With this

progress has cere the possibility of using the neural network methodology to treat a

variety of statistical problems that present themselves in many different fields. One

problem that is of considerable importance to many fields is classification. This issue

marks an important intersection between statistics and molecular biology that is readily

applicable to the methodology of neural networks.

With respect to classification, this study tests the relative efficacy of using single

hidden layer, feedforward ANN for the purpose of determining genotype callings in

single nucleotide polymorphism (SNP) microarrays. This feedforward At takes as

input the logarithmic intensities of two different signals and respond with a classification

of either herozygous or heterozygous. The performance of the ANN methodology is

bencbmarked against the results of both support vector machines as well as the manual

choice of a linear cutoff.
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CHAPTER 2

A PRIMER TO FUNCTIONAL GENERICS

This chapter introduces selective, basic concepts of functional genomics. Functional

generics is the study of observing the pattern of gene expression of a given cell type at a

given time. The ultimate goal of this study to determine a given pattern of gene

expression can be assigned causation for an aspect of the current state of the cell.

However, the pathways that map from current gene expression to the current state of the

cell are not simple, but rather involve a cerplex set of reactions. These pathways have

only recently becere tractable with the application of recent breakthroughs in microarrays

technologies. Microarrays along with multiplex reverse transcripts polymerise chain

reaction (RT-PCR) have provided a highly efficient and cost effective technique for

genera analysis on a large scale.

The cerputational problems of creating an auterated system which classifies the

signals created by microarrays in order to determine the current state of the cell will be

defined within these notions. The discussion in this chapter will help to explain the

underlying biology which is the context in which the feedforward At methodology has

been used as a diagnostic tool.

2.1 Central Dogma of Molecular Biology

The central dogma of molecular biology states that the flow of genetic information in a

cell is from deoxyribonucleic acid (DNA) to ribonucleic acid (RNA) to protein (Crick

1970). Although powerful in importance, it is a considerable oversimplification of the

process by which gene expression takes place. In order to give the process slightly more

2



detail it may be divided into three major steps: transcription, translation, and replication.

Though the last of these steps, replication is of extreme importance, it is out of the scope

of this study and hence this review will be limited to the first and to a much lesser extent

the second of these three steps. Alternatively, a post-transcriptional event known as

splicing must be added to this study's review of the central dogma, as it is relevant to the

justification of using the ANN methodology.

3

2.1.1 Transcription

Transcription is the process of making RNA from DNA. Essentially, both DNA and

RNA are written in the same four letter alphabet of nucleotides: guanine (A), guanine (G),

cytosine (C), and thiamine (T) (uracil (U) in RNA) (Dickerson, l983). As a result the
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process of copying a gene from DNA to RNA simply transcribes the instructions for the

production of protein (Brenner, 1961). In the eukaryotes cell DNA remains in the

nucleus; polypeptide production, however, takes place in the cytoplasm. The instructions

contained on the DNA molecule must be transcribed onto an RNA molecule, which

moves out of the nucleus to serve as a template for protein production. This occurs

through the operation of an enzyme known as RNA polymerise. Transcription does not

change the language of the message being copied. Therefore the event of transcription

does not add any cerplexity to the process of gene expression. However, an event that

directly follows transcription known as splicing does (Weaver, 1961).

2.1.2 Posttranscriptional Phase: Splicing

In the late 1970's it was discovered that the DNA that cerposed genes, at least in

eukaryotes, contained a larger number of nucleotides than the transcribed messenger

RNA (ERNA) (Weaver, 2003). This, in turn, eventually led to the discovery that genes

were composed of intervening sequences or intros which are not contained in the final

ERNA sequence and expressed regions or axons which are contained in the final ERNA

sequence (Sharp, 1994). Thus, the manner in which DNA gets transcribed to the final

product of niRNA takes place in two steps. First, the gene is transcribed from DNA to an

ERNA precursor known as heterogeneous RNA (hnERNA) which still contains

intervening sequences. The tmRNA contains signals known as consensus sequences

which determine where intros are to be spliced out. These signals allow hnERNA to form

a complex with several proteins to becere a structure that is known as the spliceosome.

This spliceosome lines up the 5' and 3' ends of the preceding and following expressed
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regions of an intervening sequence respectively so that they may form the final

transcriptional product which is ERNA.

As an added complication, the implicit function which determines the mapping of

genes composed of DNA to their directives cerposed of ERNA is not infective. Rather,

approximately one in 20 genes may be spliced to form more than one ERNA sequence

and may eventually be translated to form several different proteins.

2.2 Functional Generics

The cerpletion of the human genera project has been seen, by many, to mark the dawn

of a new age in understanding for both the field of molecular biology and medicine.

With this understanding cere prerises of a revolution in biotechnology. However,

before any of these prerises can cere to fruition a number of hurdles must be

surmounted. Foremost among these hurdles is the ability to interpret the function and

behavior of the genes which compose the human genome (Weaver, 2003).

The area of research, known as functional genomics, is the field that has arisen to

meet these challenges. One of the problems that functional genomics must solve is how

to develop a cheap, high-tbroughput method for analyzing the gene expression of a cell at

a given time. Some of the advancements in functional genomics, which have made

inroads into solving these problems, are multiplex polymerise chain reaction (PAR),

microarrays, and use of single nucleotide polymorphism (SNP) to determine the

function of different genes (Hedge, 2000).
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2.2.1 Polymerise Chain Reaction

PAR is a molecular cloning method which has greatly increased the ability to acquire

samples of DNA frer a cell (Weaver, 2003). The technique amplifies the amount of

DNA found in a sample by using an enzyme known as DNA polymerise to create copies

of selected regions of DNA. By creating a small segment of DNA (cerplementary to a

region of interest), known as a primer, and adding it to a heated sample solution of DNA,

it will create a duplex formation of primer and sample. The primer's function in this first

step of PAR is twofold. First, it hybridizes to the sequence of interest, the region of the

sample which is cerplementary to the primer. Second, it allows the DNA polymerise to

begin creating a strand complementary to the region downstream of the primer binding

site. After a single cycle of heating, and adding primer to a DNA sample solution, it is

possible to double the quantity of a given region of DNA. Furthermore, this process can

be repeated multiple times to achieve a desired yield as described by the formula below.

where n is the number of initial templates and x is the number of PAR cycles.

One of the many applications of PAR is to apply the technique to ERNA

sequences. Often, it is useful to create a set of clones which represent one or more

ERNA sequences present in a given cell at a given time. The name of this procedure is

reverse transcripts PAR (RT-PCR). The central part of RT-PCR is the synthesis of a

complementary DNA, or DNA, strand from an ERNA template. This synthesis is

accomplished using the enzyme reverse transcripts.

Another, more recent advancement in PAR technology is multiplexing, or the

ability to amplify several fragments of DNA simultaneously. This technique is possible



by using more than one pair of primers in a standard PAR reaction. Typically, these

multiplex PAR reactions are useful in genotypic applications where simultaneous

analysis of multiple markers is required for the detection of pathogens. Unfortunately,

multiplex assays can be tedious and time-consuming to establish, requiring lengthy

optimization procedures in order to ensure accuracy.

2.2.2 microarrays Technology

In order to analyze the gene expression of a given cell at a given time, science has several

methods which have been traditionally used in conjunction with the PAR reaction

discussed in the previous section. Some these techniques include dot blots, direct

sequencing or restriction fragment length polymorphism (RFLP) gel electrophoresis.

However, these techniques often prove impractical due mainly to the desired size of

many assays (Aui, 2002). Instead, a technology known as DNA microarrays is used.

DNA microarray are a technique in which a microarrays is partitioned into several

thousand cells. Each of these locations is printed with a small amount of DNA which is
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unique much like that of a dot blot. However, unlike a dot blot the spots of the DNA

microarrays are extremely small, only 100 — 150 Om, and the centers of the spots are only

200-250 Om apart (Weaver, 2003). This allows the size of an assay to be greatly

reduced as well as permitting the running of several assays at one time. Once all the

elements of an array have been spotted, the arrays are dried and the DNA sequences that

have been placed at each location are covalently bonded by ultraviolet radiation to the

surface of the chip (Hedge, 2000).

Once the preparation of a DNA microarrays is complete, it is possible to run assays

on the chip by spreading a sample solution of fluorescent labeled RNA across the

surface of the chip. The labeled RNA in sample would then be able to hybridize to any

DNA of complementary sequence. Once the RNA has been given adequate time to

hybridize to the DNA on the chip, the chip is cleaned of any residue and can be analyzed.

The low level analysis of a DNA microarrays is a reflection of the relative color

intensities exhibited in a given cell of the array. In a simple experiment using DNA

microarrays, two different fluorescent tags or channels may be used say in the colors red
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and green. If microarray experiments were used to determine the signature gene

expression of a particular phenotype for a cell, the experiment would designate one tag,

say red, for the phenotype positive cells, and the other green, for phenotype negative

cells. This then provides a simple way of determining what the gene expression pattern

of a particular phenotype may be (Weaver, 2003). From a cursory glance an individual is

able to see what genes are being expressed in the phenotype positive by those cells which

are red and what genes are being expressed in the phenotype negative by those cells are

green. If a particular cell is yellow then it can be surmised that to some extent both

phenotypes express the given gene.

Figure 2.3 DNA microarray.

2.2.3 Single Nucleotide Polymorphism

With the completion of the rough draft of the human genome sequence it is now possible

to look for difference among individuals. These differences are often represented by

single nucleotide polymorphism (SNP). SNP are DNA sequence variations that occur

when a single nucleotide in a gnome sequence is altered (Wang, 1998). For example,

the sequence ATGGACT and the sequence ATTRACT could possibly represent the



10

sequences of an SNP. The majority of these SNP have no effect on the functioning of a

cell; however other SNP are believed to be responsible for diseases, predisposition of

diseases and responsiveness to particular drugs. By using technologies, such as the DNA

microarrays previously discussed, it may now be possible to determine correlations

between particular pathologies and signature gene expressions that are associated.

2.3 Determining Loss of heterozygous through Genotypic

Loss of heterozygous (LOCH), a concept initially described in 1971 by Knudson, is an

indicator of tumor suppressor gene (TSG) inactivation in cancer cells (Knudson, 1971).

LOCH is the loss of one allele at a specific locus, caused by a mutation, or loss of a

chromosome from a chromosome pair, resulting in abnormal hemizygosity. It can be

detected by examining polymorphic markers in these regions. If heterozygous markers

for a locus appear polymorphic because one of the alleles was deleted, then it can be

assumed that LOCH has occurred. When LOCH occurs at a TSG where one of the alleles is

abnormal, it results in a possible neoplastic transformation in of the cell.

However, cancer development is not necessarily as simple as the inactivation of

one TSG. Rather it often involves TSG inactivation at several different loci. Therefore,

the field of cancer research requires accurate genetic analysis techniques that detect LOCH

on a large scale. The development of this technique will permit the discovery of all TSGs

which are affected by LOCH and, allow a more cerprehensive view of the disease cancer

and its underlying mechanisms (Aui, 2002). Unfortunately, however, traditional methods

of "one-marker one-assay" have been found to be largely inadequate for the goal of

exhaustively identifying the TSGs. This is due to the fact that using these techniques on
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the large scale required would necessitate large amounts of tissue sample deemed to be

cancerous or pre-cancerous. Due to advances in biomedical diagnostic equipment, better

screening techniques and preventative medicine the availability of these tissues are

limited. Furthermore, the "one-marker one-assay" approach when used on large scale

presents a problem with respect to both time and cost creating the need for a new

innovative technique for determining genotype.

One possibility for this technique which averts the problems previously

mentioned is to use the use the multiplex PAR reaction described in Section 2.l.1 in

conjunction with a microarray assay described in Section l.l.l. This allows at once

resolves the problems associated with traditional methods by allowing the amplification

and genotype testing for several genetic markers in one experiment.



CHTPTER 3

A PRIMER OF ARTIFICITL NEURAL NETWORKS

This chapter will review the fundamentals of simple feedforward neural networks. In

creating this review, the intention of this chapter is twofold. First, it will lay the

groundwork for understanding the following chapter, which will formalize the problem of

classification. Second, this review will serve to justify the choice of methodology which

has been used in this study.

The description of artificial neural networks (ANN) can be divided into three

major categories: network architecture, neuronal model, and optimization algorithm.

This section will present a unified framework grounded in basic ANN theory.

Subsequent discussions of ANN methodologies will be made in this context

3.1 Artificial Neural Networks

ANN are systems which are formed out of many highly interconnected memoryless

computing units (Bishop, 1995). This system can be represented as a weighted, directed

graph in which the vertices are representative of the computing units and the edges are

representative of the connections between these cerputing units, and the weights are the

strengths of these connections. The pattern of interconnections that is formed from these

edges and vertices is known as the architecture of the At (Figure 3.1).
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3.2 Network Architecture

It is convenient to think of an ANN as a series of layers. The cerputing elements that

make up these layers often behave in a similar manner. The factors that guide this

behavior are the activation function and the pattern of weighted connections in which it

sends output and receives input. The uniformity in behavior is a result of the tendency

for all elements in a given layer to contain the same activation function and for all

elements in the same layer to have the same pattern of connections (Bishop, 1995). This

may be observed in figure 3.1.

Most neural networks have an input layer where each unit is equal to an external

input signal, an output layer from which the response of the ANN can be read, and

possibly a number of hidden layers. Though all neural networks contain these key

elements, the architecture of networks can vary greatly.

3.3 Cerputing Elements and Tctivation Functions

The fundamental unit of a neural network is the cerputing element. These computing

elements are loosely based on the biological behavior of a neuron and thus are commonly

referred to by that name (Sane, 1997). These neurons relate the output value y to

multiple inputs {E 1  Ed } , represented as a column vector E. The extent to which each

element of the column vector E contributes to the value of y is determined by a second

column vector w, or {w1 ,..., Ad  } . Thus, the processed input of any given neuron that is not

part of the input layer is actually the dot product of the column vectors w and E,

represented as E • A. The key determinate of the output value y, as previously mentioned,
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is the activation function. As with the choice of network topology there are several

activation functions that may be used (Fine, 1999).

The simplest of these functions is the identity function

This function is used for the cerputing elements in the input layer and occasionally in

the output layer.

The second of these functions have a "tliresh-holding" behavior and require a

firing threshold τ and are cermonly referred to as threshold functions. These functions

are typically used in single-layer networks to convert net input, which is often

continuous, to an output which is binary.

Examples of functions which exhibits this "tliresh-holding" behavior are the sign function

and the unit-step function

Unfortunately, there are several limitations to the use of threshold functions in

terms of what they are capable of computing, as well as their property of not being

differentiable. Rather, sigmoid functions are often preferred for use in most neural

networks (Fine, 1999). The two most common of these are the logistic function,
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3.4 Optimization Algorithms

In addition to network architecture and choice of activation function the optimization

algorithm is one of the major distinguishing characteristics of different neural networks.

In general there are two categories in which most artificial neural networks may be

placed: unsupervised and supervised.

Unsupervised networks are networks which attempt to group similar input vectors

without the use of training data to instruct the network on what the typical output should

be. The ANN however has its weights modified so that similar input vectors are assigned

to the same output grouping or cluster (Anderson, 1997). Though unsupervised networks

are a fascinating area of research, the focus of this study will based on those ANN which

are considered to be supervised.

Supervised networks are perhaps the most common form of ANN. Supervised

networks are defined by those networks which present a series of training input vectors,

each with an associated target output vector.

The weights of the network are then adjusted according to a learning algorithm. This is

done in an effort to select a network η such that the output of the netwι
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approximates the desired output t for the input E•. The metric for this approximation on

the training set T is the sum squared error (SSE) function of the form

This metric is a function of the weight vector w since yi is dependent on the parameters of

the selected network η. There are other metrics which may be used to determine how

well a selected network approximates the training set. However, due to its ease of

optimization through calculus methods, the SSE function is preferred (Moller, 1993).

Hence, training an ANN is a nonlinear optimization problem in which the

objective can summarized

minimize ε τ (w) by choice of A e W c £ Ρ.

Unfortunately, the problem of finding minima is made difficult by the high

dimensionality of most networks, where the dimensionality is a result of the number of

the weight parameters of the network.

There are several learning algorithms that may be used to accerplish the task of

adjusting the network's set of weights such as the Hebb rule, the perception learning rule

and the delta rule for single layer networks (Anderson, 1997). There are also various

backpropagation algorithms, such as the iterative gradient descent algorithm, and the

scaled conjugant gradient algorithm, that are typically used in multi-layer neural

networks. Of these several learning procedures, only the scaled conjugate gradient

algorithms will be discussed in the context of this chapter.



3.4.1 Estimation of Error

The gradient decent methods determine the search directions and step sizes of the

traversal of weight space using the information gained from the second order

approximation given by

However, sere gradient descent algorithms make the assumption of an approximating

quadratic model given by

If this quadratic approximation about a given point A0 has a Hessian matrix which is

positive definite, then it may be assumed that there is a unique minimum. Taking the

gradient of this gives

Setting the gradient to zero and solving for A * , the minimizing weight configuration, it

can be determined that

17
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With this 3.19 can be re-expressed to in terms of w

It is important to note that the calculation of the Hessian, though very useful in many

cases, can be intractable (Fine, 1999).

3.4.2 Gradient Determination by Backpropagation

Backpropagation is an efficient technique for determining the gradient vector which is

needed to implement many of the optimization algorithms (Anderson, 1997). It will be

assumed that the application of the backpropagation algorithm as explained here will be

exclusively used on a general network of simple feedforward topology using

differentiable activation function and differentiable error function. The formula that will

be within this section will be illustrated using a single hidden layer network with a layer

of sigmoidal hidden units and a sum-squared activation function (3.7).

A feedforward neural network cerputes a weighted sum of its inputs in the form,

where z; is the activation of a unit, which sends a connection to unit j and w» is the weight

associated with that connection. This weighted sum is calculated over all the units which

are connected to unit j. The sum a^ is transformed by a non-linear activation function f to

give the activation zj of unit j in the form
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For clarity, it is important to note that if the z Í are input values in (3.8) then they will be

denoted by Ei as well; if the value Ζ is an output in (3.9) then it will be denoted yk .

As part of the weight minimization process mentioned in the previous section, it is

the effort of backpropagation to assign responsibility of error to weights in the network. It

is convenient to relate the error function to the pattern which is being classified. Hence,

it is important when using backpropagation to use error functions which can be written as

a sum over all the patterns contained in the training set (Moller, 1993). Thus the

equations of the form,

aid in the goal of determining the gradient of ε τ with respect to the weight of the network.

Using (3.10) we can express these derivatives as sums over the training patterns of the

derivatives for each pattern separately. Hence, for the rest of this section, the problem

gradient determination will be for one pattern at a time.

Now consider the evaluation of the derivative of εm with respect to some weight

A,. Note that εm depends on the weight W i only by the summed input a^ to unit j.

Therefore, the chain rule can be applied to find the partial derivative to give
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where δ's are the rate of contribution to the error term ε m by the excitation of α^. This

term is the error signal which is backpropagated from the output to the jth unit. Equation

(3.12) can be re-expressed as

Equation (3.14) shows that the required derivative can be obtained by simply multiplying

the value of z by the unit at the input end of the weight. As a result, in order to evaluate

the derivatives, it is only necessary to calculate the value of 4 for each hidden and output

unit in the network, and then apply (3.14).

In calculating δk for the output units the evaluation is relatively simple. From the

definition (3.13) we have

where (3.9) has been used with zk is substituted by yk .

In order to evaluate the δ's for hidden units, once again, the chain rule may be

used to calculate the partial derivatives,

in which the sum is taken over all k to which j has connections. The units and

connections are depicted in Figure 3.l.



Figure 3.2 Illustration of the calculation of 4 for the hidden unit j through
backpropagation.

If definition (3.13) is substituted into equation (3.16) and applied to (3.8) and (3.9) the

following backpropagation formula can be obtained

The backpropagation procedure for calculating ε m be summarized as follows:

1. A forward pass of the training data, an input vector χ , through the network to
determine the node outputs using (3.8) and (3.9) to determine and the activation
values of all hidden and output units.

2. Aalculate the δk for the output units using (3.15).

3. Backpropagate the all δ's through (3.36) to obtain 4 for units in the hidden layers
of the network.

4. Using (3.14) to calculate all derivatives.

The derivative of the total error can then be calculated by using the summarized

algorithm above for all patterns in the training set and then summing over all patterns

using (3.10).

3.4.3 Generalized Optimization Strategy

The majority of optimization methods used to minimize the global error function are

based on a common strategy (Fine, 1999). The minimization is given by a local iterative

21
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gradient decent process. This process calculates an approximation of the error function

for a given point in the weight space. This approximation is usually given by sere first

or second Taylor expansion of the function. This simple algorithm can be summarized as

the following algorithm.

1. Ahoose initial weight vector Wl and set k=1.
1 tρrminΑ α υPιrrh λir'rtinn n,_ ιn' α efm' ςi7ε n',_ en

To elaborate on this summarization, it useful to point out that this generalized algorithm

involves two important independent steps. First, a search direction is determined to

define the location of which the following point in weight space. Second, a decision is

made on the distance traveled in this search direction to obtain the following point. The

methods in which these two steps are calculated largely determine what type of algorithm

will be used (Moller, 1993).

3.4.4 Conjugate Gradient Tlgorithm

In the conjugate gradient algorithm (CGA) the search direction is calculated recursively,

as is the case with the generalized optimization strategy. However, the AGA has the

added characteristic that each search direction is chosen so that it is non-interfering with

any previously chosen search directions by using the second order information gained

from the Hessian or estimations of it. This differs from other gradient descent algorithms

which can undo progress made by previous choices in search direction with each newly

calculated search direction. The search directions are selected s0 that each iteratively

selected parameter value Wk, the current gradient gk, is orthogonal to all previous search
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directions p1, ...,p,'_. Therefore, at any given step of the algorithm, the value of the

gradient (direction of steepest descent) is orthogonal to the linear subspace spanned by

the previously calculated search directions (Kosko, 1992). As in the generalized

algorithm, the new weight vector is calculated by

This calculation is augmented with the optimal constraints on the search directions and

weighting coefficients (α ;) such that the error function gradient (gk+l) calculated at the

new location be orthogonal to all previous search directions,

This set of search directions which conform to these constraints is also known as a

conjugate system.

In order to understand how a conjugate system facilitates the locating of a local

minimum on the error surface, it is helpful to consider the step from the starting point A1

and the critical point w* as being expressed as a linear combination pι,...,Ρn

By multiplying (3.25) by the term PJTH and substituting g for H(A*-Ao) using (3.10),

evaluated at the critical point, gives
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It can be shown that by using (3.25) and (3.26) the local minimum can be found in N

iterative steps, where N defines the number of dimensions in the weight space. In each of

these iterative steps the intermediate points defined by Wk+l = Wk + a  Pk are the minima

for the quadratic error function m(ω) and are restricted to the k-plane πk=

yο+αιρι+• • •+αkρk• In order to ensure that each of the search directions possesses the

qualities of orthogonality and non-interference, it is necessary to introduce a scaling

element to the newly defined search direction (Moller, 1993). The newly defined

directions are defined by,

With the elements provided by (3.23), (3.26) and (3.27) it is now possible to

describe the AGA which will locate a critical point in a quadratic error surface. This

algorithm proceeds as follows:

1. Select initial point A0, with values in the vector randomly chosen with high
probability that they are small so that it does not saturate the network nodes.

2. Use backpropagation to evaluate the error function Ε 0 = εT (A o ) and the
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8. If the new search direction g,'  # Ο then set k=k+ 1 and go to step 2 else end

and return the point Wk+1.



CHTPTER 4

DEVELOPMENT OF GenoIterTNN

4.1 General Description of the Software

GenoIterANN is a menu driven software consisting of 62 files: 10 are directly involved in

the creating the feedforward ANN, 20 are used in a supporting role for the network and

the remaining 31 files are used to implement a support vector machine (SVM)

classification system (the scope of this chapter will limit itself to the first files which

pertain to creating the feedforward At and those files which support the network).

These files have been created using the MATLAB software package. The feedforward

network portion of the GenoIterAt software has been created as an open source

toolbox which is implemented by GenoIterANN.

4.2 Basic Software Methodology

The impetus for the creation of the GenoIterAt software was a need for a rapid large-

scale genotyping method. The specific genotyping example on which this software was

based is the concept of loss of heterozygosity (LOH) as a means of creating an indicator

for cancer detection (see section l.l). The assay for determination of whether LOH has

taken place is performed using a two-color SNP microarray in which there are three

possible states: homozygous "C", herozygous "T", heterozygous "CT". Depending on

the oligonucleotide sequence, there will be particular intensity signature that can be

acquired by digitizing the fluorescence emitted from each location on the microarray

assay. This intensity signature may be used to classify or "make a call" for a particular

oligonucleotide sequence to determine its particular genotype. However, the ability to
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make this system determine genotype relies on two sets of data. The first of these sets is

a training set which samples the universal set of data and allows the network to learn the

classification patterns of the universal set. The second of these data sets is the testing set

which serves to validate and determine the accuracy of the network configuration which

has been learned through training. It is on the basis of this very general summary which

figure 4.1 describes and which will guide the remainder of this chapter.

Figure 4.1 The basic methodologies for the GenoIterAt software

4.2.1 Data Preprocessing

At the beginning of the process described is the acquisition of the intensity readings from

the aforementioned microarray assay. However, before the intensity readings may be

used by the GenoIterAt software, the noise that is present in these readings must be

removed. This removal is performed through noise subtraction and normalization. Noise

subtraction is useful in eliminating background noise. On the other hand normalization is

helpful to eliminate systematic error present in the signals that may arise from channel
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arise from channel imbalance. Data preprocessing is particularly important in ensuring

the success of data analysis particularly when data sets contain samples from multiple

assays performed at different times. Data preprocessing ensures that all of the data points

in a given data set have an equivalent weighting for analysis.

4.2.2 Tutomated Genotype-Calling

Once data preprocessing has been performed on the training set, the training set can be

effectively used in training the feedforward At. The feedforward At uses the

training set to develop the optimal classifiers that will make the most accurate calls on for

a data point in a blind test. GenoIterANN does this by creating three independent

feedforward Ats with each network responsible for learning the signature associated

with a particular genotype call. Each of these three networks will receive a matrix

containing data points of 2 dimensions E and y with a particular genotype associated with

each point. The procedures for how the feedforward ANNs use the training to learn is

described in detail in chapter 3 and will be eritted frer this chapter.

4.2.3 Iterative Refinement

Iterative refinement is based on the idea that the heterozygous data points should ideally

have a linear best fit collinear to the equation y - E = Ο. Unfortunately, however, this

typically does not occur in most experiments. Rather, often is the case where the

heterozygous data points lie unevenly about the line y - E = 0, since the intensities of red

and green in spots of a microarray rarely have equal value. As a result, one of the

features of the GenoIterANN software package is to adjust this imbalance by imposing an
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artificial regularity constraint on the ANN classifiers [8]. This is achieved by applying

linear regression analysis on the heterozygous data points following training. If the

aforementioned constraint of congruence is not met, then it is assumed that there is

systematic error in the training sample and the GenoIterANN software attempts to correct

this error. The correction of the assumed systematic error in the data is accomplished by

performing an iterative refinement process described by figure 4.2.

Figure 4.2 The methodology for GenoIterANN with iterative refinement [4].



4.3 GenoIterANN File Structure

Figure 4.2 File structure for GenoIterANN
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ANNtest.mAdjustData_all.m CalculateANN.m

GUI MENU
(to be created)

CreateANNFigs.m

AdjustData.m SaveANNDistribution.mCalculate Adjust.m

CreateTrainingData.m

CreateTestingData.m
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4.4 Software File Descriptions

4.4.1 AdjustData.m

Parameters:

C: intensity readings associated with a genotype call of herozygous "C"
T: intensity readings associated with a genotype call of herozygous "T"
H: intensity readings associated with a genotype call of heterozygous "AT"
p: rotation factor
p2: intercept point

Description:

This file is simply responsible for relaying each of the arrays containing intensity

readings to the file AdjustData_all. m along with the rotation factor and the intercept

point.

Files called: AdjustData_all. m

4.4.2 AdjustData all.m

C: intensity readings associated with a genotype call of homozygous "A", "T", or
"AT" depending on the parameter passed to the function AdjustData_all.m.
p: rotation factor
p2: intercept point for the first round

Parameters:

Description:

This file determines the

Files called: none



32

4.4.3 ANNtest. m

Parameters:

ANNi: FFANN trained to determine which intensity value are homozygous "A"
ΑΝΝ2:FFAt trained to determine which intensity value are homozygous "T"
ΑΝΝ3:FFANN trained to determine which intensity value are heterozygous "AT"

Description:

This file first makes a forward pass of the network to determine the calls for each

of the data points in the testing file. Following this procedure the data points

corresponding to homozygous "A", herozygous "T", and heterozygous "AT" are stored

in stored in separate arrays. The arrays are then used to determine the slope and y-

intercept of the lines which best partition the data points in the three arrays.

Files called: forward. m, findLine. m

4.4.4 CalculateAdjust.m

Parameters:

H: intensity readings associated with a genotype call of heterozygous "AT"

Description:

This file calculates the rotation factor and the intercept so that the heterozygous

data points may be remapped so that the best fit of the heterozygous points are collinear

with the line x = y.

Files called:

4.4.5 CalculateANN.m

Parameters:

C: intensity readings associated with a genotype call of homozygous "C"
T: intensity readings associated with a genotype call of herozygous "T"
H: intensity readings associated with a genotype call of heterozygous "CT"
nCTH: array containing the genotype calls where each element is 1, 2 or 3
corresponding to each of the possible genotype calls
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method: unused parameter
Description:

This file creates three separate arrays that represent the known genotype calls for

the training set: homozygous "C", herozygous "T", or heterozygous "AT". The size of

each of these arrays is equal to the number of data points in the training set with each

element being equal to either 1 or 0 with the same index as its respective intensity

reading. In each of these arrays, a 1 signifies a positive call for genotype represented by

the array and 0 a negative call. Along with these three arrays, a fourth array is created

which contains all of the intensity readings.

The next step taken in the file is to set the configuration of the single hidden

FFNN parameters. These parameters are the number of nodes in the input, hidden, and

output layers, as well as the learning rate of the network. These parameters are then used

to instantiate three independent FFANNs,, each corresponding to the three different

genotype calls. These three FFANN are then subsequently trained with each of the

FFANN, taking as parameters the array containing the intensity readings, the array

containing the genotype calls for which the particular FFANNs is responsible for calling,

as well as the number of cycles for which the FFANNs will be trained.

Files called: NN. m, optimizer. m

4.4.6 CreateANNfigs.m

Parameters:

method: unused parameter

Description:
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This file

Files called:

4.4.7 backprop.m

Parameters:

net: data structure which contains all the information relevant to the FFANN and
created by the NN.m file
x: matrix of input vectors
z: matrix of hidden unit activations
deltas: matrix which estimates the gradient with respect to the error function of
the output units

Description:

This file implements the standard backpropagation algorithm to determine the

gradients of the standard error function (see 3.4.l).

Files called: none

4.4.8 erred

Parameters:

w: matrix containing the weights of the FFANN
net: data structure which contains all the information relevant to the FFANN and
created by the NN.m file
x: matrix containing all input values
t: matrix containing all target values

Description:

This file evaluates the error function.

Files called: pack. m, unpack. m

4.4.9 forwarded

Parameters:
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net: data structure which contains all the information relevant to the FFAN and

created by the NN.m file

x: matrix containing all input values

Description:

This file serves to propagate the values in the matrix x to determine the output of

the FFAN for a given weight configuration.

Files called: none

4.4.10 graded

Parameters:

w: matrix containing weight and bias values
net: data structure which contains all the information relevant to the FFAN and
created by the NN.m file
x: matrix containing all input values
t: matrix containing all target values

Description:

This file takes the weight configuration of the FFANN described by the object

"net", the values in the input matrix "x", and the target matrix "t" with respect to

the error function described by the err.m file. The gradient determination is

performed using the backpropagation algorithm described by the file backprop.

Files called: backdrop. m, forward. m, pack. m, unpack. m

4.4.11 NN.m

Parameters:

nine: number of input nodes in the FFAN
nhidden: number of hidden nodes in the FFAN
pout: number of output nodes in the FFAN
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outfunc: type of output node used in the network
prior: corresponding to a zero-mean isotropic Gaussian prior with
inverse variance with value PRIOR

Description:

This file creates a data structure which stores all the elements necessary to

adequately describe an FFANN such as number of input nodes, number of hidden nodes,

number of output nodes, type of output function, values of weights connecting layers,

biases, and a prior gaussian.

Files called: none

4.4.12 optimizers

Parameters:

net: data structure which contains all the information relevant to the FFANN and
created by the NN.m file
options: a vector which contains values which direct several procedures in the
GenoIterANN software such as the number of cycles of training, toggle for
displays, etc
x: matrix containing all input values
t: matrix containing all target values

Description:

This file calls the error minimizing function scaled, conjugate gradient, and

defines which error metric will be used by this algorithm.

Files called: pack. m, unpack. m, scg.m

4.4.13 pack. m

Parameters:

net: data structure which contains all the information relevant to the FFANN and

created by the NN.m file
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Description:

This file simply places the weight and bias values from the net data structure and

into a row vector so that it may be easier to apply mathematical operations to the weight

and bias values.

Files called: none

4.4.14 scg.m

Parameters:

error function

x: weight vector

options:

gradf defines chosen error function

Description:

This function implements the scaled conjugate gradient algorithm (see Section

3.4.4).

Files called: pack. m, unpack. m

4.4.15 unpacked

Parameters:

net: data structure which contains all the information relevant to the FFANN and

created by the NN.m file

w: matrix containing weight and bias values

Description:



This file updates the net data structure with the current values of the matrix

containing the weights and biases.

Files called: none
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CHAPTER 5

TESTING

The testing of GenoIterANN was performed using two sets of data. The first testing was

performed using two artificial data sets, while the second set of data was performed using

microarray data used in (Ma et al., 2004) provided by Dr. Honshu Li at the Aancer

Institute of New Jersey.

5.1 Artificial Data Set

For the testing of GenoIterANN with artificial data sets, two sets of data files were

created. The first of these files was a file containing training data which consisted of

three columns of data. The second of these was a file containing testing data which

consisted of three columns of data. For both of these files, the data points defined in the

first two columns was generated by randomly choosing values between a given maximum

and minimum values. A brief description of the file is provided below.

• Artificialtrainl.txt: Contains two columns of x and y coordinates and a third

column with label called by a known cut-off function. This cut-off function is

• Artificialtrainl.txt: Contains two columns of x and y coordinates and a third

column with label called by a known cut-off function. This cut-off function is
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For each of the data sets, the testing procedure used is as follows:

1. Train network with training file artificialtrainl.txt and save the resulting

network.

2. Using the trained network perform classification using the first two

columns of the testing file Artificialtrain.txt.

3. Aerparison of the labels predefined by the third column in the

Artificialtrain.txt with the labels called by network.

5.1.1 Classification with Artificialtrainl.txt

File artificialtrainl.txt consists of 200 data points which can be linearly separated. The

purpose of the test is to verify the ANN training model created by GenotIterΑNN. The

training with artificialtrainl.txt file was done using the parameter values and a

summary of the training result is provided in the Table 5.1.

Table 5.1 Summary of Network Aharacteristics used with Artificialtrainl.txt.

Table 5.l Summary of Artificialtrainl .text

The plot generated by the training was used to classify the data points in

Artificialtrain.txt. Figure 5.1 below shows the data points with the true calls being
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observed from the color of the points. The red triangular labeled data points being

classified as one and the green diamond labeled data points being classified as zero.

Furthermore, the results of training the neural network can be observed by viewing the

background of the plot. The background demonstrates a mapping of the function learned

by the neural network. The range of this implicit function is depicted by all regions of

the plot which is colored blue being mapped to the value of zero, and all regions of the

plot which is colored gray being mapped to the value of one.

Figure 5.1 Data points with true calls plotted, from input file artificialtrainl.txt.
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Table 5.3 Summary of Neural Network Training Results Using Artificialtrainl .txt

5.1.l Classification with artificialtrain2.txt

File artificialtrain2.txt consists of 1000 data points which can be linearly separated.

The training with artificialtrain2.txt file was done using the parameter values and a

summary of the training result is provided in the Table 5.1.

Table 5.4 Summary of the Network Aharacteristics with Artificialtrain2.txt

Table 5.5 Summary of artificialtrain2.txt

The plot generated by the training was used to classify the data points in

artificialtrainl .txt. Figure 5.1 below shows the data points with the true calls being

observed frer the color of the points. The red triangular labeled data points being

classified as one and the green diamond labeled data points being classified as zero.

Furthermore, the results of training the neural network can be observed by viewing the

background of the plot. The background demonstrates a mapping of the function learned



by the neural network. The range of this implicit function is depicted by all regions of

the plot which is colored blue being mapped to the value of zero and all regions of the

plot which is colored gray being mapped to the value of one.
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Figure 5.2 Data points with true calls plotted, from input file artificialtrainl.tχt.

Table 5.6 Summary of neural network training results using artificialtrainl.tχt.
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5.l Microarray Data Set

The second set of data which was used in this study was done using microarray data. As

microarray data was the impetus for the development of the GenoIterANN software it is

appropriate that testing was done on a sample of microarray data.

5.2.1 Description of Data

The preparation of the microarray data was performed by extracting raw data frer two

files, train.txt and test.txt containing l,447 and 4,439 data points respectively. Both of

these files are used to create two data structures named TrainingData.mat and

TestingData.mat. These data structures each contain nine fields. These data structures

are summarized in table 5.7 and 5.8.

Table 5.7 TrainingData.mat data structure

5.l.2 Preparation of Data

The raw data that is collected from microarray experiments is given by two values.

These values are determined through image processing, where the first value and second

value are measure of the mean green intensity and mean red intensity values of a cell of a

DNA microarray. As may be observed in Tables 5.7 and 5.8, the raw data is processed in
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two steps. The first of these steps is applied by subtracting the background noise from

the raw data to create a normalized set of values. In the second step of processing the

data, the natural logarithm is applied to the normalized data. As a final step in the

preprocessing of the data, all low intensity values are removed. As a result of

preprocessing, the number of data points is changed to l,293 and 4,419 for the training

and testing, respectively. This processed data is then used directly by GenoIterANN.

5.l.l Training of Classifiers

The GenoIterANN program, as previously described, goes through two phases. The first

of these phases is the training phase in which the neural network learns to make accurate

genotype callings using data which contains mapping of input values to targets which are

known to be correct. However, in GenoIterANN this training process is modified. After

training there is a curve fitting procedure which attempts to make the best fit of the

heterozygous labeled data points. The GenoIterANN then attempts to correct the

systematic error that is present in the data using the system of canonical classifiers.

Following this, there is a validation process in which the trained neural network attempts

a blind test with data where the targets are unknown.

Table 5.8 Summary of the network characteristics used with TrainingData.mat.



Figure 5.3 Training data with known genotypes, no iterations.
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Figure 5.4 Training data with known genotype, one iteration.



Figure 5.5 Training data with known genotypes, two iterations.
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Figure 5.6 Training data with known genotypes, three iterations.

5.2.3 Testing with Variation of Internal Nodes

In the following section the study attempts to experiment with variation in the internal

architecture of the feedforward ANN in GenoIterANN by using the data acquired from

TrainingData.mat while altering the number of nodes in the hidden layer of the network.
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As a result of investigating the impact of variation of hidden nodes on the accuracy of

GenoIterANN it may be concluded that varying the nodes has limited impact on the

quality of the trained classifiers final calls. However, it maybe noted that in cursory tests

using a less than ideal data set for validation it was found that the ANN classifiers

worked best while using approximately 10 nodes in the hidden layer and one iterative

refinement of the data set.

5.l.4 Concordance Rate

Under ideal circumstances, validation of the feed forward ANN methodology at the heart

of GenoIterANN would be performed using data obtained frer other independent
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methods of genotypic such as direct sequencing or RFLP. However, this is impractical

due to the time requirements imposed by these methods. Instead, in order to validate the

accuracy of the classifiers we take advantage of the fact that classifiers should have the

ability to genotype in both the sense and anti-sense directions. This ability provides the

possibility of measuring accuracy by observing the concordance rate (Change, 2005). The

concordance rate is defined as

in which A and B represent the sense and anti-sense direction respectively.

In order to determine a concordance rate for GenoIterANN with minimal error

two microarray data sets were used containing the same SNP. However, the oligo-

nucleotides contained on each microarray which correspond to each of SNP being tested

for are presented with opposing orientations. In an effort to make this measurement as

accurate as possible, replicates of each SNP as well as other standard microarray

experimental error minimization techniques are included in the two assays. This ensures

that any experimental error that is may take place while collecting the data is minimized.

With two microarray assays conforming to this description the data that is

extracted may be used in GenoIterANN procedure as testing data. The output of

GenoIterANN using this testing data will provide the blind test necessary for validation

of the GenoIterANN methodology. However, before this output can be used any

conflicting calls among replicate SNP must be resolved. This resolution is executed by

using a rule which eliminates statistical outliers in the data while not completely

discarding all data that may be obtained from conflicting calls. This rule is simply that

any two data points which possess calls which lie in ranges which are estimated to be
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contiguous (Figure 5.6, solid line) by the classifiers are averaged, while any that are not

contiguous are discarded (Figure 5.6, dashed line). Once the usable data points have

been extracted equation 5.1 maybe used to obtain the concordance rate.

Figure 5.7 Rule for determining data point conflicts

In this study, two data sets were obtained from microarrays matching the

specifications described (table 5.12). These data sets where then used in a blind test

validation of the GenoIterANN procedure. The result of this validation test was a value

of 88.5% concordance rate. The plot of the sense and anti-sense data points plotted over

the classifier mappings is seen in Figure 5.7 and 5.8.



Table 5.10 Description of sense and anti-sense oriented validation sets.
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Figure 5.8 Aoncordance testing using test data with sense orientation.

Figure 5.9 Concordance testing with anti-sense orientation.



CHAPTER 6

CONCLUSION

Using the high-throughput SNP genotypic methods, known as GenoIterANN, this study

analyzed 4,600 SNP covering 12 chromoseres in a minimum of 24 gnomic were used

(Change, 2005). These 4,600 SNP were then classified by the GenoIterANN to determine

the feasibility of an SNP auto-calling using an artificial neural network. In testing this

feasibility it was requisite that a reasonable method for validating the results be

determined.

Although it is ideal for SNP calling to be validated using methods such as RFLP

and direct sequencing; it was not and often is not practical to use these methods. Most

often it is because of time and financial constraints. Rather, in this study an approach for

validating classification accuracy by measuring the concordance rate was introduced.

Using this method it was found that the GenoIterANN had a concordance rate of

approximately 98 percent.

In comparing the GenoIterANN algorithm to other cerpeting methods, such as

linear-cutoff and Support Vector Machine (AVM), it can be shown that GenoIterANN is a

modest improvement over linear-cutoff and comparable to the accuracy of AVM. Thus,

it has been demonstrated that the GenoIterANN algorithm is a simple, accurate and

relatively efficient procedure for use as a practical SNP auto-calling method.

Further discussion of these results brings us to dealing with minimal sample sizes.

If the number of heterozygous SNP in a given sample is too small, data renormalization

may be significantly skewed during the iterative genotype-calling procedure. This is

52
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caused because the linear curve fit of points frer a small sample can interfere with the

classifiers ability to discern the true image of difference in the two channels. In order to

avoid this problem, one may acquire data from several different microarray assays and

process this data collectively rather than processing each assay one at a time. The

technique was the actual method adopted in our of GenoIterANN's efficacy.

Also, further investigation of many of the SNP which were erroneously classified

by GenoIterANN has shown that about 60 data points are far from the decision

boundaries. Most likely these data points are mistakes which have been caused by

experimental error in the laboratory. If these 60 data points are omitted from our testing

the concordance rate of GenoIterANN reaches over 99 percent.

In terms of future progress concerning the GenoIterANN algorithm, it is hoped

that inroads will be made in both the convergence time required for training, and further

minimization of incorrect calls made by the procedure. As a suggestion for solving the

problems of convergence time, it may behoove future research to experiment using

different error minimization algorithms as well as architectural pruning.
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