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ABSTRACT

THE CREATION AND TESTING OF A MOCK FUNCTIONAL
MAGNETIC RESONANCE IMAGING FACILITY FOR PAIN PATIENTS

by
Gladstone Vincent Reid

Unfamiliarity with functional Magnetic Resonance Imaging (fMRI) facilities leads to

unwanted stress-related disturbances in the processing of MRI data. A mock MRI

facility was developed to increase familiarization among subjects participating in MRI

studies and to alleviate the time and cost of familiarizing each subject in an actual MRI

facility. A decommissioned Magnetic Resonance Imaging (MARI) unit was remodeled to

visually and aurally resemble the Siemens Magneto Allegro 3 Teals MRI machine

currently used at the University of Medicine and Dentistry of New Jersey (UMDNJ),

Newark, New Jersey. Instrumentation was developed using LabVIEW software which

presented subjects with recreated sounds of the UMDNJ MRI unit, displayed interactive

Pain Descriptor Differential Scales to the subject, collected and displayed

electrocardiogram (ECG), blood pressure (BP), and questionnaire data to the operator. In

addition to these tasks, the LabVIEW program triggered the Medic Neuro-Sensory

Analyzer to begin producing warm stimuli to patient's forearm, in synchrony with the

order of the study. A pilot experiment was conducted to assess if subjects became more

habituated to the MRI environment after two mock MRI experiences. ECG, BP, and

questionnaire data for two subjects in the mock MRI unit for two sessions were

compared. The results support that the subjects were more comfortable, relaxed, and

familiar with the experiment and the MRI environment during the second session.
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CHAPTER 1

INTRODUCTION

1.1 Objective

Musculoskeletal pain is the fourth prevalent complaint reported by Persian Gulf War

veterans (GWV) that partixipated in the Gulf Health Registry. Dane B. Cook PhD., a

researcher in the Department of War Related Illness and Injury Study Center (WRIISC)

at the Department of Veterans Affairs (DVA) in East Orarce, New Jersey, is currently

studying pain perception by GWV. His research requires the use of a 3 Telsa functional

Magnetic Resonance Imagirc (fMRI) unit in the Advances Imaging Faxility at the

University of Medicine and Dentistry of New Jersey (UMDNJ). fMRI identify regions of

the brain that are activated during painful stimuli. By loxating the regions of the brain

that are activated durirc painful stimuli, one can identify what areas of the brain are

responsible for pain proxessirc and correlate the intensity of the stimuli to the perception

in the brain. As a part of his research Dr. Cook has proposed to build a moxk MRI

faxility at the DIVA that will habituate test subjects to beirc in an MRI environment and

participating in a pain perxeption study, before they go to the axtual MRI at UMDNJ.

The objective of this thesis was to create and test the moxk MRI facility in the

WRIISC at the DVA that will be used in the pain perxeption studies of GWV. This

option, of creating the mock MRI, was chosen because of the expense to habituate

subjects in the real MRI facility. The virtual MRI facility should give the perception to

the subject that he/she is in a real MRI facility, through mimixkirc the look and sound of

1
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the MARI facility located at the Advanced Imaging Center at UMDNJ. This paper will

disxuss the entire project and will give background information about pain, fMRI, stress,

electrocardiogram (ECG), and blood pressure (BP).

The proposed test was to try and habituate two volunteer subjects by connecting

them to the system and recording cardiovascular measure namely, BP and ECG. In

addition to BP and ECG, their response to a questionnaire was used to determine whether

or not they bexame more comfortable after beirc in the moxk fMRI two times.

1.2 The Brain: Pain and Its Perception

In order to test for pain perception, it is necessary to have a good understandirc of what

pain is and how the human body perceives it. The sequenxe pain goes through from point

of xontaxt to being proxessed in the brain will be discussed. There are different

definitions for pain which all involve sensations that are usually described as pricking,

burnirc, achirc, stircing, or soreness. The simplest definition of pain is the sensation

experienced in response to an undesirable or harmful input to sensory detective on the

body [4]. There are two types of pain, nociceptive and neuropathic. noxiceptive pain is

caused by an injury or disease outside the nervous system, while neuropathic pain is

cause by damage to the nerve tissue. This experiment only focuses on nociceptive pain.

Examples of noxiceptive pain inxlude sprains, bone fraxtures, burns, bumps, bruises,

inflammation, obstructions, and muscle pain [5].

The anatomy trail of noxiceptive pain (see figure 1.1) begins with noxious insults,

which are harmful stimuli to the skin or subxutaneous tissue. noxious insults activate

nociceptive, which are specialized sensory receptive in tissue. The information collexted
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by the nociceptors travels through nociceptors afferent fibers to the back of the spinal

cord. This nociceptive information is transmitted from the spinal cord to the thalamus

and cerebral cortex (see figure 1.2) along fors ascending pathways namely cervicothalamic,

spinoreticular, spinomesencephalic, cervicothalamic, and spinohypothalarnic tract {4].

Figure 1.1 The anatomy trail of pain processing by the human body. {4]

Figure 1.2 Cerebral Cortex in its four divisions (left). The Thalamus (right){6]
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1.2.1 Pain Processing

The processirc of pain takes place in the cerebral cortex. neurons in several regions of

the cerebral cortex have shown a response to nociceptors inputs [7]. Pain is a complex

perception and is influenced by prior experiences and the context within which noxious

stimulus occurs; therefore, it would have to be linked to a part of the brain that also

processes memory and perception. It has been determined that the circulate gyms

(figure 1.3), the insular cortex, and the thalamus, three sections of the cerebral cortex, are

involved in the response to nociception. The circulate gyms is believed to be involved

in the processirc of the emotional component of pain. The insular cortex is a structure of

the human brain that lies deep in the brain's surface within the lateral fissure and

separates the temporal and inferior parietal cortices {8]. It is believed to be involved in

the processirc of information regardirc the internal state of the body such as disgust and

feelings of unease, and contribute to the autonomic component of the overall pain

response {4]. The thalamus modulates and transfers sensory signals to and from the

cerebral cortex. It receives inputs from the nociception receptors through the spinal cord

and coordinates the release of hormones that cause a person to move or tense up in

response to perceived threats. {8]



Figure 1.3 Location of the Circulated Gyms and the Insular Cortex. {6]

1.2.2 Stress Processing

Stress is very similar to pain, but stress can be present without noxious stimuli. Stress is

a summation of anxiety, fear, confusion, distress, frustration, and tiredness {9]. The

processing of stress is similar to that of pain, since pain incorporates similar emotional

reactions. There are three major brain regions that are responsible for the processing of

stress in the form of anxiety and fear, namely the prefrontal cortex, the amygdala, and the

hypothalamus. It is common in the clinical field that anxiety about pain can exacerbate

the pain sensation { 10]. An fMRI experiment that compared activation responses to

noxious thermal stimulation while perceived pain intensity was manipulated by changes

in either physical intensity or induced anxiety showed that the areas responsible for pain

processing responded differently to identical noxious stimuli. The different responses

were dependent on whether the perceived pain intensity was enhanced by pain-relevant

anxiety or not {10]. This demonstrates that the presence of anxiety can cause incorrect

and inconsistent subjective response to painful stimuli. This suggests that if a person is
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familiar with a procedure about to be done on him/her, he/she will respond more

accurately.

1.3 Functional Magnetic Resonance Imaging

Magnetic Resonance Imaging is a method of creatirc images of the inside of opaque

organs in livirc organisms as well as detectirc the amount of bound water in geological

structures {12]. MARI relies on the relaxation properties of excited hydrogen nuclei in

water. When the object to be imaged is placed in a powerful uniform magnetic field, the

spins of the atomic nuclei, within the tissue all align in one of two opposite directions:

parallel to the magnetic field or anti-parallel. The magnetic dipole dement of the nuclei

then processes around the axial field. The frequency with which the dipole dements

process is called the Larder frequency (ω). The tissue is then briefly exposed to pulses of

electromagnetic energy (RF pulse) in a plane perpendicular to the magnetic field, causirc

some of the magnetically aligned hydrogen nuclei to assume a temporary non-aligned

high-energy state. The frequency of the pulses is governed by the Larder Equation (ω = γ

B). In the Larder Equation ω is the Larder frequency; γ, gams, is the geomagnetic

ratio a constant that is unique to the nucleus of the hydrogen element; and the B, is the

strercth of the magnetic field measured in Telsas. {12,13,14]

In order to selectively image the different vowels (3-D pixels) of the object beirc

imaged, three orthogonal magnetic gradients are applied. The first is the slice selection

gradient, which is applied durirc the RF pulse. next, is the phase encodirc gradient, and

lastly, the frequency encoding gradient, durirc which the tissue is imaged. Various

combinations of the gradients can be combined durirc the process so that slices can be
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taken in any orientation, not just X, Y, and Z. As the high-energy nuclei relax and

realign, they emit energy which is recorded to provide information about their

environment. The realignment with the magnetic field is termed lorcitudinal relaxation

and the time in milliseconds required for a certain percentage of the tissue nuclei to

realign is termed "Time 1" or Ti. This is the basis of Ti-weighted imaging. Ti-weighted

imaging relies upon local dephasing of spins following the application of the transverse

energy pulse; the transverse relaxation time is termed "Time 2" or Ti. Both Ti- and Ti-

weighted images are acquired for most medical examinations. {12,13]

In order to create the image, spatial information must be recorded along with the

received tissue relaxation information. For this reason, magnetic fields with an intensity

gradient are applied in addition to the strorc alignment field to allow encoding of the

position of the nuclei. A field with the gradient increasing in each of the three

dimensional planes is applied in sequence. When received, the signals are recorded in a

temporary medery termed space; this is the spatial frequency weighting in two or

three dimensions of a real space object as sampled by MARI. The information is then

inverse Fourier transformed by a computer into real space to obtain the desired image.

This image contains detailed anatomical information. Typical medical resolution is about

1 mm3 , while research dedels can exceed 1 mm3 . {12,13]

fΝRI is an upgrade to Magnetic Resonance Imaging (MARI). MARI belorcs in the

family of imaging technology such as X-ray and Computer Aided Tomography (CAT

scan). All of these take multiple images of a body region and reproduce a dimensional

anatomical image of the area of interest. Both X-Ray and CAT use X-rays emitters and

detective to produce an image. However, MARI employs the use of magnetic fields to
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produce images as discussed above. MRI uses MARI technology, but in addition, tracks

the activity of regions in the brain by locating areas that employ dere oxygen while a

person is performing a task. Positron Emission Todegraphy (PET) is similar to MRI,

but uses CAT technology to produce images instead of magnetic fields. MRI and PET

scans show functionality in the brain. fMRI can determine which parts of the brain are

activated by different types of physical sensation or activity, such as sight, sound or the

devement of a subject's fingers. Synaptic activity generates increases in cerebral blood

flow (BF). This physiological fact is the basis for both PET and MRI. MRI uses MRI

imaging to measure the quick, tiny metabolic changes that take place in an actors part of

the brain. The dest common used method in MRI is the Blood Oxygen Level Dependent

(BOLD) method. The BOLD MRI estimates neural activity by detecting local

hemodynamic changes, which are related to synaptic activity {15]. This technology heIps

radiologists, doctive, and researchers to determine precisely which part of the brain is

handling critical functions such as thought, speech, movement, and processing of

sensations. {15]

1.4 Functional Magnetic Resonance Imaging Use in Studying Pain

People that suffer from musculoskeletal disorders such as Fibromyalgia, experience

frequent episodes of pain. Fibromyalgia is musculoskeletal pain and fatigue disorder

whose cause has not been determined. Its symptoms are muscle and joint aches, stiffness

of joints, and extreme fatigue. FM is believed to be related to disorders in an individual's

neural triggering and processing of pain. Since MRI scanning can detect activity in the

CAS caused by various activities, it is ideal in comparing healthy and FM subjects to
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determine differences in pain processing. By delivering painful and non-painful stimuli

to a subject during fMRI scanning, analysis can be done to examine which areas of the

brain are actors for each stimulus. In a study by Gravely, et alit is shown that fMRI brain

responses to experimental pressure pain, set at either similar stimulus levels or similar

subjective pain levels, were amplified in FM patients compared to healthy controls { 19].

This shows that FM patients have a dere exaggerated perception of pain.

Other methods can be used to provide painful stimulus to a subject during fMRI

scanning. One method is to use a temperature sensory stimulator instead of pressure

stimulator. The main advantages of using a temperature sensory stimulator versus a

pressure stimulator are faster response time by subject to painful stimulus, less interaction

between subject and administrator. The temperature sensory stimulator uses Peltier

which allows it to reach its target temperature at a faster time than it would take the

pressure stimulator to reach its target pressure, since it uses a mechanical system.

Temperature sensory stimulators also have remote contact with subjects, allowing the

subject to wear the object producing the stimuli versus an administrator applying it. This

helps to reduce subject bias, related to facial expressions of administrator.

nociceptive pain is processed in the central nervous system (CANS), in several

interrelated but different regions. The regions proven to be active during the processing

of painful stimuli in healthy people are: the posterior insular cortex, anterior circulated

cortex (ACC), prefrontal cortex, periaqueductal gray region, thalamus, basal ganglia and

cerebellum. These regions are interrelated in pain response, but some have shown

distinct functions in response to pain. Pain intensity has been shown to correlate with
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neural activity in the somatosensory cortex, while pain unpleasantness ("how much a

given sensation bothers you" {18]) correlates to activation of the ACC. {15, 18, 19].

Pain intensity and unpleasantness (figure 1.4) can be very different based on the

preference and environment. An experiment conducted by Price et al, showed that

women in labor and cancer patients experienced similar pain intensity, but had very

different responses to pain unpleasantness {20]. Women in labor experienced greater

unpleasantness; this is due to attention and other cognitors processes such as anxiety and

Figure 1.4 Affective and sensory numerical descriptive scales used to measure evoked
pain dimensions of affective unpleasantness and sensory intensity. {20]
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Two pain perception studies conducted using fMRI have asked the subject to rate

or evaluate the intensity and unpleasantness of a painful heat or pressure stimulus as it is

applied to the subject's thumb nail for pressure, and thence eminence for heat. The

BOLD method was used to determine what areas of the brain are experiencing dere than

resting synaptic activity. Images of the brain are taken while the subject receives stimuli.

The number of images correlates to the number of slices the total brain structure will be

divided in. For each slice, an image is taken. An increase in the number of slices causes

an increase in the resolution of the brain. During processing, fMRI software is used to

reconstruct the images and identify the areas in the brain that experienced dere than

resting synaptic activity. This information is correlated with the range of stimuli given

and the time each stimulus was given. Then analysis is done to compare times when

there is dere activity in some areas of the brain versus others. During the analysis stage,

functional images of the brain are first realigned to make sure all the images taken are all

aligned properly on top of each other. Then co-registration is done. This process entails

checking all functional images to make sure he brain is in the same position for all

images. Interpolation corrects slight movements of the patient's head. Then the images

are normalized the size of a standard brain. Normalization entails reshaping the structural

and functional images to fit the size of a template image which represents the gold

standard for the size of a human brain. After the processing, the images are analyzed, by

inputting the times when stimuli were given and the duration of the stimuli. This aids in

identifying the images of interest to determine how they compare to images when no

stimuli were given, or lesser intense stimuli were given. {15]
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1.5 Blood Pressure

Blood pressure is the pressure exerted by blood on the walls of blood vessels. BP

generally refers to arterial BP which is the pressure in the large arteries, such as brachial

artery located in the arm. The pressure in other vessels, such as the finger, is lower than

the arterial BP, because those blood vessels are much smaller. The highest pressure in

the arteries during the cardiac cycle is the systolic pressure, and the lowest pressure

during the relaxation phase of the cardiac cycle is the diastolic pressure. Healthy adults

typically have an arterial blood pressure of approximately 120 mmHg systolic and 80

mmHg diastolic, written as 120/80 mmHg. Blood pressure is not static, but undergoes

natural variations from one heartbeat to another. It also changes in response to stress,

nutritional factive, drugs, or disease. {1]

Blood pressure can be measured in two ways, invasively and non-invasively, the

most accurate being invasively, which is done by placing a catheter inside the blood

vessel with a pressure sensor at the other end of the catheter. The less accurate method,

non-invasively, can be done by using a sphygmomanometer, an inflatable cuff attached to

a manometer, and a stethoscope (shown in figure 1.5). This is the standard method of

taking BP measurements. The pump attached to the cuff is squeezed to inflate the cuff

until the artery is completely occluded. Pressure is slowIy released, while the stethoscope

is plaved at the site of measurement to listen for the flow of blood to begin. When the

blood begins to flow, it makes a swooshing sound. The pressure at which the flow of

blood begins is the systolic BP. As the pressure is continually released all noise will stop.

The pressure at which the noise stops is the diastolic pressure.



Figure 1.5 Traditional sphygmomanometer (left) and Stethoscope (right).

With new technology, there are many ways to measure BP non-invasively. Most

technology integrates similar principles as just described, but instead of manually

pumping the cuff and listening for flow sounds, they employ an electronic pump and use

a pressure transducer. Small oscillations are created in the cuff as the brachial artery

expands during the decrease in pressure. It is these oscillations that are used in some new

technology to calculate systolic and diastolic pressures. This automated cuff method is

the basis of the technology behind the Dinamap that will be discussed in Chapter 2.

Other methods used to measure BP, monitor changes in BP over time yielding a

continuous waveform. One of these methods measure changes in arterial BP in the

finger. The device used for this pilot experiment, the Finales, uses a servo valve to

produce a pulsating pressure in a small cuff attached to the finger. In the finger cuff is

electronic pressure transducer that measures the pressure throughout the cardiac cycle.

Within the cuff there is also a photoplethysmograph that helps to maintain a fixed

diameter around the finger. The waveform that is created using continuous BP

monitoring devices resemble the waveform for BP (figure 1.6)
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Figure 1.6 Blood Pressure Waveform

1.6 Electrocardiogram

An electrocardiogram (ECG or EKG, abbreviated from the German Electrocardiogram)

is a graphic representation of the electrical voltage measured at the surfave of the skin

during the cardiac cycle {2]. The ECG (figure 1.7) is used to determine whether the heart

is functioning normally or if it suffers from abnormalities.

An ECG is formed through the measurement of voltage difference between

several points on the body. There are two types of configurations to collect the ECG

signal from the body, namely bipolar and augmented. Bipolar configurations (Lead I,

Lead II, and Lead III) record the difference in voltage between two extremities. Lead I is

the difference in the voltage between left and right arm. Lead II is the difference in

voltage between left leg and right arm. Lead III is the difference in voltage between the

left leg and left arm. Augmented configurations (augmented voltage right arm (aVL),

augmented voltage left arm (aVF), and augmented voltage left foot (aVL)) are known as

bipolar because the voltage is measured from one extremity instead of two as in bipoIar.
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Lor the experiment conducted, we used the Lead I configuration to record the ECG

signal. {3]

The ECG signal was used to determine the heart rate of the subject during the

experiment. The heart rate is calculated by subtracting the distance (in time) between L-

waves. This interval is used to divide into sixty to acquire the HL in beats per minute.

HL 6Ο[sec] / (RnΑι _R){mins *sec/beats]. Α program was designed using LabVIEW

software to process the collected ECG waveform to determine the HL. This program will

be discussed further in Chapter 3. {2,3]

Figure 1.7 Electrocardiogram waveform

1.7 The Effect of Stress on Cardiovascular Measures

Stress in the form of fear and anxiety does affect a person's cardiovascular measures. Α

study examined blood pressure (BP) and heart rate (HL) of students undergoing a

medical licensing examination sought to assess the effect of a real life mental stress

situation on HR and BP {Ii]. The findings of this study showed that diastolic BP (BP)
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increased by approximately 6% during and 8.6% after undergoing a stressful situation.

Systolic BP (BP) did not increase significantly; it increased 3•8% during and 3% after

undergoing a stressful situation. HL decreased significantly by 12.3% during and .  16.7%

after the exam in comparison to before the exam. One thing that was not included in the

study was to have the students undergo the exam once again and compare their BP and

HL between the two sessions. This would tell us if familiarity with the exam caused

them to be more relaxed



CHAPTER 2

CREATION OF MOCK MRI: HARDWARE

2.1 System Overview

The pilot experiment entailed the creation of an MRI facility to simulate MALI

experiments. In addition to the subject's perception, there had to be collection of

cardiovascular measures to evaluate the subjects' reaction to the MRI environment. The

main purpose of creating this facility was to increase subject comfort and compliance in a

real MARI unit while participating in a pain study. An experiment was constructed to have

subjects lay in the MRI unit and go through the pain study twice while their

electrocardiogram (ECG), and blood pressure (BP) were collected. The BP was collected

with the Dinamap (Section 2.8) from the upper arm and from their index finger with the

Linapres (Section 2.7). The Dinamap BP was taken every 2 minutes. The Linales BP

was collected every 3 seconds. The Dinamap BP was collected to validate the accuracy

of the Linales BP measurement.

To accomplish these goals a LabVIEWTM program was created to collect data

from the ECG and Linales instruments, and store them on a computer for offline

analysis. The program interacted with these instruments while triggering an instrument

used to produce warm stimuli to the subject, called the Medic TSA II neuro-Sensory

Analyzer (Section 2.6). The program also output MRI scanning sounds to the unit, and

turned on and off an LED that indicated to the experiment administrator to plave and

remove the thermode extension of the Medic TSA II neuro-Sensory Analyzer on the

subject's forearm. The thermode is discussed in dere detail in Section 2.6

17
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The pain study entailed applying warm stimuli to a subject's forearm, then

allowing the subject to rate the intensity and unpleasantness of each stimulus received.

The stimulus is applied by the administrator in the MARI room. The administrator is given

a cue each time to plave the thermos on the subject's forearm and to redeve it, so the

subject can rate the intensity and unpleasantness. This is repeated for 10 warm stimuli.

This study will be conducted at UMDNJ, and it is important that the subject is

comfortable during the experiment so their complete concentration can be on the stimulus

they are receiving. This will help to better isolate the areas that are processing pain

perception during the study. By increasing the subject's exposure to a MRI surrounding

and training the subject to rate the intensity and unpleasantness of a stimulus, dere

accurate analysis can be done to precisely identify regions of the brain that are

responsible for pain processing. Ligures 2.1 shows how the medical instruments were

arranged to form the system necessary for the habituation experiment.

2.2 Mock MRI Unit

The mock MARI unit was constructed using a decommissioned Picker 2055 Vista HP 0.5

Teals MARI unit as shown in figure 2.2. This unit did not have a magnet and was not able

to perform scans. It consisted of a gantry, base, MARI fave, bore, and head coil. To make

this unit resemble and sound like the Siemens Magneto Allegro 3 Teals MRI Scanner

at UMDNJ, several changes were made to the Picker unit, such as powering the faveplate

and programming its light emitting diodes (LEDs) to display information available in the

Siemens MARI unit. A mirror was deunted in the head coil to allow the subject to see the

monitor behind him/her. PC speakers were deunted in the bore of the unit to play the
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sounds that the Siemens unit made while scanning the sequence of scans the subject

would get through at UMDNJ.

Figure 2.1 Block Diagram of fΝ4RΙ System

2.2.1 Mock MRI Face Circuitry

To try to convince the subject that the unit was real and to provide the experimenter with

visual feedback, the MARI fave alphanumeric light emitting diodes (LEDs) were

programmed to display static values of cardiovascular measures and status of the unit.
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The fave displayed: Ready for Scanning, Heart Rate, Blood Pressure, and Time Elapsed

(Ligure 2.3). The Picker unit was equipped with LEDs and buttons; however, controller

for these circuits was destroyed. Reverse engineering of the LED circuitry was necessary

to allow the newly developed system to program of the LEDs. The LEDs and buttons

were connected to a two 60-pin bus connective. Twenty-five pins on each of the 60 pin

buses were connected to the computer via a CI 96 Digital Input-output channel card that

was controlled using Lab VIEW software.

Figure 2.2 Remodeled decommissioned Picker 2055 Vista HP 0.5 Teals unit.



The Lab VIEW program developed allowed the user to type in the message he/she

would like to display, then when the program commenced the user designated where

he/she would like to display the words and or numbers; in the right or left side of the fave

display. The LabVIEW program was designed to display these messages was separate

from the program developed for the pilot experiment. This program was developed by

Robert Demarco, an engineer at the DIVA in East Orange. This program has a list of all

the binary codes for each character in the ASCII system. The program compares the

desired text that the user enters to the binary code for each letter, number or symbol and

writes it to a LED in the assigned column and row.

On the MARI fave an LED was also programmed to act as an indicator to the

person administering the heat stimuli to the subject. The LED was already a part of the

circuit board that came with the unit, but the connection was broken to the board and was

connected to one of the digital outputs on the BANC 2090 (discussed in Section 2.11). As

the LED illuminates, the administrator uses this as a cue to plave the thermode on the

subject's forearm, the LabVIEW program then triggers the Neuro-Sensory Analyzer to

send a warm stimulus to the thermos. This eliminated verbal directions and caused the



22

system to be more automated. Once the stimulus was finished, the LED was turned off

indicating to the administrator to redeve the thermos from the subjects forearm. This

sequence of events will be discussed in more detail in the Chapter 4.

2.2.2 Mirror Attachment

The Siemens Unit at UMDNJ has a mirror attached to the head coil that allows patients to

see the display screen behind them. A similar attachment was developed to allow

subjects to see the screen behind them in the mock MRI unit. Ligure 2.4 shows the

Siemens design and Ligure 2.5 shows the schematic for the design used in the deck

MRI unit.

Lor our design, a custom made mirror similar to the shape of the mirror used on

the mirror attachment at UMDNJ was developed at Orange Valley Glass Company in

Orange, NJ. This mirror was attached to a painted piece of wood using a bracket that

swings freely. Restraint washers were applied to cause the mirror to move only when a

small amount of pressure is applied. The wood and mirror were then attached to the head

coil, now allowing a view of the denitor attached to the back of the MARI unit (see figure

2.6). A computer denitor was plaved behind the machine, which will be discussed in

Section 2.4. The denitor displayed the Descriptor Differential Scales (DDS) for Pain

Intensity and Unpleasantness (Appendices D and E) to the subject participating in the

experiment.



Figure 2.4 Mirror Attachment for Siemens MARI unit at UMDNJ

Figure 2.5 Schematic of the mirror and its attachment for the mock MARI facility.

23

Figure 2.0 Mirror Attachment  in Head Coil
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2.2.3 Audio Simulation

Το give the subject the illusion of a working MARI machine, computer speakers were

installed in the bore of the unit (see figure 2.7) that simulated the sounds from the

gradient coils within the Siemens unit at UMDNJ. Within the Lab VIEW program created

for the pilot experiment, we included commands for LabVIEW to play a recorded sound

that the MARI unit makes during a Ti scan and a  Τ2 scan. These sounds are caused by the

electrical switching of the magnetic fields, which is dependent on the parameters the

investigator chooses to use. Both sounds differ from each other because there is different

electrical switching done to accomplish either scan. The speakers were positioned

toward the upper sides of the circular bore for better sound quality throughout the unit.

The speakers were connected to the sound card of the computer that played the sounds

stored on the computer for the Ti scan and the  Ρ2 scan.

Figure ιδι 3ρeακ.ers use  ιο play  i i um i z sounds

2.3 Audio MiAer

In the real MRI there is two-way communication between the subject and the

investigator. We used an audio mixer (ΜΧΕ-8 12, Bandy Audio) to provide this two-way

communication in the deck MARI. The system was designed to match the schematic

shown in figure 2.8. This was done by connecting a microphone (Shure 550L) that was
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located in the control room to one input channel of the audio mixer. A mini microphone

that is attached in the bore of the unit was connected to the 2nd input channel. Two shelf-

cowered speakers were connected to the output of the mixer along with an Audio

Technical Studio Phones headphone. One speaker was positioned in the control room

and only sounds from the microphone in the bore could be heard through that speaker.

The other speaker was positioned in the fMRI room to output instructions given using the

control room microphone to the person applying the stimuli in the room. Headphones

were worn by the subject to hear feedback from the investigator in the control room.

Ligure 2.9 shows the mixer with its connections and settings.

i ngure 2.5 Audio mixer Getup cnematic



2.4 Patient Visual Display System

The real MARI unit at UMDNJ has a visual display system that uses a projector to display

figures, or scales that investigators want patients to see. A similar system was needed to

display DDS pain intensity and unpleasantness scales to the subjects that will participate

in the study to allow them to rate the heat stimuli that will be applied to their forearm.

Due to spave limitations a projector could not be used, so a 17 inch Preview Monitor

(figure 2.12) was used as a part of our visual display system. Because the subject is lying

down and looking through a mirror, the image on the display needed to be reversed.

Preview provided a schematic of the monitor wiring. This schematic was used to identify

the wires responsible for the horizontal scan of the display. These wires (red and yellow)

were switched (figure 2.10) causing the horizontal scan of the display to change from

scanning left to right left, to scanning right to left as displayed in figure 2.11. Appendix F
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shows the schematic given to us by the company and also the pins that were switched to

cause the correct flipping of the monitor display.

Figure 2.10 Circuitry inside Preview monitor.

Figure 2.11 Screen Capture of DDS Pain Intensity Scale on Reversed Monitor.
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2.5 Patient Response Unit

Α custom response unit was required by the investigator that would allow subjects to

respond to the DDS pain intensity and unpleasantness scales with little devement of the

hand while in the MARI unit. This response unit would also be used in the Siemens MARI

unit, so it had to contain minimal ferrous components.  Α Digitus Magic-Click mouse

was rededeled (see figure 2.13) to serve as our patient response unit. This ergonomic

mouse was ideal to make it easier for the subject to respond without moving his/her hand.

Α potentiometer was mounted by the thumb plavement on the mouse to be used as a knob

to scroll up and down the DDS pain intensity and unpleasantness scales. When a suitable

answer is determined by the subject, he/she then uses the push button located below the

index finger to select the corresponding number as his/her rating. The patient response

unit was connected to the BANC 2090 that allowed interaction between the subject and the

pain intensity and unpleasantness DDS scales that were shown on the reversed Preview

monitor. One of the three necessary connections was to an analog input channel. This

connection read the potentiometer position through Ο to 5 volts in 21 increments. The

other connection was the push button to another analog input channel, which generated a
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revolt pulse when the button was pressed. Another connection was to the revolts output of

the BC 2090 which powered the response unit. The complete connection diagram for the

response unit system is shown in figure 2.14. An older model that was used in previous

studies consisted of the same potentiometer and a similar type of push button, but the

shape was rectangular forcing the subject to move his/her hand while responding.

Movement of the hand also produces brain activation during an MRI scan, so creating an

MARI compatible response unit that required less devement of the hand while responding

to the stimuli, would help to minimize activation of brain regions that may or may not be

responsible for pain processing.
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2.6 Neuro-Sensory Analyzer

Το administer warm stimuli to the subjects we used the Medic TSAR II neuro-Sensory

Analyzer (Ligure 2.15). This Νeuro-Sensory Analyzer unit can warm and cool water at a

rate of 0.3 °C / second between the range of 0 ° - 50 °C. The water flows through two

rubber tubes to a thermode. The therdede is encased in a 30mm 30mm plastic box.

The thermode is made up of a Peltier type of sensor. The principle behind Peltier sensors

is the Peltier effect, which is caused when an electric current (I) flows across the hanction

of two different types of semiconductors (A and B). The Peltier effect causes heat to

move from one material to the other in the direction of the current. The rate at which

heat is produced (W) is equal to the difference in the Peltier coefficients (ΠΑ and HB ) of

the semiconductive multiplied by the current (I). This is illustrated in the equation: W =

(ΠΑ — ΠΒ)*I. W can be negators or positors depending on the direction of the current.

When positive it represents the rate at which heat is produced and when negators it

represents the rate that heat is removed. In the thermode, an aluminum-coated plate that

comes in contact with the skin is plaved adjavent to one of the semiconductors (A). The

plate is cooled or heated depending on the direction of the current. The other

semiconductor (B) is buffered by water that at 20 °C, which acts as a heat sink or source

depending on the direction of current. The temperature at the surfave of the aluminum

plate is measured through a thermocouple made of copper and constant wires that

produce a voltage difference in response to change in temperature. [16]

Lor the pain study discussed in Section 2.1, temperatures of 44-50 degrees Celsius

were used. The square thermode that is shown in Ligure 2.16 was plaved on the subject's
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dominant forearm in ten locations and the neuro-Sensory Analyzer produced the desired

temperature via the thermode.

The laptop that is attached to the system runs a program that controls the output of

the neuro-Sensory Analyzer. The program used was Cocas 3.13, which aIlowed three

different options for sending a trigger to begin the stimuli. One option was an automatic

trigger, where the program waits for an assigned time between 1 and 60 seconds and then

sends the signal on its own. Another option is a manual trigger, where the program waits

for the person administering the stimuli to push the spave bar or any key on the keyboard,

when he/she is ready to begin the stimuli. The third option is an external trigger that

allows the click of either the patient response unit (patient deuse) or a click of the

administrator's deuse to begin the stimuli. Option three was used. A 9 pin serial

connector was connected to the patient's response serial input of the neuro-Sensory

Analyzer. Pins 6, 7, and 9 were wired to a relay. Pins 7 and 9 were hampered and wired

to the ground terminal of the relay, and pin 6 was wired to the output of the relay. The

LabVIEW program was programmed to send a revolts signal pulse through digital input

channel 0 to power the relay that initialized the neuro-Sensory Analyzer as a trigger to

begin stimuli. This allowed for dere control over the timing synchronization, which has

not been reported in similar studies.
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Figure 2.16 Square Thermos used for Medic TSAR II Neuro- Sensory Analyzer

2.7 Linapres

The FinapreFinales, made by Ohmeda is a continuous BP monitor.  Finales, an acronym for

Binger  Arterial PRESsure, continuously tracks changes in BP at the finger. The Linapres

is based on a volume clamp method developed by  Penal [17]. In the Finagles  is a finger

cuff inflates to a pressure that clamps the finger arteries with a fixed diameter. The finger

cuff is made of an inflatable bladder that receives the exte rnal pulsating pressure via a

reactive servo system. The servo system continuously counterbalances the finger arterial

pressure, which physically clamps volume oscillations of the arterial walls, nullifying

pulsations. The fixed diameter is determined by measurements from an infrared

33
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plethysmograph, mounted in the cuff, so that pressure through the arterial wall is zero and

intra-arterial and cuff pressure are always equal. Figure 2.17 shows the Finales and its

connectors. There are several controls and outputs at the back of the unit. There is one

for volume control of the alarms, another for a BANC output of the signal as it is also

shown on the screen of the Finales, and there is one for pulse rate output. The 2 Ώίί

output was used to display the waveform of the BP via a BANC cable that was attached to

the DAB card via the BANC 2090 connector. The waveform consisted of voltages

proportional to the BP with a scaling factor of lvolt'lOOmmHg. This signal was one of

the analog inputs into the LabVIEW program and displayed on the Front Panel (Section

3.1) and the data were stored in a text file. [17]

Figure 2.17 Ohmeda Finagles BP Monitor

2.8 Dinamap

There were two instruments used to collect BP, one was the Finagles as previously

discussed and one was the Dinamap made by Critikon, which is shown in figure 2.18.

The Dinamap uses a pneumatic module to control pressure provided by an air pump to

fill the cuff. The air pump is a rotary-driven pump that is powered by a pulse width
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modulated dc voltage supplied by the power converter circuit. When blood pressure is

measured, the air pump fills the cuff to a pressure of 178 +1- 15 mmHg. This will stop

blood flow in the arm. Pressure is slowly released and the oscillations in the cuff caused

by the blood flow are used to calculate the BP and BP. The Dinarnap allows manual

arterial BP recordings in increments of 1 minute to 1 hour. There are two modes of

operation, namely manual and automatic. In manual mode the Dinarnap takes the

subject's BP when the start button is pressed, while in automatic mode the operator

chooses the time interval that the Dinarnap will automatically take the subject's BP.

For the pilot experiment, the manual option was used and the BP was collected at

specific intervals. The Dinarnap was set to collect BP twice during the 5 minute baseline

stage, twice during the Ti stage, once at the end the 1 minute baseline stage, twice during

the Τ2 stage and once during the Recovery stage.

Figure 2.18 Critikon Dinamap Blood Pressure Monitor
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2.9 Electrocardiogram Amplifier and Filter

To measure the subject's electrocardiogram (ECG), a Coulboum amplifier and filter were

used (figure 2.19). The amplifier has the capability to connect up to 6 leads to the subject

with 7 different configurations. It has the capability to amplify the signal collected off the

body by a gain of 10,000. The filter receives the output of the amplifier and filters out

noise (any other signal that distorts the signal you is interested in collecting) within the

frequency range of 0 to 100 Hz. The filter operates as a band pass filter with a low and

high frequency cutoff. The frequencies between the low and high cutoff frequencies will

be kept, and frequencies outside this range are removed form the signal. noises that are

common to the ECG signal are, 60 Hz noise caused from power lines that operate at that

frequency, and movement of the electrode that occurs at a very low frequency within the

range of 0.01 — 1.0 Hz. To remove these artifacts, the band pass filter was used that had a

low frequency cutoff of 0.1 Hz, and a high frequency cutoff of 55 Hl.

After the signal is amplified and filtered, the signal is converted from an analog

(continuous), to a digital (discrete) set of samples. A continuous signal has an infinite

number of data points. no computer can process an infinite number of data points, so the

signal has to be digitized. Digitizing a signal involves sampling the signal at the correct

rate with sufficient amplitude intervals (levels). Choosing the sampling rate is assigning

the number of data points to be read per second. The sampling rate has to follow the

nyquist sampling Theorem that states that a signal has to be sampled at rate greater than

twice its bandwidth. The amplitude interval, the smalIest quantized step in amplitude,

correlates to the resolution of the signal. An increase in the number of sampling intervals

improves the resolution of the signal. This process of digitizing is called analog to digital
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(A/C) conversion. A/C conversion was done through the use of the 6024E national

Instrument Data Acquisition (CABS) card. This card, which is installed in the main

computer, has sixteen 12-bit analog input channels each channel has a full range of =1- 10

volts up to 100,000 scans/second. The configuration used for the pilot experiment used 2

channels at 1000 scans/second each; one for BP and one for ECG. The quantization level

or these conversions were: delta B = Range / # of levels = 20 volts / 4096 = 4.88 mV.

The ECG signal is a result of electrical activation sequences of the ventricles in

the heart that produce an action current that flows in the thorax. The action potentials

produced by the heart resonate throughout the body and on its surfave. The potential

differences are determined by placing electrodes on the surfave on the body. Electrodes

are plaved on different equal potential lines of the electric field of the heart to produce a

non-zero potential difference. Standard positions are used in the evaluation of the ECG

because different pairs of electrodes plaved at different locations cause different voltages.

This occurs because the electric field of the heart is spatial dependent. In the experiment,

ECG was detected through the use of three leads connected to three electrodes on the

subject's thorax. One electrode was plaved on the right pectoral region of the thorax,

another on the right pectoral region of the thorax, and one on the bottom right region of

the thorax. This configuration follows the Lead I connection (LA and RA). Three leads

were connected to the electrodes and transmitted voltage differences between the

electrodes detected at the surfave of the skin during the activation sequence of the heart

ventricles. The leads were connected to an amplifier that amplified the signal received

from the body from millivolts to volts. The amplification used was 2 V/mV (2000 times

in magnification). The signal was sent through two filters to remove noise (unwanted
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signals) such as 60-Hertz noise, which is caused from the electrical line and other devices

that are in operation, and noise caused by small movement. To accomplish this, the

signal was filtered through a low pass filter with a cutoff frequency of 0.1 Hz to remove

small movement noise, and then the signal was filtered through a high pass filter that

removed frequencies higher that 55Hz to remove 60Hz device noise. These settings were

within the estimated ranges for a healthy adult. If connected to a child or a patient with a

diseased heart, significant signal loss would occur. A better method to remove the 60 Hz

noise would have been to use a notch filter instead of a low pass filter. [3]

Figure 2.19 Electrocardiogram Amplifier (top) and Lilter (bottom)

2.10 Video Camera

The real fMRI has a large open glass window that allows the investigator to look in at the

subject while he/she is in the unit. To minimize construction in our facility, a video

camera located in the mock fMRI room connected to a small television in the control

room was used to view the subject during the experiment. A video camera (Cefender
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Security, model B2-835) and the television monitor (Panasonic, model (TR-124) were

used. (Figure 2.20)

Figure 2.20 MRI Room Video Camera and Monitor

2.11 Computer System

The computer is the main controller for the experiment. It provides outputs and records

inputs from the systems discussed. The computer used was a Cell Pentium 4, 2.0 GHz

computer with 512Mb Random Access Memory. An addition to the computer for this

experiment was a Matrix Power Cesk — HF dual video card. This allowed up to three

separate monitor displays. Two displays were used, one to display the cardiovascular

measures being collected and to maneuver controls such as stopping and running the

program for the operator and the other display was used to display the pain intensity and

unpleasantness scales to the subject.

The next two additions to the computer were for the Analog to Cigital (A/C)

Conversion and acquiring the signal. A national Instrument Cata Acquisition (CAB)

card was installed in an available CI slot in the computer. Two separate cards were

used to meet the needs of the experiment. The first need was to communicate to the MARI

Fave (to display heart rate, blood pressure and time elapsed. For this a PCI DIO 96 CAB
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card was used since task entailed only digital communication. This card offers 2 sets of

50 digital outputs. For each side of the MARI fave 25 digital inputs were needed, so this

card was the most suitable to fulfill the needs.

The second need was to communicate with the Finales, Coulbourn

electrocardiogram amplifier and filter, the response unit for the subject, the Neuro-

Sensory Analyzer, and the administrator's visual indicator. A CI 6024Ε DABS card was

used to accomplish these requirements. This card connects to a BANC 2090 connector that

has 16 analog input channels, 8 digital input/output channels with 2 digital grounds and a

revolts output. The first analog input channel was used to input the ECG signal, the

second to input the BP signal from the Finales, and the third and fourth to input the

response the subject chose from the pain scales. The 5-volt output was used to power the

patient response unit. One digital output connected to the digital output channel 1 was

used to trigger the neuro-Sensory Analyzer, and digital output 0 was used to trigger the

administrator's visual indicator.



CHAPTER 3

CREATION OF MOCK fMRI SOFTWARE

3.1 LabVIEW Program

To control the components of the hardware system and to record the data from the

instruments, a software program was required to perform this custom task. LabVIEW

(Laboratory Virtual Instrumentation and Experimentation Workbench by national

Instruments) was chosen as the programming language because of its ability to interfave

with the environment outside the computer and to display, process, analyze and store

data.

LabVIEW is set up with two main windows or interfaves, one called the Front

Panel and the other is called the Block Diagram. The Lront Panel or user interfave,

displays information that is generally seen on the display of any electronic device such as

graphs, indicators and strings of numbers (see figure 3.1). These displays are connected

in the block diagram, which represents all the wiring within the casing of a device (see

figure 3.2). The block diagram is an object oriented programming language

Lor this pilot experiment, the main interest was detecting, displaying, storing, and

analyzing cardiovascular measures, namely blood pressure (BP) and electrocardiogram

(ECG). The hardware setup for both of these was previously discussed in Sections 2.7

and 2.9. It is important to understand how the software and hardware work together to

achieve the goals of detecting, displaying, storing, and analyzing physiological data.

41
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Figure 3.2 Block Diagram in. LabVIEW for mock MARI cardiovascular measures
collection
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3.2 Displaying Analog Signals

LabVIEW was used to collect and display the analog ECG and BP from the body. In

LabVIEW analog signals are processed in the following manner: The analog input is

configured to handle the data being collected using the analog input configuration (ΑΙ

Confab) block shown in figure 3.3a. This block represents a subroutine that allows the

logrammer to choose which device or DABS card to read the information through, what

channels to read, and the buffer size. Lor the pilot device 1 as selected, reading channels

0 to 4. The buffer size was set to 100,000 scans to facilitate the large number of scans

read per second (100). Then there is an initializing stage where the signal collection

starts and the rate at which the signal is collected is specified. This occurs in the analog

start (ΑΙ Start) block shown in figure 3.3b. At this point the AID converter will begin

sampling at the specified rate (1000 scans/sec). Using direct memory access, it stores the

data into the buffer. Then LabVIEW needs to be told how many scans to read at a time

out of this buffer. It is more efficient to read the data from the buffer in blocks than

trying to process one sample at a time. This is done using the analog input read (ΑΙ

Read) block shown in figure 3.3c. The output of the AI Read can be in the form of 2-

dimensional scaled data, binary data, or waveform data. The ECG signal can be

displayed using either dimensional scaled data or waveform data. The three analog

input blocks are connected to each other by the task ID output of each block. The next

step in displaying the ECG data is connecting the output of the AI Read block to a

waveform chart. This gives a visual relesentation of the data being collected. The filter

parameters used, were a low cutoff frequency of 0.1 Hz and a high cutoff frequency of 55

Hz (Section 2.9)
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Figure 3.3b Analog input Start block in block diagram.
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Figure 3.3c Analog Input Read block in block diagram.

3.3 Patient Response to Pain. Scales

In addition to collecting cardiovascular measures, LabVIEW software was used to read

movement up and down the DDS pain intensity and an. pleasantness scales and to identify

when an answer was selected using the patient response unit. One channel of AID was

used to read the array of scrolls and another to read when an answer was selected. This

was done by using the same sequence of blocks as discussed above, but the array read the

first channel was the input of the pain intensity and unpleasantness scales. The value

read through the other corresponds to the values where the button on the response unit

was pressed.

The voltage supply available through the ΒΝC209() was 5 volts. Both intensity

and unpleasantness scales ranged from 0 to 20, limiting each rating to an increment of
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0.2381 volts. The 0 to 20 DDS scales were preferable over the 0 to 10 scales, because

they gave the subject more choices so he/she can accurately identify how intense and

unpleasant the stimulus received felt. The 5 volt supply and ground are fed to the ends of

the potentiometer. The potentiometer acts as a voltage divider and the voltage out is the

proportional to the subject's response. The range of the output of the potentiometer had

to be divided into 20 levels, which corresponded to the 20 response choices. The `In

Range and Coerce' block was used, as shown in figure 3.5 to set the ranges for each

value on the DDS scales. The lower limit is the previous rating voltage value and the

upper limit is the voltage value of the rating of interest. The `x' value is the position of

the potentiometer on the response unit.

The output value used was the `In Range?' which was attached to a Boolean on

the front panel (shown in Appendices E and L) with the corresponding rating value. This

output was also fed into the `Boolean to (0,1)' block and multiplied by the value of the

selected rating. If the potentiometer was on a value of 4.76 volts for example, the

Boolean on the front panel corresponding to the rating number 19 would turn white in

contrast to the color it previous was (yellow-Intensity or green-Unpleasantness). The

`Boolean to (0,1)' block would output a 1 and this value would be multiplied by 19 and

added with zeros in the `Compound Arithmetic' block since none of the other ratings

would produce a one, only zeros. The value selected is indexed for storage. Once the

summation is complete, another loop begins in the FOR loop and the response of 19 is

stored in the master program. The FOR Loop's repetition condition was the size of the

potentiometer range divided by two allowing the program to move on when the array

changed or a value was selected. Since this was embedded in the master logram as a
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sub VI, the loperties in terms of window appearance and method of execution had to be

changed. The sub VIPs (Pain Intensity and Unpleasantness) were set to show front panel

when called and close after.

Figure 3.4 Block Diagram of DDS Pain Intensity and Unpleasantness Scales.

Figure 3.5 The In Range and Coerce block in LabVIEW.
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In the overall program, both the DDS pain intensity and unpleasantness scales

were sequenced using a flat sequence structure (see figure 3.6). First, the subject would

be presented with a red cross (a sub VI developed previously by Lynn Auger, an engineer

at the DIVA in East Orange) for 10 seconds. Then the subject would receive a warm

stimulus, then the pain intensity scale would come onscreen replacing the red cross at the

end of the stimulus and the subject would then use the response unit to scroll up and

down the scale to find the intensity he/she perceived the warm stimulus to be using the

potentiometer. When the subject reaches a rating that corresponds to their perception,

he/she would press the button on the response unit to select the rating as their response.

After an answer is selected, the subject is then presented with the pain unpleasantness

scale and the subject then has to use the response unit to rate how unpleasant the warm

stimuli felt to him/her. After the subject has answered, the program moves on to save the

subject's response and repeat the loop. The loop is repeated for the number of stimuli

that the investigator wishes to give to the subject.

Figure 3.6 Sequence of presentation of Pain Intensity and Unpleasantness scales
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3.4 Neuro-Sensory Analyzer Triggering and Visual Indicator

LabVIEW was used to trigger the Neuro-Sensory Analyzer and to indicate to the

administrator of the machine when to apply stimuli. This was done by using the digital

output channels 0 and 1, along with the digital ground terminals on the BNC 2090. In

the block diagram the digital output channels of the BNC 2090 were wired to a Digital

Line Output (Digi-Line) block shown in figure 3.7. This block writes a 5 colt pulse to

the selected channel, spending on whether the state of the line was true or false. If the

state was Lalse, then 0 colts was sent and if true, a 5 colt pulse was sent. Case structures

(similar to traditional If-Then statements) were used to organize when in a loop the

trigger should be sent to the neuro-Sensory Analyzer, and when the LED should tum on,

on the MARI fave to indicate to the administrator to plave the thermos on the subject's

arm.

Lor the triggering of the neuro-Sensory Analyzer we used a relay that was

normally closed. The relay was powered with 5 colts from. the BNC 2090 digital channel

output number 1. In the LabVIEW Program, the Dig-Line block was plaved in the

beginning of the logram and set to true, causing 5 colts to power the relay constantly.

Then to trigger the neuro-Sensory Analyzer, the line was set to false for 0.5 seconds and

then set back to true. This was done to simulate a mouse button click. The program,

Cocas 3.13, that operated the neuro-Sensory Analyzer allowed for a manual trigger, an

automatic trigger and an extemal trigger. The manual trigger would ask the administrator

to less enter on the keyboard to begin a stimulus. The automatic trigger would begin the

stimulus after a designated time. The external trigger would wait for a click on a mouse

connected to the response unit serial port on the neuro-Sensory Analyzer. A 9 pin serial
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male connector, wired with two wires to the relay was used instead of the deuse. This

would allow the investigator to have the neuro-Sensory Analyzer triggered in sequence

with the subject's response to the pain intensity and unpleasantness scales. This was

necessary since each person took a different amount of time to respond.

In efforts of making the system even more automated, LEDs were connected in

the mock MARI fave circuit. The purpose of these LEDs were to signal the person

administering the therdede to the forearm of the subject, when to plave and remove the

thermode between stimuli. The same Digi-Line block in figure 3.7 was used. The LED

was connected to digital output channel 0 of the BANC 2090. In the LabVIEW Program,

we plaved the Digi-Line block in the beginning of the program and set the line state to

false, causing the LED to normally be off. When the thermode was to be plaved on the

person's forearm, the LED would illuminate, relesentative of the line state set to true.

When the therdede was to be removed for the subject to rate the given stimulus, the LED

would not illuminate representative of the line state being set to false. The sequence of

the LED, trigger and pain scales can be seen in figure 3.6.

Figure 3.7 Digital Line Output block in LabVIEW
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3.5 Organization of all Collected Data

The LabVIEW Program was also used to organile the subject's data being collected.

This was done by using a Patient ID sub VI (see figure 3.8). This sub VI allowed the

user to enter the patient's identification number, and to select a file path to sace the data.

The sub VI was sequenced in the beginning of the logram and would cause the program

to wait until this section was completed to begin the experiment. In the path that was

selected to store the data, seceral files were created once the program started. Α text file

was created for each stage of the program, and within each stage a BP file and an ECG

file were created, see figure 3.9. In addition to those two files, an answer file was created

during the Ρ2 stage when the patient was gicen the warm stimuli.

Figure 3.8 Patient ID sub VI in Lab VIEW
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3.6 MARI Sound Simulation

LabVIEW was also used to play the sounds that the real  MARI would make during TI

(anatomical scan of the brain) and Τ2 (functional scan of the brain). For this we recorded

the sounds from the real MARI unit at UMDNJ and used Cool Edit Audio software to

amplify the sounds collected. Cool Edit software was used to make a 5 minute long Ti

sound and a 20 minute long Τ2 sound. Within LabVIEW the Sound Play Wace File
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block (see figure 3.11) was used to play the sound files. This block inputs the file path

that the sound is saced in and plays it until it is finished. The Ti file path was connected

to the Sound Play Wace File block during the T1 stage where the subject remained still

and ciewed a red cross on the screen. The Τ2 file path was connected to the Sound Play

Wace File block during the Τ2 stage, where the subject remained still while receicing the

designated number of stimuli and rating each one's intensity and unpleasantness.

Figure 3.11 Sound Play Wave File block in LabVIEW
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METHODOLOGY

4.1 System Setup

The mock fTRI is designed to mimic the fTRI system at UTDNJ. Therefore, we set up

a control room was set up adjavent to the fMRI room. In the control room, there was the

master computer that was connected to, the Linales cia the DAB BANC 2090 connector,

the ECG amplifier cia the same DAB connector, the speakers in the f[RΙ unit that play

the simulated sounds recorded during a real fTRI scan, and the patient monitor cia cideo

card. To ciew the fMRI room a cideo monitor was connected to the ciso camera in the

room. To listen to the subject while he/she was in the mock fTRI, an omnidirectional

microphone was connected to the audio mixer and the output was directed to the right

speaker located in the control room. To speak to the subject a PA microphone was

connected to the audio mixer that was outputted to the headphones the subject was

wearing and the left speaker that was located in the fMRI room. There was wallpaper put

up in the mock fMRI room that is similar to wallpaper at the real fTRI room at UMDNJ.

4.2 Physiological Connections

Each subject is connected to the ECG amplifier using a 10 foot long ECG cable. We

used the Lead I connection, placing electrodes on the right arm, left arm, and right leg.

Each subject wore the upper arm Dinamap BP cuff and receiced stimuli from the

thermos attached to the neuro-sensory Analyzer on the non dominant arm. The

Finales finger BP cuff and the response unit were attached on the dominant arm. Only
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the Dinamap cuff and the therms were TRIG compatible. The Linales BP, and ECG

signal would not be monitored during the study at UMDNJ, but were useful to stermine

change in stress response for the pilot experiment. The Linales was also used in a

lecious study that did not entail the use of an MRI, and in orsr to compare these data,

the Linales was necessary during the piloting stage.

4.3 Procedures

In orsr to test that all the equipment worked in the correct manner, a similar experiment

as the incestigator's (Dr. D. Cook) was created. A logram in Cocoas 3.13 was

sceloped, that would gice the two subjects, 10 warm stimuli, between 38 and 42 sgrees

Celsius. One subject was a male in between ages of 25-30, and the second subject was a

female between the ages of 18-25. All sessions were conducted in the afternoon at least

an hour after lunch. Both sessions were conducted ocer two weeks, with no less than on

week between each session.

Lirst, each subject receiced a lesentation of each the locedures and receiced

information about each scale and how to rate. The subject was connected to both BP

units and the ECG unit. Then he/she lay down on the gantry and was pushed manually

into the bore and head coil. The subject adhasted the mirror to make sure he/she could

clearly see the monitor. A practice logram was run in which the subject had a chance to

practice using the patient response unit to rate on both scales. When the subject was

familiar with using the response unit, the lactice logram was stopped and the

LabVIEW logram began to collect cardiocascular measures for 3 minutes while the

subject ciewed the cross on the patient monitor (Stage 1: 3 minute baseline). As the
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subject remained still and continued to look at the cross, the Ti sound was played for 4

minutes (Stage 2: Ti). Then the Ti sound was stopped and subject remained still for 1

minute, which relesented the recovery period in the real fMRI (Stage 3: 1 minute

recocery). Then the T2 sound was played. The administrator saw the green LED,

indicating that s/he should plave the thermos on the subject's arm and then after 15

seconds the thermode was remoced and the subject rated the warm stimuli they felt on

their arm. The subject while laying down first saw the pain intensity scale and the

logram waited for a response. Then the pleasantness scale was lesented to the subject

and the logram waited for a response. Then the subject was lesented with the cross,

while the administrator's cisual indicator came back on. These locedures were repeated

9 times until all the stimuli were gicen and all responses were receiced (Stage 4: Τ2).

Then the subject remained still for another 1 minutes of recocery (Stage 5: 1 minute

recocery) and then the logram stopped and the subject was slowly pulled out of the bore

and was stached from all the equipment.

4.4 Habituation Validation

In addition to calidating that the system worked correctly, we performed a pilot

experiment to see if the system screases anxiety by the subject. This calidated that the

system really does habituate subjects to the fMRI. Lor this experiment we repeated the

procedures in section 4.3 a second time to collect cardiocascular measures and to

compare them to those collected during the first run. We also had each subject fill out a

questionnaire (see Appendix G) that asked them to compare their first and second run in

the fMRI.
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SIGNAL PROCESSING AND ANALYSIS

5.1 Signal Processing of Electrocardiogram

The ECG signal collected from each subject was collected at a scan rate of 1000 scans

per second. This scan rate was chosen by Dr. Cook, to match the scan rate of his

levious studies and is aploliately greater than the nyquist frequency. The block in

LabVIEW that was used to write the files was the `Write to Sleadsheet' block (figure

3.10). There were five stages in total: stage one was a baseline period that lasted for 5

minutes during which the subject remained still while cardiovascular measures were

being collected, stage 2 was the simulation of a Ti-weighted anatomical scan which

lasted for 4 minutes, stage 3 was a rest period in between scans that lasted for one minute,

stage four was the simulation for a Ti-weighted functional scan that lasted for 5-10

minutes, and stage five was a recovery period which normally follows a functional scan

to see how the brain recovers to its non stimulated state that lasted for 2 minutes. Lor

efficiency, the LabVIEW logram was constructed to write the data collected after each

100 scans were read into the buffer. This caused the file that was created to have 100

columns and many rows. The first locessing step was to reorganize the data collected

into one column. This was done by rewriting the collected file to a new file , reading row

by row and placing all data in one column. This step can be seen in figure 5.6a.

Once the data were reorganized, a search was done for all R-waves in the ECG

signal. This was done using the `Threshold Peak Detector' block shown in figure 5.1.

The ECG signal was fed into the `X' input and the threshold was set by looking at the
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ECG signal. The count output displayed the number of peaks found throughout the

entire ECG signal. For each peak found that was aboce the threshold, its position in time

was recorded via the indices output. Each R-waves was validated by comparing the

difference between its index and that of the following index with the aploximate

distance between both R waves.

Figure 5.1 Threshold Peak Detector block in Lab VIEW

The indices of the occurrence of each R-wave in time were then subtracted to find

the R-R interval between all R-wave detected (see figure 5.3b). The outcome of this

calculation was then divisd by the scan rate to get the actual distance in real time. This

distance is then fed into the equation: HR 6Ο[sec] / (R ±1 -R) [mins*sec/beatsj].

Figure 5.2 Front Panel of Heart Rate calculation logram in Lab VIEW
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Figure 5.3d Block diagram of Lab VIEW heart rate calculation program. Stage 4:
Calculating heart rate from the time interval between R-waves in the ECG signal.

5.2 Processing of Finales Blood Pressure

Similarly to the ECG collection, the Finagles signal from each subject was collected at a

scan rate of 1000 scans per second, reading 100 scan each time into the buffer. The same

block in LabVIEW was used to write the data to a spreadsheet and the same loblems
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were lesent. The first locessing step was to reorganize the data collected into one

column. This was done by rewriting the collected file to a new file, reading row by row

and placing all data in one column. This step can be seen in figure 5.6a.

Once the data was reorganized, a search was done for the peaks and valleys in the

BP signal. The peaks represent the systolic BP and the valleys relesent the diastolic BP.

This was done using the Peak Detector block shown in figure 5.4. This block was used

instead of the Threshold Peak Detector block because it outputs the value of the

amplitudes in addition to their location, unlike the Threshold Peak Detector block that

only outputs the location or index. The BP signal was fed into the `X' input and the

threshold was set for a value determined by looking at the BP signal. The `# found'

output displayed the number of peaks found throughout the entire BP signal. For each

peak found that was above the threshold, its position in time was recorsd via the

location output. Each Peak or valley was validated by comparing the difference between

its location and that of the one that follows location with the normal anticipated distance

between both peaks and valley. The amplitudes that were valid were multiplied by 100 to

arrive at the systolic and diastolic BP. Both these files were stored and then graphed in

Microsoft Excel to show comparison.

Figure 5.4 Peak Detector block in LabVIEW
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5.3 Processing of Mock MRI Questionnaire Responses

To get subjectors feedback as to how comfortable the procedure was, a mock MARI

questionnaire (shown in Appendix C) was developed. Microsoft Office Excel was used

to graph the responses from the mock MRI questionnaire. Each question on the

questionnaire had answers that were weighted between -2 and 2. This made the least

comfort experienced to be a -22 and the most comfort experienced to be a 22, based on

the scaling in the mock MARI questionnaire. Each subject had to fill out the questionnaire

after the completion of each session. The responses were added together and compared

between both sessions. The total score of each session was graphed using a bar graph.

Each overall score relesented the comfort level of the subject during the experiment.

From the graph one would be able to determine if the subject was more comfortable in

one session versus the other and how much more comfortable.



CHAPTER 6

RESULTS

6.1 Results of System

According to the specifications given by the investigator, all the equipment

worked together, in synchrony as anticipated. The sounds played at the right time and for

the correct duration. The cross was lesented to the subject at all times except for when

the pain scales were being presented. The pain scales were shown on screen at the

correct times and did wait for a response. The patient response unit did scroll up and

down the pain scales smoothly. The logram did recognize when an answer was selected

and stored the selected answer. The analog to digital conversion of the ECG and

Finagles BP signals showed the absence of 60 Hz noise. Some noise was noticed in the

T2 stage during post processing that occurred because of mocement when the subject was

rating using the response unit. The ECG and BP data were stored for all stages along

with the answers selected during the Ti stage. In addition to these, the triggering of the

neuro-sensory analyzer worked and was synchronized with the sound playing, and

presentation of the scales.

6.2 Results of ECG Signal Processing

To test if the system habituated subjects, changes in cardiovascular measures were

examined. These changes helped to facilitate whether or not the subject was more

comfortable during their second session or their first. Lor this the heart rate and blood

pressure collected in both sessions were compared for each subject.
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The heart rate of subjects 1 and 2 for both sessions are shown in figure 6.1 and

6.2. From the graphs, it can be shown that in session 2 the subject's heart rate was lower

than in session 1. The average heart rate during session 1 was 57.5 and 58 respectively,

while the average heart rate in trail 2 was 56.3 and 55.8 respecticely. The average heart

rate was also calculated for both sessions and the percentage of screase between session

1 and session 2 were stermined for both subjects. For subject 1, the average heart rate

screased by 2.23% between session 1 and 2. Lor subject 2 the average heart rate

decreased by 4.10% between sessions. This shows that there was no significant change

in heart rate between the two sessions. This small change in HR can be attributed to a

number of things. One way to see if the mock fMRI unit truly habituates is to compare

the heart rate between multiple sessions.

The graph does show that session 1 lasted longer than session 2. All the stages in

the logram were restricted to a set time. The only stage that was dependent on the

subject's response was the Ti stage, when the warm stimuli were given. In this stage,

the logram waited on the subject to respond on the pain intensity and unpleasantness

scales. This means the subject took less time to complete the pain intensity and

unpleasantness scales in session 2 than they did in session 1. This finding supports the

hypothesis that multiple exposure to the environment will cause the subject to be less

anxious and complete the task at a faster pave.



Ο Λ41



68

Stressful situations can cause changes in cardiovascular measures. It was

expected that when the TI and Ti sounds were played, and the warm stimuli were

applied the HR of each subject would increase signifying a stressful situation, and

decrease during recovery stages signifying removal of stress. Successful habituation

would cause the percent change in HR to screase during the second exposure to the

stressful situations. Analysis of the heart rate changes between stages were done to

examine if the percentage of change in HR during the stages screased in the second

session for both subjects. The last minute in the 3 minute baseline stage was compared to

the average HR of the first minute in the Ti stage (comparison 1). The average HR of

the last minute in Ti stage was compared to the average HR of 1 minute Recovery

(comparison 2). The average HR of 1 minute Recovery was compared to the average HR

of first minute in Τ2 stage (comparison 3). The average of the first minute, midpoint and

last minute of the T2 stage were compared (comparison 4). The average of the last

minute of the T2 stage was compared to the average of the final 1 minute recovery

(comparison 5).

During session 1 for subject one, it is noticed from the graph in Ligure 6.3 that

when the Ti sound was played it caused an increase in the HR which continued to ascend

until the sounds stopped. When the sounds stopped the HR screased by 4.0% during the

1 minute recocery. This screase in HR continued throughout the beginning and middle

of the Τ2 stage when the warm stimuli were slivered to the subject and the Ti simulated

sounds were being played. This screase implies that the subject became more

comfortable hearing the sounds. It would be expected that the HR would have increased

ecen more than in the Ti stage, since both sound distraction and a warm stimuli were
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presented to the subject at once. Towards the end of the Τ2 stage HR increased by 9.1%,

but still did not climb to the HR observed during Ti stage. The HR then decreased by

3.1% during the 1 minute recovery stage as expected since no warm stimuli nor sounds

were presented to the subject.

In session 2, the same trend occurred between the end of the 3 minute baseline,

the Ti stage and the 1 minute recovery period. However, the average HR that were

compared, were less for each time in the stages, and the percent change between all

comparisons were less. This supports the view that subject 1 was less anxious during

session 2. One major difference observed between the two sessions, is that in session 2

instead of HR screasing at the beginning of the Τ2 stage as it did in session 1, it

increased by 3.7% for the 1st minute and then decreased as in session 1. This was the

,expected trend, but it did not occur in session 1.
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Similarly to subject 1, subject 2 experienced an increase in average HR when the

Ti sound began to play. The HR of subject 2 then screased towards the end of the Ti

stage and increased in HR during the recovery period. This implies that subject 2 became

used to hearing the sound, but became anxious as he/she remained still in the unit

awaiting the next stage. The percent change in HR during the Ti and 1 minute recovery

stages were below 5%, so they could be attributed to normal heart rate variation. During

the T2 stage it is observed that the HR decreased between the start of the stage to the

middle of the stage but then increased at the end. This same trend was noticed in subject

1 for both sessions. This implies that the subjects became more comfortable midway

through the T2 stage, but then became anxious towards the end as the sound and warm

stimuli continued. The HR then decreased by 1.35% during the recovery period.
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During session 2, subject 2 showed an increase in HR when the Ti sound was

played, however, the average HR decreased by more than 8% during this time. Similar to

subject 1, the HR continued to increase until the sound stopped and then decreased. It is

not clear why subject 2 experienced an increase in HR during the 1 min recovery stage

after the Ti sound was played in session 1 but experienced a decrease in HR of

aploximately 9.0% during session 2. When the Ti sound and the warm stimuli were

lesented the subject, he/she experienced an increase in HR of 3.3%, which continued to

ascend until the end of the stage. The change in average HR during session 2, followed

the expected trend, but cannot be explained from this analysis why it was so different

from session 1.
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In addition to HR comparison, BF comparison was done for both sessions with data

collected from the Finagles and the Dinamap. The Finagles gave continuous BP

samples every 3 seconds, monitoring any change in BP. The Dinamap was set to collect

BP twice during the 5 minute baseline stage, twice during the Ti stage, once at the end

the 1 minute baseline stage, twice during the Τ2 stage and once during the Recovery

stage.

The BP of subjects 1 and 2 for both sessions are shown in figure 6.7 and 6.8.

Lrom figure 6.7 it can be shown that there were no noticeable changes to either the

systolic blood lessure (BP) or diastolic blood lessure (BP) across the two sessions

for subject 1. The average BP during session 1 for subject 1 was 115.4/55.8 mmHg,

while the average BP in session 2 was 11 . 7.3/55.2 mmHg. It is inconclusive whether or

not the slight increase in BP in session 2 means that the subject experienced more stress

in this session than in the first. From figure 6.8, it can be shown that there was no

noticeable change to the BP, but there was greater change in BP across the two
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sessions for subject 2. The average BP during session 2 for subject 2 was 107.4/62.8

mmHg, while the average BP in session 2 was 111.5/53.2 mmHg. The decrease in BP

and BP in session 2 implies that the subject experienced less stress in this session than

in the first.

The average BP was also calculated for both sessions and the percentage . of

decrease between session 1 and session 2 were determined for both subjects. For subject

1, the average BP increased by 1.7% between session 1 and 2 and the average BP

decreased by 1.0%. For subject 2, the average BP decreased by 3.8% between session 1

and 2 and the average BP decreased by 15.3%. The decrease in the BP indicates that

the subject was more relaxed during session 2 since this average BP was closest to their

baseline BP

Similarly to the HR graphs, the BP graphs show that session 1 lasted longer than

session 2. This supports the hypothesis that multiple exposure to the environment will

cause the subject to be less anxious and complete the task at a faster pave.

Figure 6.7 Subject Ι Finagles Blood Pressure comparison for sessions 1 and 2
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Figure 6.8 Subject 1 Finapress Blood Pressure comparison for sessions 1 and 2

Similarly to HR, stage by stage analysis was done to further explore the changes

in BP for both subjects. The average BP of the last minute in the 3 minute baseline stage

was compared to the average BP of the first minute in the Ti stage. The average BP of

the last minute in TI stage was compared to the acerage BP of 1 minute recovery. The

average BP of 1 minute recovery was compared to the average BP of first minute in T2

stage. The average BP of the first minute, midpoint and last minute of the T2 stage were

compared. The average BP of the last minute of the T2 stage was compared to the

average of the final 1 minute recovery.

It was observed form the graphs shown in figure 6.9 ad 6.10 that there was little if

any change in both the average SBP and DBP for subject 1 during and between both

sessions. All average percent changes in BP and BP were below 2.5% during the
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sessions. Changes of this magnitude do not receal much about the impact of stress on the

cardiovascular system, since these changes are within normal expected variations.

According to Zeller, et al, changes of 5% or greater in  BP  and BP  accurately depict

changes in cardiovascular measures in response to stress in the form of anxiety. [ii]

For the second subject there were greater average BP changes observed during

and between both sessions. During session 1, BP increased by 3.6% when the  Τ2 stage

began, but only increased by 1.9% in session 2. Such a small increase in BP cannot

accurately be correlated to stress response, however it does show that subject 2 BP
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increased by a smaller percentage in session 2. For comparison 2, it is observed that both

the percent decrease in SBP and BP, increased between session 1 and session 2. The

BP decreased by 0.8% when the Ti sound was stopped in session 1, and decreased by

3.3% in session 2. This suggests that subject 2 became more relaxed in session 2 after

the Ti sound stopped than in the first session. It is also noticed that during session 2 the

BP did not increase as much as the first session when the T2 stage began. These °results

imply that even though subject 2 had a greater increase in BP during the start of session

1, the subject became more relaxed for the remainder of the experiment, experiencing

changes of less than 2% in SBP. Similarly to BP in comparison 2 between both

sessions, BP decreased by a greater percentage during session 2 than in session 1. In.

session 1 BP for comparison 2 decreased by 0.3%, but screased by 5% in session 2.

There was a greater increase in BP during session 2 for comparison 3, but for the

remainder of the session DBP increased and screased at lower percentages than in

session 1.
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Similar trends were noticed in HR and BP. For subject 1, when HR increased or

decreased, BP and BP sinύΙarίy followed for all comparisons in session 1, and all but

the 4 th comparison in session 2. For subject 2, when HR. increased or decreased, BP

followed for all but the 3rd comparison in Session 1 and all but the ,e comparison in

session 2. The BP followed increase and decrease in HR for all but the 3rd comρar1?,

in session 1 and all comparisons in session 2.

The Dinamap recordings were handwritten and then transferred to Microsoft

Excel. The data acquired are shown in figure 6.13 and 6.14. Data were acquired from

the Dinamap to see how closely, it correlated to the data collected from. the Finagles.

Finagles cannot be used in an fTRI because of its metallic components, so both devices

were used in the mock fMRI facility. This was done to allow comparability with

previous studies that used Finagles to measure BP response to stress in the form of pain

outside of an fTRI environment, The trend of the Dinamap BP is the same as those in

the Finagle data findings.
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Figure 6.14 Subject 2 Finagle and Dinamap BP comparison for sessions 1

6.4 Results of mock. MRI Questionnaire

In addition to cardiovascular changes, subjective changes were recorded to further

analyze whether each subject was more or less habituated to the environment. The mock

MARI questionnaire (Appendix B) was used for this evaluation. All thirteen questions,
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except for questions one and five, on the questionnaire had answers that were weighted

between -2 and 2. An index score of comfort was created by summing the response of

the eleven weighted questions. This made the least comfort experienced to be a -22 and

the most comfort experienced to be a 22, based on the scaling in the mock MARI

questionnaire. Each overall score relesented the comfort level of the subject during the

experiment. Both subjects were nαϊνe to the goal of the experiment during the first

session. The result of the mock. MRI questionnaire showed that both subjects

experienced more comfort and less anxiety during the second session (see figure 6.3).

Subject 1 experienced 53.3% more comfort during the second session. Subject 2

experienced 17.6% more comfort during the second session. Even though these results

are subjective, they do show that both subjects experienced some greater comfort in the

second session.



CHAPTER 7

CONCLUSION

The aim of the pilot experiment was to test all the decices that are a part of the mock

MRI facility and to test if the encironment habituates subjects to an MRI encironment.

Based on the results there is evidence that the system works correctly. From the

questionnaire results it is also ecident that the system does habituate subjects to the MRI

environment. The pilot experiment showed that the hypothesis of habituating subjects

does cause a significant increase in the subject's familiarity of the surrounding and

reduces anxiety.

The LabVIEW program worked correctly, in that it saced subject data to the

correct files, it measured and recorded the ECG signal from the body, it recorded the BP

signal from the Finagles, it sequentially turned on and off the LED for the administrator,

it sequentially trigger the neuron- Sensory Analyzer, it played the MARI sounds of the Ti

anatomical and Ti functional scans, and it sequentially presented the red cross, pain

intensity and unpleasantness scales to the subject.

For future experiments, it would be interesting to run subjects through the fMRI a

third time to see if ocer time, subjects become more comfortable in the MRI or if they

get more anxious after a while. To truly test habituation the isal experiment would

compare cardiovascular measures and questionnaire data between the mock MARI and the

real MARI facility at UMDNJ for two groups of subjects while observing differences in

MRI scans. Due to the noise distortion caused by the magnetic field on the ECG signal,

and metallic components of the Finalpres, some of the cardiovascular measures cannot be

80
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recorsd in the real MARI unit at UMDNJ, but the Dinamap and questionnaire data in

addition to fMRI scans could produce valuable results.
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APPENDIX C

DDS PAIN INTENSITY SCALE.VI
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APPENDIX D

DDS PAIN UNPLEASANTNESS SCALE.VI
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