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ABSTRACT

QUANTIFICATION OF LONG -RANGE POWER LAW CORRELATIONS
AMONG HEALTHY AND PATHOLOGY SUBJECTS USING DETRENDED
FLUCTUATION ANALYSIS AND MULTIFRACTAL DETRENDED
FLUCTUATION ANALYSIS
by
Hardik Raval

The healthy heartbeat is traditionally thought to be regulated according to the classical
principle of homeostasis whereby physiologic systems operate to reduce variability and
achieve an equilibrium-like state. However recent studies reveal that under normal
conditions, beat-to-beat fluctuation in heart rate display the kind of long-range
correlations typically exhibited by the dynamical system far away from equilibrium. In
contrast, heart rate time series from patients with severe congestive heart failure show a
breakdown of this long-range correlation behavior. Two different non-linear dynamic
methods namely Detrended Fluctuation Analysis (DFA) and Multifractal (MF) DFA are
used for the quantification of this correlation property in non-stationary physiological
time series and it revealed the presence of long-range power law correlation for the group
of healthy subjects while breakdown in the long-range power law correlation for the
group of subjects with cardiac heart failure.

Application of DFA analysis shows evidence for a crossover phenomenon
associated with a change in short(a1) and long(a2) range scaling exponents. For healthy
subjects, calculated value of al and a2 (mean value + S.D.) are 1.31 + 0.17 and 1.00 +

0.07 respectively. For subjects with cardiac heart failure calculated value of al and a2 is

0.71 £ 0.20 and 1.24 + 0.07 respectively i.e. only one scaling exponent is not sufficient to



characterize the entire heart-rate time series which resulted into MF-DFA approach. This
suggested that there is more than one exponent values needed to characterize the heart
rate time series.

Multifractal DFA is based on generalization of DFA and a MATLAB code is
developed to implement the MF-DFA algorithm and to identify whether the given time
series under analysis exhibits multifractality or not by generating more than one exponent
values for multifractal signal. The value of a for >0 for healthy is 1.04 + 0.02 and for
CHF is found to be 1.32 + 0.02 and the value of a for q<0 for healthy subjects is 3.01
0.26 and for CHF subjects is found to be 3.53 + 0.14 (mean value £+ S.D.) The student’s t-
test suggests that p-value is 0.00001 which is less than 0.05 thus the value of a for q <0
and ¢>0 among healthy subjects and CHF subjects are statistically different. Value of o
for g>0 is less than that for q<0. And for q =2 MF-DFA retains monofractal DFA. Thus,
MF-DFA is clearly able to discriminate among the healthy and CHF for q<0 as well for
¢>0. MF-DFA also determines which fluctuations i.e. (small or large) dominate for the
given interbeat interval time series because for q<0 the slow fluctuations dominate
whereas for g>0 large fluctuations dominate. DFA and MF-DFA were able to
discriminate 23 Healthy subjects out of 26 Healthy subjects data sets i.e. true positive
specificity is 0.89 and false negative specificity is 0.12 and 9 CHF subjects out of 11
CHF subjects data sets i.e. true positive specificity is 0.82 and false negative specificity is
0.19.

These methods may be of use in distinguishing healthy from pathologic data sets

based on the difference in the scaling properties.



QUANTIFICATION OF LONG -RANGE POWER LAW CORRELATIONS
AMONG HEALTHY AND PATHOLOGIC SUBJECTS USING DETRENDED
FLUCTUATION ANALYSIS AND MULTIFRACTAL DETRENDED
FLUCTUATION ANALYSIS

BY
HARDIK RAVAL

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfiliment of the Requirements for the Degree of
Master of Science in Biomedical Engineering

Department of Biomedical Engineering

August 2005



APPROVAL PAGE

QUANTIFICATION OF LONG -RANGE POWER LAW CORRELATIONS
AMONG HEALTHY AND PATHOLOGY SUBJECTS USING DETRENDED
FLUCTUATION ANALYSIS AND MULTIFRACTAL DETRENDED
FLUCTUATION ANALYSIS

Hardik Raval

Dr. Stanley Reisman, THesis Advisor " Date
Professor of Biomedical Engineering, NJIT

Pf. Ron'sfd Rockldnl, Committee Member "~ Date
Associate Professor of Engineering Technology, NJIT

Dr. Tara Alvarez, Commiltee Member Date
Assistant Professor of Biomedical Engineering, NJIT



BIOGRAPHICAL SKETCH

Author: Hardik M. Raval
Degree: Master of Science
Date: August 2005

Graduate and Undergraduate Education:
= Master of Science in Biomedical Engineering
New Jersey Institute of Technology, Newark, New Jersey, 2005
= Bachelor of Science in Instrumentation and Control Engineering
Dharmsinh Desai Institute of Technology, Nadiad, Gujarat India, 2003

Major: Biomedical Engineering

iv
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CHAPTER 1

INTRODUCTION

1.1 Scope of Research

This study was conducted to develop and implement programs that revealed the presence
of long-range power law correlation for a group of healthy subjects while breakdown in
the long-range power law correlation for a group of subjects with cardiac heart failure.
The programs will be utilized in future research projects as part of DFA and MF-DFA
analysis methods to test their efficacy on various pathologic conditions other than CHF
(cardiac heart failure) and determine how well the methods are able to discriminate
among healthy and pathologic subjects with various other pathologies. The programs
implemented were then tested and validated using test data files. The scaling exponent
(o) generated by the program is used to characterize the interbeat interval time series for
healthy and CHF subjects. Also all generated results fell into normal values for healthy
and CHF subjects as found in the literature.

The programs were then used to perform DFA and MF-DFA analysis on a set of
data from healthy and CHF subjects. The study was conducted on 27 healthy (men and
women, aged 28.5 to 76, mean 52.3) and 11 subjects (men and women, aged 34 to 79,
mean 56.5) with congestive heart failure. The data for the normal control group were
obtained from 24-hour Holter monitor recordings of 27 healthy subjects with ECG data
sampled at 128 Hz. The data for the CHF group were obtained from 24-hour Holter
recordings of 11 patients with recordings sampled at 250 Hz. The outcome of the study

and the results of DFA analysis on this data set were published [17] and they showed a



significant difference in the value of scaling exponent between both the groups of
subjects. The study also showed that there was no effect of activity on the DFA analysis.

The DFA analysis conducted in this study reproduced these results and showed
that data from normal interbeat interval series showed a presence of long-range power
law correlations while data from CHF subjects showed a breakdown in the long-range
power law correlations. Crossover effect was observed for DFA analysis and it showed
the presence of two different scaling exponents (slow and fast) for each group of subjects
(healthy and CHF). This suggested that a single exponent might not be enough to
characterize the interbeat interval time series. Thus more than one exponent values is
needed to characterize the interbeat interval time series which can be obtained using
multifractal DFA. Thus, MF-DFA analysis was conducted on the same data set of healthy
and CHF subjects. This resulted into more than one exponent values and the results
revealed the significant difference between healthy and pathologic subjects. The end
product of this study will assist if any research involving DFA and MF-DFA analysis
shall be done to test, how well they perform for pathologies other than CHF.

Heart rate variability (HRV) is defined as the fluctuation of the heart rate from
one beat to another. Non-linear methods related to chaos tend to deal with autonomous
systems, i.e. systems where there is no input or where the input has a very simple form. It
has been suggested that a healthy heart rhythm is chaotic and shows a fractal form that
may be broken down by a disease [8]. The parameters that have been used to measure
non-linear properties of HRV includes Phase Plane Plots, Return Maps, Poincare
Sections, Lyapunov Exponents, the fractal dimension, 1/f scaling of power spectra,

Detrended Fluctuation Analysis, Kolmogorov Entropy, Approximate Entropy, and



Multifractal analysis. These methods have detected abnormal HRV in various

cardiovascular conditions such as coronary artery disease with or without previous

myocardial infarction

1.2 Goals of the Study

This study was conducted with a goal to

1.

Determine the presence of long-range power law correlation for healthy subjects
and breakdown in the long-range power law correlation for CHF subjects using
DFA and MF-DFA analysis and to reproduce the findings of Peng et al [17]. This
was done using programs implemented in MATLAB 7.0. The program for DFA
analysis is available on www.physionet.org, and the program for MF-DFA
analysis was developed in MATLAB by the author of this thesis.

Determine how well DFA and MF-DFA analysis are able to discriminate among
healthy subjects and subjects with cardiac heart failure using statistical tools.

Test the effect of length, activity, non-stationarity, trends on DFA and the effect

of length on MF-DFA.






constancy of internal function. According to his theory, any physiological variable
including heart rate should return to its ‘normal’ steady state after it has been perturbed.
The principle of homeostasis suggests that variations of the heart rate are merely transient

responses to a fluctuating environment [17].

2.1.1 Anatomy of Heart
The main organ of cardiovascular system is the heart. It is responsible for the circulation
of blood as required by the body. It is a hollow muscular organ lying in the center of the
chest (thorax) and contains four chambers: right atrium, right ventricle, left atrium and
left ventricle. Each of the four chambers of the heart is different from the others because
of its function. Its beating action maintains the flow of blood throughout the human body.
From the heart numerous blood vessels branch out and spread to every corner of the
body. These vessels form the vasculature of the cardiovascular system.

There are three main types of blood vessels, arteries which carry oxygenated
blood from the heart to the various parts of the body, the veins that carry deoxygenated
blood from the body back to the heart, and capillaries which join arteries and veins and

are the site for gaseous and chemical exchange between various cells and blood [2].






system. The smooth operation of the peripheral nervous system is achieved by dividing it
into sympathetic and parasympathetic systems. These are opposing actions and check on
each other to provide a balance.

The nervous system is divided into a number of sub-systems. The sub-system
responsible for the heart action and the circulatory system is called the autonomic
nervous system. It regulates all the vital processes of the body, which are performed
without consciousness. The autonomic system is further divided into sympathetic and

para-sympathetic nervous system.

2.2 Heart Rate Variability
The measurement of RR interval variability is called heart rate variability (HRV).
Generally lower heart rate predicts greater mortality. Wolf [4] was the first to associate
the higher risk of post infarction mortality with reduced HRV in 1977. There are
numerous methods namely time domain, frequency domain and now non-linear methods

that are being used to quantitatively evaluate beat-to-beat cardiovascular control.

2.2.1 Electrophysiology

Excitation of the heart does not proceed directly from the central nervous system but is
initiated in the sinoatrial (SA) node, the so-called pacemaker of the heart. The SA node
generates an impulse of excitation that spreads across the left and right atrium of the heart
and thereby causes the atria to contract. After a short time, it stimulates the
atrioventricular (AV) node and thus initiating impulse in the ventricles. The impulse then
proceeds down to bundle of His and then continues through special conducting fibers

called the Purkinje Fibers on either side of the ventricle thereby causing simultaneous






2.2.2 The Concept of a Time Series

To appreciate the general clinical relevance of dynamics, consider the following common
problem. What is the best way to compare a sequence of measurements obtained from
two subjects, or from one individual or experimental procedure under different
conditions? Conventionally, clinicians and investigators rely primarily on a comparison
of means using appropriate statistical tests. However, the limitations of such traditional
analyses become apparent when evaluating the data in Figure 2.4, which shows that two
signals have the same means but different dynamics. Recording the instantaneous signal

from any system over a continuous observation period generates a time series.

Normal
1204

P P Y]

Heart Rate (bpm)

1204
NI
80

80

Heart Rate (bpm)

]
o

Heart Rate (bpm)
3

FS
o

Noma! CHF

Figure 2.4 Two heart rate time series, one from a healthy subject (top) and the other from
a patient with severe congestive heart failure (CHF) (middle) have nearly identical means
and variances (bottom), yet very different dynamics. Note the complex, erratic pattern of
the data set from the normal subject compared with the slow, periodic oscillations in
heart rate with congestive failure.
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2.2.3 Linear versus Nonlinear Systems

A well-known example of linear system can be given by Ohm’s law: V=IR where the
voltage (V) in a circuit will vary linearly with current (I), provided the resistance (R) is
held constant. Two central features of linear systems are proportionality and
superposition. Proportionality means that the output bears a straight-line relationship to
the input. Superposition refers to the fact that the behavior of linear systems composed of
multiple components can be fully understood and predicted by dissecting out these
components and figuring out their individual input-output relationships. The overall
output will simply be a summation of these constituent parts. The components of a linear

system summate; there are no surprises or anomalous behaviors.

In contrast, even simple nonlinear systems violate the principles of proportionality
and superposition. An example of a deceptively complex nonlinear equation is y = ax (1-
x), referred to as the logistic equation [13]. The nonlinearity of this equation, which
describes a parabola, arises from the quadratic (x?) term. Changes in the output as a
function of sequential time steps can be readily plotted by a feedback procedure in which
the current value of the output becomes the next value of the input, and so on. Iteration of
the simple-in-form logistic equation reveals dynamics that are extraordinarily complex;
depending on the value of the single parameter, a, the same equation can generate steady
states, regular oscillations, or highly erratic behavior. Thus, for nonlinear systems,
proportionality does not hold: small changes can have dramatic and unanticipated effects
[14]. An added complication is that nonlinear systems composed of multiple subunits
cannot be understood by analyzing these components individually. The components of a

nonlinear network interact, i.e., they are coupled.
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Nonlinear Dynamics of the Heartbeat
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Figure 2.5 Panels (a-c) are subjects with obstructive sleep apnea syndrome, panels (d-¢)
are from healthy subjects at high altitude (15,000 ft) [14].

Their nonlinear coupling generates behaviors that defy explanation using
traditional (linear) models (Figure 2.5). As a result, they may exhibit behavior that is
characteristic of nonlinear systems, such as self-sustained, periodic waves (e.g.,
ventricular tachycardia); Ventricular tachycardia (VT) is a heart rthythm disorder that
originates in the ventricles. It is characterized by a rapid heart thythm during which
patients may feel faint or dizzy, or even pass out. During VT, the heart does not pump

blood as efficiently as it does during a normal rhythm, and rapid contractions prevent it
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which are randomness and periodicity. Random behavior never repeats itself, and is
inherently unpredictable and disorganized except in a very special way e.g. the average
behavior of a collection of gas molecules can be predicted with absolute precision, but
the individual behavior of a single molecule cannot be predicted. Periodic behavior, on
the other hand, is highly predictable because it always repeats itself over some finite time
interval. A mathematical sine wave and electrocardiographic normal sinus rhythm are
typical examples. Chaos is distinct from periodicity and randomness, but has
characteristics of both [15]. Although chaotic behavior looks disorganized (like random
behavior), it is really deterministic (like periodic behavior). Chaotic behavior exhibits a
number of characteristics that distinguish it from periodic and random behavior namely
chaos is more deterministic and aperiodic e.g. If one knows the equations and the initial
conditions one can predict the system’s behavior accurately and precisely, no matter how

complex it appears. However chaotic behavior never repeats itself exactly.
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Figure 2.7 Geometrically self-similar objects.

2.3.1.1 Geometric Self-Similarity. Figure 2.7 shows geometrically self-similar objects.
In Figure 2.7, the original objects are shown on the left. Then each object is shown after
one iteration, and then after two iterations. For example, at the top of Figure 2.7, consider
a line segment, and remove the middle third of the line segment, and then repeatedly
remove the middle third of each remaining piece. Middle portion of Figure 2.7: The
iterative algorithm to generate the Koch curve is to repeatedly add to each edge an
equilateral triangle whose sides are one third the length of each edge. Bottom portion of
Figure 2.7: The iterative algorithm to generate the Sierpinski triangle is to repeatedly

remove triangles that are one quarter the area of each remaining triangle.

2.3.1.2 Statistical Self-Similarity. The pieces of biological objects are rarely exact
reduced copies of the whole object [9]. Rather than being geometrically self-similar, they
are statistically self-similar i.e. the statistical properties of the pieces are proportional to

the statistical properties of the whole. For example, the average rate at which new vessels
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Figure 2.9 Stastical self-similarities in time.

Examples of Self-Similarity

Many physiological objects and processes are statistically self-similar. Some examples
include: Systems where the branching pattern is similar at different spatial scales. These
can be found in the dendrites in neurons, the airways in the lung, the ducts in the liver,

the blood vessels in the circulatory system, and the distribution of flow through them.

2.3.1.3 Mathematical Description of Self-Similarity. Statistical self-similarity
means that a property measured on a piece of an object at high resolution is proportional
to the same property measured over the entire object at coarser resolution. Hence the
value of a property L(r) when it is measured at resolution r, is compared to the value
L(ar) when it is measured at a finer resolution ar, where a < 1. Statistical self-similarity

means that L(r) is proportional to L(ar), namely,

L(ar) =k L(r) 2.1)
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Where k is a constant of proportionality that may depend on a.

2.3.2 Scaling: The Measure Depends on the Resolution

The value measured for any property of an object depends on the characteristics of the
object. When these characteristics depend on the measurement resolution, then the value
measured depends on the measurement resolution. There is no one “true” value for a
measurement. How the value depends on the measurement resolution is called the
scaling relationship. Self-similarity specifies how the characteristics of an object depend
on the resolution and hence it determines how the value measured for a property depends

on the resolution. Thus, the self-similarity determines the scaling relationship.

2.3.2.1 Self-similarity can lead to a Power Law Scaling. The self-similarity
relationship of equation 2.1 implies that there is a scaling relationship that describes how
the measured value of a property L(r) depends on the scale r at which it is measured. The

simplest scaling relationship determined by self-similarity has the power law form

L(r) = Ar* (22)

Where A and a are constant for any particular fractal object or process.

Taking the logarithms of both sides of equation 2.2 yields

logl(r) = alog(r) + b, where b = logA. 2.3)

Thus, power law scaling is revealed as straight lines when the logarithm of the

measurement is plotted against the logarithm of the scale at which it is measured. The
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rule for self-similarity is that, there is for some measure, a constant ratio of the measure at

scale r compared to that at scale ar:

L(r)/ L(ar) =k fora<1

Suppose that for a Koch curve, there is a power law, such that

L(r) = Ar®

Then by substitution,

kI(ar) = kA(ar) *

and Equation 2.4 can be rewritten as Ar®* = kA(ar) %,

k=r%(ar)*=1/a*=a™

L(ar)/I{r)=1/k=a“

From Equation 2.6

L(ar) = A(ar)*

=Aa%"*

Because Ar ® = L(r),

L(ar) = L(r)a*®

And defining o = 1-D, where D is the fractal dimension,

24)

2.5)

(2.6)

@2.7)

2.8)

2.9)

(2.10)

2.11)
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L(ar)= L(r)a '? (2.12)

2.3.3 Fractal Dimension: A Quantitative measure of Self-Similarity and Scaling

The properties of self-similarity and scaling can be assessed in a quantitative way by
using the fractal dimension. There are many different definitions of “fractional or fractal
dimension,” so called because it has noninteger values [9]. When a geometrically self-
similar object is examined at finer resolution, additional small replicas of the whole

object are resolved.

2.3.3.1 Self-Similarity Dimension. The self-similarity dimension describes how new
pieces geometrically similar to the whole object are observed as the resolution is made
finer. If the scales is changed by a factor F, and if there are N pieces found that are

similar to the original, then the self-similarity dimension Deeit simitarity is given by

N=F Dself-similarity. (213)
By taking logarithm on both the sides,

Degei-similarity = 10gN/logF (2.14)

Figure 2.10 shows why the self-similarity dimension is called a “dimension.”
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Figure 2.10 The self-similarity dimension tells us how many new pieces similar to the
whole object are observed as the resolution is made finer [9]. Consider objects that are r
long on each side. The length of a one-dimensional line segment is equal to r. If we
reduce the scale by a factor F, then the little line segments formed are each 1/F the length
of the original. Hence, F' of such pieces are needed to occupy the length of the original
line segment, and Degit.simitarity = 1. The area of a 2-D square is equal to 1%, If we reduce the
scale by a factor F, then the little squares formed are each 1/F the area of the original.
Hence, F? of such little squares are needed to occupy the area of the original square, and
Dielt-similarity = 2. The volume of a 3-D cube is equal to r°. If we reduce the scale by a factor
F, then the little cubes formed are each 1/F> the volume of the original cube. Hence, F of

such pieces are needed to occupy the volume of the original cube, and Dyei¢.simitarity = 3-

20
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2.3.3.2 Topological Dimension. The dimension introduced above describes the
space-filling properties of the fractal set. The topological dimension describes the
connectedness between the points in the fractal set. The topological dimension is always

an integer. For curves, surfaces, or solids, the topological dimension Dy =1, 2, or 3 [9].

2.3.3.3 The Definition of a “fractal”. Mandelbrot defines a “fractal” as a set of

for which

D>Dr (2.15)

When the fractal dimension is greater then the topological dimension then many new
pieces starts appearing as they are looked at finer details. Very loosely, the topological
dimension tells about the type of object the fractal is, and the fractional dimension tells
how wiggly it is. For example, a line segment that has topological dimension Dr =1 could
be so long and wiggly that it nearly fills a two-dimensional area, and thus its fractal

dimension D ~ 2. Since 2 > 1, it is a “fractal.”

The power-law scaling is a result of self-similarity. The fractal dimension is based
on self-similarity as discussed above. Thus, the power-law scaling can be used to
determine the fractal dimension. The power-law scaling describes how a property L(r) of
the system depends on the scale r at which it is measured equation (2.5), and the fractal
dimension describes how the number of pieces of a system depends on the scale r,

namely

N(r) =Br?® (2.16)
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where B is a constant.

2.3.3.4 Relationship Between Fractal Dimension D and Scaling Exponent a. Derive
the function of dimension f(D), such that the property measured is proportional to r ™,
The experimentally determined scaling of the measured property is proportional to r*

These powers of the scale r are equated, i.e f(D) = a, and then solve for dimension D.

For example, assume the total length measured for a line is proportional to 1%
where r is the resolution used to make the measurement. Then the length of the line
segment is measured at scale r, by breaking it up into pieces each of which has length r.
Eq. 2.16 tells us that number of pieces is proportional to r r°. The total length measured
is number of pieces time the length of each piece. Thus the total length is proportional to
r® multiplied by r, i.e r'®. Since length is proportional to 1%, 1 -D=qa,and so D=1 -

for lengths and D = 2 — o for areas.

2.3.3.5 1/f* Power Spectra: A Characteristic of Self-Similarity. Masonori et  al
investigated the statistical behaviors of heartbeat period fluctuation and estimated its
power spectral density. They computed the power spectral densities of fluctuations in the
heartbeat period of 15 subjects and found that the power spectral densities are inversely
proportional to frequency [10]. This type of power spectral density is often called the “1/f
spectrum” and such fluctuations are called the “1/f fluctuations.” The 1/f fluctuations
were first found in 1925 [11] in an electric current passing in a vacuum tube, and after
this a variety of phenomena namely, fluctuation of cell membrane potential, frequency
fluctuation of alpha brain wave, highway traffic current fluctuations, and so forth are

known to be having the 1/f fluctuations.
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Examples of such 1/f® power spectra is shown in the Figure 2.11
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Figure 2.11 The power spectrum describes the amplitude of the fluctuations at different
spatial or temporal frequencies. It has an inverse power law form for fractals in space and
time. Left: Power spectrum of the fluctuations in the spatial distribution of radioisotope in
the liver measured by Cargill et al. [9]. Right: Power spectrum of the fluctuations in time
of the ventricular depolarization in an electrocardiogram as measured by Goldberger et al

91

Consider for example any time series say, 2 hours of data. If we take the Fourier
transform of this data this will give us the Fourier coefficients, each characterizing the
different frequency present in the data and square of these coefficients will give us the
power spectrum for the same data. If the plot of log of power spectrum (Si(f)) v/s log of

frequency (f) gives a straight line.
Si(f) ~ (2.17)

Thus, different frequencies are organized in such a way that all frequencies follow
the same rule. If the scale of observation is changed and the process remains the same,
there is scale invariance in the process. Scale invariance means no characteristic time

scale and hence exhibits a power-law relation as discussed in the previous sections.
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Fractals have invariance and when people find such 1/f behavior, they start
thinking for some fractal underlying this mechanism. “1/f” is a general notation to
indicate the process that doesn’t have a characteristic frequency. This B is related to the
exponent o as B = 1 -2 o. Furthermore, B can be used as an indicator of the presence and
type of correlations and thus knowing the value of a using DFA one can determine the
value of B and vice versa. (i) If B = 0, there is no correlation in the time series i.e. (“white
noise”). White noise means there is no correlation in the time series, there is no
dependence of a second point on the previous point in the give time series. (ii) If -1 < <
0, then the time series is correlated such that positive values of the time series are likely
to be close to each other, and the same is true for negative values. (iii) If 0 < p < 1, then
the series is correlated; however, the values of the time series are organized such that
positive and negative values are more likely to alternate (“anticorrelation™). The different

value of the slope B and hence a indicates the type of correlations present in the signal.
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2.4 Different Measures of Heart Rate Variability (HRV) Analysis
2.4.1 Time Domain Measures of HRV Analysis
The easiest and oldest measure would be evaluation of heart rate with respect to its
variation in time. This is called the time domain analysis of HRV. In time domain
methods the instantaneous heart rate or the inter-beat intervals are determined and
subsequently its variation over time is studied. Commonly used parameters in the time
domain include 1) Mean RR interval and 2) Mean Heart Rate. Other parameters have

been studied [5] and are divided as follows

The below mentioned techniques represent direct measures of RR interval:

a) SDNN: Standard Deviation of all RR intervals

b) rMSSD: the square root of the mean of the sum of the squares of differences
between adjacent RR intervals

Measures derived from difference in RR intervals
a) SDNN index: Mean of the standard deviation of difference of all NN intervals for
all 5-minute segments of the entire recording.

b) SDANN: Standard deviation of the average of RR intervals in all 5-min segments
of the entire recording.

These methods allow the comparison of HRV during various activities like paced
breathing, tilting, rest, sleep and so on. Generally the total variance of HRV increases

with the length of analyzed recording [7].
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2.4.2 Frequency Domain Measures of Heart Rate Variability (HRV) Analysis

Various frequency domain methods are also useful for analysis of cardiac signals. One
such method is to construct the interbeat interval (IBI) signal and power spectral
calculations. Variations in the frequency components of the interbeat interval (IBI)
signals can be determined using these domain measures. Power spectral density analysis
provides the basic information of how power distributes as a function of frequency.
Normally spectral components are derived from either 5 minute or 24 hour recordings.
The main advantage of spectral analysis of signals is that it allows the study of
frequency-specific oscillation. Results are displayed in a graph with magnitude of
variability as a function of frequency. Frequency domain measurements indicate the
autonomic nervous system. The Table 2.1 below gives a comparison between time

domain and frequency domain methods
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Table 2.1 Comparison Between Time Domain and Frequency Domain Measurement
Methods (Andrew JE Seely and Peter T Macklem Complex systems and the technology of variability
analysis, Critical Care 2004, 8: R367-R384)

Variability analysis | Description Advantages Disadvantages Output variables
Simple, easy to Sensitive to
. calculate; artifact;
Statlstlcg ! proven clinically requires SD, RMSDD
calculations of A S . ific to HRV:
Time Domain consecutive useful,. S stationarity; fails Specific to )
. gross distinction of | to discriminate SDANN
intervals . .
high distinct
and low frequency | signals
variations
Frequency Visual Lacks widespread Skewness
distribution representation of clinical (measures
(plot number of data; can fit to application; symmetry):
observations normal or arbitrary positive (right tail)
falling in log-normal number of bins versus negative
selected ranges or distribution (left) Kurtosis
bins) (measures
peakedness): flatter
top (<0) versus
peaked (>0)
Frequency domain Visual and
Frequency quantitative Requires Total power (area
spectrum representation of stationarity and under curve)
representation frequency periodicity for Specific to HRV:
(spectral contribution to validity; ULF (<0.003
analysis) waveform; useful sensitive to artifact; | Hz), VLF (0.003—
to altered 0.04 Hz), LF
evaluate by posture, sleep, (0.04-0.15 Hz), HF
relationship to activity (0.15-0.4
mechanisms; Hz)
widespread Time spectrum
HRYV evaluation analysis
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2.5 Analytic Techniques to detect Non-linear Dynamic Behavior
Non-linear methods related to chaos tend to deal with autonomous systems, i.e. systems
where there is no input or where the input has a very simple form. It has been suggested
that a healthy heart rhythm is chaotic and shows a fractal form that may be broken down
by a disease [8]. The parameters that have been used to measure non-linear properties of
HRYV includes, phase plane plots, return maps, Poincare sections, Lyapunov exponents,
the fractal dimension, 1/f scaling of power spectra, detrended fluctuation analysis,
Kolmogorov entropy, approximate entropy, and multifractal analysis. These methods
have detected abnormal HRV in various cardiovascular conditions such as coronary

artery disease with or without previous myocardial infarction.

2.5.1 Discrete Data

Many nonlinear systems (such as the logistic map) pass through a series of intermediate
stages prior to the chaotic behavior. Often, these stages are easily recognized as
oscillations between two, four, eight or more states. If a biological system is observed to
behave in this manner, then the underlying rules for the behavior might be based on a
nonlinear system. The next step in the analysis is the construction of a mathematical
model that could reproduce the behaviors noted. This is the most difficult aspect of the
problem. After developing a general theoretical model, appropriate parameters must be
selected that reproduce the behavior. The final step in the process is proving that the
proposed mathematical model accounts for most, if not all, of the behavior described in

the biological model.
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2.5.2 Continuous Data

The modeling process described above is a general framework that can be applied to
many biologic behaviors; however continuous signals provide a more difficult problem.
Often subtle changes in behaviors are not visible in the time series; sometimes the time
series appears random. In these cases, more sophisticated techniques are needed to detect

the presence of underlying structure in the behavior.

2.5.3 Phase Plane Plots

The phase plane plot is a representation of the behavior of a dynamic system in state
space (the abstract mathematical area in which a behavior occurs). It typically takes the
form of a graph of a position of the signal (its amplitude) on the x axis, versus the
velocity of the signal (its first derivative) on the y axis. Each cycle called a trajectory or

orbit, represents the behavior of the system over a period of time [15].
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2.5.4 Return Maps

The return map is similar to the phase plane plot, but the analyzed data must be discrete
(digital). Typically, the return map represents the relation between a given point in a time
series plotted on the x axis, and the next point in the time series plotted on the y axis (a
next amplitude plot). The temporal difference between the two points is called lag. The
lag acts to smooth away some noise in the system, making return maps less sensitive to

the noise compared to phase plane plots.

2.5.5 Poincare Sections

If a phase plot does not have clearly discernible pattern, this ancillary graphical technique
can help reveal one. A two-dimensional phase plot is cut by a line perpendicular to the
trajectories [Figure 2.13A], points on that line represents where each trajectory crossed
the line [Figure 2.13B]. A graph is constructed from these points, representing the
relation between adjacent trajectories [Figure 2.13C]. Sometimes this graph reveals
structure that is not apparent in the phase plot itself. This method is also sensitive to

noise.
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2.5.6 Lyapunov Exponents

As noted earlier, chaotic systems characteristically exhibit sensitive dependence on initial
conditions. In state space, sensitive dependence manifests itself graphically as adjacent
trajectories that diverge widely from their initial close positions. The Lyapunov exponent
is a quantitative measure of this rate of separation [15]. The magnitude of this exponent is
related to how chaotic system is; the larger the exponent, the more chaotic the system. A
random signal will have an exponent of zero, because over a long period of time adjacent
trajectories will converge and diverge equally. A positive Lyapunov exponent, on the
other hand, indicates sensitive dependence on initial conditions and is almost without
exception diagnostic of chaos. The major limitation in their calculation is that the
algorithms to implement them require large amounts of data (on the order of 1,000 to
10,000 cycles). As a result the computing time itself can be limiting. However, having
sensitive dependence on the initial conditions as requirement in most of the methods
described above, the following section gives an introduction to a new concept called
Detrended Fluctuation Analysis, which does takes into account the non-stationarity
present in the data anﬁ has proven one of the most useful non-linear dynamic tools in

characterizing HRV.



CHAPTER 3
DETRENDED FLUCTUATION ANALYSIS

3.1 Theory

The detrended fluctuation analysis technique is a measurement, which quantifies the
presence or absence of fractal correlation properties and was introduced by Peng and his
coworkers [17]. The healthy heartbeat is traditionally thought to be regulated according
to the classical principle of homeostasis whereby physiologic systems operate to reduce
variability and achieve an equilibrium-like state. However recent studies reveal that under
normal conditions, beat-to-beat fluctuations in heart rate display the kind of long-range
correlations typically exhibited by dynamical systems far from equilibrium [17].

If the RR interval time series is scale invariant, it exhibits a power-law
relationship. Consider for example a time series; say 2 hours of data around 8000 points,
within this boundary, if the time series exhibits a power-law it means that the series has
long-range correlation and long-range refers to about 8000 points as quoted by Peng et
al., which is the minimum number of data points needed for DFA analysis. The long-
range correlations serve as an organizing principle for highly complex, nonlinear
processes that generate fluctuations on a wide range of time scales [29]. Long-range
power-law correlation means a large interval is more likely to be followed by a large
interval and vice versa. A scaling exponent called a quantifies this long-range correlation
in the time series. The value of o was determined by implementing DFA on two long
interbeat interval time series of 24 hours which is available on www.physionet.org, and it

revealed that value of a.varies between 0 — 1.5 [17]. For 0.5 < a. < 1, it refers to

34
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long-range power-law correlation and for 0< a<0.5 refers to short-range correlation i.e. a

large interval is more likely to be followed by a small interval and vice versa.

e

Figure 3.1 Plot of log F(n) v/s. log n for two very long interbeat interval time series (~24
hours). The circles are from a healthy subject and triangles are from a subject with
congestive heart failure. Arrows indicate “crossover” phenomenon [17].

Figure (3.1) reveals the presence of two different o exponents: al for short range
correlation and o2 for long range correlation for healthy subjects and in contrast, the heart
rate time series from patients with severe congestive heart failure reveals the breakdown
of this long - range correlation behavior which is characterized by the value of al and a2

and they are different from the one for healthy subjects. DFA thereby helps to determine

the correlation in the time series and also indicates how the standard deviation of the time
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series grows with the time scale i.e. how far the value deviates from the normal value
which according to Peng et al. is a. = 1 £ 0.11 for healthy subjects and a. = 1.24 + 0.22
for pathologic subjects.

Conventional methods like time domain measures and frequency domain requires
that the data needed for analysis have to be stationary and DFA was introduced to address
this issue. The advantage of DFA over conventional methods is that, it permits the
detection of long-range correlations embedded in nonstationary time series and avoids
spurious detection of apparent long-range correlations that are artifacts of nonstationarity
behavior [17, 18]. Variations that arise because of extrinsic stimuli are presumed to cause
a local effect, whereas variations due to the intrinsic dynamics of the system are
presumed to exhibit long-range correlation. Therefore, any invariant scaling
characteristics in the heart rate fluctuations obtained by these means can mostly be
attributed to the intrinsic mechanism of neuroautonomic control [19].

The a exponent of the DFA calculation involves the subtraction of local trends
(more likely related to the external stimuli) in order to address the correlations that are
caused by nonstationarity. The DFA has also been applied to detect long-range
correlations in other time series like heterogeneous DNA sequences [18, 20] and the

stride interval fluctuations obtained from unconstrained human gait dynamics [21].
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3.2 Algorithm
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Figure 3.2 is used an example to illustrate the DFA algorithm [17].

Y

2)

The analysis is performed on a time series, for example, the interval between
consecutive heart beats, with the total number of beats equal to N. First the
interbeat interval time series of total length N is integrated y(k) = X [B(i) — Bave],
where B(i) is the ith beat interval and Bave is the average interbeat interval. This
new series of values represent an evaluation of trends; for example, if the
difference between individual RR intervals and the éverage RR intervals remains
positive i.e. the interval between heartbeats is longer than the average interbeat
interval, then the heart beat is slower than the mean, and the integrated series will
increase. This trend series of data displays fractal, or scaling behavior, and the
following calculation is further done to quantify this behavior.

The integrated time series is divided into boxes of equal length n as shown in

[Figure 3.2(b)]
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3) In each box of length n, a least-squares line is fit to the data representing the trend
in that box [Figure 3.2(b)]. The y coordinate of each straight line segments is
represented by y,(k).

4) Next the integrated time series y(k) is detrended by subtracting the local trend
ya(k) in each box.

5) The root-mean square fluctuation of this integrated and detrended time series is

calculated by

F(n)= ﬁé[y(k)—y,.(k)]z

3.1
This computation is repeated over all box sizes to provide a relationship between
F(n), the average fluctuation function as a function of box size, and the box size n.
Typically F(n) will increase with box size n [17]. Finally it is possible to graph the
relationship between F(n) and n. Scaling or fractal correlations are present if the data is
linear on a double log graph of F(n) v/s n. The slope of the graph has been termed as a, a

scaling exponent, defined as F(n) ~n°.

3.3 Interpretation
Consider for example a time series in which there is no dependence of the second point
on the first point, which can be achieved either by shuffling the data points, so called
surrogate data or by generating random numbers. Surrogate data refers to artificial data
with known correlation values and is generated manually with an aim to test the model
that we would like to implement i.e. we would know before hand what we might be

expecting the method to generate, in this case DFA. Therefore, if the results generated
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returns the same value that we want it to generate we can say that the method works well.
Then we can implement the method on the original heart rate time series and compare the
results of that with the one generated running the surrogate data set and thereby validate
the use of that particular method for future use by other people.

For this type of uncorrelated data, the integrated value, y(k), corresponds to white
noise, and therefore a = 0.5. The value of a greater than 0.5 and less than or equal to 1
indicates long-range power law correlations such that a large interbeat interval (compared
to the mean value) is more likely to be followed by a large interval and vice versa [17]. In
contrast 0<a<0.5 exhibits a different kind of power-law correlation such that a large
interval is more likely to be followed by a small interval and vice versa, so called anti-
correlations. The value of a=1 follows 1/f noise [16] and a=1.5 indicates brown noise,
which is integration of white noise [17)]. o exponent can also be viewed as an indicator
that describes the “roughness” of the time series: the larger the value of a, the smoother is
the time series, reflecting a more periodic behavior commonly seen in pathologic
condition.

There are many ways to characterize different noise sources one is to consider the
spectral density, the mean square fluctuation at any particular frequency and how that
varies with frequency. This would generate a noise whose spectral density varies as
powers of inverse frequency, more precisely, the power spectra P(f) is proportional to 1/
£*** for beta >= 0. When beta is 0 the noise is referred to as white noise, when it is -2, it is
referred to as Brownian noise, and when it is -1, it normally referred to simply as 1/f

noise which occurs very often in processes found in nature and since p = 1-2 a, the value
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of o can be determined for each value of B. Thus =0, i.e. a=0.5 refers to white noise.

Figure (3.3) and Figure (3.4) shows the white noise and Brownian noise respectively.

White noise, beta =0

Figure 3.3 White noise [30].

Brownian noise, beta = - 2

Figure 3.4 Brownian noise [30].
For Brownian noise the change, or increment, from one moment to the next is
random and normally distributed. Thus, Brownian noise is an integration of white noise.
Figure 3.5 shows sample of Brownian noise, its power spectrum, and plots of

power and amplitude against frequency.
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long-term recordings [25]. Although this exponent may serve as a useful indicator for
selected diagnostic purposes, a major drawback is that the data requirements are greater
than with other techniques and have been suggested to include at least 2 hours of data i.e.
8000 data points [17].

For practical purposes, clinical investigators are usually interested in the
possibility of using substantially shorter time series. In this regard, Peng et al. noted that
for short time scales, there was an apparent crossover exhibited for the scaling behavior
of both data sets i.e. for healthy and pathology subjects as revealed in Figure (3.1). For
the healthy subject, the a.exponent estimated from very small n (<10 beats) is larger than
calculated from large n (>10 beats). This is probably due to the fact that on very short
time scales, the physiologic interbeat interval fluctuation is dominated by the relatively
smooth heartbeat oscillation associated with respiration, thus giving rise to a larger a.
value. For longer scales, the interbeat fluctuation reflects the intrinsic dynamics of the
system, approaching the standard 1/f behavior as previously noted. In contrast, the
pathologic data set shows a very different crossover pattern Figure (3.1). This apparent
crossover pattern motivated Peng et al. [17] to extract two different parameters from each
data set over two different time scales: one short, and the other long and for each data set,
al was calculated by making a least square fit of log F(n) v/s log (n) for 4<n<16 and
similarly an exponent a2 was calculated from 16 <n<64.

However appealing in order to simplify clinical comparison, the calculation of
two scaling exponents [al for small (4<n<16) and o2 for large (16<n<64)] represents a
somewhat arbitrary manipulation. Here a1 indicates short-range correlation i.e. n<16 and

a2 indicates long-range correlation i.e. n>16. The value of al is greater than a2, because
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on very short time scales (few beats to 10 beats), a physiological interbeat interval
fluctuation function is dominated by relatively smooth heart beat oscillations associated
with respiration, thus giving rise to a larger o value [17].

The assumption that the same scaling pattern is present throughout the signal
remains unclear, and therefore techniques without this assumption are being developed

and are referred to as multifractal DFA.



3.5 Multifractal Detrended Fluctuation Analysis

3.5.1 Introduction

Consider a ‘population’ consisting of ‘members’ distributed over a volume of linear size
L. The population could, in fact, be the human population distributed over the surface of
the earth. The population could also be considered to be meterological observation posts,
which are unevenly distributed over the globe. Many variables fluctuate widely in space.
Gold, for instance, is found in high concentration at many places, and in very low
concentrations almost everywhere. The point is that this description holds whatever the
linear scale is — to be global, on the scale of meters, or on the microscopic scale.
Multifractal measures are related to the study of a distribution of physical or other
quantities on a geometric support. The support may be an ordinary plane, the surface of a
sphere or a volume, or it could itself be a fractal.

The concept underlying the recent development of what are now called
multifractals were originally introduced by Mandelbrot in the discussion of turbulence
and expanded by Mandelbrot to many other contexts. The idea that a fractal measure may
be represented in terms of intertwined fractal subsets having different scaling exponents

opens a new realm for the applications of fractal geometry to physical systems [26].
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3.5.2 Theory

Monofractal signals are homogeneous in the sense that they have the same scaling
properties, characterized locally by a single exponent o, throughout the entire signal.
Therefore, monofractal signals can be indexed by a single global exponent which
suggests that they are stationary from the viewpoint of their local scaling properties.
Many records do not exhibit a simple monofractal behavior, which can be accounted for
by a single exponent [26]. In some cases, there exist crossovers separating regimes with
different scaling exponents. In other cases, the scaling behavior is more complicated, and
different scaling exponents are required for different parts of the series. This occurs, e.g.,
when the scaling behavior in the first half of the series differs from the scaling behavior
in the second half.

Multifractality occurs due to different long-range (time-) correlations of the small
and large fluctuations [26]. Multifractal signals can be decomposed into many subsets—
possibly infinitely many—characterized by different a exponents, which quantify the
local behavior and thus relate to the local scaling of the time series. Thus multifractal
signals require many exponents to fully characterize their scaling properties, and are
intrinsically more complex, and inhomogeneous, than monofractals [32]. The statistical
properties of the different subsets characterized by these different exponents a can be
quantified by the function Fq(s), where Fy(s) is the fluctuation function of the subset of
the time series characterized by the local exponents a. Thus, the multifractal approach for
signals has the potential to describe a wide class of signals that are more complex then

those characterized by a single fractal dimension such as classical 1/fnoise.
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3.5.3 Algorithm
The generalized multifractal DFA method consists of following 5 steps
Determine the profile

i

Y(@) =X [xk-<x>] i=1,....,N 3.2)

k=1
Subtraction of the mean <x> is not compulsory, because it would be later eliminated by
detrending in the third step
Divide the profile Y(i) into Ns = int(N/s) non-overlapping segments of equal length s.
Since the length N of the series is often not a multiple of the considered time scale s, a
short part at the end of the profile may remain. In order to disregard this part of the series,
the same procedure is repeated starting from the opposite end. Thereby, 2Ns segments are
obtained together.
Calculate the local trend for each of the 2Ns segments by a least-square fit of the series.

Then determine the variance

S
Fi(v,8) = T {Y(v-1)s + i] - y(D)}’ (3.3)
i=1
for each segment v, v=123.......... , Ns and
S
F(v,8) = X {Y[N - (v-Ny)s + ] - y(i)}’ (3.4)
i=1
Forv=Ns+1, ............. 2Ns. Here y(i) is the fitting polynomial in segment v.

Linear, quadratic, cubic, or higher order polynomials can be used in the fitting procedure.
Since the detrending of the time series is done by the subtraction of the polynomial fits

from the profile, different order DFA differ in their capability of eliminating trends in the
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series. In MF-DFA m [m™ order DFA] trends of order m in the profile are eliminated.
Thus a comparison of results for different orders of DFA allows one to estimate the type
of the polynomial trend in the time series.

Average over all segments to obtain the qth order fluctuation function

2*Ns
Fy(s) = {1/2*NZ [Fi(v, 9)]%2 } 10 (3.5)
v=1

where in general the index variable q can take any real value. For q =2 the standard DFA
procedure is retrieved. Our interest is to see how the generalized q dependent function
Fq(s) depends on the time scale s for different values of q.

Determine the scaling behavior of the fluctuation functions by analyzing log-log plots
Fq(s) versus s for each value of q. If the series xi are long-range power-law correlated,

Fq(s) increases, for large value of s, as a power law

Fy(s) ~s"@ (3.6)

3.5.4 Interpretation

For a monofractal time series with compact support, h(q) (slow) is independent of q,
since the scaling behavior of the variance F*(v,s) is identical for all segments v, and the
averaging procedure in equation (3.5) will give just this identical scaling behavior for all
values of q [26]. A function has compact support if it is zero outside of a compact set. Let
S be a subset of a metric space. Then the set S is compact if, from any sequence of
elements X1, X2 , ...of S, a subsequence can always be extracted which tends to some

limit element X of S. Compact sets are closed and bounded, and these conditions
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characterize them in finite-dimensional space. A function with compact support is only
interesting in a bounded domain.

Only if small and large fluctuations scale differently there might be a dependence
of h(q) on q. i.e. It would be possible to distinguish whether the given series is
monofractal or multifractal because the value of h(q) remains the same despite any
change in the value of q. However, if we get different value of h(q) for varying q the
given series is multifractal.

For the positive values of q, segments with larger value of F3(v, s) will dominate
the average value of Fy(s) and thus h(q) describes the scaling behavior of the segments
with large fluctuations. On the contrary, for the negative values of q, the segments v with
small variance F3(v, s) will dominate the average Fq(s).

For the maximum scale s=N the fluctuation function is independent of q, since the
sum in equation (3.5) runs over two identical segments. For small segments s<<N, the
sum will run over several segments, and the average value Fy(s) will be dominated by
F2(v, s) from the segments with small or large fluctuation if q<0 or ¢>0.

Hence, if we follow equation (3.6), the slope h(q) for log plot of Fq(s) v/s log plot
of s for q<0 must be greater than slope h(q) for ¢>0. Usually, the large fluctuations are
characterized by a smaller scaling exponent h(q) for multifractal series than the small

fluctuations [26].
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3.5.5 Advantages and Disadvantages

The main advantage of multifractal DFA is, it makes possible to distinguish whether the
given time series exhibits multifractality or not by generating different scaling exponents
for different values of power q where q varies from -20 to 20 and thereby avoids
assuming that the scaling characteristic of the entire time series remains the same as is the
case with DFA.

It thereby detects the long-range correlation in the given data and henceforth is
able to distinguish between the healthy and pathologic subjects, thus, it has the benefit of
both DFA and itself.

A major drawback is the data requirements are greater than with other techniques
and needs 24 hours of data because the result becomes statistically inconsistent for short
data sets [26]. Thus, 24 hours long RR interval time series is needed for MF-DFA
Analysis. Also MF-DFA only generates positive exponents which could be a possible
drawback because for g=2, MF-DFA retains conventional DFA i.e MF-DFA generates
the same exponent value as does DFA.

DFA results show that for 0< a < 0.5 the given signal is anticorrelated, which
means that the method is not able to generate the exponent value beyond 0, which might
mean greater anticorrelation. Thus, both have a common drawback of only generating
positive value of the scaling exponent. Also, F(s) becomes inaccurate for strongly

anticorrelated signal i.e. h(q) is close to zero [26].



CHAPTER 4

DATA ACQUISTION AND DATA ANALYSIS

4.1 Data Acquisition

As mentioned in Section 1.2, the main goal behind this research is to i) Determine the
presence of long-range power law correlation for healthy subjects and breakdown in the
long-range power law correlation for CHF subjects using DFA and MF-DFA analysis and
to reproduce the findings of Peng et al. (ii) Determine how well DFA and MF-DFA
analysis are able to discriminate among healthy subjects and subjects with cardiac heart
failure using statistical tools. (iii) Test the effect of length, activity, non-stationarity,
trends on DFA and the effect of length on MF-DFA. The data used in the experiments
were acquired from http://www.physionet.org/physiobank/database/nsr2db/.

This database includes beat annotation files for 26 long-term ECG recordings of
subjects in normal sinus rhythm (26 men and women, aged 28.5 to 76, mean 52.3) and 11
long-term ECG recordings of subjects (11 men and women, aged 34 to 79, mean 56.5)
with congestive heart failure. The data for the normal control group were obtained from
24-hour Holter monitor recordings of 26 healthy subjects with ECG data sampled at 128
Hz. The data for the CHF group were obtained from 24-hour Holter recordings of 11

patients with recordings sampled at 250 Hz.

4.2 Data Aberrancies and Data Correction

The data used in this experiment, contained some entries that were too high or too low to

be considered for this data set. Such entries were removed using “deglitching” available
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4.3.1 Crossover Phenomenon

Figure 4.1 shows the plot of LogF(n) v/s Log(n) for two interbeat interval time series for
healthy subjects and subjects with cardiac heart failure. Analyzing the figure 4.1, it is
noted that, there is an apparent crossover exhibited for the scaling behavior of both data
sets indicated by slowl and fastl for healthy, and slow2 and fast2 for CHF. For the
healthy subjects, & exponent estimated from very small n (n<11 beats) is larger than that
calculated from n (>11 beats) and this refers to crossover phenomenon. This is probably
due to the fact that on very short time scales (a few beats to ten beats), the physiologic
interbeat fluctuation is dominated by relatively smooth heart beat oscillation associated
with respiration thus, giving rise to a larger o value. For longer scales, the interbeat
fluctuation, reflecting the intrinsic dynamics of a complex system, approaches that of 1/f
behavior as previously noted. In contrast, pathologic data set shows a very different
crossover pattern (Figure 4.1). For very short time scales, the fluctuation is quite random
(close to white noise, a ~0.5). As time scale becomes larger, the fluctuation becomes
smoother, asymptotically approaching Brownian noise, a~1.5).

Figure 4.1 shows the crossover effect resulting in two different exponents namely,
slow and fast, each for healthy and subjects with cardiac heart failure. Therefore, for each
data set an exponent a1 is calculated by making a least square fit of logF(n) v/s log(n) for
4<n<16. Similarly, an exponent a2 is obtained from 16<n<64. The two exponent’s al
and a2 were calculated for 4k, 8k, 10k, 12k, 16k, 18k, 20k, 22k, 28k, 30k, 40k, 60k, 80k,
and 100k data points. For healthy subjects, calculated value of al and 02 (mean value
S.D.)is 1.31 £0.17 and 1.003 + 0.07 respectively. For subjects with cardiac heart failure,

calculated value of al and 02 is 0.71 + 0.20 and 1.24 + 0.07, respectively.
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Table 4.1 Comparison between results generated by Peng et al. and results generated
using DFA analysis for Healthy and CHF subjects.

al(Pengetal) | a2(Pengetal) | al(generated) a2(generated)

Healthy 1.201 £0.178 | 0.998 £0.124 1.31£0.17 1.003 £0.07

CHF 0.803 £ 0.259 1.12+0.216 0.71 £0.20 1.24 £ 0.07
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Table 4.2 and Table 4.3 listed below shows the effect of length on DFA for healthy and
CHF subjects. The value of slow exponent for 4k, 8k, 10k, 12k, 16k, 18k, 20k, 22k, 28k,
30k, 40k, 60k and 100k among healthy subjects is 1.04 £ 0.02 and the value of slow
exponent among CHF subjects is 1.32 + 0.02 (mean value + S.D.). Thus, 4000 data points
are sufficient for DFA analysis.

Table 4.2 Effect of data length on DFA for healthy subjects

3:4000 3:8000 3:10000 3:12000
slow fast slow Fast slow fast slow fast

nsr001 | 1.1083 1.5094 1.0732 1.5551 1.0304 1.5254 1.055 1.518
nsr002 | 1.0244 1.3214 1.0469 1.3433 1.0221 1.3728 1.0264 | 1.3795
nsr003 | 1.1279 1.2817 | 0.9854 1.3331 1.0254 1.3452 1.0148 | 1.3354
nsrO04 | 1.0213 1.3764 1.0198 1.3678 1.0089 1.3622 1.0402 | 1.3813
nsr005 | 1.0389 1.4385 [ 0.9913 1.3922 | 0.9442 14354 | 0.9484 | 1.4168
nsr006 | 1.1373 1.4224 1.0964 1.4208 1.0737 1.4261 1.1017 | 1.4062
nsr007 | 1.0406 1.2402 | 0.9999 1.2631 0.997 1.2557 | 0.9985 | 1.2425
nsrO008 0.882 1.2669 1.0024 1.2428 | 0.9851 1.3612 1.011 1.1925
nsr009 | 1.0759 1.1048 1.0101 1.1645 0.924 1.2728 | 0.9312 | 1.2753
nsr010 | 1.0282 1.3091 0.9699 1.3219 | 0.9845 1.3426 | 0.9784 | 1.3491
nsrO11 | 0.9365 | 0.9885 | 0.9326 1.1226 | 0.9515 1.1149 | 0.9613 | 1.1071
nsr012 | 1.2146 1.3691 1.0661 1.4029 1.0455 1.3769 | 0.9624 | 1.3667
nsr013 | 0.8963 1.1836 0.837 1.1521 0.8311 1.1518 | 0.8409 | 1.1848
nsr014 | 1.1976 1.3239 1.1276 1.3676 1.132 1.4164 1.1477 | 1.3942
nsr015 | 0.9219 1.0699 0.945 1.223 0.9212 1.2445 | 0.9516 | 1.2169
nsr016 | 0.9845 1.1205 1.0284 0.994 1.0576 1.0063 1.0504 | 1.0262
nsr017 | 1.0067 1.516 0.9981 1.4887 1.0022 1.4659 1.0123 | 1.4381
nsr018 | 0.9476 1.0951 0.9744 1.1519 | 0.9863 1.1352 1.0358 | 1.1613
nsr019 | 1.0929 1.4371 1.1282 1.3822 1.188 1.4305 1.1997 | 1.3805
nsr020 | 1.1736 | 0.6183 1.0748 0.7573 1.0494 | 0.7952 1.064 0.8062
nsr021 | 0.9887 1.502 1.032 1.4259 1.0597 1.4417 1.0544 1.451
nsr022 | 0.8809 1.4719 | 0.9372 1.4882 | 0.9022 1.6217 | 0.9138 | 1.5084
nsr023 | 0.7812 1.3644 | 0.8741 1.3729 | 0.8722 1.4076 | 0.9225 1.364
nsr024 | 1.0671 1.5338 1.1073 1.4894 1.0541 1.5669 1.0449 | 1.5289
nsr025 | 1.0303 1.3292 | 0.9717 1.3181 0.9766 1.3142 | 0.9782 1.325
nsr026 | 0.8529 1.4961 0.8636 1.4873 | 0.8549 1.4485 | 0.8581 1.4232
AVER

AGE 1.0176 1.2957 1.0035 1.3087 | 0.9953 1.3283 1.0039 | 1.3145




Table 4.2 Effect of data length on DFA for healthy subjects (continued)

3: 3:

3:16000 3:18000 20000 22000

slow fast slow Fast Slow fast Slow Fast
1.0466 | 1.4966 1.0486 | 1.4911 | 1.0519 | 1.4878 | 1.0508 | 1.4851
1.0218 | 1.3718 1.0154 | 1.3780 | 1.0189 | 1.3701 | 1.0053 | 1.3756
1.0220 | 1.2672 1.0823 | 1.2546 | 1.0272 | 1.2345| 1.0287 | 1.2510
1.0357 | 1.4059 1.0405 | 1.4254 | 1.0463 | 1.4046 | 1.0524 | 1.4035
0.9685 | 1.3821 0.9492 | 1.3877 | 0.9667 | 1.3833 | 0.9710 ( 1.3747
1.0361 | 1.4711 1.0025 | 1.4721 | 1.0057 | 1.4870 | 1.0017 | 1.4809
0.9845 | 1.2209 0.9987 | 1.1748 | 1.0014 | 1.1492 | 1.0034 [ 1.1242
0.9700 | 1.1120 0.9331 ] 1.0843 | 0.9625 | 1.0822 | 0.9925 [ 1.0331
0.9924 | 1.1593 1.0117 | 1.1735| 1.0143 | 1.1749 | 1.0192 [ 1.1667
0.9934 | 1.3508 0.9852 [ 1.3396 0.993 | 1.3372 | 0.9963 | 1.3098
0.9855 | 1.1922 0.9975 | 1.2463 | 0.9974 | 1.2726 | 1.0082 [ 1.3104
0.9969 | 1.3798 0.9917 | 1.4018 | 0.9829 | 1.4225 | 0.9835 | 1.4175
0.8452 | 1.1976 0.8388 | 1.1912 | 0.8439 | 1.1763 | 0.8495 | 1.1542
1.1218 | 1.4529 1.1261 | 1.4567 | 1.0959 | 1.4628 | 1.1049 | 1.4641
0.9802 | 1.2044 0.9837 | 1.2094 | 0.9984 | 1.2339 | 1.0052 | 1.2442
1.1062 | 1.0145 1.1137 | 1.0173 | 1.1436 | 0.9906 | 1.1586 | 0.9609
0.9758 | 1.4907 0.9356 [ 1.5053 | 0.9351 | 1.5038 | 0.9204 | 1.5033
1.0720 | 1.1519 1.0375 | 1.1424 | 1.0551 | 1.1667 | 1.0568 | 1.1604
1.1736 | 1.3978 1.1625 | 1.3450 | 1.1504 | 1.3100 | 1.1516 { 1.3133
1.0860 | 0.7793 1.0678 | 0.7154 | 1.0522 | 0.7190 [ 1.0860 | 0.7341
1.0138 | 1.4525 1.0073 | 1.4489 | 1.0010 | 1.4499 | 1.0193 | 1.4491
0.8817 | 1.5214 0.8925 | 1.5243 | 0.8893 | 1.5294 | 0.8944 [ 1.5260
0.9222 | 1.4234 0.9270 | 1.4445| 0.9448 | 1.4165 | 0.9450 | 1.3980
1.0312 | 1.5436 1.0096 | 1.5409 [ 1.0086 | 1.5401 | 1.0197 | 1.5365
0.9592 | 1.3502 0.9640 | 1.3423 | 0.9757 | 1.3603 | 0.9766 | 1.3525
0.8601 | 1.4161 0.8776 | 1.4106 | 0.8745 | 1.4270 0.889 | 1.4229

AVERAGE
1.0031 | 1.3156 0.9980 | 1.3124 | 1.0014 | 1.3112 | 1.0073 | 1.3058
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Table 4.2 Effect of data length on DFA for healthy subjects (continued)

3:28000 3:30000 3:40000 3:60000
slow fast slow Fast slow Fast slow fast
1.0252 1.493 | 1.0355 1.5 1.0212] 1.4125| 1.0203 | 1.4656
0.9931 1.3578 | 0.9898 | 1.3391 0.99 | 1.3201 0.992 | 1.3121
1.0826 | 1.2403 | 1.0804 | 1.2611 1.0418 | 1.3075| 1.0616 | 1.3331
1.0536 | 1.3643 | 1.0561 1.3226 0.966 | 1.3732 | 0.9569 1.323
0.9688 | 1.3592 0.956 | 1.3726 0.966| 1.3732| 0.9735| 1.3616
1.0055| 1.4614 | 1.0083| 1.4882| 0.9257 | 1.4435]| 0.9406 | 1.4621
1.0094 1129 1.0024 | 1.1305| 0.9867 | 1.1523 | 1.0661 0.9939
0.9514 | 1.0116| 0.9619| 1.0225| 0.9696 | 0.9086 | 1.0006 | 0.8529
1.0648 | 1.1669| 1.0624 | 1.1823 | 1.0691 1.2098 | 1.0862 | 1.2018
1.007 | 1.3213| 09967 | 1.3294 | 0.9455| 1.3699 | 0.9379 | 1.3663
09742 | 1.3692 | 1.0162| 1.3687 | 0.9915 1.364 | 1.0323 1.402
0.9845 | 1.4177 | 0.9742 | 1.4195 098 | 1.4235| 0.9866 | 1.3161
0.8629 | 1.2089 | 0.8683 | 1.1922 0.805 | 1.2771 0.8844 | 1.2483
1.088 1449 1.1045| 14674 1.1288 | 1.4562 1.114 | 1.4631
1.0112 | 1.2562 | 1.0146| 1.2489 | 1.0287 | 1.2209] 1.0171 1.1548
1.1524 0989 | 1.1254 | 0.9975| 1.1281 1.0363 | 1.0767 | 0.9838
0.9454 | 1.4543 | 0.9852 | 1.4683 ] 0.9386 | 1.4597 0.909 | 1.3221
1.0469 | 1.1388| 1.0519] 1.1295| 1.0911 1.1222 | 1.0944 { 1.1425
1.1433 | 1.3431 11417 | 1.34351 11197 | 1.3402| 1.0108 | 1.2739
11082 | 0.7787 | 1.1049| 0.7881 11162 | 0.8089 | 1.1435| 0.8594
0.9929 | 1.4454 | 0.9959| 14472 0.8514 | 15177 | 0.9798 | 1.4292
0.8773 | 15238 | 0.8756 | 1.5231 0.8514 | 15177 | 0.8677 | 1.5017
0.9645 | 1.3904 | 0.9723 | 1.3922 | 0.9856 | 1.3961 0.969 | 1.4251
1.0352 | 1.5331 10346 | 15337 | 1.0663| 1.5172| 1.0794 | 1.5506
0.956 | 1.3587 | 0.9607 | 1.3515| 0.9668 | 1.3453 ] 1.0029 | 1.3341
0.8888 | 1.4171 0.8858 | 1.4204 | 0.8973 | 1.3859 | 0.9005] 1.3923
AVERAGE
1.0074 | 1.3060 1.010 | 1.3092 | 0.9933| 1.3099| 1.0039 | 1.2873
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Table 4.2 Effect of data length on DFA for healthy subjects (continued)

3:80000 3:100000

slow Fast Slow fast
1.0312 | 1.4342 1.0123 | 1.3912
0.9982 | 1.2998 1.0669 [ 1.2660
1.0433 | 1.2889 1.0669 | 1.2660
0.9566 | 1.3221 1.0206 | 1.3243
0.9786 | 1.3015 0.9147 | 1.2568
0.9434 | 1.4424 0.9800 | 1.4602
1.0561 | 0.9912 1.0845 | 1.0191
1.0002 { 0.8512 1.0093 | 0.8599
1.0982 | 1.1989 1.1253 | 1.3039
0.9456 | 1.3452 1.0016 | 1.3641
1.0692 | 1.4010 1.0497 | 1.4030
1.0091 1.3582 0.9994 | 1.3744
0.9012 | 1.2662 0.886 | 1.2764
1.1271 1.4540 1.1281 1.4503
0.9862 | 1.1460 1.0059 | 1.0059
1.0276 | 0.8455 1.0426 | 0.9230
0.8937 | 1.3452 0.8682 [ 1.3763
1.0664 | 1.1445 1.0680 [ 1.1095
1.0119 | 1.2880 1.0510 | 1.3026
1.1845 | 0.9461 1.1946 | 0.9708
0.9825 | 1.4216 1.0352 [ 1.3700
0.9600 | 1.4869 0.9833 | 1.4890
0.9753 | 1.4262 1.0036 [ 1.3853
1.0884 | 1.4261 1.1075 | 1.3470
1.0087 | 1.2814 1.0285 | 1.2743
09126 | 1.3723 0.9308 | 1.3398

AVERAGE
1.0094 | 1.2724 1.0255 | 1.2657
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Table 4.3 Effect of Data Length on DFA for CHF subjects

58

3:4000 3:8000 3:10000 3:12000
slow fast slow Fast Slow fast slow fast
Chf201 1.1389 0.696 | 1.1882: 0.7743 | 1.1342 | 0.7206 1.1511 | 0.7683
Chf202 1.4038 | 0.5686 | 1.2843| 0.4805| 1.3666 { 0.5151 1.4585 | 0.5637
Chf203 1.2525| 0.6764 | 1.1989 | 0.8355| 1.2858 | 0.8843 1.4099 | 0.9129
Chf204 1.1831( 0.3915| 1.0983 | 0.5306 | 1.2866 [ 0.9536 1.2233 [ 0.7158
Chf205 1.2043 | 0.6327 | 1.3066 0.586 1.224 | 0.5803 1.2129 | 0.6577
Chf206 1.1817  0.9109 | 1.2131 0.8802 1.174 | 0.9012 1.1854 | 0.8938
Chf207 1.2745 | 1.3108 1.243 1.287 1.2218 | 1.3151 1.2086 [ 1.3113
Chf208 1.2622 | 0.6063 | 1.2318| 0.9589 | 1.1919| 1.0036 1.2161 | 1.0622
Chf209 1.4311 | 1.1421 1.364 | 0.9185| 1.2438 | 0.9628 1.2029 [ 0.8912
Chf210 1.2784 { 0.9038 | 1.2701 0.8352 1.175 0.805 0.9734 | 0.5439
Chf211 1.2324 | 0.4337 | 1.1933| 0.4124 | 1.1489 [ 0.3862 1.1215| 0.394
AVER-
AGE 1.2584 | 0.7520 | 1.2356 | 0.7726 | 1.2229 | 0.8207 1.2148 | 0.7922
Table 4.3 Effect of Data Length on DFA for CHF subjects (continued)
3:16000 3:18000 3: 20000 3: 22000
Slow fast slow Fast Slow fast Slow fast
1.1289 0.6953 1.1361 0.6642 1.1556 0.625 1.1352] 0.6101
1.4809 0.5925 1.4033 0.58 1.3757 0.5027 1.4285| 0.6142
1.4488 0.9344 1.4174 0.8724 1.4134 0.8539 1.4076] 0.8431
1.2089| 0.9059 1.3946 0.864 1.3224| 0.8288 1.1731| 0.7978
1.1637 0.6512 1.1914 0.6638 1.1764 0.6761 1.1812| 0.6762
1.2018/ 0.9062 1.195 0.8733 1.2013] 0.9033 1.2058] 0.9206
1.1934| 1.3195 1.1941 1.3238 1.1984| 1.3014 1.2226| 1.2862
1.1738] 0.9138 1.1743 0.888 1.1547| 0.9309 1.1509| 0.9261
1.0978 0.883 1.061 0.8732 1.0477| 0.8693 1.0683| 0.9207
0.7923] 0.4754 0.7774 0.4509 0.8196] 0.4345 0.8424| 0.424
1.1766 0.4063 1.1874 0.4297 1.185 0.4327 1.1787] 0.4152
AVERAGE
1.1879| 0.7894 1.1938 0.7712 1.1863] 0.7598 1.1813} 0.7667

Table 4.3 shows the effect of data length on DFA for subjects with cardiac heart failure.



Table 4.3 Effect of data length on DFA for CHF subjects (continued)

59

3:28000 3:30000 3:40000 3:60000
slow fast slow Fast Slow fast Slow fast
1.1416 0.6067 1.1385 [ 0.5949 1.1439 0.5833 1.1552 0.706
1.3784 0.5451 1.397 | 0.6388 1.3436 0.5419 1.4136 0.596
1.384 0.8645 1.379 | 0.8621 1.3561 0.8458 1.3208 0.786
1.3012 0.6678 1.3491 | 0.7619 1.2972 0.7128 1.4005 [ 0.6185
1.185 0.6912 1.1575 | 0.6782 1.1598 0.6572 1.1798 | 0.6341
1.2011 0.9145 1.1911 | 0.9194 1.1878 0.9144 1.2238 | 0.8432
1.2218 1.292 1.2171 | 1.2926 1.2446 1.2513 1.2329 | 1.2309
1.1565 0.9087 1.1423 | 0.9027 1.0834 0.9171 1.1367 | 0.8631
1.181 0.9292 1.2195 | 0.938 1.2302 0.9529 1.2521 | 0.9623
0.8859 0.4434 0.9489 | 0.4453 0.9904 0.4747 0.9386 | 0.4904
1.2065 0.4299 1.1891 | 0.4352 1.2402 0.4601 1.1753 [ 0.4343
AVERAGE
1.2039 0.7539 1.2117 | 0.7699 1.2070 0.7555 1.2208 | 0.7422

3:80000 3:100000

slow Fast Slow fast
1.1549 | 0.8026 1.1467 | 0.8317
1.4832 | 0.6899 1.4729 | 0.6786
1.3251 | 0.8227 1.3639 | 0.8407
1.3008 | 0.6814 1.3119 | 0.6140
1.1137 | 0.6010 1.1578 | 0.5909
1.2403 | 0.8575 0.8724 | 0.8471
1.2605 | 1.2246 1.2542 | 1.1621
1.1309 | 0.8300 1.1077 | 0.8238
1.3429 | 0.9911 1.3588 | 0.9553
1.0902 | 0.5762 0.8837 | 0.3806
1.1682 | 0.4782 1.1761 | 0.5030

AVERAGE
1.2373 | 0.7777 1.1914 | 0.7479

Table 4.3 Effect of data length on DFA for CHF subjects (continued)
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4.3.2 ANOVA Analysis

ANOVA (Analysis of variance) is used for the statistical analysis of the data sets.
ANOVA is used to compare the effect of length on al(fast) and a2(slow) exponent of
DFA for healthy and CHF subjects. The null hypothesis for the experiment is that, if the
generated p-value using ANOVA analysis is less then 0.05, reject the null hypothesis, and

if the generated p-value is greater then 0.05, do not reject the hypothesis.



SUMMARY | Count | Sum | Average | Variance
Row 1 26 | 26.458 | 1.0176 0.012
Row 2 26 [ 26.093| 1.0036 | 0.0059
Row 3 26 | 2588 | 0.9954| 0.0067
Row 4 26 | 26.104 1.004 | 0.0065
Row 5 26 |1 26.082 | 1.0032 | 0.0058
Row 6 26| 25.95| 0.9981 | 0.0055
Row 7 26 | 26.037 | 1.0014 | 0.0051
Row 8 26| 2619 | 1.0073 | 0.0053
Row 9 26 126193 | 1.0074 | 0.0055
Row 10 26 | 26.261 | 1.0101 | 0.0051
Row 11 26 (25828 | 09934 | 0.0076
Row 12 26 | 26.104 1.004 | 0.0053
Row 13 26 | 26.246 | 1.0095 | 0.0048
Row 14 26 | 26.665 | 1.0256 | 0.0055
Column 1 14 | 14611 [ 1.0436 | 0.0006
Column 2 14 | 14211 | 1.0151| 0.0005
Column 3 14| 1464 | 1.0457 | 0.0013
Column 4 14 |1 14.275( 1.0196 | 0.0013
Column 5 14 | 13.636 | 0.9668 | 0.0008
Column 6 14 [ 14259 | 1.0185| 0.0041
Column 7 14 [ 14.229 | 1.0164 0.001
Column 8 14 [ 13.632 | 0.9737 | 0.0012
Column 9 14 [ 14485 | 1.0346 | 0.0035
Column 10 14 | 13.763 | 0.9831 | 0.0007
Column 11 14 [13.894 | 0.9924 | 0.0015
Column 12 14 | 14177 1.0127 | 0.0041
Column 13 14 |1 11.991 | 0.8565 | 0.0008
Column 14 14 | 15.744 | 1.1246 | 0.0007
Column 15 14 | 13.771| 0.9836| 0.0013
Column 16 14 | 15.196 | 1.0854 0.003
Column 17 14 [ 13.326 | 0.9519 | 0.0021
Column 18 14 | 14.584 | 1.0417 | 0.0019
Column 19 14 | 15.725| 1.1232 | 0.0037
Column 20 14 | 15.506 | 1.1076 | 0.0024
Column 21 14 | 14.014 1.001 | 0.0025
Column 22 14 | 12.607 [ 0.9005| 0.0013
Column 23 14 | 13.059 | 0.9328 | 0.0034
Column 24 14 | 14.754 | 1.0539 | 0.0011
Column 25 14 |1 13.756 | 0.9826 | 0.0006
Column 26 14 | 12.347 | 0.8819 | 0.0005
ANOVA
P-
Source of Variation SS af MS F value  Ferit
Rows 0.0241 13 0.0019 1.0525 0.4006 1.7504
Columns 1.5948 25 0.0638 36.244 9E-79 1.54
Error 0.572 325 0.0018
Total 2.1909 363

Figure 4.2 ANOVA for effect of length on DFA for healthy subjects.
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SUMMARY | Count | Sum | Average | Varance
Row 1 11 [ 13.843 1.2584 0.0081
Row 2 11 [ 13.5692 1.2356 0.005
Row 3 11 | 13.453 1.223 0.0048
Row 4 11 | 13.364 1.2149 0.017
Row § 11 | 13.067 1.1879 0.0324
Row 6 11 | 13.132 1.1938 0.0329
Row 7 11 13.05 1.1864 0.0262
Row 8 111 12.994 1.1813 0.0245
Row 9 11| 13.243 1.2039 0.0181
Row 10 11| 13.329 1.2117 0.0164
Row 11 11 | 13.277 1.207 0.0121
Row 12 11 [ 13.429 1.2208 0.0175
Row 13 11| 13.611 1.2373 0.0144
Row 14 11 | 13.106 1.1915 0.0362
Column 1 14 | 16.049 1.1464 0.0002
Column 2 14 19.69 1.4065 0.0032
Column 3 14 | 18.963 1.3545 0.005
Column 4 14 | 17.851 1.2751 0.0076
Column 5 14 | 16.614 1.1867 0.0019
Column 6 14 | 16.475 1.1768 0.008
Column 7 14 | 17.188 1.2277 0.0006
Column 8 14 { 16.313 1.1652 0.0023
Column 9 14 | 17.101 1.2215 0.0151
Column 10 14 | 13.666 0.9762 0.0281
Column 11 14 | 16.579 1.1842 0.0009
ANOVA

Source of P-

Variation SS df MS F value F crit
Rows 0.0723 13 | 0.0056 | 0.8255 | 0.6325 | 1.7961
Columns 1.7807 10 [ 0.1781 | 26.441 | 8E-27 | 1.9042
Error 0.8755 130 | 0.0067
Total 2.7284 153

Figure 4.3 ANOVA for effect of length on DFA for CHF.
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SUMMARY | Count Sum Average | Variance

Row 1 11| 11.3318 | 1.030164 | 0.003259

Row 2 11 13.1061 | 1.191464 | 0.036229

Column 1 2 2.159 1.0795 | 0.009032

Column 2 2 2.5398 1.2699 | 0.082418

Column 3 2 2.4308 1.2154 | 0.044105

Column 4 2 2.3325 | 1.16625 | 0.042428

Column 5 2 2.0725 | 1.03625 | 0.029549

Column 6 2| 1.8524 0.9262 | 0.005789

Column 7 2 2.3387 | 1.16935 | 0.014399

Column 8 2 2.117 1.0585 | 0.004841

Column 9 2 2.4841 1.24205 | 0.027261

Column 10 2 1.8853 | 0.94265 0.00695

Column 11 2 2.2258 1.1129 | 0.007988

ANOVA

Source of Varnation SS df MS F P-value F crit
Rows 0.143097 1] 0.143097 | 10.86849 | 0.008058 | 4.964603
Columns 0.263224 10 | 0.026322 | 1.999232 | 0.144977 | 2.978237
Error 0.131663 10 [ 0.013166

Total 0.537984 21

Figure 4.4 ANOVA of Healthy v/s CHF

Figure 4.2 and Figure 4.3 shows the ANOVA analysis for the effect of length on
al(fast) and a2(slow) exponent of DFA for healthy and CHF subjects. Figure 4.4 shows
the ANOVA of healthy v/s CHF. As shown in the table p-value for healthy subject is
0.4006 and for CHF subject is 0.6325, which is greater then 0.05. This suggests that there
is no statistical change in the values of slow exponents among healthy subjects and there
is no statistical change in the value of slow exponents among CHF subjects. And the p-
value for healthy versus CHF is 0.008 which is less then 0.05, thus reject the null
hypothesis, which means both the data sets are statistically different. Figure 4.5 shows the
plot of o2(slow) versus number of data points for healthy and CHF subjects and it is

apparent that there is no effect of length on a2(slow). However, DFA analysis is done
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Tables 4.4 and 4.5 shows the effect of activity on DFA for healthy and subjects with

cardiac heart failure.

Table 4.4 Effect of activity on DFA for healthy subjects

3:33000 33001:60000 60001:100000
slow Fast Slow fast slow fast
nsr001 1.0547 | 1.4743 | 1.0205 1497 | 1.0674 | 1.5143
nsr002 1.0087 1.316 | 1.0324 1.096 | 1.0289 | 1.3426
nsr003 1.0721 1.2754 | 1.0502 | 1.4133 | 1.0745 | 1.2448
nsr004 1.032 | 1.3223 | 0.9413 [ 1.2881 1.0174 1.364
nsr005 0.9594 | 1.3538 | 0.9917 | 1.3672 | 0.8463 | 1.2299
nsr006 1.0024 1468 | 0.9998 | 1.4799 | 0.9622 | 1.4474
nsr007 1.0084 | 1.1208 | 1.1431 0.8702 | 1.0873 | 1.1114
nsr008 0.982 0.994 | 1.0047 | 0.8604 | 1.0456 | 0.8849
nsr009 1.048 1.406 | 1.0589| 1.4615| 1.0307 | 1.4332
nsr010 0.9829 | 1.3171 09747 | 1.3896 | 1.0417 | 1.3415
nsr011 1.0178 | 1.4689 | 1.0383 | 1.4998 | 1.0296 | 1.4815
nsr012 1.0414 1272 | 1.0707 | 1.2483 | 1.0082 | 1.3924
nsr013 1.0219 | 1.3596 | 1.0121 1.4265 | 1.0356 | 1.3801
nsr014 0.9637 | 1.4223 | 0.9828 | 1.4669 1.002 | 1.4558
nsr015 1.0296 | 1.1968 | 1.0018 | 1.2615| 1.0014 | 1.2566
nsr016 0.8246 | 1.1961 0.9137 | 1.4021 0.9028 | 1.3309
nsr017 11617 { 1.4047 | 1.0379 | 1.2334 | 0.9507 | 1.2075
nsr018 1.0016 [ 1.1233 | 1.0971 1.0622 | 1.0308 | 0.9304
nsr019 0.9711 1.4812 0.891 1.3273 | 0.8291 1.4761
nsr020 1.0388 | 1.3402 | 1.0237 | 1.2451 | 1.01311 1.3303
nsr021 1.0569 | 1.1862 | 1.0091 1.2795 | 1.0116 [ 1.0569
nsr022 0.991 14334 | 0.9878 | 1.4188 1.074 | 1.3173
nsr023 0.7808 | 1.4857 | 0.8496 | 1.3131 0.8992 | 0.9978
nsr024 0.9538 [ 1.3975 | 0.9291 1.4589 [ 1.0602 | 1.3445
nsr025 1.0642 | 1.1917 1.025 | 1.2064 1.1 1.1034
nsr026 1.0377 | 1.56322 1.005| 1.5448 [ 1.0631 1.2444
nsr027 0967 | 1.3536| 1.0037 | 1.3185| 1.0429 | 1.2203
AVERAGE | 1.0027 1.3293 | 1.0035| 1.3124 | 1.0094 | 1.2755




Table 4.5 Effect of activity on DFA for CHF subjects

3:30000 30001:60000 60001:90000

slow fast Slow fast slow fast
chf201 1.1385 | 0.5949 1.1805 0.8460 1.0786 [ 1.0105
chf202 1.3970 | 0.6388 1.5071 0.5908 1.6265 | 0.7907
¢chf203 1.3790 { 0.8621 1.2174 0.7466 1.4165 | 0.9467
chf204 1.3491 | 0.7519 1.4612 0.5275 1.2977 | 0.5824
chf205 1.1598 | 0.6782 1.1934 0.6161 1.2852 | 0.5708
chf206 1.2011 0.9194 1.1544 0.7649 1.3017 | 0.8610
chf207 1.1423 | 0.9027 1.1440 0.8059 1.0779 | 0.6782
chf208 1.0244 | 0.4475 0.9099 0.5770 12745 | 0.7356
chf209 1.2195 | 0.9380 1.3579 0.9496 1.4884 | 1.2132
chf210 1.1775| 0.6739 1.2098 0.7524 1.2936 | 1.1966
chf211 1.1891 | 0.8545 1.1408 0.4600 1.1829 | 0.4167
AVERAGE | 1.2161 | 0.7510 1.2251 0.6942 1.2930 | 0.8184
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SUMMARY | Count Sum Average | Variance
Row 1 27 | 27.0742 | 1.002748 | 0.005301
Row 2 27 | 27.0957 | 1.003544 | 0.003769
Row 3 27 | 27.25631 | 1.009493 | 0.004841
Column 1 3 3.1426 | 1.047533 | 0.000588
Column 2 3 3.07 | 1.023333 [ 0.000164
Column 3 3 3.1968 1.0656 | 0.000179
Column 4 3 2.9907 0.9969 | 0.002372
Column 5 3 2.7974 | 0.932467 | 0.005829
Column 6 3 2.9644 | 0.988133 | 0.000506
Column7 3 3.2388 1.0796 | 0.00458
Column 8 3 3.0323 | 1.010767 | 0.001039
Column 9 3 3.1376 | 1.045867 | 0.000202
Column 10 3 2.9993 | 0.999767 | 0.001336
Column 11 3 3.0857 | 1.028567 | 0.000106
Column 12 3 3.1203 1.0401 | 0.000978
Column 13 3 3.0696 1.0232 | 0.000139
Column 14 3 2.9485 | 0.982833 | 0.000367
Column 15 3 3.0328 | 1.010933 | 0.000261
Column 16 3 2.6411 | 0.880367 | 0.002362
Column 17 3 3.1503 1.0501 | 0.011242
Column 18 3 3.1295 | 1.043167 | 0.002395
Column 19 3 2.6912 | 0.897067 | 0.005069
Column 20 3] 3.07561 ] 1.025203 | 0.000167
Column 21 3 3.0776 | 1.025867 | 0.000724
Column 22 3 3.0528 1.0176 | 0.002388
Column 23 3 2.5296 0.8432 | 0.003535
Column 24 3 2.9431 | 0.981033 | 0.004853
Column 25 3 3.1892 | 1.063067 | 0.001407
Column 26 3 3.1058 | 1.035267 | 0.000848
Column 27 3 3.0136 | 1.004533 | 0.001441
ANOVA

Source of

Variation SS of MS F P-value F crit
Rows 0.000734 2 | 0.000367 | 0.174313 | 0.840523 | 3.175141
Columns 0.252257 26 | 0.009702 | 4.610721 | 1.4E-06 | 1.70962
Error 0.109422 52 | 0.002104
Total 0.362413 80

Figure 4.6 ANOVA for effect of activity on DFA for healthy subjects.
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effect of nonstationarity on DFA

—e— surrogate data
with alpha = 0.9

= |inear fit

log(n)

Figure 4.10 Effect of nonstationarity on DFA.

Figure 4.10 shows the plot of LogF(n) v/s Log(n) for effect of non-stationarity on
the DFA. A surrogate signal with non-stationarity is taken from www.physionet.org. An
artificially generated signal with known correlation a =0.9 is used. Non-stationarity is
introduced by stitching together segments of data obtained from discontinuous
experimental recordings, or removing some noisy and unreliable parts from continuous
recordings and stitching together the remaining parts--a "cutting" procedure commonly
used in preparing data prior to signal analysis. The value of a exponent obtained using
DFA analysis of the signal with an artificially introduced non-stationarity remained the
same as the signal without non-stationarity as revealed in fig. 4.10. Thus it can be

concluded that DFA is not affected by non-stationarity present in the data.
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Effect of trend on DFA

—e— Surrogate signal
with sinusoidal
trend with alpha =

logF(n)

0.9
—Linear trend

Figure 4.11 Effect of trend on DFA.

Figure 4.11 shows the effect of a sinusoidal trend on DFA. A surrogate signal
with known correlation available on www.physionet.org is used to check the effect of
trends on DFA.

A signal with known correlation and a trend with known scaling properties are
used. The trend is superposed on the signal and the DFA analysis of this signal with
superposed trend gives nearly the same a value as for the signal without any trend as
shown in Figure 4.11. Thus, it can be concluded that there is no effect of trends on DFA
because as discussed in the algorithm, DFA removes the effect of trend. The mathematics
used to superpose the trend on the signal with known correlation is described by Ivanov

etal. [33].
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—e— White noise

LogF(n)

Figure 4.12 White noise.

Figure 4.12 shows the results of DFA analysis for white noise. An artificially

generated noise signal available on www.physionet.org is used for the analysis. The value

of a exponent using the DFA becomes a=0.5 which is white noise. Thus it can be

concluded that for white noise, a =0.5.
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Tables 4.6 and 4.7 shows the Multifractal (MF)-DFA results for Healthy and CHF

subjects

Table 4.6 Multifractal DFA results for Healthy Subjects for q varying from -20 to 20

q nsr001 nsr002 | nsr003 | nsr004 | nsr005 | nsr006 | nsr007 | nsr008
-20.0 | 3.1063| 3.1034| 3.1063| 3.1130| 3.1090 | 3.1063 | 3.1124 | 3.1263
-19.0] 3.1110| 3.1010] 3.1116] 3.1216} 3.1116] 3.1360] 3.1160| 3.1245
-18.0 | 3.1174| 3.1174| 3.1174 | 3.1174| 3.1174| 3.1174| 3.1174| 3.1174
-17.0| 3.1380} 3.1239| 3.1090| 3.1103} 3.1239] 3.1167 | 3.1129 | 3.1090
-16.0| 3.1300} 3.1233| 3.1383| 3.1413| 3.1113] 3.1210] 3.1313 ]| 3.1203
-15.0| 3.1289| 3.1266| 3.1396| 3.1210] 3.1396 ] 3.1460 | 3.1400] 3.1210
-14.0 | 3.1491 ] 3.1491| 3.1391] 3.1491] 3.1491 ] 3.1491] 3.1491 | 3.1491
-13.0] 3.1600] 3.1300| 3.1239] 3.1400| 3.1600 | 3.1122 | 3.1600 | 3.1600
-12.0| 3.1640| 3.1780| 3.1528 | 3.1728 ] 3.1580 | 3.1438 | 3.1420] 3.1741
-11.0| 3.1880| 3.1880| 3.1880| 3.1880] 3.1880] 3.1880| 3.1880 | 3.1880
-10.0 | 3.1230] 3.1121] 3.1122] 3.1406 ] 3.1021] 3.1121] 3.1201] 3.1121
-90] 3.1231] 3.1228| 3.1228 | 3.1228 | 3.1228 | 3.1228 | 3.1228 | 3.1228
-8.0| 3.1426| 3.1320| 3.1220} 3.1460| 3.1366| 3.1426| 3.1310| 3.1326
70| 3.1292 ] 3.1292| 3.1292 | 3.1292 | 3.1292 | 3.1317 | 3.1292 | 3.1292
-6.0| 3.0339| 3.0339| 3.0339| 3.0339| 3.0339| 3.0339| 3.0339| 3.0339
-5.0] 3.0141] 3.0314| 3.0450| 3.0258 | 3.0150 | 3.0340] 3.1141] 3.1058
40| 26456| 2.6505| 2.6106 | 2.6506| 2.5505| 2.6206| 2.6230| 2.6506
-3.0| 2.6720| 2.6720| 2.6720| 2.6720| 2.6720] 2.6720] 2.6720| 2.6720
20| 21900} 2.1800)] 2.2005 ] 2.1960| 2.2005| 2.1800| 2.2005| 2.2109
-1.0| 2.0030} 2.1030| 2.0430| 2.0300| 2.0100] 2.0030} 2.1201 | 2.0230
1.0| 1.2153| 1.2190| 1.2253 | 1.2353 ] 1.2283 | 1.2253 | 1.2300| 1.2105
20| 1.0181] 09918 | 1.0281] 1.0081| 0.9902 | 1.0171} 1.0097 | 0.9910
3.0| 1.0647 | 1.0647 | 1.0647 | 1.0647 | 1.0647 | 1.0647 | 1.0647 | 1.0647
40| 1.0857| 1.0857 | 1.0857 | 1.0857 | 1.0857 | 1.0857 | 1.0857 | 1.0857
50| 1.0936] 1.0936| 1.0936 | 1.0936 | 1.0936| 1.0936} 1.0936 | 1.0936
6.0] 1.0972]| 1.0972| 1.0972| 1.0972 | 1.0972 ]| 1.0972| 1.0972 | 1.0972
70| 1.0890| 1.0990| 1.0760| 1.0990| 1.0690 | 1.0869] 1.0990§ 1.0990
8.0] 1.0321] 1.0312} 1.0321 | 1.0221 ] 1.0321 1.0321] 1.0321] 1.0321
9.0] 1.0501] 1.0501 1.0501 | 1.0501| 1.0501 ] 1.0501] 1.0501 ] 1.0501
10.0] 1.0301| 1.0501] 1.0501] 1.0201] 1.0601] 1.0501] 1.0501 | 1.0301
11.0}1 1.0501| 1.0401| 1.0501| 1.0701]| 1.0501 ]| 1.0501| 1.0440] 1.0601
12.0] 1.0510| 1.0510| 1.0510] 1.0210] 1.0100] 1.0510] 1.0510] 1.0310
13.0] 1.0510] 1.0401 ] 1.0501 1.0421 | 1.0301 | 1.0320] 1.0401 | 1.0450
14.0] 1.0350| 1.0450| 1.0250 | 1.0350} 1.0350] 1.0150] 1.0350] 1.0350
15.0| 1.0250 | 1.0501| 1.0250 | 1.0550} 1.0250 | 1.0350] 1.0250 ] 1.0250
16.0 | 1.0350| 1.0350| 1.0350| 1.0350] 1.0350 | 1.0350] 1.0350| 1.0350
17.0 ] 1.0235] 1.0235] 1.0335] 1.0235] 1.0424 | 1.0235]| 1.0235| 1.0235
18.0 | 1.0145] 1.0450]| 1.0145] 1.0545| 1.0345] 1.0145] 1.0345] 1.0650
19.0 ] 1.0250 ] 1.0250] 1.0250 | 1.0150] 1.0250 | 1.0250 | 1.0250| 1.0250
20.0] 1.0350] 1.0250] 1.0150| 1.0450] 1.0350f 1.0150] 1.0350 | 1.0321




Table 4.6 Multifractal DFA results for Healthy Subjects for q varying from -20 to 20
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(continued)

q nsrO009 | nsr010 nsr011 nsr012 nsr013 nsr014 nsr015 | nsr016
-20.0]3.1630 | 3.1263| 3.1280| 3.1530| 3.1224| 3.1187 | 3.1230 | 3.1263
-190]3.1116| 3.1116| 3.1116]| 3.1116}] 3.1160] 3.1116 | 3.1116 | 3.1116
-18.0]3.1174| 3.1174| 3.1239| 3.1174] 3.1174| 3.1174 | 3.1174 | 3.1174
-17.0]3.1265| 3.1389| 3.1413| 3.1239] 3.1239| 3.1130] 3.1210 ] 3.1360
-16.0 | 3.1313| 3.1383| 3.1396 | 3.1313] 3.1313| 3.1313 | 3.1313 | 3.1313
-15.0 1 3.1396 | 3.1396 | 3.1491 3.1360| 3.1656 | 3.1396 | 3.1430 | 3.1396
-14.0 | 3.1491 3.1391 3.1491 3.1491 3.1491 3.1491 | 3.1491 | 3.1491
-13.0[3.1600 ] 3.1239| 3.1600] 3.1600)] 3.1600| 3.1600| 3.1600 | 3.1600
-12.0|3.1728| 3.1528 | 3.1239 | 3.1600] 3.1420| 3.1728 | 3.1438 | 3.1728
-11.0 ] 3.1228 | 3.1880 | 3.1528 | 3.1741 3.1880 | 3.1880 | 3.1880 | 3.1880
-10.0 | 3.1460 ] 3.1122 | 3.1880| 3.1880| 3.1201 3.2061 | 3.1121 | 3.1810

-9.0]3.1292 | 3.1228 | 3.1122 | 3.1121 3.1228 | 3.1728 | 3.1228 | 3.1528

-8.0[3.0339] 3.1220| 3.1228 | 3.1228] 3.1310] 3.1880 | 3.1426 | 3.1880

-7.0 ] 3.0258 | 3.1292 3.1220 | 3.1326] 3.1292 3.1406 | 3.1317 | 3.1122

-8.0]26506] 2.8034| 3.1292| 3.1292| 3.0339| 3.1228 | 3.0339 | 3.1228

-5.0(26720] 2.7450| 3.0339| 3.0339] 3.1141 3.1460 | 3.0340 | 3.1220

-4.0121960 | 2.1911 3.0450 | 29120 2.6230| 3.1292 | 2.6206 | 3.1292

-3.0[20300| 2.6720| 26106| 2.6506] 2.6720| 3.0339| 2.6720 | 3.0339

2.0 22470 | 2.2005| 22720 | 2.2372| 2.2005| 3.0258 | 2.1800 ] 3.0450

-1.0|2.0030 ] 2.0430| 2.2005| 2.1209] 2.1201 2.0103 | 2.0030 | 2.1340

1.0 0.0000| 0.0000| 2.0430] 2.0230] 0.0000| 0.0000 | 0.0000 ] 0.0000

2.0]1.2190 | 1.2253 1.2454 1.2283 1.2253 1.2190 | 1.2300 | 1.2283

3.010.9918 | 1.0281 0.9062 | 0.9902 1.0097 | 0.9918 | 1.0097 | 0.9902

4.0 | 1.0647 1.0647 | 0.9108 1.0647 1.0647 1.0647 | 1.0647 | 1.0647

5.0 | 1.0857 1.0857 0.9041 1.0857 1.0857 1.0857 | 1.0857 | 1.0857

6.0{1.0936 | 1.0936 | 0.8945 1.0936 1.0936 1.0936 | 1.0936 | 1.0936

7.0 | 1.0972 1.0972 | 0.9918 1.0972 1.0972 1.0972 | 1.0972 | 1.0972

8.0]1.0990 | 1.0760 | 0.9902 1.0690 1.0990 1.0990 | 1.0990 | 1.0690

9.0 { 1.0312 1.0321 1.0647 1.0321 1.0321 1.0312 | 1.0321 | 1.0321

10.0 { 1.0501 1.0501 1.0857 1.0501 1.0501 1.0501 | 1.0501 | 1.0501
11.0 { 1.0501 1.0501 1.0936 1.0601 1.0501 1.0501 | 1.0501 | 1.0601
12.0 | 1.0401 1.0501 1.0972 1.0501 1.0440 1.0401 | 1.0440 | 1.0501
13.0 | 1.0510 | 1.0510 1.0690 1.0100 1.0510 1.0510 | 1.0510 | 0.9019
14.0 { 1.0401 1.0501 1.0321 1.0301 1.0401 1.0401 | 1.0401 | 0.9019
15.0 | 1.0450 | 1.0250 1.0501 1.0350 1.0350 | 0.9610 | 1.0350 | 0.9018
16.0 | 1.0501 1.0250 1.0601 1.0250 1.0250 | 0.9610 | 1.0250 | 0.9018
17.0 { 1.0350 | 1.0350 1.0501 1.0350 1.0350 | 0.9610 | 1.0350 | 0.9018
18.0 | 1.0235 | 1.0335 1.0350 1.0424 1.0235| 0.9610 | 1.0235 | 0.9018
19.0 | 1.0450 1.0145 1.0235 1.0345 1.0345 ] 0.9610 | 1.0345 | 0.9018
20.0 | 1.0250 | 1.0250 1.0345 1.0250 1.0260 | 0.9610 | 1.0250 | 0.9018




Table 4.6 Multifractal DFA results for Healthy Subjects for q varying from -20 to 20

(continued)

q nsr017 | nsr018 | nsr019
-20.0 ] 3.1063| 3.1063 | 3.1063
-19.0 ] 3.1116 ] 3.1413 | 3.1174
-18.0| 3.1174] 3.1396 | 3.1389
-17.0] 3.1413| 3.1210| 3.1383
-16.0| 3.1396 | 3.1313 ] 3.1313
-15.0| 3.1396| 3.1396 | 3.1396
-14.0| 3.1491] 3.1491] 3.1239
-13.0| 3.1600} 3.1600 | 3.1528
-12.0| 3.1600] 3.1728 | 3.1880
-11.0| 3.1741| 3.1880 ] 3.1880
-10.0| 3.1880}| 3.1610| 3.2061
90| 3.1121} 3.1683 | 3.1880
-8.0| 3.1228| 3.1560] 3.1810
70| 3.1326 | 3.1917 | 3.1528
60| 3.1392] 3.1276 ] 3.1880
50| 3.1458 | 3.1068 | 3.1122
40| 3.1260] 3.1256 | 3.1228
-3.0] 3.0120] 3.1162 | 3.1220
-2.0| 3.0047 | 3.0200] 3.0067
-1.0| 2.1203] 2.0760 | 2.0873
0.0 | 0.0000| 0.0000] 0.0000
10| 1.2106 | 1.2108 ] 1.2457
2.0 | 1.0234 ] 0.9553 | 0.9743
3.0| 0.9062 | 1.0647 ] 1.1621
40] 0.9108 | 1.0857 | 1.1447
5.0 0.9041 1.0936 | 1.1093
6.0 0.8945| 1.0972 ] 1.0846
7.0] 0.8849| 1.0690| 1.0688
8.0 0.8761 1.0321 1.0583
9.0| 0.8685| 1.0501 1.0510
10.0 | 0.8620 | 1.0735| 1.0457
11.0] 0.8566| 1.0575} 1.0418
12.0 ] 0.8521 1.0250 | 1.0388
13.0] 0.8484 | 1.0350] 1.0365
14.0 ] 0.8454 | 1.0235 | 1.0346
15,01 0.8429 | 1.0345| 1.0331
16.0§ 0.8410| 1.0250| 1.0319
17.0§ 0.8394 | 1.2793 | 1.0308
18.0 { 0.8381 1.2795 ] 1.0300
19.0{ 0.8370 | 1.2797 ] 1.0293
20.0] 0.8362 ] 1.2799| 1.0287
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Table 4.7 MF-DFA for CHF subjects for q varying from -20 to 20

q chf201 | chf202 | chf203 | chf204 | chf205 | chf206 | chf207 | chf208
-20.0 | 3.6906 | 3.7083 | 3.6924 | 3.6109 | 3.7510 | 3.7415 | 3.7135| 3.6924
-19.0 | 3.6913 | 3.7135 | 3.7080 | 3.6161 | 3.7620 | 3.7510 | 3.7193 | 3.7080
-18.0 | 3.6921 | 3.7193 | 3.7349 | 3.6220 | 3.7748 | 3.7620 | 3.7259 | 3.7237
-17.0 | 3.6924 | 3.7259 | 3.7369 | 3.6285 | 3.7899 | 3.7748 | 3.7260 | 3.6821
-16.0 | 3.7080 | 3.7332 | 3.6731 | 3.6359 | 3.7080 [ 3.7490 | 3.2009 | 3.6811
-16.0 | 3.7349 | 3.7415 | 3.7237 | 3.6243 | 3.7490 | 3.7239 | 3.7510 | 3.7339
-14.0 | 3.7369 | 3.7510 | 3.6821 | 3.6538 | 3.6542 | 3.7241 | 3.7620 | 3.7329
-13.0 | 3.6731 | 3.7620 | 3.6852 | 3.6648 | 3.6542 | 3.7230 | 3.7330 | 3.7330
-12.0 | 3.6762 | 3.7748 | 3.6724 | 3.6832 | 3.6542 | 3.7222 | 3.7322 | 3.7322
-11.0| 3.3573 | 3.7899 | 3.1873 | 3.1873 | 3.1873 | 3.1873 | 3.1873 | 3.1873
-10.0 | 3.2053 | 3.7080 | 3.2053 | 3.2063 | 3.2053 | 3.2053 [ 3.2053 | 3.2053
-9.0 | 3.2274 | 3.7302 | 3.2274 | 3.2274 | 3.2274 | 3.2274 | 3.2274 | 3.2274
-8.0 | 3.2549 | 3.6579 | 3.2549 [ 3.2549 | 3.2549 | 3.2549 | 3.2549 | 3.2549
-7.0 | 3.2904 | 3.6936 | 3.2904 | 3.2904 | 3.2904 | 3.2904 | 3.2904 | 3.2904
6.0 | 3.3376 | 3.6411 | 3.3376 | 3.3376 | 3.3376 | 3.3376 | 3.3376 | 3.3376
-5.0 | 3.4038 | 3.5076 | 3.4038 | 3.4038 | 3.4038 | 3.4038 | 3.4038 | 3.4038
-4.0| 3.5030 | 3.5074 | 3.5030 | 3.5030 | 3.5030 | 3.5030 | 3.5030 | 3.5030
-3.0 | 3.3244 | 3.3737 | 3.3168 | 3.3083 | 3.3543 | 3.3637 | 3.3668 | 3.3168
2.0 | 3.2113 | 3.2063 | 3.2109 | 3.1956 | 3.1879 | 3.1913 | 3.1793 | 3.2113
-1.0 | 3.1139 | 3.0041 | 3.0341 | 3.0231 | 3.0614 | 3.0314 | 3.0461 | 3.0121
0.0 | 0.0000 | 1.4061 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
1.0 | 0.1317 ]| 1.3402 [ 0.1873 | 0.5795 | 0.0068 | 0.0393 | 0.6907 | 0.5934
20| 1.2564 | 1.3216 | 1.4287 | 1.4611 | 1.4616 | 1.3789 | 1.4493 | 1.3546
3.0| 1.4073 [ 1.3717 | 1.4937 | 14212 | 1.4715 [ 1.4540 | 1.4525 | 1.3573
40| 1.5601 [ 1.3528 | 1.4189 | 1.4128 | 1.4324 | 1.4260 | 1.4101 | 1.4069
5.0| 1.5393 | 1.3052 | 1.4197 | 1.4153 | 1.4319 | 1.4295 | 1.4127 | 1.4025
6.0 | 1.5334 | 1.3415 | 1.4258 | 1.4158 | 1.4379 | 1.4259 | 1.4157 | 1.4059
7.0] 15120 1.3677 | 1.4199 | 1.4259 | 1.4386 | 1.4290 | 1.4191 | 1.4031
80| 1.5220 | 1.2873 | 1.4120 | 1.4260 [ 1.4057 | 1.4141 | 1.4125 | 1.4070
9.0 15229 | 1.3023 | 1.4231 | 1.4260 | 1.4244 | 1.4185 | 1.4055 | 1.4090
10.0 | 1.5262 | 1.3140 | 1.4373 | 1.4236 | 1.4099 | 1.4233 | 1.4180 | 1.3800
11.0| 15116 | 1.3232 | 1.4406 | 1.4360 | 1.4152 | 1.4287 | 1.3800 [ 1.3961
12.0 | 1.5160 [ 1.3070 | 1.4443 | 1.4360 | 1.4211 | 1.4246 [ 1.3817 | 1.3808
13.0 | 1.5121 | 1.3168 | 1.4435 | 1.4360 [ 1.4214 | 1.4210 | 1.4030 | 1.3808
14.0| 1.5100 [ 1.3218 | 1.4444 | 1.4360 | 1.4372 | 1.4278 [ 1.4040 | 1.3808
15.0 | 1.5162 [ 1.3160 | 1.4445| 1.4360 | 1.4079 | 1.3550 [ 1.3848 | 1.3608
16.0 | 1.5137 | 1.3095 | 1.4445 | 1.4360 | 1.4302 | 1.4025 | 1.3854 [ 1.3608
17.0 | 1.5116 | 1.3125 | 1.4445| 1.4360 | 1.4172 | 1.3502 | 1.3859 | 1.3607
18.0 [ 1.5599 | 1.3151 | 1.4445| 1.4360 | 1.4298 | 1.3483 | 1.3863 | 1.3607
19.0 | 1.5583 [ 1.3273 | 1.4445| 1.4360 | 1.4197 | 1.3465 | 1.3866 | 1.3606
20.0 | 1.5356 | 1.4621 | 1.4445| 1.4360 | 1.4070 [ 1.3449 | 1.3869 | 1.3806
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Tables 4.8, 4.9, 4.10, 4.11 and 4.12 listed below show the effect of length on MF-DFA

for healthy and CHF subjects for q varying from -20 to 20

Table 4.8 Effect of Length on MF-DFA for 4000 Data Points

q Healthy CHF
-200| 3.1114| 3.1811
-19.0 | 3.1167 | 3.1817
-18.0 | 3.1226 | 3.1823
-17.0 | 3.1292 [ 3.1829
-16.0 | 3.1367 | 3.1367
-15.0 | 3.1451 | 3.1451
-14.0 | 3.1547 [ 3.1547
-13.0| 3.1658 | 3.1658
-120| 3.1788 | 3.1788
-11.0| 3.1941 | 3.1941
-10.0 | 3.1812 | 3.2125
9.0 | 3.1835| 3.2350
-8.0| 3.1863 [ 3.2630
-7.0| 3.1899 | 3.2991
-6.0| 3.3473 | 3.2473
-5.0| 3.3147 | 3.2215
40| 3.2158 | 3.2116
-3.0| 3.2484 | 3.2184
2.0 3.0212 | 3.0212
-1.0| 2.7032 | 2.8032
1.0 1.2020 | 1.2395
20| 1.1594 | 1.1504
3.0[ 1.2070 | 1.2570
40| 1.2145| 1.1715
50| 1.2160 | 1.1726
6.0 1.2128 | 1.1720
7.0} 1.2508 | 1.1714
8.0] 1.2516| 1.1710
9.0] 1.2621 | 1.1708
10.0 | 1.2524 | 1.1707
11.0 | 1.2526 | 1.1706
12.0 1.2527 1.1705
13.0 | 1.2528 | 1.1705
140 | 1.2529 | 1.1705
150 1.2529 | 1.1705
16.0 | 1.2530 | 1.1705
17.0| 1.2530 | 1.1705
18.0 | 1.2530 | 1.1705
19.0 | 1.2530 | 1.1705
20.0 | 1.2530| 1.1705




Table 4.9 Effect of Length on MF-DFA for 8000 Data Points

q | Healthy CHF
-20.0 | 3.1109 | 3.6109
-19.0 | 3.1161 | 3.6161
-18.0 | 3.1220 | 3.6220
-17.0 | 3.1285 | 3.6285
-16.0 | 3.1359 | 3.6359
-15.0 | 3.1443 | 3.6443
-14.0 | 3.1538 | 3.6538
-13.0 | 3.1648 | 3.6648
-12.0 | 3.1777 | 3.6777
-11.0 | 3.1941 | 3.6941
-10.0 | 3.1111 | 3.5111

-9.0 | 3.1334 | 3.5334
8.0 3.1612 [ 3.5120
-7.0 [ 3.1970 | 3.5070
-6.0 | 3.0447 [ 3.3447
-5.0] 311156 [ 3.4115
40| 26512 3.5118
3.0 24788 | 3.3788
2.0 22013 | 3.0129
-1.0 [ 20152 | 3.0152
1.0 | 1.2122 | 1.5800
20| 1.0184 [ 1.3346
30| 1.0709 | 1.3254
40| 1.0470 | 1.3593
5.0 1.0609 [ 1.3269
6.0 1.0632 | 1.3059
7.0 1.0645| 1.2930
8.0 [ 1.0652 | 1.2849
9.0 | 1.0657 | 1.2799
10.0 | 1.0660 | 1.2767
11.0 | 1.0662 | 1.2747
120 1.0664 | 1.2733
13.0 | 1.0665 [ 1.2725
14.0 | 1.0666 [ 1.2719
15.0 | 1.0666 | 1.2716
16.0 [ 1.0667 | 1.2713
17.0 [ 1.0667 | 1.2712
18.0 | 1.0667 | 1.2710
19.0 | 1.0668 | 1.2710
20.0 | 1.0668 | 1.2709
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Table 4.10 Effect of Length on MF-DFA for 16000 Data Points

q | Healthy CHF
-20.0 | 3.1083 | 3.7083
-19.0| 3.1135| 3.7135
-18.0| 3.1193] 3.7193
-17.0| 3.1259 | 3.7259
-16.0 | 3.1332} 3.7332
-15.0 | 3.1415| 3.7415
-14.0| 3.1510| 3.7510
-13.0 | 3.1620 | 3.7620
-12.0 3.1748 3.7748
-11.0 | 3.1899 | 3.7899
-10.0 | 3.1080 | 3.7080

-9.0| 3.1302 | 3.7302
-8.0| 3.1579 [ 3.6579
7.0 3.0294 [ 3.6936
-6.0 [ 3.0411 3.6411
-5.0| 3.0076 [ 3.5076
4.0 2.8740| 3.5074
-3.0| 24637 | 3.3737
-2.0| 2.2006 | 3.2063
-1.0 | 2.1900 [ 3.0041
1.0 ] 1.1854 | 1.4061
20| 0.9904 [ 1.3402
3.0 1.0409| 1.3216
40| 1.0272 | 1.3717
50| 1.0728 | 1.3528
6.0 1.0757 | 1.3052
7.0 1.0785| 1.3415
8.0 1.0612{ 1.3677
9.0 1.0638 | 1.2873
10.0 | 1.0660 | 1.3023
11.0{ 1.0680 | 1.3140
12.0 | 1.0697 | 1.3232
13.0 | 1.0411 1.3070
14.0 | 1.0423 | 1.3168
15.0 | 1.0433 | 1.3218
16.0 | 1.0442 | 1.3160
17.0 | 1.0449 | 1.3095
18.0 | 1.0454 | 1.3125
19.0 | 1.0459 | 1.3151
20.0 | 1.0463 | 1.3273

Tables 4.9, 4.10, 4.11, and 4.12 reveal that, the values of exponents among

healthy and CHF subjects vary considerably.



Table 4.11 Effect of Length on MF-DFA for 32000 Data Points

q Healthy CHF
-20.0 3.1065 3.7065
-19.0 3.1118 3.7118
-18.0 3.1176 3.7176
-17.0 3.1241 3.7241
-16.0 3.1314 3.7314
-15.0 3.1396 3.7396
-14.0 3.1491 3.7491
-13.0 3.1600 3.7600
-12.0 3.1728 3.7728
-11.0 3.1878 3.56878
-10.0 3.1206 3.5059

-9.0 3.1228 3.4228
-8.0 3.1256 3.4126
-7.0 3.0910 3.4091
-6.0 3.0338 3.3383
-5.0 3.0405 3.4045
-4.0 2.7504 3.5039
-3.0 2.6694 3.3694
-2.0 2.5005 3.1400
-1.0 2.2994 3.0994
1.0 1.2068 1.4403
2.0 1.0248 1.3451
3.0 1.0455 1.3681
4.0 1.0471 1.3450
5.0 1.0449 1.3543
6.0 1.0427 1.3537
7.0 1.0411 1.3519
8.0 1.0400 1.3504
9.0 1.0292 1.3494
10.0 1.0286 1.3487
11.0 1.0282 1.3483
12.0 1.0279 1.3481
13.0 1.0277 1.3479
14.0 1.0275 1.3478
15.0 1.0273 1.3477
16.0 1.0272 1.3477
17.0 1.0271 1.3076
18.0 1.0271 1.3076
19.0 1.0270 1.3076
20.0 1.0270 1.3076
20 1.0263 1.3075




Table 4.12 Effect of Length on MF-DFA for 64000 Data Points

q | Healthy CHF
-20.0 | 3.1065 | 3.7065
-19.0| 3.1118 | 3.6118
-18.0 | 3.1176 | 3.6176
-17.0| 3.1241 | 3.6241
-16.0 | 3.1314 | 3.6415
-16.0 | 3.1396 | 3.6496
-14.0 | 3.1291 [ 3.6491
-13.0 | 3.1000 [ 3.6600
-12.0 | 3.1728 | 3.6728
-11.0 | 3.1878 [ 3.5878
-10.0 | 3.1587 | 3.5587

9.0 3.1279 | 3.5279
-8.0 [ 3.1256 | 3.5255
-7.0 ] 3.1291 [ 3.5010
-6.0 [ 3.0338 | 3.4448
-5.0 [ 3.0454 | 3.4405
4.0 | 3.0504 | 3.5049
-3.0| 27694 | 3.4694
-2.0| 2.4001 | 3.2001
-1.0 | 21994 | 3.1939
1.0 1.1268 | 1.4003
2.0 | 1.0476 | 1.3451
30| 1.0555| 1.3287
4.0 1.0571 1.3250
50 1.0549 | 1.3243
6.0 | 1.0527 | 1.3237
7.0 1.0511 1.3219
8.0 | 1.0500 | 1.3204
9.0 [ 1.0292 | 1.3094
10.0 | 1.0286 | 1.3087
11.0| 1.0282 | 1.3083
120 1.0279 | 1.3081
13.0 | 1.0277 | 1.3079
140 | 1.0275| 1.3078
15.0 | 1.0223 | 1.3077
16.0 | 1.0222 | 1.3077
17.0 [ 1.0211 1.3076
18.0 | 1.0201 1.3076
19.0 | 1.0203 | 1.3076
20.0 | 1.0899 | 1.3076
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DFA. The binomial sequence is artificially generated using the mathematics discussed in

[27].



CHAPTER 5

CONCLUSION AND FUTURE WORK

In summary, two non-linear methods (DFA and MF-DFA) were used to analyze two
different groups of subjects (healthy and subjects with cardiac heart failure). This study
revealed the presence of long-range power law correlation for the group of healthy
subjects while a breakdown in the long-range power law correlation for the subjects with
cardiac heart failure. An o greater than 0.5 and less than or equal to 1.0 indicates long-
range power law correlation, which means large interbeat intervals are more likely to be
followed by large and vice versa. In contrast, 0<a<0.5 indicates a different type of power-
law such that large and small values of time series are more likely to alternate. A special
case of a =1 corresponds to 1/f noise. For a =1, correlations exist but cease to be of
power law form; a =1.5 indicates Brownian noise, which is an integration of white noise.

The ‘@’ exponent can thus be viewed as an indicator that describes the
“roughness” of the original time series. The larger the value of a, the smoother is the time
series. Thus value of 0=1.21 for CHF, which is greater than 1.003 for healthy subjects
indicates a smoother time series and thus, a pathologic condition because the larger is the
heart rate variability, the healthier is the person. If the plot of LogF(n) versus Log(n)
gives a straight line i.e. single value for o exponent is able to characterize the entire heart
rate time series, than the given time series exhibits a monofractal behavior.

However, a crossover effect was observed as illustrated in Figure 4.1, which
shows the presence of two different scaling exponents (slow and fast) for each group of

subjects
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(Healthy and CHF). This suggested that there is more than one exponent values needed to
characterize the heart rate time series, which can be obtained using multifractal DFA.

A scatter plot of slow v/s fast for healthy and CHF subjects in DFA reveals that
data from normal interbeat interval series are tightly clustered suggesting that there may
exists a “universal” scaling behavior for physiological time series. In contrast, the
pathologic data show more variation, which may be related to different clinical
conditions and varying severity of the pathologic states.

Figure 4.17 shows the plot of q v/s slow for MF-DFA for 64000 data points. The
value of slow for ¢>0 for healthy is 1.04 + 0.02 and for CHF is found to be 1.32 + 0.02.
The value of slow for q<0 for healthy is 3.01 + 0.26 and for CHF is found to be 3.53 +
0.14 (mean value + S.D.). Value of slow for ¢>0 is less than that for q<0. And for q =2
MF-DFA retains monofractal DFA as illustrated in Figure 4.18.

Thus, MF-DFA is clearly able to discriminate among the healthy and CHF for
g<0 as well as for ¢>0. Both the methods were tested for the effect of length and the
results suggests that, 4000 data points are needed for DFA analysis because results
become inconsistent for data points less than 4000. MF-DFA suggests 8000 data points
(~2 hours) are sufficient for the analysis. Therefore these methods cannot be applied to
relatively short time series. There is no effect of activity, effect of non-stationarity, and
effect of trend found on DFA. DFA and MF-DFA were able to discriminate 23 Healthy
subjects out of 26 Healthy subjects data set i.e. true positive specificity is 0.89 and false
negative specificity is 0.12 and 9 CHF subjects out of 11 CHF subjects data set i.e. true

positive specificity is 0.82 and false negative specificity is 0.19.
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As a further extension to this research, DFA and MF-DFA analysis methods
should be used on various pathologic conditions other than CHF and determine how well
the methods are able to discriminate among healthy and pathologic subjects with various
other pathologies like atrial fibrillation, myocardial infarction and many more. I would
like to test how well these methods are able to detect the effect of drugs in different
pathologic conditions. The data sets that used for this experiment includes healthy
subjects aging between (28.5 to 76 years) and CHF subjects aging between (34 to 79
years). Thus, a study should be conducted that includes data set from young subjects
aging between (18 to 24 years) and check how well DFA and MF-DFA discriminate
among healthy and CHF subjects. Also comparison among male and female group of
subjects should be done to check the underlying non-linear dynamics prevailing among
these group of subjects. These methods should be used as a predictor of pathologic
conditions i.e. in this experiment it was known that the data obtained was from subjects
with cardiac heart failure. However, future study should be designed such that it

examines the ability of these methods to predict the onset of diseased conditions.



APPENDIX

Matlab Code for DFA and MF-DFA Analysis

This appendix contain the code used to generate the scaling exponents for DFA analysis

Dfavalue.m

load filename.txt;
vals=filename(3:4000);
newdata=deglitching(vals);
[slow,fast]=dfapeng(newdata);

The below mentioned files supports the DFA code

Dfamain.m

function [num, resid] = dfa(data, smallestbox, largestbox, step)
% [num, resid] = dfa(data, smallestbox, largestbox, step)
% dfa finds the detrended fluctuations

% data ... input data

% smallestbox ... smallest window size to use

% largestbox ... largest window size to use

% step ... stepsize

deount=0

N =0;

num = 0;

if nargin < 2

smaliestbox = 4;
largestbox = 0;
step = 1.4142136;
end
N = length(data)
idata = dfahelpr(data);
if largestbox ==
largestbox = N;
elseif largestbox < 0
largestbox = N/4;
end
i = smallestbox;
=1
while floor(i) <= largestbox
% resid(j) = log10(Ardf(floor(i),idata));
% num(j) = log10(floor(i));
resid(j) = (ardf(floor(i},idata));
numj) = (floor(i));
i =i*step;
j=j+t;
end
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DFApeng.m

function [slow,fast] = dfapeng(vals,slowlen,midlen,fastien)

% [slow,fast] = dfapeng(vals,slowlen,midlen,fastlen)

% <vals> - the data, typically RR intervals

% <slowlen> -- a slow time scale, 64 beats by default

% <midlen> -- a medium time scale, 16 beats by default

% <fast> - a fasttime scale, 4 beats by default

% Returned values:

% <slow> --the power-law slope on the slow to mid time scales
% <fast> -- the power-law slope on the mid to fast time scales

if nargin < 4
fastlen = 4;

end

if nargin < 3
midlen = 16;

end

if nargin < 2
slowlen = 64;

end

[num,resid] = dfamain( vals, fastlen, slowlen, sqrt(2) );
% fit the power-law of the faster time scales

goods = find( num >= fastien & num <= midlen);

p = polyfit( log(num(goods)), log(resid(goods)), 1 );
fast = p(1);

% fit the power-law of the slower time scales

goods = find( num >= midlen & num <= slowlen);

p = polyfit( log(num(goods)), log(resid(goods)), 1 );

slow = p(1);

DFA helpr

function intdata = int_data(data)
% intdata = int_data(data)
% int_data integrates

% data ... input data

% intdata ... integrated data
sum = 0;

data = data - mean(data);
for i = 1:length(data)
sum = sum-+data(i);
intdata(i) = sum;
end

Deglitching: This function was used to clean certain data points that were too high or too
low to be considered for the code.

Deglitching.m

function datum=deglitching(vals)

[a,b]=size(vals);

times(1)=vals(1);

for i=2:a
times(i)=times(i-1)+vals(i);
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end
labels=ones(a,b);
[labs,resids] = ardeglch(vals, labels);
c=1;
fori=1:a
if labs(i)==

datum(c,1)=vals(i);

c=c+1;
end
end

ardeglch.m

function [labs,resids] = ardeglch(data, inlabels, modelorder, igrcrit)
% labs = arresid(data, inlabels, modelorder, igrcrit)
% identifies outliers in a time series by looking at the residuals of a forward and backward AR fit.
% Excludes from the fit beats labeled 0 in <inlabels>
% igrerit gives the criteria in inter-quartile range units for an outlier.
% Returns a vector of the same length as the data which contains a 0 for any beat marked as bad
either in inlabels or from the AR fit.
% [labs,resids] = ardegich...
% gives the actual values of the residuals as an optional second argument
if nargin < 3
modelorder = 3;
end

if nargin < 4
igrerit = 3.5;
end
% fit the forward model
labforward = arresid(data, inlabels, modelorder);
% fit the backward model
labbackward = arresid( data((length(data)):-1:1), inlabels((length(data)):-1:1), modelorder);
% take the smaller of the two residuals, remembering
% to put labbackward back in forward order.
labels = min(labforward, labbackward(length(data):-1:1) );
resids = labels;
% Compute the interquartile range and limits for outliers.
lims = prctile(labels,[25 50 75]);
igrange = lims(3) - lims(1);
bottom = lims(1) - igrange*igrcrit;
top = lims(3) + igrange*igrerit;
% bogus points are marked as 666666 in <labels> or as 0 in <inlabels>
labs = (labels > bottom & labels < top & labels ~= 666666 & inlabels ~=0 );

The following file is used to implement multifractal DFA algorithm
mfdfa.m

vals = nsr(3:length_size);
% Qq=-2;

for q = -20:20;

ifq~=0



% q=-2;

[slow,fast]=dfapengmul(vals,q);
slow1(g+21) = slow;
fast1(q+21) = fast;
end

end

slow1 = fliplr(slow1);

fast1 = flipir(fast1);

The below mentioned files supports the code for multifractal DFA.

function [slow,fast,resid,num] = dfapengmul(vals,q,slowlen,midlen,fastlen)
% function [slow,fast] = dfapengmul(vals,slowlen,midlen,fastlen)

% [slow,fast] = dfapeng(vals,slowlen,midlen,fastlen)

% <vals> -- the data, typically RR intervals

% <slowlen> -- a slow time scale, 64 beats by default

% <midlen> -- a medium time scale, 16 beats by default

% <fast> -- a fast time scale, 4 beats by defauit

% Returned values:

% <slow> --the power-law slope on the slow to mid time scales

% <fast> -- the power-law slope on the mid to fast time scales

if nargin < 5
fastlen = 4;
end

if nargin < 4
midlen = 16;
end

if nargin < 3
slowlen = 64;
end

[num,resid] = muldfa( vals, fastlen, slowlen, sqrt(2),q );
% fit the power-law of the faster time scales

goods = find( num >= fastlen & num <= midlen);

p = polyfit( log(num(goods)), log(resid(goods)), 1 );
fast =p(1);

% fit the power-law of the slower time scales

goods = find( num >= midlen & num <= slowlen);

p = polyfit( log(num(goods})), log(resid(goods)), 1 );
slow = p(1);

muldfa.m

function [num, resid] = muldfa(data, smallestbox, largestbox, step, q)

% [num, resid] = dfa(data, smallestbox, largestbox, step)
% dfa finds the detrended fluctuations

% data ... input data

% smallestbox ... smallest window size to use
% largestbox ... largest window size to use
% step ... stepsize

dcount = 0;

N=0;

num = 0;

N = length(data);

q

if nargin < 3



smallestbox = 3;
largestbox = floor(N/4);
step = 1.414;
end
N = length(data);
idata = dfahelpr(data);
if largestbox ==
largestbox = (floor(N/4));
elseif largestbox < 0
largestbox = (floor(N/4));
end
i = smallestbox;
=1
% g=-2;
while floor(i) <= largestbox
resid(j) = log10(multifractaldfa(floor(i),idata,q));
num(j) = log10(floor(i));
% resid(j) = (multifractaldfa(floor(i),idata,q));
% resid(j) = dfa(floor(i),idata);
num(j) = (floor(i));
i =i*step;
j=j+1;
end
%plot(num,resid)
%axis([0 4 -4 0]);

Multifractaldfa.m

%data=xlIsread('nsdata05.xIs',1,'a1:a10000");
%idata = dfahelpr(data);

%0q=2;

function resid = multifractaldfa(boxlength,intdata,q)
%load multifractaldata.txt;
%vals=multifractaldata(3:8000);
%intdata=dfahelpr(vals);

% resid = Ardf(boxlength,intdata)

% Ardf calculates the average rms of the detrended fluctuation
% intdata ... integrated input data

% resid ... result

%s=64;

%boxlength=s;

%q=-10;

s=boxlength;

N = length(intdata);
%N = length(idata);
Ns=floor(N/s);

bb = 0;
for k = 0:boxlength:(Ns-1)
datausedcount = k+boxiength;
ypoint = int_data((k+1):datausedcount); % divides the time series into segments
%ypoint = idata(k+1:k+boxlength);
ypoint = detrend(ypoint); % detrend: subtracts
vari=(sum(ypoint.’2))/s;
%  vari=(sum(ypoint.A2))
%  bb =bb+(1/((vari)q*0.5)));
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bb_temp(k+1) = (1/((vari)*q*0.5)));
clear ypoint;
end
temp1 = max(bb_temp);
temp2 = min(bb_temp);
scale_val = (temp1+temp2);
bb_temp = bb_temp./scale_val;

bb1 = bb;
bb = sum(bb_temp);
cc=0;

for =0:boxlength:(Ns-1)
datausecountrev=I+boxlength;
%ypoint=idata(N-I-boxiength+1:N-I);
ypoint=int_data((N-datausecountrev+1):(N-1));
ypoint=detrend(ypoint);
varir=(sum(ypoint.A2))/s;
%  varir=(sum(ypoint.A2))
cc_temp(l+1)=(1/((varir)}q*0.5)));
end
cc_temp = cc_temp./scale_val;
ccl =cc;
cc = sum(cc_temp);
% resid = 1/(((cc+bb)/(2*Ns))N1/(q)));
resid = (1/(cc+bb)(1/(q)));
resid = resid/(2*Ns);
resid = resid./(scale_val*(1/(q)));
%disp(resid);

Loop_fun.m
This file when run generates multitude of exponents for q varying from -20 to 20

data=['filename.txt'];
celldata = cellstr(data);
strings = char(celldata);
fori=1:1
nsr = feval(@load,strings(i,:));
length_size = 33000;

=1

while length_size <= 98000
newmfdfa1;
slow_result(j,:) = slow1;
fast_result(j,:) = fast1;
length_size
[
length_size = length_size+length_size
j=j+

end
result = [slow_result; fast_result]’

% xlswrite('muldfa_healthy',result,i+3);

xlswrite('resultforplotmfdfa002',result,i);

clear result

end
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