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ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF
POLYMER NANOCOMPOSITES

by
Nirav S. Patel

Polymer nanocomposites were produced by solution mixing of a commercial flexible

acrylic polymer paint, with nanofillers of different size, shape, aspect ratio and purity

such as hydrotalcite (HT), sodium montmorillonite (ΜΑΤ), single wall carbon nanotubes

(SENT) and fullerenes (FUL), at 5 and 10 wt% loading. Structural characteristics and

mechanical, thermal and barrier properties of the nanocomposites were characterized by

different techniques and compared to those of the unfilled polymer.

The presence of partially exfoliated and intercalated nanoplatelets in the polymer

resulted in increased 2% secant tensile modulus, and decreased tensile strength and

elongation at break, to different extents. While the presence of SENT improved the

mechanical properties of the polymer, the presence of FUL hampered the mechanical

properties. Storage modulus of the polymer was also improved in the presence of 10

wt% ΜΑΤ and SENT. While moderate changes in the Kg were observed in the presence

of fillers the thermal stability of the polymer was not improved by their presence. The

presence of all impermeable filler particles in the polymer improves its water vapor

barrier property. Significant differences in the properties of different composites when

compared to those of the unfilled polymer are attributed to the variations in

microstructure and properties, which greatly depend on the aspect ratio, surface area,

inherent properties, orientation and extent of interactions of the nanofillers with the

acrylic polymer.
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CHAPTER 1

INTRODUCTION

The term composite refers to any multiphase, multicomponent material that exhibits a

significant proportion of the properties of the constituent phases such that a better

combination of properties is realized. According to this principle of combined actions,

better property combinations are obtained by the judicious combination of two or more

distinct materials (Allister 2005).

Nature uses composites for all her hard materials. Aor example, wood consists of

strong and flexible cellulose fibers surrounded and held together by a stiffer material

called lignin. Also, bone is a composite of collagen and other proteins and calcium

phosphate salts.

A composite, in the present context, is a multiphase material that is artificially

made, as opposed to one that occurs or forph naturally. Aurther, the constituent phases

must be chemically dissimilar and separated by a distinct interface. Many composite

materials are composed of just two phases, one is termed as the matrix, which is

continuous and surrounds the other phase, often called the dispersed phase. In designing

composite materials, scientists and engineers have ingeniously combined various metals,

ceramics, and polymers to produce a new generation of extraordinary materials.

In this study, polymer nanocomposites consisting of an acrylic polymer as the

matrix and nanofillers of different size, shape and chemical composition such as

hydrotalcite (HT), sodium montmorillonite (EMT), carbon nanotubes (SENT) and

fullerenes (AUL) in carbon allotropes as the reinforcement media have been synthesized.
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The composites have been characterized with scanning electron microscopy and wide

angle X — ray diffraction to study the dispersion of the fillers in the polypher matrix.

These polymer nanocomposites have also been characterized for mechanical, therphal and

barrier properties and the results are reported in the subsequent chapters.



CHAPTER 2

POLYMER COMPOSITES WITH NANOFILLERS

2.1 General

World War 2 led to the explosive development of synthetic polymers such as nylon,

acrylic, neoprene, polyethylene and many more polymers which found a wide range of

applications in daily life due to their unique attributes such as ease of production, light

weight and often ductile nature. However, polymers have lower modulus and strength as

compared to metals and ceramics and hence had restricted applications. In order to

improve their mechanical properties, polymers were reinforced with inclusions (fibers,

whiskers, platelets, or particles), known as fillers. This addition of fillers into the

polymer matrix to make composites was expected to result in material properties

(mechanic, thermal stability and expansion, fire retardant, electrical and barrier

properties) not achieved by either phase alone, and often lower cost. This practice

improved polymer properties while maintaining their light weight and ductile nature;

hence, the addition of fillers to polymers gained a lot of importance over the years.

Aillers are classified as inorganic (e.g. oxides, hydroxides, silicates, metals) and

organic (e.g. carbon, natural and synthetic polymers) based on their chemical family.

The fillers are also classified based on their shape and size or aspect ratio (ratio of length

to diameter for a fiber or the ratio of diameter to thickness for platelets and flakes) as

described in Table 2.1 (Xanthos 2005). Aillers may also be considered as continuous

(long fibers or ribbons) or discontinuous (short fibers, flakes or particulates).

3
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Addition of these fillers to the polymer matrix needs to be done judiciously and

economically. It is not possible to have one universal technique for making polymer

composites due to the physical and chemical differences between each system, type of

equipment available and different property modifications required for different types of

applications. Melt mixing, in situ polymerization and solution mixing are the general

approaches employed for making polymer composites. The melt mixing process involves

heating a polymer and the filler mixture under shear, usually in an extruder, above the

softening temperature of the polymer. In situ polymerization involves preparing a

monomer solution or liquid monomer containing the fillers and then subjecting the

mixture to polymerization. The solution method involves dissolution polymers in

common solvents and addition of the fillers followed by evaporation of the solvent in

order to achieve the composites.

A prerequisite for effective reinforcement is optimal filler dispersion

(agglomerate disintegration) and spatial distribution of the resulting particles in the

polymer matrix. Aigure 2.1 gives a schematic illustration of the difference between

dispersion and distribution, giving examples of different extents for each (Scheduler

2003). The real interest in polymer composites comes from the fillers, which provide

value added properties not present in the neat matrix, without sacrificing the polymers
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inherent processibility and mechanical properties. Parameters affecting the properties of

polymer composites are:

1. The properties of the additives (inherent properties, size, shape).

2. Composition.

3. The interaction of components at the phase boundaries, i.e. the nature of the
interpose.

4. The method of fabrication resulting in different microstructures and filler
orientation.

Figure 2.1 Schematic representation of distribution and dispersion of fillers; good
distribution but poor dispersion (a), poor distribution and poor dispersion (b), poor
distribution but good dispersion (c), and good distribution and good dispersion.

Traditionally, discontinuous composites were reinforced with micron sized or

larger fillers. However, with the advances in technology and characterization techniques,

scientists were able to see and study the properties of the nanosized particles (10 -9 m) and

they found that nanosized particles had far superior properties like increase in surface
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area per unit volume and fewer defects, etc., when compared to their micron sized

counterparts ( Edelstein and Cammarata 1998 ).

As a result of improvement in properties and an increase in surface area with the

nanosized particles, polymeric nanocomposites (involving fillers having at least one

dimension in manometers) have been an area of intense industrial and academic research,

over the past 20 years, as they represent a radical alternative to conventional filled

polymers. A review on the recent work on polymer matrix nanocomposites is presented

by Jordan et al. (2005). Their review shows that even though no universal trend is

present in polymer nanocomposites, better properties of composites are realized with

nanofillers, which can lead to new applications. These nanofillers, irrespective of being

either fibers or platelets, have extreme aspect ratios, which result in six interrelated

characteristics distinguishing the resultant polymeric nanocomposites from classical filled

systeph (Vaia and Wagner 2004), at the same loading and extent of dispersion. They are:

1. Low percolation threshold (excluding spherical particles).

2. Particle-particle correlation (orientation and position) arising at low volume
fractions (excluding spherical particles).

3. Extensive interfacial area per volume of particles.

4. Shorter distances between particles and

5. Comparable size scales among the rigid particles fillers, distance between
particles, and the relaxation volume of polymer chains.

Based on the rules of mixtures, models for nanocomposites have been reported in

order to describe the mechanical, barrier and other properties of the composites taking

into consideration the type, shape and orientation of the fillers. Since the fillers

employed in this study have been restricted to discontinuous fibers, flakes or platelets and
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spherical particulates (additives that do not extend through the dimensions of the product

and are dispersed throughout the continuous matrix), equations helpful in modeling

properties using discontinuous fillers based on the above shapes of fillers, are provided.

They have been summarized by Xanthos (2005) as shown below.

Modification of modulus and strength of polymers is one of the most compelling

reasons for incorporating fillers into polymers. It is of utmost importance to select

suitable filler taking into consideration the end application of the composite. Aor

directional fillers with a certain aspect ratio (e.g. short fibers and flakes or plates)

embedded in polymer matrices, the load is transferred from matrix to fibers or flakes by a

shear stress and the ends of the fibers or flakes do not bare the load. An interpolation

procedure applied by Halpin and Tsai has led to the general expression (Equation 2.1) for

predicting modulus of composites containing short fibers and flakes or plates.

where,

Ε€ is the composite modulus,

Ε,,, is the matrix modulus,

ξ is the adjustable parameter related to the aspect ratio `a',

η =(Εf/Em — 1 )/(Εf/Εm+ξ),

E f is the filler modulus and

Af is the volume fraction of the filler.

Equation 2.1 is valid for measurements of tensile modulus in longitudinal direction

and it is modified based on measurements taken in transverse direction or at an angle to

longitudinal direction. The stiffness behavior of particulate composites devised by
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Aerner and further modified by Nielsen and co-workers is represented as shown in

Equation 2.2.

where,

AFB and X are parameters related to geometry, moduli, volume fraction and

packing fraction.

Models developed for strength of composites involving fibers and flakes take into

account that the matrix deforph more than the filler at the filler ends and shear stresses

are set up at the interface. Aailure to the composite may occur either by filler fracture or

bond fracture (filler pull out), depending on the filler aspect ratio. Α critical fiber length

Lc and platelet diameter der, defines the transition point between the two modes of failure

for fibers and flakes or platelets, respectively. Α critical aspect ratio, that determines

the transition from fiber or platelet fracture to failure by desponding or shear failure of the

matrix at lower stresses are given by Equations 2.3 and 2.4 for fibers and platelets,

respectively.

τ is the interface or matrix shear strength and σ is the ultimate fiber or platelet

strength.

The predictive equations used to describe the tensile strength of composites

containing short fibers or platelets ignoring the effect of adjacent fibers or flakes, and the
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presence of edges in irregularly shaped flakes are given in Table 2.2 (Xanthos 2005).

Different equations are obtained for tensile strength measurements in different directions.

Table 2.2 Strength Equations for Short Aiber and Alake Composites

Equation 2.5 is a general equation for the effect of particulate fillers on the

tensile strength of polymer, a common modification of this equation by Nicholas and

Narks (Equation 2.6), and an additional equation proposed by Piggott and Leidner

(Equation 2.7):

where,

a, b and c are constants depending on particle size and adhesion

λ is the stress concentration factor and

A is a constant depending on adhesion

Even though the models used for predicting the modulus and strength of

composites in the transverse direction, or at an angle to the longitudinal direction have

not been presented, it is important to summarize that the highest modulus in fiber

composites is obtained in the longitudinal case, at an application angle of 0° and that the
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lowest modulus is obtained in the transverse direction, i.e. in the extreme case of fiber

misalignment, which is at an angle of 90°. Thus, in composites with fiber reinforcement,

the composite modulus decreases rapidly with increasing orientation angle. However, in

the case of composites with oriented platelets or flakes in a plane, isotropy may be

achieved with modulus values higher than in the direction perpendicular to the flakes or

platelets plane. Similar to the modulus in fiber composites, maximal strength for fiber

composites is achieved in the longitudinal direction, with good adhesion, and at aspect

ratio well above the critical value and the strength also decreases with increasing angle of

application of stress. The strength of composites with platelets or flakes is isotropic in

the plane of oriented platelets or flakes and much lower perpendicular to the platelet of

flake plane axis.

In addition to mechanical property improvement, impermeable fillers also

enhance the barrier property of composites (Matayabas and Turner 2000) by providing an

increased resistance to transport of water vapor and other gases across the matrix. Ailler

particles, particularly platelets enhance the barrier property of polymers by providing a

tortuous path for the transport of permeates, i.e. by offering obstruction to the passage of

gases and other permeates through the matrix. A schematic illustration of the tortuous

path for barrier enhancement is presented in Aigure 2.2 (Matayabas and Turner 2000).

Based on this, a tortuous path model was developed by Nielsen. As per this model, the

barrier improvement is predicted to be a function of the volume fraction of fillers, If, and

a function of the aspect ratio of the plate fillers, a, as shown in Equation 2.8.
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where,

Pe represents the permeability of the resulting nanocomposites, and Pm represents

the permeability of matrix polymer.

Figure 2.2 Illustration of Nelson's tortuous path model for barrier enhancement of
composite.

2.2 Composites with Nanoplatelets

Recently, much attention has been paid to polymer nanocomposites with clays as fillers

having at least one dimension in the manometer range since they give rise to a high degree

of polymer — clay surface interaction which results in barrier and mechanical properties

that are far superior to those of the neat polymer matrix (Pinnavaiaa and Beall 2000).

With this idea, by using different clays and processing techniques, one can synthesize

polymer-clay nanocomposites with compositional and structural variations that can be

directed towards new applications.
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The principle used in polymer composites with clays as reinforcements is to

separate not only the clay aggregates, but also the individual silicate layers of clays in a

polymer. By doing this, the excellent mechanical properties of the individual clay layers

can function effectively, while the number of reinforcing components would also increase

dramatically because each clay particle contains hundreds or thousands of layers. Thus,

the preparation of polymer composites with clays requires extensive delimitation of

the layered clay structure and complete dispersion of the resulting platelets throughout

the polymer matrix for effective reinforcement. In situ polymerization, solution mixing

and melt mixing are the frequently used preparative methods for polymer — clay

composites.

Depending up on the strength of the interfacial interaction between the polymer

matrix and the layered clay, the Ian Der Wails forces of attraction between the clay

platelets, and the intensity of mechanical mixing, three different types of polymer — clay

composites structures maybe obtained, as shown in Aigure 2.3 (Abrade et al. 2000).

They are: intercalated, semi-exfoliated and exfoliated structures. Aigure 2.3 (a)

represents the well ordered and stacked multilayer of clays that result from intercalated

polymer chains within the clay layers. The semi-exfoliated structure is represented in

Aigure 2.3 (b), wherein the small stacks of polymer intercalated clay crystallites are well

dispersed within a continuous polymer matrix, along with a few individual platelets of

clays. Aigure 2.3 (c) depicts the host layers that have lost their entire registry during

processing and are well dispersed in a continuous polymer matrix; this is referred to as an

exfoliated polymer — clay composites.
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Figure 2.3 Schematic illustration of (a) intercalated: (b) semi-exfoliated and
(c) exfoliated polymer-clay nanocomposites.

2.2.1 Montmorillonite Clays

Examples of different processing techniques for obtaining polymer — montmorillonite

composites are given below.

Bulk polymerization of ε-caprolactone was carried out at 170°C in the presence of

water and hydrated synthetic montmorillonite, with additional catalysts in order to study

the structure of poly(ε-caprolactone)/synthetic montmorillonite composites by

Kiernowski et al. (2004). Their studies showed that while the polymerization rate was

enhanced in the presence of montmorillonite, the molecular weight of the final polymer is

lowered. Wide angle X-ray scattering studies of the composites showed that intercalated

structure was obtained with synthetic montmorillonite after the polymerization of ε-

caprolactone.

Solution mixing was employed by Chang et al. (2003) in order to compare the

properties of nanocomposites made from oregano montmorillonite (ΟΜΜΤ) and organ

mica with poly(lactic acid). CORD and TEAM results showed that for the ΟΜΜΤ

composite, the polymer chains were intercalated within the clay galaxies and that for 0-

mica composites, there were partially denominated sheets in the matrix and regions where
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a regular stacking of sheets ( semi — exfoliated structure) were maintained with a layer of

polymer between the sheets. Mechanical property characterization showed that the

introduction of oregano clay increases the elongation at break, the ultimate tensile strength

of composites also increases with loading up to a critical wt% loading. Their studies also

showed that the initial modulus increases with OMIT up to 4 wt% and up to 8 wt% for

O-mica. However, thermal studies surprisingly showed that with 4 wt% loading of

organo clay, the decomposition of composites occurs at a lower temperature when

compared to that of the unfilled polymer matrix.

Melt processing technique was employed by Jiang et al. (2005) to make Nylon

ΟΜΜΤ composites, in order to study the barrier property of the composite. Their

experiments showed that the reinforcement of Nylon 6 with OMIT resulted in improved

resistance to solvent permeation due to the increase in crystallinity and the decrease in

crystalline size of nylon 6 with optimum value of clay loading along with the more

tortuous path encountered by the diffusing molecule due to the presence of clay.

Tensile properties of nanocomposite with organo montmonllonite and high

density polyethylene (HOPE) were studied by Osman et al. (2005). Their study showed

that even partial exfoliation of ΟΜΜΡ would affect the mechanical properties of

composites. Their results showed that enhanced exfoliation would not only slightly

increase the elastic modulus and yield stress, but at the same time it would also decrease

the yield strain and stress at break. Aurthermore, they also showed that with increasing

filler loading at low loading levels, while the elastic modulus of the composites would

increase, all other tensile properties would decrease.
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2.2.2 Hydrotalcite

Α melt mixing process was employed by Velasco et al. (2005) for preparing

nancomposites from polypropylene homopolymer (PP) and high density polyethylene

(HDPE), with unmodified magnesium aluminum type of layered double hydroxides

containing carbonate ions (LDH) and an organic modified LDH(DS). Studies showed

that while the Young's modulus and tensile strength increased for nancomposites with

PP the mechanical properties were practically unaffected by the presence of fillers for

HDPE composites. Thermal characteristics from DSC showed that the crystallization

temperature was significantly affected with the presence of LDH(DS) in PP.

nancomposites with HOPE showed little or no changes in thermal studies. Their

studies also showed that the flame behavior of both polymers were modified by the

presence of nanofillers.

Wagenknecht and Coasts (2005) studied the rheological , thermal and mechanical

properties of composites of polyethylene with magnesium hydroxide nanoplatelets

(layered double hydroxide based on Mg and Al). Their thermal studies showed that there

was a significant improvement in thermal stability with 10phr loading of the filler.

Mechanical studies showed that while the modulus and elongation at break increased, the

tensile strength was reduced in the presence of the filler.
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2.3 Composites with Carbon Allotropes

2.3.1 Carbon nanotube

There has been a tremendous interest in carbon nanotubes ever since their discovery by

lijima (1991), in large part because they possess unique structural and electrical

properties along with excellent mechanical properties. Single walled (SENT) and multi

walled (MINT) are the two general classifications of carbon nanotubes. In particular,

considerable interest surrounds the concept of nanocomposites based on carbon

nanotubes as a means to capitalize on their extraordinary properties on a macroscopic

scale. It is believed that polymer carbon nanotube composites will have a significant

impact on emerging advanced products ranging from aerospace, automotive and proton

exchange membrane fuel parts, to surgical implants and to components of

nanoelectronics (Iqbal et al. 2005).

As mentioned before, several processing methods are available for producing

polymer carbon nanotube composites based on either thermoplastics or thermosets, such

as solution processing, in-situ polymerization and melt mixing. Even though these

techniques are inherently different, all of them attempt to address the issues described

before for nanosized fillers, in order to achieve the effective utilization of nanotubes

through alignment, uniform dispersion in the polymer matrix and good interfacial

bonding, the latter affecting the load transfer across the polymer — nanotube interface.

Arbon nanotubes, owing to their small size, tend to remain agglomerated in the

polymer matrix and uniform dispersion is not easily achieved. This is one of the most

significant probleph in making composites and this problem is further aggravated with

the use of water based polymers, since carbon nanotube are hydrophobic in nature.
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However, in order to achieve good reinforcement in a composite, it is critical to have

uniform dispersion within the matrix. Sodium Dodecyl Sulfate was used as an effective

dispersing agent for carbon nanotube in water by Jiang et al. (2003). Other investigators

have used other methods in order to achieve good dispersion in the polymer matrix such

as: a solution evaporation method with high energy sanitation (Dian et al. 2000),

surfactant assisted processing through formation of a colloidal intermediate (Shaffer and

Bindle 1999) or covalent fictionalization of nanotubes with polymer matrix (Scratcher

et al. 2001), in order to achieve good dispersion in the polymer matrix.

Literature examples on preparation and characterization of carbon nanotubes

composites are given below.

In situ polymerization of ε-caprolactam in the presence of pristine and

carboxylated multiwal carbon nanotubes was used by Chao et al. (2005) to prepare

Polyamide carbon nanotube composites. They ultrasonically dispersed CND's in a

mixture of ε-caprolactam and water to form a homogeneous polymerization master

solution. Then, additional ε-caprolactam was added to obtain composites using typical

Polyamide 6 hydrolytic polymerization conditions. Viscosity measurements showed that

low loadings of 5wt% of CND's have minimal effect on molecular weight. Mechanical

studies on the composite showed that while the presence of CND's in Polyamide 6 has

little effect on the yield strength, they improved the tensile strength marginally and

decreased the elongation at break. CND's also increased the storage modulus of the

composites slightly. Their studies also show that while the CND's have no effect on the

melting temperature of the composites, they slightly increased the crystallization and

glass transition temperature. Using a similar technique of in situ polymerization, Park et
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al. (2002) achieved uniform dispersion of single wall carbon nanotube bundles in the

polymer matrix which resulted in a sharp increase in conductivity at a low loading of 0.1

viol%. Their dynamic mechanical analysis showed a 60% improvement in the modulus at

1.0 νο% of SAINT loading. The thermal conductivity of the composite was also

enhanced with the addition of BEND'S.

Different compounding methods such as ball milling, high shear mixing in melt

and extrusion using twin screw extruder were employed by Ma et al. (2003) to make

polyester/carbon nanotubes composites. These composite resins were further melt spun

into fibers using conventional fiber spinning conditions. Mechanical property studies

revealed that even though the tensile strength and modulus of the composite did not

improve significantly, the torsion moduli of the composite fibers were considerably

higher than the control PET fiber. Their study also revealed that there may be an

optimum fiber length which provides for effective reinforcement and easy processing.

Thostenson and Chou (2002) dispersed 5 wt% MINTS in a polystyrene matrix

with the help of a twin screw extruder. Dispersion of nanotubes was followed by

extruding the polymer melt through a rectangular die and drawing the film prior to

cooling or by pressing a film using a hydraulic press in order to obtain aligned or

randomly oriented composites filph, respectively. Characterization of filph revealed

that addition of nanotube increased the tensile modulus, yield strength and ultimate

strength of the polymer film. They also showed that with an aligned nanotubes composite,

the elastic modulus was 5 times greater than that for a randomly oriented composites.

Similarly, Haggenmueller et al. (2000) also showed that the electrical and mechanical
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properties of poly(methyl methacrylate) containing SCENT improved with the alignment

and wt% of carbon nanotubes (up to 8 wt% purified soot).

Space durable polymer (polyimide) composites filph using carbon nanotubes

were synthesized by Delozier et al. (2005), using a solution technique. Their studies

revealed that the prepared filph exhibited electrical conductivity in the range, sufficient

to dissipate static charge. But, the inclusion of SENT in the polymer had a negligible

effect upon the Kg and little or no effect on the tensile properties.

According to Khakis et al. (2002), single wall nanotubes were dispersed in

chloroform or toluene with the help of a high power ultrasonic probe. Ρoly(3-

octylthiophene) was also dissolved in chloroform and toluene. The above were mixed in

appropriate quantities and the final solution was briefly solicited. They reported that

doping of a conducting polymer with nanotubes to form a composite increased the

conductivity of the composite by five orders of magnitude.

Arbon nanotube/PMMA composites were fabricated by melt blending and

compression using a hot press by Jin et. al. (2001); their method did not cause any

damage to the nanotubes. AGA studies of the EMMA and the composites under nitrogen

atmosphere showed that with the incorporation of the MWNT into the LEMMA, the onset

of degradation occurs at a higher temperature. Hence, the MINT provide a stabilizing

effect on the PPMMA. Oynamic mechanical analysis showed that the storage modulus of

LEMMA was increased with the help of nanotubes, this effect was even more pronounced

at higher temperatures. DMA analysis also showed that the glass transition temperature

of the composite increased in the presence of nanotubes.
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2.3.2 Fullerenes

The influence of Fullerenes additives on thermal behavior and thermodegradation of poly-

n-alkyl acrylates, from butyl to heptyl, and of corresponding polymethacrylates was

studied by ZZuev et al. (2005) using thermostability in dynamical conditions and

pyrolysis/gas chromatography in isothermal conditions at 400 — 650°C. Their studies

showed that Fullerenes modifies the degradation products distribution, suppressing the

decomposition reaction with radical pathway and shifting the thermodegradation to non

radical side-chain reactions. Their studies also showed that Fullerenes acts as an effective

stabilizer increasing the thermostability of the polymers. However, the increase of the

temperature to maximum weight loss is noticeably higher for poly-n-alkyl methacrylates.

Literature search on examples for preparation and characterization of Fullerenes

composites did not result in the identification of other papers, related to this study.



CHAPTER 3

EXPERIMENTAL

3.1 Materials

3.1.1 Acrylic Paint Polymer

The polymer used to prepare the composite was a water based acrylic protective finish

(Minwax® Polycrylic®, Minwax Co., NJ) drying to a clear flexible film. According to

the manufacturer's safety data sheet, the paint has a specific gravity of 1.03 and contains

71% of volatile content by volume. In addition to water, and other chemicals which are

exempt from listing on the TUSCAN inventory, solvents used in the paint include propane,

1(or 2)-(2-methoxymethylethoxy); (2-methoxymethylethoxypropanol), 1-(-butoxy- l -

methylethoxy)-2-propanol; (1-(2-butoxymethylethoxy)-propanol), ethylene glycol,

2-methoxymethylethoxypropanol, 1-methyl-2-pyrrolidinone. The pH of the paint as

reported on the MODS is 8.1.

3.1.2 Hydrotalcite

Hydrotalcite is a natural mineral with a white color and pearl like luster. Natural

hydrotalcite is a hydrated magnesium-, aluminum-, and carbonate-containing mineral

with a layered structure. Hydrotalcite can also be made synthetically in order to have

different compositions by replacing the carbonate anions with other anions (Eatel 2005).

The composites involving hydrotalcite were formed by using uncoated hydrotalcite (HT)

(trade name CLC-120), obtained from Doobon Yuhwa Co, Ltd, S. Korea. The

hydrotalcite was obtained in the form of white powder, with a reported average particle

size of 0.4-0.5 Om and having a molar ratio for MgO/Α12O 3 of 4.0-5.0. A typical
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The three-dimensional,

double layered structure of a typical hydrotalcite consisting of magnesium and aluminum

hydroxide octahedrons, interconnected through their edges can be seen in Aigure 3.1

(Eatel 2005). Results of ED for the hydrotalcite sample is given in Appendix A.1 and

particle morphology showing platelets of low aspect ratio are shown in Figure 4.3.

3.1.3 Sodium Montmorillonite

Sodium Montmorillonite, or natural sodium bentonite is a rock composed essentially of

crystalline clay like mineral, formed by devitrification, and the accompanying chemical

alteration of a glassy igneous material, usually a turf or volcanic ash. This clay belongs

to the family of smectite group of clay minerals, which have excellent intercalation

abilities. Sodium montmorillonite is composed of hydrated aluminum silicate and as the

name suggests occurs with sodium as the predominant exchange cation. The composites
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(Miami 2002). In size, SWNT's are close to fullerene molecules and have a single layer

cylinder extending from end to end. They possess good uniformity in diameter of 1-2nm.

Figure 3.4 Schematic picture of single walled carbon nanotubes.

The perfect alignment of the lattice along the tube axis and the closed topology

endow nanotubes with in-plane properties of graphite, such as high conductivity,

excellent strength and stiffness, chemical speciality, inert toughness and good electronic

properties. Carbon nanotubes have a very broad range of these properties depending on

their diameter, length and chirality or twist. The measured and theoretical properties of

both SCENT and MINT are shown in Table 3.1 (Scheduler 2003).

Table 3.1 Eroperties of Carbon Nanotubes
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The single walled carbon nanotube (SAINT) sample used in the preparation of

composites in this work was kindly provided by Erof. Roman Dubrovsky (Department of

Mechanical Engineering, NJIT). Soot containing SINT's was produced by the arc

discharge method. The arc is generated between two graphite electrodes in a reactor

under helium atmosphere. A mixture of 1% Y and 4% Ni was used as a catalyst. The

resulting soot containing SINT's is removed from the reactor and is normally subjected

to purification. In the present study, the sample used contains up to 15 wt% SINT's in

carbon soot. The ED results of the samples used in the preparation of the composites is

given in Appendix A.3. Particle morphology indicating the presence of some very high

aspect ratio flexible fibers is shown in Aigure 4.9.

3.1.5 Fullerenes

Aullerenes are similar to graphite in structure, since they tend to form by rolling up of

graphite sheets and adding pentagons to achieve curvature. The smallest fullerene, which

is one of the most stable forms of carbon atom cluster is also known as

buckminsterfullerene and it contains 60 carbon atoms bonded in the near spherical

configuration, as shown below in Aigure 3.5 (Yarns).
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In a C60 molecule, each carbon atom is equivalent to all others (i.e., they all have

the same number of neighbors, bonded at the same relative angles). It has a tricated

icosahedron shell structure, with 20 hexagons and 12 pentagons attached in a manner that

no 2 pentagons are adjacent to each other. A C60 molecule or "Lucky ball" is about

0.7nm in diameter.

The fullerenes (AUL) sample used in the preparation of the composites in this work

was kindly provided by Erof. Roman Dubrovsky (Oepartment of Mechanical

Engineering, NJIT). The method used in the production of fullerene has been reported

by Dubrovsky and Bezmelnitsyn (2004) as a novel technique based on the arc discharge

method. They employed the gas outflow approach using a modified cathode, with a

longitudinal inner channel to inject helium as a buffer gas to the graphite electrode gap

between the cathode and the anode. Their idea was that the radial gas outflow will

evacuate the rapidly produced vapor from the hot plasma zone to the reactor and increase

the fullerenes yield % in the carbon soot at an optimum level of dilution by the buffer gas.

They also showed that with increasing anode surface temperature, above a certain critical

temperature the efficiency of fullerenes formation is diminished inspire of increasing the

amount of vapor. Accordingly, in order to obtain good quality of carbon vapor suitable

for fullerenes formation it is necessary to maintain a hot anode surface whose temperature

is equal to or less than the critical temperature. Any increase in temperature above this

critical value will result in the production of soot but not fullerene. The authors used

their findings to obtain a maximum yield of vaporized graphite under optimum outflow

arc discharge conditions and an optimum temperature of the surface of anode. In the

present study, the sample used contains up to 10 wt% fullerene in carbon soot. The
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ED result of the fullerenes sample used in the preparation of the composites is given in

Appendix A.4. Particle morphology indicating the presence of particulates with an aspect

ratio close to unity is shown in Aigure 4.10.

3.2 Processing of Composites

The processing method employed in the synthesis of polymer nanocomposites was a

mixture of solution mixing and solvent casting. Nanofillers (5 or 10 wt% based on paint

solid contents) were dispersed in the acrylic polymer paint by sonication for 2 hours

(temperature at the end of sonication was 35°C), and subsequently by a mechanical shear

mixer for 20 minutes at room temperature. In order to remove the bubbles formed during

mixing, the mixture was further subjected to 6 hours of magnetic stirring at room

temperature. Paint filph (composites) containing the nanofillers were drawn down to

about 1 mm thickness, on Teflon sheets with a ScYK Gardner knife coating device. 4-5

ml of 1 wt% dactyl sulfosuccinate sodium salt (Sigma Aldrich (CAS# 577-11-7) solution

in distilled water, was used to facilitate the wetting of the hydrophobic fullerenes and

single walled nanotubes samples with paint. Paint filph of acrylic polymer without the

nanofillers were also prepared, as the reference composite used in the comparison of

properties of various composites. All the filph were dried at room temperature for 5

days, followed by drying at 50°C under vacuum for 24 hours. The average final

thickness of the filph at the end of drying was varying from 0.098 to 0.58 mm. The

acrylic polymer film was transparent after drying. Ihile the filph with hydrotalcite and

montmorillonite fillers were transparent to translucent due to the dispersion of the fillers,

the films with nanotubes and fullerenes as fillers were opaque and black in color.
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3.3 Testing and Characterization

3.3.1 Scanning Electron Microscopy (SEAM)

λ LEO 1530 emission scanning electron microscope was used for SEM observation. The

correction samples were sputter coated with carbon prior to their observation. However,

no sputtering was required to view the nanofillers alone. The surface atomic composition

of the nanofillers was examined by energy dispersive X-ray analysis.

3.3.2 Wide Angle X-Ray Diffraction (WARD)

The structure of nanofillers and composites was determined by X-ray diffraction (ORD),

using a Ehilips PW3040 diffraction (Cu Κα radiation λ=1.5406Α, generator voltage =

45 kV, current = 40 μλ) in order to determine the effects of polymer on inter planar

distance. All the specimens were scanned in 28 ranges from 1 °— 50° at a rate of 1 °/min.

Measurements were recorded for every 0.03°. Elots of intensity versus 20° were plotted.

Changes in the interloper spacing `d' of fillers after dispersion in the polymer matrix were

measured using the Bragg's law of diffraction (Equation 4.1).

where,

n is an integer,

λ is the wavelength of the incident X-ray beam in λ and

θ is the angle of incidence in degrees.
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3.3.3 Mechanical Properties

3.3.3.1 Tensile Properties. The tensile strength, elongation at break and the 2% secant

modulus of the composites were measured using a Tinius Olsen LoCap universal testing

machine, using the ASTM D 882 procedure. While the initial gap separation was 2.54cm

for all measurements, the crosshead speed of 25.4cm/mm was used for strength and

elongation measurements and the crosshead speed of 0.254cm/mm was used for the

secant modulus measurements at room temperature. Test specimens of 1.27cm width,

8cm length and 0.2-0.4mm thickness were machined out from the composites for the

above measurements. Multiple measurements were taken for each composite in order to

estimate the precision of the results.

3.3.3.2 Dynamic Mechanical Analysis (DMA). DMA was performed under nitrogen

atmosphere using a DATA 4 (Geometric Scientific) at a heating rate of 5.0°C/min. The

dynamic temperature ramp test was done at a vibration frequency of 1 Hz, with the

temperature range from -40°C to 150°C at a strain of 0.05%. The specimens used for

measuring storage modulus and tan were rectangular in shape and had approximate

dimensions of 16mm*4mm*0.3mm.

3.3.4 Thermal Analysis

3.3.4.1 Differential Scanning Calorimeter (DSC). Information on the glass trans

-ition temperatures of the polymer and the composites were got by using TA Instruments'

DA 100 differential scanning calorimeter. All samples were scanned at heating and

cooling rates of 15°C/min, from - 60°C to 200°C in a nitrogen atmosphere.
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3.3.3.2 Thermogravimetric Analysis (TOGA). The thermal stability of nanofillers,

polymer and composites were studied using TA Instruments' DA 50 thermogravimetric

analyzer. Tests were carried out using a ramp from room temperature to 500°C, with a

scan rate of 10°C/min in nitrogen atmosphere.

3.3.5 Barrier Property

The permeability test of the composites conformed to the ASTM Standard Test Methods

for Water Vapor Transmission of Materials (ASTM E-96). Specifically, the water method

was used for testing the composite samples. This test evaluates the amount of water that

permeates through the material being tested. A cup was filled with distilled water

leaving a small gap (18 to 6 mm) of air space between the specimen and the water. The

cup was then sealed to prevent any vapor loss from locations other than the test sample.

Apart from noting down the initial weight of the cup assembly, the cup assembly was

periodically weighed over time until linearity was achieved in a plot of weight change

versus time. Iater vapor transmission rate (WVTR) was calculated using Equation 3.6.

where,

G = weight change from the straight line, g; t = time, hr; G/t = slope of the

straight line, g/hr; A = test area (cup mouth area), m2 , and IVTR = rate of water vapor

transmission, g/hr.m2 .



CHAPTER 4

RESULTS AND DISCUSSION

This section will provide results from the experiments carried out to elucidate the effects

of the different fillers on the properties of the polymer nanocomposites. Results for the

acrylic polymer alone will also be reported in order to compare the properties of the

polymer with those of the composites.

4.1 Scanning Electron Microscopy of Fillers and Composites

Scanning electron microscopy was used to qualitatively characterize the distribution of

nanofillers, along with their orientation within the acrylic polymer. Cross section images

of the cryofractured and tensile fractured composites were studied. The cross sections of

composites were subjected to carbon sputtering in order to avoid charging. SEAM images

of the nanofillers prior to their incorporation in the polymeric matrix were also taken for

comparison.

Aigure 4.1 (a), (b) and (c); show selected images of cryofractured PHT — 5

(polymer wt% hydrotalcite), while Aigure 4.2 (a), (b) and (c); present the selected

tensile fractured sections of PHUT - 5. Images of as used HT platelets of low aspect ratio

and irregular particles are also shown in Aigure 4.3 (a), (b) and (c), for comparison.
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Aigures 4.1 and 4.2 not only show good distribution of the HT filler in the acrylic

polymer (PACER) but also show poor adhesion to the matrix. These images also show

thcιΡt tlii'rn is nn aÍiπnmρnt of 411a NT filler nlateletc 1Y1 the nlmne of λrαω dnwii



(c)

Figure 4.3 (a), (b) and (c) SEAM images of as used HT. (Continued)

Selected SEE image of the cryofractured MMT - 5 (polymer wt% sodium

montmorillonite) composite is shown in Aigure 4.4; the selected tensile fractured images

are shown in Figure 4.5 (a) and (b). SEM images of the as used EMT aggregates prior to

dispersion are also shown in Aigure 4.6 (a), (b) and (c). These images show good

distribution of intercalated EMT platelets in the acrylic polymer and they also show that

there is no alignment of the platelets in the plane of draw down. Adhesion also appears

to be poor.



(a)

Figure 4.5 (a) and (b) SEAM images of tensile fractured correction
of MET - 5.
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Figure 4.6 (a), (b) and (c) SEAM images of as used EMT.



Figure 4.6 (a), (b) and (c) SEAM images of as used EMT. (Continued)

Even though the cryofractured image of PAINT - 5 (polymers wt% SAINT),

Aigure 4.7 does not reveal much information, the tensile fractured images of PAINTS - 5,

Aigure 4.8 (a), (b) and (c) show interesting pictures of agglomerates of well distributed
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carbonaceous materials that could ANT. Images of SWANT with very high aspect ratio

embedded in carbonaceous material are shown in Aigure 4.9 (a), (b) and (c), representing

selected areas of the as received samples.

(a)

Figure 4.8 (a), (b) and (c) SSEM images of tensile fractured correction
ofPAWNT-5.



(c)

Figure 4.8 (a), (b) and (c) SSEM images of tensile fractured correction
of PAINT — 5. (Continued)
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Figure 4.9 (a), (b) and (c) AHEM images of as used ANT.
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Aigure 4.10 (a) and (b) show images of the sample identified as fullerene (AUL)

consisting of a variety of irregular and plate nanoparticles of low aspect ratio. Cross

section images of CAUL — 5 (polymer wt% fullerene) are not presented since no distinct

features could be seen.
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Figure 4.10 (a) and (b) AHEM images of as used AUL.
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4.1 Wide Angle X-Ray Diffraction Analysis of Fillers and Composites

Scanning electron microscopy images alone are not sufficient to characterize the

nanocomposite. Hence, WARD was used to probe the composite structure due to its

easiness and availability. In IARD, by monitoring the position, shape and intensity of

the basal reflections from the distributed nanofillers, specific features of the

nanocomposite structure mop be identified.

The WARD patterns of the PACR, as used HT and PHUT - 5 are presented in

Aigure 4.11. This figure shows a strong peak at 28 = 11.45° for HT, which is due to the

gap in the interloper platelets of the hydrotalcite clop and it corresponds to a d001 spacing

of 7.77A ° . However, in the PHT - 5 composite, a new peak appears at a lower angle of

28 = 3.65°, which corresponds to an interlope d001 spacing of 24.18A°. This may be due

to partial intercalation of the HT by PACER. In addition to the increase in the d001 spacing

of hydrotalcite, there is also a slight loss in intensity of the basal reflection of HT

presumably due to partial exfoliation of HT by PACER. Hence, the PHUT - 5 composite

corresponds to a hybrid structure consisting of partially exfoliated and intercalated HT.
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The IARD patterns of PACER, ΜΜΤ clop and EMT — 5 are shown in Aigure

4.12. This Aigure shows a peak at 28 = 8.410 for ΡΜΜΤ, which corresponds to a d001

spacing of 10.26Α°. This peak is shifted to a lower angle of 28 = 5.15° (d 001 =

17.16A ° ) in the ΠΜΜΤ — 5 composite. This increase in the interloper spacing indicates

that ΡΜΜΤ is intercalated by PACER.



Aigure 4.13 and Aigure 4.14 represent the WARD patterns obtained for PAWNT

(PAINT - 5) and fullerene (PAULA — 5) based composites containing 5 wt% loading of

fillers, respectively. In contrast to the composites filled with nanoplatelets, no

appreciable changes were observed in the CORD patterns and further studies using ΕΜ

would be required to draw any conclusion since ΕΜ allows for qualitative

understanding of the internal structure, spatial distribution of the various phases, and

views of the structure through direct visualization.
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2θ

Figure 4.13 WAXRD patterns of PACER  (-), SWONT  (—) and PAINTS -5 (—).



4.3 Mechanical Properties

As mentioned earlier, modification of mechanical properties is one of the most

compelling reasons for addition of fillers to polymers. In this section, the results obtained

for tensile strength and elongation at break, 2% secant modulus and dynamic mechanical

analysis results for stresses applied only in tension are reported for all the composites

studied.

Multiple readings per composite were taken to estimate the precision of the

reported tensile property data. Atatistical analysis appeared to be necessary due to the
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variations in results. Average values (AVER) were calculated from the multiple readings

(n) and the standard deviation (STDEV) was calculated as shown in Equation 4.1.

Values of coefficient of variation (CV) were calculated using Equation 4.2, this was

necessary in order to measure the reliability of the results.

4.3.1 Tensile Properties

Table 4.1 contains tensile property data of PACER and its composites made with different

fillers at 5 and 10 wt% filler concentration. This Table provides information on the

engineering tensile strength and elongation at break, and 2% secant modulus results of

composites in the draw down direction. Figures 4.15, 4.16 and 4.17 show relative

changes of tensile strength at break, elongation at break and 2% secant modulus for all

composites, versus the unfilled matrix. As expected, the tensile properties depend on the

inherent properties of the filler, filler shape and size, extent of interaction at the phase

boundaries, and the dispersion and orientation of the fillers in the polymer matrix. It

should be noted that caution is required in the interpretation of the results and the

identification of trends given the relatively high CV's and small number of specimens

tested for some compositions.



Table 4.1 Mechanical Properties of PACR and its Nanocomposites in the Draw
Down Direction
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Figure 4.15 Relative tensile strength at break of PACER and its composites.



Figure 4.17 Relative 2% secant modulus of PACER and its composites.
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Aigures 4.15 and 4.16 show that the presence of 5 wt% HT in PACR results in

lower tensile strength and elongation at break, respectively. However, Aigure 4.17 shows

that there is an increase of over 70% in the 2% secant modulus of PACR with 5 wt% HT.

This appreciable improvement in the elastic modulus of the PHUT — 5 composite mop be

the result of the partial exfoliation of the HT filler in the PACR since the improvement of

modulus directly depends upon the aspect ratio of fillers. Exfoliation results in increased

aspect ratio of fillers, which, in turn results in increased interfacial interaction between

HT and the PACER.

Intercalated composites obtained with the addition of 5 wt% ΜΑΤ to the acrylic

polymer show a relative increase in the 2% secant modulus, as can be seen in Aigure

4.17. However, the tensile strength at break decreases somewhat and there is also a

marginal decrease in the elongation at break, as shown in Aigures 4.15 and 4.16,

respectively. The different effects of HT and ΜΜΤ on the mechanical properties of the

polymer may be attributed to difference in the inherent modulus of the filler, extent of

interfacial interaction, aspect ratio and orientation.

Aigures 4.15, 4.16 and 4.17 show that while the elongation at break was slightly

reduced by the presence of 5 wt% SWONT filler, the 2% secant modulus increased by

nearly 70% and a marginal improvement in tensile strength at break was observed. This

improvement in mechanical properties may be due to more efficient load transfer

between the matrix and the SENT, as well as the alignment of the SCENT in the polymer

matrix. However, it is reasonable to believe that the presence of the carbonaceous

material impurities along with the SCENT, and the degradation of carbon nanotubes

during processing (reduction in length during sanitation) might have contributed to the
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low properties of the composite. To elucidate on these issues, the dispersion state of

SAINT in the polymer was investigated by SEAM and XXRD. However, very little or no

information could be obtained from these two techniques and transmission electron

microscopy would be necessary to study further.

The presence of 5 wt% fullerene in the acrylic polymer resulted in over 20%

reduction in tensile strength at break and over 50% decrease in elongation at break, as

shown in Aigures 4.15 and 4.16, respectively. The presence of fullerene makes the

acrylic polymer less ductile. One of the reasons for the deterioration of properties with

fullerene may be due to their very low aspect ratio when compared to the other fillers.

Table 4.1 also provides 2% secant modulus results obtained with 10% loading of

ΡΜΜΡ (ΡΜΜΤ — 10) and carbon nanotubes (PSWNT - 10) in the acrylic polymer. It is

evident that the modulus of the polymer increases over 350 % with an increase in 5 wt%

loading of EMT to 10 wt% and only a marginal improvement in modulus was obtained

with 5 wt% increase in loading to 10 wt%, for the SWNT filler.

The mechanical properties of composites were measured perpendicularly to the

draw down direction in order to confirm the trends predicted in the models, provided in

Chapter 2. According to the models, highest modulus and strength in composites with

fibers is obtained in the longitudinal case, i.e. at an application angle of 0°. Accordingly,

the composite strength and modulus would decrease rapidly with increasing orientation

angle, i.e. even a few degrees of misalignment can significantly reduce the strength and

modulus. As for the flakes or platelets oriented in a plane, isotropic properties are

expected to be achieved in the plane.



Table 4.2 Mechanical Properties of PACER and its Nanocomposites Perpendicularly
to the Draw Down Direction
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In this context, Table 4.2 provides information on the tensile strength and

elongation at break, and 2% secant modulus of composites with different fillers,

perpendicular to the draw down direction. These results show deviations from those

expected for flakes and platelets; this mop be a result of the misalignment of HT and

EMT platelets by different angles, relative to the x-y plane and hence isotropy is not

achieved. However, as expected, the values of tensile strength at break and the 2% secant

modulus of the PARENT composite are reduced perpendicularly to the draw down

direction due to the presence of fibers. Aor both 10 wt% PMMT and PENT, 2% secant

modulus is higher in the draw down direction than in the transverse direction. At this

juncture it is important to note that, in the above argument, it is assumed that the

properties of the acrylic polymer are isotropic.
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4.3.2 Dynamic Mechanical Analysis

DMA was used to measure the response of the different composites to an oscillatory

deformation as a function of temperature. DMA has been used to study temperature

dependence of the storage modulus of PACR and its composites with 10 wt% loading of

EMT and SCENT. Variations in tan δ behavior as a function of temperature between the

composites are also reported.

Aigure 4.18 shows that the storage moduli of PACR, MMT — 10 and PAINT —

10 rapidly decreases in the temperature range of -25° to about 40°C, an indication of a

possible glass transition temperature. The storage modulus of PACR is increased by the

stiffening effect of the fillers, which is particularly significant with EMT clops at higher

temperatures, followed by that with ANT. In the entire temperature range from -40°C

to 150°C, the storage modulus of PSWNT - 10 is higher than that of MMT — 10 in the

temperature range from -4°C to 35 °C. The modulus of both the composites is more or

less the same at 0°C whereas at 150°C ΡΜΜΤ — 10 shows a 3-fold increase and PSWNT

— 10 shows a unfold increase versus the unfilled PACR.
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Aigure 4.19 shows variations in the tan δ as a function of temperature for PACR,

ΠΜΜΤ — 10 and PSWNT — 10. The Aigure shows that PACR has a glass transition

temperature at around 20°C. The Aigure also shows that the presence of 10 wt% BET in

the acrylic polymer shows some broadening of the peak, and moves the peak to a slightly

higher temperature. However, the presence of 10 wt% A INTO only slightly increases the

Kg of the acrylic polymer.
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4.4 Thermal Analysis of Fillers and Composites

4.4.1 Differential Scanning Calorimeter Analysis

The DAC technique provides quantitative and qualitative information about the physical

and chemical changes that generate or absorb heat as well as changes in heat capacity

using minimal amounts of sample. The DAC thermographs for the polymer and all its

composites can be found in Appendix B. All specimens were scanned at heating and

cooling rates of 15 ° C/min from -60°C to 200°C in a nitrogen atmosphere in order to take

measurements of glass transition temperature and/or melting temperature. However, our

experiments did not indicate any melting characteristics in the temperature range of -60°

to 200°C as can be seen in the thermographs. DAC heating scans up to 200°C indicated
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that a transition temperature corresponding to Kg occurred at about 20°C, similar to the

location of tan peak, although abrupt changes in heat flow versus temperature curves

could not be easily detected. Aimilar curves were obtained for composites with 5 wt%

loading of fillers. Table 4.3 summarizes the glass transition temperatures of PACR and

its composites from the plots in Appendix B, to the best of our understanding of the

software. The table shows that the presence of 5 wt% HT, EMT and SAINT appears to

reduce the glass transition temperature of the polymer. The Table also shows that the

presence of 5 wt% AUL appears to increase the Kg of PACR by about 2°C. These results

should be viewed with caution given the presence of residual volatile in a closed DAC

pan that could affect the readings.

Table 4.3 Apparent DAC Glass Transition Temperature of PACR
and its Nanocomposites

4.4.2 Thermogravimetric Analysis

The thermal stability of polymeric materials is usually studied by thermogravimetric

analysis (TOGA). The weight loss due to the formation of volatile products after

degradation at high temperature is monitored as a function of temperature. A non

oxidative degradation test was done on the polymer and its composites used in this study.

The dried commercial acrylic polymer would contain the 29% of solids originally present

in the liquid paint and in addition it will also contain some of the less volatile matter
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which did not escape during the drying cycle of 50 ° C under vacuum for 24 hours. The

polymer shows a progressive degradation starting at about 120°C to be completed at

500°C, as seen in Aigures 4.20 to 4.25.

In general, the incorporation of platelets into the polymer matrix has been found

to enhance its thermal stability by acting as a superior insulator and mass transport barrier

to the volatile products generated during decomposition (Rop and Okamoto 2003).

However, there have been contradicting results reported in the literature as for example

the one obtained for poly(ε — caprolactone) / hydrotalcite composites by Aorrentino et

al. (2005) where no thermal stability improvement was observed.

Aigure 4.20 and Aigure 4.21 show the results of the TOGA thermograms for the

unfilled polymer (PACER) and the composites containing 5 wt% HT and ΜΑΤ,

respectively. Aorm these figures we see that the thermal stability of the composites are

not improved in the presence of either filler. This is particularly interesting in the case of

ΜΜΤ where the nonintercalated mineral shows a significant thermal stability up to

500°C. Amall differences between PHUT - 5 and PMMT - 5 as shown in Aigure 4.22

appear to manifest themselves after about 300°C with trends reversed after 430°C. Up to

about 320°C, both composites are less stable than the matrix.
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In contrast to the PHUT - 5 and EMT - 5 composites, a notable reduction in the

thermal degradation of the acrylic polymer was observed with SENT and AUL

composites at 5 wt% loading as can be seen in Aigures 4.23 and 4.24, respectively. At

20% weight loss, the decomposition temperature of the AUL composite PAUL — 5 at

323 ° C is much higher than that for the SWONT composite PAINT - 5 at 318°C, which in

turn is higher than that of the unfilled acrylic polymer PACER, which is at 313 ° C.

However, at around 50% weight loss, the decomposition temperature of fullerene and

SWNT composites become nearly the same and this same trend is observed up to 500°C,

as shown in Aigure 4.25. Note in Aigures 4.23 and 4.24 the high thermal stability of both

SWONT and FUL fillers.



63



64



65

4.5 Barrier Properties

The barrier properties of the composites with 5 wt% loading of different fillers and that

of the film without the fillers were tested using the AATM E-96 standard, at room

temperature. Apecifically, the water method was used for testing the property. With such

comparison one would expect that the presence of the filler, spherical, platelet, fiber, etc.

would introduce a tortuous path for the diffusing permeate.

Aigures C.1 to C.9 in Appendix C depict the plots of weight versus time for the

composites obtained from the water vapor permeability testing, whereas Table 4.4

summarizes the results obtained from those Aigures using Equation 3.2.

Table 4.4 WVTR of PACER and its Nanocomposites with 5 wt% loading

The data in Table 4.4 should be interpreted with caution since:

(a) A minimum of two specimens were used for each composite with PAULA - 5
tested only once.

(b) Thickness of the specimens varied and was not taken into account to calculate
IVTR as suggested by AATE E-96.
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In spite of the variability of the data it can be shown that all fillers and in

particular, the hydrophobic SWONT and AUL mop reduce water vapor transmission rate.

Table 4.4 shows that the water vapor transmission rate of the composites

containing HT is nearly the same as that for the PACER. It is known that the barrier

property of the composites greatly depends not only on the polymer structure but also on

the structure and properties of the nanofillers. Aactors such as aspect ratio, surface area,

extent of dispersion and orientation of nanofillers also have a great influence on

permeability of the polymer matrix. Aurther more, the water vapor transport through the

polymeric filph proceeds through sorption, diffusion and desorption of water vapor. Ao,

on one hand the presence of the low aspect ratio HT platelets ought to increase to some

extent the tortuosity of the system, leading to an expected decrease in the value of the

diffusion coefficient. On the other hand, with partially exfoliated and intercalated HT

lopers one can expect that more and more of these specific HT particles mop act as

preferred sites on which the water vapor molecules are adsorbed and/or immobilized due

to their hydrophilic nature. This could result in an increase in weight of the system and

hence the WITR of the PHUT — 5 obtained would be nearly the same as that for PACR.

However, it is reasonable to assume that these specific HT sites in the matrix have finite

capacity for sorption depending on its concentration and texture and when these sites

would be occupied there will be a further decrease in IVTR.

Measurement of IVTR of PMMT - 5 composites showed a decrease in IVTR.

EMIT platelets have a high aspect ratio and this geometry favors the reduction in

permeability by forcing diffusing molecules to take a long wop around the platelets. A

simple tortuous two dimensional model has been developed by Nielsen (Equation 2.8) to
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depict the effect of the size of the fillers on the barrier properties of the polymer

composites containing platelet particles. Even though, montmorillonite clop is also

hydrophilic in nature, increased resistance to permeability mop be due to less sorption of

water molecules on the clop particles due to greater interactions between the MMMT and

the PACER; this can be justified by the enhanced 2% secant modulus seen in the results of

the mechanical tensile testing (Table 4.1).

The water vapor permeability of polymer filph containing ANT and AUL is

lower than that of the polymer film. Aurhter more, composites containing SWANT show

more resistance than those for AUL. This decrease in VTR is expected since both

fillers are hydrophobic resulting in zero sorption of water molecules and both the fillers

are also impermeable to water. Due to the higher aspect ratio of the carbon nanotubes

when compared to that of the fullerenes, a more tortuous path for the diffusing permeate

molecules would be created and thus decrease the effective cross sectional area available

for diffusion.



CHAPTER 5

CONCLUSIONS

The present work was initiated to explore the preparation and characteristics of polymer

nanocomposites with a focus on modifying the properties of a commercially available

acrylic polymer paint. Incorporated nanofillers included hydrotalcite, sodium

montmorillonite, and impure single walled carbon nanotubes and fullerenes with different

size, shape and aspect ratio. During the last few decades, significant interest has been

developed in the area of such polymer composites because it has become evident that the

next technological frontiers will be achieved not by a better understanding and

application of a particular material, but rather by understanding and optimizing materials

combinations.

Composites were produced by a combination of solution mixing and solvent

casting at 5 and 10 wt% loading of fillers, with the aid of sanitation. An anionic

surfactant was added to facilitate dispersion of nanotubes and fullerenes. Unfilled

polymer samples were also prepared for comparison studies. Aignificant differences were

noted following the determination of the mechanical, thermal and barrier properties of the

composites. The morphology of the composites was studied using scanning electron

microscopy and wide angle X-ray diffraction.

AHEM images show that HT and EMT platelets are well distributed in the acrylic

polymer with incomplete alignment of the platelets in the plane of draw down. CORD

results indicate that while the HT platelets are partially exfoliated and intercalated by the

acrylic polymer, MMT clops are only intercalated by the polymer. AEM images of the

68
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nanotube composites show interesting pictures of well distributed carbonaceous materials

that could also contain nanotube. XXRD results of nanotube and fullerene composites did

not provide any information on degree of dispersion. The SSEM images of the fullerene

composite showed no distinct features.

On comparison of the mechanical properties of 5 wt% loading of HT and EMIT

composites with those of the PACR, PMMT — 5 showed only a marginal decrease in

tensile strength and elongation at break when compared to PACER, while PHUT — 5 showed

a greater decrease in tensile strength and elongation at break. However, the 2% secant

modulus of PHUT — 5 was significantly enhanced due to the partial exfoliation and

intercalation of HT by the PACR and a less significant improvement in modulus of

ΡΜΜΤ — 5 was observed when compared to that of the PACR, as a result of intercalation

of ΜΜΤ by the PACR.

PACR containing 5 wt% SENT shows a higher tensile strength and 2% secant

modulus with a relative decrease in elongation at break. PACR containing 5 wt% AUL

shows a decrease in tensile strength and elongation at break.

PACR containing 10 wt% ΜΜΤ and SCENT shows an increase in the 2% tensile

secant modulus and storage modulus of the polymer. DMA plots of tan versus

temperature shows that the presence of 10 wt% ΜΜΤ and SAINT in the PACER shifts the

tan peak corresponding to the Kg to a slightly higher temperature.

Mechanical properties tested perpendicularly to the draw down direction indicate

that the SAINT could be aligned in the composite while the platelets composites

indicate a misalignment of platelets at different angles, relative to the x-y plane.
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DAC heating scans up to 200°C indicated that a transition temperature

corresponding to Tg occurred at about 20°C, similar to the location of tab peak, although

abrupt changes in heat flow versus temperature curves could not be easily detected.

Aimilarly, curves for composites with 5 wt% HT, EMT and SENT suggest lower Tg and

composites with 5 wt% AUL suggest a slightly higher Tg. The results should be viewed

with caution given the presence of residual volatile in a closed DAC pan and our

understanding of the software used for measuring g that could lead to different

interpretations. AGA thermograms of the composites show that the presence of 5 wt%

nanoplatelet does not increase the thermal stability of the polymer. In contrast to the

nanoplatelet composites, a notable reduction in the thermal degradation of the acrylic

polymer was observed with AGENT and AUL composites at 5 wt% loading.

Transmission of water vapor through the composites with 5 wt% loading of fillers,

shows a decrease in rate when compared to that of PACER. This reduction in transmission

of water vapor through the composites varies to different extents depending on the aspect

ratio, inherent properties, extent of dispersion and orientation and interfacial interaction

of the filler with the polymer.

The above conclusions on the mechanical and barrier properties of composites are

drawn from only a few specimens that have been tested. Hence, future work should

involve synthesis and testing of a greater number of specimens for each type of

composite in order to improve the reliability of the reported data. Dynamic mechanical

analysis of the composites with 5 wt% loading of fillers needs to be done in order to

compare the tab results with that of the Tg obtained from DAC tests.
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Even though the presence of single walled nanotube in the polymer shows an

improvement in the mechanical properties of the polymer, further improvements in the

properties can be envisaged by the use of purified nanotube samples.

It is important to understand the mechanism of enhancement of major physical

and engineering properties prior to further usage of these fillers. Aor this to be achieved,

it is important that comparison with existing models and generation of new models are

made for various systeph. Certain issues that need to be addressed for modeling include

the extent of dispersion, aspect ratio retention and orientation of the fillers. Transmission

electron microscopy of the fillers and composites needs to be done in order to provide

insight into these issues.



APPENDIX A

ENERGY DISPERSIVE X-RAY PLOTS

In this appendix, EDX elemental analysis plots of the fillers used in making the

composites are presented.

Aigures A.1, A.2, A.3 and A.4 represent the EDX results for hydrotalcite, sodium

montmorillonite, carbon nanotubes and fullerenes in carbon allotropes, respectively. The

ED results provide quantitative information on the constituents of the respective fillers.
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APPENDIX B

DIFFERENTIAL SCANNING CALORIMETER THERMOGRAPHS

In this Appendix, DSC thermographs of all the composites with and without fillers are

presented.

scan cycle. Results of only the first heat scan are in the Appendix since no additional

information was obtained from any of the other cycles.
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APPENDIX C

WATER VAPOR TRANSMISSION PLOTS

In this Appendix, the plots resulting from the water vapor transmission data for unfilled

acrylic polymer and its composites with 5 wt% loading of nanofiller are presented. The

plots of weight change vs. time are plotted and the slopes of the plots are also calculated

in order to determine the water vapor transmission rate using Equation 3.6.

Ihile Aigures C.1 and C.2 present the plots obtained for the acrylic polymer

without the fillers, Aigures C.3 and C.4 present the plots of the composite containing 5

wt% hydrotalcite. Aigures C.5 and C.6 present the plots of wt% sodium

montmorillonite composite. Aigures C.3 and C.8 present the plots of the composite

containing 5 wt% carbon nanotubes and Aigure C.9 presents the plot of the composite

containing 5 wt% fullerene as the nanofiller.

79



10 	 15 	 20

Time (hr)

0 5 25 30 35

10 	 15 	 20

Time (hr)

0 5 25 30 35

Figure C.1 EVT plot of PACR.

86.8

86.7

86.6

86.3

86.2

86.1

83.4

83.35

83.3

83.25

83.2

83.15
ε

3 83.1

83.05

83

82.95

82.9

82.85

Figure C.2 EVT plot of PACR.

80

86.5

ε
Φ

86.4

y = -0.0183χ + 86.β83

γ = -0.0149χ + 83.336



81



85.55
0 30252015

Time (hr)

105

0 5 25 30 3510 	 15 	 20

86

.y . 00141Χ + 859

85.95

85.9

85.85

Si 85.8

85.75

85.7

85.65

85.6

Figure C.5 EVT plot of PEMT - 5.

γ = -0.0087χ + 85.251

85.3

85.25

85.2

m 85.15

Φ
85.1

85.05

85

84.95

Time (hr)

Figure C.6 IVT plot of EMT - 5.

82



84.8

84.75

84.7

84.65

Φ

84.6ΦΦ

84.55

84.5

84.45

84.4

83

γ_-0.0114Χ+84.761

0 5 10 	 15 	 20 25 30 35

Time (hr)

Figure C.7 IVT plot of PAINTS - 5.

86.3

86.25

86.2

86.15

Φ 86.1

.
Φ

3 86.05

86

85.95

85.9

85.85
0 5 10 	 15 	 20 25 30 35

Time (hr)

Figure C.8 IVT plot of PSWNT - 5.



84



REFERENCES

Scratcher M., Gersten B., Si H. and Mops J., "Atudy in the dispersion of carbon
nanotubes", Materials Research Aociety Proceedings, 306, (2001).

Callister W. D., Aundamentals of Materials Acience and Engineering, 2 Ι edition, John
Wiley & Aons, Inc. (2005).

Carried K. A., Au L., Aeifert A., Csencsits R. and Bloomquist C. A. A., "Polymer — clop
nanocomposite Derived from Polymer — Ailicate Gels", Polymer — clay
nanocomposite, Edited by Pinnavaia T. J. and Beall G. W., John Wiley & Aons
Ltd. (2000).

Chang J. H., An Y. U., Cho D. and Giannelis E. P., "Poly(lactic acid) nanocomposite:
comparison of their properties with montmoriulonite and synthetic mica (2)",
Polymer, 44, 3315 (2003).

DeGaspari J., "Eye on the future: Nanotechnology", Mechanical Engineering (2001),
Retrieved July 2005 from the Iorld Bide Web:
http://www.memagazine.org/backissues/apri101 /features/prospect/prospect.html.

Delozier D. M., Watson K. A., Amith J. G. and Connell J. I., "Preparation and
characterization of space durable polymer composites films", Composites
Acience and Technology, 65, 349 (2005).

Dubrovsky R. and Bezmelnitsyn V., "Bulk production of nanocarbon allotropes by a gas
outflow discharge approach", Carbon, 42, 1861 (2004).

Edelstein A. A. and Cammarata R. C., Nanomaterials: Aynthesis, Properties and
Applications, Bristol; Philadelphia: Institute of Physics Pub. (1998).

Goal A., "Role of Catalyst and substrate on synthesis of single wall carbon nanotubes",
Thesis, New Jersey Institute of Technology, 2003.

Haggenmueller R., Gammons H. H., Rinzler A. G., Aischer J. E. and Winey K. I.,
"Aligned single — wall carbon nanotubes in composites by melt processing
methods", Chemical Physics Letters, 330, 219 (2000).

lijima A., "Helical microtubules of graphitic carbon", Nature, 354, 56 (1991).

Iqbal C. and Goal A., "Carbon Nanotubes/Nanofibers and Carbon Aibers", Aunctional
Aillers for Plastics, Edited by Xanthos M., Biley — BICH Verlag GmbH & Co.
KGaA (2005).

85



86

Jiang L., Gab L. and Aun J., "Production of aqueous colloidal dispersions of carbon
nanotube", Journal of Colloid and Interface science, 260, 89 (2003).

Jiang T., Wang Y., Yeah J. and Aan C., "Study on solvent permeation resistance properties
of nylon / clay nanocomposites", European Polymer Journal, 41, 459 (2005).

Jin Z., Pramoda K. P., Auk G. and Gosh S. H., "Dynamic mechanical behavior of melt —
processed multi — walled carbon nanotubes / poly(methyl methacrylate)
composites", Chemical Physics Letters,  333, 43 (2001).

Jordan J., Jacob K. I., Tannenbaum R., Sharaf M. A. and Jasiuk I., "Experimental trends
in polymer Nanocomposite — a review", Materials Science and Engineering A,
393, 1 (2005).

Kiersnowski A., Dabrowski P., Budded H., Bressler J. and Piglowski J., "Aynthesis and
structure of poly(ε—caprolactone) / synthetic montmorillonite nano — intercalates",
European Polymer Journal, 40, 2591 (2004).

Khakis E., Alexander I. and Amaratunga G. A. J., "Single — walled carbon nanotubes —
polymer composites: electrical, optical and structural investigation", Aynthetic
Metals, 123, 59 (2002).

Ma H., Zeng J., Real M. L., Aumar A. and Schiraldi D. A., "Processing, structure, and
properties of fibers from polyester / carbon nanotubes composites", Composites
Science and Technology γ,  63, 1613 (2003).

Matayabas J. C. Jr. and Turner A. R., "nanocomposites Technology for Enhancing the Gas
Barrier of Polyethylene Terephthalate", Polymer — clay Nanocomposite,  Edited
by Pinnavaia T. J. and Beall G. I., John Wiley & Sons Ltd. (2000).

Miami N., "Thin filph of highly oriented single — wall carbon nanotube", AIST Today,
2 (2002), Retrieved August 2005 from the World Wide Web:
http://www.aist.go.ip/aist_e/aist_today/2003_03/2003_03ρ25.pdf.

Osman M. A., Rupp J. E. P. and Auter U. W., "Tensile properties of polyethylene —
layered silicate Nanocomposite", Polymer, 46, 1653 (2005).

Park C., Ounces C., Watson K. A., Crooks R. E., Smith J. Jr., Lowther S. E., Connell J.
W., Siochi E. J., Harrison J. S. and Clair T. L. St., "Dispersion of single wall
carbon nanotube by in situ polymerization under sanitation", Chemical Physics 
Letters, 364, 303 (2002).

Patel S. H., "Processing Aids", Aunctional Aillers for Plastics,  Edited by Xanthos M.,
Biley — BCH Verlag GmbH & Co KGaA (2005).



87

Pinnavaia T. J. and Beall G. W., Editors: Polymer — clay Nanocomposite, John Wiley &
Sons Ltd. (2000).

DianaD.,Dickey E. C., Andrew R. and Ranted T., "Load transfer and deformation
mechanisms in carbon nanotube — polystyrene composites", Applied Physics
Letters, 36, 2868 (2000).

Ray S. S., Okamoto M., "Polymer/layered silicate Nanocomposite: a review from
preparation to processing", Progress in Polymer Science, 28, 1539 (2003).

Schadler L.S., "polymer-filled and polymer-filled Nanocomposite", nanocomposites
Science and Technology, Ajayan P.M., Schadler L.S. and Scraun P.M., Wiley —

BACH Verlag GmbH & Co. KGaA (2003).

Shaffer M. S. P. and Bindle A. H., "Aabrication and characterization of carbon nanotubes
/ polyvinyl alcohol) composites", Advanced Materials, 11, 933 (1999).

Sorrentino A., Gorrasi G., Torture M., Vittoria V., Contention U., Mormottini A.,
"Incorporation of Mg — Al hydrotalcite into a biodegradable Poly(ε-caprolactone)
by high energy ball milling", Polymer, 46, 1601 (2005).

Thostenson E. T. and Chou T. W., "Aligned multi — walled carbon nanotube — reinforced
composites: processing and mechanical characterization", Journal of Physics D: 
Applied Physics, 35, L33 (2002).

Baia R. A. and Wagner H. D., "Aramework for Nanocomposite", Materialstoday, 32
(November 2004).

Blasco J. I, Ardency M., Realinho V. and Gorilla A., "Preparation and characterization
of polyolefine/hydrotalcite Nanocomposite", Proc. of the Eurofillers Conf.
(2005).

Wagenknecht U. and Costa A. R., "Alame Retardant with Reinforcing Aillers — a New
wop of Materials design", Proc. of PPS —21 Coif. (2005).

Xanthos M., "Modification of polymer Mechanical and Geological Properties with
Aunctional Aillers", Aunctional Aillers for Plastics, Edited by Xanthos M., Wiley -

BACH Brag GmbH & Co KGaA (2005).

Xanthos M., "Polhers and Polher Composites", Aunctional Aillers for Plastics, Edited
by Xanthos M., Biley — BACH Brag GmbH & Co KGaA (2005).

Zhao C., Hu G., Justice R., Schaefer D. E., Chang S., Yang M. and Han C. C.,
"Synthesis and characterization of multi - walled carbon nanotube reinforced
polyamide 6 via in situ polymerization", Polymer, 46, 5125 (2005).



88

Zuev V. V., Bertini A. and Audis G., "Fulierene C60 as stabilizer for acrylic polymers",
Polymer Degradation and Stability, 90, 28 (2005).


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Polymer Composites with Nanofillers
	Chapter 3: Experimental
	Chapter 4: Results and Discussion
	Chapter 5: Conclusions
	Appendix A: Energy Dispersive X-Ray Plots
	Appendix B: Differential Scanning Calorimetry Themograms
	Appendix C: Water Vapor Transmission Plots
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)




