

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

AUTOMATED LIQUID DISPENSING PIN
FOR DNA MICROARRAY APPLICATIONS

by
Suganya Parth as arathy

This thesis describes the research and development of a new liquid dispensing/aspiring

system that is capable of producing micro sized spots/droplets for molecular biology

research and analysis. In particular, the application is focused on DNA microarray

fabrication with the goals of smaller spot size, higher yield, more efficient usage of

biological materials, and capability to handle high viscosity liquids. The new system is

based on active sensing and control and it is part of a fully integrated robotic microarray

system for genomic and proteomic applications. The prototype system handles water as

well as thick liquids such as 100% glycerol and generates spots in a contactless manner

with controllable spot size ranging from 80 microns to 200 microns. Microarray

technology is enhancing many areas of biological research including stem cell, cancer

and infectious disease research. This new method of microarray production will afford

hospitals and laboratories the system necessary to help detect and study genetic changes

in cells in a more efficient and cost effective manner.

AUTOMATED LIQUID DISPENSING PIN
FOR DNA MICROARRAY APPLICATIONS

by
Suganya Parthasarathy

A Thesis	
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

August 2005

APPROVAL PAGE

AUTOMATED LIQUID DISPENSING PIN
FOR DNA MICROARRAY APPLICATIONS

Suganya Parthasarathy

Dr. Timothy N. Chang, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Patricia Soteropoulos, Committee Member	 Date
Managing Director, Center for Applied Genomics, PHRI

Dr. Sui-hoi E. Hou, Committee Member	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Suganya Parthasarathy

Degree:	 Master of Science

Date:	 August 2005

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2005

• Bachelor of Engineering in Electronics and Instrumentation Engineering,
J.J. College of Engineering and Technology, Trichy, India, 2003

Major:	 Electrical Engineering

Presentations and Publications:

Chang, T.N., Parthasarathy, S., Wang, T., Gandhi, K., Soteropoulos, P., "Automated
Liquid Dispensing Pin for DNA Micro-array Applications", to appear in the IEEE
Transactions on Automation Science and Engineering.

iv

To my family for their unconditional love, guidance, encouragement and support,
To JILLU PERI.

v

ACKNOWLEDGEMENT

I would like to express my deepest gratefulness and respect to Dr. Timothy N. Chang,

who not only served as my thesis advisor, providing valuable and countless resources,

insight, and intuition, but also constantly gave me support, encouragement, and

reassurance. Special thanks are given to Dr. Patricia Soteropoulos and Dr. Sui-hoi E Hou

for actively participating in my committee.

I owe much to the members of Public Health Research Institute (PHRI). Sincere

thanks go to Dr. Patricia Soteropoulos, Mr. Tongsheng Wang, Dr. Salvatore A.E. Marras

and Dr. Sanjay Tyagi for their invaluable help. I appreciate having had the chance to get

to know them. I am thankful to the National Science Foundation Grant 0243302, "High

resolution, high density microarrayer for genetic research" for partially supporting my

work.

Many of my senior colleagues in the Real Time Controls Laboratory are

deserving of recognition for their support. I would like to thank my colleagues Biao

Chen, Puttiphong Jaroonsiriphan, Yuan Ding, Qiong Shen, Paiboon Sriwilai Jaroen and

Kunj Gandhi for their immense help during practical difficulties. Also, many thanks to

Ms. Brenda Walker and the entire staff of Electrical and Computer Engineering

Department at NET. Last, but not the least, I would like to thank Aravind Parthasarathy

and Sowmya Vedhartham Sampath — all your understanding and support saw me through

difficult times.

vi

TABLE OF CONTENTS

Chapter 	 Page

	

1 INTRODUCTION 1

2 HARDWARE DESCRIPTION 	 6

2.1 Overall Hardware Description 	 6

2.2 Description of SEIKO D-Tran Robot 	 8

2.2.1 Seiko Robot Manipulator 	 9

2.2.2 Controller 	 9

2.3 Description of Optical Fibre Displacement Sensor (Fotonic Sensor) . 	 10

2.4 Description of Zaber Stage 	 15

3 CONTROLLER AND SOFTWARE DESCRIPTION 	 19

3.1 Description of Spotting Experiment 	 21

3.2 Control Methodology used for Spotting 	 25

4 TEST RESULTS 	 29

4.1 Spot Formation 	 29

4.2 Spot Detection 	 34

4.3 Production of Uniform Size Microarrays.. 	 36

	

4.4 Experiments with Molecular Beacon 39

5 CONCLUSION AND FUTURE WORK 	 44

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

APPENDIX A HARDWARE SPECIFICATIONS 	 45

APPENDIX B SOURCE CODE... 	 54

REFERENCES 	 82

viii

LIST OF TABLES

Table Page

2.1 Product Specifications of Zaber Stage. 16

2.2 Instruction Format of Zaber Stage 	 17

2.3 Command Reference of Zaber Stage 17

3.1 Look up Table for the Controller 	 25

4.1 Sample Solutions of Molecular Beacons 	 40

ix

LIST OF FIGURES

Figure Page

1.1 Microarrayer with impact printing technology (left) and contact
printing pin (right) 2

1.2 Image of a section of a Microarray Experiment using the Center for
Applied Genomics (CAG) Human 19K DNA oligo array. The chip
was hybridized with Cy3- and Cy5-labeled RNAs prepared from
human liver and kidney, respectively 2

1.3 Defective spot formation. 3

2.1 Prototype microarrayer with SmartPin 6

2.2 SmartPin cross-section view and prototype 7

2.3 SEIKO D-Tran Robot 9

2.4 MTI 1000 Fotonic Sensor with a MTI-3802 sensor module 11

2.5 Receiver illumination and instrument output 	 11

2.6 Fiber distribution in the sensor probe 12

2.7 The optical lever principle realized on a bundled fibre probe. 	 12

2.8 Calibration of Fotonic sensor (up) and front side and back side slope
charts of Fotonic sensor (down) 	 14

2.9 T-LA Series — Zaber linear actuator 15

2.10 Front Panel and LabView program for Zaber stage 	 18

2.11 Mechanical integration of Zaber 	 18

3.1 Spotting sequence 20

3.2 Front Panel of spotting experiment 	 22

3.3 Flow chart for the entire automatic spotting sequence 24

x

LIST OF FIGURES
(Continued)

Figure	 Page

3.4	 Standard spot formation Graph showing the four different regions 	 26

3.5	 Controller action flow chart for spotting experiment 	 27

4.1	 Intensity plot for 100% glycerol spot formation 	 29

4.2	 Graph depicting the intensity change during 160um droplet formation
for 100% glycerol	 30

4.3	 Intensity plot for 50% glycerol spot formation 	 31

4.4	 Graph depicting the intensity change during 190um droplet formation
for 50% glycerol 	 31

4.5	 Intensity plot for water/Cy3 spot formation 	 31

4.6	 Graph depicting the intensity change during 210um droplet formation
for water/Cy3 	 32

4.7	 Ray Tracing result for SmartPin before (Up) and after (Down) droplet
engagement 	 33

4.8	 Raster scan procedure 	 34

4.9	 Graph depicting the 3D view of a 220micron diameter droplet and a
cross sectional measurement of the spot which is about 18 microns high
at the time of scan 	 36

4.10	 Graph depicting the 3D view of a 400micron diameter droplet of 100%
glycerol 	 36

4.11	 Spot matrix formed out of 100% glycerol, each spot measures
160microns (left) and 50% glycerol , each spot measuring 190 microns
(right) 	 37

4.12	 Microarray with 100% glycerol and 80 microns diameter
spots 	 37

4.13	 Microarray with spotting solution 3XSSC with 160 microns diameter
spots 	 38

xi

LIST OF FIGURES
(Continued)

Figure Page

4.14 Microarray with spotting solution 3XSSC with 160 microns diameter
spots and 130 micron spots 38

4.15 Molecular	 Beacon	 combining	 with	 the	 target	 to	 produce
fluorescence 	 39

4.16 Fluorescence exhibited by the buffer, MB, T and MB and T together
for varying quantities 40

4.17 Fluorescence observed by the scanner 	 41

4.18 Concentration of Molecular Beacon Vs Composite Pixel Intensity 	 42

4.19 Alternate columns of buffer with 10% Cy3 and distilled water spotting
showing no cross contamination of material handled by the pin 	 43

A.1 Reduction of RS-232 characteristics into integers in DARL 	 49

A.2 Communication port pin configuration.. 51

A.3 Communication port 1 settings 51

A.4 ASCII settings for communication port... 	 52

A.5 MTI 1000 Fotonic sensor characteristics 	 53

xii

CHAPTER 1

INTRODUCTION

Genomic research is undergoing an industrial revolution with automation and high speed

computation being two of the enabling factors responsible for the explosive growth in

sequencing efforts reducing the cost from $5 per finished base to about $0.10 in just ten

years. The next phase, gene expression profiling, is equally significant, especially in

clinical studies of genetic diseases such as cancer. The basic steps of determining gene

expression consist of 1. microarray fabrication, 2. hybridization, and 3. detection.

DNA chips, also known as microarrays, present an efficient way to manipulate the

huge numbers of reagents that would be required to probe for a large collection of genes

and this technology has become a central platform for functional genomics [1] . These

bio-devices are dense grids of DNA bound to a solid matrix that can be probed with a

complex mixture of labeled DNA or cDNAs. The major advantages of microarrays over

other technology are the increase in the number of genes being analyzed, the substantial

reduction in sample size requirements, and the use of fluorescence detection schemes for

high signal to noise ratios.

Among the many applications for DNA microarrays are:

• Expression profiling of human cancers

• Identification of diagnostic signature transcriptional profiles for host responses to
infectious agents

• Gene expression profiling following injury

• Expression profiling following drug treatment

1

...

2

Currently, there are two major approaches for the creating DNA microarrays:

photochemical process and printing process. The photochemical process pioneered by

Affymetrix [19] has a high inherent degree of reproducibility due to the spatial specificity

of the manufacturing process. However, this approach tends to be inflexible and

expensive, thus excluding most small/medium scale laboratories from conducting

innovative research. The conventional printing technique (impact or inkjet) as shown in

Figure 1.1 , on the other hand, is flexible and less expensive. For the impact printing

method, a hollow pin draws up DNA sample fluid and prints a series of small dots on a

glass slide as shown in Figure 1.2.

- ~, "

Figure 1.1 Microarrayer with impact printing technology (left) and contact printing pin
(right) [18].

Figure 1.2 Image of a section of a Microarray Experiment using the Center for Applied
Genomics (CAG) Human 19K DNA oligo array. The chip was hybridized with Cy3- and
Cy5-labeled RNAs prepared from human liver and kidney, respectively .

3

However, mInimum spot SIze and reliability remain key limiting factors that

impede the competitiveness of the printing technique. Presently, a standard microscope

slide can hold up to 40,000 spots. To accommodate the entire human transcriptome, this

density must be increased to well over 120,000 spots per slide implying that the current

spot size of 100 microns must be decreased accordingly. Furthermore, both impact and

inkjet printing methods are open loop and require careful calibration for each run where

uneven spot formations are not uncommon. A scan of a defective print is shown in Figure

1.3 where blurred and missing spots are present.

Figure 1.3 Defective spot formation.

Furthermore, the printing technique generally deposits only about 30% of the

liquid material that is drawn into the pins by capillary flow during each 100 chip print

session. The material that remains in the pins is lost when the pins are washed. This

waste of valuable resources significantly increases the cost of chip production. Present

fabrication cycle time with a 48-pins and 40x384 well microplates (15360 spots) is about

8 hours which must be significantly reduced. Finally, due to the design of the impact

pins, they tend to get clogged by viscous liquids such as those containing glycerol which

is useful in proteomics.

4

Existing drop generation mechanisms can be categorized into contact printing

with pins (quill, solid, or pin-and-ring) or non-contact printing with microsolenoid,

thermal ink jet, piezoelectric, or acoustic printing heads. Due to the impact at contact, pin

structure deformation, and clogging from contaminants collected at contact, pin-based

contact printing is prone to suffer from slide-to-slide inconsistency. A novel contact-

printing device is the fabrication of a micromachined silicon pin. MEMS technology

offers advantages such as freedom of pin and slot design both in size and shape,

possibility silicon pin can pick up 1 ul of DNA solution. One of the big challenges of

droplet size control is preprinting. It has been reported that after loading sample into

microchannel, the commercial pins must be spotted a number of times onto a slide to

create consistent spots due to the adherence of additional DNA solution to its hydrophilic

surface outside the slit. Silicon microarray pin also has a similar problem but to a lesser

degree. And it also needs to be packaged in a way that can fit into a pin holder on a

commercial arrayer. A molding process, combined with silicon micromaching is needed

to manufacture the pin and cap combination [21]. Another contact printing technique

would be the quill-pin technique, though it is optimized as a function of substrate

wettability and composition of the buffer to improve microarray density it still suffers the

other draw backs of the contact process [22].

The commercial non-contact arrayers have lower numbers of print heads per rack

than pin-based arrayers. Part of the reason is due to the complexity of plumbing required

with their designs and the inherent tendency for clogging [20]. The non-contact

piezoelectric systems uses piezo ceramics located adjacent to the fluid near each nozzle.

A tiny electric charge is forced into the piezo ceramic, causing it to change shape and

5

displace fluid. When the piezo ceramic displaces in and out, it shoots a droplet of ink out

of the nozzle. Piezo ink jet has advantages of small drop sizes and high-ejection rate. In

this method though the cell solutions were successfully ejected until reservoir depletion,

with no observed adverse effects or clumping, one potential problem was the

inhomogeneous cell concentration in the ejected fluids, possibly due to cell settling

within the reservoirs [20].

Another printing method using hollow cylindrical ceramic tips improves the

morphology of microarray elements, allows higher element density and increases printing

tip life over the customary slotted stainless-steel pins. But implementation of ceramic tips

requires custom tooling, consisting of a modified tip holder, printing pin assembly, and

air reservoir. Moreover the ceramic tips are more sensitive to inaccuracies in leveling of

the printing tip holder to the arrayer slide platter. As a result, the tip holder must be

carefully aligned to prevent an increase in deposition failure. Another issue with ceramic

tips is they are more difficult to dry after cleaning, and if they are not completely dry, the

next DNA samples do not aspirate completely [23].

•

CHAPTER 2

HARDWARE AND SOFfW AR DESCRIPTION

2.1 Overall Hardware Description

In this work, a smart-pin liquid dispensing system is designed and constructed to

integrate a number of critical tasks: spot formation via active sensing and control, fine

positioning, and spot characterization. The SmartPin combines sensing, actuation, and

feedback control: it is capable of regulating spot size and providing robust, non-contact

delivery at a high speed.

SEIKO [). mAN ROBOT f-1\
CONTROlLER '"
Jl

rr- SEIKO[)'TRAN

$MARTPIN PC LAB VIEW
ASSEMBlY INTERFACE

VL- lABER STAGE
L-j.

~r- ,--,.

~ PIElO ELECTRIC l~ POSITIONER

I t
Figure 2.1 Prototype microarrayer with SmartPin.

The prototype system is shown in Figure 2.1 where a Seiko D-Tran robot serves as the

coarse platform. The Seiko D-Tran robot communicates with a PC via LabVIEW driver

developed in the lab. The product specifications and their definitions are given below:

6

7

• Resolution: The resolution (or addressability) is the distance equivalent to the
smallest incremental move the device can be instructed to make. In other words, it
is the linear or rotational displacement corresponding to a single microstep of
movement.

• Repeatability: The repeatabi lity is the maximum deviation in the position of the
device when attempting to return to a position after moving to a different position.

• Accuracy: The accuracy is the maximum deviation of the actual position of the
device from the requested position over the full range of motion.

• Backlash: As was seen in the repeatability section, backlash is the deviation of
the final position that results from reversing the direction of approach.

The Seiko D-Tran robot has a +/- 10 micron repeatability on all three axes. The

positioning accuracy is augmented by a piezoelectric positioner with a +/- 15 micron

range and better than 0.1 micron repeatability. The Zaber Stage, with a +/- 8 micron

accuracy and +/- 0.3 micron repeatability, drives a fiber probe within the SmartPin

assembly.

Figure 2.2 SmartPin cross-section view and prototype.

•

8

As shown in Figure 2.2, the SmartPin assembly comprises of the following

subcomponents:

1. A fluid reservoir containing the sample liquid materials. This reservoir can be the
interior of the pin cavity or a pressurized fluid chamber connected to the cavity.

2. A fluid delivery plunger made with an optical fiber probe and a driver. The fiber-
driver is a precision lead-screw assembly along the Z-axis as shown in Figure 2.2.
In the present version, the optical fiber bundle has a diameter of 150 microns.
When the fiber is moved downwards, a metered amount will be dispensed onto
the tip of the pin. Similarly, aspiration can be accommodated with upward
movement of the probe; the holding volume is about 0.2 L, nanoliter per micron

where Lz is the vertical displacement in microns. For a 2cm vertical cavity, the

liquid storage volume is about 4 microliters.

3. The fiber probe also determines the distance between the fiber tip and the slide.
The optical sensing scheme utilizes the fiber itself as an optical lever. There are
two ways the optical sensors can be realized: active and semi-active. In the active
method, a controlled light source generates a collimated beam directed towards
the fiber tip and slide. The reflected light is collected through a photodetector.
The position information is inferred ratiometrically from the intensity of the
reflected light by a digital signal processor. For the semi-active method, the glass
slide is uniformly illuminated from below. The optical fiber picks up the light
beam and transmits it to a photodetector.

In addition to the optical lever, the SmartPin also utilized the total internal

reflection principle: due to the difference in refractive indices of air, glass (pin), sample

material, and the shape of the material, contact condition can be derived by continuously

monitoring the sensor intensity.

2.2 Description of SEIKO D-Tran Robot

The Seiko D-Tran Robot is four axis Cartesian robot. Other robots in the family of Seiko

D-Tran are RT Cylindrical Coordinates, TT Multi Articulated SCARA Robots. The entire

robot assembly consists of three visible parts as seen in Figure 2.3.

9

I. Seiko Robot Manipulator

2. Controller

3. Key Board Console

Seiko robot
manipulator

Controller . ' I, • • •

--
Key board ... 4--=--.>;
console

Figure 2.3 SEIKO D-Tran Robot.

The Seiko D-Tran robot offers high precision, repeatability and speed. The Seiko

D-Tran robot is modularly constructed and its high precision accuracy, repeatability, and

speed make applications with close tolerances possible.

2.2.1 Seiko Robot Manipulator

The Seiko Robot has four manipulators that are based on closed loop DC servo motors,

which provide different motion in the robot envelope. The A or the Alpha Axis, allows

rotation for the End - Effecter. It can be mounted with the Tool Fang downward or

upward. The X-Axis allows front-back motion in the X plane. The Y-Axis allows side

ways motion. The up-down motion is provided by the Z-Axis.

2.2.2 Controller

The Robot comes with a well equipped controller which is easy to operate and has an

emergency stop button and a time counter that counts the hours of operation. Its basic

components consist of a Z80 Microprocessor and DC servo amplifiers. The Seiko

Controller supports the DARL robot language which may be programmed via a RS-232

•

10

link on a PC or the Tech-Terminal. The Tech-Terminal is ideal for altering the program

in an industrial arena and useful for trouble shooting and maintenance. The output unit is

a Liquid Crystal Display (LCD), with 40 characters per line, and 4 lines per view. More

features of the Tech-Terminal can be found in the user's manual provided by the

manufacturer. The Seiko D-Tran controller has two RS-232 ports for serial

communication with any device.

2.3 Description of Optical Fiber Displacement Sensor (Fotonic Sensor)

The Fotonic sensor as shown in Figure 2.4 consists of a console and a sensor module. The

console processes sensor signal and sensitivity while the probe consists of light-

transmitting fibers and light-receiving fibers that are bundled together, realizes the optical

lever principle. Displacement measurement is based on the interaction between the field

of illumination of the transmitting fibers and the field of view of the receiving fibers. As

the probe to target distance decreases, increasing amounts of light are captured by the

receiving fibers. This relationship will continue until the entire face of the receiving fiber

is illuminated with reflected light. This point is called the optical peak as shown in Figure

2.5. Further decrease in gap distance actually results in reduced intensity measurement

corresponding to the "front slope" region as shown in Figure 2.5. At contact, or zero gap,

most of the light exiting the transmitting fibers is reflected directly back into those fibers.

No light is provided to the receiving fibers and the output signal is "zero" and the primary

characteristics are given in the Appendix A section 4.

11

Figure2.4 MTI 1000 Fotonic Sensor with a MTI-3802 sensor module.

According to the manufacturer's specifications [14], a major advantage of the

Fotonic sensor is its ability to operate directly with a large variety of surfaces, from

specular to diffuse, and materials from conductors to insulators. As shown in Figure 2.5,

the gap and displacement range over which the initial rise in signal takes place and at

which the maximum occurs is primarily determined by the diameter and the numerical

aperture of the fibers and the intensity distribution within the operating field of the fibers.

Most commercial devices of this type use multiple transmit and receive fibers in order to

obtain the higher levels of intensity at the photo detectors needed to insure acceptable

levels of performance.

OPTICAL
FIBRE
PROBE

OPTICAL PEAK

GAP

Figure 2.S Receiver illumination and instrument output.

•

12

Figure 2.6 Fiber distribution in the sensor probe. [14]

Each MTI-1000 Fotonic probe contains a set of light transmitting and light

receiving fibers, which can be arranged in three different configurations (random,

hemispherical or concentric) as shown in Figure 2.6. As shown in Figure 2.7 a tungsten

halogen lamp acts as the light source and feeds light down the transmit fibers, where it

exits the probe tip and hits the target. Light that is reflected from the target is captured by

the receive fibers and processed by the console. The light intensity is monitored, which is

proportional to the distance between the probe tip and the target being measured.

Figure 2.7 The optical lever principle realized on a bundled fiber probe.

13

Referring to the Figure 2.5, the front side of the curve is defined as the operating

area between sensor probe-to-target contact and the optical peak, and it is characterized

by a positive slope and higher sensitivity on the response curve. The front side slope is

plotted on the most linear rise of the curve's front side and indicates the sensor's front

side operating range. The back side of the response curve is the area from the optical

peak on out to large gaps. The back side slope is the most linear portion of the back side

of the curve and indicates the sensor's back side operating range.

Calibration Procedure of the Fotonic sensor:

1. Perform instrument warm-up for 20 minutes and electrical zeroing.

2. Insert the probe into a notch of the fixture attached to the robot arm. Position the
probe by jogging the robot so that the probe tip lightly contacts the target mirror
surface and set the zero gap.

3. Tighten the probe clamp evenly and ensure that the probe remains aligned with
the target and centered in the notch.

4. Check the panel meter, the indicator should read "0".

5. Turn the displacement/vibration control to the "READ" position. Check the panel
indicator; it should remain at "0" when switching to the "READ" position, but
actually the panel indicator has a different intensity read out due to the polished
surface being at the underside of the target mirror used. Now since the probe does
not touch the polished surface of the mirror, the variation from true zero read out
is observed.

6. Move the robot upwards and observe the panel indicator. The indicator will move
up scale as the target moves away from the sensor probe. The indicator will stop
moving when the optical peak is reached.

7. Turn the intensity fine control clockwise to move the indicator to the "set/cal"
mark on the scale. If the intensity fine control reaches full stop and the indicator
has not reached the "set/cal" mark, then the light intensity of the probe must be
increased by changing the intensity coarse control setting.

8. Turn the intensity coarse control to the next higher switch settings. Then turn the
intensity fine control clockwise to bring the indicator to the "set/cal" zone.

14

9. Move the robot downwards to decrease the gap and move into the front slope
operating range. Observe the indicator, it will move down scale of the "set/cal"
zone as the target moves towards the sensor probe. Continue to move the robot
until the indicator is positioned in the "operate" zone on the scale. The gap is now
calibrated to the front side slope on the calibration curve. The plot of the gap
distance from the mirror to the intensity measure read out on the panel gives the
calibration curve for the Fotonic sensor as shown in Figure 2.8.

10. If the back slope area is to be used to obtain more range or standoff distance, then
the robot must be moved upwards. This will increase the gap and move the probe
into the back side operating area.

11. While calibrating the plug in module MTI-3 802 using instrument MTI-1000 the
settings used were 2K maximum intensity and datum reference 10. The target
being referred to is a polished plane mirror. The front side slope (sensitivity of the
Fotonic sensor) obtained from the slope curve as shown in Figure 2.8 is
0.05785um/mv and the back side slope is -0.1034 um/mv.

Calibration of Fotonic Sensor-Gap vs Intensity Curve

Figure 2.8 Calibration of Fotonic sensor (up) and front side and back side slope charts
of Fotonic sensor (down).

15

To implement this system as a part of the hardware construction light intensity is

taken as a reference, the output data will be used to measure gap distances between the

sample liquid and the sensor's probe. In tum, this data will allow the user to determine

the spot formation and uniformity of the spots.

2.4 Description of Zaber Stage

Zaber Technologies Inc series of computer controlled positioning products as shown in

Figure 2.9 use stepper motors and leadscrews to achieve open loop position control. The

product specifications are given in Table 2.1. The stepper motor turns by a constant angle

called a step for every electrical impulse sent to it. This allows a system to be built

without feedback, reducing total system cost. Zaber positioning devices are driven by

stepper motors using a micro-stepping drive with 64 microsteps per step. All position

data sent to or received from Zaber devices must be in units of microsteps (the software

converts position data entered by the user to microsteps before sending it to the device).

Figure 2.9 T -LA Series - Zaber linear actuators.

•

16

Table 2.1 Product Specifications of Zaber Stage

Part
Number

Range Resolution Repeatability Cyclic
Accuracy

Backlash

T-LA28A 28mm 0.1um +/- 0.3um +/- 8um 2um

The control is through the RS232 port. The communications settings must be: 9600 baud,

no hand shaking, no parity, one stop bit. The amber LED will light when there is activity

on the RS232 lines. After power-up, the units in the chain will each initialize themselves

as unit number 1 and thus they will each execute the same instructions. To assign each

unit a unique identifier a renumber instruction as specified in Table 2.3 must be issued

after all the units in the chain are powered up and every time an unit is added or removed

from the chain. All instructions consist of a group of 6 bytes. They must be transmitted

with less than 10 ms between each byte. If the unit has received less than 6 bytes and then

a period of more than 10 ms passes, it ignores the bytes already received. It is

recommended that the software behaves similarly when receiving data from the devices,

especially in a noisy environment. The following Table 2.2 shows the instruction format:

The first byte is the unit number in the chain. Unit number 1 is the unit closest to the

computer; unit number 2 is next and so forth. If the number 0 is used, all the units in the

chain will execute the accompanying command simultaneously. The second byte is the

command number. Bytes 3, 4, 5, and 6 are data in long integer, 2's complement format

with the least significant byte transmitted first. How the data bytes are interpreted

depends on the command. The two "move" commands are tabulated in Table 2.3.

17

Table 2.2 Instruction Format of Zaber Stage

Bytel Byte2 Byte3 Byte4 Byte5 Byte6
Unit
number

Command
number

Data
(least 	 significant
byte)

Data Data Data
(most 	 significant
byte)

Table 2.3 Command Reference of Zaber Stage [17]

Command Description Data bytes Reply data
20 Move 	 absolute. 	 The 	 device

moves to the position given by
the data bytes. The position
must be within the acceptable
range for the device.

Absolute position in
micro-steps.

Absolute position. If
the data is out of
range the device will
not move but will
return 255 in byte 2
as well as the absolute
position.

21 Move 	 relative. 	 The 	 device
moves to the position given by
its position before the command
plus the value in the data bytes.
The final position must be
within the acceptable range for
the device.

Relative position
(can be negative) in
Micro-steps.

Absolute position.
If the data is out of
range the device will
not move but will
return 255 in byte 2
as well as the absolute
position.

2 Renumber. This command must
always be issued with a 0 in
Byte 1 (i.e. it must be issued
to all units simultaneously).

Ignored. Each unit replies with
its device ID after it
finishes renumbering.

As shown in the front panel of Figure 2.10 the instruction is being transmitted to the

Zaber stage. The format of the instruction is a group of 6 bytes as explained before.

Command reference is issued as per the required Zaber movement, it can either be

relative or absolute. The data field specifies how far the leadscrew driven by the stepper

motors should move. For the experiments carried out, the Zaber is moved down to the

maximum limit of 20,000um to fit the needle and then to draw the sample the Zaber stage

is moved upwards to about 1000um relative from maximum limit making the absolute

position as 19,000um to make room for the sample to enter the pin. The reply data in um

indicates the present position of the Zaber stage.

•

18

Instruction: "'" , I s.nd lftStructoon I
C~I!! ;

""'. .0

~ "'" bits: I mlcrost~

Ii ~~Dyt",ent 10 0 0 0 0 0 f

P',,~y byte~ UKet¥ed E_:..L_ . 0 . R_!:lIy:
i:?~_._ 0 " _J .

R.~ data (bh I micros~) Jo
R.",*" dat.e (urn) 10.0

I """ I
, .

, .
'- .

~ I ~
-

~.
r ~&i8

iii
~11-:tJ:~"'0<- 11

~- ..
i»

~ ~- ~Il>-'-'-- '" ffij bO,' b-k,.'m
,

~i-l:e:--I' m-@ ~ -IJ> ... @

&t:Ei-!1~=I:e:''''''''' 11 m

Figure 2.10 Front Panel and Lab View program for Zaber stage.

The mechanical assembly in the practical model is a sliding bar with spnngs

attached that roles up and connects the Zaber stage, Seiko robot and the smart pin stage

together as shown in Figure 2.11 .

Figure 2.11 Mechanical integration of ZabeL

CHAPTER 3

METHODOLOGY AND CONTROLLER DESCRIPTION

The smart pin consists of a glass tube pointed at the end resembling a pin. The Fotonic

sensor of diameter 504um driven by the Zaber stage is placed inside the glass tubing such

that it can move freely but compact enough. The robotic arm holds the above

arrangement. The robot is commanded to move to a well which contains the test liquid.

The pin is immersed into the well and the Zaber stage is withdrawn back making the

Fotonic sensor probe act as a plunger and takes in metered quantity of test sample. After

cleaning the side walls of the pin, the robot is moved 120um above the glass slide and the

Zaber stage is pushed by 20um so that the Fotonic sensor probe plunges a metered

quantity of sample at the tip of the pin. Now the robot is jogged 10um each time until a

sharp decrease in the intensity of the sensor is noted indicating the formation of spot. This

process is a non-contact method as the robot stops jogging further when the liquid on the

pin tip contacts the slide surface. In this method as shown in Figure 3.1 there are four

stages namely Pull down, Contact, Pull up elongation and Pull up separation. The pin

travels down with the sample droplet at the tip and makes a contact with the slide when it

is approximately 10um above the slide and then the robot is reversed back during which

the droplet tends to stick to the needle and elongates as a column before it detaches fully

from the pin. Some part of the droplet is left behind in the pin. Analysis has been done

with different liquids with varying viscosities.

19

20

Figure 3.1 Spotting sequence.

The factors that affect the spotting include the following

1. Pin size and shape: The size and the shape of the glass pin are major factors
affecting the spot formation. Finely cut and polished borosilicate pin of outer
diameter 1.35mm and inner diameter 0.59mm must be chosen to fit around the
Fotonic sensor driven by the Zaber stage. The geometry of the pin tip affects the
intensity pick up drastically. Uneven ends may cause disturbances in the voltage
pick up and affect the spotting. The size and shape of the spots will be irregular
and would not be repeatable.

2. Viscosity of samples: The types of sample used have different viscosities and
hence the filling of the pin without air bubbles also becomes an issue for flawless
spotting.

3. Zaber increment: The spot size drastically depends on the Zaber push given to
release a metered quantity of the sample at the pin tip. If the Zaber increment is
more, then naturally the spots formed are bigger in size.

4. Air gap control: The size of the spots can be controlled by positioning the pin
properly over the air gap distance. Even with larger pin openings smaller size
spots can be produced, making spotting independent of pin geometry.

21

5. Intensity enhancement: The voltage pattern observed can have better resolution
with more intensity pick up and this can be facilitated by proper sample level
filling in the pin by the Zaber stage. The Zaber has to be pulled just by 1000um
above the maximum limit. By doing so there will be sufficient sample for spotting
and there will be more intensity pick up by the sensor.

6. Controlling dwell time: After the spotting has been observed the pin has to be
pulled back immediately so that the spot size does not grow bigger. Just after the
spot formation is observed the pin is reversed, meaning the robot moves back
towards home with a maximum speed of 10.1um/ms. Downloading the program
to the robot reduces the time delay involved in spotting and pulling up of the pin
and hence the spot size will not grow in size.

7. Surface preparation: The slides are coated with PLL (Poly-L-Lysine) so that the
entire sample at the tip of the pin could be used in spotting. The coating spreads
the spot uniformly and makes it feasible to get regular spots. Uncoated slides will
not spread the spot uniformly and hence results in irregular spotting.

3.1 Description of Spotting Experiment

The robot and the Zaber positions are initialized, meaning the robot is taken to the home

position and then the Zaber stage is moved to its maximum limit of 20000um. Now a fine

cut and polished borosilicate pin of outer diameter 1.35mm and inner diameter 0.59mm is

fitted to the end of the sensor driven by the Zaber stage. The maximum safe limit of robot

X, Y, Z axis are specified to prevent the needle to come in contact with the experimental

glass slide. The center to center distance between the spots can be fixed by the step

incremental values of X and Y coordinates of the robot. The position of the well

containing the sample liquid is specified by the three coordinates relative to the robot.

Also the first spotting position coordinates are fed into the robot panel.

In the Zaber panel the maximum and minimum safe limits are to be mentioned

along with the step increment which dictates the metered quantity of the liquid that will

cling to the tip of the needle. In the spotting panel the maximum numbers of rows and

22

columns to be spotted are mentioned. All the parameters shown in the front panel, Figure

3.2, are specified before the beginning of spotting process.

iO Spoiling [xpl!:rimcnl

ROBOT PANEL

x 01 wei (rrmJ Y 01 wellrrmJ Z 01 wei jnvnJ

~ 26.00 :j 72.n I ·75.80

~ x hi spot Irrm) Y h I , pot [min) Z h t $pot (min) ~

g 1000 ~ 9&00 I .75.80 • X

X fri(mm) YIm! [rrm) Z limit Irrrn)

~ <0.00 ;] 15<100 ?J ·76.00 ~
X $tep{rnm) y step (mm) Z $Iep[mm)

~ 0 30 ~ 0.30 ~ 0.01 ~ ~ h'getX fmmJ T~getY llIW'Il) T alget Z ImmJ

I 0.00 I 0.00 I 000
Robot X (mm) Aobol Y IrrwnJ Robot Z (rrm) ...:.:J
I 0.00 I 0.00 I 0.00

[ErnRI""" MESSAGE

Graph 01 SenSOlVthge (voL) Io.cm

mER PANEL

low Lri Il..tIll Z Step T argetZ I~l ,"lITlAl.I2E)

~
,_

~ 20 I 0 HOME)
Up Lmit (\In) ...:.:J Zabel Z (WI)

~ 20000

I~
I 0

ZASEA)

,GOWEll)

, SPO TTING PANEL

I 1 M.!Ix. Row wren! AO¥I 5pob formed
I
' :j 2 I 0 I 0

~ET uaulo)

.('USH oAOP)
M~ c;....., C!.Mlen! Cok.nvl Drool« "'"

I
3 2 I 0 3 , .!lRST SPOT)

0,: QIONG SHEN. Vel 1.0. 05122/2005 I .FOAM SPOT)

~
:J 7.1>:

AobDitt. (mmJ

~J 012

,EMERGENCY STOP) !lEXT SPOT)

,~ ,NEXT AOIoI)

Grdph 01 So!ntOl Volaoe (vol.)

Figure 3.2 Front Panel of spotting experiment.

J
2

When the spotting process begins, the pin is directed to the well and the Zaber is

pulled back 1000um to fill the needle with the sample liquid. Then the robot is taken to

the home position and the tip and sides of the needle are cleaned. Now the needle goes to

the first spotting location as specified in the panel by the user which is about 120um from

the surface of the slide. A step increment of 20um is given in the Zaber to get a metered

amount of liquid at the tip of the needle. The present row number is checked with the

maximum row number and if the last row has been reached then the present row is at

maximum and spotting is stopped else the present column number is checked with the

•

23

maximum column number and if the last column has been reached then the robot

positions to the next row and gets a drop again, else the robot checks if the robot Z limit

has been reached or not. If the robot Z limit has been reached then it means the robot has

to be pulled back and spotting at the next column has to be executed by again checking

for maximum column number occurrence. If the Z limit of the robot has not been reached

then the spotting decision is transferred to the decision controller and a YES or NO

decision is awaited from the decision controller. A "YES" from the decision controller

results from a successful spot formation and then the robot has to back up and has to go

to next column in the same row for spotting. A "NO" decision corresponds to

unsuccessful spot formation and then the robot Z axis has to be jogged down by another

10 um and again the Z limit is checked and continued in the same fashion as depicted in

the below flow chart Figure 3.3.

24

Figure 3.3 Flow chart for the entire automatic spotting sequence.

25

3.2 Control Methodology used for Spotting

The controller's decision is the most crucial part in the formation of spots. The controller

used here is simple look up table rules based. The observation from the initial

experimental results for spot formation indicated that each time the spot is formed a

particular pattern of graphical display is generated in the plot for Gap vs. Sensor voltage

for each sample substance used. These graphs and spot formations are observed to be

repeatable. It is observed that when the pin with the sample at the end approaches the

slide the sensor voltage keeps increasing as the gap distance becomes closer to the slide.

But when the non-contact spotting is done, meaning the droplet contacts the slide then

there is a drastic decrease in the voltage readout from the sensor. At this point the needle

can be pulled back and during this the droplet spotted on the slide tries to cling to the

needle tip and elongates until the gap distance increase to a point were the spot gets

detached from the pin. Figure 3.4 shows the graphical pattern observed during spot

formation for buffer 3XSSC. The following Table 3.1 shows the regions of the graph and

the action to be taken when that region is being plotted in the graph. The slope of the

voltage is calculated as [I (Previous data — Present data) I * 1000] / Gap distance. Data

refer to the intensity in volts along the Y axis in Figure 3.4.

Table 3.1 Look up Table for the Controller

Signal slope
Sensor signal output

SLOPE OF VOLTAGE
ABOVE THRESHOLD

SLOPE OF VOLTAGE
BELOW THRESHOLD

HIGH VOLTAGE
RANGE

REGION II OF GRAPH
(JOG	 PIN	 BY	 10UM
DOWN)

REGION I OF GRAPH
(JOG	 PIN	 BY	 30UM
DOWN)

LOW VOLTAGE
RANGE

REGION III OF GRAPH
(PULL THE PIN UP BY
10UM)

REGION IV OF GRAPH
(PULL THE PIN UP BY
LARGER STEP OF 30UM)

26

---- - -~-~ --

.) figure No. 1 ~§~
File Edit Ifle.. Insert Tools Window Help

Gap Vs Intensity (buffer 3XSSC. Zaber level =19920 ,zaber push=20urn)
0.22

, ,
~. __ _ ~ __ ~ __ • ___ ~ ___ ••• ~ •• __ •• ~_ •••• _j ____ • __ ~ ______ ~ __ _ 0-

, • , , I 0.2 -----

0.18

'" ~ 0.16
c
".,

.t

'" ~ 0.14
.£

0.12

,
,

,. .. , . , , , ,
, "

--- or: _---'--'-_-,
HIGH ----~------(~-(---
VOLTAGE : L:-J :
RANGE ' " 1,--.--.---,-:--- --- -:-- ---- - ------ ---- ---

, , , , , , , . , . .

-- data1
--=>- data2
-- data3
-<>- data4
-- data5
-+- data6

I
-- -,-- .- - , -- - -- - -,-------r- 0- .-- ,. __ 0_ ' ,- ----- ,- --- ---r

, ,

$WESi:

20 30 40 50 60 70 80 90 100 110
gap in urn

Figure 3.4 Standard spot formation Graph showing the four different regions.

The indication of droplet formation is given by the reach of the highest point. The

highest point will be the point after which there is more than the threshold voltage slope

and the data points lie in the low voltage range zone. After the highest point is reached

the needle is commanded to be pulled back. The controller action is depicted the flow

chat given in the Figure 3.5 where DAQ in the flowchart stands for Data Acquisition.

27

Figure 3.5 Controller action flow chart for spotting experiment.

28

The main routine is interrupted by a subroutine every 0.02 sec ie. sampled at 50

Hz. The data from the sensor is stored in the form of an array and the present data is

compared with the previous value and is checked for the range in which it lies. If the

value is higher than previous and as well lies in the higher voltage range then the robot

has to jog down by another 10um and again the same check is repeated until the present

data is leaser than the previous and lies in the lower zone. At this juncture the previous

data is stored as the highest point. The forthcoming data values lying in the lower zone

can be subtracted from highest point and this difference when divided by the gap value

gives the slope in voltage. If this slope in voltage is less than the threshold mentioned in

the panel then the spot formation has occurred and its time for the needle to back up and

once again the main routine takes over the task. Thus spotting is controlled by the

repeated voltage pattern observed.

CHAPTER 4

TEST RESULTS

4.1 Spot Formation

Three types of solutions are considered: 100% glycerol, 50% glycerol, and water. In each

case, a 10% Cy3 dye is added to the solution for fluorescence. Results of spotting 100%

glycerol are shown in Figure 4.1 where the top traces depict sensor intensity as the pin

approaches the slide. The droplet on the pin opening comes into contact with the slide at

20 microns air gap distance at which the sensor intensity drops off by 83% due to the loss

of total internal reflection. The disengagement of pin is characterized by elongation of the

spot due to the viscosity of glycerol and the binding to the slide surface which has been

coated with poly-L-lysine. The total elongation is about 70 microns after which the spot

and the pin separate. The results are highly repeatable.

Figure 4.1 Intensity plot for 100% glycerol spot formation.

29

30

The corresponding time series plot with X axis scaled as 1 unit = 5 ms and the

corresponding spot imaged by a 10 micron GenePix scanner are shown in Figure 4.2.

Downward trend of the intensity curve indicates the pin's approaching the slide and the

abrupt transition mirrors the changes in the intensity plot in Figure 4.1. It is also observed

that the spots are round and uniform.

Figure 4.2 Graph depicting the intensity change during 160um droplet formation for
100% glycerol.

The second and third sets of tests dispense 50% glycerol and de-ionized water

respectively. Cy3 is added to the sample liquid. The intensity plot, time series plot with X

axis scaled as 1 unit = 1 ms and the corresponding spot imaged at 10 micron resolution in

a GenePix 4000B scanner for 50% glycerol sample are shown in Figures 4.3 and 4.4.

Those for de-ionized water are shown in Figures 4.5 and 4.6. During spot formation, the

intensity drops by 56% for 50% glycerol and 30% for water. The intensity change is less

pronounced than that for 100% glycerol sample because the effects of total internal

reflection decrease with the refractive index. Furthermore, a low viscosity and weaker

interaction with poly-L-Iysine also result in slightly large elongation and subsequently

larger spots.

•

Graph depicting the intensity change for 50"h glycerol

'''F=, 7.I~·····~. ~, ~t==::=;~. ~~;, .~ ~ ~- ... ~ ~

·:·:0~ +······ Y/ "
~ 0.08
>
oS
~ 0.06
• C

____ ~ __ ~ ,; .. _ l. ._ ". . I :/1 .
. . ·····'·····d ········,······,·······

~--==7-• E
- 0.04 •••••••• ; ••• ····f .. ~ . --. --. , -.

''''
; ;

" " " ~ ~ ~ w ro " " '" Air gap distance from the droplel(um)

Figure 4.3 Intensity plot for 50% glycerol spot formation.

,,,

31

Figure 4.4 Graph depicting the intensity change during 190um droplet formation for
50% gl ycero 1.

0,05 •

.... .

'''' ___ "":..' :.. .. '-'-'==~ .. ~.,~.> .. u . ~u ____ uuu_ .~ __ _

O. 03(l!-----;"~----;,,~----;,,!;-----;,,!;-----;,,"'.---~,,,

Air gap in um

Figure 4.5 Intensity plot for water/Cy3 spot formation.

•

32

Figure 4.6 Graph depicting the intensity change during 21 Oum droplet formation for
water/Cy3.

In addition to the optical lever, the SmartPin also utilizes the total internal

reflection principle: due to the difference in refractive indices of air, glass (pin), sample

material, and the shape of the material, contact condition can be derived by continuously

monitoring the sensor intensity. For example, 100% glycerol has a refractive index of

1.47 while that of water is about 1.33, both of which are sufficiently high to induce total

internal reflection at the pin tip due to the liquid convex curvature. Once the liquid

contacts the slide, the internal reflection is replaced with transmission due to the change

of refractive index from 1 (air) to 1.57 (glass), resulting in a sudden drop of sensor signal

intensity as most of the light is transmitted away from the sensor. This effect is shown

Figure 4.7 where ray tracing is utilized to show the light transmission patterns. Before the

droplet at the pin tip contacts the slide, a major portion of light rays are trapped within the

pin and reflected back to the sensor as show in Figure 4.7 (up). Once the contact is made,

most of the rays are transmitted into the slide and backscattered, resulting in a lower

sensor signal. This signal intensity drop is compared to the threshold stored in the

database so that a disengagement signal is synthesized and communicated to the robot

and the piezoelectric stack. An internal timer provides the predetermined contact delay

time which is one of the dominant influence factors on spot size.

•

Figure 4.7 Ray Tracing result for SmartPin before (Up) and after (Down) droplet
engagement.

A high frequency vibration can be generated by the fiber driver on the

piezoelectric positioner to facilitate separation of the droplet from the fiber. This way,

extremely small droplets can be formed at high speed. For example, a 50 micron diameter

fiber can deliver droplet size as small as 0.1 nL, resulting in a 25 micron spot and a ten-

fold reduction of use of the DNA materials. These reduced spots can be reliably detected

by scanners with 0.1 fluor/micron2 and 2.5 —5 micron resolution. Currently, the pin

diameter is about 200 microns and spots size can be controlled from 80 microns to 220

microns in diameter. Throughout the process, the SmartPin does not come into contact

34

with the slide and therefore, does not encounter the standard wear out and slide damage

problems of the impact pins.

4.2 Spot Detection

The SmartPin not only monitors and controls spot formation, but also doubles as a spot

sensor. This function is useful for aspiration of sample as well as spot quality check. A

rapid raster scan algorithm is stored in the PC and in turn controls the Seiko D-Tran robot

to scan in an x-y plane 60 microns over the slide. An example droplet formed by 100%

glycerol is shown in Figure 4.9 where a 3 D view of the spot is imaged (left). Cross

sectional view depicting the height of the spot at the time of scanning is shown in the

right. Figure 4.10 shows a 3 D view of a 400 micron droplet formed by 100% glycerol.

Raster scan is done to find the geometry of the droplet. The 3 D view of the spot can be

captured. The pin opening affects the intensity pick up. A pin with a bigger diameter

opening admits more light and can therefore detect smaller spots. For this experiment the

pin is placed 60 microns above the slide having the sample. The robot Z axis distance is

thus fixed and now the robot's X and Y coordinates have to be changed to get the raster

scan as shown in Figure 4.8.

Figure 4.8 Raster scan procedure.

35

Raster scan procedure:

1. First a column wise scan can be performed by fixing the Y axis value as constant
as the Smartpin has to keep moving in the same vertical line path and the X axis is
programmed to move by 10um increment. The intensity picked by the sensor is
recorded when it moves along a column.

2. The position of the robot is noted as points 1 and 2 as shown in Figure 4.8 when
the change in intensity begins and drops during the column scan. The difference
in the position value of the start point of intensity change and end point of
intensity change will help us fix the midpoint 5 as in Figure 4.8 along the X axis.

3. Similarly by fixing the Z coordinate and fixing X coordinate at point 5 along X
axis and programming to move by 10um increment along the Y axis on either
sides of point 5 the row scan is performed.

4. The position of the robot is noted as points 3 and 4 at the start and the end point of
intensity change during the row scan. The difference between these two positions
of the robot is the diameter of the spot in microns. And the mid point of these two
positions namely point 6 in Figure 4.8 will give the midpoint of the spot. Now
that the size of the droplet is well defined, the raster scan to get the geometry can
be carried out.

5. The X direction movement will be column wise scan. The edge of the spot
namely point A as in figure can be made as the start point of the scan by just
incrementing the position of point 4 by the radius of the spot in the X axis. The Y
coordinate value and Z coordinate values are fixed and the pin is moved along the
X direction by 10um each time till point C is reached.

6. Then the next column is scanned by incrementing 10um along the Y axis and
fixing it. The X coordinate is incremented in steps of 10um for the range of the
diameter of the spot and Z value is fixed 60um above the slide as before. In the
same fashion all the columns are scanned until points B to D are covered.

7. The intensity values recorded in each column scan is arranged in the form of a
matrix. This intensity value will be one of the dimensions of the 3D plot and the
other two dimensions will correspond to the diameters of the spot in X and Y
directions. Then a mesh plot is done to obtain the geometry of the spot.

A mesh plot gives the 3D view of the droplet as shown in the Figure 4.10. There

are three usage of the scan. First, the newly formed spot can be checked for acceptability

and if necessary, re-dispense. Second, the pin is capable of locating the spot for

36

hybridization (e.g. "hybridization on the chip"). Third, the pm can locate sample

materials in e.g. microwells for aspiration. This is significant if the sample material IS

limited in volume.

Figure 4.9 Graph depicting the 3D view of a 220micron diameter droplet and a cross
sectional measurement of the spot which is about 18 microns high at the time of scan.

~ ,

.f

Figure 4.10 Graph depicting the 3D view of a 400micron diameter droplet of 100%
glycerol.

4.3 Production of Uniform Size Microarrays

Production of uniformly spaced microarray spots is carried out with the SmartPin for

100%, 50% glycerol and de-ionized water. Sample results are shown in Figure 4.1 1 and

Figure 4.12 where uniform and round spots are clearly visible.

•

37

Figure 4.11 Spot matrix fonned out of 100% glycerol, each spot measures 160microns
(left) and 50% glycerol, each spot measuring 190 microns (right).

Figure 4.12 Microarray with 100% glycerol and 80 microns diameter spots.

Figure 4.13 and Figure 4.14 show that the spots made by the smart pm are

unifonn in size with unifonn spacing in between the spots. Different spot sizes can be

achieved by properly positioning the same pin above the slide surface and by controlling

the Zaber push.

r _1I:JI!I
"",_511

, r ~1l
r ",_ ..

38

Figure 4.13 Microarray with spotting solution 3XSSC with 160 microns diameter spots.

I Ul>8«j. l hl.cII......,. l l\" ... lx_~,,_ ,,. ~_v_

(" ,,-,,~)2I ~1ooooII1~~
(' ~... ,,-,
r ~.)

r' '''''~i"~
r ",~5.32

('" ""..........,.,.1
r ",~ • •

Figure 4.14 Microarray with spotting solution 3XSSC with 160 microns diameter spots
and 130 micron spots.

•

39

4.4 Experiments with Molecular Beacons

"Molecular beacons are single-stranded oligonucleotide hybridization probes that form a

stem-and-Ioop structure. The loop contains a probe sequence that is complementary to a

target sequence, and the stem is formed by the annealing of complementary arm

sequences that are located on either side of the probe sequence. A fluorophore is

covalently linked to the end of one arm and a quencher is covalently linked to the end of

the other arm. Molecular beacons do not fluoresce when they are free in solution.

However, when they hybridize to a nucleic acid strand containing a target sequence they

undergo a conformational change that enables them to fluoresce brightly."

"In the absence of targets, the probe is dark, because the stem places the

fluorophore so close to the nonfluorescent quencher that they transiently share electrons,

eliminating the ability of the fluorophore to fluoresce. When the probe encounters a target

molecule, it forms a probe-target hybrid that is longer and more stable than the stem

hybrid. The rigidity and length of the probe-target hybrid precludes the simultaneous

existence of the stem hybrid. Consequently, the molecular beacon undergoes a

spontaneous conformational reorganization that forces the stem hybrid to dissociate and

the fluorophore and the quencher to move away from each other, restoring fluorescence"

[13] as shown in Figure 4. I 5.

Molecular
Beacon

+ I".

Target Hybrid

Figure 4.15 Molecular Beacon combining with the target to produce fluorescence. [13]

•

40

Determination of Sensitivity of Fluorescence by the Scanner:

The smart pin can handle a metered quantity of the Molecular Beacon (MB) and can be

used to deliver the MB to wells. There will not be any waste of material as a metered

quantity is taken in the pin and is fully delivered into the wells. lui of each of the

solutions shown in Table 4.1 is delivered into the wells machined into a plastic surface

and the fluorescence of each well is determined with a GenePix microarray scanner. The

focus is set to -50um (towards the slide) so that the scanner can look into the wells.

Table 4.1 Sample Solutions of Molecular Beacons
MB- Molecular Beacon T- Target nM- nano Molar , ,

A: BUFFER B:MB C:TARGET

1 ul lX PCR 500nM 500 nM

lui IXPCR 50nM 500 nM

1 ul lXPCR 5nM 500 nM

D:MB+TARGET

500 nM +500 nM

50 nM +500 nM

5 nM +500 nM

A: BUFFER
lui

8: Molecu lar
Beacon
l ui

C: TARGET
l ui

D:MB+T ARGET
lui

Figure 4.16 Fluorescence exhibited by the buffe r, MB, T and MB and T together for
varying quantities.

•

41

Figure 4.16 shows the fluorescence pattern observed by the scanner. It can be seen that

the Molecular Beacon and target combination produce fluorescence as expected.

In the following experiment, one microliter of Molecular Beacon, target and the

combination of target and Molecular Beacons are spotted in plastic wells . Each time the

concentration of the materials are varied in steps of 100nM from 100 to 500nM as

indicated in Figure 4.17 and the fluorescence intensity is measured by the scanner.

~
Slide

ISETZ I mIJ
Scanned immediately Dried and Scanned

Figure 4.17 Fluorescence observed by the scanner.

MB -Molecular Beacon with the following sequence:

m±J
Hydrated

Fluorescein - CGCAG ACC A TG A TC GGC GGC CTGCG - BlackHole Quencher 2.
The underlined sequences are the arm-sequences of the Molecular Beacon, and are not
related to the target ofthe MB.

T -Target always 500 Nano Molar (nM) (Complementary Oligonucleotide target with
sequence TT GCC GCC GAT CAT GGT TT)

T +MB - Target + Molecular Beacon

The four sets of experiments can be described as follows:

SET 1: The plastic slide was scanned to check for fluorescence effect. There was no
fluorescence noticed.

•

42

SET 2: The molecular beacon, target and the combination of target and molecular beacon
of the specified concentration were spotted by the use the Smartpin metered to deliver 1ul
and the slide was scanned immediately before drying. A near background fluorescence is
observed in the MB alone or the target alone. But appreciable fluorescence is observed in
the combination of the target and the molecular beacon. The lower the concentration of
the MB the weaker is the fluorescence. So it can be noticed that the pattern of
fluorescence increases as the concentration of MB increases from 100 nM to 500 nM.

SET 3: After the slide was scanned as stated under SET 2, it was left to dry for 30 min
and scanned again. It can be noticed that there is edge effect. The molecules gravitate
towards the edge of the well and accumulate around it and fluorescence can be seen in the
form of a ring.

SET 4: After scanning as in SET 3, the wells are re-hydrated using distilled water. While
scanning a homogeneous pattern of fluorescence can be observed as before in SET 2
results unlike the ring effect in SET3. Again the fluorescence increases as the
concentration of MB increases from 100 nM to 500 nM.

As the concentration of the Molecular Beacon increase, the Composite Pixel

Intensity (CPI) observed under the scanner also increases pronouncing more

fluorescence. The CPI is a representative composite intensity calculated for each pixel,

based on the intensity values. The slope of the plot in Figure 4.18 is almost linear with

6600 CPI increase with every 100nM increase in concentration of the Molecular Beacon.

Figure 4.18 Concentration of Molecular Beacon Vs Composite Pixel Intensity.

Apart from efficient material handling and spotting in the wells the smart pin can

handle various materials without cross contamination after cleaning with distilled water

each time. The sample to be spotted, 3XSSC with 10% Cy3 dye for fluorescence, is

43

picked up by the pin and the spotting is carned out in one column on a glass slide. Six

spots are spotted in a column as shown in Figure 4.19. Then the sample is emptied by

moving the Zaber to the maximum limit. Now the pin is immersed in distilled water and

the Zaber is jogged up and down 4 to 5 times to draw and release distilled water in the

pin. Standard ultrasound sonicating is not necessary. Next spotting is carned out with

distilled water in the next column and six spots are made. Following this again a fresh

supply of the buffer and Cy3 dye is filled in the pin and spotting of the next column is

carned out. Thus an alternate column of buffer with Cy3 and distilled water spotting is

done. It is evident from the Figure 4.19 that there is no contamination in the pin after

cleaning and refilling. The spots in every alternate column (water only) do not produce

fluorescence. Only the spots made with the buffer and Cy3 exhibit fluorescence.

""" ... ,."'" .:: :, .. . " " "
: i .-" .. -.

Figure 4.19 Alternate columns of buffer with 10% Cy3 and distilled water spotting
showing no cross contamination of material handled by the pin.

•

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this work, a novel liquid dispensing system termed SmartPin is described. It is based

on integrated active sensing and control to produce precise and uniform liquid spots in a

contactless manner. Due to active fluid displacement, the pin is capable of handling

highly viscous materials such as glycerol. Primary application of this system includes

DNA and protein microarray fabrication, and other situations where aspiration of small

liquid quantity is required. The current laboratory prototype is capable of spotting arrays

of circular dots with uniform dimensions and controlled diameters from 80-200 microns.

The features of the pin include not only spotting and spot detection, but it also can locate

the missing spots based on the optical sensor intensity information and can redo the

spotting.

In the future, the piezoelectric actuator can be incorporated to the model to ensure

precise positioning of the slide and to break the elongation of the droplet sooner to get

smaller spots. The sensing capability of the smart pin can be exploited to find the nature

of the material used. Experimental results show that more elongation occurs in less

viscous sample. In the future more efficient control strategy can be employed in the

controller to detect the spot formation and the commands can be downloaded to the robot

to draw the pin back with the maximum speed of 10.1um/ms so as to achieve smaller dot

sizes. The current Fotonic sensor can be replaced by more sensitive sensor and the

current Zaber stager with accuracy +/-8 um used can be replaced by a more accurate

actuator. A platform with accuracy +/-1 um and higher speed will enhance the technique.

44

APPENDIX A

HARDWARE SPECIFICATIONS

The specifications of the robot, software used, connection establishment between the

robot and the computer terminal and the specifications of the Fotonic sensor is discussed

below.

1. Specification of SEIKO D-TRAN robot:

Mounting Area

Work envelope: x-axis is 300mm, Y-axis is 200mm and Z-axis is 100mm.

Base plate dimensions: 470mm deep X 420 mm wide.

Seiko D-Tran robot specifications

Repeatability: + or — 0.008mm (0.0003 in.)

Speed: 1500 mm/sec (59 in/sec)

Accuracy: 0.030 mm (0.0012 in)

Payload: 1 kg

Seiko D-Tran dimensions: 554 mm wide X 1084 mm deep

Seiko D-Tran weight: 105 Kg

The Z-axis is located between the A-axis and the X-axis of the Seiko D-Tran robot. The

power train of the axis is a rack and pinion assembly.

Z-axis specifications

Stroke: 100 mm (3.94 in)

Resolution: 0.010 mm

Speed: 500 mm/sec

Axis dimensions: 100 mm deep X 150 mm Wide X 441 mm high

45

46

2. DARL language overview

The standard language used by the Seiko D-Tran Robot is DARL Version 2.3. It is easy

to use and similar to BASIC language.

Steps for running a program using DARL from tech terminal:

• Make sure the TERMINAL/AUTO switch is in TERMINAL position.

• Turn the main power on. Switch the main power to "ON" position.

• Turn on the power on the servo motors by pressing the GREEN button.
One will see:
M DARL XY 3000 VER 2.3
COPYRIGHT 1984 SEIKO I&E
`NC refers to the Monitor mode (it is the default mode of the robot).

• Type 'HOME', which will get the robot in the home position. Home position is
necessary before the start of any operation to have the robot know its workspace
and initial transitional points.

• Type 'EDIT' to go to EDIT mode, from the Monitor mode.
One will see:
E

This is EDIT mode, and this mode is used for typing own programs and feeding them to

the controller. The following is an example program to move the robot arm in place from

home position to a position described by the summation of two translation points T20 and

T 30.

NEW

10 T20=100.0 20.0 300.0 0.0

20 T30=20.0 30.0 100.0 0.0

30 MOVE T40=T20+T30

40 END

47

Program execution is done in MONITOR mode. To get back in to MONITOR mode type

QUIT in EDIT mode. This will bring back to MONITOR mode from EDIT mode. To run

the program and move robot arm to T40 position press START. Pressing START

executes the current program in RAM.

3. Serial communication concept

The Seiko D-Tran controller has two RS-232 ports for serial communication with any

device. It is a 25 pin female connections. RS-232 is a standard that describes a common

method of serial signaling using positive voltage for logic "0" and a negative level for

logic "1". When RS-232 line is powered up but idle (not conveying data) it is in its lower

voltage stage. When data is sent RS-232 jumps to its higher voltage state momentarily to

alert the receiver and this is called the 'start bit'. The communication takes place through

the American Standard Code of Information Interchange (ASCII). The Seiko controller's

Tech-Terminal or the keyboard's keys are coded in to 7 bits ASCII, which is normally the

character length. Parity is generally added for authentication. This is followed by one or

two stop bits. Typical ASCII transmission is shown for transmitting a character say "A".

Character:	 A

Decimal:	 065

Hexadecimal: 041

Binary:	 01000001

48

The bit time is expressed in samples per second, known as baud. The common baud rate

used is generally 9600 baud. A bit time is defined as 1/bps. For example, at 9600 bps the

bit time is 1/9600 =104 microseconds.

Protocol and use of DARL RS-232 communication package

Host can have the ability to start and stop the robot. Host could be a Cathode Ray Tube

(CRT), Personal or Business Computer, Vision Systems. It uses ASCII for

communication and any computer or peripheral device compatible to a UART.

Conditions to Match the Protocol:

• Several Port characteristics must be matched for 2 devices to communicate, using
EIA's RS-232. It is Important to have devices to be set as DTE (Data Terminal
Equipment) or DCE (Data Communication Equipment). It is not important that
which device is DTE or DCE, it is only important that both are not set as same.
Speed at which the communication is done should also be same for both the
communicating devices. The Robot controller has a UART (Universal
Asynchronous Receiver Transmitter) which is Intel 8251A.

• Note that the Baud Rate factor (B 1 BO) is never to be changed from 1 0 for
current version of communication package as (per the manual). It's according to
the clock setting of the processor. Also a Null Modem can be used incase both
terminals are either DTE/DCE. The integer in its binary form determines the
characteristics of the port. Figure A.1 demonstrates how the desired
characteristics of RS-232 port are reduced to the integer in DARL statement.

•

49

.----EVEN PARITY

PARITY ENABLE

STOP BITS CHARACHTERLENGTH

Ll

a EVEN aNO

I ODD I ENABLE a a SYNC MODE

a IX

a 16X

I 64X

a a INVALID a a SBITS

0 I BIT a 6BITS

0 2BITS 0 7BITS

J BITS 8 BITS

Figure A.I Reduction ofRS-232 characteristics into integers in DARL statement.

Connecting tbe Robot to tbe Computer

In the Robot side fIrst of all the physical connection is done using a 25-9 pin cable build

using connectors. The wires are shielded to avoid picking stray signals. Also the length of

the cable should be approximately 1.5 meter for errorless transmission. The default input

and output unit of the robot's controller is the Teach-Terminal. At the robot end the

important 8 pins used out of 25 pins ofRS 232 Port (Robot Controller) are li sted below.

I-Ground 5-Clear To Send

2-Transmit Data 6- Data Send Ready

3-Receive Data 7-Signal Ground

4-Request to Send 20-Data Terminal Ready

50

DARL statement OUNIT (n) assigns the output unit of the controller and 'n' is the unit

which will act as the output unit. DARL statement IUNIT (n) assigns the input unit of the

controller.

Values of (n): 0 LCD/Key Board on Teach Terminal

1 RS-232 Port #1

2 RS-232 Port # 2 (there are 2 Ports on the back panel)

3 Printers

Example of MONITOR Mode

DO OUNIT1 {press enter}

DO IUNIT 1 {press enter}

The 'Z' statement holds the key in communication. Its syntax is "Z=integer". Now this

integer value is the DECIMAL equivalent of the 8-Bit Binary number from the DART.

Example if Z=78 DEC ie., 0 1 0 0 1 1 1 0 BIN, it implies that the controller is set to

following parameters for communication: 8 Characters

NO Parity

1 Stop Bit

Example of 'Z' in EDIT Mode:

10 Z=78

20 END

Example of 'Z' in MONITOR Mode:

DO Z=78 {press enter}

In the Computer Side as shown in Figure A.2 the COMM1 port is used.

•

51

Figure A.2 Communication port pin configuration.

Hyper tenninal is a tenninal program that will enable a PC to communicate directly with

a Communication port (Eg: Comm I). On Windows 95/ 98 /98 SE, Windows 2000,

Windows ME, or NT4, the Windows HyperTenninal program can be used as it is

included as a part of the operating system. After a new connection is opened, by going to

CONFIGURE the parameters on the computer side can be set as per the settings on the

robot side as shown in Figure A.3.

(OMI Properties

Port Settings 1

.6i1s per $econd: Jii.' 3

Q". bit" Ie 3

OK Cancel

Figure A.3 Communication port 1 settings.

Now to set the other parameters go to PROPERTIES -7 SETTINGS, leave the

EMULATION to auto detect and go into ASCII set up as shown in Figure A.4.

ASCII Setup J'

ASCII Sending ----------,

P" ~end line ends with fine feeds

P" ~cho typed characters locally

!,ine delay: 10 milliseconds .

.c;haracter delay: 10 milliseconds.

ASCII Receiving ---------,

P" append line feeds to incoming line ends

P" lIoj£~E~ii>"l~~~a..i.~j~I~IA~~J~
P" Wrap lines that exceed terminal width

OK Cancel

Figure A.4 ASCII settings for communication port.

Important Points about ASCII set up

52

• The DARL protocol for communication transmits all transmission blocks other
than a STOP character with a Carriage Return (CR) and a Line Feed (LF)

• An Enter Key on the Keyboard would automatically do that, if ' Send line with
line feed' is enabled.

• 'Echo type characters locally' will display the characters on the screen being
typed and outputted.

• 'Enforce the incoming data to 7 -Bit ASCII', This is used because the Robot's
Keyboard is fully expressed in 128 bit characters of ASCII so we require 27 = 128
bits

• The Character length is set to 8 bits so that all the bits are 'O's and contribute
towards a START BIT.

•

53

The program is as given below:

In EDIT mode:

E

NEW
COMM 1 78: IUNIT 1: OUNIT 1
END
QUIT
M

START {Press Start}

The LCD is as good as numb and one can see "OM>" on the HyperTerminal Screen. Now

the computer is the new I/O terminal.

4. Specifications of the Fotonic sensor:

The plug in module used is MTI-3802 with the probe outer diameter of 504um and inner

core diameter of 150um. The Figure A.5 shows the MTI instruments Fotonic sensor gap

calibration chart.

Figure A.5 MTI 1000 Fotonic Sensor characteristics.

APPENDIX B

SOURCE CODE

The automatic spotting sequence method explained in the thesis is implemented using

Measurement Studio Lab Windows/ CVI of National Instruments. The following is the

source code for the entire process.

r	 */
r	 */
/* FILE: 	 spotting.c 	 */
/* 	 */
/* PURPOSE: Automate the SPOTTING experiment 	 *1
/* 	 */
/* NOTES: 	 Make sure all serial cables are connected properly. 	 */
/* 	 */
/* 	 *1

/* 	 */
/* Include Files 	 */
/* 	 */
#include <windows.h>
#include "daq_num.h"
#include <analysis.h>
#include "daqchart.h"
#include <ansi_c.h>
#include <formatio.h>
#include <rs232.h>
#include <utility.h>
#include <cvirte.h>
#include <userint.h>
#include "spotting.h"

/* 	 */
/* Constants 	 */
/* 	 */
#define ROBEOL 	 '>'
#define ROBLIMGAP 	 0.2
#define ROBCMDLEN 	 512
#define ZABUNIT 	 (unsigned char)1
#define ZABCNT 	 6
#define ZABCONVFACT 	 0.09921875
#define ZABCMDLEN 	 512
#define SENSRNGGAP 	 0.2

#define SNESDAQNUMIDXLIM 	 2000
#define SENSDAQNUMRATE 	 50.00
#define SENSDAQNUMINT 	 (1.0/SENSDAQNUMRATE)
#define SFNSSPOTTFSTTH 	 S

54

55

/* 	 */
/* Local Function Prototypes 	 *1
/* 	 */
void 	 _MylnitApp (void);
void 	 _MyExitApp (void);
int 	 _MylnitExp (void);
void 	 _DispRS232Err (int _iPortldx);
void 	 _SendRobCmd (int _iCmdType, double _dX, double _dY,

double _dZ);
DWORD WINAPI 	 _RobCommMonProc (LPVOID _IpParam);
void CVICALLBACK _RobRpIyEOLFunc (int _iPortNum, int _iEvntMask,

void * _pvCallBackData);
void 	 _RobGoHomeFunc (void);
void 	 _RobGo2WellFunc (void);
void 	 RobGo21stSpotFunc (void);
void 	 _RobJogXYZFunc (int _iType);
void 	 _SendZabCmd (unsigned char cCmdType, long int* _pIZ);
DWORD WINAPI 	 _ZabCommMonProc (LPVOID _IpParam);
void CVICALLBACK _ZabRplyEOLFunc (int _iPortNum, int _iEvntMask,

void * _vpCallBackData);
void 	 _ZabJogZFunc (int iType, long int_IStep);
void 	 _ZabGoHomeFunc (void);
void 	 _GetCoorVal (char* _strVal, double* _pdX, double* _pdY,

double* _pdZ);
DWORD WINAPI 	 _AutoExpMonProc1 (LPVOID _IpParam);
DWORD WINAPI 	 _AutoExpMonProc2 (LPVOID _IpParam);
int 	 _TestSpotForm (void);
void 	 _EmgyProc (void);

/* 	 */
/* File Static Variables 	 */
/* 	 */
static 	 int 	 iPnlHdl;

/* 	 */
/* Volatile Variables 	 */
/* 	 */
double 	 dRobWell[3];
double 	 dRob1 stSpot[3];
double 	 dRobLim[3];
double 	 dRobStep[3];
double 	 dRobTarg[3];
double 	 dRobCurr[3];
unsigned char 	 strRobCmd[ROBCMDLEN];
unsigned char 	 strRobRply[ROBCMDLEN];
unsigned char 	 strTempRobWrt[ROBCMDLEN];
unsigned char 	 strTempRobRd[ROBCMDLEN];

long int 	 IZabLowLim,IZabUppLim;
long int 	 IZabStep;
long int 	 IZabTarg;
long int 	 IZabTargTemp;
long int 	 IZabTargTemp1;
long int 	 IZabCurr;
long int 	 IZabCurrTemp;
char 	 strZabCmd[ZABCMDLEN];

56

char 	 strZabRply[ZABCMDLEN];
char 	 strTempZabWrt[ZABCMDLEN];
char 	 strTempZabRd[ZABCMDLEN];

unsigned short int iCurrRow, iCurrCol;
unsigned short int 	 iMaxRow, iMaxCol;
unsigned short int 	 iSpotNum;

double 	 dCurrV;

char 	 bEmgSwch;

int 	 iCmdldx[2];
int 	 iPortOpen[2];
int 	 iCommErr[2];
int 	 iDevErr[2];
int 	 iCommPort[2];
int 	 iBaudRate[2];
int 	 iPortldx[2];
int 	 iParity[2];
int 	 iDataBits[2];
int 	 iStopBits[2];
int 	 ilnptQ[2];
int 	 iOuptQ[2];
int 	 iXMode[2];
int 	 iCTSMode[2];
int 	 iStrSize[2];
int 	 iBytsSent[2];
int 	 iBytsRead[2];
int 	 iBrkStat[2];
int 	 iCommStat[2];
int 	 ilnQLen[2];
int 	 iOutQLen[2];

double 	 dTimeOut[2];

HANDLE 	 hCommStartEvnt[2];
HANDLE 	 hCommEOLEvnt[2];
HANDLE 	 hCommEndEvnt[2];
HANDLE 	 hCommThrd[2];
DWORD 	 dwCommThrdlD[2];

char 	 strRobPortName[30];
char 	 strZabPortName[30];

char 	 strErrMsg[200];

int 	 iSensDAQNumID;
int 	 iSensDAQStartRec;
int 	 iSensDAQDataldx;
double 	 dSensDAQRaw[SNESDAQNUMIDXLIM];
double 	 dSensDAQData[SNESDAQNUMIDXLIM];
double 	 dSensDAQTime[SNESDAQNUMIDXLIM];

int 	 iSensDAQPosDataldx1, iSensDAQPosDataldx2;
int 	 iSensDAQPosDataldx;

57

double 	 dSensDAQPosData[SNESDAQNUMIDXLIM];
double 	 dSensDAQPos[SNESDAQNUMIDXLIM];
int 	 iSensDAQFiltMaxldx,iSensDAQFiltMinldx;
double 	 dSensDAQFiltMax, dSensDAQFiltMin;
int 	 iSensDAQFiltldx;
double 	 dSensDAQFiltData;
double 	 dSensDAQFilt[10];

HANDLE 	 hExpStartEvnt[2];
HANDLE 	 hExpFuncThrd[2];
DWORD 	 dwExpFuncThrdlD[2];

int 	 iFileHdl;
int 	 iFileStat;
char 	 strFileName[64];

int 	 iWhenToPickRef;
int 	 iCurvRefldx;

/* 	 */
/* Main procedure 	 */
/* 	 */
int main (int _argc, char *_argv,0)==0
{

/* Initialize variables */
_MylnitApp 0;
if (InitCVIRTE (0, _argv, 0) == 0)

return -1; 	 /* out of memory */
if ((iPnlHdl = LoadPanel (0, "spotting.uir", PANEL)) < 0)

return -1;
DisplayPanel (iPnlHdl);
RunUserinterface 0;
DiscardPanel (iPnlHdl);
/* Release occupied resources */
_MyExitApp 0;
return 0;

}

/* 	 */
/* Initialize Variables 	 */
/* 	 */
void _MylnitApp (void)
{

int 	 i_idx;

for (i_idx = 0; i_idx < 2; i_idx++) {
iPortOpen[i_idx] 	 = 0;
hCommStartEvnt[i_idx] = NULL;
hCommEOLEvnt[i_idx] = NULL;
hCommEndEvnt[i_idx] = NULL;
hCommThrd[i_idx] = NULL;

hExpStartEvnt[i_idx] = NULL;
hExpFuncThrd[i_idx] = NULL;
dwExpFuncThrdID[i_idx] = 0;

}

iSensDAQNumID 	 = 0;
iSensDAQDataldx = 0;
iSensDAQStartRec = 0;
dSensDAQTime[0] = 0.0;
iSensDAQFiltldx = 0;

}

/* 	 */
/* Uninitialize Variables 	 */
/* 	 */
int CVICALLBACK _QuitApp(int _iPnlHdl, int _iCtrlHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvntDatal,
int _iEvntData2)

{
switch LiEvntHdl)

{
case EVENT_COMMIT:

QuitUserinterface (0);
break;

}
return 0;

}

void _MyExitApp (void)
{

int 	 i_idx;

for (i_idx = 0; i_idx < 2; i_idx++) {
if (hCommStartEvnt[i_idx] != NULL) {

CloseHandle (hCommStartEvnt[i_idx]);
} /* END IF */
if (iPortOpen[i_idx]) {

iOutQLen[i_idx] = GetOutQLen (iCommPort[i_idx]);
if (iOutQLen[i_idx] > 0) {

MessagePopup ("RS232 Message", "The output queue has\n"
"data in it. Wait for device to receive\n"
"the data or flush the queue.\n");

break;
} /* END IF */
iCommErr[i_idx] = CloseCom (iCommPort[i_idx]);
if (iCommErr[i_idx]) {

_DispRS232Err (i_idx);
} /* END IF */

} /* END IF */
} /* ENF FOR */

}

/* 	 */
/* Initialize Experiment 	 */
/* 	 */
int CVICALLBACK InitializeExp(int _iPnlHdl, int _iCtrIHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvntData1,
int _iEvntData2)

{

58

switch LiEvntHdl) {
case EVENT_COMMIT:

_MylnitExp 0;
break;

}
return 0;

}

int _MylnitExp (void)
{

SetCtrIVal (iPnlHdl, PANEL_EXPMSGI, "INITIALIZING ...");
SetCtrIVal (iPnlHdl, PANEL_EXPMSG2, "");

if (iPortOpen[0] == 0) {
iCommPort[0] 	 = 1;
strRobPortName[0] = A0';
strcpy (strRobPortName, "COM1");
iBaudRate[0] 	 = 9600;
iParity[0] 	 = 0;
iDataBits[0] 	 = 8;
iStopBits[0] 	 = 1;
ilnptQ[0] 	 = 512;
iOuptQ[0] 	 = 512;
DisableBreakOnLibraryErrors 0;
iCommErr[0] 	 = OpenComConfig (iCommPort[0], strRobPortName,

iBaudRate[0],
iParity[0],

iDataBits[0],
iStopBits[0],

ilnptQ[0],
iOuptQ[0]);

EnableBreakOnLibraryErrors 0;
if (iCommErr[0]) {

_DispRS232Err (0);
return -1;

}
iPortOpen[0] 	 = 1;
FlushInQ (iCommPort[0]);

FlushOutQ (iCommPort[0]);

/* Allow for only one installation */
InstallComCallback (iCommPort[0], LWRS RXFLAG, 0,

(int)ROBEOL,
RobRplyEOLFunc, 0);

if (hCommStartEvnt[0] == NULL) {
hCommStartEvnt[0] = CreateEvent (NULL, TRUE, TRUE, NULL);
if (hCommStartEvnt[0] == NULL) {

Fmt (strErrMsg, "%s<CreateEvent failed: (°/01)\n", GetLastError());
MessagePopup ("CreateEvent Message", strErrMsg);
return -1;

}
ResetEvent (hCommStartEvnt[0]);

}
if (hCommEOLEvnt[0] == NULL) {

hCommEOLEvnt[0] = CreateEvent (NULL, TRUE, TRUE, NULL);
if (hCommEOLEvnt[0] == NULL) {

59

Fmt (strErrMsg, "%s<CreateEvent failed: (%i)\n", GetLastError());
MessagePopup ("CreateEvent Message", strErrMsg);
return -1;

}

ResetEvent (hCommEOLEvnt[0]);
}

if (hCommEndEvnt[0] == NULL) {
hCommEndEvnt[0] = CreateEvent (NULL, TRUE, TRUE, NULL);
if (hCommEndEvnt[0] == NULL) {

Fmt (strErrMsg, "%s<CreateEvent failed: (%i)\n", GetLastError());
MessagePopup ("CreateEvent Message", strErrMsg);
return -1;

}

SetEvent (hCommEndEvnt[0]);
}

if (hCommThrd[0] == NULL) {
hCommThrd[0] = CreateThread (0,0, _RobCommMonProc,

0,0, &dwCommThrdID[0]);
if (hCommThrd[0] == NULL) {

Fmt (strErrMsg, "%s<CreateThread failed: (%i)\n", GetLastError());
MessagePopup ("CreateThreadt Message", strErrMsg);
return -1;

}

}

/*SetXMode (iCommPort[0], iXMode[0]);
SetCTSMode (iCommPort[0], iCTSMode[0]);
SetComTime (iCommPort[0], dTimeOut[0]); */

}

if (iPortOpen[1] == 0)
{

iCommPort[1] 	 = 2;
strZabPortName[0] = 1\0 1 ;
strcpy (strZabPortName, "COM4");
iBaudRate[1] 	 = 9600;
iParity[1] 	 = 0;
iDataBits[1] 	 = 8;
iStopBits[1] 	 = 1;
ilnptQ[1] 	 = 512;
iOuptQ[1] 	 = 512;
DisableBreakOnLibraryErrors ();
iCommErr[1] 	 = OpenComConfig (iCommPort[1], strZabPortName,

iBaudRate[1],
iParity[1],

iDataBits[1],
iStopBits[1],

ilnptQ[1],
iOuptQ[1]);

EnableBreakOnLibraryErrors ();
if (iCommErr[1]) {

_DispRS232Err (1);
return -1;

}

iPortOpen[1] = 1;
FlushlnQ (iCommPort[1]);

60

61

FlushOutQ (iCommPort[1]);

/* Allow for only one installation */
InstallComCallback (iCommPort[1], LWRS_RECEIVE, ZABCNT,

0,
_ZabRpIyEOLFunc, 0);

if (hCommStartEvnt[1] == NULL) {
hCommStartEvnt[1] = CreateEvent (NULL, TRUE, TRUE, NULL);
if (hCommStartEvnt[1] == NULL) {

Fmt (strErrMsg, "%s<CreateEvent failed: (%i)\n", GetLastError());
MessagePopup ("CreateEvent Message", strErrMsg);
return -1;

}
ResetEvent (hCommStartEvnt[1]);

}
if (hCommEOLEvnt[1] == NULL) {

hCommEOLEvnt[1] = CreateEvent (NULL, TRUE, TRUE, NULL);
if (hCommEOLEvnt[1] == NULL) {

Fmt (strErrMsg, "%s<CreateEvent failed: (%i)\n", GetLastError());
MessagePopup ("CreateEvent Message", strErrMsg);
return -1;

}
ResetEvent (hCommEOLEvnt[0]);

}
if (hCommEndEvnt[1] == NULL) {

hCommEndEvnt[1] = CreateEvent (NULL, TRUE, TRUE, NULL);
if (hCommEndEvnt[1] == NULL) {

Fmt (strErrMsg, "%s<CreateEvent failed: (%i)\n", GetLastError());
MessagePopup ("CreateEvent Message", strErrMsg);
return -1;

}
SetEvent (hCommEndEvnt[1]);

}
if (hCommThrd[1] == NULL) {

hCommThrd[1] = CreateThread (0,0, _ZabCommMonProc,
0, 0, &dwCommThrdID[1]);

if (hCommThrd[1] == NULL) {
Fmt (strErrMsg, "%s<CreateThread failed: (%i)\n", GetLastError());
MessagePopup ("CreateThread Message", strErrMsg);
return -1;

}
}

}
/* Read Robot Position */
SetCtrlVal (iPnlHdl, PANEL_ROBMSG, "COMM1 ...");

strRobCmd[0] = '\0';
ResetEvent (hCommStartEvnt[0]);
ResetEvent (hCommEOLEvnt[0]);
_SendRobCmd (3, 0.0, 0.0, 0.0);
SetEvent (hCommStartEvnt[0]);

/* Read Zaber Position */
SetCtrIVal (iPnlHdl, PANEL_ZABMSG, "COMM4 ...");
iCmdldx[1] = 0;
ResetEvent (hCommStartEvnt[1]);

ResetEvent (hCommEOLEvnt[1]);
_SendZabCmd (60,NULL);
SetEvent (hCommStartEvnt[1]);

if (iSensDAQNumID == 0) {
iSensDAQNumID = DAQ_Numeric_ConvertFromNumeric (iPnIHdl,

PANEL_ SENSCURRV,
"Sensor");

DAQ_Numeric_SetAttribute (iPnlHdl, iSensDAQNumID,
ATTR_DAQ_NUMERIC_SCAN_FREQUENCY,
SENSDAQNUMRATE);

}

return 0;
}

/* 	 *1
/* Display error information to the user. 	 */
/* 	 */
void _DispRS232Err (int _iPortldx)
{

switch (iCommErrLiPortldx])
{
default :

if (iCommErrLiPortldx] < 0)
{
Fmt (strErrMsg, "%s<RS232 error number %i", iCommErrLiPortldx]);
MessagePopup ("RS232 Message", strErrMsg);
}

break;
case 0 :

MessagePopup ("RS232 Message", "No errors.");
break;

case -2 :
Fmt (strErrMsg, "%s", "Invalid port number (must be in the "

"range 1 to 8).");
MessagePopup ("RS232 Message", strErrMsg);
break;

case -3 :
Fmt (strErrMsg, "%s", "No port is open.\n"

"Check COM Port setting in Configure.");
MessagePopup ("RS232 Message", strErrMsg);
break;

case -99 :
Fmt (strErrMsg, "%s", "Timeout error.\n\n"

"Either increase timeout value,\n"
" 	 check COM Port setting, or\n"
" 	 check device.");

MessagePopup ("RS232 Message", strErrMsg);
break;

}
}

/* 	 */
/* Prepare the command string to Robot 	 */
/* 	 */

62

63

/* iCmdType = 1 : HOME 	 */
/* iCmdType = 2 : MOVE 	 */
/* iCmdType = 3 : DISP 	 *1
/* 	 */
void _SendRobCmd (int _iCmdType, double _dX, double _dY, double _dZ)
{

switch LiCmdType)
{
case 1:

strcpy (strTempRobWrt, "HOME\r\nDISP\r\nQUIT\r\n");
strcat (strRobCmd, strTempRobWrt);
break;

case 2:
strcpy (strTempRobWrt, "DO CLEAR\r\n");
strcat (strRobCmd, strTempRobWrt);
sprintf(strTempRobWrt,"DO T1=%.2f %.2f %.2f %.2f\r\n"

,_dX, _dY, _dZ, 0.0);
strcat (strRobCmd, strTempRobWrt);
strcat (strRobCmd, "DO MOVE T1\r\nDISP\MQUIT1r\n");
break;

case 3:
strcpy (strTempRobWrt, "DISP\r\nQUIT\r\n");

strcat (strRobCmd, strTempRobWrt);
break;

default:
break;

}
}

/* 	 *1
/* Thread for controlling communication with Robot 	 */
/* 	 */
/* hCommStartEvnt[0] control the start of communication 	 */
/* hCommEOLEvnt[0] control the end of communication 	 */
/* */
DWORD WINAPI _RobCommMonProc (LPVOID _IpParam)
{

char* 	 pstr_temp;
char* 	 pstr_temp1;
char 	 str_temp[50];
int 	 i_idx;

while (iPortOpen[0] == 1)
{

WaitForSingleObject (hCommStartEvnt[0], INFINITE);

pstr_temp = strRobCmd;

while (*pstr_temp != '10')
{

FlushInQ (iCommPort[0]);
FlushOutQ (iCommPort[0]);
ResetEvent (hCommEOLEvnt[0]);
i_idx = strcspn (pstr_temp, "\n") + 1;
str_temp[0] = '10';
strncat (str temp, pstr_temp, i_idx);

pstr_temp += i_idx;
pstr_temp1 = strstr (str_temp, "T1=");
if (pstr_temp1 != NULL) {

pstr_temp1 += 3;
_GetCoorVal (pstr_templ, &dRobTarg[0], &dRobTarg[1],

&dRobTarg[2]);
SetCtrlVal (iPnlHdl, PANEL_ROBTARGX, dRobTarg[0]);
SetCtrlVal (iPnlHdl, PANEL_ROBTARGY, dRobTarg[1]);
SetCtrlVal (iPnlHdl, PANEL_ROBTARGZ, dRobTarg[2]);

}
iStrSize[0] = StringLength (str_temp);
iBytsSent[0] = ComWrt (iCommPort[0], str_temp, iStrSize[0]);
WaitForSingleObject (hCommEOLEvnt[0], INFINITE);

}
SetCtrlVal (iPnlHdl, PANEL_EXPMSG2, "DONE!");
SetCtrlVal (iPnlHdl, PANEL_ROBMSG, "OK.");
ResetEvent (hCommStartEvnt[0]);
SetEvent (hCommEndEvnt[0]);

}
return 1;

}

/* 	
/* Callback function to deal with the ending of communication 	 */
/* 	 *1
/* According to the communication protocol, when '>' letter is received, */
/* one communication is over. 	 */
/* 	 */
void CVICALLBACK _RobRplyEOLFunc (int _iPortNum, int _iEvntMask,

void * _pvCallBackData)
{

char* 	 pstr_temp_m;
char* 	 pstr_temp_d;
char* 	 pstr_temp;
int 	 i_idx;

strTempRobRd[0] = '\0';

ComRd (iCommPort[0], strTempRobRd, GetInQLen(iCommPort[0]));
FlushlnQ (iCommPort[0]);
strcat (strRobRply, strTempRobRd);

pstr_temp_m = strstr (strTempRobRd, "M>\r\n");
pstr_temp_d = strstr (strTempRobRd, "D>\r\n");

if (pstr_temp_d != NULL) {
pstr_temp = strstr (strRobRply, "(XYZA)");
if (pstr_temp != NULL) {

i_idx = strcspn (pstr_temp, "\n") + 1;
pstr_temp += i_idx;

_GetCoorVal (pstr_temp, &dRobCurr[0], &dRobCurr[1], &dRobCurr[2]);
SetCtrlVal (iPnlHdl, PANEL_ROBCURRX, dRobCurr[0]);
SetCtrlVal (iPnlHdl, PANEL_ROBCURRY, dRobCurr[1]);
SetCtrlVal (iPnlHdl, PANEL_ROBCURRZ, dRobCurr[2]);

64

}
}

if ((pstr_temp_m != NULL) II (pstr_temp_d != NULL))
{

strRobRply[0] = '\0;
SetEvent (hCommEOLEvnt[0]);

}
}

/* 	 */
/* Callback functions to HOME the Robot 	 */
/* 	 */
int CVICALLBACK _RobGoHome(int _iPnlHdl, int _iCtrIHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvntData1,
int _iEvntData2)

{
switch LiEvntHdl) {

case EVENT COMMIT:
_RobGoHomeFunc 0;

break::
}

return 0;
}

void _RobGoHomeFunc (void)
{

dRobTarg[0] = 0.0;
dRobTarg[1] = 0.0;
dRobTarg[2] = 0.0;
SetCtrIVal (iPnIHdI, PANEL_ROBTARGX, dRobTarg[0]);
SetCtrIVal (iPnlHdl, PANEL_ROBTARGY, dRobTarg[1]);
SetCtrIVal (iPnlHdl, PANEL_ROBTARGZ, dRobTarg[2]);
SetCtrIVal (iPnIHdI, PANEL_EXPMSGI, "ROBOT GOING HOME...");
SetCtrIVal (iPnlHdl, PANEL_EXPMSG2, "");
SetCtrIVal (iPnIHdI, PANEL_ROBMSG, "COMM1 ...");

strRobCmd[0] = '\0';
ResetEvent (hCommStartEvnt[0]);
ResetEvent (hCommEOLEvnt[0]);
_SendRobCmd (1, 0.0, 0.0, 0.0); /* HOME */
SetEvent (hCommStartEvnt[0]);

}
/* 	 */
/* Callback functions to move the Robot to liquid well 	 */
/* 	 */
int CVICALLBACK _GoToWell(int _iPnlHdl, int _iCtrlHdl, int _iEvntHdl,

void *_pvCallBackbata, int _iEvntData1,
int _iEvntData2)

{
switch LiEvntHdl) {

case EVENT COMMIT:
_ RobGo2WellFunc 0;

break;
}

return 0;
}

65

void _RobGo2WellFunc (void)
{

SetCtrIVal (iPnlHdl, PANEL_EXPMSGI, "ROBOT GOING TO WELL...");
SetCtrIVal (iPnIHdI, PANEL_EXPMSG2, "");
SetCtrIVal (iPnIHdI, PANEL_ROBMSG, "COMM1 ...");
GetCtrIVal (iPnIHdI, PANEL_WELLX, &dRobWell[0]);
GetCtrIVal (iPnIHdI, PANEL_WELLY, &dRobWell[1]);
GetCtrIVal (iPnIHdl, PANEL_ROBLIMITZ, &dRobLim[2]);
dRobWell[2] = dRobLim[2] + ROBLIMGAP;
SetCtrIVal (iPnIHdI, PANEL_WELLZ, dRobWell[2]);
strRobCmd[0] = '\0';
ResetEvent (hCommStartEvnt[0]);
ResetEvent (hCommEOLEvnt[0]);
_SendRobCmd (2, dRobWell[0], dRobWell[1], dRobCurr[2]);
_SendRobCmd (2, dRobWell[0], dRobWell[1], dRobWell[2]);
SetEvent (hCommStartEvnt[0]);

}

/* 	 *1
/* Callback functions to move the Robot to the 1st spot 	 */
/* 	 */
int CVICALLBACK _Go1 stSpot(int _iPnlHdl, int _iCtrIHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvntData1,
int _iEvntData2)

{
switch (_iEvntHdl) {

case EVENT_COMMIT:
_RobGo21stSpotFunc 0;

break;
}

return 0;
}

void _RobGo21stSpotFunc (void)
{

SetCtrIVal (iPnlHdl, PANEL_EXPMSGI, "ROBOT GOING TO THE 1ST SPOT...");
SetCtrIVal (iPnlHdl, PANEL_EXPMSG2, "");
SetCtrIVal (iPnlHdl, PANEL_ROBMSG, "COMM1 ...");
GetCtrIVal (iPnlHdl, PANEL1STSPOTX, &dRob1 stSpot[0]);
GetCtrIVal (iPnlHdl, PANEL1STSPOTY, &dRob1stSpot[1]);
GetCtrIVal (iPnIHdI, PANEL_ROBLIMITZ, &dRobLim[2]);
dRoblstSpot[2J = dRobLim[2] + ROBLIMGAP;
SetCtrIVal (iPnlHdl, PANEL1STSPOTZ, dRob1 stSpot[2]);
strRobCmd[0] = '\0';
ResetEvent (hCommStartEvnt[0]);
ResetEvent (hCommEOLEvnt[0]);
_SendRobCmd (2, dRob1stSpot[0], dRob1stSpot[1], dRobCurr[2]);
_SendRobCmd (2, dRob1stSpot[0], dRob1stSpot[1], dRob1stSpot[2]);
SetEvent (hCommStartEvnt[0]);

}

/* 	 *1
/* Callback functions to Form one spot 	 */
/* 	 *1
int CVICALLBACK _FormSpot(int _iPnIHdI, int _iCtrlHdl, int _iEvntHdl,

66

void *_pvCallBackData, int _iEvntDatal,
int _iEvntData2)

{
switch LiEvntHdl) {

case EVENT_COMMIT:

break;
}

return 0;
}

/* 	
/* Callback functions to move to next column 	 */
/* 	 */
int CVICALLBACK GoNextCol(int _iPnlHdl, int _iCtrIHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvntData1 ,
int _iEvntData2)

{
switch (_iEvntHdl) {

case EVENT_COMMIT:
_RobJogXYZFunc (5);

break;
}

return 0;
}

/* 	 */
/* Callback functions to move to next row 	 *1
/* 	 */
int CVICALLBACK _GoNextRow(int iPnlHdl, int iCtrlHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvntDatal,
int _iEvntData2)

{
switch (_iEvntHdl) {

case EVENT_COMMIT:
_RobJogXYZFunc (7);

break;

return 0;
}

/* 	 */
/* Callback functions to jog the Robot 	 */
/* 	 */
/* Along X-axis 	 */
/* 	 */
int CVICALLBACK _RobJogMinuX(int_iPnlHdl, int iCtrIHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvntData1 ,
int _iEvntData2)

{
switch (_iEvntHdl) {

case EVENT_COMMIT:
_RobJogXYZFunc (1);
break;

}
return 0;

67

}

int CVICALLBACK _RobJogPlusX(int _iPnIHdl, int _iCtrIHdl, int _iEvntHdl,
void *_pvCallBackData, int _iEvntData1 ,
int _iEvntData2)

{
switch (_iEvntHdl) {

case EVENT_COMMIT:
_RobJogXYZFunc (4);

break;
}

return 0;
}

/* 	 */
/* Callback functions to jog the Robot 	 */
/* 	 */
/* Along Y-axis 	 *1
/* 	 */
int CVICALLBACK _RobJogMinuY(int _iPnlHdl, int _iCtrlHdl, int _iEvntHdl

void *_pvCallBackData, int _iEvntData1 ,
int _iEvntData2)

{
switch LiEvntHdl) {

case EVENT_COMMIT:
_RobJogXYZFunc (2);

break;
}

return 0;
}

int CVICALLBACK _RobJogPlusY(int _iPnlHdl, int _iCtrlHdl, int _iEvntHdl,
void *_pvCallBackData, int _iEvntData1 ,
int _iEvntData2)

{
switch (_iEvntHdl) {

case EVENT_COMMIT:
_RobJogXYZFunc (5);

break;
}

return 0;
}

/* 	 */
/* Callback functions to jog the Robot 	 */
/* 	 *1
/* Along Z-axis 	 */
/* 	 */
int CVICALLBACK _RobJogMinuZ(int _iPnlHdl, int _iCtrlHdl, int _iEvntHdl

void *_pvCallBackData, int _iEvntData1 ,
int _iEvntData2)

{
switch LiEvntHdl) {

case EVENT_COMMIT:
_RobJogXYZFunc (3);
break:

68

69

}
return 0;

1

int CVICALLBACK _RobJogPlusZ(int _iPnIHdI, int _iCtrlHdl, int _iEvntHdl,
void *_pvCallBackbata, int _iEvntData1,
int _iEvntData2)

{
switch (_iEvntHdl) {

case EVENT COMMIT:
_RobJogXYZFunc (6);

break;
}

return 0;
1

/* 	 */
/* iType = 1 : Minus X 	 = 4 : Plus X 	 */
/* 	 = 2 : Minus Y 	 = 5 : Plus Y, Next Column 	 *1
/* 	 = 3 : Minus Z 	 = 6 : Plus Z 	 *1
/* 	 = 7 : Next Row 	 = 8 : Get up 	 *1
/* 	 */
void _RobJogXYZFunc (int _iType)
{

GetCtrlVal (iPnlHdl, PANEL_ROBSTEPX, &dRobStep[0]);
GetCtrIVal (iPnlHdl, PANEL_ROBSTEPY, &dRobStep[1]);
GetCtrlVal (iPnlHdl, PANEL_ROBSTEPZ, &dRobStep[2]);
GetCtrIVal (iPnlHdl, PANEL_1STSPOTY, &dRob1stSpot[1]);
SetCtrIVal (iPnlHdl, PANEL_ ROBMSG, "COMM1 ...");

switch (_iType) {
case 1: /* Minus X */

dRobTarg[0] = dRobCurr[0] - dRobStep[0];
dRobTarg[1] = dRobCurr[1];
dRobTarg[2] = dRobCurr[2];

break;
case 2: /* Minus Y */

dRobTarg[0] = dRobCurr[0];
dRobTarg[1] = dRobCurr[1] - dRobStep[1];
dRobTarg[2] = dRobCurr[2];

break;
case 3: /* Minus Z */

dRobTarg[0] = dRobCurr[0];
dRobTarg[1] = dRobCurr[1];
dRobTarg[2] = dRobCurr[2] - dRobStep[2];

break;
case 4: /* Plus X */

dRobTarg[0] = dRobCurr[0] + dRobStep[0];
dRobTarg[1] = dRobCurr[1];
dRobTarg[2] = dRobCurr[2];

break;
case 5: 1* Plus Y or Nex Column */

dRobTarg[0] = dRobCurr[0];
dRobTarg[1] = dRobCurr[1] + dRobStep[1];
dRobTarg[2] = dRobCurr[2];

break-

70

case 6: r Plus Z*/
dRobTarg[0] = dRobCurr[0];

dRobTarg[1] = dRobCurr[1];
dRobTarg[2] = dRobCurr[2] + dRobStep[2];

break;
case 7: /* Next Row */

dRobTarg[0] = dRobCurr[0] + dRobStep[0];
dRobTarg[1] = dRob1stSpot[1];
dRobTarg[2] = dRobCurr[2];

break;
case 8: /* Get up */

dRobTarg[0] = dRobCurr[0];
dRobTarg[1] = dRobCurr[1];
dRobTarg[2] = dRobCurr[2] + 50.0;

break;
case 9: /* Elongation */

GetCtrlVal (iPnlHdl, PANEL_ROBLIMITZ, &dRobLim[2]);
dRobTarg[0] = dRobCurr[0];
dRobTarg[1] = dRobCurr[1];
dRobTarg[2] = dRobLim[2] + ROBLIMGAP;
break;

default:
break;

}
strRobCmd[0] = '\0';
GetCtrlVal (iPnlHdl, PANEL_ROBSTEPX, &dRobStep[0]);
if (dRobTarg[2] > 0.0) {

dRobTarg[2] = 0.0;
}

if (dRobTarg[2] < dRobLim[2]) {
dRobTarg[2] = dRobLim[2];

}
ResetEvent (hCommStartEvnt[0]);
ResetEvent (hCommEOLEvnt[0]);
_SendRobCmd (2, dRobTarg[0], dRobTarg[1], dRobTarg[2]);
SetEvent (hCommStartEvnt[0]);

}

/* 	 */
/* Prepare the command string to Zaber 	 */

/* 	 */
/* iCmdType = 20 : move absolutely 	 */
/* 	 = 21 : move relatively 	 */
/* 	 = 60 : read absolute position 	 */
/* 	 *1
void _SendZabCmd (unsigned char _cCmdType, long int*_plZ)
{

unsigned char* pc_temp;

strZabCmd[iCmdldx[1]+0] = ZABUNIT;
strZabCmd[iCmdldx[1]+1] = _cCmdType;

switch LcCmdType) {
case 20:

pc temp = (unsigned charl_plZ;
strZabCmd[iCmdldx[1]+2] = *pc_temp;

71

strZabCmd[iCmdldx[1]+3] = *(pc_temp + 1);
strZabCmd[iCmdldx[1]+4] = *(pc_temp + 2);
strZabCmd[iCmdldx[1]+5] = *(pc_temp + 3);
break;

case 60:
strZabCmd[iCmdldx[1]+2] = 0;
strZabCmd[iCmdldx[1]+3] = 0;
strZabCmd[iCmdldx[1]+4] = 0;
strZabCmd[iCmdldx[1]+5] = 0;
break;

default:
break;

}

iCmdldx[1] += ZABCNT;
}

/* 	 */
/* Thread for controlling communication with Zaber 	 */
/* 	 *1
/* hCommStartEvnt[1] control the start of communication 	 */
/* hCommEOLEvnt[2] control the end of communication 	 */
/* */
DWORD WINAPI _ZabCommMonProc (LPVOID _IpParam)
{

char* 	 pstr_temp;
char 	 str_temp[50];
int 	 i_idx;

while (iPortOpen[1] == 1)
{

WaitForSingleObject (hCommStartEvnt[1], INFINITE);

pstr_temp = strZabCmd;

i_idx = 0;

while (i_idx != iCmdldx[1])
{

FlushlnQ (iCommPort[1]);
FlushOutQ (iCommPort[1]);
ResetEvent (hCommEOLEvnt[1]);
iStrSize[1] = ZABCNT;
if (*(pstr_temp) != 60) {

IZabTargTemp1 = *((long int*)(pstr_temp + 2));
IZabTargTemp1 = floor((double)IZabTargTemp1 * ZABCONVFACT);
SetCtrIVal (iPnIHdl, PANEL_ZABTARGZ, IZabTargTemp1);

}
iBytsSent[1] = ComWrt (iCommPort[1], pstr_temp, iStrSize[1]);
WaitForSingleObject (hCommEOLEvnt[1], NFINITE);
pstr_temp += ZABCNT;
i_idx += ZABCNT;

}
SetCtrIVal (iPnlHdl, PANEL_ZABMSG, "OK.");

ResetEvent (hCommStartEvnt[1]);

SetEvent (hCommEndEvnt[1]);
}
return 1;

}

/* 	 */
/* Callback function to deal with the ending of communication 	 */
/* 	 */
/* According to the communication protocol, 	 */
/* command and reply have only 6 bytes respectively 	 */
/* 	 */
void CVICALLBACK _ZabRplyEOLFunc (int _iPortNum, int _iEvntMask,

void *_pvCallBackData)
{

strTempZabRd[0] = 110';

ComRd (iCommPort[1], strTempZabRd, GetlnQLen(iCommPort[1]));

IZabCurrTemp = *((long int*)(strTempZabRd + 2));
IZabCurr = floor((double)IZabCurrTemp * ZABCONVFACT);
SetCtrlVal (iPnlHdl, PANEL_ZABCURRZ, IZabCurr);
if (*(strTempZabRd+1) == 60) {

SetCtrlVal (iPnlHdl, PANEL_ZABTARGZ, IZabCurr);
}
SetEvent (hCommEOLEvnt[1]);

}

/* 	 */
/* Get liquid from the well 	 */
/* 	 */
int CVICALLBACK _GetLiquid(int _iPnlHdl, int _iCtrIHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvntData1,
int _iEvntData2)

{
switch (_iEvntHdl) {

case EVENT_COMMIT:
_ZabJogZFunc (3,0);

break;
}

return 0;
}

/* 	 */
/* Push a drop out of the needle 	 */
/* 	 */
int CVICALLBACK _ZabPushDrop (int _iPnlHdl, int _iCtrIHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvntData1,
int _iEvntData2)

{
switch (_iEvntHdl) {

case EVENT_COMMIT:
_ZabJogZFunc (2,0);
break;

}
return 0;

}

72

73

/* 	 */
/* Callback functions to jog the Zaber
/*
/* Along Z-axis 	 */
/* 	 */
int CVICALLBACK _ZabJogMinuZ (int _iPnlHdl, int _iCtrlHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvntDatal,
int _iEvntData2)

{

switch LiEvntHdl) {
case EVENT_COMMIT:

_ZabJogZFunc (1,0);
break;

}

return 0;
}

int CVICALLBACK _ZabJogPlusZ (int _iPnIHdI, int _iCtrIHdl, int _iEvntHdl,
void *_pvCallBackData, int _iEvntData1,
int _iEvntData2)

{

switch LiEvntHdl) {
case EVENT_COMMIT:

_ZabJogZFunc (2,0);
break;

}

return 0;
}

/* 	 */
/* 	 */
/* 	 iType = 1 : Minus Z 	 */
/* 	 = 2 : Plus Z 	 */
/* 	 = 3 : Ready for getting liquid 	 */
/* 	 = 4 : Minus Z big step 	 */
/* 	 = 5 : Plus Z big step 	 */
/* 	 */
void _ZabJogZFunc (int _iType, long int _IStep)
{

GetCtrIVal (iPnlHdl, PANEL_ZABSTEP, &IZabStep);
GetCtrIVal (iPnlHdl, PANEL_ZABCURRZ, &IZabCurr);
GetCtrlVal (iPnlHdl, PANEL_ZABLOWZLIM, &IZabLowLim);
GetCtrIVal (iPnlHdl, PANEL_ZABUPPZLIM, &IZabUppLim);

switch LiType) {
case 1:

IZabTargTemp = IZabCurr - IZabStep;
break;

case 2:
IZabTargTemp = IZabCurr + IZabStep;
break;

case 3:
IZabTargTemp = IZabUppLim - 41ZabStep;
break;

case 4:

IZabTargTemp = IZabCurr - 41ZabStep,
break;

case 5:
IZabTargTemp = IZabCurr + 41ZabStep;
break;

}
if (IZabTargTemp < IZabLowLim) {

IZabTargTemp = IZabLowLim;
}
if (IZabTargTemp > IZabUppLim) {

IZabTargTemp = IZabUppLim;
}
IZabTarg = ceil((double)lZabTargTemp / ZABCONVFACT);
SetCtrlVal (iPnlHdl, PANEL_ZABMSG, "COMM4 ...");
iCmdldx[1] = 0;
ResetEvent (hCommStartEvnt[1]);
ResetEvent (hCommEOLEvnt[1]);
_SendZabCmd (20,&IZabTarg);
SetEvent (hCommStartEvnt[1]);

1

/* 	 */
/* Extract the X, Y, Z values from the Robot communication string 	 */
/* 	 */
void _GetCoorVal (char* _strVal, double* _pdX, double* _pdY, double* _pdZ)
(

char* 	 pstr_temp;
int 	 i_idx;

pstr_temp = _strVal;

while (*pstr_temp == ") {
pstr_temp++;

}

*_pdX = atof(pstr_temp);

while (*pstr_temp != ") {
pstr_temp++;

}

while (*pstr_temp == ") {
pstr_temp++;

}

*_pdY = atof(pstr_temp);

while (*pstr_temp != ") {
pstr_temp++;

}

*_pdZ = atof(pstr_temp);
1

I* 	 */
I* Callback function to handle the emergency button 	 *1

74

75

/* 	
int CVICALLBACK _EmergencySwitch (int _iPnIHdI, int iCtrIHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvntData1,
int _iEvntData2)

{
switch LiEvntHdl) {

case EVENT_COMMIT:
_EmgyProc 0;

break;
}

return 0;
}

void _EmgyProc (void)
{

int i_bttn_stat;
/*iSensDAQStartRec = 0;*/
GetCtrlVal (iPnlHdl, PAN EL_EMERGENCYSWITCH, &i_bttn_stat);
/* 0: released; 1: pressed */
switch (i_bttn_stat) {
case 0:

break;
case 1:

break;
default:

break;
}

}
/* 	 */
/* Callback function to handle the receive of DAQ data 	 */
/* 	 */
int CVICALLBACK _SensDAQReadData (int iPnlHdl, int iCtrIHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvntData1,
int _iEvntData2)

{
switch (_iEvntHdl) {

case EVENT DAQ NUMERIC_DATA_READY:
if (iSensIDA,QStartRec == 1

&& iSensDAQDataldx < (SNESDAQNUMIDXLIM -1)) {

/* Get the raw data */
dSensDAQRaw[iSensDAQDataldx] = *(double*)_iEvntData1;
/* Use Butterworth lowpass filter */
Bw_LPF (dSensDAQRaw, iSensDAQDataldx, 50.00, 1.00, 2,

dSensDAQData);

iSensDAQDataldx ++;
dSensDAQTime[iSensDAQDataldx] = dSensDAQTime[iSensDAQDataldx - 1]

+ SENSDAQNUMINT;
DeleteGraphPlot (iPnlHdl, PANEL_SENSGRAPH, -1, VAL_DELAYED_DRAW);

PlotXY (iPnlHdl, PANEL_SENSGRAPH, dSensDAQTime, dSensDAQData,
iSensDAQDataldx - 1, VAL DOUBLE, VAL DOUBLE,
VAL THIN LINE, VAL_EM PTY_SQUARE,VA L_SOLID,
1, VAL_RED);

}

break;
}

return 0;
}

/* 	 */
/* Callback function to handle the change of Robot limit 	 */
/* 	 *1
int CVICALLBACK _RobLimZChng (int _iPnlHdl, int _iCtrlHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvrTtData1,
int _iEvntData2)

{
switch (_iEvntHdl) {

case EVENT VAL_CHANGED:
GetCtrlVal (iPnlHdl, PANEL ROBLIMITZ, &dRobLim[2]);
SetCtrlVal (iPnlHdl, PANEL_WELLZ, dRobLim[2] + ROBLIMGAP);
SetCtrlVal (iPnlHdl, PANEL1STSPOTZ, dRobLim[2] + ROBLIMGAP);
break;

}
return 0;

}

/* 	 */
/* Callback function to automate the 1st part of the experiment 	 *1
/* 	 *1
int CVICALLBACK _AutoExpStep1 (int _iPnlHdl, int iCtrlHdl, int _iEvntHdl,

void *_pvCallBackbata, int _iEvntData1,
int _iEvntData2)

{
switch LiEvntHdl) {
case EVENT_COMMIT:

if (hExpStartEvnt[0] == NULL) {
hExpStartEvnt[0] = CreateEvent (NULL, TRUE, TRUE, NULL);
if (hExpStartEvnt[0] == NULL) {

Fmt (strErrMsg, "%s<CreateEvent failed: (%i)\n", GetLastError());
MessagePopup ("CreateEvent Message", strErrMsg);
return -1;

}
ResetEvent (hExpStartEvnt[0]);

}
SetEvent (hExpStartEvnt[0]);
if (hExpFuncThrd[0] == NULL) {

hExpFuncThrd[0] = CreateThread (0,0, _AutoExpMonProc1,
0, 0, &dwExpFuncThrdID[0]);

if (hExpFuncThrd[0] == NULL) {
Fmt (strErrMsg, "%s<CreateThread failed: (%i)\n", GetLastError());
MessagePopup ("CreateThread Message", strErrMsg);
return -1;

}
}

break;
}
return 0;

}

/* 	 *1

76

77

I* Thread for the 1st part of the experiment 	 */
/* */
DWORD WINAPI _AutoExpMonProc1 (LPVOID _IpParam)
{

while (1) {
/* Trigger the process */
WaitForSingleObject (hExpStartEvnt[0], INFINITE);

/* Get ready for getting liquid */
ResetEvent (hCommEndEvnt[1]);
_ZabJogZFunc (3,0);
WaitForSingleObject (hCommEndEvnt[1], INFINITE);

/* Go to liquid well */
ResetEvent (hCommEndEvnt[0]);

RobGo2WellFunc 0;
WaitForSingleObject (hCommEndEvnt[0], INFINITE);

/* Wait for the capillary attraction */
Sleep (3000);

/* Suct liquid into needle */
GetCtrlVal (iPnlHdl, PANEL ZABCURRZ, &IZabCurr);
GetCtrlVal (iPnlHdl, PANEL_ZABLOWZLIM, &IZabLowLim);
while (IZabCurr > IZabLowLim) {

ResetEvent (hCommEndEvnt[1]);
_ZabJogZFunc (1,0); /* Get liquid */
WaitForSingleObject (hCommEndEvnt[1], INFINITE);

}

/* Move Robot up */
ResetEvent (hCommEndEvnt[0]);
_RobJogXYZFunc (8);

WaitForSingleObject (hCommEndEvnt[0], INFINITE);
ResetEvent (hExpStartEvnt[0]);

}
}

/* 	 */
/* Callback function to automate the 2nd part of the experiment 	 */
/* 	 *1
int CVICALLBACK _AutoExpStep2 (int iPnlHdl, int _iCtrlHdl, int _iEvntHdl,

void *_pvCallBackData, int _iEvrTtData1,
int _iEvntData2)

{
switch (_iEvntHdl) {
case EVENT COMMIT:

if (hExpStartEvnt[1] == NULL) {
hExpStartEvnt[1] = CreateEvent (NULL, TRUE, TRUE, NULL);
if (hExpStartEvnt[1] == NULL) {

Fmt (strErrMsg, "%s<CreateEvent failed: (/00\n", GetLastError());
MessagePopup ("CreateEvent Message", strErrMsg);
return -1;

}
ResetEvent (hExpStartEvnt[1]);

}

78

SetEvent (hExpStartEvnt[1]);
if (hExpFuncThrd[1] == NULL) {

hExpFuncThrd[1] = CreateThread (0,0, _AutoExpMonProc2,
0, 0, &dwExpFuncThrdlD[1]);

if (hExpFuncThrd[1] == NULL) {
Fmt (strErrMsg, "%s<CreateThread failed: (%i)\n", GetLastError());
MessagePopup ("CreateThread Message", strErrMsg);
return -1;

}
}

break;
}
return 0;

}

/* 	 */
/* Thread for the 2nd part of the experiment 	 */
/* */
DWORD WINAPI _AutoExpMonProc2 (LPVOID _IpParam)
{

while (1) {
/* Trigger the process */

WaitForSingleObject (hExpStartEvnt[1], INFINITE);

/* Initialize variables */
iCurrRow = 1;
iCurrCol = 1;
iSpotNum = 0;
SetCtrIVal (iPnlHdl, PANEL CURRENTROW,iCurrRow);

SetCtrIVal (iPnlHdl, PAN EL_CURRENTCOL,iCurrCol);
SetCtrIVal (iPnlHdl, PAN EL_SPOTNUM,iSpotNum);

/* Go to the first spot */
ResetEvent (hCommEndEvnt[0]);

RobGo21 stSpotFunc 0;
WaitForSingleObject (hCommEndEvnt[0], INFINITE);

GetCtrlVal (iPnlHdl, PANEL_MAXROW, &iMaxRow);
GetCtrlVal (iPnlHdl, PANEL_MAXCOL, &iMaxCol);
for (iCurrRow = 1; iCurrRow <= iMaxRow; iCurrRow ++) {

for (iCurrCol = 1; iCurrCol <= iMaxCol; iCurrCol ++) {
/* Push drop */
ResetEvent (hCommEndEvnt[1]);
_ZabJogZFunc (5,0);
WaitForSingleObject (hCommEndEvnt, INFINITE);
/* Wait for stable condition of sensor */
Sleep (2000);
/* Trigger sensor data recording */
iSensDAQDataldx = 0;
iSensDAQStartRec = 1;
iSensDAQPosDataldxl = 0;
iSensDAQPosDataldx2 = 0;
iWhenToPickRef = 0;
iCurvRefldx = 0;
/* Robot touches the Z limit? */

79

while (dRobCurr[2] > dRobLim[2]) {
/* Spot formed? */
if (_TestSpotForm() != 1){

/* Remember the index of start time */
iSensDAQPosDataldxl = iSensDAQDataldx;
/* Move robot one step down */
ResetEvent (hCommEndEvnt[0]);
_RobJogXYZFunc(3);
WaitForSingleObject (hCommEndEvnt[0], INFINITE);
/* Get the index of end time */
iSensDAQPosDataldx2 = iSensDAQDataldx;
iWhenToPickRef ++;
if (iWhenToPickRef > 4) {

iCurvRefldx = iSensDAQPosDataldxl;
}

}
else {

break;
}

}
/* Elongation, i.e. move robot up */
ResetEvent (hCommEndEvnt[0]);
_RobJogXYZFunc(9);
WaitForSingleObject (hCommEndEvnt[0], INFINITE);

SetCtrIVal (iPnlHdl, PANEL_CURRENTROW,iCurrRow);
SetCtrIVal (iPnlHdl, PANEL_CURRENTCOL,iCurrCol);
iSpotNum = (iCurrRow - 1)*iMaxCol + iCurrCol;
SetCtrIVal (iPnlHdl, PANEL_SPOTNUM,iSpotNum);

/* Stop sensor data recording */
iSensDAQStartRec = 0;
/* Save data to file*/
sprintf(strFileName, "row%dcol%d.dat", iCurrRow, iCurrCol);
iFileHdl = OpenFile (strFileName, VAL_WRITE_ONLY, VAL_OPEN_AS _IS,

VAL_BINARY);
WriteFile (iFileHdl, (char*)dSensDAQData,

sizeof(dSensDAQData[0])*iSensDAQDataldx);
CloseFile (iFileHdI);

if ((iSpotNum % 6) == 0) {
/* Push more droplet */
ResetEvent (hCommEndEvnt[1]);
_ZabJogZFunc (5,0);
WaitForSingleObject (hCommEndEvnt, INFINITE);

}

/* Move robot to next Column */
ResetEvent (hCommEndEvnt[0]);
_RobJogXYZFunc(5);
WaitForSingleObject (hCommEndEvnt[0], INFINITE);

}
/* Move robot to next Row */
ResetEvent (hCommEndEvnt[0]);
_RobJogXYZFunc(7);
WaitForSingleObject (hCommEndEvnt[0], INFINITE);

}
ResetEvent (hExpStartEvnt[1]);

}
}

/* 	 */
/* Test the formation of a spot 	 *1
/* 	 */
int _TestSpotForm(void)
{

int 	 i_idx, 	 i_idx1, 	 i_idx2;

	

double 	 d_temp, d_max, d_min;

	

double* 	 pd_temp_data;

	

double 	 d_int1, d_int2;

if (iSensDAQPosDataldxl != 0
&& iSensDAQPosDataldx2 != 0) {

pd_temp_data = dSensDAQData;
i_idxl = iSensDAQPosDataldxl ;
i_idx2 = iSensDAQPosDataldxl ;

d_int1 = double (iSensDAQPosDataldx2 - iSensDAQPosDataldxl);

for (i_idx = iSensDAQPosDataldxl + 1;
i_idx < iSensDAQPosDataldx2-1; i_idx++) {

if (pd_temp_data[i_idx] <= pd_temp_data[i_idx-11) {
i_idx2 = i_idx;
continue;

}
else {

i_idx1 = i_idx;
i_idx2 = i_idx;
continue;

}
}
if (i_idx2 != i_idxl) {

d_int2 = double (i_idx2 - i_idx1);
d_temp = (pd_temp_data[i_idx1] - pd_temp_data[i_idx2])/

pd_temp_data[i_idx1];
d_temp = (d_temp * 1000.0) * (d_int1 / d_int2) / 10.0;
if (d_temp > SENSSPOTTESTTH) {

return 1;
}

}
}

return 0;
}

int CVICALLBACK _ZabGoHome (int _iPnlHdl, int _iCtrINdl, int _iEvntHc
void *_pvCallBackData, int _iEvntData1,
int _iEvntData2)

{
switch (_iEvntHdl) {

case EVENT COMMIT:

80

_ZabGoHomeFunc 0;
break;

}
return 0;

}

void _ZabGoHomeFunc (void)
{

SetCtrlVal (iPnIHdI, PANEL ZABMSG, "COMM4 ...");
CGetCtrIVal (iPnIHdI, PANEZABUPPZLIM, &IZabTargTemp);

IZabTarg = ceil((double)IZabTargTemp / ZABCONVFACT);
iCmdldx[1] = 0;
ResetEvent (hCommStartEvnt[1]);
ResetEvent (hCommEOLEvnt[1]);
_SendZabCmd (20,&IZabTarg);

SetEvent (hCommStartEvnt[1]);
}

81

REFERENCES

[1] Dangond, F., "Chips around the world," Physiological Genomics (Online), Volume
2, Issue 2, March 13, 2000, Pages 53-58.

[2] Cheung, V. G., Morley, M., Aguilar, F., Massimi, A., Kucherlapati, R. and Childs,
G., "Making and reading microarrays," Nature Genetics, Volume 21, Issue 1
Supplement, January 1999, Pages 15-19.

[3] Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P. and Trent, J. M., "Expression
profiling using cDNA microarrays", Nature Genetics, Volume 21, Issue 1
Supplement, January 1999, Pages 10-14.

[4] Chang, T.N., Hou, E. and Godbole, K., "Optimal Input Shaper Design For High
Speed Robotic Workcells," to appear in the Journal of Vibrational and Control,
Sage Science Press.

[5] Chang, T.N., Kwadzogah, R., and Caudill, R., "Vibration Control On Linear Robots
With Digital Servocompensator," IEEE/ASME Transactions on Mechatronics,
Volume 8, Issue 4, December 2003, Pages 439- 445.

[6] Chang, T.N., Dani, B., Ji, Z., and Caudill, R., "Contactless Magnetic Leadscrew:
Vibration control and resonance compensation," IEEE/ASME Transactions on
Mechatronics, Volume 9, Issue 2, June 2004, Pages 458-461.

[7] Chang, T.N., and Sun, X., "Control of hysteresis in a monolithic nanoactuator,"
Proceeding to the 2001 American Control Conference, Arlington, VA, June 2001.

[8] Chang, T.N and Sun, X., "Analysis and Control of Monolithic Piezoelectric Nano-
actuator," IEEE Transaction on Control Systems Technology, Special Issue on
Smart Materials, January 2001.

[9] Chang, T.N., Jaroonsiriphan, P., and Sun, X., "Integrating Nanotechnology Into
Undergraduate Experience, A Web-Based Approach", International Journal of
Engineering Education, Volume 18-5, August 2002.

[10] Chang, T.N., and Jaroonsiriphan, P., "Web-Based Distance Experiments for Real
Time Control and Signal Processing," Proceedings of the 2002 ASEE Annual
Conference.

[11] Chang, T.N., "Servo Control Design", Encyclopedia of Life Support Systems,
United Nations Educational, Scientific, and Cultural Organization (UNESCO),
2004.

82

83

[12] Chang, T.N., and Tolias, P.P., "Delivery of metered amounts of liquid materials,"
US and International Patents pending.

[13] Introduction to Molecular Beacons, Public Health Research Institute. (n.d).
Retrieved July 14, 2005, from http://www.molecular-
beacons.org/Introduction.html.

[14] Brochure for MTI Fotonic Sensor, MTI Instruments Inc. (n.d). Retrieved July 14,
2005, from http://www.mtiinstruments.com/pdf/mti2100.pdf.

[15] Instruction Manual of MTI 1000 Fotonic Sensor, MTI Instruments Inc.

[16] Instruction Manual of SEIKO D-TRAN Robot.

[17] Zaber Technologies Inc., T-Series Positioning Products User's Manual.

[18] Products microarray hardware, TeleChem International, Inc. (n.d). Retrieved July
21, 2005, from http://arrayit.com/Products/Printing/946/946.html.

[19] Affymetrix GeneChip technology, Affymetrix. (n.d). Retrieved July 26, 2005, from
http://www.affymetrix.com/index.affx.

[20] Hsieh, H.B., et al., "Ultra-High-Throughput Microarray Generation and Liquid
Dispensing UsingMultiple Disposable Piezoelectric Ejectors", Journal of
Biomolecular Screening, 2004.

[21] Jane, T., Chang, J. and Kim, C.J., "A Silicon Micromachined Pin for Contact
Printing", Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS),
2003, Pages 295-298.

[22] Smith, J.T. and Reichert, W.M., "The optimization of quill-pin printed protein and
DNA microarrays", Annual International Conference of the IEEE Engineering in
Medicine and Biology Proceedings, 2002, Pages1630-1631.

[23] George, R.A., Woolley, J.P. and Spellman, P.T., "Ceramic capillaries for use in
microarray fabrication", Genome Research, Volume 11, Issue 10, 2001, Pages
1780-1783.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Hardware and Software Description
	Chapter 3: Methodology and Controller Description
	Chapter 4: Test Results
	Chapter 5: Conclusion and Future Work
	Appendix A: Hardware Specifications
	Appendix B: Source Code
	References

	List of Tables
	List of Tables (1 of 3)
	List of Tables (2 of 3)
	List of Tables (3 of 3)

