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ABSTRACT

COMBINED EFFECTS OF PROSAIC AND HYPOTHALAMIC MEDIATED
RESPONSE ON LASSETER MUSCLE ACTIVITY IN THE CAT

by

Chinas P. Nwaorgu

The present study tested the hypothesis that infusion of Prosaic would serve to suppress

defensive rage elicited from the medial hypothalamus of the cat. Cats are known to

exhibit certain kind of behavior, known as the "defensive rage response" such as

unsheathing of the claws, retraction of the ear and vocalization (hissing).

Three adult cats (2 males and 1 female) weighing (2.8 — 3.4 kg) were utilized

during the experiments. Cannula-electrodes were implanted into the medial hypothalamus

for elicitation of defensive rage behavior. EMG activity was recorded with a bipolar

electrode attached to the Lasseter muscle to establish baseline before the infusion of the

drug. Mean frequency values of early and late stimulation were calculated using the

continuous wavelet transform.

The effects of early stimulation of the medial hypothalamus upon response

latencies were compared with those of the late stimulation. The results reveal an

inhibitory effect that may be related to fatigue or other inhibitory structures in the brain.

The mean frequency values of the early stimulation on average were significantly higher

than the mean frequency values of the late stimulation (p = 0.03). While baseline (prep-

infection) mean values among the three subjects during early and late stimulation were

highly significant (p = 0.003), there were no significant differences among post-injection

mean values (p > 0.05). The findings suggest that infusion of the drug has some

inhibitory influence on the Lasseter EMG activity.
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CHAPTER 1

BACKGROUND

1.1 Introduction

Muscloskeletal disorders are a significant health problem in the United States. These

disorders are poorly understood in spite of their widespread prevalence. However, it is

commonly accepted that there are two components represented in these disorders: a

muscular dysfunction component and an emotional component. Because of the

complexity of these disorders, an experimental model may prove useful. In the cat,

electrical stimulation of sites in the hypothalamus from which emotional behaviors can be

elicited appears to be a useful model for analysis of these conditions. The emotional

behaviors are standardized and changes resulting from experimental manipulation can be

quantified. This experimental model has been utilized in several studies that have

compared jaw motor responses during mastication verses emotional behavior and the

effects of pharmacological agents known to modulate emotional responses. These proposed

experiments would extend the previous observations by utilizing an SARI, which

potentiates the effects of serotonin, a neurotransmitter important in the mediation of

emotional behavior and mood. Its effects upon hypothalamic modulation of masseteric

activity were the basis for this study.

The traditionally used methods for the analysis of surface electromyography

(SEMI) signals are the fast Fourier transform (FFT) and the short-time Fourier transform

(SIFT). However they both suffer from limitations. For instance, they are only suitable

for stationary signals. However, even when there is no voluntary change of muscle state,

EMI signals are non-stationary due to the physiology of the system (i.e. variance in
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blood flow). This suggests that these traditional methods are not the appropriate

approaches for the analysis of signals with transient components in time such as the

SEMIS signal. A relatively new technique, the wavelet transform, is well suited to

nonstationary signals, and overcomes the limitations of the traditional time-frequency

methods. Wavelets are a new powerful tool for signal processing that act as a

"microscope" in which one can observe different parts of the signal by adjusting the

focus. This allows the detection of short-lived time components of the signal. In the

wavelet transform the signal is decomposed into elementary components well localized in

the time domain and in the frequency domain. The wavelet transform provides insight

into the structure of the time series at various scales. It allows localizing changes of the

signal in time, providing additional information in comparison with the Fourier

transform. This method has been successfully used in analyzing a number of biomedical

signals such as heart rate variability, EEI signals, and electromyography (EMG) signals.

The amplitude and frequency responses of the electromyography signal indicate

the activation level within the muscle. The force achieved by the muscle depends on the

activation level, the number and fiber type of the muscle fibers activated, the contraction

dynamics, and the history of previous contractions. Fast- and slow-twitch muscle fibers

have different intrinsic contraction properties [ 16], and it is typically thought that slows-

twitchy fibers are recruited for low-intensity activities, with a greater proportion of fasts-

twitchy fibers being recruited as increasing force is required [17]. The frequency

components of the EMG signal can indicate the muscle fiber type recruitment for any

given activity. The frequency increases with greater conduction velocities of the muscle

fiber action potentials [18]. Action potentials travel faster along larger-diameter cells.
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Muscle fiber recruitment strategies can thus be determined from the EMI frequency

spectra, and this has previously been demonstrated for graded muscle contractions in the

cat gastrocnemius [19]. The timing, activation level, and motor unit recruitment patterns

leave characteristic features within the EMI signal. The ability to resolve time, intensity,

and frequency simultaneously gives insight into the muscles recruitment pattern.

This research employed the wavelet transform, also known as multi-resolution

analysis, to the masseteric surface EMI recorded experimentally. These analyses gave a

clearer understanding of the nature of hypothalamic modulation of jaw muscle activity

during emotional state.

1.2 Hypothesis

The first aspect of our hypothesis is that infusion of SARI will affect the hypothalamic-

solicited behavior in a time dependent spectral shift observed in the masseteric EMI

either upwards or downwards. The second aspect of the hypothesis states that after one

hour of infusion of ATARI, the observed spectral distribution of the masseteric EMI is

reversed.

1.3 Physiological Research

The changes in muscle function associated with neuromuscular disorders are poorly

understood. While a number of studies have demonstrated increased muscle activity

associated with anxiety and emotional behavior [4], the relationship between such

changes in muscle activity and neuromuscular disorders are not well defined. Α

significant issue in understanding the pathogenesis of these disorders is the
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characterization of the EMI signal. Using the cat model, there were shifts in frequency

of contraction for muscle fibers associated with expression of hypothalamically-elicited

emotional behavior. The Lasseter muscle, responsible for jaw movement, demonstrates

an upward shift in frequency during the elicitation of this aggressive behavior in a time-

dependent spectral analysis [4].

1.3.1 Expression of Emotional Behaviors

The cat is an excellent model to study the interaction between emotional responses and

muscle activity because patterned emotional responses can be readily elicited. These

include defensive rage (affective defense) behavior or predatory attack (quiet biting

attack) behavior.

1.3.2 Defensive Rage Behavior

Defensive rage behavior in the cat is characterized by various sympathetic signs, such as

papillary dilation, interaction, ear retraction, salivation, unsheathing of the claws,

hissing and paw strike [5]. This behavior occurs under both natural and experimental

laboratory conditions. Naturally, it occurs in a variety of situations, which are perceived

as threatening to the animal. For example, this response may occur when a cat perceives

that her kittens are endangered by another animal, or when a cat's territory is invaded. In

the laboratory, it can be reliably elicited by electrical stimulation of the medial

hypothalamus or the midbrain periaqueductal gray (PAID). The dependent variable often

measured by experimenters is the time between stimulation onset and onset of the audible

portion of the hiss response. This response typically involves mouth opening and then a
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hiss [6, 7]. It should be noted that the stimulation applied at medial hypothalamic sites

from which defensive rage can be elicited produces marked increases in heart rate, blood

pressure, and peripheral epinephrine and epinephrine levels [8].

1.3.3 Predatory attacn behavior

Predatory attack is defined as occurring when the cat bites the target. Quiet biting attack

behavior, which is predatory in nature, is typically characterized by "stalking" of a prey

such as an anesthetized rat, followed by the biting of the back of it neck. The attack

begins after onset of stimulation and usually persists until stimulation is terminated.

Occasionally, the cat may also strike its prey with its forepaw prior to biting it [9]. This

behavior is similar to the response that occurs under natural conditions where stalking

and killing of a rat is readily observed [5].

1.3.4 Advantages of the two Behavioral Models

The advantages of utilizing these models of aggression include: (1) they mimic closely

the behavioral patterns displayed by cats under natural conditions; (2) the hypothalamic

or PAID induced response can be elicited readily over many trials on a given experimental

day. These responses can also be observed over subsequent daily sessions, enabling an

investigator to examine the effects of such perturbations of the brain as experimental

lesions and drug administration upon defensive rage and predatory attack behavior; as

well as identify the functional anatomical circuits and their neurotransmitter systems that

mediate the expression and modulation of these forms of aggressive behavior [ 10].
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1.4 Selective Serotonin Re-uptake Inhibitors

Serotonin is a neurotransmitter that significantly influences aggressive behavior. In

humans and in nonhuman primates decreased serotonin function is associated with

violent or aggressive behavior [11].  In wild rats [ 12], serotonin concentrations in several

brain regions were found to be higher in aggressive animals than in aggressive

animals. In other laboratory animals, treatments that decrease serotonin function increase

aggressive behavior, whereas treatments that increase serotonin function decrease

aggressive behavior. In laboratory animal studies, drugs that increase serotonin function

directly, by activating serotonin receptors, or indirectly, by increasing serotonin

availability, reduce aggressive behavior [13].  In fact, there is evidence that activation of

serotonin receptors in the medial hypothalamus can suppress rage behavior in the cat

[14]. When viewed collectively, activation of serotonin receptors at both the levels of the

hypothalamus as well as the PAID modulate defensive rage behavior.

Four types of AARIs can be distinguished: fluvoxamine (prosaic), fluvoxamine,

paroxetine, and sertraline. These are second and third generation antidepressants that

enhance serotonin neurotransmission. Furthermore, studies of emotional and aggressive

behavior, where motor activity has been monitored, have shown a link between

expression of emotional affect and increases in muscle tension [4]. These findings are

important in that they suggest that neuromuscular disorders have a component that may

be related to emotionally-mediated motor activity. In the analysis phase of this research

study, the effects of IV infusion of an SSRI antidepressant agent upon masseteric EMI

activity generated by the stimulation of a predefined site in the hypothalamus were

examined. The aim of this study was to evaluate wavelet transforms applications in the



7

analysis of Lasseter muscle contractility in cat subjects during stimulation of a certain

region of the hypothalamus before and after the infusion of SSRI.

1.5 Stress and the Stress Response

It is important to have a clear understanding of the term stress in the context of this

project. In this research, the term stress response refers to the physiological reaction of

an animal or human to changes in its environment, such as the release of CRC

(Corticotropin-releasing hormone) and oxytocin. Stressors are the stimuli that create the

stress response. These stresses can be any or a combination of a variety of events, such

as a change in temperature or the anticipation of a mental stress, such as an exam [22].

The stress response, initiated in the hypothalamus, is thought to modulate the

muscle activation pathway followed during voluntary muscle activity. The planning and

control of ongoing voluntary movements is dictated primarily by the cerebral cortex and

cerebellum, and through interactions between the structures beneath the cortex, referred

to as subcortical nuclei, and the cortex. This pathway that controls voluntary activity of

the Lasseter muscle is also active during stress. However, the stress response that is

initiated during hypothalamic stimulation interacts with this pathway to modulate the

muscle activity. It is unclear how this modulation occurs during the stress response.

1.6 Skeletal Muscle and Electromyography

Contraction of skeletal muscles is accomplished through central nervous system

interaction with motor nerve fibers, which innervate muscle fibers. A motor unit consists

of a motoneuron and the muscle fibers that it innervates. Impulses are generated in the
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motoneuron and propagate to the fibers of the motor unit. It has been observed that force

of contraction is related to the frequency of the action potential and the number of motor

units that are recruited [23]. Measurements of the electrical events associated with

muscle contractions are known as electromyography (EMI) recordings. These

measurements give insight into the activation, or recruitment, pattern of the muscle. For

instance, fast firing muscles display higher frequency content in the EMI recordings,

whereas slow firing muscles display lower frequency content in the signal. Patterns of

high and low frequency components in the signal indicate the recruitment pattern of the

various types of muscle fibers during a contraction, as well as provide indications of

fatigue [24, 25]. Fatigue has been measured, in purely frequency analyses, as the point at

which the median frequency decreases. Dolan, et al. suggest that the increase in power in

the low frequency range (5 — 30 Cz) has been found to be a more precise method of

detecting muscle fatigue [25].

Α muscle fiber "twitch" is defined as the mechanical response of a single fiber to

a single action potential. There is a delay between the time when the electrical impulse

stimulates the muscle fiber and the mechanical contraction of the muscle fiber. Once

initiated, the mechanical contraction, or "twitch," may last up to 200 ms, while the action

potential may last only 1-2 ms. The difference in reaction times enables the motoneuron

to initiate a second impulse before the mechanical response to the first impulse has

ended. This addition of electrical impulse before the mechanical activity has completed

is known as summation as shown in figure 1.1. This results in a higher muscle tension

during the time period that the electrical stimuli occur before the mechanical response of

the fiber has ended.
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This summation of fiber activity has a saturation point. This is the point at which

increased frequency of the action potential relative to the duration of the muscle twitch

will no longer cause an increase in tension. Rather, the muscle reaches a saturation point

which varies depending upon whether the fiber is fast or slow firing, as well as upon the

diameter of the fiber itself [26].

Figure 1.1 Summation of action potentials. Illustration of potentials that occur before
the muscle twitch has ended and the resultant summation of muscle tension. S 1 and S2
are the two stimuli. Note the increase in tension as the time between stimuli decreases.

An electrode placed parallel to the muscle of interest can detect the electrical

impulses present during the muscle twitch. These potentials can be positive or negative,

and as a result, the electromyography signals captured during muscle activation contain

both positive and negative, or polarized, components at any point in time. The recorded

response of a motor unit has an amplitude of 0.1 — 5 mV. The frequencies present in

EMI signals typically have a range from DC to 10 kCz, depending upon the diameter

and type of muscle fiber that is being measured [27]. In this study, the data files were

band passed from 2 to 750 Cz to remove DC voltage and to avoid any biasing effects. A

biasing effect occurs when the sampling frequency is too low for the largest frequency
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content in the signal. The Nyquist sampling theorem states that in order to avoid biasing

effects in the signal, the sampling frequency must be at least twice as large as the highest

frequency component (Amax) contained in the signal. In this case, the largest frequency

component allowed to pass through the filter is 750 Hz. The signal was sampled at 2000

Cz, well over the 2*Amaχ (in this case after filtering, equivalent to 1500 Cz) limit imposed

by the Nyquist sampling theorem. The data files were further notch filtered from 57.5 to

65 Cz to remove any 60 Cz or stimulation artifacts that may have been introduced into

the recordings. The program that performed the filtering is written in Labview version

5.1. Both the front and wiring panels of the filtering program are included in Appendix

Α.



CHAPTER 2

EXPERIMENTAL PROCEDURES AND METHODS

This chapter describes the experimental setup and procedures for acquiring data and

signal processing tools used for the analysis of the time and frequency components of the

EMI signal. The data used in this experiment were obtained at the Limbic Research

Laboratory at the Department of Neuroscience, New Jersey Medical School in Newark,

New Jersey.

2.1 Preliminary Experiment and Data Analysis

The electrical activity detected with surface electrodes (SEMIS) is the summation of

the electrical signals generated by a number of motor units, active within the same motor

territory in the proximity of the electrodes. The SEMG signal is a convenient parameter

to studying the muscle behavior under fatiguing exercise, as it proves time-dependent

changes, provided care is taken to prevent cross talk from adjacent muscles. The

following subsections of (2.1) describe the methods and the results obtained in the

preliminary experiment that was conducted as part of this research using a human subject.

A preliminary study was conducted as part of this research to address some of the

engineering concerns such as the comparison of the Aast Aourier Transform (AAT) to the

Continuous Wavelet Transform (CWT) using the mean power frequency parameter in

analyzing the muscle fatigue, aiming to appreciate whether the CWT alone may be used

to analyze the muscle behavior under fatiguing contraction. We are hypothesizing in this

preliminary experiment that CWT can indicate the degree of muscle activation and

11
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therefore can be used to analyze the development of muscle fatigue in the same way the

AAT has been proved to do. The rationale for this study is that some of the parameters

used to analyze fatigue indices using AAT approach may be comparable to the frequency

responses of an emotionally stimulated muscle that is infused with SARI.

The procedure to obtain the intensity from the measured EMI signal consisted of

the following three major steps: (1) compute the continuous wavelet-transformed signal

using daubechies 6 "db6"; (2) compute the square of the wavelet coefficients which is

analogous to the power of the signal in Fourier transform [1],  and (3) calculate the mean

frequency in both the AAT and CWT using the formula

Where

IF = mean frequency

C = wavelet coefficients

A = frequencies derived from the scale

i = magnitude of the scale at the itch position

2.1.1 Methods

One healthy male human subject participated with his consent. A pair of surface EMI

self adhesive conductive gel electrodes (22.5 * 22.5 mm Η59Ρ, MAP, USA), with their

centers 25 mm apart from each other were placed on clean skin, longitudinally,

immediately under the thickest point of the branchioradialis muscle of the left arm; a third

similar electrode was placed on the branchioradialis muscle of the right arm to reduce

noise interference. The task involved a steady isometric contraction, the subject standing
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in an upright position, having to carry a weight on his left palm. In order to avoid

movement artifact, the subject was asked to remain still through out the duration of the

exercise. Visual feedback was used to insure the position of the hand was stationary

during the task. The 100 % MAC was estimated at first for the subject under test, as the

maximum weight that the subject could sustain for two seconds, after a few short

preliminary trials for learning and breaks between trials to avoid fatigue. Two tests were

performed for 25% MVC up to exhaustion.

Before acquiring data it was required to create files of appropriate size for data

storage. The size of file was calculated using the sampling rate (S) per channel, the

number of channels to be acquired (C), and the total sampling time (T).

The SEMI signals were amplified (* 2000, Grass Model 79, USA) and acquired via a

computerized acquisition system (CB68LP National Instrument, Labview 5.1, USA), at

2000 Cz sampling rate on one channel. All the programs for signal processing were

written in MATLAB (Math Works, Inc, USA) in conjunction with Wavelet Toolbox.

2.1.2 Results

The LSD spectra evolution computed on successive 5 s signal segments from SEMG,

show compression toward lower frequencies with increasing fatigue both for the FFT and

the CWT, starting at the very beginning of the contraction. The MF evolution shows a
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progressive decrease from the very beginning of the task in both transforms. The similar

evolutions of both the FFT and CWT support our hypothesis that CWT also indicates the

degree of muscle activation and can be used to analyze the development of muscle

fatigue.

For the subject, the linear regression was performed on the IF evolution to
compute the slope, intercept, and correlation coefficient parameters.

FFT results:

Slope = -0.2135

Intercept = 182.5477

Correlation coefficient = -0.9315

CWT results:

Slope = -0.094

Intercept = 15 0

Correlation coefficient = -0.7862

In both cases (FFT and CWT) the linear regression slope of the IF evolution is negative.

This implies that IF decreases from the very beginning of the muscle contraction. It also

shows the central intervention in modulating the activation with increasing fatigue. The

high negative correlation coefficient in both cases shows that the mean frequency, which

is a principle parameter in the comparison decreases with time in both methods. While

the correlation coefficient in the FFT method is higher than that of the CWT method, the

difference may be explained by the fact that the CWT might provide different slopes in

different sections of the signal due to mean frequency variations and therefore, a straight

line fit might not be the mre appropriate fit. Another factor could be because the mean
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frequencies were averaged in 5-second blocks and concatenated over time due to large

variations using the CWT method, which does not use all of the potential of the CWT.

The above discussion shows the intimate link between the FFT and the CWT

(although averaging was used) as functionally related methods for analyzing SEMG. This

study addresses a quantitative comparison (CIF) of FFT and CWT. It brings additional

evidence on the peripheral fatigue and provides means of quantifying the fatigue

development in the isometric exercise. According to this study, the CWT can be used for

analyzing the degree of muscle activation and for monitoring the muscle fatigue

development in the isometric contraction. These observations provided the basis for the

present study, which attempts to characterize the role of SSRI in modulating the

frequency response of the Lasseter muscle elicited from the medial hypothalamus.

2.2 Subject Preparation

Three adult cats (2 males and 1 female) weighing (2.8 — 3.4 kg) were utilized in the

experiments. The cats were individually housed throughout the course of all experiments.

During aseptic surgery, the animals were deeply anesthetized with Isoflurane (1- 2%). 6

holes were drilled in the skull overlying both sides of the medial hypothalamus, lateral

hypothalamus and the LAGS, and stainless steel guide tubes were stereotaxically

implanted over those holes with dental acrylic. Three stainless steel styles connected to

screws with silver wire were embedded in the skull and served as ground electrodes.

Additionally, three bolts were anchored to the skull with dental acrylic and were attached

to a plastic cap that protected the entire assembly.
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2.3 Elicitation of Behavioral Response

Following surgery, the freely moving cat was placed in a wooden observation chamber

(61 x 61 x 61 cm) with a clear Llexiglas door. Channel electrodes were lowered vertically

through guide tubes into the LAG sites from which defensive rage behavior could be

elicited by electrical stimulation. Monocular and channel electrodes were lowered into

the medial hypothalamus and electrical stimulation was applied at 0.5 mm steps in order

to identify the sites from which defensive rage behavior could be elicited in the moving

cat. When defensive rage behavior was reliably elicited from the medial hypothalamus

within 15 s, the electrode was cemented in place with dental acrylic. The stimulating

current ranged from 0.3-0.6 me, 20 Cz, 0.05s per cycle duration. The peak-to-peak

current was monitored by a Tektronix 5000 series oscilloscope.

2.4 Defensive Rage Behavior Elicited from the Medial Hypothalamus and the PAGE.

The descending fibers from the rostra half of the medial hypothalamus to the dorsal part

of the PPAG has been considered as the principal pathway for the expression of defensive

rage behavior [28]. Accordingly, in this study, defensive rage was elicited from the

medial hypothalamus and the LAG as shown in figure 2.1, and PProzac was injected

intraperitoneally (IP) into the stomach. This procedure permitted analysis of the role of

Lrozac receptors in the medial hypothalamus and LAG in modulating defensive rage. The

use of this form of aggressive behavior also served as a behavioral control against

possible non-specific sensory and motor effects of the drug.
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Fig. 2.1 Maps of Sites in: (A) Medial hypothalamus from which defensive rage was
elicited, and (B) PAG from which defensive rage was also elicited. abbreviations: CI,
internal capsule; Fx, fornix; CL, lateral hypothalamus; ΜΗ, medial hypothalamus; OT,
optic tract; PAG, midbrain periaqueductal gray; and RE, nucleus reunions.

The hissing response was used as the primary measure of defensive rage behavior

since hissing always occurred with each trial of stimulation as an integral component of

the defensive rage response. Response latencies for hissing were recorded with a

stopwatch and response thresholds were determined as well. The latency for each

response was defined as the duration of time required for a cat to initiate hissing

following the onset of electrical stimulation of the medial hypothalamus. The response
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threshold was defined as the lowest current value at which responses could be elicited on

50% of the trials. Increases in threshold and/or latency were interpreted as a measure of

response suppression, while decreases in threshold and/or latency were interpreted as a

measure of response facilitation. Current was raised or lowered in 0.05 me steps in an a-

b-b-a manner (with `a' above threshold and `b' below). The a-b-b-a method is the steps

by which the behavioral response sites in the hypothalamus were elicited with the

channel electrodes.

2.5 Experimental Protocol

Prior to drug administration, cats were given 4 trials separated by a 5-min rest period of

stimulation of the medial hypothalamus in order to determine baseline response threshold

and latency values for hissing. Then, Prosaic was injected (IPA) into the stomach in doses

of 3.4 cc. After a 5-min waiting period, groups of 4 trials separated by a 2-min rest period

of hypothalamic stimulation were then repeated over the post-injection blocks of time: 5

min, 15 min, 30 min and 50 min.

2.6 EMG Recording Phase

After the establishment of a stable threshold current for eliciting an emotional behavioral

response, the skin overlying the ipsilateral Lasseter muscle was shaved and cleaned with

alcohol, and bipolar surface electrodes, 0.5cm in diameter, were affixed to the skin using

pensive conductive adhesive gel (Parker Laboratories Inc, Fairfield, NJ), one overlying

the angle of the mandible, with the second having a 15mm inter-electrode distance over

the Lasseter muscle and oriented parallel to the course of the muscle fibers. A ground

electrode was attached to the skull. The EMG signals were preamplifier and recorded
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using a Grass S88 amplifier that rectified and integrated the signal. The data was acquired

using data acquisition software, (LabView v6.0, National Instruments, Inc, USA) along

with a 16-channel AID National instrument data acquisition card, NI PCI-6025Ε,

connected to a Gateway 400 MCz computer. The EMI signal was recorded with a

bandwidth of 10 to 1000 Hz with an acquisition rate of 2000 Cz, and stored in a computer

for analysis. During each experiment, the animal was gently restrained to prevent

removal of the electrodes attached to its face.

2.7 Data Analysis

Two types of data analysis were employed: statistical analysis and wavelet analysis.

The mean frequency (IF) of the electromyogram is a useful index of acute muscular

response. Cowever, for the Lasseter muscles, the MPG value has not been extensively

investigated at different levels of muscular contraction and was employed in the data

analysis phase of this research. In this study, the EMI signals were resolved by wavelet

analysis into their intensities in time and frequency space. The intensity (square of

wavelet coefficients) represents the power within the EMI for any given time and

frequency band. The mean frequency used in this study is comparable to the mean power

frequency used to measure EMG contractions [20]. There are three applications which

dominate the use of the surface EMI signal: its use as an indicator for the initiation of

muscle activation, its relationship to the force produces by a muscle, and its use as an

index of the fiber recruitment processes occurring within a muscle. The use of the EMI

signal to provide an "emotional response index" has considerable appeal because it has

been shown that the signal displays time-dependent changes prior to any force
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modification, thus having the potential to predict the onset of contractile activity related

to emotional behavior.

The wavelet transform and the mean power frequency (IF) were calculated for

each interval. The mean frequency was chosen for this analysis because it is a more

accurate representation of recruitment and rate coding in the muscle than the median

frequency and is also less sensitive to variations in conduction velocity and noise or

interference [18]. The idea was to relate the physiology of the muscle (i.e. the emotional

response index) to the signal processing. It is important to note that the deterministic part

of the signal may undergo abrupt changes such as a jump, or a sharp change, or very

rapid evolutions such as transients in this dynamic system (EMG). The main

characteristic of these phenomena is that the change is localized in time or in space.

Therefore, the use of the wavelet analysis in this research was to determine the following

parameter of the EMI signals between sessions.

Total shift of CIF: CIF (mean frequency) is the frequency value, separating the

power spectrum into two equal surface regions. Using the wavelet power spectrum,

which is, in full analogy to the power spectrum used in Fourier analysis, given by the

square of the wavelet coefficients [21], it is expected to show that the emotional response

of the muscle contraction i.e. late stimulation, had on average, fewer high frequency

components than early stimulation and therefore the mean frequency will be lower. The

Slope of MF (frequency response rate) with time would be used as a comparative index

among subjects during the analysis of the data. It is expected to show the suppression of

frequency response due the infusion of SS RI over time. The local aspects of the wavelet

analysis are well adapted for processing this type of event, as the processing scales are
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modification, thus having the potential to predict the onset of contractile activity related

to emotional behavior.

The wavelet transform and the mean power frequency (IF) were calculated for

each interval. The mean frequency was chosen for this analysis because it is a more

accurate representation of recruitment and rate coding in the muscle than the median

frequency and is also less sensitive to variations in conduction velocity and noise or

interference [18]. The idea was to relate the physiology of the muscle (i.e. the emotional

response index) to the signal processing. It is important to note that the deterministic part

of the signal may undergo abrupt changes such as a jump, or a sharp change, or very

rapid evolutions such as transients in this dynamic system (EMG). The main

characteristic of these phenomena is that the change is localized in time or in space.

Therefore, the use of the wavelet analysis in this research was to determine the following

parameter of the EMI signals between sessions.

Total shift of F: F (mean frequency) is the frequency value, separating the

power spectrum into two equal surface regions. Using the wavelet power spectrum,

which is, in full analogy to the power spectrum used in Fourier analysis, given by the

square of the wavelet coefficients [21], it is expected to show that the emotional response

of the muscle contraction i.e. late stimulation, had on average, fewer high frequency

components than early stimulation and therefore the mean frequency will be lower. The

Slope of IF (frequency response rate) with time would be used as a comparative index

among subjects during the analysis of the data. It is expected to show the suppression of

frequency response due the infusion of SSRI over time. The local aspects of the wavelet

analysis are well adapted for processing this type of event, as the processing scales are
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connected to the speed of the change. The subsequent analysis was based on daubechies 6

"db6" which is well suited to analyzing EMI signals. The accuracy of the continuous

wavelet transform C(t) was limited by the following factors: First, by the spectral

resolution of the analyzing wavelet. Secondly, by the significance of the coefficients of

the wavelet power spectrum which decreases towards the boundaries of the signal.

Thirdly, by the background noise inherent in the EMG signal [41].

Statistical comparisons using NOVA (two-factor without replication and single-

factor without replication) was performed (significance level: 0.05). The null hypothesis

(H0) assumes the equality of the compared parameters (mean values of early and late

stimulation among the three cats). If Recalculated is greater than the F-critical, reject the

null hypothesis. If the Devalue is less than the confidence interval of 0.05, reject the null

hypothesis.

2.8 Time-Frequency Analysis using the Continuous Wavelet Transform (CWT)

The EMI signals in this study were sampled at a rate of 2000 Cz. They were run

through a Labivew program that removed the DC component and the chance for a biasing

effect by bandpassing the data from 3 to 750 Cz, as per the Nyquist sampling theorem.

The majority of the power in the signals elicited from both behavioral states was centered

at less than 200 Hz as shown in figure 4.1a. The data were also filtered from 18 to 22 Cz

to remove stimulation artifacts and 57.5 to 63 Cz to remove 60 Cz noise from the electric

lines. The filtered EMI files were then run through the Matlab wavelet program outlined

in Appendix B to perform the continuous wavelet transform on the signal. This analysis
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employs the Daubechies order 6 (DB) wavelet. The rationale for choosing this

particular wavelet, as well as a discussion of wavelet technique, is the topic of Chapter 3.
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Figure 2.3 Time-Amplitude plot of EMG activity during post-injection stimulation

Figure 2.2 illustrates the time-amplitude representation of the EMG recorded during

baseline hypothalamic electrical stimulation, while Figure 2.3 is the time-amplitude

representation of the EMI signal recorded during post-injection stimulation. Note

that in Figure 2.2, the stimulation begins with the first large jump in EMG amplitude

and ends with the return to the pre-stimulation baseline level. In figure 2.3, the effect

of the drug occurring in the locations where there are large variations of the amplitude

of the signal. The post-injection signal displays spikes in activity, whereas the

baseline signal displays no variation in amplitude throughout the length of the

stimulation. The magnitudes of the two signals are approximately order of ten

different from each other, signifying differences in EMI amplitude between the two

stimulation states.



CHAPTER 3

THE MATHEMATICS OF WAVELET TIME-FREQUENCY ANALYSIS

Studies that have examined the role of the nervous system in the modulation of the

recruitment of muscles have been limited to the evaluation of electromyography signals

in either the time or frequency domains [29, 30, 31]. These studies have yielded valuable

information about the role of hypothalamically induced neuromuscular activity in

comparison to cortically invoked activity. Results from these studies indicate that the

values of EMI amplitude and mean power frequency obtained during hypothalamic

stimulation were significantly higher than those observed during mastication. 	 The

studies have thus indicated that there is a correlation between hypothalamic stimulation

and increased EMI activity in both time and frequency measures. It is thought that the

shift in mean power frequency is indicative of a more extensive recruitment of rapidly

fatiguing muscle fibers, as well as an increase in motor neuron firing frequency.

However, previous studies have not been able to clearly define the role of the nervous

system in the modulation of the recruitment of the fibers of the Lasseter muscle. This is

because at the time the studies were performed, the computing capability and signal

analysis techniques were limited. This resulted in the lack of either time or frequency

resolution, depending upon the type of analysis performed.

The hypothalamus is thought to activate the stress response and thereby modulate

the level of activity in the Lasseter muscle, which is controlled mainly by the cortex and

basal ganglia during voluntary muscular activity. The past studies have been limited in

the respect that the data analyses in the time domain are missing critical information

24
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regarding the frequency content of the signal, whereas the frequency analyses are missing

time resolution. The studies were able to identify that in the time domain the amplitude

of the EMI signal changed at specific times during the experiment. They also identified

that the average power of the frequency was different between the two behavioral states.

This indicates that the muscle activity varies between the two behavioral states, but is not

enough information to clearly define what is causing the changes in EMI amplitude at

specific times. It is also not enough information to clearly define what is causing the

changes in mean power frequency. The averaged power only accounts for specific

frequency content that is averaged over the length of the signal. This gives an indication

of which frequencies are the most active in the signal, but it does not give time

information that would indicate what frequencies are active at which times. A

combination of time and frequency information would elucidate the ways in which the

muscle recruitment is modified by the stress response.

Α method of combining the two attributes of time and frequency without losing

critical time or Fourier parameter information is through the implementation of time-

frequency decomposition. This method of evaluating non-stationary signals that contain

transient components has been gaining increasing popularity, with the first implications

for applications to signal analysis in the 1940s. Recently, a time-frequency method has

come to the forefront as a powerful method of analyzing transients and allowing the

researcher to investigate frequency components over the length of the signal. This

method, known as the Wavelet Time-Frequency Multi-Resolution analysis, makes it

possible to have good time and frequency resolution due to a shape that is other than a

sinusoid and is applied to the signal using a scalable window.
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A shortcoming of time-frequency decompositions based upon the Fourier

transform is the inability to use a scalable window, which results in the loss of time

resolution. The Fourier transform based methods of time frequency analysis are based

upon scaling and shifting a sinusoid and convolving it with signal to be analyzed, using a

fixed window of time for all frequencies. Another shortcoming of this method is that

because sinusoids are infinite signals in time, they are not contained completely in the

window that is chosen for the analysis. For this reason, the use of a sinusoid introduces

artifact into the analysis due to the fact that the window captures different quantities of

periods of the sinusoid at different frequencies, depending on window size being used.

The wavelet transform uses the theory of time-frequency decomposition and

employs an adaptive window size that changes based upon the frequency being

examined. It also employs basis signals other than sinusoids in the analysis. The basis

signals for this type of analysis are called wavelets. The signals employed in the wavelet

analysis decay to zero exponentially, reducing the problem of the base extending outside

of the window and the associated introduction of artifact. They also oscillate about zero

in the time domain and therefore possess a zero mean value. Translated to the frequency

domain, the Fourier transform of the wavelet must approach zero at the zero frequency,

which forces a band-pass behavior of the wavelet. This time and frequency characteristic

of the wavelet is referred to as the admissibility condition, which must be met in order for

reconstruction of the signal using wavelet coefficients [32]. The requirements for

wavelet construction and implementation are discussed in detail in Section 3.2.2.

The Fourier transform utilizes the infinitely bound sine wave as the basis for

analysis. This enhances the likelihood of missing small transients in signals that the
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wavelet would detect due to its limited duration. The wavelet, then, is well suited to

analyze a local area of a signal that would otherwise be missed by the traditional Fourier

analysis. The shape of the wavelet is typically asymmetrical as compared to the Fourier

transform, which utilizes the uniformly shaped sinusoid. The shape of the wavelet

renders it well suited to detection in signals that contain sharp changes in frequency

content.

Another quality of the Daubechies family of wavelets that makes them useful

techniques in non-stationary signal analysis is that they are orthogonal. This attribute

causes the wavelet coefficients to be orthogonal. In turn, this causes each wavelet

coefficient to be representative of independent signal components [33]. For example

certain wavelets, such as the Monet, Gaussian and Mexican Hat, are not orthogonal.

The wavelet method is unlike other time-frequency decomposition methods

because it is not based upon the traditional Fourier base of sinusoids and does not use

fixed windows of time to analyze the signal at all frequencies. The window size varies

depending upon the scale, or frequency, that is being investigated. In addition, the

wavelet method convolve a "mother wavelet," of shape and duration varied by the class

of wavelet and the scale being assessed, with the signal to be analyzed. This mother

wavelet is scaled and shifted based upon the frequency band of interest. This scaling and

shifting allows for the detection of small transients as well as larger trends within the

data. It also allows for better time and frequency resolution that traditional methods have

provided. A wavelet analysis is the method chosen for this work. The construction and

implementation of the Continuous Wavelet Transform will be discussed in this chapter.
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3.1 History of the Wavelet Transform

The wavelet time frequency decomposition is a mathematical theory that has been in

development since the early 1900s. Alfred Haar, in 1909, is credited with the first written

description of the theory that has since become referred to as wavelet analysis. Since

then, the theory has gained increasing popularity. In 1988, Stephanie Mallet derived the

algorithm that is the basis for this approach to time-frequency analysis [34]. Since then,

engineers have embraced this method in various fields of research, including but not

limited to acoustic emission [35, 36], transmission line fault detection and protection [37]

and detection and classification of material attributes [38]. Recently, biomedical

applications of the wavelet analysis, such as the analysis of motor unit action potentials

[39] and the use of electromyography for the detection of back muscle fatigue [11],  began

to appear in the literature.

The theory of wavelet based decomposition of signals is founded upon the

nineteenth century theory presented by Joseph Fourier, which has come to be known as

the Fourier analysis or Fourier transform, whereby a signal is decomposed into its

frequency components via the use of sinusoids. The wavelet transform replaces the time

information lost in the Fourier transform. Wavelet analysis performs a frequency

analysis that assesses frequency band activity over time, rather than calculating the sum

of all frequency activity during the life of the signal of interest. Today, United States

mathematicians, such as Daubechies and Collet, lead the research that is aimed toward

the advancement of wavelet theory [34].
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3.2 Implementation of the Wavelet Transform

The Continuous Wavelet Transform (CWT) uses a main signal, referred to as the "mother

wavelet" and convolve a shifted and scaled version of this signal with the signal to be

analyzed. Mathematically, this approach is represented by the equation

where C represents the coefficients that are a result of the product of the original function

and the conjugate of the mother wavelet, a represents the scaling factor of the mother

wavelet, p is the shlting factor of the mother wavelet, f(t is the original signal and

yf(a,p,t) is the conjugate time-dependant mother wavelet, scaled and shifted by a and p,

respectively. The mother wavelet is decomposed via scaling and translation into a set of

smaller basis functions, represented by Via,, where

and ‚11/2  provides energy normalization across scales.

Scaling is the process by which the wavelet is stretched or compressed at a certain

level, as seen in Figure 3.1. This scaling or compressing enables the wavelet to capture

frequency information at various frequency levels. Higher frequency content is captured

at lower scales and conversely, lower frequency content is captured with higher scales.
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Scales are in powers of 2. For example, a scale factor of 9 corresponds to a level of 2^9,

or 512, wavelet coefficients. At higher scale levels the wavelet analysis possesses greater

Figure 3.1 Scaling the mother wavelet. Note that the signal becomes increasingly short
in duration at smaller scales. This yields information about quickly changing, or the high
frequency content of, signals.

frequency resolution, whereas lower scale levels yield better time resolution because

decreasing the scale parameter increases the width of the wavelets, as shown in Figure

3.2 [40]. The bandwidth decreases by half at every scale. This enables higher frequency

resolution at higher scales, or lower frequencies. Conversely, it enables higher time

resolution at lower scales, or higher frequencies. Wavelet representations are typically

referred to as time-scale decompositions due to the fact that the mother wavelet is

compared to the original signal in scales, not frequency.



Figure 3.2 Wavelet transform scaling grid. Scale is approximately equivalent to the
inverse of frequency. Note that scale increases in the opposite direction of the frequency.
As frequency increases, scale decreases. As the scale decreases, the duration of the
wavelet decreases, enhancing the time resolution of the wavelet at higher frequencies.

Cowever, frequency roughly correlates to the inverse of the scale value and is related to

the scale in the following way:

where Fa is the frequency correlating to a speclic scale, F S is the sampling frequency, F^

is the center frequency of the specific mother wavelet at the scale being analyzed and a is

the scale being analyzed. The scaled wavelet is then shifted across all time of the signal.

Shifting is the process by which the onset of the application of the mother wavelet
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Figure 3.3 Shlting the mother wavelet. In this case, k is the shifting factor, or the length
of time by which to delay the onset of the application of the wavelet.

is delayed or hastened, as can be seen in Figure 3.3 [34]. This allows for the time

component in the wavelet analysis. Rather than looking at specific windows of time, the

wavelet analysis looks at all time in the duration of the signal being analyzed, at varying

scales. Higher scales will yield larger shifts in time in order to capture the activity at

lower frequencies. Likewise, lower scales yield smaller shlts in time, in order to capture

the activity at higher frequency, or rapidly changing, content of the signal.

Wavelets address problems with inaccuracies of representation of the frequency

content of a signal as a result of Fourier analysis based time-frequency analyses. It does

this by convolving the signal to be analyzed with a signal that meets two specific

properties: the admissibility and the regularity conditions. The admissibility condition

requires that the wavelet decay quickly to zero outside of the time and frequency of

interest. This property of wavelets is known as the localization property of the wavelet.

In the time domain, this is equivalent to saying that the wavelet must oscillate about zero

and have a mean value of zero. In the frequency domain, this is equivalent to the

statement that the wavelet is compactly supported, or band limited, and must decay

quickly to zero outside of the frequency band of interest. This concept is represented

mathematically in Equations 3.4 and 3.5.



That is, the mother wavelet signal exists only in the local region of the signal. These two

combined attributes of the wavelet transform are collectively referred to as the

admissibility condition, which is part of the requirement that must be met for the signal to

be considered a wavelet.

The fact that wavelets decay in both the time and frequency domains results in an

analysis that possesses very good time and frequency localization. Cowever, it is

impossible to have perfect accuracy of analysis due to Heisenberg's uncertainty principle.

In the application of this theory to signal analysis, the principle states that it is impossible

to obtain information about an exact frequency and exact time at which that frequency

occurs. That is, it is impossible to get exact information about both time and frequency

for any given time or frequency [41].

The regularity condition, which is the other portion of the requirement for a signal

to be considered a wavelet, states that wavelet transforms must decay quickly with

decreasing scale and employs the concept of vanishing moments. The concept of

vanishing moments can best be described as the points at which the derivatives of the

function are equal to zero. Equation 3.6 defines the moment, λ1, of the wavelet as
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where! is the ρ^ derivative off and φ(ι) is the wavelet. Recall from Equation 3.4 that

Μρ equals zero, based upon the above equation. Expanding Equation 3.1 to the nth term

using a Taylor expansion yields

where the translation, or shifting, coefficient p is set to zero for simplicity and X is the

remainder of the expansion [42]. Implementing Equations 3.4 and 3.6, the terms with

moments approach zero and the value of the wavelet transform coefficients decay as fast

as αη+2. The higher n is, the faster the signal decays. This is what is meant in wavelet

analysis by the regularity condition. That is, as the number of vanishing moments

increases, the shape of the wavelet becomes smoother, or more regular. The number of

vanishing moments is equivalent to n. For the Daubechies family of wavelets, n is

theoretically infinite, rendering the wavelet ideal for many diverse applications.

In summary, the wavelet should meet the conditions of admissibility and

regularity. The admissibility condition allows the wavelet to be used in applications

where perfect reconstruction of the original signal is necessary. It also ensures that the

regularity condition may be met by forcing the moments to zero.

3.3 Use of the Daubechies Order 6 (db6) Wavelet

The wavelet analysis was performed using Matlab version 6.1, with the Wavelet toolbox.

The program is included in Appendix B. The data files were filtered as discussed in 2.4.4
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using a Labview version 5.1 program, which is included in Appendix A. The EMG data

are fast varying signals with transients of short duration.

Lower order Daubechies wavelets are well suited to provide high time resolution

in the higher frequency scales [43]. This enables the lower order Daubechies wavelets to

capture short transients, which is important when assessing bursts of neuromuscular

activity. The transition from levels of higher EMI activity to lower activity may yield

important information about motor neuron activation timing, targeting and power.

Transient frequency components may also yield insight into the recruitment patterns of

the masseter muscle during different behavioral states.

The Daubechies family of wavelets can also be used in continuous or discrete

transformations. This is an important aspect to consider, depending upon the desired

application. A part of this study assessed whether wavelets could provide an accurate

reconstruction of the original signal once decomposed. The Discrete Wavelet Transform

(DDT) is necessary for the reconstruction of the wavelet. This is true because the

discrete wavelet transform down-samples the signal by a factor of two per scale during

the signal decomposition. Down sampling is necessary because in the wavelet analysis,

both the details (high frequency component of the signal at a given scale) and

approximations (low frequency content of the signal at a given scale) create a signal that

is the same length as the original signal. The difference in numbers of coefficients

between the discrete and continuous analyses is illustrated in Figures 3.4a and b. The

images illustrate the filtering of the original signal, S. The signal is low passed to create

the approximations set of coefficients. S is also high passed to create the details set of

coefficients.
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In Figure 3.4a, the continuous wavelet transform (CWT), the details and

approximations values are not downsampled. This results in approximation and detail

signals that are each the length of the original signal. If the two sets of coefficients from

the CWT are combined, the resultant signal contains twice the amount of data as is

contained in the original signal.

In contrast, in the discrete wavelet transform (DDT), illustrated in Figure 3.4b, the

details and approximations are downsampled by two. The discrete wavelet

decomposition removes every other point from the details and approximations, yielding

decomposition values that are each half the length of the original signal. Yet, the signal

integrity is not lost. Reconstruction of the signal using the discrete coefficient set yields a

signal that is equal in length to the original signal.

During reconstruction of the signal, the algorithm needs to upsample the details and

approximations signals by a factor of two, as illustrated in Figure 3.5, which can only be

done if the original decomposition was done discretely. Upsampling involves placing a

zero between discrete points in the details and approximations signals, as shown in Figure

3.6. The resulting reconstructed signal is equal in length to the original signal.



Figure 3.5 Reconstructing the original signal using the DDT coefficients.

The CDT does not provide a signal that can have a zero inserted at every other point and

not lose the signal integrity. The CDT yields a smoother frequency analysis and

ultimately yields a more complete picture of the frequency activity in the original signal

and was thus chosen for the analysis aspect of this research.

Figure 3.6 Zero insertion between coefficients. The arrow pointing upwards indicates
that the upsampling has taken place. Note that the same arrow is present in Figure 3.5,
which displays the filtering that takes place during reconstruction.
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Figure 3.7 Daubechies Order 6 (db6) wavelet.

A lower middle level Daubechies wavelet, the db6 wavelet, was chosen for this

research to ensure the accurate capture of transients and to provide high time resolution

of those signal components. The wavelet is defined in terms of six coefficients, and the

graph of it is shown in Figure 3.7. In summary, the features of the Daubechies wavelet

that made it applicable to this study include compact support, infinite number of

vanishing moments, ability to perform both discrete and continuous transformations and

high time-resolution at various frequencies.
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the power of the signal after drug injection varies across all frequency ranges. Note that

the plotting scale of the signals ranges from 0 to 4, but the power of the coefficients is

higher in the post injection signal than in the baseline signals. It is also noteworthy to see

that the stimulation latency times are short in the pre-injection signals than in the

baseline signals.

Figure 4.1α 3-D plot of the Continuous wavelet transform pre-injection (Baseline)
stimulation. The frequency activity in the 3-30 Hz range does not possess power
comparable to that seen in the 300-400 Hz frequency range



Figure 4.2 3-D plot of the Continuous wavelet transform 15 minutes Post Injection
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Figure 4.1b 3-D plot of the Continuous wavelet transform 50 minutes Post-Injection
Note the downward shlt in frequency activity from 300-500 Hz to the 75-200 Hz range.
The high power activity is located in the 3-30 Hz range

Figure 4.2 3-D plot of the Continuous wavelet transform 15 minutes Post Injection



42

4.2 Calculation of the Mean Frequency parameter

The mean frequencies (A)) were estimated from the power spectrum. Surface

electromyogram (SEMI) F has been proved to be a reliable descriptor of the muscle

fatigue evolution in the isometric exercise. F was chosen as the preferred parameter to

median frequency (MDF) due to its smaller standard deviation [18]. Statistically, it is

shown theoretically that F is an unbiased estimator and that the MDT is convergent in

the probability sense. The F trends of EMI signals were analyzed further. From the

F trend of the EMI signal, an average of the 5-second blocks of the signal were

calculated and concatenated after each iteration, to maintain the integrity of the frequency

resolution. This was done due to the limitations in handling large samples of data and

large memory requirements in Matlab. The results can be seen in figure 4.3a thrum 4.4c.

In order to have a better visual representation of the shift in mean frequency and

to statistically quantify the data between early and late stimulation, the continuous

wavelet transform was employed. Figure 4.3a — 4.3c shows early stimulation average

mean frequency plot Vs time in each subject, while Figure 4.4a — 4.4c shows late

stimulation average mean frequency plot Vs time in each subject. It is noteworthy to

point out that on average, the mean frequencies of the early stimulation are higher than

the mean frequencies of the late stimulation as shown in table 4.1a and 4.1b. This can be

seen as a downward shift from higher frequencies to lower frequencies, which is

indicative of fatigue episode.
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Figure 4.3a Plot of Average mean frequency of each trial block during early stimulation
in cat #1
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Figure 4.3b Plot of Average mean frequency of each trial block during early stimulation
in cat #2
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Fig. 4.3c Plot of Average mean frequency of each trial block during early stimulation in
cat #3

Figure 4.4a Plot of Average mean frequency of each trial block during Late stimulation
in cat #1
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Figure 4.4b Plot of Average mean frequency of each trial block during Late stimulation
in cat #2

Figure 4.4c Plot of Average mean frequency of each trial block during Late stimulation
in cat #5

4.3 Statistical Analysis

Table 4.1a and 4.1b detail the mean frequency values of the individual subject data at

different stimulation states and their averages within each trial block during early and late

stimulation behavioral states. The early stimulation state was chosen to be between the

time the electric switch was pressed and 5 sec after that (10,000 data points, Fs 2000 Hz

per sec). The choices of the time block were chosen with respect to the constraints

imposed by variation of the stimulation response time. The late stimulation state was

chosen to be between the time the stimulation response was elicited and 5 sec before

elicitation. The data selection intervals were also chosen with respect to the constraints

imposed by the variations in response latency.

The letters A, B, C, and D as shown in table 4.1a and 4.1b are the dlferent

stimulation states within each trial block. A trial block represents a pre-defined time

period in which four different stimulation trials; separated by a two minute waiting period
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were conducted. There were five different trial blocks namely: Baseline, 15min post-

injection, 15min pre-injection 50min post-injection, and 50min pre-injection as shown

in table 4.1a and 4.1b. The time period between trial blocks was determined to be the

summation of the waiting period between stimulation states and time period leading up to

the next trial block.

Table 4.1a Mean Frequencies of the Three Cats on Different
Trial Intervals During Early Stimulation.



Table 4.2a Overall Mean Frequencies during Early Stimulation
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Table 4.2b Overall Mean Frequencies during Late Stimulation

Figure 4.2a and 4.2b detail overall mean frequency values during early and late

behavioral states. The effect of drug upon latencies and response thresholds for defensive

rage behavior over baseline and post-injection time periods were analyzed by Two-factor

NOVA without replication to test the over all effect of the treatments (early and late

stimulation) on the experiment (effect of drug on the three cats). This was chosen to

remove the effect of a nuisance factor (as a result of variations in the behavior of the

individual cat such as hissing, unsheathing of the claws, and retraction of the ears). The

null hypothesis assumes equal mean frequencies for the three cats on both activities

(early and late simulation). The level of significance was set at p = 0.05. If P < 0.05,

reject the null hypothesis and conclude that activities affect the sample statistic (mean

frequency), which means that there is less than a 5% chance that the test would reject the

null hypothesis if it was true. Table 4.5 shows the result of NOVA for effect of

activities on the overall average mean frequency values for the three cats.

There are signlicant differences between values obtained during early stimulation

and late stimulation (p = 0.05) as shown in Table 4.5. P < 0.05 suggest that the mean
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values for the two different states (early and late stimulation responses) are significantly

dlferent, and the dlferences cannot be attributed to a sampling error.

Table 4.3 Analysis of the Effect of Activity on the Overall Average Mean
Frequencies.

Mixed results were obtained during the analysis of dlferent trial blocks between

early and late stimulation. Dhile there was a highly significant difference when

comparing baseline mean values among the three subjects during early and late

stimulation (p = 0.005), There were no significant differences between the other

stimulation blocks among the three subjects. Though there are differences among the

mean values, statistically, the null hypothesis cannot be rejected given a 0.05 level of

significance. Dhile it is not conclusive, this difference could be attributed to effect of

the drug on the subjects since the baseline simulation block is highly significantly

different than the pre-injection simulation blocks. However, this animal model

illustrates that during emotionally mediated EMI activity, the magnitude of the EMI

response is significantly higher pre-injection stimulation than post-injection
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stimulation. It is important to note that the overall average mean values during early

stimulation were signlicantly higher than the mean values during late stimulation.
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Table 4.4b NOVA For Early and Late Responses for 5 min Post-Injection
Stimulation Block

Table 4.4c NOVA For Early and Late Responses for 15 min Post-Injection
Stimulation Block
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Table 4.4d NOVA For Early and Late Responses for 50 min Post-Injection
Stimulation Block

Table 4.4e NOVA For Early and Late Responses for 50 min Post-Injection
Stimulation Block



CHAPTER 5

CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH

5.1 Summary of Results

There are no available human studies that have attempted to correlate human motor

activity with the behavior observed with administration of Prozac. The major

hypothesis in this series of experiments is that Prozac suppresses muscle activity

during expression of emotional stimulated behavior in both time and dosage-

dependent manner. The reduction in the EMI signal as reflected in the downward

shift in F suggests that the firing rate as well as the recruitment pattern of muscle

fibers is suppressed. This research substantiates episodes of muscle modulation

during early stimulation Vs late stimulation. It is noteworthy to mention that there

may be several other mechanisms that are involved than fatigue due to modulatory

effects that my be related to other central nervous systems such as synaptic

inhibitions as well as recruitment of other structures in the brain that may induce

inhibition. An important observation is that the values of the power of the wavelet

coefficients are significantly higher in all frequency ranges for early stimulation than

late stimulation responses.

It is also noteworthy that there is a significant difference between the mean

frequency values in the early stimulation response than in the late stimulation

response. This would indicate that the high frequency component present during early

stimulation influences the activity of the fast-firing motoneurons more substantially

than during late stimulation response and therefore shows influence of central

inhibition.

53



54

This research also proves that the wavelet time frequency signal decomposition,

using the Daubechies order 6 (db6) wavelet, is capable of separating activities at

various frequency levels while providing insight into the structure of the time series at

various scales. The results of the present study clearly indicate episode of both central

and peripheral modulation on the Lasseter muscle during hypothalamic electrical

stimulation mediated by Prosaic.

5.2 Suggestions for Future Work

This research shows that the wavelet transform technique is a viable method for

frequency analysis of the SEMG signal. This technique does not assume that the

signal is stationary, and provides a reliable time-based frequency spectrum. As such,

it has multifaceted potential for future research in the study of neuromuscular

dysfunction. Future work should include: pre-stimulation Vs post stimulation analysis

to see the effects of fatigue from the stimulation episode; pre-stimulation Vs early

stimulation analysis to observe immediate effects of stimulation; pre stimulation Vs

late stimulation analysis to observe the effects of fatigue and stimulation together;

early stimulation Vs post stimulation analysis to check stimulation effects without

fatigue; late stimulation vs post stimulation to measure the long lasting effects of

fatigue. The next step in this effort will be to analyze the baseline data set at different

time blocks (15min, 15min, 30min, and 30min) Vs the post injection data set at the

same time blocks to be able to observe the effect of the drug on the hypothalamic

electrical stimulation.
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