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ABSTRACT

IN VITRO EVALUATION OF HUMAN MESENCHYMAL STEM CELL
NEURAL DIFFERENTIATION ON TYROSINE-DERIVED

POLYARYLATES AND POLYCARBONATES

by
Yee-Shuan Lee

Present spinal cord injury treatments cannot restore motor and sensory functions caused

by the injury. These functions can return in the hopes of repairing the neural cells with a

tissue engineered designed scaffold complex. The scaffold complex will include cells to

repair and replace the damaged cells.

Mesenchymal stem cells (MSC) are multipotent adult stem ells that are capable of

differentiating along several lineage pathways. Neural stem cell and MSC differentiating

along the neural lineage have been investigated both in vivo and in vitro depicting its

feasibility. MSC for neural differentiation can be achieved by microenvironmental

signaling. Substrate surface characteristics may influence both neuron and stem cell

behavior and differentiation.

The effects of the polymer surface of tyrosine-derived polycarbonates and

polyarylates on MSC differentiation along the neural lineage were investigated in this

research. These polymers were developed by Dr. Joachim Kohn, where by altering the

length of the alkyl ester pendent chain and the backbone composition, these polymers can

have a gradual change in physicomechanical, chemical, and biological properties.

The MSC differentiated into neuron-like cell at 24 hours after induction. These

cells express the presence of NSE which is a neuron marker. No systematic variation on

cell proliferation among the polyarylate polymers was observed. The oxygen-contained

diacid backbone stimulated cell growth on all the polyarylate polymers in this study. Cell

proliferation increased as the substrate surface became less hydrophobic for all polymer



surfaces. Wettability of polycarbonate polymers depicts high linear correlation with cell

number and percentage of neural differentiation. The copolymer of tyrosine-derived poly

DTE carbonate and 5% PEG was hydrophobic and did not stimulate cell growth and cells

tend to aggregate on this substrate surface.
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CHAPTER 1

INTRODUCTION

1.1 Spinal Cord Injury

Spinal cord injury (SCI) is primarily defined as the loss of movement and sensation

innervated from areas of the spinal cord below the site of injury. SCI is classified as

either complete or incomplete SCI. Complete SCI is defined as the total loss of sensory

and motor functions and incomplete SCI is defined as no total loss of sensory and motor

functions. At the injury site, fractures and compression of the vertebrate can crush and

destroy the axons. In the United States alone, there are approximately 247,000 people

living with SCI and approximately 11,000 new cases annually [1]. Traditional approach

has been secondary injury prevention to limit injury progression with neuroprotective

agents. Thus, recovery of functional loss is limited. Survivors of SCI often develop

complications such as chronic pain, bladder dysfunction, respiratory and heart problems

[2] . Hence future therapy should be geared toward functional recovery.

Axonal transaction or axotomy is the separation of the cell body and distal

segment of the axon by cutting or slowly by crushing as in a SCI [3]. The myelin sheath

of the distal segment of the damaged axon will eventually break off and be enveloped by

the phagocytic cells. This phenomenon is known as the Wallerian degeneration. The

remaining proximal neural cell body may be killed by apoptosis or chromatolytic reaction.

Chromatolytic reaction is the metabolic alternation caused by changing cellular signal

mechanism that often resulted in neuron gene expression alternation. The synaptic

function of the chromatolytic neurons could also be depressed because it is most likely to

1
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be replaced by the gilial cells. Thus factors influence repairing strategy for axonal

regeneration after SCI include: (1) replacing damaged axon, which should involve

remyelination, bridging the proximal and distal end, and regenerating new axon, and/or

(2) prevention of chromatolytic neurons and suppression of axonal growth.

Suppressing neurite extension inhibitor and using scaffolds with growth factors to

bridge the gap at the injury site are the major factors for repairing SCI [4]. Transplanting

cells to bridge the gap at the injury site and remyelination of injured axons have been

investigated previously [5-8] but does not show complete functional recovery. Stem cell

technology may be able to provide better means of repairing dysfunction cells. Mouse

embryonic stem cells have shown successful regeneration of myelinated axons in animal

model and may be a treatment option for primary and secondary demyelinating diseases

[9]. Neural stem cells in the brain are capable of differentiating into neurons, astrocytes,

and oligodendrocytes. Neurons are responsible for transmitting nervous signals and the

presence of astrocytes and oligodendrocytes aid the signal transfer process.

Neural stem cell and mesenchymal stem cell are able to differentiate along the

neural lineage both in vivo and in vitro for the purpose of repairing spinal cord injury [7-

12] and can be restricted to one neural cell type [13-16]. Various scaffolds were

developed for tissue regeneration at cavity formation site after spinal cord injury [16].

Fabrication of scaffolds with nerve growth factors [17,18] and surface etching techniques

[19] were to direct and enhance neural cell regeneration. Self-assembling peptide

scaffolds have shown active synapses of rat neuron and support cell attachment,

differentiation, and neurite outgrowth [20]. Poly(lactic-co-glycolic acid) (PLGA) and

PLGA-polylysine scaffolds seeded with murine neural stem cells have shown promise as
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scaffolds in SCI treatment in rat models [21]. Designed uniaxial linear pores agarose

scaffolds were fabricated to guided neurite growth [22]. Porous nano-fibrous PLLA

scaffold supported neural stem cells differentiation and structure cue for neurite

outgrowth [23]. Scaffold is essential in long distance axonal regeneration as it acts as a

bridge for axonal extension. Optimized design of scaffolds in combination with stem cell

technology may lead to possible tissue engineering treatments.

1.2 Tissue Engineering

Contemporary medicine is targeted for two goals: (1) to prevent and/or control the

disorder and (2) to restore lost tissue and cellular function. Traditional surgical therapies

for dysfunction tissue involve repair, replacement, reconstruction, and removal. Typical

repair method involves stitching at the injury site that often accompanied by scar

formation. Replacement of tissue from autologous, allogeneic, and xenogeneic source

has been practiced but immune response is the primary concern for the latter two sources.

Replacing dysfunction heart valves with porcine heart valves and burnt skin with skins

from other area of the body are some examples of tissue replacement. Reconstruction

with an alternative tissue type from our body may reduce immune response but can limit

functional recovery. If none of the choice above may be considered, the dysfunctional

tissue will be removed and often replaced with prosthesis. Via traditional treatment, the

damaged tissues are not regenerated and often aim to slow down further tissue damage.

For example, if a young patient required a total knee replacement, the likelihood of

having a replacement later is very high due to the wear of the prosthesis components and
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the growth of the child. Hence functional replacement and repairing are essential for

ideal recovery.

Tissue engineering is a multi-disciplinary study involves primarily biology,

material science, manufacture, medicine, and engineering to develop functional

biological substitutes that can repair, maintain, or improve function of the damaged tissue

[24]. The idea of tissue engineering is to mimic biological mechanisms and environment

to promote repairing of damaged tissue. Scaffolding materials i.e. biodegradable

polymers are constructed into shapes as needed and then seeded with cells and growth

factors or others that will promote proliferation. While the cells proliferate, they will

grow into a three-dimensional shape based on the scaffold structure. The scaffold should

decompose gradually and the surrounding cells will blend in with the regenerated tissue

structure and thus repaired the damaged tissue.

Three aspects need to be considered for a tissue engineering application: (1) Cell

selection. This is critical for a successful cellular and tissue regeneration. Earlier stage,

the mature cell were used directly for repairing. Later on involvement of stem cell

technology has brought new choices for cell selection. (2) Scaffold. The purpose of the

scaffold is to create a biological environment mostly similar to the extracellular matrix

(ECM). The scaffold should at least allow the selected cells to attach and proliferate. In

advance term, it should also promote stem cell differentiation if stem cell is the cell

source and also reduce the inhibition triggered by the body for restraining regeneration.

(3) Proper signal and cue. Cell continuously go through cell cycle. Mature cells

eventually die and replaced by new cells. Signals such as receptor proteins and hormone

are released in the ECM and controls the cell cycle by various signaling mechanisms.
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Optimizing the combination of cells, scaffolds, and signals may create a suitable

environment for tissue regeneration in vivo and in vitro.

Cells are organized in the extracellular matrix (ECM) which is mostly composed

of proteins and glycosaminoglycans cross-linked network that controls and regulates all

cell-related activities such as cellular adhesion, protein binding sites, and degradation.

To allow tissue repair, scaffolds are used for initial cell attachment and promote cell

growth as similar to the ECM. Thus surface properties of the scaffold are important for

initial cell attachment. A scaffold should be biocompatible and has controlled

biodegradation rate as it is gradually being replaced by new functional cells and healthy

surrounding cells. Interconnected porous structure may also help in cellular growth and

communication.

Two component of the scaffold should be considered, the polymer composition

and the geometric structure. The polymer composition defined the chemical and physical

properties of the scaffold. The bulk property of the scaffold such as stiffness should

provide the mechanical support at the site in our body and the surface property should at

least allow good cell-polymer interactions. The geometric shape can be determined by

the fabrication method. Fiber mesh, phase separation, solvent casting and particulate

leaching, polymer/ceramic fiber composite foam, and nano-spinning are some example of

fabrication methods. The geometric shape of the scaffold may influence stem cell

differentiation where cell orientation was found to influence differentiation significantly

[23]. Therefore optimizing the scaffold is essential for a successful cellular

reconstruction.
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1.3 Polymers

Polymers, either natural occurring or synthetic have utilized for a wide range of medical

application because of its availability and manufacturing feasibility. Poly (methyl

methacrylate) (PMMA), poly (lactic acid) (PLA), poly (glycolic acid) (PGA) and poly

(L-lactic acid) (PLLA) are some examples of FDA approved polymers for biological

applications. In drug delivery and tissue engineering applications, special designed

biodegradable polymers may optimize the performance.

1.3.1 Biodegradable Polymers

Biodegradable polymers are mostly used for extended release drug delivery to allow

better delivery targeting and more user-friendly. Biodegradable suture material and pins

are popularly used for tissue repairing. In tissue engineering, scaffolds are implanted into

the body for cell and tissue repair and regeneration. Biodegradable polymers hence are

thought to be promising for tissue engineering application. The selected scaffolding

polymer should not degrade before the tissue is repaired yet at the same time should not

produce cytotoxic by-products after degradation. Recent selection criteria for a suitable

scaffolding material does not only have to be biocompatible and stable for its application,

but it should at least support new tissue growth, prevent cellular activity and growth such

as lesion, guide tissue response and reduce immunologic problems, and enhance scaffold-

host interaction [25].

Biological derived polymers such as type I collagen, chitosan,

glycosaminoglycans, polyhyseoxyalkanoates have been used for scaffold fabrication and

have studied widely for various applications. Synthetic poly(amino acid) has been
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investigated for many years due to its non-toxic by-product after degradation and the

variability of composition due to its side chain attachment. However, very few has been

developed for application due to its poor mechanical strength and very limited

processibility cause by its amide backbone, where strong hydrogen bond linkage makes it

insoluble [27]. The insoluble linkage restricts the feasibility of processing and increases

the cost if undergoes a massive production. In addition, poly(amino acids) also creates

immunological responses. Therefore, innovation of pseudo-poly(amino acid) was

introduced by eliminating the amide backbone resulting increase of processiblity and

improves the mechanical properties [26,27]. The polymers used in this study are from a

family of tyrosine-derived polycarbonates and polyarylates developed by Dr. Joachim

Kohn at Rutgers University.

Figure 1.1 Structure of desaminotyrosul-tyrosin alkyl ester [26].

Tyrosine is a naturally occurring protein. Hence they will not produce cytotoxic

by-products after degradation. The amino acids are polymerized by using the functional

group to produce the non-amide bonds [28]. Protecting groups were attached to the

carboxyl and amide ends of the tyrosine to prevent dipeptide bonds [26]. The protecting

step was later defined by replacing one tyrosine with desaminotyrosine and creating the

final backbone structure, desaminotyrosyl-tyrosine alkyl ester for tyrosine-derived

polymers (Figure 1.1). This structure is a key element in the mechanical properties and

manufacture feasibility of this polymer [26].
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1.3.2 Tyrosine-derived Polycarbonates

Tyrosine-derived polycarbonates are homopolymers of desaminotryrosyl-tyrosine alkyl

ester (Figure 1.2). The structure and properties is further characterized by the alkyl ester,

which is the "R" group in Figure 1.2 and is usually the ethyl, butyl, hexyl, or octyl ester

pendent chains. They are generally referred as poly(DTE carbonate), poly (DTB

carbonate), poly(DTH carbonate), poly(CTO carbonate) respectively [28]. Additional

choices of pendent chain such as methanol, Dondeccanol, berzyl alcohol, 2-(2-

Ethoxyethoxy) ethanol have also been evaluated [29].

Figure 1.2 Structure of tyrosine-derived polycarbonates [26].

Average molecular weight range from 120,000 to 450,000 Da due to the size of

the alkyl ester pendent chain [28]. All tyrosine-derived polycarbonates are amorphous

and have low glass transition temperatures and a high degree of thermal stability. The

pendent chain influences the transition temperature, solubility, ductility, tensile strength,

and contact angle significantly. Increase in pendent chain size is expected to increase the

free volume of the polymer [28]. Altering the free volume of the polymer will also

change the mobility and bond interaction. Strong interchain hydrogen bonds were found

to be reducing solubility and ductility [27]. Therefore increasing the pendent chain size

will reduce the strength of the interchain hydrogen bonds leading to an increase in

solubility and ductility. In another word, the polymer becomes more hydrophobic.



9

Increase in pendent chain size will allow more free volume and weaker interchain bonds

hence lowering the glass transition temperature.

Cell attachment is essential for cell proliferation and differentiation and has found

to be very depended on the wettability, which can be estimated by the water contact angle

of the polymer surface. The polycarbonates have contact angles ranging from 73 to 90

where most cells favor in the range from 60 to 100 [28]. The wettability will decrease as

the pendent chain length increases due to longer hydrocarbon chains [29]. Increase of

hydrocarbon chains will increase the nonpolar characteristics on the surface and provide a

better shielding on the polar ester and amide groups [29].

1.3.3 Tyrosine-derived Polyarylates

Tyrosine-derived polyarylates are copolymers with alternating A-B units [29]. Monomer

A is tyrosine-derived diphenols and is the reactive group for pendant chain(R) attachment.

Monomer B is aliphatic diacids which allows systematic variation in the backbone

structure (Y) (Figure 1.3.3). Often used pendant chain group are methyl, ethyl, butyl,

hexyl, and octyl which is similar to the polycarbonates. The diacids are generally

succinic, glutaric, diglycolic, adipic, and sebacic acid that vary in oxygen-contained and

length.

Figure 1.3 Structure of tyrosine-derived polyarylates [26].
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Average molecular weight ranges from 50000 to 150000 g/mol [29]. The

variation of R and Y exhibits predictable changes in glass transition temperature, surface

wettability and cellular response [29]. Increase in methylene group in either pendant

chain or backbone will increase the contact angle and decrease the glass transition

temperature. Glass transition temperature is more sensitive to the backbone alternation

than in the change of pendant chain. Cell proliferation is less influenced by the

hydrophobicity of the surface because cells favor its oxygen-containing diacids in the

backbone.

1.3.4 Tyrosine-derived Polycarbonate Containing PEG

These polymers were developed for applications in drug delivery, wound healing and

artificial skin scaffolds, and degradable membranes where hydrophilic and fast degrading

biomaterial is desired. The tyrosine-derived diphenolic monomer was copolymerized

with polyethylene glycol) (PEG) and the product is characterized by the mole fraction

percent of PEG, average molecular weight of PEG blocks, and the pendent alkyl group

(Figure 1.4) [26]. PEG content variation influences the polymer properties significantly

[30]. Increase in PEG content will decrease the glass transition temperature

exponentially. At low PEG content, the polymers depict similar mechanical properties to

the tyrosine-derived homopolymers. Increase in PEG content will reduce the stiffness

and strength of the polymer. Increase in PEG content will also increase water uptake and

degradation rate significantly. Copolymer with 5% or more PEG content will reduce cell

attachment and proliferation notably reflecting its change in surface properties.
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Figure 1.4 Structure of copolymer of tyrosine-derived polycarbonate and PEG [26].

1.3.5 Applications

Stable thermal properties and high solubility in various organic solvent of polycarbonates

and polyarylates allow them to be processed in conventional polymer fabrication

techniques such as extrusion, compression and injection molding, and solvent casting.

This benefits the scaffolds fabrication for tissue engineering applications.

Tyrosine derived polycarbonates been developed as a biodegradable polymer for

orthopedic applications. Poly(DTH carbonate) pins have shown better hard and soft

tissue response compare to polydioanone (PDS) [31]. Poly(DTH carbonate) pins has

low-grade foreign body response in muscle tissue and shown better implant and bone

direct contacts. On the other hand, PDS showed minor immune response in muscle

tissues and shown fibrous capsulation since implanted [31].

Tyrosine derived polyarylates are predominately used for scaffold fabrication due

to its systematic characteristic. Osteogenic differentiation of mesenchymal stem cell on

polyarylates have been evaluated and most hydrophilic surface demonstrated highest cell

proliferation rate and most hydrophobic surface demonstrated highest osteogenic

differentiation rate [32,33].



12

1.4 Stem Cell

Stem cells are unspecialized cells that are self-renewable for a long time via cell division.

When stem cells are under certain conditions, they are capable of inducing into specific

cell type such as heart, muscle, ligament, tendon, and neuron. Initially it was thought

only embryos have stem cells. Embryonic stem cells are a small group of inner cell mass

which is developed in an embryo when it is only couple days old. These cells are

pluripotent and are capable to develop into all cell types that are necessary for fetal

development. Embryonic stem cells are able to differentiate into all cell lineages and do

not have plasticity limitation. This characteristic is ideally suitable for cellular genetic

manipulation studies and may be feasible for tissue regeneration [34]. Later on, human

embryonic stem cell was studied and found similarity to the mouse embryonic stem cells

and may have great potential for tissue engineering [35]. However, the ethic issue of

primate embryonic stem cell 'has limited the development of clinical application and

research.

Multipotent stem cells can differentiate into less cell types and have limited

plasticity compare to embryonic stem cells. Although multipotent stem cells may not

provide as many potential as embryonic stem cells but the ethic issue can be avoided.

Adult stem cells are multipotent and can differentiate into various lineages when

provided appropriate microenvironment. Adult stem cells have been identified for many

tissue types such as hematopoietic, neural, muscle, endothelial, and mesenchymal cells.

Mesenchymal stem cells (MSC) are located in the bone marrow of adults hence is also

known as the bone marrow stromal cells. These cells have been demonstrated to have the

ability to differentiate into various connective tissue cell types such as osteocytes,
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chondrocytes, myoblasts, fibroblasts, and possibly adipocytes and neurons [36,37].

Directing stem cells to differentiate into various lineages can be achieved by two methods:

genetic manipulation and microenvironment control.

Genetic manipulation of embryonic stem cell and bone marrow stromal cells has

been demonstrated for inducing differentiation along the neural lineage [38,39]. Mouse

and human embryonic stem cells have been demonstrated to be able to differentiate into

neural lineage by exposing to high concentration of retinoic acid [34,40-43]. Human

mesenchymal stem cells are also able to differentiate into neural lineage by exposing to

high concentration of retinoic acid [44] and with additive growth factors [45,46].

Induction media basis of f3-mercapoethanol (BME) in serum-DMEM followed by 2%

dimethylsulfoxide (DMSO), 200μM butylated hydroxyanisole (BHA) in serum free

DMEM also induced the mesenchymal stem cell to differentiate into neural linage

generally in a shorter time period [47-50]. Differentiation along the neural lineage was

also observed after 6 days when the cells were treated with 0.5 mM

isobutylmethylxanthine (IBMX) and 1 mM dibutyrul cyclic AMP [51]. The

differentiated MSC showed immunofluorescent expression in neuron-specific enolase

(NSE), tau, NeuN, neurofilament-M, GFAP, neuron-specific tubulin HI (TuJ-1), nestin,

MAP2 and synaptophysin. Electrophysiology tests were conduct to eliminate any false

morphology where most of differentiated neuron-like cells show functional responses.

Not until long ago, people have thought neurons are not being regenerated in our

body. However, it was discovered that there are small amount of neural stem cells that

will differentiated along the neural lineage when it is needed [52]. In biological

environment, the stem cells are regulated by chemical signal mechanisms to undergo
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differentiation. It has also been observed that cellular attachment and cellular orientation

may affect the stem cell behavior without the signals [23,53]. Alternately, the goal of

optimizing the method for inducing MSC along the neural lineage is to provide possible

choices for neuron regeneration. An optimized composition of scaffold and

differentiation method is essential for neural repair. Promoting neural differentiation of

MSC on scaffolding materials have been studied [54]. Scaffold material composition and

structure should be investigated further to optimize MSC to differentiate along the neural

lineage.



CHAPTER 2

RESEARCH OBJECTIVE

This research is to evaluate the effects of polymer substrate to mesenchymal stem cell

differentiation along the neural lineage. The objectives of this research can be

summarized as below to:

1. Polymer fabrication and characterization

2. Optimize MSC neural differentiation and characterization

3. Study the effects of proliferation and neural lineage differentiation of

mesenchymal stem cell on various polymers based on wettability

15



CHAPTER 3

EXPERIMENTAL METHODS

3.1 Polymer Preparation

Polymers were prepared by the solvent casting method for 96-well polypropylene culture

plates and spin casting method for 24-well polystyrene culture plates.

Solvent casting method was adapted from earlier techniques [28] where 1%

wt/vol polymer was dissolved in methylene chloride. The solution was filtered with

0.45μm syringe filter (Fisherbrand, Pittsburgh, PA) and 300μL was applied to each well.

The plate was air dried at room temperature for at least 48 hours prior of use in the

chemical hood.

Spin casting method was adapted from earlier techniques [28]. Glass slides were

cleaned by sonication twice each in 25%wt/vol of sodium hydroxide aqueous solution,

25% vol/vol of hydrochloric acid aqueous solution for 10 minutes and twice in 2%

vol/vol of detergent aqueous solution for 30 minutes. Slides were then rinsed with

distilled water followed by sonication each twice in 100% ethanol and methylene

chloride for five minutes. Poly (styrene-silane) coating was applied to allow better

adhesion of polymer solution to the surface by sonication twice in 2.5% wt/vol poly

(styrene-silane) in ethyl acetate for five minutes. The glass slides were then lay out on

glass plates and placed in a 60°C vacuum oven for 48 hours.

The glass slides were cooled preceding incubation period and was rinsed twice

with ethyl acetate and methanol and dried in aluminum foil for 30 minutes. The glass

slides were spin cast once with 2.5% wt/vol polymer solution in methylene chloride at

16
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2000 rpm for 20 seconds (Headway Research, spin-coating apparatus). The glass disks

were fixed to the 24-well plates by applying few drops of methylene chloride before

placing the disks into the well. The plate was air dried at room temperature for at least 48

hours prior usage in the chemical hood.

3.2 Polymer Characterization

Raw and processed polymers were characterized by Thermogravimetric analysis (TGA)

and Differential Scanning Colorimetery (DSC) techniques to verify any structural

changes of the polymer and the absence of methylene chloride due to the process. The

water contact angle was also evaluated to determine the relative wettibility and roughness

of substrate surface.

TGA monitors the weight change of a material as a function of temperature under

a controlled environment to measure thermal stability and composition. TA Instrument

model Q50 TGA was used for this study and its weight change sensitivity is up to 1 μg.

Approximately 5mg of each polymer before and after processing was used. The samples

were heated to 400 °C by an increment of 10°C per minute.

DSC measures the temperatures and heat flows of a material during thermal

transitions (endothermic and exothermic reactions). Properties such as glass transition,

crystallization, phase changes, melting, curing, stability, and oxidative stability can be

determined. TA Instrument model Q100 was used for this study and thermal detection

sensitivity is up to 1 microwatt. Approximately 5 mg of each polymer before and after

was used and were evaluated by a heat-cool-heat cycle. The technique heated the sample
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from -20°C to 250°C and cooled to -20°C then heated again to 250°C with a lOoC per 

minute temperature change. 

Figure 3.1 Defining contact angle [55]. 

Contact angle is the geometric angle formed by a liquid on a solid surface at the 

three phase boundary as shown in figure 2.1 and it quantitatively describes the solid 

wettibility of the liquid. Generally, for more hydrophobic surfaces, hydrophobic liquid 

was used and for more hydrophilic surfaces, hydrophilic liquid was used. Water is a 

hydrophilic substance and when used as the liquid for measuring contact angle, it is 

generally known as the water contact angle where higher angle value indicates a more 

hydrophobic surface. In this study, the water contact angles were measured by contact 

angle goniometry. IO)lL of water was dropped on to the surface of the polymer located 

on a stage with a light source and a camera. An image was capture and the water contact 

angle was measured using Image I . This angle is also known as the advancing angle. 

3.3 CeU Preparation 

Human mesenchymal stem cells were obtained from adult bone marrow using previously 

published protocols [56]. Briefly, Bone marrow purchased from Cambrex Inc. was 

obtained from healthy human donors and by routine iliac crest aspiration. The bone 

marrow was washed and centrifuged to create density gradient fraction. The low density 
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mesenchymal stem cell — rich fraction was collected and incubated at 37°C in a

humidified environment with 5% CO2 in control media. The control media was

replenished every 3 to 4 days until the culture become subconfluent. The mesenchymal

stem cells were then detached with 0.25 trypsin in 1 mM EDTA for 2 to 5 minutes at

37°C and subsequently replated or cryopreserved with 10% DMSO and 90% FBS as

needed.

3.4 Media Preparation

The media used were prepared as previously described [54]. Two media were used for

neural induction and one as control media. Control Media: The control media contains

20% fetal bovine serum (FBS) (Gibco, Carlsbad, CA), 1% antibiotic antimycotic, and

low-glucose Dulbecco's Modified Eagle Media (DMEM). Pre-Induction Media: The

pre-induction media contains 20% FBS, 10ng/mL basic Fibroblast Growth Factor (bFGF,

Invitrogen, Carlsbad, CA), 1% antibiotic antimycotic, and DMEM. Induction Media:

The Induction Media contains 200 μM butylated hydroxyanisole (BHA, Sigma-Aldrich,

Saint Louis, MI), 10 tali forskolin (Sigma-Aldrich, Saint Louis, MI), 1 μM

hydrocortisone (Sigma-Aldrich, Saint Louis, MI), 2 mM valporic acid (2-propylpentanoic

acid, Sigma-Aldrich, Saint Louis, MI), 5 pg/mL insulin (Sigma-Aldrich, Saint Louis, MI),

25mM potassium chloride (KCl, Sigma-Aldrich, Saint Louis, MI), 1% antibiotic

antimycotic, 2% dimethylsulfoxide (DMSO), and DMEM. All induction media were

prepared on the day of usage.
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3.5 Cell Culturing and Neuron Induction

Cell seeding density was varied from 1000cells/cm 2 to 6000 cells/cm2 initially to achieve

optimal differentiation. Induction media was initially using retinoic acid [44] and yielded

immature neurons. Later the induction media was changed as described in Section 3.4.

All plates were exposed to UV light for 30 minutes for sterilization. All wells were

pre-conditioned with control media for 24 hours prior seeding. Cryopreserved human

mesenchymal stem cells (passage 2) were thawed and seeded at 4000 cells/cm 2 in all

wells and cultured with the following steps:

1. Incubated with control media for 24 hours

2. Incubated with pre-induction media for 24 hours

3. Incubated with induction media for 24 hours

All cells were cultured with medium at a volume-to-surface ratio of 0.3. Cells were

rinsed with PBS once between each change of medium. The control group was seeded on

polystyrene tissue culture plates and followed the same time line of changing media but

with control media only.

3.6 Immunochemistry

Immunocytochemical staining was used to examine neuron specific enolase (NSE)

expression of the mesenchymal stem cells 24 hours after the induction. The cells were

prepared as previously described [54]. Briefly, the cells were washed with PBS and fixed

with 4% paraformeldehyde followed by cell permeabilization with 0.1% triton-x for 10

minutes each at room temperature. Subsequently, the cells were rinsed twice with 0.5

mg/mL sodium borohydride and incubated with 5% goat serum for 1 hour at room
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temperature for blocking non-specific antibody binding. The cells were then incubated

with 1:300 rabbit anti-human NSE antibody (Polyscience Inc., Warrington, PA) for 1

hour at 37°C followed by 1:100 goat anti-rabbit IgG antibody with TRITC conjugated

(Sigma, Saint Louis, MI) for 40 minutes at 37°C. The cells were lastly incubated with

1:100 Fluorescein-Phalloidin (Molecular Probe, Carlsbad, CA) for 40 minutes at 37°C.

The cells were rinsed with PBS twice and stored in anti-fade solution of 0.5mM ascorbic

acid in 50% glycerol in PBS.

3.7 Neuronal Differentiation and Cell Proliferation Characterization

Cell morphology and NSE expression were examined by an inverted florescent

microscopy with digital camera attachment. The model used in this study is Nikon

Eclipse TS100 and DXM1200F with image processing software MetaVue 6.2r4.

Quantification of neuronal differentiation was based on 4 random non-overlapping fields

(x20) of each well. Each polymer has 4 wells each in induction and control group. The

percentage of neuron-like cells were calculated based on the number of cells expressing

NSE and neuron-like morphology.

DNA content is directly proportioned to the cell number. Therefore cell

proliferation can be estimated indirectly by measuring DNA content in a sample.

Picogreen ® dsDNA reagent (Molecular Probe, Carlsbad, CA) is a fluorescent nucleic

acid stain to quantify double strand DNA in solution. The standard curve was established

by measuring DNA content of calculated cell number solutions. The fluorescent

absorbance reading from fluorometers or fluorescence microplate reader of the DNA

containing solution of the sample can determine the DNA concentration from the
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standard curve. In this study, DNA content was measured 24 hours after induction and

Picoflourometer from Turner Designs, model 8000-003 with blue light emission was used.

Statistical analysis was performed to evaluate the statistical significance of

various scaffold polymers on cell proliferation and neural differentiation. One way

analysis of Variance (ANOVA) and Tukey-Kramer test were performed to test between

groups (p<0.05).



CHAPTER 4 

RESULTS 

4.1 Polymer Characterization 

4.1.1 TGA and DSC Test Results 

TGA and DSC are thennal analysis methods to confirm the absence of methylene 

chloride in the polymer film. All TGA and DSC results for each polymer before and 

after processing are presented in Appendix A and B, respectively. 
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Figure 4.1 TGA result of poly DTE succinate as in received form. 

TGA results show weight loss of the polymer over a range of temperatures. if 

methylene chloride was presented in the polymer film, a large weight loss should occur 

when the solvent starts to evaporate. The absence of methylene chloride could be 
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observed by a weight loss less than 1 %. The TGA result for Poly DTE succinate as 

received showed a 0.1977% weight loss (Figure 4.1). This small weight loss may due to 

water vapor and is considered insignificant. The TGA results of poly DTE succinate in 

fi lm showed a weight loss of 0.2719% (Figure 4.1). It has a slightly greater weight that 

loss the as received polymer possibly due to the methylene chloride in the polymer film. 

All polymers films showed a weight loss less than 1 % and hence methylene chloride is 

negligible in the polymer films . 
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Figure 4.2 TGA result of poly DTE succinate in processed form. 

Crystallization point was not observed in the DSC results hence demonstrating the 

polymers were amorphous. The transition temperature (Tg) of poly DTO carbonate 

before processing was 52. 92°C (Figure 4.3) and after processing was 52.91 °C (Figure 

• 
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4.4). The small difference in (Tg) depicts the processing method does not alter the 

thermal property of the polymer. This applies to all of the polymer films. 
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Figure 4.3 DSC result for poly DTO carbonate in received form. 

'" 

1.0,-----------------------------, 

0.' 

·DO 

-k 52.91"<:(1) 

SJ (J7'C 

" 60 

Inslru'nltnl: OSC 0 100 W.2 Build ~e 
Modlla TyJ)*: esc 
Salnp.: PrOClnld poly CTO calbottal. 
Sjz .. , 5.~OOO "'" 
EloDIh..,... Up. 
MII thoc!' lielt/Cool,llall 

110 

Temperature re) 
160 '" 

Figure 4.4 DSC result for poly DTO carbonate in processed form. 

• 



26

4.1.2 Water Contact Angle Results

The water contact angle quantitatively describes the wettability of the polymer. From

Table 4.1, the surface of the DTO polysebacate is the most hydrophobic among the six

polymers and DTE carbonate is the least hydrophobic surface. The copolymer of DTE

carbonate and 5% PEG has the second most hydrophobic surface compared to the

hydrophilic surface of DTE carbonate. It showed that polymer composition can

significantly influence on the surface property.

Table 4.1 Polymer Water Contact Angle

Poly carbonates 	 Poly sebacate 	 Poly succinate

DTE 	 DTO 	 DTE-5% PEG 	 DTE 	 DTO 	 DTE

69.759 	 80.783 	 86.155 	 76.151 	 86.571 	 73.370

Figure 4.5 Percentage of neural differentiation vs. wettability for polycarbonates.
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Figure 4.6 MSC number in control group vs. wettability for polycarbonates.

The percentage of neural differentiation (Figure 4.5) and MSC proliferation

(Figure 4.6) of the polycarbonates polymers were linearly related to the wettability of the

polymer surface. As the surface became more hydrophobic, the cell number and neural

differentiation percentage decreased. MSC proliferation was less linear correlated to the

wettability of the surface than MSC differentiation.

4.2 Cell Number

DNA assay was used to evaluate cell proliferation on each polymer surfaces. In Figure

4.7, the polyarylates generally have higher cell numbers in both control and induction

group as compared to the polycarbonates. Copolymer of DTE carbonate and 5% PEG

and DTO carbonate have the lowest cell number in both the control and induction groups.

Cell number in the control media for each polymer generally was higher than in the
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induction media. Cells grown in the induction media on all polymers had similar cell 

number although the least number of cells still was present on DTE - 5% PEG carbonate. 
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Figure 4.7 Cell numbers in control and induction group on various polymer surface at 
day 4. a: Highest cell number on DTE succinate in control group (p<0.05). b: Lowest 
cell number on DTE carbonate-5% PEG in control group (p<0.05). 

4.3 Cell Morphology and Characterization 

24 hours after adding the induction media, some cells had morphology resembling 

neuron-like cells indicated by arrow head and pre-mature neuron cells indicated by the 

arrow in Figures 4.8-4- 10. The neuron-like morphology appeared in all induction groups 

for all polymer surfaces (Figures 4.8 and 4.9) and appeared to be very similar to the 

neuron-like morphology in the tissue culture plastic group (Figure 4.10). 
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Figure 4.8 Morphology of induced MSC on polycarbonate polymer surfaces at 24 hours 
after induction (x40). Top row: control group. Bottom row: Induction group. From left 
column to right: poly DTE carbonate, poly DTO carbonate, poly DTE - 5% PEG 
carbonate. Arrow head indicates neuron-like morphology. Arrow indicates immature 
neuron-like morphology. 

Figure 4.9 Morphology of induced MSC on polyarylate polymer surfaces at 24 hours 
after induction (x40). Top row: control group. Bottom row: Induction group. From left 
column to right: poly DTE sebacate, poly DTO sebacate, poly DTE succinate. Arrow 
head indicates neuron-like morphology. Arrow indicates immature neuron-like 
morphology. 
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Figure 4.10 Morphology of induced MSC on tissue culture plastic at 24 hours after 
induction (x40). Left: control group. Right: Induction group. Arrow head indicates 
neuron-like morphology. Arrow indicates immature neuron-like morphology. 

The neuron-like morphology was characterized by the bright glowing-round 

nucleus. On polymer surfaces, dead cells may resemble the bright glowing nucleus. The 

best way to distinguish a dead cell and a nucleus was by associating with neurite 

extension. As appeared in Figure 4.8-4.10, all neuron-like cells showed some sort of 
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Figure 4.11 Percentage of neural differentiation of MSC on various polymer surfaces. a: 
poly DTE carbonate has the highest differentiation percentage (p<0.05). b: poly DTE 
carbonate - 5% PEG has the lowest percentage of differentiation (p<0.05). 
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extension from the bright nucleus which dead cells would lack. The immature neuron-

like morphology was not as spread out as the normal MSC. It usually became more

concentrated into one area and prepared to form the round nucleus. MSC growing on

poly DTE carbonate (Figure 4.8a) and poly DTE sebacate (Figure 4.9a) had a flat and

spread out morphology similar to MSC growing on tissue culture plastic (Figure 4.8a) in

the control group. MSC seemed to be least spread out on poly DTE carbonate — 5% PEG

surface (Figure 4.8e).

The percentage of neural differentiation was calculated by counting neuron-like

cells in random fields (x20) (Figure 4.11). Poly DTE carbonate depicted the highest

percentage of differentiation and copolymer of poly DTE carbonate and PEG had the

lowest percentage of neural differentiation. The differences among the polyarylate

polymers used were not as large as the ones among the polycarbonate polymers used.

However, cells on DTE succinate demonstrated a slightly higher percentage of

differentiated cells as compare to other polyarylate surfaces.

The neuron marker used was the neuron-specific enolase (NSE) which targeted

specific protein on the nucleus. The NSE seemed to be also staining the immature

neurons as shown in Figure 4.11. Cells were also stained with Fluorescein-Phalloidin

which targets the actin filaments of the cell cytoskeleton. Induced MSC expressed NSE

on all polymer surfaces (Figures 4.12 and 4.13). The NSE only stained the nucleus of the

neuron-like cells. The neurite extension was stained by the Fluorescein-Phalloidin stain.

The combination image clearly maps out the nucleus and neurite extension on all

polymer surfaces. Cell on poly DTE carbonate — 5% PEG did not extend as many and as
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long as compared to other polymer surfaces (Figure 4.12). MSC growing on tissue 

culture plastic in the induction group showed similar results (Figure 4.14). 

Figure 4.12 Fluorescent images of induced mesenchymal stem cell at 24 hours after 
induction (x40). Left: NSE stain. Middle: Fluorescein-Phalloidin stain. Right: 
Combined image of NSE and Fluorescein-Phalloidin stain. From top to bottom: poly 
DTE carbonate, poly DTO carbonate, poly DTE carbonate - 5% PEG. 

The Fluorescein-Phalloidin stain of the control group on various polymer also 

showed the MSC growing on poly DTE carbonate, sebacate, and succinate were more 

spread out (Figures 4.15a, 4.15b, 4.15f) than on the poly DTE carbonate - 5% PEG, poly 

• 



33 

DTO carbonate and sebacate (Figures 4.1Sc, 4.1Sd, 4, lSe). The cytoskeleton seemed to 

be organized randomly on all polymer surfaces. 

Figure 4.13 fluorescent images of induced mesenchymal stem cell at 24 hours after 
induction (x40). Left: NSE stain. Middle: fluorescein-Phalloidin stain. Right: 
Combined image of NSE and fluorescein-Phalloidin stain. From top to bottom: poly 
DTE sebacate, poly DTO sebacate, poly DTE succinate. 

• 



Figure 4.14 a: Fluorescein-Phalloidin fluorescent images of MSC in the control 
group at 24 hours after induction (x40). Fluorescent images of induced MSC at 24 
hours after induction (x40). b: Combined image of NSE and Fluorescein-Phalloidin. 
c: NSE stain. d: Fluorescein-Phalloidin stain. 
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Figure 4.15 Fluorescein-Phalloidin fluorescent images of MSC in the control group at 
24 hours after induction (x40) on various polymer surfaces. Top row from left to right: 
poly DTE carbonate, poly DTO carbonate, poly DTE carbonate - 5% PEG. Bottom row 
from left to right: poly DTE sebacate, poly DTO sebacate, poly DTE succinate. 
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CHAPTER 5

CONCLUSION AND SUGGESTION FOR FUTURE RESEARCH

The advantage of using polymers for scaffold fabrication is the feasibility of processing

and manipulation. The polymer in this study is soluble in many organic solvent thus

providing a larger spectrum of fabrication processes. However, one important issue in

polymer processing is solvent residue. The properties and performance of the scaffold

will be affected if solvents are still present. The casting method used has shown that very

little solvent remained in the polymer films, hence suggesting its future use for scaffold

fabrication.

All polymers showed high thermal stability with 10% weight loss temperatures

above 300°C (Appendix A). Increase in pendent chain length of polycarbonates has

decreased the Tg and increased the wettability as previously described [28]. Low glass

transition temperatures (T g) (Appendix B), high decomposition temperature and lack of

crystallinity allow polycarbonate polymers to be processed in various thermal processing

techniques. Increase in PEG content has decreased the T g and has a higher water contact

angle. The endothermic process upon heating and exothermic event upon cooling of

polyarylates showed similar behavior to previous study [57]. The T g of the polyarylates,

DTO sebacate, was below body temperature, hence the polymers will assume to be in a

rubbery state if used in vivo and may explain findings in this study with regards to

maintaining cell growth and differentiation that was characterized as being hydrophobic.

Either increasing in the pendent chain or the backbone will decrease the T g where Tg of

DTE succinate was the highest followed by DTE sebacate and DTO sebacate as expected

35



36

[29]. The water contact angle was more dependent on the pendent chain for the

polyarylates as previously described [29].

Cell spreading and growth are influenced significantly by the surface properties

such as the wettability, charge, rigidity, and surface structure in the polymer-cell

interaction [23,53,58-62]. Cell proliferation on oxygen-containing diacid backbone

polymers is independent of the water contact angle [64]. MSC growth was uniformly

well on the polyarylate substrates. DTE succinate had the highest cell number and may

be due to the combination effect of its short diacid backbone and pendent chain. Cell

proliferation on backbone polymers such as polycarbonates is significantly dependent on

the wettability of the surface [28,64] and exhibited high linear correlation between cell

number and wettability (Figure 4.6). The wettability was more linearly correlated to the

percentage of neural differentiation. It suggested the most hydrophobic polycarbonates

are a less stimulating substrate for MSC proliferation and neural differentiation. Recent

studies have demonstrated that the osteogenic differentiation of MSC was enhanced on

the more hydrophobic polyarylates surfaces [32,33]. However, this trend was not clearly

seen in this study (Figure 4.11).

Poly DTE carbonate was the least hydrophobic substrate and stimulated MSC

proliferation and differentiation. However, the copolymer of poly DTE carbonate and

5% PEG was a more hydrophobic surface and had poor MSC proliferation and

differentiation similar to previous finding [30]. Increase in PEG content in the

copolymers will significantly reduce the cell proliferation and at 5% PEG content, the

cells tend to aggregate rather than spreading out [67] In this study, MSC depicts similar

behavior on the copolymer with 5% PEG. These cells were able to be removed easily
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after gentle wash. The spreading of the cell was influenced by the cohesion among the

cells when overcoming the cell adhesion to the surface, the cells tends to aggregate.

This study has demonstrated the effect of substrate surface on MSC proliferation

and differentiation. Cell-substrate interaction, cell orientation and spreading are

important for directing cellular functions [23,53,66]. Various cellular behaviors are

mediated by the binding affinity of integrins for ligands. Integrins are cellular surface

receptor protein that recognize and bind to the amino regions of the ligands regulated by

the ECM. The intergrin-ligand complex interacts with the cytoskeleton, thus

coordinating cell migration, tissue organization, cell growth, inflammation, and

differentiation [65]. Substrate protein adsorption is mediated via multiple electrostatic,

hydrophobic, hydrogen bonding, and/or van der Waals interactions [66]. Protein

adsorption will change the conformation or partial deform the protein when binding on to

the substrate surface and is influenced by the surface properties of the substrates. The

conformation changes are more traumatic on hydrophobic surfaces possibly resulting in

poor cell proliferation [64] which is similar to the result of this study (Figure 4.7).

The differentiated neural-like cells had NSE expression and the nucleus of the

immature neuron-like cells also was heavily stained with NSE. This suggested that NSE

expression can be use to indicate early stage of MSC neural lineage differentiation.

Other immunofluorescent can be used to identify for later stage i.e. synaptophysin,

synaptic vehicle protein 2, tau, MAP2, and MAP3. Synaptophysin is the integral

membrane protein in synaptic vesicles and synaptic vehicle protein 2 regulates the

presynaptic calcium concentration during consecutive action potentials. MAP2, MAP 3,

and tau are associated with the microtubule-associated proteins which promote oriented
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polymerization and microtubules assembly. MAP2 is located in the dentrites and tau and

MAP3 are located in the axon. Positive expression of the above indicators may also be

functioning indicators. To reinsure the differentiated cells are functional,

electrophysiology of these cells should be studied.

The advantage of inducing MSC with microenvironment factors is to reduce

scaffold complexity. Reducing essential components for the tissue engineering design for

neural repair may be beneficial for the host. Fabricating three-dimensional scaffolds with

the tyrosine-derived polycarbonates and polyarylates may promote better differentiation.

Further optimization of scaffold should involve investigating the polymer composition

and geometric structure of the tyrosine-derived polycarbonates and polyarylates that will

promote MSC proliferation and differentiation along the neural lineage.



APPENDIX A

TGA RESULTS

The TGA results for all polymers as received and after processed are included in this

appendix. The DSC results showed (1) the complete cycle and (2) the partial of the cycle

with temperature ranging from 50°C to 100°C for methylene chloride residue evaluation.

39



Figure A.1 TGA result in partial cycle of poly DTE carbonate in received form.
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Figure A.2 TGA result in partial cycle of poly DTE carbonate in processed form.



Figure A.3 TGA result in partial cycle of poly DTO carbonate in received form.

41

Figure A.4 TGA result in partial cycle of poly DTO carbonate in processed form.



Figure A.5 TGA result in partial cycle of poly DTE carbonate — 5% PEG in received
form.
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Figure A.6 TGA result in partial cycle of poly DTE carbonate - 5% PEG in processed
form.



Figure A.7 TGA result in partial cycle of poly DTE sebecate in received form.
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Figure A.8 TGA result in partial cycle of poly DTE sebecate in processed form.



Figure A.9 TGA result in partial cycle of poly DTO sebecate in received form.
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Figure A.10 TGA result in partial cycle of poly DTO sebecate in molded form.



Figure A.11 TGA result in partial cycle of poly DTE succinate in received form.
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Figure A.12 TGA result in partial cycle of poly DTE succinate in processed form.



APPENDIX B

DSC RESULTS

The DSC results for all polymers as received and after processed are included in this

appendix. The DSC results showed the complete cycle and transition temperature is

determined.
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Figure B.1 DSC result of poly DTE carbonate in received form.
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Figure B.2 DSC result of poly DTE carbonate in processed form
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Figure B.3 DSC result of poly DTO carbonate in received form.
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Figure B.4 DSC result of poly DTO carbonate in received form.



Figure B.5 DSC result of poly DTE carbonate-5% PEG in received form.
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Figure B.6 DSC result of poly DTE carbonate-5% PEG in processed form.



Figure B.7 DSC result of poly DTE sebacate in received form.
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Figure B.8 DSC result of poly DTE sebacate in processed form.



Figure B.9 DSC result of poly DTO sebacate in received form.
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Figure B.10 DSC result of poly DTO sebacate in processed form.



Figure B.11 DSC result of poly DTE succinate in received form.
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Figure B.12 DSC result of poly DTE succinate in processed form.
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