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ABSTRACT

MULTIFRACTAL ANALYSIS OF HEART RATE VARIABILITY USING
WAVELET-TRANSFORM MODULUS-MAXIMA METHOD

by
Chirag N. Jani

Physiological signals are complex and carry information of human health. Recent studies

reveal that under normal conditions, the heart rate time series shows multifractal

behavior. In contrast, HRV in the pathological state such as congestive heart failure

exhibits more monofractal-like structure. Recent advances in the assessment of heart rate

variability (HRV) uses a nonlinear dynamics approach. In this study, the main objective

is to use the wavelet-transform modulus-maxima method for the multifractal analysis of

the heart rate time series.

The degree of the multifractality is defined by the singularities (a point in time

series where a mathematical function is not differentiable). For monofractal signals, the

output of a system contains the same type of singularities regardless of the initial

condition, while multifractal signals generate outputs with different fractal properties that

depend on the input conditions. That is, the output of the system over extended periods

of time will display different types of singularities [7]. multifractal in the heart rate

signal is evaluated by the singularity spectrum, which can be found by the local maxima

in WTMM method (a method of multifractal analysis that calculates the singularity

spectrum to differentiate between normal subjects and congestive heart failure subjects).

The multifractal analysis by the WTMM method calculates the spectrum of singularities.

For healthy subjects, the singularity spectrum is wide with non-zero singularities. On the

other hand, for congestive heart failure subjects the singularity spectrum is a very narrow



range. Moreover, multifractal analysis method provides the calculation of the scaling

exponent (ti(q)). For healthy subjects, the ti(q) spectrum displays nonlinear behavior,

while the ti(q) spectrum is linear for congestive heart failure subjects.

To validate the theory, analysis was performed on 50 subjects and we are clearly

able to identify normal and congestive heart failure subjects using the WTMM method of

multifractal analysis.
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CHAPTER 1

INTRODUCTION

This chapter provides an overview of the study, and locates it within the different

methods of nonlinear dynamics particularly multifractal analysis. In addition, it

describes the specific aims of the study and the structure of this thesis.

1.1 Objective

During the last two decades, a great deal of work has been devoted in understanding the

physiological information behind the variability of the cardiac cycle. Even though well

established analysis tools from linear system theory can provide valuable information for

physiological and clinical interpretation of the HRV, it has been speculated that methods

from nonlinear dynamics may provide a powerful tool to deduce more information for

better understanding the mechanisms of cardiovascular control [7].

The primary goal of this study is to extend the knowledge of research from the

linear to the nonlinear methods and examine nonlinear techniques that extract more

knowledge and features out of them. New emerged techniques of nonlinear dynamics

have brought new approach to the analysis of heart rate variability (HRV) that might

help to uncover human health. The method that has been studied in this thesis is

multifractal analysis.

This study was conducted with a goal to investigate the efficacy of the WTMM

method (a method of multifractal analysis that calculates the singularity spectrum to

1



2

differentiate between normal subjects and congestive heart failure subjects) and test the

significance of the obtained results and derived graphs.

1.2 Structure of Thesis

The structure of the thesis explains the step-by-step approach towards the objective.

Chapter 1	 summarizes the objective of the thesis involving the contribution of

nonlinear dynamics and nonlinear methods on heart rate variability.

Chapter 2	 summarizes the physiological and engineering background of the

cardiovascular system. The anatomy of the heart, the electrocardiogram (ECG), RR-

interval, heart rate variability, effect of the nervous system on the heart rate variability,

chaos theory and characteristics of fractals are presented.

Chapter 3	 provides detailed explanation on the multifractal analysis. Available

tools and methods used to describe multifractal analysis of the RR time series are

mentioned in this chapter and have been used as a basis of our analysis.

Chapter 4	 provides data acquisition, analysis and discussion of the obtained results.

Different tests have been performed to differentiate two groups- NSR group (normal

subjects) and CHF group (congestive heart failure group).

Chapter 5	 ends the thesis with conclusions as well as suggestion of topics for future

study.



CHAPTER 2

PHYSIOLOGICAL AND ENGINEERING BACKGROUND

Heart rate variability provides vital basis to comprehend the human health. To grasp the

understanding of HRV, knowledge of cardiovascular system and autonomic nervous

system is essential.

2.1 Physiology of the Heart

The heart is a part of the circulatory system and composed of cardiac muscle tissue,

which constantly pumps blood throughout the body. Cardiac muscle tissue is very strong

and able to contract and relax rhythmically throughout a person's lifetime.
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The human heart is considered as two pumps in one. The right side receives

oxygen-poor blood from the various regions of the body and delivers it to the lungs. In

the lungs, oxygen is absorbed in the blood. The left side of the heart receives the oxygen-

rich blood from the lungs and delivers it to the rest of the body.

As one can see in Figure 2.1, the heart has four chambers. The upper chamber on

each side of the heart is called the atrium, which receives and collects the blood coming

to the heart. The atrium then delivers blood to the lower chamber, called a ventricle,

which pumps blood away from the heart through rhythmic contractions. A network of

nerve fibers coordinates the contraction and relaxation of the cardiac muscle tissue to

obtain an efficient, wave-like pumping action of the heart [2].

The Sinoatrial Node, SA-node, located at the junction of the right atrium and the

superior vena cava serves as the natural pacemaker for the heart. Nestled in the upper

area of the right atrium, it sends the electrical impulse that triggers each heartbeat. The

impulse spreads through the atria, prompting the cardiac muscle tissue to contract in a

coordinated wave-like manner.

The impulse that originates from the SA-node strikes the Atrioventricular Node

(AV node) that is situated in the lower portion of the right atrium. The AV node sends an

electrical impulse to the bottom of the ventricle via the bundle of His and then signal is

transmitted all over the ventricle by the Purkinje fibers that cause the cardiac muscle

tissue to contract [3].



2.2 Electrocardiography and ECG Signal

Since body fluids are good conductors, generated electrical current by the conduction

activity of the heart spread throughout the body and can be picked up on the body

surface, amplified, and recorded with an instrument called an electrocardiograph. The

graphic recording of electrical changes during this heart's electrical activity is called an

electrocardiogram (ECG) [4].

The electrical activity of the heart is a sequence of depolarization and

repolarization. Depolarization occurs when the cardiac cells, which are electrically

polarized, lose their internal negativity by the efflux of Ca 2 . The spread of

depolarization travels from cell to cell, producing a wave of depolarization across the

entire heart. This wave represents a flow of electricity that can be detected by electrodes

placed on the surface of the body. Once depolarization is complete, the cardiac cells are

restored to their resting potential, which is called repolarization. Figure 2.2 shows the

electrical waves due to the electrical activity of the heart.
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Figure 2.2 Electrical activities from the various region of the heart [37].

Due to the depolarization and depolarisation, each heart beat results in three

waves or deflections on an ECG. The electrical activation (depolarization) of the upper

chambers of the heart (the atria) results in the low amplitude P wave. The subsequent

electrical activation (depolarization) of the lower chambers of the heart (the ventricles)

results in the high amplitude QRS complex. Repolarization of the atria is a low amplitude

signal that occurs during the time of the high amplitude QRS and consequently, is not

seen on a standard ECG. Replolarization of the ventricles results in the T wave as shown

in Figure 2.2. The flat lines before the P wave, between the P and QRS and after the T

wave are said to be at the baseline of that ECG tracing. The line connecting the QRS to

the T wave is called the ST segment and is normally quite close to the baseline.
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The voltage of the P wave and QRS complex is proportional to the total amount

of muscle being depolarized. A higher than normal voltage implies overgrowth of the

muscle of that chamber. Since the left ventricle has a lot more muscle than the right

ventricle, the QRS complex primarily represents electrical events of the left ventricle [7].

One can calculate the heart rate by dividing 60,000 by the time (in milliseconds) between

two consecutive R waves [6].

2.3 RR Interval

Time duration between two consecutive R waves of the ECG is called the RR interval

[7].

Figure 2.3 ECG signal and RR interval [8].
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RR intervals can be derived from an ECG signal very easily. First, the time of

occurrence of the R peak is identified for each heart-beat (red lines in Figure 2.3). The

difference between the times of occurrence of the (n+l) th beat and the nth beat is then

called RR-interval of the nth beat.

2.4 The Cardiovascular Control System

The understanding of the cardiovascular control system is very complex. It requires

involvement of several control mechanisms and a variety of receptors. Figure 2.2

provides a functional illustration of the control mechanisms of the cardiovascular control

and its constituents.

The Autonomic nervous system has major effect on the heart and heart rate

variability. The nervous system is composed of all nerve tissues in the body. The

functions of nerve tissue are to receive stimuli, transmit stimuli to nervous centers, and to

initiate response. There are two parts of the nervous system: the central nervous system

and the peripheral nervous system. The peripheral (sensory) nervous system receives

stimuli, the central nervous system interprets them, and then the peripheral (motor)

nervous system initiates responses. The somatic nervous system controls functions that

are under conscious voluntary control such as skeletal muscles and sensory neurons of

the skin. The autonomic nervous system, mostly motor nerves, controls functions of

involuntary smooth muscles, cardiac muscles, and glands. The autonomic nervous system

provides almost every organ with a double set of nerves —the sympathetic and

parasympathetic. These systems generally but not always work in opposition to each
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other. Main concern of this study will be limited to the autonomic nervous system and its

effect on the heart.

The sympathetic system activates and prepares the body for vigorous muscular

activity, stress, and emergencies. The parasympathetic system lowers activity, operates

during normal situations, permits digestion, and conservation of energy.

The two systems generally act in opposition to each other. For example,

stimulation by the sympathetic system on the heart would increase contractions, while

stimulation by the parasympathetic system would decrease heart contractions. Where

dual control of an organ exists, both systems operate simultaneously although one may be

operating at a higher level of activity than the other.

The following section will explain the effect of the different neurotransmitters and

receptors on the heart rate and control loops. Control loop is a term used in the theory of

control systems to describe the basic control scheme. This scheme includes a sensor,

which detects changes in the parameter under control, and an effector, which alters the

parameter in the opposite direction to the change detected by the sensor.

The Autonomic Nervous System (ANS) is an important part of the control loops

responsible for the regulation of the heart rate. As was mentioned before, the ANS is

divided into two subsystems: the sympathetic and parasympathetic systems. The

different functions of the ANS dictate both the anatomical and physiological structure of

the sympathetic and parasympathetic systems. Nerve fibers of the sympathetic system

leave the central nervous system at ganglia near the spinal cord, while nerve fibers of the

Parasympathetic system leaves the central nervous system through cranial nerves (III,

VII, IX and X) and through the sacral portion of the spinal cord.



10

The main neurotransmitter of both systems is acetylcholine, which is also secreted

at the endings of parasympathetic nerves. In the sympathetic nervous system, most nerve

endings secrete norepinephrine and the receptors, which are sensitive to this

neurotransmitter, are called adrenergic receptors. Sympathetic and parasympathetic

activation have opposing effects on most organs. In normal conditions, both the

sympathetic and the parasympathetic systems maintain a certain level of activity.

Therefore, stimulation of one system is equivalent, to some degree, to the stimulation of

the other one [9].

In the organs, the receptors to epinephrine are divided into two subgroups: a

and receptors. The 0 receptors are further divided into two types: 01 and 02 receptors.

The intricate structure of the ANS is well suited for the functions of its two branches.

During stress and emergency, organs must respond in various ways, and moreover, the

same kind of tissue (such as blood vessels) located in different places must react

differently to the same stimulations. The presence of the several types of receptors

enables body to recruit for action using activation of the sympathetic system. The

sympathetic system can stimulate adrenergic receptors by activation of the adrenal

medulla, a gland located on the kidney that secretes both epinephrine and norepinephrine

into the circulation. The epinephrine and norepinephrine, which are part of a group of

substances called catecholamines, have the same effect as caused by direct neural

stimulation, except that their effect lasts 5 to 10 times as long.

The effect of autonomic stimulation on the heart depends on the specifically

activated autonomic branch. Activation of the parasympathetic system as well as

inhibition of the sympathetic system causes a reduction of heart rate and contractility,
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concomitantly with a dilation of the coronary arteries. On the other hand, activation of the

sympathetic system or inhibition of the parasympathetic system results in increased heart

rate and contractility [9].

The heart is innervated by the parasympathetic system via the Vagus (cranial

nerve X), and therefore the adjective vagal is often used, meaning parasympathetic

innervations of the heart.

Following explanation will show how control system of the cardiovascular system

works. Basically, the cardiovascular control system controls heart rate by maintaining a

constant blood pressure in the arterial system. Basically blood flow determines the blood

pressure [7]. The flow of the blood is given by Poiselle's law.

Regulation in blood flow through alterations in the blood pressure requires complex

control mechanisms to maintain adequate blood flow throughout the body.



Figure 2.4 A functional block-diagram of cardiovascular control. The main short-term
mechanism that regulates the heart rate [9].

This complexity can be removed by the structural advantage of maintaining blood

pressure at a constant level and adjusting blood flow by changing resistance. Changes in

total resistance must be compensated by opposite changes in cardiac output, in order to

keep blood pressure constant. Cardiac output is determined by many factors such as

heart rate, stroke volume (the volume of blood ejected by the heart in each beat) and

contractility, or the strength of contraction. Heart rate is determined by the cardiac

pacemaker-SA node. The SA-node has an intrinsic rate of about 90 BPM and it changes

its rate in response to neural stimulation. Stroke volume is determined by the amount of

blood entering the left ventricle during diastole. Diastole is the relaxation of the cardiac

muscle tissue in the ventricles so that ventricles have more room to accept the blood from

the atria. Contractility is determined by the same mechanisms that affect the heart rate.

In addition, contractility is also positively dependent on the stroke volume: increased

stroke volume results in increased contractility and vice versa. The control loops (this



13

term is used in the theory of control system to describe the basic control scheme) of the

cardiovascular system are classified as either a short term or a long term, according to

their behavior in time with respect to stimulation. The control loop includes a sensor,

which detects changes in the parameter under control, and an effector, which alters the

parameter in the opposite direction to the change detected by the sensor. Short-term

control loops respond immediately to changes in blood pressure and their effect lasts for

minutes to several hours, while long-term mechanisms respond to changes in blood

pressure within hours or days. The various control loops act together to regulate blood

pressure.

As the main focus of this study is HRV, concentration is put on the control

mechanisms that affect the heart rate. The baroreceptor reflex is the most prominent

short-term control mechanism that regulates heart rate through changes of the blood

pressure. A baroreflex is a reflex triggered by the stimulation of a baroreceptor (a

collection of sensory nerve endings in the wall of the heart auricles, vena cava, aortic

arch and carotid sinuses that are specialized to monitor changes in blood pressure). The

signals transmitted from the baroreceptors are carried by the cranial nerves to the tractus

solitarius in the brain stem. As an example, increase in arterial pressure causes a parallel,

although nonlinear, increase in the firing rate of the baroreceptors, and that increase,

processed in the brain stem, results in stimulation of the parasympathetic system. As a

result, heart rate is reduced.

Several other control mechanisms are Chemoreceptors and humoral control.

Chemoreceptors are nerve endings located in the carotid sinus and the aortic arch. Those

receptors increase their firing rate in response to either reduction of the oxygen levels in
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the blood, or increase of the CO2 or H + . These receptors participate not only in the

regulation of the oxygen levels and acidity but also in the regulation of the heart rate

through the changes of the blood pressure.

Humoral control over blood pressure includes Epinephrine (adrenaline) and

norepinephrine (noradrenaline) agents and angiotensin hormone that plays an important

role in long-term blood pressure regulation and heart rate. This hormone causes

vasoconstriction, thereby increasing blood pressure [9]. As a result heart rate is increased

too.

Thus, baroreceptor, chemoreceptor and humoral control influences give origin to

heart rate oscillation with a longer period (minutes and hours), which introduces heart

rate variability.

2.5 Heart Rate Variability (HRV)

Heart rate variability (HRV) is the fluctuations of the heart rate around its mean value [7].

The spectral structure of the heart rate signal provides essential information regarding the

analysis of the HRV. However, it does not supply complete information to observe the

effect of the sympathetic nervous system. When one analyzes the power spectrum of the

heart rate, it exhibits two main spectral peaks, which are correlated with the ANS

activity. Figure 2.5 shows a typical heart rate trace and its corresponding power

spectrum.
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Figure 2.5 An example of the normal heart rate trace (panel-A), and its corresponding
power spectrum (panel-B). Panel-C shows the power spectrum of the respiration [9].

As can be seen in the Figure 2.5, the first peak is centered around 0.1 Hz and

found in the Low Frequency (LF) band while second peak is centered around the

respiratory frequency. Since second peak contains relatively higher frequency than the

first peak, it is called HF peak. The relations between autonomic activity and the spectral

peaks have been validated in numerous studies, both in humans and in animal models

[10]. The understanding of the origin and physiological significance of the two peaks has

been mentioned in the literature and concluded that the HF peak has been related to the

activity of the parasympathetic system, and the LF peak related to both the sympathetic

and parasympathetic systems [10]. Analysis of HRV is a noninvasive tool for assessing

cardiac autonomic activity, which is invaluable for the study of human physiology and



pathophysiology.

HRV is not only a measurement of the interaction between sympathetic and

parasympathetic activity in autonomic functioning but also provides vital support to

investigate the health of a person. There are two main HRV approaches: time domain

analysis and frequency domain analysis. These methods are explained in detail in

Chapter 3. Since it is very hard to evaluate human health condition by the traditional

techniques of the frequency domain and time domain, the nonlinear methods have been

introduced in the study of HRV.

2.6 Chaos and HRV

Chaos theory was under development when heart rate variability was being increasingly

discussed as a tool for risk stratification after myocardial infraction. The extent to which

chaos relates to physiological dynamics is a subject of active investigation and some

controversy. At first, it was widely assumed that chaotic fluctuations were produced by

pathological systems such as cardiac electrical activity during atrial or ventricular

fibrillation [11]. However, this initial presumption has been challenged [12] and the

weight of current evidence does not support the view that the irregular ventricular

response in atrial fibrillation or that ventricular fibrillation itself represents deterministic

cardiac chaos [13]. Further, there is no convincing evidence that other arrhythmias

sometimes labeled "chaotic," such as multifocal atrial tachycardia, meet the technical

criteria for nonlinear chaos. An alternative hypothesis is subtle but complex heart rate

fluctuations observed during normal sinus rhythm in healthy subjects, even at rest, are

due in part to deterministic chaos, and that a variety of pathologies, such as congestive
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heart failure syndromes, may involve a paradoxical decrease in this type of nonlinear

variability.

Chaos is an erratic behavior. However, it is extremely sensitive to initial

conditions. Chaos is distinct from periodicity and randomness, but it has characteristics

of both. Chaotic behavior looks disorganized, but it is deterministic. Chaos also predicts

the long-term system behavior. A chaotic system can actually develop in a way that

appears very smooth and ordered [30].

Chaos theory describes complex motion and the dynamics of sensitive systems.

Chaotic systems are mathematically deterministic but nearly impossible to predict such as

heart rate variability. Chaos is more evident in long-term systems than in short-term

systems. Behavior in chaotic systems is aperiodic, meaning that no variable describing

the state of the system undergoes a regular repetition of values. Chaos refers to the issue

of making accurate long-term predictions of any system if the initial conditions are

known to an accurate degree.

Because the mathematical algorithms designed for detecting chaos are not reliably

applied to nonstationary (nonstationary- the mean, standard deviation, and higher

moments, or the correlation functions are not invariant under time translation), relatively

short and often noisy data sets obtained from most clinical and physiological studies, the

intriguing question of the role, if any, of chaos in physiology or pathology remains

unresolved [5]. In recent years, increasing efforts were made to determine the chaotic

nature of cardiac activity by applying analysis methods from nonlinear systems theory.

Figure 2.6 shows the heart rate of the normal subject and congestive heart failure subject.

As can be seen, both time series have identical means and variances even though they
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carry totally different information in the time series. These types of statistical

information can lead to the erroneous results. However, methods of nonlinear dynamics

provide better way to analyze a signal.

Figure 2.6 (top) The heart rate time series from healthy subject; (middle) the heart rate
time series from a patient with severe congestive heart failure; (bottom) identical means
and variances of top and middle time series [5].
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Chaos theory has some difficulties due to the noisy nature of the biological

signals, the restricted length of data and non-stationarity in the signal. These

fundamental difficulties have weakened the application of chaos theory in the analysis of

HRV. This has led to a shift of the notation from chaos to the development of measures

and analysis techniques related to nonlinear dynamics. Examples of such techniques are

approximate entropy, renormalized entropy, binary entropies, multifractal analysis and

1/f spectral analysis. There has been an increase in studies demonstrating that nonlinear

measures may reveal clinically relevant aspects of heart period or heart rate dynamics,

which are not apparent in the analysis of the time and frequency domain.

Since we are going to look into the nonlinear methods of the HRV, it is better to

understand the nonlinear system first. The knowledge of nonlinear system is obtained by

comparing nonlinear system to the linear systems in this paragraph. A system is linear if

its response is directly proportional to excitation, for every part of the system. Two

central features of linear systems are proportionality and superposition. Proportionality

means that the output shows a straight-line relationship to the input. Superposition refers

to the fact that the behavior of linear systems composed of multiple components can be

fully understood and predicted by dissecting out these components and figuring out their

individual input-output relationships. The overall output will simply be a summation of

these constituent parts. In contrast, nonlinear systems violate the principles of

proportionality and superposition. Nonlinear system changes the output as a function of

sequential time steps and it can be plotted by a feedback procedure. Nonlinear systems or

Equations, depending on a value of the single parameter, can generate steady states,

regular oscillations, or highly erratic behavior [5]. Thus, for nonlinear systems,
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proportionality does not hold and small changes can have dramatic and unanticipated

effects. Nonlinear systems that appear to be very different in their specific details may

exhibit certain common patterns of response. Sometimes in nonlinear systems, a very

small increase or decrease in the value of some parameter controlling the system causes it

to change abruptly from one type of behavior to another (bifurcation) and brings the

sudden appearance of regular oscillations that alternate between two values. This type of

dynamic may cause a variety of alternans patterns in cardiovascular dysfunction. A

familiar example is the beat-to-beat alternation in QRS axis and amplitude seen in some

cases of cardiac tamponade [13]. Moreover, nonlinear systems composed of multiple

subunits cannot be understood by analyzing their constituent components individually. In

a nonlinear system, the constituent components interact with each other. Their nonlinear

coupling generates behaviors that defy explanation using traditional linear models. As a

result, they may exhibit behavior that is characteristic of nonlinear systems, such as self-

sustained, periodic waves (e.g., ventricular tachycardia), abrupt changes (e.g., sudden

onset of a seizure) and, possibly, chaos.

As was mentioned before, methods of nonlinear dynamics were introduced which

uses the concept of fractals. Since chaotic trajectories are fractals, we can relate chaos to

the fractals and overcome the mentioned restrictions by a study of fractals in nonlinear

methods.
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2.7 Fractals

Some physiologic systems show erractic fluctuations resembling those found in

dynamical systems driven away from a single equilibrium state. These type of

physiologic signals illustrates fractal type behavior. While fractals are irregular, not all

irregular structures or erratic time series are fractal. A key feature of the class of fractals

seen in biology is a distinctive type of long-range order. This property generates

correlations that extend over many scales of space or time.

2.7.1 Fractal Objects and Self-similar Processes

Before describing the fractality and multifractality in heart rate variability, we will first

understand the meaning of the term fractal. The term fractal is a geometric concept

related to, but not synonymous with chaos. The concept of a fractal is most often

associated with geometrical objects satisfying two criteria: self-similarity and fractional

dimensionality. Self-similarity means that an object is composed of sub-units and sub-

sub-units on multiple levels that resemble the structure of the whole object [14].

Mathematically, this property should hold on all scales. However, in the real world, there

are necessarily lower and upper bounds over which such self-similar behavior applies.

Fractals are irregular structure, but not all irregular structures or erratic time series are

fractals. The fractal object has a fractional dimension. This fractal dimension measure

distinguishes the fractals from the Euclidean objects. Euclidean objects contain interger

dimension whereas the fractals contain noninterger dimension. For example, a solid cube

is self-similar since it can be divided into sub-units of 8 smaller solid cubes that resemble

the large cube, and so on. However, the cube (despite its self-similarity) is not a fractal
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because it has an integer dimension of three (Chapter 3 explains the measurement

techniques of the fractal dimensions).

The detection and quantification of the self-similarity in complex time series is a

complecated process. Time series are usually plotted on a two-dimensional surface and

plotted in a two-dimensional curve. To determine if a two-dimensional curve is self-

similar, we can take a subset of the object and rescale it to the same size of the original

object, using the same magnification factor for its width and height; and then compare the

statistical properties of the rescaled object with the original object.

Mathematically we can say, a time series is self-similar if

d
where = means that the statistical properties of both sides of the equation are identical.

In other words, a self-similar process, y(t), with a parameter a has the identical

probability distribution as a properly rescaled process, ay(t/a), i.e., a time series which

has been rescaled on the x-axis by a factor t/a and on the y-axis by a factor of eye. The

exponent a is called the self-similarity parameter [15].

In the real world, it is impossible to determine whether two processes are

statistically identical, because one can not obtain identical mean, variance and other

higher moments due to the noise. Therefore, one usually approximates this equality with

a weaker criterion by examining only the first moment- means and the second moment -

variances of the distribution functions for both sides of Equation 2.2.
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Figure 2.7 Illustration of the concept of self-similarity for a simulated random walk. (a)
Two observation windows, with time scales n 1 and n2, are shown for a self-similar time
series y(t). (b) Magnification of the smaller window with time scale n1. Note that the
fluctuations in (a) and (b) look similar provided that two different magnification factors,
Mx and My, are applied on the horizontal and vertical scales, respectively. (c) The
probability distribution, P(y), of the variable y for the two windows in (a), where s 1 and s2
indicate the standard deviations for these two distribution functions. (d) Log-log plot of
the characteristic scales of fluctuations, s, versus the window sizes, n [15].
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Figure 2.7(a) shows an example of a self-similar time series. By rescaling the x-

axis and y-axis, one can get the time-series that is shown in Figure 2.7(b). The new

rescaled time series resembles the original time series. The self-similarity parameter

defined in Equation 2.2 can be calculated by a simple relation

where Mand My are the appropriate magnification factors along the horizontal and

vertical direction, respectively. We can calculate scaling exponent, :1, by moving

windows of different size in time series. This is explained in detail in Chapter 3.

It is important to know how the scaling attribute is calculated. From Figure 2.7,

one can easily determine the magnification factors along the horizontal direction, M x =

n2/n1 But for the magnification factor along the vertical direction, M y, we need to

determine the vertical characteristic scales of windows 1 and 2. One way to do this is by

examining the probability distributions (histograms) of the variable y for these two

observation windows (Figure 2.7(c)). A reasonable estimate of the characteristic scales

for the vertical heights, i.e., the typical fluctuations of y, can be defined by using the

standard deviations of these two histograms, denoted as s 1 and s2, respectively. Thus, we

have My = 52/51. Substituting Mx and My into Equation 2.3, we obtain
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In a time series, we perform the above calculations using the following procedures. For

any given size of observation window, the time series is divided into subsets of

independent windows of the same size. To obtain a more reliable estimation of the

characteristic fluctuation at this window size, we average over all individual values of s

obtained from these subsets and then we repeat these calculations, not just for two

window sizes (as illustrated above), but for many different window sizes. The exponent :1

is estimated by fitting a line on the log-log plot of s versus n across the relevant range of

scales because equetion 2.4 is nothing but the slope of two points (n 1,s1) and (n2,s2) at

log- log plot.

2.7.2 Mapping Real-world Time Series to Self-similar Processes

For a self-similar process with a >0, the fluctuations grow as the window size is

increased. Therefore, the fluctuations of large observation windows are larger than those

of smaller windows. As a result, the time series is unbounded. However, most

physiologic time series are bounded as they cannot have arbitrarily large amplitudes.

This can cause further complications for the analyses. Due to the bounded characteristic

of the physiological time series, we do not need the resealing of the y-axis. Thus, the y-

axis scaling factor (M r) is 0 as illustrated in Figure 2.7(a). Therefore, according to

Equation 2.4, the self-similarity parameter (a) is 0 and no informative result can be

obtained. Now, the main problem is how to distinguish the trivial parameter 0 in the case

of uncorrelated noise, from the non-trivial parameter 0 computed for the original heart

rate data.
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The solution to this problem is the integration of the time series to study the

fractal properties. One well-known physical example with relevance to biological time

series is the dynamics of Brownian motion. In this case, the random force (noise) acting

on particles is bounded, similar to physiologic time series. However, the trajectory (an

integration of all previous forces) of the Brownian particle is not bounded and exhibits
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fractal properties that can be quantified by a self-similarity parameter. When we apply

fractal scaling analysis to the integrated time series of Figs. 2.8(A) and (B), the self-

similarity parameters are indeed different in these two cases, providing meaningful

distinctions between the original and the randomized control data sets. Mostly,

integration of the original time series is applied for the fractal analysis of the signal.

While performing the analysis on the time series, one can find the complexity or

non-complexity, regularity or non-regularity in the time series. The appearance of highly

periodic dynamics and loss of complexity in the physiological signals are indication of

the disease states in human. Complexity here refers specifically to a multiscale, fractal-

type of variability in structure or function. Many disease states are marked by less

complex dynamics than those observed under healthy conditions. This de-

complexification of systems with disease appears to be a common feature of many

pathologies, as well as of aging [16]. When physiologic systems become less complex,

their information content is degraded. As a result, they are less adaptable and less able to

cope with the exigencies of a constantly changing environment. To generate information,

a system must be capable of behaving in an unpredictable fashion [15]. In contrast, a

highly predictable, regular output is information-poor since it repeats its activity.

Quantitative assessment of periodic oscillations can be obtained by analyzing the

time series of interest with a variety of standard techniques. It includes methods of linear

dynamics and methods derived from non-linear dynamics as well. To a large extent, it is

these periodicities and highly structured patterns -- the breakdown of multi-scale fractal

complexity under pathologic conditions —that allow clinicians to identify and classify

many pathologic features of their patients.



CHAPTER 3

MULTIFRACTAL ANALYSIS

Heart rate variability can be measured using various traditional (e.g., time domain,

frequency domain) and nontraditional methods (e.g., 1/f spectral analysis, DFA,

multifractal analysis). This Chapter provides information of different methods for HRV

analysis and eventually concentrates on WTMM method (wavelet based method of

multifractal analysis) of multifractal analysis. Methods of obtaining the HRV parameters

are time domain methods, spectral domain methods and non - linear methods.

In time domain methods, the instantaneous heart rate is used or the intervals

between successive R-R complexes are used. In a continuous electrocardiographic

(ECG) record, each QRS complex is detected, and normal-to-normal (NN) intervals or

RR intervals (i.e. intervals between adjacent QRS complexes), or the instantaneous heart

rate is determined. The commonly used parameters used in the time domain include

mean RR interval and mean heart rate. Time domain analysis assumes that the signal is

stationary. Moreover, the main confusing factor in characterizing variability with

standard deviation is the increase in baseline heart rate that may accompany diminished

HRV indices. Another limitation of the time domain method, as explained in section 2.6,

is that it does not distinguish between distinct biological signals by giving the same mean

and standard deviation [17].

In the spectral domain method, collected physiological data is considered a sum

of sinusoidal oscillations with distinct frequencies. Conversion from a time domain to

frequency domain is performed by a Fourier transformation. The amplitude of each sine

28
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and cosine wave determines its contribution to the biological signal; frequency domain

analysis displays the contributions of each sine wave as a function of its frequency.

Facilitated by computerized data harvest and computation, the result of converting data

from time series to frequency analysis is termed spectral analysis because it provides an

evaluation of the power (amplitude) of the contributing frequencies to the underlying

signal. The important characteristics of the spectrum are the power of the spectrum and

the powers of its separate zones. The following information is extracted from the

physiological data. Measured parameters in this method are ULF (power in the ultra low

frequency range; <0.003 Hz), VLF (power in the very low frequency range; 0.003 — 0.04

Hz), LF (power in the low frequency; 0.04 — 0.15 Hz) and HF (power in the high

frequency range; 0.15 — 0.4 Hz). A recent review of HRV documented the evidence that

ULF reflects changes secondary to the circadian rhythm, VLF is affected by temperature

regulation and humoral systems, LF is sensitive to cardiac sympathetic and

parasympathetic nerve activity, and HF is synchronized to respiratory rhythms, primarily

related to vagal innervation. Moreover, the frequency values are the indication of the

effect of the sympathetic and the parasympathetic activity on the heart.

There are some advantages and limitations to this method. In spectral domain

analysis, it is assumed that the signal is stationary. It is the main disadvantage of this

method. Spectral analysis is more sensitive to the presence of artifact than the time

domain method. Moreover, level of activity, sleep pattern, change in posture can alter the

LF and HF components of the spectral analysis [18].

We know that the heart is not a periodic oscillator under normal physiologic

conditions and the commonly employed statistics of heart rate variability may not be able
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to detect subtle, but important changes in the heart rate time series. Therefore several

new analysis methods of heart rate behavior have been developed to quantify the

dynamics of heart rate fluctuations based on nonlinear dynamics and chaos theory. As

mentioned in the previous Chapter, the methods motivated by the nonlinear dynamics

overcome some limitation that is faced in conventional time domain and power spectrum

methods such as the assumption of the stationarity of the signals, periodicity and so forth.

The developed methods are approximate entropy, 1/f spectral analysis, detrended

fluctuation analysis, multifractal analysis and so on. Now we will look into some of

these methods and their terminologies, which are highly related to each other.

J.P.Saul et al.[31] used the spectral analysis technique to quantify the entire

spectrum (0.00003-1.0 Hz) of HRV using a standard Holter monitor for 24hour ECG and

found that the HRV contained 1/f behavior in the frequency range from 0.00003 to 0.1

Hz. A log-log plot of the power spectrum versus frequency shows that the power

spectrum is inversely proportional to the frequency, 1/f. The log-log plot of the power

spectrum S (/) vs. fis linear implies S(/) =f -13 .

The value of exponent -0 serves as an indicator of the health of the human. For

the healthy subjects, value of 0 is approximately —1 (13 ----, -1), which suggests the presence

of the power law behavior in the time series [19]. Since the analysis of the power law

behavior requires spectral analysis, the determination of the frequency components of the

underlying signal, the technique becomes problematic when applied to nonstationary

signals.

Approximate entropy (ApEn) provides a measure of irregularity and randomness

within a series of data. ApEn was pioneered by Pincus as a measure of system
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complexity [20]. In ApEn, smaller values indicate greater regularity, and greater values

indicate more disorder, randomness and system complexity. Healthy human heart rate

fluctuations are irregular so that one can say that the ApEn value is higher for healthy

subjects and the value is lower for the diseased person. ApEn has been most extensively

studied in the evaluation of heart rate dynamics. Heart rate becomes more orderly with

age and in men, exhibiting decreased ApEn [21]. Heart rate ApEn has demonstrated the

capacity to predict atrial arrhythmias, including spontaneous and postoperative atrial

fibrillation after cardiac surgery, and to differentiate ventricular arrhythmias [20]. Heart

rate ApEn is decreased in infants with aborted sudden infant death syndrome; among

adults, postoperative patients with ventricular dysfunction and healthy individuals infused

with endotoxin exhibit reduced heart rate ApEn [20]. ApEn statistics may be calculated

for relatively short series of data, a principal advantage in their application to biological

signals. Time series with 1000 or more data points can yield to the proper analysis of this

method.

The detrended fluctuation analysis technique quantifies the presence or absence of

fractal correlation properties. It was developed to characterize fluctuations on scales of

all lengths. In DFA, the scaling exponent a is obtained using the DFA algorithm, which

describes the fluctuation in the heart rate time series. One advantage of the DFA method

is that it allows the detection of long-range power-law correlations in noisy signals with

embedded polynomial trends that can mask the true correlations in the fluctuations of a

signal. In DFA methods, it has been assumed that the value of the scaling exponent

remains the same throughout the analysis. However, the empirical results show that the

obtained value for a varies for small n (<10 beats) and larger n (>10 beats). The
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presumption represents a somewhat arbitrary manipulation of the results of the analysis.

The assumption that the same scaling pattern is present throughout the signal remains

flawed, and therefore techniques without this assumption are being developed and are

referred to as multifractal analysis.

3.1 Multifractal Analysis

DFA is a monofractal technique, in that the assumption is that the same scaling property

is present throughout the entire signal. However, R-R interval time series have multiple

scaling exponents. Multifractal techniques provide multiple, possibly infinite exponents,

such that the analysis produces a spectrum rather than a discrete value of the exponents.

For example, wavelet analysis is a multifractal analysis technique similar to DFA, which

is capable of distinguishing the heart rate dynamics of patients with congestive heart

failure from healthy control individuals [21].

3.2 Multifractal Formalism and Singularity

It was discussed that the heart rate signal is fractal. Recently, the approach towards

fractals has been advanced to the monofractal formalism. The multifractal formalism is

nothing but the statistical description of the scaling properties of a singularity or singular

measures [26]. It is very interesting to acquire knowledge of a singularity in time series

or in fractal signals because the heart rate dynamics are characterized by the singularities.

The functions f(t) typically studied in mathematical analysis are continuous and have
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continuous derivatives. Hence, they can be approximated in the vicinity of some time ti

by a Taylor series or power series

For small regions around ti, just a few terms of the expansion Equation 3.1 are necessary

to approximate the function f(t). Most of the time series f(t) found in real-life

applications are noisy (Fig. 3.1 ). Therefore, they cannot be approximated by Taylor

series of just a few terms. Moreover, many experimental or empirical time series have

fractal features--i.e., for some times ti, the series f(t) displays singular behavior. That is,

at those times ti, the signal has components with non-integer powers of time which appear

as step-like or cusp-like features, the so-called singularities, in the signal. Figure 3.1

illustrates step like (blue color) and cusp like(green color) singularities.
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The multifractal signals show multi-singularity behavior meaning that fractal

objects or signals can be decomposed into interwoven sets which are characterized by

their singularity strength-a and their Hausdorff dimension-f(a) (measurement of fractal

dimension). The Hausdorff dimension by itself measures the singularity in the function

f(t) by finding the non-integer dimension of fractals.

The Hausdorff dimension can measure the dimension of the fractals. The

Hausdorff dimension- d of a set is defined as HdO. Suppose one take a non-fractal object

that has the Hausdorff (s=1)-measure as shown in figure 3.2. Measure is a function that

allows us to compare sizes of sets.

If selected non-fractal object, f, is covered with epsilon (ball that has almost zero

radius) balls in very organized way, and add up the lengths, one can see a polygonal

approximation to I So as epsilon goes to zero, we must get that H 1 0 = L(j), the length

of the curve f. We see in fact, that for a given epsilon, we need approximately L(f)/C

little balls, so

If we calculate the same curve-f with Hausdorff 2-measure, we will not get the

Length of that curve. Following is the mathematical presentation



Similarly, if we take the Hausdorff 2-measure of a square or other nice Euclidean

planar figure, we get something that gives area, whereas 3-measure gives 0 and 1

measure gives infinity. Thus, the Hausdorff measure behaves in a way that makes sense

on sets that we are familiar with. Now the dimension s is not only an integer, in fact, it

can be any real number. If we consider any given set F, it turns out that there is a unique

d such that the following holds:

We call this d the fractal dimension of the set F. We call F a fractal if the fractal

dimension is strictly greater than another quantity known as the topological dimension

[24]. Now one can write the singularity spectrum as follow:

where Bx(C) is the C size box at point x and p is the measure and a represent the

singularity value or singularity strength. The Au) spectrum is the humped shape curve

over a finite interval [army,, Amax] where amine represents strongest singularities whereas,

max  represents weakest singularities.

The statistical properties of the different subsets characterized by these different

noninteger exponents hi can be quantified by the function D(h) where D(ho) is also the

fractal dimension of the subset of the time series and gives an alternate way to measure

singularities.

The Wavelet transform using the Wavelet transform Maxima Modulus method

(wavelet based method of multifractal analysis to detect singularities in the signal) is very

efficient to provide thermodynamics of multifractal distributions. Moreover, it provides
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efficient way to detect singularities. To understand the WTMM method, it is better to

understand the wavelet transform first.

3.3 The Wavelet Transform

Until recently, the Fourier transform was the main tool to analyze singularities. The

Fourier transform provides overall description of the regularity of signals. It does not

provide exact location of the singularities in the time series. However, the Wavelet

transform overcomes this problem. It decomposes the signal into elementary building

blocks, which are well localized both in space and frequency. Furthermore, it helps to

detect a singularity at the exact location in the time series. Moreover, it can characterize

the local regularity of signals. The wavelet transform (WT) decomposes function f into

its elementary space-scale plane, associated to the so-called wavelets, which are

constructed from one single function, the analyzing wavelet 'F, by mean of translations

and dilations. The WT off is defined as:

where a C le * is a scale parameter, b C R is a space parameter and is the complex

conjugate of IF. The analyzing wavelet lF is generally chosen to be well localized in both

space and frequency [35]. Usually, is required to have zero mean but, for the particular

purpose of singularity tracking, we will require iF to be orthogonal to some low-order

polynomials:



There are almost as many analyzing wavelets as applications of the WT. A class

of commonly used real-valued analyzing wavelets which satisfies the above condition is

given by the successive derivatives of the Gaussian function:

Here, the higher the order, N, of the derivative, the higher the order of the polynomial

trends removed and the better the detection of the temporal structure of the local scaling

exponents in the signal [27]. One determines the coefficients of the wavelet transform by

convolving fat) with a Gaussian function.

As mentioned before, the wavelet transform easily removes polynomial

contributions that would mask singular (fractal) behavior. To illustrate this fact, consider

a signal fat) that one can expand for t close to ti as a series of the form of Equation 3.2. In

a fractal analysis, one wants to measure h i, but for small values of t - thethe trendat-tdk

with k < h i will dominate the sum. Hence, one wants to remove all terms at - td k for

which k < h i in order to get the singularity value. By convolving fat) with an appropriate

wavelet function, one can put to zero all coefficients that would arise from such

polynomial contributions. For instance, the derivative of order k of the Gaussian

convolves to zero all polynomial terms up to order k - 1. Thus, detection of singularities

becomes very easy with the use of the Gaussian function [33].
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3.4 Singularity Detection Using Wavelets

The strength of the singularity of a function is defined by an exponent called- the Holder

exponent. The Holder exponent of a function fat some point to is defined as follows:

where, hato) is a holder exponent of given function f at point t0. hato) is the largest

exponent such that there exists a polynomial NO [25]. Here, t is in the neighborhood of

to and f is n times differentiable at the point to. One can easily prove that f is n times but

not n + 1 times differentiable at the point to. The polynomial Pnat) corresponds to the

Taylor series of s around t = to, up to the order n [29]. Thus, hato) measures how irregular

the function f is at the point to. The higher the exponent hato), the more regular the

function f. This definition of the singularity strength naturally leads to a generalization of

the f(a) singularity spectrum introduced for fractal measures. Henceforth, we will denote

Dah) the Hausdorff dimension of the set where the Holder exponent is equal to h

meaning :

Where d stands for dimension. If one uses an analyzing wavelet 	 that satisfies the

Equation 3.8, the local behavior of f in Equation 3.10 is mirrored by the wavelet

transform, which locally behaves like:

in the limit a 40+. Therefore, one can extract the exponent hato) from a log-log plot of

the WT amplitude versus the scale a. Moreover, if my < h(to), one could prove that we

would still get a power law behavior but with a scaling exponent NJ:
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3.4 Singularity Detection Using Wavelets

The strength of the singularity of a function is defined by an exponent called- the Holder

exponent. The Holder exponent of a functionfat some point to is defined as follows:

where, h(to) is a holder exponent of given function f at point t0. h(to) is the largest

exponent such that there exists a polynomial P n(t) [25]. Here, t is in the neighborhood of

to and f is n times differentiable at the point to. One can easily prove that f is n times but

not n + 1 times differentiable at the point to. The polynomial Pnat) corresponds to the

Taylor series of s around t = to, up to the order n [29]. Thus, hato) measures how irregular

the function f is at the point to. The higher the exponent hato), the more regular the

function! This definition of the singularity strength naturally leads to a generalization of

the f(a) singularity spectrum introduced for fractal measures. Henceforth, we will denote

D(h) the Hausdorff dimension of the set where the Holder exponent is equal to h

meaning :

Where d stands for dimension. If one uses an analyzing wavelet ‘1', that satisfies the

Equation 3.8, the local behavior of f in Equation 3.10 is mirrored by the wavelet

transform, which locally behaves like:

in the limit a 40+. Therefore, one can extract the exponent hato) from a log-log plot of

the WT amplitude versus the scale a. Moreover, if ri g, < hato), one could prove that we

would still get a power law behavior but with a scaling exponent nq':
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Thus, around a given point to, the faster the wavelet transform decreases when the

scale a goes to zero, the more regularf is around that point.

3.5 The Wavelet Transform Modulus Maxima Method (WTMM)

When investigating a fractal function, locally, the Holder exponent hato) is governed by

the Singularities, which accumulate at to. This results in unavoidable oscillations around

the expected power-law behavior of the WT amplitude so we cannot calculate exactly the

value of h by taking a log plot of Equation (3.13). The WTMM method overcome this

exact calculation problem.

In order to understand the wavelet transform modulus maxima method, we have to be

familiar with modulus maximum and maxima line. Following are the definition of

modulus maximum, and maxima line [29].

• We call modulus maximum, any point (ao, t,) such that I Wf(ao, t) I < Wfaao, to)
when t belongs to either a right or the left neighborhood of to„ and I Wfaao„ t) I<=
Wfaao, to) I when t belongs to the other side of the neighborhood of to.

• We call maxima line, any connected curve in the scale space (a, t) along which all
points are modulus maxima.

Now a function is not singular in any neighborhood where its wavelet transform

has no modulus maxima at fine scales. So, one can find the singularity by following the

value of the maxima line.

The other fundamental advantage of using wavelets is that the wavelet transform

modulus-maxima provides an adaptive space-scale partition to extract the Dah),

singularity spectrum, via the scaling behavior of some partition functions defined on the
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WTMM. In the WTMM method, we are concerned about the values of T(q) and D(h).

The partition function is used to find the values of T(q), which evaluates the

multifractality of the signal. Partition function, Z, is an important quantity that encodes

the statistical properties of a system and relates it with some variable (in our case taq)).

The partition function Z(q,a), in WTMM, is defined as the sum of the qth power of the

local maxima of the modulus of the wavelet transform coefficients at scale a.

In Equation 3.12, / is a maxima line and Laa) is a set of maxima lines at scale a. In the

presence of singularities in data, power law behavior is observed for the partition

function.

Thus, T(q) is obtained with the use of the partition function. For positive q values, Z(q,a)

is calculated for the larger fluctuation and strong singularities in the signal at each scale.

On the other hand, for negative q values, Z(q,a) finds r(q) values for the smaller

fluctuation and weak singularities in the signal at each scale. Once the r(q) value is

retrieved, then the singularity spectrum can be calculated using the Legendre transform

(method of changing the dependence of a function of one set of variables to another set of

variables).

The obtained singularity and taq) spectrum reveals aspects of the cardiac

dynamics. For example, for healthy subjects, the D(h) spectrum is non-zero in a broad
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range and r(q) is nonlinear, whereas the D(h) spectrum is narrow and the t(q) spectrum is

relatively linear for the subjects with congestive heart failure.

3.6 r(q) and D(h) Spectrum of the Predefined Time Series

In this section, multifractal analysis has been performed on some synthetic time series

using the multifractal analysis program available on PhysioNet. Linear and nonlinear

aspects have been checked on random, periodic, monofractal and multifractal signals.

All mentioned signals are generated in MATLAB, except the binomial time

series, with 40000 data points. For the random signal, random numbers have been

generated between —1 to 1. A periodic signal is generated using sine functions.

Fractional Brownian motion is a random walk that has a defined h value of 0 < h < 1

[31]. Fractional Brownian motion has been generated by integrating the random number

time series. The fractional Brownian motion time series is a monofractal time series.

The last signal used for the multifractal analysis is a binomial time series, which is a

multifractal time series. The binomial time series is used to check multifractal behavior

of the signal. Figures 3.3, 3.4, 3.5 and 3.6 are periodic, random, monofractal (fractional

brownian motion) and multifractal (binomial time series) series respectively. Figures 3.7

and 3.8 show the r(q) and the D(h) spectrum of the mentioned signals, respectively.

Multifractal binomial time series gives the nonlinear ti(q) spectrum, whereas monofractal

fractional Brownian motion gives linear spectrum and so do periodic and random time

series. For binomial time series, the D(h) spectrum has values of D(h) in broad range of

h values, while values of D(h) are in narrower range of h for fractional Brownian motion.
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Figures 3.7 and 3.8 shows the multifractal spectrum and the singularity spectrum for the

artificially generated different mentioned time series.
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Figures 3.7 and 3.8 shows the multifractal spectrum and the singularity spectrum for the

artificially generated different mentioned time series.
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3.7 Algorithm

The algorithm is available on PhysioNet and written in C language. The software

package contains two files: Multifractal.c and mf moments_lt.awk.

The multifractal calculates the multifractal partition functions of a time series. The

program output is obtained in three different formats [25]:

• It is a text file in which the first column is the scale and remaining columns gives
the partition functions for all different moments-q in selected range (range is
specified during the execution of the multifractal program). Output values are
log I -transformed.

• It is in text format that contains maxima lines. The first column is the index of the
time series (time index), and the second is the scale where the maximum appears
at that time. The scales are logl 0-transformed.

• (PPM image, wavelet cascade) This file can be viewed using the freely available
display application included in ImageMagick, as well as a variety of other image
viewers.

The t(q) and multifractal spectrum D(h) of the input time series can be obtained

from the partition functions using mf moments_lt.awk program.

The multifractal program finds the wavelet convolution of the signal for

increasing wavelet scale and locates the local maxima of the absolute value of the

wavelet coefficient as a function of time for each wavelet scale. Afterwards, the program

checks whether a local maximum at a given wavelet scale is located close to a maximum

at a smaller scale or not- if yes then connect both maxima and generate the maxima lines,

otherwise cancel it. The program also checks that the number of maxima at larger scales

is less or equal to that at a smaller scale and track maxima lines for increasing wavelet

scale and that basically helps to detect the singularity as explained in the theory. The

Multifractal program generates the multifractal partition function, using the command:
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multifractal INPUT N QMIN QMAX DW MODE >OUTPUT

where, INPUT name of file containing the input time series

N	 number of points (lines) in INPUT

QMIN minimum order of moment, q

QMAX maximum order of moment, q

DW	 order of the Gaussian derivative wavelet (0-7)

MODE the type of output to be produced, one of

1. partition functions (text)

2. maxima lines (text)

3.	 wavelet cascade (PPM image)

After obtaining the partition function (OUTPUT FILE from the execution of the

multifractal program), we may calculate the t(q) spectrum and the multifractal spectrum

D(h), using the awk program, mf momentsit.awk:

The parameters a and b are the upper and lower limits of the scaling range. The program

reads OUTPUT(the output file that we have just obtained from multifractal), and it writes

the corresponding t(q) and D(h) curves into out.tq file.



CHAPTER 4

DATA ACQUISITION AND ANALYSIS

4.1 Data Acquisition

The number of data points required for the multifractal analysis is 30000. RR interval

time series is given as an input in the multifractal analysis code. The RR interval time

series data with desired (minimum six hours) data length is available on the

www.physionet.org website. The data for the normal control group were obtained from

24 hr. Holter monitor recordings of 35 subjects from the PhysioNet normal sinus rhythm

database with ECG data sampled at 128 Hz. Data were acquired from the men and

women of age 20-76 years. The data for the congestive heart failure (CHF) group were

obtained from 24 hours Holter monitor recordings of 25 subjects from the PhysioNet

CHF database with ECG data sampled at 250 Hz. The obtained RR time series data

directly from the normal control group and CHF group were unformatted for the

multifractal analysis program. The "ann2rr" program, written in MATLAB, was used to

convert unformatted data to the proper text format. The "ann2rr" program is also

available on the PhysioNet. The multifractality of the heart rate signal is not affected by

the activities of a subject. The multifractal analysis on sleep stage data (nighttime) and

daytime data were performed and compared to validate the effect of sleep. The data were

obtained from two subjects (two men aged 21-26 years) using the Polar S810 Heart Rate

Monitor. The monitor records the RR interval. The seven hours of data were obtained

during the sleep stage from all two subjects between 12 a.m. to 7 a.m. and seven hours of

data were obtained during daytime without doing any activity between 9 a.m. to 4 p.m.
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Data for the sleep stage during nighttime and for the awake stage (without doing any

activity) were obtained on the same day for a particular subject.

4.2 Data Correction

Obtained data from the PhysioNet website contained some undesired RR interval entries

called outliers. These outliers show major effect in the output of the multifractal analysis.

Entries of the outliers were removed using the "deglitching" code available on the

PhysioNet. The code, written in MATLAB, removes the outliers by comparing the data

set with an Auto Regressive prediction model of order three. If the data point is within

25% to 75% of the predicted value, then the point is labeled valid, otherwise invalid.

Only valid points are used for the multifractal analysis purpose.

4.3 System Requirements and Data Analysis

The	 Multifractal	 analysis	 program	 is	 available	 on

www.physionet.org/physiotools/multifractal . As mentioned before, code for the

multifractal analysis is written in C language. The software package contains two main

files: multifractal and mf momentsit.awk. The obtained software requires Unix,

Linux, Mac OS X systems, or Cygwin to execute the software files. Redhat Linux 9.0 is

used for the data analysis. In order to compile and execute the program, the system

requires:

•	 A C compiler (gcc is recommended)
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• awk (or gawk) pattern scanning and processing language

• make (optional but recommended)

The C compiler is used to compile multifractal file and awk or gawk is used to

compile and run mf momentsit.awk file. The make file contains a list of the commands

that can be executed simultaneously. The input file to run the multifractal is a text file

containing two columns of numbers; the first is number of the data point, and the second

contains the data values.

One can type make check to compile and test the software. If one is not using the

make utility, gcc -o multifractal -0 multifractal —1m is required to be typed on the

command window of the Linux based system. gcc -o multifractal -0 multifractal —1m

command basically compile ibs.c and link it with the C standard math library. The

executed line with the gcc command simply makes an executable file called multifractal.

This executable file (multifractal) has to be typed on the command prompt to run our

multifractal.c program. The if momentsit.awk file is automatically executed when we

type awk command on the command prompt.

4.4 Results

This section will display the results of the multifractal analysis method obtained on the

normal subjects data and the data of the subjects with CHF. The effect of the different

data length and activity on the multifractal analysis has been shown. Moreover, results of

two different data sets(normal subjects data and the data of subjects with CHF) have been

compared.
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Table 4.1 indicates D(h) vs. h values for different order of Gaussian derivative

(Gaussian derivative 1, 2, 3, 4, 5 and 7, respectively) for NSR group. Figure 4.1 is the

D(h) spectrum from the values in Table 4.1. In the same way, Table 4.2 indicates D(h)

vs. h values for different orders of Gaussian derivative for the CHF group. Figure 4.2

shows the spectrum of D(h) from the values in Table 4.2. Mean h and mean D(h) values

are taken from the ten randomly selected NSR subjects and ten randomly selected CHF

subjects at each different Gaussian derivative.
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Figure 4.2 D(h) vs. h for different values of Gaussian derivative for CHF group.

Table 4.3 shows the effect of length on t(q) for 10K-30K data points. To

investigate the minimum data set requirement, analysis has been performed separately on

10K to 90K data points for NSR group.
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Figure 4.2 D(h) vs. h for different values of Gaussian derivative for CHF group.

Table 4.3 shows the effect of length on t(q) for 10K-30K data points. To

investigate the minimum data set requirement, analysis has been performed separately on

10K to 90K data points for NSR group.



Table 4.3 Effect of Data Length (10K, 20K and 30K) on ti(q) for the NSR Group.
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Figures 4.3, 4.4 and 4.5 are graphical presentations of the tt(q) spectrum for Table

4.3 values for 10K, 20K and 30K respectively, while Figure 4.6 shows the comparison of

the t(q) spectrum for 10K, 20K and 30K data points.
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Figure 4.6 Comparison of et(q) spectrum for 10K, 20K and 30K data points for NSR
group.

Table 4.4 shows the effect of length on et(q) for 30K to 90K data points for NSR

group. Again, to investigate the minimum data set requirement, analysis has been

performed separately on 10K to 30K data points and 30K to 90K data points for NSR

group. Table 4.5 shows the effect of length on t(q) for 30K to 90K data points for CHF

group. Figure 4.7 is graphical illustration of the et(q) spectrum for NSR group and Figure

4.8 is graphical illustration of the et(q) spectrum for the CHF group. Total 30 subjects (15

from CHF group and 15 from NSR group) were randomly selected and mean value at

each moment resolution was calculated.
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Figure 4.6 Comparison of t(q) spectrum for 10K, 20K and 30K data points for NSR
group.

Table 4.4 shows the effect of length on t(q) for 30K to 90K data points for NSR

group. Again, to investigate the minimum data set requirement, analysis has been

performed separately on 10K to 30K data points and 30K to 90K data points for NSR

group. Table 4.5 shows the effect of length on t(q) for 30K to 90K data points for CHF

group. Figure 4.7 is graphical illustration of the r(q) spectrum for NSR group and Figure

4.8 is graphical illustration of the i(q) spectrum for the CHF group. Total 30 subjects (15

from CHF group and 15 from NSR group) were randomly selected and mean value at

each moment resolution was calculated.



Table 4.4 Effect of Data Length (30K to 90K) on ti(q) for NSR Group.

59



Figure 4.8 Effect of data-length on r(q) for 30K to 90K data points with the increase of
10K data points for CHF group.
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Table 4.6 shows mean T(q) values for 25 CHF subjects and 25 NSR subjects.

Figure 4.9 is r(q) spectrum drawn from Table 4.6. The shape of the r(q) spectrum is used

to differentiate between two groups.

Figure 4.9 Spectrum of T(q) for 25 CHF and 25 NSR subjects.
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Table 4.6 shows mean ti(q) values for 25 CHF subjects and 25 NSR subjects.

Figure 4.9 is t(q) spectrum drawn from Table 4.6. The shape of the ti(q) spectrum is used

to differentiate between two groups.

Figure 4.9 Spectrum of t(q) for 25 CHF and 25 NSR subjects.



Table 4.6 Mean r(q) Values for 25 CHF Subjects and 25 NSR Subjects.
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Table 4.7 shows the t-test performed on the coefficients of the quadratic terms

obtained using polynomial fit of second order on CHF and NSR subjects. While Figures

4.10, 4.11 show graphical view of the quadratic fit for both groups.

Table 4.7 T-test of Coefficients of Quadratic Term from the Polynomial Fit Performed
on the r(q) Spectrum for 25 CHF and 25 NSR Subjects.
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Table 4.8 shows mean h values and mean D(h) values for 25 NSR subjects. Table

4.9 shows mean h values and mean D(h) values for 25 CHF subjects (same subjects used

to calculate T(q)). D(h) spectrum is shown in Figure 4.12 to identify NSR subjects

(values are taken from Tables 4.8 and 4.9). 25 CHF and 25 NSR subjects have been

selected randomly.
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Figure 4.12 D(h) vs. h for 25 CHF and 25 NSR subjects.

Table 4.10 shows the mean r(q) values of two healthy subjects from the period of

9 a.m. to 4 p.m. and 12 a.m. to 7 a.m. Figure 4.13 shows the spectrum of t(q) for the

values taken from Table 4.10 to check the effect of the sleep on multifractality of the

heart rate.
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Table 4.10 shows the mean ti(q) values of two healthy subjects from the period of

9 a.m. to 4 p.m. and 12 a.m. to 7 a.m. Figure 4.13 shows the spectrum of ti(q) for the

values taken from Table 4.10 to check the effect of the sleep on multifractality of the

heart rate.
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Figure 4.13 Effect of activity on t(q) for two healthy subjects.

4.5 Discussion

The multifractal analysis was performed on the normal subjects and subjects with CHF.

From the graphs in Figures 4.1 and 4.2, we can infer that there is no significant change in

the shape of the singularity spectrum due to the change in the order of the Gaussian

derivative. Performed analysis indicates that a wide range is obtained for D(h) in the

NSR group and a narrower range is obtained for D(h) for the CHF group. Since there is

no significant effect of the Gaussian derivative, analysis was performed using Gaussian

derivative 3.
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Figure 4.13 Effect of activity on T(q) for two healthy subjects.

4.5 Discussion

The multifractal analysis was performed on the normal subjects and subjects with CHF.

From the graphs in Figures 4.1 and 4.2, we can infer that there is no significant change in

the shape of the singularity spectrum due to the change in the order of the Gaussian

derivative. Performed analysis indicates that a wide range is obtained for D(h) in the

NSR group and a narrower range is obtained for D(h) for the CHF group. Since there is

no significant effect of the Gaussian derivative, analysis was performed using Gaussian

derivative 3.
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From the data of Tables 4.3, 4.4 and 4.5, it is determined that a minimum of

30,000 points are required in order to perform analysis without error. Figures 4.3, 4.4,

4.5 and 4.6 illustrate that a minimum of 30000 points are required to distinguish between

the two data sets (CHF and NSR). For NSR group, r(q) spectrum demonstrates nonlinear

behavior for 30000 and more data points and shape of the r(q) spectrum is also preserved.

For CHF subjects, there is no change in the r(q) spectrum for 30000 and more data

points.

There is a significant change in the graph of t(q) vs. q and D(h) vs. h between

NSR group and CHF group (Figures 4.9 and 4.12). As discussed in the theory, the RR

interval time series for a healthy subject demonstrate multifractal behavior. Whereas, the

RR time series for a subject with CHF demonstrate monofractal behavior. The tt(q)

spectrum exhibits a non-linear behavior for the NSR group, whereas, the t(q) spectrum

exhibits comparatively linear behavior for the CHF group. Polynomial fit of the second

order was used to check the non-linearity of the t(q) spectrum for both CHF and NSR

groups. The value of the coefficient of the quadratic term is close to zero for CHF

subjects than NSR subjects. That is, t(q) is linear comparatively for the CHF group than

NSR. T-test was performed on the coefficients of the quadratic term for 25 CHF and 25

NSR subjects. From Table 4.7, P = 0.00137 (one tail) < 0.05 and P = 0.00274 (two tail)

< 0.05. This shows that there is significant difference between the coefficient values of

the quadratic term between two groups. Figures 4.10 and 4.11 shows graph of the

quadratic fit in the tt(q) spectrum of both groups. Of the t(q) spectrum of the obtained

data for the particular group is nonlinear means a subject is normal, while if the t(q)

spectrum of the obtained data is linear means a CHF subject. However, it is hard to
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distinguish CHF subjects and NSR subjects just by analyzing r(q) spectrum. The D(h)

spectrum provides alternate way to identify subjects of both groups. The D(h) spectrum

has broad range of singularities-h for NSR group, while range gets narrower for the CHF

subjects. Thus, the D(h) spectrum easily distinguishes both NSR group and CHF group.

The multifractality of the heart beat dynamics cannot be explained by activity

[26]. That is, the shape of the r(q) spectrum will remain unchanged even if we perform

multifractal analysis, on RR interval time series, on the same subject by collecting data

during activity and data without doing any activity. For this study, the nighttime sleep

data and data without doing any activity in the daytime were taken. As discussed before,

the mean values of r(q) (from two healthy subjects) were obtained on both types of data

(daytime and sleep) to validate the effect of sleep on multifractality of the heart rate

signal. The results of the analysis proved that there is no significant change in the i(q)

spectrum due to the sleep. Mean values of r(q) vs. q are depicted in the Table 4.9. As

seen in Figure 4.13, the r(q) spectrum curve generated for the daytime data and nighttime

data overlap each other.



CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Most pervious characterizations of the HRV have relied upon the conventional methods

such as time domain, frequency domain and power spectrum analysis. In this work, it is

shown that the WTMM method of multifractal analysis based on nonlinear dynamics is

accurate and reliable. Wavelet transform modulus-maxima tracking gives direct access to

the D(h) singularity spectrum of any fractal signal and easily distinguish multifractal

signals and monofractal signals. Since the fractal behavior decreases in the subjects with

the heart diseases, the heart rate signal looses its multifractality and it is easily detected

by the WTMM method of multifractal analysis.

Eventually, the goal of this thesis was to differentiate normal subjects from congestive

heart failure subjects by applying nonlinear dynamics method multifractal analysis and it

was successfully achieved by testing the linearity and nonlinearity of the i(q) spectrum

and by the shape of the D(h) spectrum. The nonlinearity test was performed using

polynomial fit of second order on the data of t(q). The values of the coefficients of

quadratic terms for the CHF subjects are comparatively lower than NSR subjects. That

is, stronger linearity in the i(q) spectrum of CHF group and heart rate signal is less

multifractal. From the t-test result (P = 0.00137 for one tail and P = 0.00274 for two tail),

it is concluded that there are major changes in the coefficients of the quadratic term

between CHF subjects and NSR subjects. In study 1, results showed that there is no

effect of the Gaussian derivative on the shape of the singularity spectrum. Results
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showed that there was a shift in the curve of D(h) for both NSR and CHF groups but no

major change in shape was found. The second study was conducted to discover the

requirements of the minimum data points and to check the effect of the length. A total 30

subjects were selected for this test and 28 successful (0.93% success ratio) results were

obtained out of 30 by comparing the t(q) and the D(h) spectrum with the increment of

10000 data points starting from 10000 to 90000. From the results we can conclude that

minimum of 30000 data points are required to obtain appropriate results in multifractal

analysis. Moreover, for 30000 and onwards data points, curve of the ti(q) spectrum

preserved its shape. To differentiate the NSR subjects from CHF subjects, study was

conducted on 25 NSR subjects and 25 CHF subjects. A total of 47 subjects, out of 50,

were identified and placed in the appropriate group by applying multifractal analysis

method on each subject and evaluating the shape of the D(h) spectrum and nonlinearity of

the t(q) spectrum. Thus, the success ratio to differentiate between NSR group and CHF

group is 0.94%, while 0.06% unsuccessful results were obtained. In conclusion we can

say that multifractal analysis is appropriate method to distinguish healthy subjects from

CHF subjects. Results showed that there is a major change in the D(h) spectrum for the

NSR subjects and the CHF subjects. From the results of the sleep data and daytime data

in the last task, we can conclude that there is no effect of sleep on the multifractal

behavior of the heart rate signal. Eventually, the goal of the analysis was carried out

successfully.

The major draw back of this method is that minimum of data required is

approximately for six hours. It cannot predict pathological or normal condition by

analyzing short time data.
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5.2 Future Work

It is not surprising that the nonlinear method, multifractal analysis, is far from

being applied in everyday clinical practice. Data from clinical studies should be

exchanged such that data can be merged and analyzed in different laboratories with

competing methods. The format of the data for this method should be appropriate in a

way that those should work in all different computer environments such as Windows,

Unix, and Linux. Furthermore, code should be available in all different languages

(MATLAB, C++, JAVA and so on) so that any of the computer programs should execute

them. Furthermore, more accurate algorithms are still required for this method. Very

few resources are available for the WTMM method of multifractal analysis, which is a

major drawback of the research because students/researchers are afraid to involve in this

research due to the lack of the resources.

The use of this method in clinical world is highly depended upon the effectiveness

of multifractal analysis to distinguish other pathologies such as myocardial infraction,

atrial fibrillation, ventricular dysfunction, and significant arrhythmia. Deep Multifractal

analysis study is still required in mentioned pathologies.



APPENDIX A

PROGRAMS USED IN MULTIFRACTAL ANALYSIS

This appendix contains programs used in this study, which are written in MATLAB 7.0

and in C language. Program A is written in MATLAB. Programs B and C are written in

C language. Program A was used to deglitch the RR interval time series. Program B was

used to calculate the multifractal partition functions of a time series. Program C was used

to calculate the tau(q) spectrum and the multifractal spectrum, D(h). Input to each of the

main program is a text file with RR intervals arranged in two columns. First column is

the index and second column contain the values of the RR intervals.
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