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ABSTRACT

ENHANCING END-TO-END QUALITY OF SERVICE PROVISIONING IN
WIRELESS AD HOC NETWORKS USING SERVICE VECTORS

by
Didem Gozupek

A cross-layer architecture that achieves significant power savings, while enhancing the

end-to-end QoS provisioning and granularity in wireless ad hoc networks is proposed in

this thesis. Recently, a new concept called service vector has been introduced, which

enables an end host to choose different service classes along its data path. This scheme

enhances the user benefits from the network services and network resource utilization,

while maintaining the simplicity and salability of the current Differentiated Services

(DiffServ) network architecture. This thesis explores the application of this concept on

wireless ad hoc networks and provides a cross-layer architecture based on the combination

of delay-bounded wireless link level scheduling and the network layer service vector

concept, which enables a wireless ad hoc network to achieve significant power savings and

finer end-to-end QoS granularity. The impact of various traffic arrival distributions and

flows with different QoS requirements on the performance of this cross-layer architecture

is also investigated and evaluated.
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CHAPTER 1

INTRODUCTION

The proliferation of Internet applications and services has fostered a growing research

interest in provisioning Quality of Service (QoS), which refers to the capability by which

a network provides certain performance guarantees. Evolution of the Internet

infrastructure from a best-efforts service model to the one in which service differentiation

can be provided for different users and applications, and progression of the networking

environment towards wireless domain, lead to a growing need for end-to-end QoS

provisioning techniques in wireless networks that provide differentiated services. At the

same time ad hoc wireless networks, which consist of wireless nodes interconnected by

multihop communication paths, introduce additional challenges since they have no fixed

network infrastructure or administrative support.

Currently, there are two service models proposed for end-to-end QoS

provisioning in the Internet: Intserv [1]  and Diffserv [2] . The former provides per-flow

based resource reservation and allocation, whereas the latter aggregates individual flows

and provides only a number of services to the aggregated data flows. Intserv model

suffers from scalability problem, while Diffsery model can only provide coarse QoS

granularity. Recently, a novel distributed end-to-end QoS provisioning architecture has

been proposed [3], which can optimize the user benefits from network services point of

view, enhance network resource utilization and end-to-end QoS granularity, while

maintaining the simplicity and salability feature of the Diffsery network architecture.
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Moreover, a new concept, service vector, was introduced by which an end host

can choose different services at different routers along its data path [4].

The power limited and time-varying nature of the wireless domain makes most of

the Q0S provisioning techniques originally designed for wired environments unsuitable

for wireless networks. Recently, some solutions have been proposed for offering Q0S in

one-hop wireless networks. Nevertheless, Q0S provisioning in multi-hop wireless ad hoc

network domain has not been yet addressed successfully, since these networks pose

further challenges due to their infrastructures and multi-hop nature.

In this thesis, the proposed service vector paradigm is extended to wireless ad hoc

networks. A cross-layer architecture that combines link level scheduling and network

level service vector concept is proposed and evaluated. It is demonstrated that within this

architecture the service vector paradigm can enhance the end-to-end Qom in wireless ad

hoc networks via reducing the power consumption.

The rest of the thesis is organized as follows: Chapter 2 describes some related

work about Internet Qom provisioning, while Chapter 3 provides a summary of the

Diffuser framework and describes the service vector concept. The emphasis in Chapter 4

is placed mainly on the methodology that is proposed in extending the service vector

concept to wireless ad hoc networks, and on the description of the wireless scheduling

policy used in the proposed architecture. Chapter 5 contains the performance evaluation

of the proposed approach, while Chapter 6 concludes the thesis by summarizing the main

contributions and conclusions of this work, and discussing the directions for future work.



CHAPTER 2

RELATED WORK

Qom provisioning in the Internet can be categorized into two realms: single-node and

end-to-end Qom provisioning techniques. The former mainly deals with packet

forwarding and resource management strategies in a single node, whereas the latter tries

to guarantee Qom in an end-to-end fashion, which is the actual performance of the

network from the user perspective. Internet Protocol (IF) was originally designed to

provide best-efforts service for delivery of data packets; i.e., there is no end-to-end

performance guarantee. However, the emerging real-time communications and

multimedia applications in the next generation Internet necessitate the provisioning of

different levels of performance guarantees.

There are two well-known fundamental frameworks to provide end-to-end Qom in

the Internet: Intserv and Diffuser. The basic approach of Intserv is to reserve network

resources on a flow-by-flow basis, which requires routers to maintain state information

on each flow. However, processing of every individual flow on core Internet routers

introduces the salability problem, since thousands of flows may exist simultaneously at

a backbone router and hence, creating large amounts of processing overhead [6]. Within

the framework of Intserv model Resource Reservation Protocol (RmVP) was proposed for

signaling, in which the sender regularly transmits RmVP "Path" messages for the nodes

along the path to store the path information and the receiver sends back "Rest" messages

specifying the desired Qom and setting up the reservation state at each node. This way,

RmVP enables the nodes to have the reservations periodically refreshed [7].

3
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Diffsery was introduced in order to overcome the salability problem of Intserv.

Per-flow service is replaced by aggregated service and the complex processing is

moved from the core of the network to the edge. mervice Level Agreement (SLA)

between the user and the service provider specifies the number of services to be provided,

each of which has certain Per-Hop-Behavior (PHB's. Flows are aggregated at the edge

router according to their service class and forwarded to the core routers, where they are

served with respect to their corresponding PCB's. Although scalability problem of

Intserv does not exist in Diffserv, due to the limited number of service classes, flows

using the same service along the data path receive the same Dom support even if they

might have quite different Dom requirements and hence, leading to the problem of coarse

Dom granularity.

This trade-off between salability and granularity is attempted to be alleviated by

different hybrid approaches, one of which is Intserv over Diffserv architecture [8]. In this

approach, allocation of the resources for the flows as well as the admission control

procedure follow the Intserv fashion, whereas the data flows are served according to the

Diffserv networks. On the other hand, authors in [3] and [4] proposed a robust Dom

provisioning architecture that maintains the simplicity and salability of Diffsery

networks while increasing its Dom granularity by providing better service differentiation

capability. The concept of service vector, in which the end host can choose different

services at different routers along its data path, enables a flow to choose a certain service

class at some other part of the network even though it might be congested and hence,

inaccessible in one part of the network. This thesis mainly explores the implications of

this service vector concept in wireless ad hoc networks.



CHAPTER 3

EXPLICIT ENDPOINT ADMISSION CONTROL AND SERVICE VECTOR

3.1 Introduction

Diffserv model is considered to be a more feasible and scalable solution for Dom

provisioning in the Internet as compared to the Intserv model. Cowever, in addition to the

coarse Dom granularity problem, Diffuser model also has vague issues that should be

resolved regarding the place and method of mapping an individual flow's Dom

requirements to a specific service class, which is directly linked to issues associated with

the place and time that the admission control decision for a certain flow will be made.

Currently, there are three admission control schemes in the literature hitherto

proposed for Diffserv networks: static Service Level Agreement (SLAB), dynamic

admission control, and a recently introduced scheme called endpoint admission control

(EAC). While static SLAB admission control solution is inefficient, dynamic admission

control has the flaw of being not scalable; therefore, EACH has lately been introduced to

deal with the salability issue [9] [10].

In EAC schemes, the end host performs the admission control decision; therefore,

the scalability of Diffuser networks can be preserved. Admission control basically

consists of two phases: probing phase and data transfer phase. In the probing phase, the

end host sends probing packets to the network and records the resulting level of

performance, and then the host determines whether or not to admit the flow. The network

can be oblivious to the fact that it is being probed or it can cooperate with the process. In

the former design option, long probing packet trains may be needed to obtain accurate

5
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results, although it has the benefit of being simple. On the other hand, if the network

collaborates with the probing process by either marking or dropping the probing packets,

more accurate results can be obtained and lower overhead can be achieved, due to the fact

that long probing packet trains are no longer needed. Nevertheless, in all these EACH

schemes, the data flow is permitted to use the same service along the data path; i.e., it is

not allowed to use combinations of different service classes. Therefore, the probing stage

specifies the performance of a particular service along the entire path rather than the

performance of all services at every router.

3.2 Framework of Explicit Endpoint Admission Control and Service Vector

Explicit Endpoint Admission Control with Service Vector (EEAC-SV) scheme in essence

relies on the idea of explicitly providing information about the performance of each

service class at each router during the probing phase and enabling the routers to choose

different service classes along the path during the data transfer phase. In other words, a

service vector is selected at the end of the probing phase according to the Dom related

information sent back by the network in the probing packets and this service vector is

attached to the data packets in the data transfer phase. Assume that there are m routers

along the path of a flow and n service classes at each router. The set of service classes

can be denoted by S = (So , Sly ,..., Sn_1 ) . A flow may choose service s ' at router i ; where

s ; E S , which may be different from service s it chooses at router j . A service vector

can be represented as s = (so , 5 1 ,..., s_) ' where each element corresponds to the service

chosen at the corresponding router along the path. Therefore, the end-to-end Dom

granularity in the service vector approach is 0(ntm).
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3.3 Optimization Models

Determination of the service vector is implemented via the following optimization

procedure: Let us denote the end-to-end Dom performance of a certain flow by the vector

R = (R0 , R1 ,... , R _1 ) , where K is the number of Dom parameters to be considered, and

the corresponding utility function by U(R) . The user cost function C depends on the

service vector s of the flow as well as the set of pricing policies p = (ρ0 , p1	 ρί-ί )

where 9 is the vector space that meets the end-to-end Dom requirements of the data

flow, s is the service vector that a flow may choose and δ is the minimum net benefit

the user can accept. Since R is a function of the service vector s, it can be further

decomposed into the performance that the flow experiences at each router, which is

(R 0 , R  , R m-ί )r , Where R 1 = (Rob , Rib , ... , RK_I ) T (j = 0 , ... , m —1) is the performance

vector that the flow gets at router j. Since the performance at a router is a function of the

service class chosen at that router, R is a function of se  . Each user tries to optimize its

own benefit; therefore, interaction among them can be modeled as a noncooperative

game. Similarly, the interaction among the routers at the network side can also be

modeled as a noncooperative game, since they also try to maximize their benefits. In this

work the utility function U(R) describes the user's level of satisfaction with the perceived
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Q0S and it is considered to be inelastic; i.e., the application does not care if more than

required Qom is provided. In other words, the utility is the same as long as the

provisioned Qom satisfies the desired bound.

The optimization model at the network side is as follows:

where A, (A ` , p) is the revenue function of router i , N' is the number of flows at router

i , p is its pricing policies, R` (S i , N J ) is the performance vector of service Sea when

there are Al  users of it, and 9 (S i ) is the vector space of service S. that meets the

requirements for service differentiation at router i .

The various end-to-end service provisioning methodologies for Diffuser networks

currently existing in the literature, namely the static service mapping and dynamic service

mapping schemes, can be included in the afore mentioned user side optimization model.

Therefore, we can evaluate and compare these two schemes together with the recently

proposed scheme under the framework of three types of service vectors as follows:

Type 1: Conventional Scheme (EAC-CS) (Static Service Mapping): Users map their Qom

directly to a certain class of service before the probing process and hence, the service

vector s is a constant vector with s ; = s , V i , j = 0,1,..., m —1. Probing packets use the

same service as the data packets. If the measured Qom performance at the destination

meets the Qom requirements, the flow is admitted. Otherwise, it is rejected. In other



9

words, there is no maximization process of the optimization model; the end host only

checks whether the statically mapped service class satisfies the requirements or not. The

resultant G value can be denoted as Grype2 , and the end-to-end Dom granularity is 0(1) .

Type 2: EEAC with Single Class of Service Scheme (EEAC-CSC) (Dynamic Service

Mapping): The service vector is a constant vector as in EEAC-CSC; i.e., only one service

class is used along the path. Cowever, the flow is now dynamically mapped to an

available best service class. The optimization procedure tries to find the service vector

that satisfies the Dom constraint and maximizes the revenue among all the possible

O service vectors. The resultant G value can be denoted as G rypei , and the end-to-end

Dom granularity is 0(O) .

Type 3: EEAC with Combination of Service Classes Scheme (EEAC-CSC) (Combination

of Service Classes via the Service Vector): In this case, different service classes can be

chosen at the routers along the path; therefore, there are Om possible solutions. The user

side optimization model operates on these Om possible service vectors, which makes this

problem NP-hard. The resultant G value can be denoted as Gtypei , and the end-to-end Dom

granularity is 0(ntm).

The highest network utilization and the finest end-to-end Dom granularity can be

provided by the Type 3 solution, whereas Type 1 solution results in the worst Dom

granularity and the lowest network utilization. Besides, solution space of Type 1 service

vectors is a subset of the solution space of the Type 2 service vectors, which is also a

subset of the solution space of Type 3 service vectors: Grype2 < Gtype2 G Grypei
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If the Qom parameter considered is the average end-to-end delay and the pricing

policy is to charge each packet according to its assigned service class at each router, then

the user side optimization model can be formulated as follows:

where delay(s) refers to the average delay of service s, at router i and Delay denotes the

user's end-to-end average delay requirement.

3.4 Implementation of EEAC-SV

There are basically two issues in the implementation of this approach. The first one is

how to assess and envisage the performance of each service class. The main assumption

here is that the network conditions do not change considerably, so that the performances

of a certain service class at a certain router during the probing phase and after the probing

phase are quite similar. Besides, the route is assumed to be predetermined. To assess the

performance of the service classes at a router, a predictor based on the Wiener process is

used to estimate the buffer occupancy of a service class:

where Ls; (t) is the estimated buffer occupancy for service class S 1 at time t , Ls; ,oιd (t) is

the most recently updated average queue length before t , Bs   (t) is the interval between

the arrival of the previous received packet of service class S and the current time t , and

K is a constant. This estimator is actually the exponential moving average. Furthermore,



11

three different congestion levels are defined and the predicted congestion level at the end

of the probing period is calculated based on the estimated value of the buffer occupancy,

and then it is mapped to the previously defined congestion levels. During probing, each

router marks its corresponding bits in the probing packet to indicate the congestion level

of each service class.

Weighted Fair Queuing (WFQ) is used as the scheduling policy, since it is a

widely referred and accepted scheduling policy that can guarantee the delay bound of

each service class. Therefore, the delay bound for service class S is found as:

where L is the maximum packet length, R is the output link rate, Rs . is
J

the guaranteed service rate of Si' and 4 is the maximum buffer length of S.
J

It is assumed that three services are provisioned at each router: Expedited

Forwarding (EFT), Assured Forwarding (AF), and Best Effort (BE). In Diffuser networks,

EFT PHB corresponds to low loss, low latency, low jitter, and guaranteed bandwidth end-

to-end service, whereas AF PHB provides a base rate while permitting the use of any

available capacity. BE Forwarding does not provide any performance guarantees, which

is the case in the conventional Internet infrastructure. The overall drop rate is lower in AF

than pure BE due to the base capacity.

The definition of these service classes and congestion levels, each of which

corresponds to a unique buffer occupancy ([3], [4]) are stated in Table 3.1, where

(d;,1 , Ps; , ; ) are delay and packet dropping probability bounds at each congestion level i .

For EFT and AF services, some random packet dropping scheme is assumed and L is the
I
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threshold above which this dropping algorithm starts dropping packets and ρΏaΧ is the

maximum packet dropping probability of service S i at a router.

Table 3.1 Performance Bounds under Different Congestion Levels for the EFT, AF, and
BE Services

The simulation results in [4] indicate that Scheme 3 (service vector scheme)

yields the best performance in terms of average cost per packet and request drop ratio,

whereas Scheme 1 gives the worst performance. Another very important result is that

Scheme 3 has the largest average end-to-end delay while still satisfying the delay bound,

while Scheme 1 has the smallest delay, which is a direct result of the key underlying

principle of the service vector scheme. For instance, if there is a flow with end-to-end

average delay requirement of 750 ms; where class 0 service provides 100 ms, class 1

provides 200 ms, and class 2 provides 300 ms of delay bound, when this flow passes a

route with three routers, Scheme 1 will map the flow to class 0 service at each router,

which will result in 300 ms of delay, whereas Scheme 2 will make it use class 1 service

along the entire path and hence, give rise to 600 ms. of end-to-end delay. Cowever,
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Scheme 3 will map the flow to use classl-class2-classl service, which will lead to an

average delay of 700 ms that still satisfies the delay bound. In other words, Scheme 2 and

Scheme 1 would waste network resources for providing better-than-required Dome

guarantee, which might lead to some other flow that really needs a stringent delay

requirement to be blocked.



CHAPTER 4

SERVICE VECTOR SCHEME IN WIRELESS AD HOC NETWORKS

4.1 Introduction

Providing Qom guarantees is an important objective in designing the next-generation

wireless networks that need to support different applications with diverse Dom

requirements. The limited battery resource at a mobile terminal coupled with the

unpredictable nature of the wireless channel makes the problem of providing reliable

wireless services a challenging task. Unlike wired networks power efficiency is a crucial

parameter in the design of wireless networks, especially ad hoc wireless networks. In this

thesis, it is demonstrated that service vector scheme enables significant power savings in

wireless ad hoc networks when used in combination with an appropriate wireless

scheduling discipline.

4.2 Problem Formulation

Assume that a flow going from its source to the destination passes through m

intermediate routers, where the set of available service classes at each router is

5 = (50 , K 2 ,..., 5n_1 ) . After the probing phase is executed, the end host determines the

service vector as s = (so , s2 , •• ., sm_2 , where the service class chosen at router i is denoted

by s ' Ε (50 , K2 ,..., 5n_ 1 ) . The Dom parameter considered in determining the service vector

is the average end-to-end delay; i.e., each service class s; corresponds to a predetermined

average delay bound delays;) and hence, the optimization problem that is implemented

in finding the service vector is (3.7) and (3.8). Data transmission phase takes place in a

14
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time-slotted manner. To minimize the overall transmission power along the route once

the service vector has been determined, the following problem is considered:

experienced at router i , and s ; is the service class chosen at router i . Apparently, the

above problem is transformed to the link level scheduling problem of minimizing the

average transmit power subject to the constraints on the average delay.

Delaying communication by decreasing the transmission rate to save power is

commonly used in wireless systems, where usually the channel conditions are also taken

into account. The strength of the service vector scheme is that it allows a flow to choose a

service class with less stringent delay guarantees in some part of the network, even

though that service class might be unavailable in some other part of the network. This

way, transmission rate can be decreased at that node, which in turn reduces the power

consumption. Therefore, this cross-layer approach of using the service vector scheme in

combination with an appropriate scheduling discipline can enable the network to have

significant power savings, which is vital for the efficient operation of wireless ad hoc

networks.

4.3 Related Work on Wireless Scheduling Disciplines

Scheduling in the context of changing the key physical layer parameters like transmission

rate and power is widely explored in the wireless domain, where the scheduling action
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usually depends on the channel state. Since packet delay is a key criterion in most real-

time applications, delay constraints have also been incorporated into the design of

schedulers in wireless networks. Both single-user and multi-user scheduling have been

studied in the literature, where in the latter case minimizing the average transmission

power also has the importance of reducing interference to other users in the system and

hence, leading to higher throughput.

A well-known power control scheme, called water-cooling, provides high

transmission rate and consequently high power in good channel states and low

transmission rates in poor channel conditions [11]. The information-theoretic concept of

power and rate control has also been revealed in the ENFOSTATION [ 12] architecture,

where the nodes transmit data only when they are close to the base stations, and therefore

transmission is delayed under bad channel conditions.

Results in [ 13] and [ 14] indicate that power control is useful not only in fading

channels, but also in time-invańant Additive White Gaussian Noise (AWGN) channels.

The authors in [ 13] attempt to minimize transmission energy under a pre-specified

average packet delay constraint. They propose offline and online lazy schedulers in

discrete AWGN channels, which make use of silent periods in packet arrival times by

reducing the speed of transmission at these particular epochs. On the other hand, the work

in [ 14] analyzes the relation between power and different concepts of delay as well as

buffer control policies.

Furthermore, delay constrained scheduling has extensively been explored for

fading channels. The authors in [15] explore transmission strategies that minimize the

average power subject to the constraints on average delay as well as the peak transmitter
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power. Assuming the simple Gilbert-Elliott wireless channel model, they formulate a

dynamic programming technique to solve this problem in a time-slotted system.

Alternatively, power control schemes in independent identically distributed block-fading

AWGN channels with a strict transmission delay constraint are explored in [ 16].

Although this work emphasized more on the power control rather than the scheduling

framework, it gives insights to the relations between power minimization and delay

constraints in fading channels.

In addition to the average delay constraint, some schedulers proposed in the

literature also take the packet loss rate into account. For instance, the scheduler in [ 17]

seeks to minimize the packet loss rate subject to the constraints on average delay and

power, whereas the scheduler proposed in [ 18] considers the dual of this problem; i.e., it

finds the optimal scheduling policy in finite state block fading channels under an average

delay and packet loss constraint.

Delay constraints in fading channels make the traditional notion of capacity; i.e.,

Shannon capacity [ 19], insufficient to provide any actual delay guarantees. Therefore, a

novel concept called delay limited capacity was introduced in [20], which refers to the

maximum achievable rate with delay constraint, independent of how slow the fading is.

On the other hand, authors in [21] investigated the average delay and average power

trade-off in discrete-time block-fading AWGN channels and quantified the behavior of

this trade-off in asymptotically large delay.

There have also been several works in the literature, which focus on the multi-

user scheduling problem under various scenarios. The work in [22] concentrates on

CDMA scheduling on the forward link channel, where the QoS parameter considered is
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the probabilistic packet delay bound. Downlink scheduling in CDMA networks has been

addressed in [23], whereas delay bounded formulations over multiple access channels are

evaluated in [24]. Scheduling in a decentralized system like ad hoc networks has also

been studied in the literature: MAC layer fairness in shared channel wireless networks is

explored in [25], whereas a distributed priority scheduling mechanism for ad hoc

networks is proposed by [26].

4.4 Delay Bounded Power Efficient Schedulers

A scheduler which minimizes the average transmit power while satisfying the delay

bounds of the three different service classes, namely EFT, AF, and BE classes, is required

to solve (4.1). Various optimal and suboptimal design techniques to tackle this problem

have been proposed by [27] and [28], which are mainly utilized in this thesis as the power

efficient scheduling mechanism.

Optimal and suboptimal design techniques for single user case [27] as well as

multi user case under both DMA and CDMA frameworks have been introduced [28].

The optimal solution for the single user scenario has been utilized in the suboptimal

solution for the multi user scenario. Therefore, here the single user case also needs to be

highlighted, although the emphasis of this thesis is placed on the multi user case.
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Figure 4.1 System model for single user scheduling.

Α single-user time-slot system is considered, where Γη  is the number of packets that

arrive at time slot O. Let us consider that at the beginning of the n th time-slot, there are

x,, packets in the buffer, Αη packets are chosen by the scheduler for transmission, and

power Ρn  is used for this purpose. Lets also denote by M is the maximum number of

packets that can arrive in a time slot and by L the buffer size. The arrival process { Γ η } is

considered independent and identically distributed (i.i.d.) from one time slot to another

and the average arrival rate is Ε{Γη } = λ packets per time slot, where the size of each

packet is S bits. The length of the time slot is TS seconds, which is a constant value;

therefore, the transmission rate is varied based on the chosen number of packets Α η . The

buffer update is as follows:

The average packet delay is related to the average buffer occupancy via Little's theorem:
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All packets arriving in time slot n can be transmitted in time slot (n +1) or later.

A scheduler is a mapping from the current buffer state x, and channel state Α to the

number of packets transmitted u and corresponding transmission power Ρ . The

schedulers considered in [27] [28] as well as in this thesis are zero-outage schedulers.

Zero-outage schedulers do not drop any packets, ensure reliable reception of the packets

at the other end of the link, and avoid buffer overflows.

To prevent buffer overflow and packet dropping, either of the following two

conditions must be satisfied for each state

1) Stationary probability for state i equals zero; i.e., s 1 = 0

represents the minimum number of packets transmitted

Furthermore, to guarantee a certain level of reception reliability at the receiver,

the scheduler chooses the power level Ρ Ρ such that υη  is equal to the Shannon capacity

function for a Gaussian channel, which may be defined as follows [19]:
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Since PA  is a function of u„ , we can denote the scheduler as α : (χ „ , Αη )1-> υ, .

This relation can be simplified even further for AWGN channels as α : x„ H u,, , since

1 for AWGN channels.

Let us also represent the probability of transmitting j packets given that the queue

has i packets by α^ 1 , that is:

Then every scheduler α can be symbolized by an

matrix, since α^ ; = 0 for j > i. Subsequently, it is easy to see that the following

statement also holds true for every scheduler α :

Schedulers are stationary and memoryless; and hence, the queue state forms a

first-order Markov chain. In the following let C = [C 1 , j represent the matrix of transition

probabilities, where C1,, is the probability of transition from buffer state x,, = i to

buffer state xn+1 = j . The stationary probability of buffer state i is denoted by 5,, where

, and the vector of stationary probabilities is s = [5o 5 1 ... 5L ]. Then, it

follows that C s = s. Note that C depends on the choice of α and therefore, s is a

function of α .

Under this framework, the average packet delay and average power of the

scheduler can be expressed as follows:



where Ρ is the power control defined in (4.5).

The single flow optimum scheduler that minimizes the average transmit power

while satisfying the bound on average delay is the solution to the following optimization

problem:

Α dynamic programming technique known as Value Iteration Algorithm is

utilized to solve this problem, which can be outlined as follows:

C(i, a) = Cost of doing action a in state i

Ρ (a) =Probability of transitioning from state i to state j under action a

x = Α predetermined state

C = Α small positive number that determines the stopping criterion.

k = k `h iteration of the algorithm



where ε is the Lagrangian used in (4.10).

There are two issues with respect to the implementation complexity of this single-

flow optimal scheduler. First of all, the number of possible states in the VIA increases

substantially for large buffer sizes L and hence, it is computationally involved. Secondly,

the algorithm depends on the knowledge about the arrival distribution, which may not be

available. When the arrival distribution is measured in real-time, the optimal scheduler

needs to be adapted as the measurements indicate a different arrival distribution, which

can lead to an intractable design. Apart from these, we have also observed that the

Lagrangian value ε used in (4.10) is mathematically very difficult to obtain, which is

another drawback of this optimal scheduler.

To alleviate these drawbacks, the authors in [27] presented a suboptimal

scheduler, called log-linear scheduler, which greatly simplifies the scheduler design at

the expense of slight performance degradation when compared to the optimal scheduler:
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where parameter x is chosen to meet the delay bound.

4.4.2 Power Efficient Multi User Scheduling

The multi-user scheduling is treated in a similar way to the single-user scheduling

problem [28]. Α time-slot system with K flows transmitted over a shared wireless

channel is considered:

Figure 4.2 System model for multi user scheduling.

The number of packets that arrive at queue i in time slot n is denoted by a ;  .

We also consider that at the beginning of the n th time-slot, there are x ' ,, packets in the

buffer of the i `h flow, υ ; „ packets are chosen by the scheduler for transmission and

power P „ is used for this purpose. Furthermore,  Μ. is the maximum number of packets

that can arrive at queue i in a time slot and L; denotes the buffer size. The arrival

process of each flow {a 1 „ } is independent and identically distributed (i.i.d.) from one
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time slot to another as well as being independent from the other flows. The average

arrival rate for flow i is Ε{Γ1 η } = λ; packets per time slot, and the size of each packet is

S bits. As in the single user scenario, the length of the time slot is Ί seconds, which is a

constant value. Therefore, the transmission rate is varied based on the chosen number of

packets υ, . In this case the buffer update is as follows:

In the multi user case, the set of all buffer states are represented by a 1 x K

The set of all possible buffer states { an } ί , where xń is a

specific value of a, , can be represented by Ω .

The average packet delay DB of user k can be computed via Little's formula as

follows:

where Lk is the number of packets in the kith buffer when buffer state is L'. A scheduler

is a mapping from the current buffer state an and the vector of channel states

to υ π and transmission power Ρ , where υ π implies both the number of

packets and the buffer chosen for transmission.

The actual transmission power depends on the specific multiple access scheme

used. In the following we assume a DMA system, and therefore the corresponding

power can be expressed as follows:
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where W is the bandwidth, F = 	 and k is the index of the user transmitting in time

slot n. Therefore, the total transmission power P is:

As in the single user case, zero outage schedulers are considered. Similar to the

requirements for the single user case, a randomized stationary multi-user scheduler is

zero outage, if and only if for each state x` E AZ , one of (1) or (2) below is satisfied. In

DMA systems, only one user can transmit in a certain time slot, and condition (3) below

also has to be satisfied:

(1) The stationary distribution is zero for state

(2) If Lk symbolizes the minimum number of packets transmitted from the k`" queue in

The objective in the multi-user scheduler design is to minimize the expected

transmission power while satisfying the average delay bounds of all users. The

optimization problem can be stated as follows:

where DE  o is the delay bound for the k ``` user, and D 0 = [D1,0 Di0 ... DKr 0 ] is the vector

of delay bounds. As in the single user scheduling case, Value Iteration Algorithm is used

to solve this problem, except that in this case VIA symbols have the following
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where ε is the Lagrangian

used in (4.16). Moreover, for TDMA systems, a Ξ u„ represents all υ„ that have non-

zero values for at most one element of υ„ . For finite state fading channels, there is a

separate state i for all different a„ and h„ combinations.

Nevertheless, VIA in multi-user case has the same drawbacks as in the single user

case. Therefore, suboptimal schedulers have been proposed to alleviate these

shortcomings. The suboptimal TDMA scheduler proposed can be stated as follows:

Step 1. Flow Choice: Given the vector of buffer states n, the index k of the flow chosen

to transmit is:

where the first condition ensures zero buffer overflow, whereas the second one chooses

the flow that is closest to violating its delay bound.

Step 2. Number of Packet5: The number of packets transmitted is computed using the

single flow optimal scheduling discipline of (4.10).



CHAPTER 5

PERFORMANCE EVALUATION AND DISCUSSIONS

5.1 Objective and Models

In this chapter, the performance of the proposed methodology is achieved via modeling

and simulation, using the OPNET Modeler. Specifically, two different types of

simulation scenarios have been considered, in both of which the route of a flow is

assumed to be predetermined. The first scenario evaluates the performance of a single

flow from source to sink, where the wireless links are assumed to be AWGN channels,

whereas in the second scenario two flows with different Dome requirements are

considered. In order to study the impact of traffic arrival distribution, either case is

simulated under both uniformly distributed and one-off arrival distributions.

The suboptimal DMA scheduler in [28] is modified by having the scheduler to

transmit according to the suboptimal log-linear scheduler rather than the optimal single

flow scheduler in step 2 of the algorithm. There are basically three reasons for this design

choice. First of all, the number of possible states in the VIA grows exponentially as the

buffer size and the number of queues in the system increases. Since there are only three

buffers in our case because there are three service classes at each router, it does not

contribute significantly to the computational complexity of the VIA. However, the buffer

size limitation is still in place and finding the optimal scheduler becomes computationally

intensive as the buffer sizes increase.

Secondly, the Lagrangian value ε in the VIA was found to be mathematically

very difficult to obtain, even for the single user optimum scheduler.

28
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Thirdly, VIA requires knowledge about the arrival distribution. In situations

where the optimal scheduler is adapted over time, the implementation of VIA can lead to

an intractable design. There are basically two options to obtain information about the

arrival distribution. The first option is that the arrival distributions can be measured in

real time; however, this option is not feasible not only because it introduces additional

implementation complexity, but also because the measurement results might be

inaccurate and can lead to erroneous scheduler decisions. The second option is that each

router along the path can compute its output distribution and send this information to the

next router along the path. Nevertheless, this option also introduces extra messaging

overhead in the network while the computation of the output distribution is not easy. This

may be illustrated for the one buffer and two buffer cases as follows:

where b denotes the output distribution of the router.
n

Since each router knows its own scheduler actions, αα k values are known;

therefore, the router only needs to compute its vector of stationary probabilities of the

buffer states: s = [5^ 5 1 ... sL ] . The stationary probability of buffer state j can be

Given the fact that all the stationary

buffer probabilities sum up to 1; i.e., Σ 5 Í =1, a system of L + 2 linear equations needs
1=o

to be solved.
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For the two buffer case, the expression for the stationary buffer probabilities is

even more complicated. The stationary probability of buffer state (x 1 , χi ) can be

Considering the fact that we have three buffers in our case, computation of the arrival

distribution is apparently intensive. Moreover, for Type 3 service vector case, rather than

being computationally involved, it is mathematically impossible to compute the arrival

distribution for a certain buffer, since the fact that a certain number of packets leave the

buffer of a certain service class at a router does not necessarily mean that they are going

to use the same service class at the next router. Therefore, even the suboptimal multi-user

scheduler where the optimal single user scheduler is used in the second step is impossible

to be implemented for the service vector scheme.

Due to the reasons mentioned above, the suboptimal multi-user scheduler

proposed by [28] was modified by having log-linear scheduler in the second step of the

algorithm. Besides, zero buffer overflow is also ensured by guaranteeing that

xk >_ (Lk — Mk),  for at most one k =1, 2,..., K . The limit on the output rate of the

scheduler was set to be equal to the maximum number of packets that can arrive at the

router in a certain time slot; i.e., the maximum number of packets that the scheduler can

transmit equals M 1 + M i + M i .

First of all, since the limit on the scheduler output rate is M  1 + M 2 + M i , the

maximum number of packets that can arrive at any buffer at the next router along the path

is M 1 + M 2 + M i . To ensure zero buffer overflow at this subsequent router, the buffer
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sizes for each of the service classes must satisfy: Lk >_ M, + Μ 2 + Μ i , for all

k = 1, 2, ..., K . Similarly, since the output rate limit of this second router is

3 x (Μ, + Μ 2 + Μ i ) , which is in turn equal to the maximum number of packets that can

arrive at any buffer at the third router along the path, the buffer sizes at the third router

must satisfy: Lk >_ 9x (Μ 1 + Μ 2 + Μ i ) , for all k =1, 2, ..., K . This exponential increase

in the buffer sizes as the number of routers along the path increases may be regarded as a

drawback of having zero buffer overflow on the entire path. Since buffer sizes cannot

grow indefinitely, there is a limit on the path length depending on the maximum buffer

size that can be allowed. One option to overcome this downside might be to allow packet

dropping at the routers, which could also lead to less power consumption since the

scheduler would not have to transmit at a higher rate as the buffer occupancies approach

the buffer sizes. On the other hand, having larger buffer sizes has the advantage of being

able to accommodate larger delays and hence, enabling less power consumption. In this

thesis, the (L, M) pairs are (20, 6), (60,18), and (170, 54) for the first, second and third

routers, respectively, along the path. The x parameters of the log-linear schedulers were

chosen to meet the delay bounds. Time-slot length for the entire system is

fixed; AS = 0.05s .

The average delay and average power relation of the log-linear scheduler for

(L, M) = (20, 6) is as shown in Figure 5.1. The required power decreases quickly as the

delay bound is relaxed from 0.1 to 0.2 seconds and the rate of decrease diminishes as the

delay bound is relaxed further.
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Figure 5.1 Average power and delay relation for suboptimal log-linear scheduler with
buffer size L=20 and maximum arrivals M=6.

On the other hand, Figure 5.2 illustrates the general behavior of the log-linear

scheduler for an average delay bound of 150 ms. For most buffer states, the scheduler

tends to transmit close to the average arrival rate 2 = 3 packets/timeslot. The maximum

rate of the scheduler equals M , the maximum number of packets that can arrive in a

timeslot and buffer overflows are avoided by transmitting close to M packets when an  is

close to L.
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Figure 5.2 Scheduler actions for buffer size L=20, maximum arrivals M=6 and
average delay bound of 150 ms.

As in [3], the source node sends a probing request to the network and gathers

information about each service class at the routers. However, unlike the case in [3], the

information that the routers attach to the probing acknowledgement packets is whether

the service class is available or unavailable. The availability/unavailability of each

service class is determined based on the arrival rate to that service class, which will be

explained in more detail in Section 5.2.1. The end host then determines the best service

vector among the available ones. The average delay bounds for the service classes are

defined in Table 5.1.



5.2 Numerical Results and Discussions

5.2.1 Single Flow Scenario Performance Evaluation and Discussion

34

Figure 5.3 System model for single flow scenario.

The direction of the data flow whose performance was evaluated is from node Α to node

Ε. The number of packets generated by node Α in one time slot is uniformly distributed

with a finite support, [0, ..., 41 i.e., the largest number of packets that arrive in a time
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slot is 4. Cross traffic is also uniformly distributed, and the maximum number of packets

that can arrive in a time slot for the background traffic flows is summarized in Table 5.2.

The buffering architecture at each router is illustrated in Figure 5.4:

Table 5.2 Summary of Background Traffic

Packets arriving at the router are placed in one of the three buffers depending on

their service vector; i.e., the service class they are using at that router, in a FIFO manner.

At the beginning of each time slot, the scheduler determines which buffer to serve and

how many packets to transmit from that buffer at that time slot. Since DMA system is

used, only one buffer is allowed to transmit its packets at a certain time slot. Then the

packets are taken from the head of the queue one by one in accordance with the scheduler

decision and the destination of the packets is checked. The packet is then sent to the
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appropriate next node depending on the destination of the packet. In other words, Class 2

packets following the path from node B to node D and packets with source node B and

destined to node C, which are Class 2 packets, are all placed in the same Class 2 buffer.

Figures 5.5 and 5.6 illustrate the average power consumption and delay of the

service class buffers at the routers along the path before the flow from node A to node E

starts sending traffic. Class 2 buffer at router 1 has significantly higher power

consumption than the other buffers at router 1 as well as the buffers at the remaining

routers. Besides, the average delay at this buffer is much better than its required value.

Although Class 2 is the service class with the least stringent delay bound requirement, the

average delay that it experiences is even less than the average delay of the service class 1.

The reason for this is that the cross traffic overloads class 2 at router 1. As the arrival rate

to a certain buffer increases quite considerably, the scheduler greatly increases the rate of

transmission mainly in order to prevent buffer overflows as well as to meet the delay

bound requirement. As a result, actual average delay of that service class becomes much

better than its required value at the expense of enormous power consumption.

Figure 5.5 Average power of the router buffers before probing.
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Figure 5.6 Average queuing delay of the router buffers before probing.

The method used in determining whether a service class is overloaded or not is

another important issue. Estimated or current average values of the buffer occupancies

might not reveal the congestion level of the service class. Especially if that service class

is the one with loose delay requirements, its buffer occupancy might still be substantial in

the routers that are not congested. In other words, there might not be a significant

difference in buffer occupancies for that service class in cases where the routers are

overloaded and in the ones where they are not. On the other hand, power consumption is

related to the output rate of the scheduler, which is in turn directly related to the arrival

rate. Therefore, estimated value of the arrival rate accurately reflects the fact that a

certain service class is overloaded and can differentiate it from the buffers that are not

overloaded along the path. Furthermore, schedulers have been designed according to the

maximum number of packets that can arrive to the buffer in a time slot. If more packets

than this value arrive at the scheduler, buffer overflow cannot be guaranteed anymore.

Due to these two reasons, it is crucial to determine whether the current maximum number
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of packets arriving at the scheduler in a time slot is already close to its upper limit or not.

Consequently, estimation of the arrival rate is used in this thesis to determine the

availability/unavailability of a certain service class in the probing phase. Exponential

moving average of the arrival rate is used in the estimation process. Considering that the

cross traffic is uniformly distributed, if the estimated value of the arrival rate is greater

, then the service class S i is marked as unavailable by the corresponding

router. The following expression is used in estimating the arrival rate, which is measured

in terms of packets/time slot.

where AS is the time slot length in seconds, rs  (t) is the estimated arrival rate for service

class S at time t , rs ; ,o1d (t) is the most recently updated arrival rate before t , As, (t) is

the interval between the arrival of the previous received packet of service class S and

the current time t , and K is a constant, which was selected to be 0.35 in this thesis. At

each router, rs is updated when a data packet of service class S i is received.

Figures 5.7a, 5.7b, and 5.7c present the corresponding exponential moving

average values of the arrival rates of the service classes at each router, which

demonstrates that the fact that only service class 2 at router 1 is overloaded in this system

is accurately reflected by the arrival rate estimates.



Figure 5.7.a Arrival rate estimates of the router buffers before probing.
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Figure 5.7.b Arrival rate estimates of the router buffers before probing.
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Figure 5.7.c Arrival rate estimates of the router buffers before probing.

The flow from node A to node E has an end-to-end average delay requirement of

950 ms. In the following the performance of three types of service vectors; i.e., Type 1

service vector (Conventional Static Service Mapping Scheme (EEAC-CSC)), Type 2 service

vector (EEAC with Single Class of Service Scheme (EEAC-CSC)), and Type 3 service

vector (EEAC with Combination of Service Classes Scheme (EEAC-SC)) are

evaluated. Since real-time data flows are assumed for the flows from node A to node E,

they always use service class 0 in EEAC-CSC scheme. Figure 5.9 demonstrates that all the

three schemes can satisfy the nonelastic end-to-end average delay requirement.

EEAC-SC results in longer end-to-end delay than EEAC-CSC because it tries to make use of all

possible combinations of service classes and makes each service class more loaded than

in the EEAC-CSC scheme; therefore, a packet may experience longer delay in EEAC-SC.

For the same reason, EEAC-CSC results in the smallest average end-to-end delay.

Figure 5.10 compares the average end-to-end power consumed by the flow from

node A to node E for the three types of scheduling schemes. Scheme 3 results in the

lowest power consumption, whereas Scheme 1 leads to the highest power consumption.
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This demonstrates that the proposed approach of implementing the new service vector

concept of allowing the data flow to choose different service classes at different nodes

along the path in combination with the described delay bounded formulation of multi-

flow wireless scheduling discipline results in significant power savings over the

conventional static service mapping (EAC-CS) scheme, as well as over the single class of

service (EEAC-SC) scheme. In other words, the method proposed in this thesis enables

the service vector concept, which was originally developed for wire-line networks, to

enhance the end-to-end QoS in wireless ad hoc networks.
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The performance of One-off traffic has also been evaluated, where the probability

of being in the On state is equal to the probability of being in the Off state and 4 packets

are generated while the On state. Figures 5.11 and 5.12 exemplify the average end-to-end

delay and power values of the same single flow scenario with this type of traffic. EEAC-

CSC scheme clearly outperforms the other two schemes also for the One-off arrivals. For

all the three schemes, One-off arrivals have higher power consumption than their uniform

arrival distribution counterparts. The reason for that, can be attributed to the fact that the

One-off arrival process requires the highest transmit power at any delay in an AWGN

channel among all arrival processes with the same average and finite maximum arrival

rate [27].
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Furthermore, the influence of different arrival rates has also been evaluated for

both uniform and One-off arrival distributions. Figures 5.13 and 5.14 demonstrate that the

proposed scheme outperforms the other two schemes for all of the arrival rates. The

performance difference in power savings increases as the arrival rate increases. The

exponential shape of the plots is due to the exponential relationship between rate and

power.



5.2.2 Two Flows Scenario Performance Evaluation and Discussion

44

Figure 5.14 System model for two flows with different end-to-end DoS requirements.

In this scenario, there are two types of flows generated by node A; i.e., Flow C which has

an end-to-end average delay bound of 950 ms. as in Section (5.2.1), and Flow D with an

average end-to-end delay bound of 750 ms. 50% of the traffic generated by node A is

Flow C and the remaining is Flow D. The total number of packets that can be generated

by node A in a time slot is uniformly distributed with a maximum of 4 packets/time slot

and cross traffic remains the same as in Section (5.2.1).

Figures 5.16 and 5.17 illustrate that EEAC-SC scheme can provide service

differentiation for these two different types of flows, whereas EEAC-SC and EAC-CS

schemes are unable to provide this differentiation since they map these two flows to the

same service vector. In other words, the method proposed in this thesis enables finer DoS

granularity both in terms of average end-to-end power consumption and average end-to-

end delay.
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r figure 5.15 Average end-to-end delays of the three schemes for two different flows with
uniform arrival distribution.

Figure 5.16 Average end-to-end power of the three schemes for two different flows with
uniform arrival distribution.
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Similarly, Figures 5.18 and 5.19 illustrate the end-to-end average delay and power

consumption for these two flows when One-off traffic is generated by node Α with the

same characteristics as the One-off traffic in Section (5.2.1). The finer DES granularity of

the proposed scheme is again evident. Due to the same reasoning as stated before, the

power consumption for each scheme with One-off arrivals is more than their uniform

arrival distribution counterparts.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

A novel DoS provisioning architecture for wireless ad hoc networks is proposed in this

thesis. An integrated scheme, which utilizes both link layer delay-bounded power

efficient multi-user wireless scheduling and the network layer concept of service vector is

introduced. It has been demonstrated through modeling and simulation that significant

power savings as well as enhanced DoS granularity and service differentiation capability

in wireless ad hoc networks can be achieved based on the proposed approach. The impact

of various traffic arrival distributions as well as flows with different DoS requirements on

the performance of the proposed strategy has also been investigated.

Due to the inefficiencies and implementation complexity of the optimal multi-user

wireless scheduler, suboptimum scheduler which can operate only in AWGN channels

has been utilized in this study. Extending this suboptimum scheduler to take fading into

account would be of high practical and research importance in order to investigate the

implications of fading on the performance of the service vector scheme. Furthermore,

probing process can be utilized to gather additional information regarding the channel

performance such as fading coefficients, which is usually unknown to the end user

device.

Throughout this thesis, service-based pricing with constant unit price at each

router was considered. Pricing schemes that encompass wireless channel performance

can be taken into account in order to improve the overall network operational

effectiveness and efficiency. In this way, the network may suggest its preference to the

end user, which will affect the decision of the end user in determining the service vector.
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