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ABSTRACT

EVALUATION OF KNOX GROUP CONTRIBUTION PARAMETERS
USING QUANTUM BASED MOLECULAR AND GROUP PROPERTIES

by
Myriad Carrillo

Thermodynamic property prediction through the group contribution methods has been

improving. However, the approaches considered in the past present not only limitations

on the physical basis but often have restrictions as to certain substances, such as isomers.

A new group contribution method is proposed that uses AIM theory, which is based on

computational chemistry and quantum mechanics, to overcome these limitations by

treating each molecule individually. An evaluation of this method as applied to the Knox

model is proposed and analyzed for Vapor Liquid Equilibrium (VALE) of mixtures with

the help of nine global parameters that are obtained by correlation.

This method is able to calculate with accuracy VLE for many systems. Both

binary and ternary mixtures have been evaluated and have shown that the model can

predict the behavior of the systems for several types of mixtures. The model has proved

to work well with systems that have presented trouble in the past, such as isomers or

polar mixtures, giving very small errors.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The primary objective of this research is to evaluate the thermodynamic property

prediction model proposed by Knox (Knox, 1987) using a new group contribution

method based on Atoms in Molecules (AIM) theory.

This research can be divided into four parts. The first part, presented in Chapter 2,

introduces the basis of the Knox model theory, the LINIFAC model, and the background

and steps followed to calculate the group properties that will be applied to the model.

Chapter 3 describes the implementation, and is divided into two main sections; the first

section shows the format in which the empirical data were collected and arranged in

several tables, to facilitate the calculations and later evaluation of the results. The second

section details how the model was coded into a program that not only calculates by the

Knox model, but applies a regression that estimates the global parameters required to

apply the new group contribution method.

Finally, the results of this research as well as a comparison with results from the

UNIFAC method are presented in Chapter 4, followed by the conclusions and

suggestions in Chapter 5.

1.2 Background Information

The calculation of thermodynamic properties has been a considerable help to the

1
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chemical industry, not only in the design process, but also as part of the quality control

and simulation of process behavior. As is known, the estimation of such properties has

been studied for decades, and in that process different methods - some more complex

than others - have been established. Even though these methods have proved very useful

for engineers, they present some limitations as well. These restrictions motivate the study

of new approaches that allow the estimation of these properties to be more accurate

utilizing fewer resources.

Acknowledging that, usually, experimental determination can be time consuming

and sometimes prone to error, this research assesses a model that does not require the use

of experimental data. Instead, the only tool required is a computer. This work will present

a new way to use an established thermodynamic estimation property model that applies a

functional group contribution method based purely on computational chemistry and

quantum mechanics. The results of this evaluation will address the accuracy and

usefulness of this model as well as offer new suggestions to obtain better results, and,

therefore, contribute to the search for easier methods that could help the accuracy of the

estimation of thermodynamic properties.



CHAPTER 2

BACKGROUND

The Knox (Knox, 1987) and LINIFAC (Fredenslund et al. 1975) models predict

thermodynamic properties for vapor-liquid equilibrium based on group-contribution

methods. Although these methods have been useful in the prediction of thermodynamic

properties, some disadvantages have been acknowledged. These methods are unable to

distinguish between isomers because they don't consider the position of the group in the

molecule. Additionally, different sets of parameters are required to calculate different

properties, which make the group-contribution methods more complex, resulting in

higher costs.

This research evaluates a possible solution for the Knox model based on quantum

mechanics and computational chemistry that calculates the properties of atoms and

groups utilizing Atoms in Molecules (AIM) theory. With these properties (dipole

moment, charge, polarizability, external surface volume, area, and the distance from the

center of the atom or group to its surface) the energy and structural contribution of the

system are estimated with the help of nine global parameters. These are obtained by

applying a nonlinear regression comparing the calculated pressures to a database

containing several Vapor Liquid Equilibrium (VALE) systems. These results for the Knox

model can be compared to similar results for the UNIFAC model.

3
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In order to understand the approach of this study, Chapter 2 introduces the Knox

model and the AIM theory. Additionally, some background about energy and a quick

review of the IJNIFAC model are presented.

2.1 Knox Model

The original Knox model (Knox et al. 1984) is based on a quasichemical expression for

local composition. The model used a single energy parameter per molecular pair

interaction, and one structural parameter per molecule. A later publication (Knox, 1987)

proposed a group contribution version that requires one energy parameter per pair of

groups and one structural parameter per each group. This work uses the Knox model with

the group contribution approach, applying the AIM-properties method to evaluate the

model parameters.

The development of the Knox model uses statistical thermodynamics, where the

canonical partition function Q is represented by (Knox, 1987):

Mk, = Mik and is the number of k-1 interactions assigned to groups type k. It must satisfy

the relation:



The number of groups of type k in the mixture, Mι, is given by:

Here, Pick is the number of groups type k in a molecule i, Zk is the characteristic number of

the interactions with other groups, and will be defined later as a structural parameter. Νi

represents the number of molecules i. W1', is a combinatorial factor for an thermal

mixture, and q is the molecular partition function for the molecule i.

The Knox model uses the limiting case of the Guggenheim equation for thermal

mixtures. The Knox expression for excess Gibbs energy (GE) of mixing is expressed as

follows (Knox et al. 1984):

where Oi represents the surface area interaction fraction for component i and is given by:



ψ is the volume fraction for component i and is represented by

The structural quantities ν1 and z1 are estimated by considering the volume and

area of the groups respectively. Both v and z, are given by the sum of the group values Lk

and Zk for all the groups in species i. The area quantity Lk uses one of the global

parameters Πχ. Both factors need AIM group properties La and Aka that will be described

in the next section.

Therefore, ν; is expressed as:

where Zk is

and V k, as defined earlier in this section, is the multiplicity of groups; in other words, the

number of times a group or atom is present in compound i.

The local compositions are defined as
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These equations relating the local composition are obtained by minimizing the free

energy of the system subject to the conditions above, resulting in

The local group composition ykl and the group interaction fraction O k  require a

numerical solution for the mixture of the groups or for the pure component (ykl ). This

numerical solution involves an iterative process as described in previews work (Knox et

al. 1984; Knox, 1987), and is detailed here.

The first step is to determine the largest value of the group interaction fraction for

the pure molecule €4 expressed with Equation (2.14), or for the mixture Ok, expressed

with Equation (2.15)
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Once the group with the largest O, species k, is obtained, Equation (2.16)

estimates the initial value for rl,

and β depends on the interchange energy Ck - defined later in this section - and is

expressed as:

When rkinitial is obtained the iteration starts employing the following formula

r

kidnitial
 values are plugged into Equation (2.19). If the differences between the old and new

rk values are higher than the tolerances x 10 -6), then the new calculated rk values are

plugged into the same equation until the limit is reached, or the maximum number of

iterations exceeded. If the difference between the old and new rk values are lower than
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the limit, then the ra values are accepted and the Oki values are calculated with Equation

(2.20)

for 1 = k this reduces to an identity.

As expressed in the Knox model (Knox et al. 1984), Equation (2.21) defines Cal in

relation to the interchange energy,

where T is the temperature and kJ  is the Boatsman's Constant

The calculation of the energies is obtained by applying the properties of the

groups and atoms calculated with AIM, using eight global parameters

PG. Pπ and Ps).

The Coulomb energy formula uses the charge q and is expressed as:

The contribution for the dipole moment μ is,

the charge-dipole moment energy is calculated by,
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the combination of the polarizability, a, and charge contribution is expressed as,

the Polarizability-dipole moment contribution is:

The contribution for polarizability is given by,

The combination of all the contributions formula is,

The repulsive contribution is expressed in terms of the orbital exponent

ξ contribution and is expressed with the following equation (Arturo, 2005),

Where R12 is
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and where rang is the distance to the nuclei of the group. Α deeper explanation of

these energies is found later in this chapter.

In order to obtain the pressure of the system, the activity coefficient (M) should be

found. From the excess Gibbs energy, the can be expressed in terms of ψι, Θ, ν 1, χ,, Oχ,

Ykk and Zk as follows (Knox,1987):

Once M is calculated, the fugacity correction factor (Φ1) for each component is

estimated as follows (Smith et al. 2000)

Β is the second viral coefficient and PSAT the vapor pressure, and their calculations are

shown in the next chapter.

Finally, the pressure of a VALE system is obtained by an iteration between

Equations (2.33) and (2.35) (Knox, 2004)
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The Knox model presented here requires nine global parameters that will be

calculated by this work as well as the energy and structural properties of each molecule to

be studied. An advantage over previous methods is that the molecular properties should

be calculated only once and the acknowledged problems with the old group contribution

methods based on binary interactions are eliminated. Furthermore, the number of

parameters utilized by this method is limited and can be universally used for different

types of substances.

2.2 LINIFAC Model

The Knox model was introduced as an alternative to the LINIQIJAC and IJNIFAC

models. LINIQIJACAC, is based on the two-fluid theory that was also later employed by

LINIFACC. Since one of the objectives of this work is to compare the Knox model results

with analogous results by LINIFAC done by Kim (2005), this section makes an

introduction to this model with the AIM properties functional groups treatment.

The original LINIFAC model (Fredenslund et al. 1975) is an extension of the

IJniversal Quasi Chemical theory of liquid mixtures (IJNIQIJACAC) combined with the

functional group concept. UNIFAC activity coefficients are found using group

interaction parameters. The molecular activity coefficient is divided into two

contributions, the first one based on the molecular size difference, and the other on the

molecular energy interaction contribution. Therefore, the activity coefficient of

component i is given by:



where the combinatorial contribution is expressed as follows:

The volume fraction, 8Ui, is calculated by

where rυt is

and Vk is the volume of the group given by the AIM properties.

As for the surface area fraction, 8Ui, the equations are

and Qk is obtained with the area of the group from the AIM properties and a global

parameter Ρκ,

13

Finally, λi is given by,
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The residual contribution part yR  requires the use of the energies and can be

obtained with the following equations:

where Για is the group residual activity coefficient, and r`l)k is the residual activity

coefficient of group k in pure species i. Both are represented by,

where the area fraction of group m, 8Um , is calculated with the mole fraction of the group,

Am  and Qum as follows,

The group interaction parameter Ψnm is temperature dependent and is described

as,

where the energy contribution, εnm, is obtained using Equations (2.22) to (2.31).

A more detailed explanation of the application of the AIM group contribution

method applied to the IINIFAC model can be found Kim (2005). Results of this research

will be discussed in Chapter 4.
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2.3 Energies

The energy between two molecules depends on the collection of different molecular

forces. In the search for the energy contribution to the Knox model, these quantities

should be estimated considering the different types of interaction contributions. This

section presents a short introduction to these forces.

The electrostatic potential is given by Coulomb's relation, in which two electric

charges, Ai and Q2 that are separated by a distance r have an intermolecular energy given

Another electrostatic potential would occur when a particle has uneven spatial

distributions between the negative electronic cloud and the positive charges of the nuclei.

This particle would have a permanent dipole moment (μ), and the interaction of two such

particles is given by Equation (2.49),

where Θ and φ represent the orientations of the dipole axes.

Polarizability (α) measures how easily the electron cloud can be displaced by an

external electric field. The quantum mechanical approach presented by London is given

in Equation (2.50) (London, 1937)
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where ν0 is the characteristic electronic frequency in the unexcited state. However, /z(vo)

is approximately equal to the first ionization potential I,, and thus the induction energy

can be represented by

Combinations of these energy interactions also occur. Therefore, a charge-dipole

interaction is given by the following non-averaged expression:

Induction forces between a charge and a polarizable electron cloud are expressed

and the potential between a dipole and a polarizable electric cloud field is given by

The energy between two molecules can be found by adding all the electrostatic

and charge-dipole interactions along with the dispersion and induction interactions.

The last energy contribution involves the orbital exponent ( ξ) which determines

the spatial extent of the wavefunction. This factor is used to minimize the system energy.

The treatment of this energy contribution is developed in Hart, J. R. & Rapped, A. K.

(1992) and Engkvist, O., Astraiid, P. & Κarlstrδm, G. (2000).
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2.4 AIM Theory

During modern times, group contribution methods have been widely used to predict

chemical properties. These group contribution methods yield properties that otherwise

would be difficult to find in a variety of different physical and chemical conditions. In the

field of thermodynamic property prediction, several methods have been proposed, and

their results have been satisfactory. However, some difficulties and the disadvantages

already mentioned indicate a need to find better methods that don't require extensive data

on related systems and that adjust better to a wider variety of substances.

As was mentioned in the begirming of this chapter, the purpose of this research is

to evaluate the use of AIM theory to calculate parameters for use in the group

contribution models discussed in the previous sections.

AIM theory was created by Professor Richard F.W. Bader at McMaster

IJniversity (Theory of Atoms in Molecules., 1995), and employs the molecule structure

hypothesis in which a functional grouping of atoms have an additive and characteristic

set of properties. The AIMPAK and ΑΙΜ2000 software (AIMPAK, 1982; ΑΙΜ2000,

1998) and related calculation methods allow the computation of these functional group

properties.

The theory of atoms in molecules is based on the generalization of quantum

mechanics to a subsystem of a total system, and this subsystem is bounded by surfaces

with zero flux density. (Bader, R. F. W. & Becker, P., 1988). (Bader, R. F. W. & Bayles,

D., 2000).

Energy and structural properties such as charge, dipole moment, polarizability,

volume and surface area are obtained by AIM theory. Thus, the electron density describes
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the electronic charge of the atom to be studied; the dipole moment vector is given by this

displacement of the negative and positive charges. The total polarization of a molecule

for AIM theory is the sum of atomic contributions, and is determined by the polarization

of the atoms and by the transfer of charge between them, as caused by an externally

applied field (Bader, R. F. W. & Lading, Κ.Ε., 1990).

As for the structural parameters, the volume of the atom is measured by the

intersection of an envelope of the charge density and the atomic surface of zero flux. The

atomic surface is the space within which the integrations take place (Bader, R. F. W., et

al. 1987).

The method to calculate these properties have been detailed by Arturo (I005).

Basically, this process required that three main stages be followed.

The first stage determines the ground-state geometry of a molecule and the

functional by applying a rotational conformer search with multiple geometry

optimizations through the Gaussian 98W package (Gaussian 98W, 1998). The initial

guess is performed at a very low level and basis set using HF/6-31 G method. Then, a

MΡ2(full)/6-31++G** method that reflects a intermediate theoretical level and a

moderately sized basis set is executed. The following step is to calculate the single point

energy of the group at a high theory level and a large basis set (MΡ2(full)/ΑIJG-cc-

pvDZ). Finally, in order to calculate the polarization, the single point energy

calculations are performed three more times —one each for an electrical field applied in

each direction- to determine the response of the electron density.

The second stage is to determine the functional groups to be calculated for each

molecule. Artery's work classified eight groups which are CHI, CHI, CH, C, H, N, Ο
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and F. Once the atoms are assembled into functional groups, the estimation of the

properties applying AIM software —PROAIMV- (Biegler-Κδnig & Bader. 198I, Siegler-

Κδnig, I001; Biegler-Κδnig et al. I001) will give way to the last set of calculations.

The third stage determines the energies, partial charges, volumes, and dipole

moments in the ground state. Then, the software must calculate the partial charges and

dipole moments under three electrical fields and different critical bond points than those

used in the begirming. Subsequently, the exposed surface area, the average distance to the

exposed surface area and the volume of the group are calculated using a Monte Carlo

routine in which the critical points of the group and the functional of the molecule are

needed. Finally, the properties are estimated and tabulated.

As mentioned before, this routine calculation is applied just once on each

substance treated which is an advantage over other group contribution methods.

However, the processing time depends on the size of the molecule.

As a result, this research will work with relatively small molecules, but it is expected that

in the future faster computers will solve this limitation.



CHAPTER 3

IMPLEMENTATION

In order to study the performance of the Knox model using parameters determined from

AIM properties, it was necessary, to assemble a vapor-liquid-equilibrium (VALE)

database; assemble a database of the molecular and group properties of the compounds

that were going to be used; create the algorithm for the Knox model and code it; apply a

non linear regression utilizing the empirical database, and, finally, find the best approach

to obtain the most accurate results possible with the nine global parameters. This chapter

will explain each step that was followed.

3.1 Experimental Database

The first step was to select the compounds and type of data that were to be studied.

Because of time limitations, no large molecules were selected, as well as no cyclic

compounds due to numerical complications related to their structure. Additionally, in

order to assure applicability to a wide range of compounds, molecules were selected from

several different chemical groups, as indicated in Table 3.1.

Table 3.1 Chemical Categories to be Studied

Alkenes 	 Carboxyl Acids
Aliens	Nitrides

Alcohols 	 Nitroalkanes
Ethers 	 Ketones
Amine 	 Esters
Amides 	 Inorganics
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Once the list of compounds was narrowed, the second step was to choose the type of

data that was going to be used. For this research, the data type chosen was Vapor-

Liquid- Equilibrium (VALE). Binary and ternary mixtures at both high and low pressures

as well as geotropic systems were included.

The database structure was designed based on five tables that would give the most

effective approach to run the model, the regression, and, finally, to analyze the results.

These five tables are as follows:

1. compound properties table

2. groups AIM properties table

3. vapor pressure table

4. data table

5. references table

3.1.1 Compound Properties Table

To identify the molecule this work uses a Compound Identity Number (CD) as well as

the name of the molecule. The compound properties that are reported in the tables are the

critical properties, acentric factor, molecular weight, molecular dipole moment, liquid

volume at a reference temperature, ISM (a code used to classify the compound into one

of six different groups according to their chemical structure and used when applying the

Tsonopoulos correlation (Poling et al. I001; Tsonopoulos & Dymond, 1997)). Finally,

the CAS Registry Number (CAS No) (CAS Registry Number, I005). The compound

properties were taken from different sources (Poling et al. I001; Chemistry WebBook,
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2003; CLERIC, 2005; Yaws, 2005). The structure of the compound properties table is

shown in Table 3.I.

Table 3.2 Compound Properties Table Structure

3.1.2 Group AIM Properties Table

The group AIM properties table reports the different energy contributions per group. The

values of these properties are taken from Arturo (I005). The structure for this table is

given by Table 3.3 and contains the CD, the degeneracy, or multiplicity of the groups,

the charge (A) for the group, its dipole moment (μ), polarizability (α), volume (V),

surface area (A), and distance from the nuclei (rag ), and the orbital exponent. The



23

information to identify the type of group is displayed in the field group_name, and,

finally, to recognize the molecule the name of the compound is also reported.

Table 3.3 Group AIM Properties Table Structure

3.1.3 Vapor Pressure Table

The program will calculate the vapor pressure using the different correlations taken from

the literature (Poling et al. I001; Chemistry WebBook; I003, CLERICS, I005).

Depending on the working temperature, the program will apply different equations and

report it in the experimental data table. The vapor pressure table is presented in Table 3.4.



Table 3.4 Vapor Pressure Table Structure
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3.1.4 Empirical Data and References Tables

All of the data for all the systems have been put together in a single table to allow the

regression to use all of the datapoints for the various systems, so that the global

parameters will adjust better to all kinds of systems. The table was made assuming that

all systems have three compounds; if it is a binary system, the third component column is

empty. The composition is reported just for the first component if it is a binary system,

and if it is a ternary system a second composition will be specified. The number of

components is also given in this table.

Temperature and pressure are reported as in the original article and converted to

the units used by the program. The program calculates the vapor pressure according to

the appropriate correlation. The structure of the experimental data table is reported in
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Table 3.5. An additional field is added in this table to report the article by the reference

number. This number leads to another table that presents all the information about the

source article. Table 3.6 shows the structure of this last table of the data base.

Table 3.5 Experimental Data Table Structure



Table 3.6 References Table Structure
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These five tables will interact. This and the procedure to find the pressure and the

nine global parameters will be explained in the next section where the code is detailed.

3.2 Code Description

The code is divided into three main parts. The first reads the tables, uploads the

information to the computers memory and calculates the properties required for the

models such as vapor pressures of the pure systems, liquid molar volumes, and the

second viral coefficients. The second calculates the structural parameters with the

conditions and properties given in the tables, based on the Knox model and the AIM

properties. Finally, the third part computes the pressure according to the Knox model by

applying the approach described in Chapter I. The programming language was ABA

(Visual Basic for Applications) through Microsoft Excel Macros. The structure of the

program is detailed as follows.
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3.2.1 Read Database

The steps to read the database are as follows:

1. Read the experimental data table row by row

2. Read the number of compounds

3. For each compound, read its properties from the compounds properties table

4. From the Group AIM Properties Table read the AIM properties

5. Calculate the liquid molar volumes with the following formula (Poling et al.

I001):

6. The program will estimate the vapor pressures PsAr from the vapor pressure

constants using the appropriate correlation according to the working temperature

and the ranges reported in the sources. The equations applied are as follows:

a) Vapor Pressure Equation 1 (Poling et al. I001):
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7. Calculate the virial coefficient for each component by applying the Tsonopoulos

correlation (Poling et al. I001; Tsonopoulos & Dymond,1997). For a pure

component the second virial coefficient is calculated by applying equation (3.8)

were ι ^ί (i ) anus ι 3Ιs(,) aepena on me hype ΟΙ suosτance ireaieu.

Table 3.7 Calculations of TSA(1 and TSB ( ; ) for the Second Virial Coefficient*

Where μ r is the molecular reduced dipole moment and Tr is the reduced temperature,

expressed by equation (3.9) and (3.10) respectively.



The approach for the second viral coefficient for the mixture is slightly different.

The pseudo critical temperature for the unlike pair of molecules is calculated by Equation

(3.15) where ΤΚιH also depends on the type of the pair of substances. IJsing the type

shown in Table 3.7 , TKjj can be obtained with Table 3.8.



Table 3.8 Calculation of TKIJ
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Finally, By for a pair of compounds is computed with

where F0, Fl, FI and F3 use Equations (3.11) to (3.14), and TSAIJ and TSBIJ are given

by

And RTP equation is as follows:

The steps from 1 to 4 will be shown in

Figure 3.1, and steps 5 to 7 in Figure 3.I.



Figure 3.1 Read database.
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Figure 3.2 Calculation of liquid molar volume and vapor pressure for component i and
second virial coefficient.
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3.2.2 Apply the AIM Properties to Knox Model

The second part of the code utilizes the AIM properties to evaluate the group parameters

that are needed for the Knox Model. The basic steps are described as follows:

1. The first step is to get the AIM properties for each of the groups in the system,

and then, with these properties, the energies are calculated using the global

parameter values that are being fit (Figure 3.3)

2. The next step calculates the group quantities Zk, and CJ with the properties

previously obtained. This step is shown in Figure 3.4.

3. The last step in this section is the calculation of the structural parameters ν i, and z

required for Knox Model, and this step is also described in Figure 3.4.



/Figure 3.3 Group properties and calculation of group energies.
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Figure 3.4 Calculation of the structural parameters and interchange energy for Knox
model.
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3.2.3 Pressure Calculation According to Knox Model

The pressure calculation requires the iteration mentioned in Chapter I, in which the group

compositions yYki are obtained. This iteration is called SOLVE and is shown in Figure

3.5. Finally, applying all the previous calculations Figure 3.6 shows the steps to follow to

calculate the pressure, for one datapoint.

Figure 3.5 SOLVE subroutine to calculate the group interaction fraction Oki.



Figure 3.6 Calculation of pressure through the Knox model.
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3.2.4 Estimation of the Global Parameters through Regression

The main process to estimate the global parameters involves nonlinear regression (Knox,

198I) that is done using Barker's method for the pressure calculation for all the

experimental datapoints. The initial guesses for the energy parameters are related to the

Boltzmann's constant and are shown in Table 3.9 as well as the equation.

Table 3.9 Initial Energy Parameter Values

Α deeper explanation of the physical basis for these expressions for the initial

parameters can be found in Hirschfelder, J. O., et al. (1964).
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The regression first obtains the initial parameters and their restrictions. With the

initial values, it then reads each datapoint and calculates its pressure by applying the

Knox model using parameters based on the AIM properties, calculates the deviations

from the experimental data and, then adjusts the parameters. This process is repeated

several times. Once the deviations don't change significantly, the regression stops and

reports the new parameters and the new results. The entire code is displayed in Appendix

Α.



CHAPTER 4

RESLILTS

4.1 Database LIsed to Fit the Global Parameters

The experimental data that werecollected to fit the global parameters is summarized in

Table 4.1. Table 4.I presents each system with its number of datapoints, ranges of

pressure and temperature, and reference number.

Additionally, a summary organized by chemical categories is provided in

Appendix B. The first two tables in the appendix report the number of datapoints and

number of systems, their maximum and minimum temperature and pressure, as well as

the number of isothermal and isobaric systems, all organized by chemical category. The

other two tables summarize the same information but for the mixtures organized by

combinations of chemical categories. Appendix C reports the reference for the articles

that were used to generate the database used in the calculations.
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Table 4.2 Systems Summary

42



Table 4.2 Systems Summary (Continued)
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Table 4.2 Systems Summary (Continued)
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Table 4.2 Systems Summary (Continued)
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4.2 Process to Fit the Parameters

After some trials, it was found that fitting several parameters at the same time, would not

give adequate results. Therefore, different fitting parameter processes were tested to

evaluate the one that would lead to the best calculations. As a result, a new fitting process

was established, and is described as follows. The first three parameters to be fitted were

the parameter for the structural contribution Ρk, the parameter for the Coulomb energy,

ΡΑ, and the charge-dipole moment energy parameter, PBS. The other parameters were not

involved in the calculation process at this stage (i.e. they were kept constant with a zero

value). Subsequently, one energy parameter was fitted at a time along with the structural

parameter Ρκ, keeping the others constant. In consequence, for the next step, the values

obtained for PA and PBS were kept constant and the energy parameter to be fitted was the

charge-dipole moment-polarizability parameter Pπ. Once Pπ was obtained, it was fixed
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along with PA and PB, and the repulsion energy parameter PH was calculated. The

polarizability-charge moment parameter PG, polarizability-charge parameter PD, dipole

moment parameter Π , and polarizability parameter, PG, were fitted in that order,

following the same method as before. When all the parameters have been calculated, a

last fit is done with all the parameters.

Table 4.3 shows the nine steps fitting process with the values of the parameters

for each from 1 to 8. The final parameters were obtained after fitting all the parameters in

Step and are reported in Table 4.4.



Table 4.3 Fitting Parameter Values



Table 4.4 Final Parameter Values
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4.3 Results

Selected systems have been plotted to understand how the model predicts the behavior of

the different categories of chemical mixtures. The summary of these systems is presented

in Table 4.5. In addition to the experimental and calculated results, some figures present

calculations using the UNIFAC model. These results were obtained from Kim (2005).



Table 4.5 Report of Figures for Chemical Categories Mixtures
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From the figures it is possible to see that the model studied in this research can

predict most of the behavior of both isothermal and isobaric systems with very accurate

results. Isothermal systems, such as ethanol-water, lpentene - methyl acetate, ibutanamine -

hexane, propanenitrile — ethanenitrile, acetic acid - ethyl acetate, n-ethylethanmine - ethyl acetate

or n-ethylethanmine — proponent, are predicted with almost no error. For instances, in systems

like hexane — ethanol or ibutene - 2butanol, the model predicts the behavior of the isothermal,

with only some minor error that are seen from the graphs. Among all the isothermal presented

below, ethanenitrile — pentane and diethyl amine + propanenitrile are the only systems that are not

predicted well by the calculations. It is important to highlight that the water - diethyl ether
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system (Figure 4.18) presents a Liquid- Liquid- Equilibrium (MLLE) phase that is remarkably

predicted by the Knox model.

The isobaric systems presented in the graphs, show very precise results. Laving,

for example, the Imethyl-Iprορanοl + isobutanol system, the predictions of the model

show a very low error, moreover, taking into account that the two molecules are isomers.

Figure 4.1 Diethyl ether + methanol system at 353.15 K

Figure 4.2 Ethanol + water system at 323.15 K



Figure 4.3 Lexane + ethanol system at 473.15
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Figure 4.4 1-Butene + 2-Butanol system at 3I6.16

Figure 4.5 2methyl -2propanol + isobutanol system at 94.9 KPH



Figure 4.6 Butanone + 2methyl-2butanol at 101.3 KPH
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Figure 4.7 Vinyl Ethanoate + 2methyl-2butanol

Figure 4.8 Nitroethane + methanol at 101.3 KPH



Figure 4.9 Butane + dimethyl ether system at 293.15 K
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Figure 4.10 Pentane + methyl acetate system at 323.15 K

Figure 4.11 propene + dimethyl ether system at 313.1 K



Figure 4.12 ibutanamine + hexane system at 373.1 K
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Figure 4.13 n-Ethylethanmine + ethyl acetate system at 297.98 K

Figure 4.14 n-Ethylethanmine + proponent system at 323.15 K



Figure 4.15 diethyl amine + ethanenitrile system at 323.15 K
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Figure 4.16 Acetic acid + ethyl acetate system at 323.15 Κ

Figure 4.17 Methyl acetate + ethyl acetate system at 323.15 K



Figure 4.18 vvater t uimernyi erner at _5ι3. ι ) η
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Figure 4.19 Ethanenitrile + pentane system at 313.15 K

Figure 4.20 propanenitrile + Ethanenitrile system at 313.15 K



Figure 4.21 Ethyl acetate + nitromethane system at 101.3 KPa

Comparing this research with a parallel study with the UUNIFAC model and AIM

properties (Kim, 2005), the figures show that, in general, the predictions for the model

studied in this research are more accurate. With the exception of a couple of systems,

such as, methyl -propanone + isobutanol and hexane + ethanol, the Knox model better

predicts the behavior of the systems, and has a better precision.

Additional to the graphs, Table 4.6 reports the average error for each system

sorted by their chemical categories mixtures. Thus, the results show that alcohol-water

systems present low average errors as well as alcohol-water mixtures. Furthermore,

amine-alkane, amine-ketone, ester-alkane, alkene-ester, alkene-ester, amine-alkane,

carboxylic acids-ester, ester-ester, ester-ester, amine-alkane, nitrile-nitrile and nitrile-

nitrile systems are very well predicted by the model.

Except for mixtures such as methanol - 3methyllbutanol, ethanol-dimethyl ether

or methanol- proponent, the systems with alcohol-alcohol, alkene-alcohol and alcohol —

ketone mixtures show only small or insignificant errors. IJnfortunately, alkene-alcohol,

nitro —alcohol, nitriles-alkanes as well as alcohol-alcohol present some deviations and
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some of them have average errors above 20%. Some explanations for these deviations

can be that the types of molecules that present problems were not well represented in the

database or that these molecules are not well described by the method proposed.

For the ternary systems, such as ether-ethanol-water and diethyl ether-

ethanol-water, the results show very good predictions. The table also reports an average

error around 10 % for propanone-2butanol-2propanol as well as for the lpentanol -

lpropanol-water mixture and above 20% for the two ternary systems remaining



Table 4.6 Average Errors Reported by System
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Table 4.6 Average Errors Reported by System (Continued)
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Table 4.6 Average Errors Reported by System (Continued)

61



Table 4.6 Average Errors Reported by System (Continued)
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CHAPTER 5

CONCLLISIONS

The results introduced in Chapter 4 demonstrate that using the Knox model with the new

group contribution method based on AIM theory is able to predict with accuracy VALE for

many systems. Both binary and ternary mixtures have been evaluated and have shown

that the model can predict the behavior of the system for several types of mixtures.

Moreover, the model has proved to work well with systems that for different reasons

have presented trouble in the past, such as isomers or polar mixtures, giving very small

errors. When comparing the Knox model with IJNIFACC, applying the same method for

evaluation of the group contribution parameters, the results show better behavior

predictions and more precise results.

A few systems presented significant errors. One of the reasons could be

that when doing the fitting process, the database did not have sufficient representation of

those types of molecules. Another cause may be that the molecular behavior of those

systems is not well described by the method proposed in this research. Therefore, a

deeper study on such systems can be done to improve the reliability of the model. Work

by Arturo (2005) suggests that a new version of the model that also tracks next-cormected

atoms, would be even more successful.

The database built in this work required an extensive searching effort, which,

once more, demonstrates the need for of a dependable method to predict such

thermodynamic properties. For this reason, more research should be done not only to
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perfect the prediction of the systems, but to expand the number of molecules studied in

this work. Some limitations, such as the size of the molecule will soon be overcome with

faster computer technology. Α remarkable result obtained by this research was the

prediction of a liquid-liquid equilibrium system, inviting a deeper study in this subject.

To conclude, the method presented by this research is able to accurately predict

thermodynamic properties for the most of the systems studied. Α further study that

involves more systems and new molecules can be done, to expand the use of the Knox

model and the AIM-group contribution method.



APPENDIX A

CODE

Appendix A displays the actual code that was used to evaluate the Knox Model using

AIM groups properties.

A.1 Read Database Code
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PCup(Ι, Row) = CDbl(Cells(5, 22).Value)
VCup(Ι, Row) = CDb1(Cells(7, 24).Value)
Wup(Ι, Row) = CDbl(Cells(9, 24).Value)
DPup(Ι, Row) = CDbl(Cells(10, 24).Value)

'Critical Pressure per Compound
'Critical Volume per Compound
'Acentric Factor per Compound
'Dipole Moment
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'Liquid volume at a reference temperature in cc/mol
VLIQRup(Ι, Row) = CDbl(Cells(11, 24).Value)

'Average radius for each type of group
TLΙQRup(Ι, Row) = CDbl(Val(Cells(12, 24).Value))

'Integer noting compound "class" for Tsonopoulos
ITSMup(Ι, Row) = Clnt(Cells(13, 24).Value)

'Groups

Sheets("GroupAIMPropertiesTable").Select
For J = 1 To NGIup(Ι, Row)

Cells(2, 24).Value = CΙDup(Ι, Row)
Cells(2, 22).Value = J
'Number of groups of each type in each molecule

NGQup(Ι, J, Row) = CΙnt(Cells(5, 24).Value)
IGCLup(Ι, J, Row) = CDbΙ(Cells(3, 24).Value)
GQup(Ι, J, Row) = CDbΙ(Cells(7, 24).Value)
GMUup(I, J, Row) = CDbl(Cells(10, 24).Value)
'Group polarizability for each group type
GALup(I, J, Row) = CDbl(Cells(11, 24).Value)
'Group volume for each type of group
GVup(Ι, J, Row) = CDbΙ(Cells(12, 24).Value)
'Group area for each type of group
GAup(I, J, Row) = CDbΙ(Cells(13, 24).Value)
'Average radius for each type of group

GRup(I, J, Row) = CDb1(Cells(12, 24).Value)
GEup(Ι, J, Row) = CDbΙ(Cells(8, 24).Value)
GLup(Ι, J, Row) = CDbΙ(Cells(9, 24).Value)
GXiup(Ι, J, Row) = CDbΙ(Cells(15, 24).Value)

Next J

Next I

Uploaded = True

Call VaporPressure(RowD)
Call LiquidMolarVolume(RowD)

'Group class for each group type
'Group charge for each group type
'Group dipole for each group type

End Function

Sub LiquidMolarVolume(RowD As Long)
Dim EX As Double

For Ι = 1 Το NCup(RowD)
EX = (1 - Tup(RowD) / TCup(Ι, Row)) Λ (2 / 7) - (l - TLIQRup(Ι, Row) / TCup(Ι,
Row)) Λ (2 / 7)
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1.11



ICG(NG) = IGCL(l, J)
DG(NG) = GQ(I, J)
PG(NG) = GMU(l, J)
DG(NG) = GL(l, J)
DG(NG) = GL(l, J)
DG(NG) = GL(1, J)
ICG(NG) = GIC(l, J)

Next J
Next Ι

For J = 1 Το ONG
XG(J) = GQUANT(J) / EX

Next J

'Group class for each group type
'Group charge for each group type

'Group dipole for each group type
`Group polarizability for each group

'Group exponential orbital

'Group composition
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'*** Calculation of Energies
EJK = GroupEnergies(B, Row, RE, DE, DE, PE, ONG, Τ, ICE)

'*** Models to Calculate Pressure
PCALCs = Models, Row, T, AE, VG, EJK, NU, PAT, DEL, VALID, BVIR, XI, NE,
NC)

PressureCalculation = PCALCs

End Function

Function EroupEnergies(BPAR, Row As Long, RE, DE, DE, PE, NE As Integer, T As
Double, ICE)

Dim RADA As Double
Dim Equ As Double
Dim Equa As Double
Dim Eau As Double
Dim Ea As Double
Dim Eau As Double
Dim Ea As Double
Dim Equal As Double
Dim Ere As Double
Dim Rob As Double

Dim BNB As Integer

ReDim PAR(1O) As Double
ReDim EJKs(50, 50) As Double

BN0 = 2
For t=2To9

If CountB(I) = 1 Then



PAR(2) = BPAR(BN0)
ΒΝο = ΒΝο + 1

Else
PAR(2) = StickB(I)

End If

Next I

For L = 1 To NEB
For k = 1 To NEB

RADA = RE(L) + RG(k)

'**** positive correlation constants
Eqq = PAR(3) * DG(L) * DG(k) / RADA
Equ = PAR(2) * (QG(L) * DE(k) + DG(k) * DG(L)) / RADA Λ 3

Ευ = PAR(2) * (DG(k) * DE(L)) / RADA Λ 2

Rob = (XiG(A) + XiG(A)) * RADA /3
Erep = PAR(2) * (Exp(-Ro) * (1 + Rob + (1 / 2) * Rob Λ 3)) Λ 3

'**** negative correlation constants
Eaq = (QG(J) Λ 3 * PG(k) + DG(k) Λ 3 * DG(J)) / RADA Λ 2

Ea = Eaq * PAR(5)
Eau = PAR(2) * (DG(L) Λ 3 * PG(k) + DE(k) Λ 3 * PPG(J)) / RADA Λ 2

Ea = PAR(2) * RE(J) * RG(k) / RADA Λ 2
Equa = PAR(2) * (QE(L) * DG(L) * RG(k) + DE(k) * DG(k) * PG(J)) / RADA Λ 5

EJK5(J, k) = Eqq + Equ + Ευυ + Ea + Eau + Ενα + Erep + Equal

Next k
Next L

EroupEnergies = EJK

End Function

Α.3 Pressure Calculations Code

Function Models(BDAR, Row As Long, T As Double, AE, VG, ELK, NU, PSAT, DEL,
VLIQ, BVIR, XI, NEB As Integer, NC As Integer)

'**** For Knox Model
ReDim ΖΚ(50) As Double 	 'structural Contribution
ReDim ΖΙ(2) As Double 	 'degeneracy * area(ZK)
ReDim VI(3) As Double 	 'degeneracy * v
ReDim ΥΚΙ(50, 2) 'for local groups fractions
ReDim C(50, 50) As Double 'energies over NGs
ReDim DΕΚL(50, 50) As Double

'**** pure component group and local group fractions
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ReDim ΧΚL(50, 50) As Double
ReDim ΧΚLΙ(50, 50, 50) As Double
ReDim ΥΚ(50) As Double
Dim SUMl As Double
Dim SUM2 As Double
Dim SUM As Double
Dim SUM4 As Double
Dim SUΜ5 As Double
Dim SUM6 As Double
Dim SUM2 As Double

'results from XSOIVE
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'**** For UNIFAC Model
ReDim ULGK(50, 3) As Double
ReDim DIG ΚΙ(50, 3) As Double
ReDim ULGK(50) As Double
ReDim DIG Κ(50) As Double
ReDim QΚ(50) As Double
ReDim RΚ(50) As Double
ReDim ΑΚL(50, 50) As Double
ReDim PSΙΚL(50, 50) As Double
ReDim Rl(3) As Double
ReDim QΙ(3) As Double
ReDim EL(3) As Double
Dim Ζ As Double

'area over ONG
'volume over ONG

'energies over NGs
'expo energies IT over NGs
'degeneracy * area(ZK)
'degeneracy * volume (LK)
'RI, AI

'**** mixture properties
ReDim PH1(3) As Double
ReDim ΥΙ(3) As Double
ReDim ELNGM(3) As Double

'**** Calculate equilibrium total pressure
ReDim GΑΜMA(3) As Double
ReDim PSΙΜP(3) As Double
Dim SUM As Double
ReDim ΥV(3) As Double
Dim MaxIT As Long
Dim NIT As Long
Dim PEST As Double
Dim SUMMED As Double
ReDim FUG(3) As Double

'Calculated Pressure
Dim PCALC As Double

'*** Calculation of Knox Z's or UNIFAC R's and Q's

ForL=1 TONG
Select Case Model
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SUM = SUM + YK(k) * PSIKL(k, m) / SUM
SUM = SUM + YK(k) * PSIKL(k, m) * AKL(k, m) / (Τ * SUM)
SUM7 = SUM + YK(k) * PSIKL(k, m) * SUM / (SUM * SUM)

Next m
ULGKI(k, Ι) = YK(k) * (1# - SUM - Log(SUMl))

ULGKI(k, Ι) = YKI(k) * (SUM / SUM1 + SUM - SUM7)
Next k

Next Ι

Case Else

End Select

'**** calculation of mixture properties
Select Case Model

'by Guggenheim Analogy Group (GAG) model
Case "Knox"

SUM' = 0#
SUM2 = Ο#
For I = 1 To NC

SUMl = SUMl + VI(l) * Χl(Ι)
SUM2 = SUM2 + Ζl(I) * ΧΙ(Ι)

Next I

For Ι = 1 Το NC
ΡΗΙ(Ι) = VI(Ι) * ΧΙ(Ι) / SUMl
ΥΙ(Ι) = ΖΙ(Ι) * ΧΙ(Ι) / SUM2

Next Ι

Fork= 1 Το NG
SUM3 = 0#
For Ι = 1 Το NC

SUM3 = SUM3 + ΧΙ(Ι) * NU(k, Ι)
Next Ι
YK(k) = ZK(k) * SUM3 / SUM2

Next k

ΧΚΙ = XSOLVE(YK, C, NG)

For I = 1 To NC
If XI(l) = 0# Then

ELNGM(I) = 0#
Else

ELNGM(I) = Log(PHI(I) / ΧΙ(Ι)) + (l# - ΡΗΙ(Ι) / ΧΙ(Ι))
ELNGM(I) = ELNGM(I) - (ΖΙ(Ι) / 2#) *

(Log(PHI(I) / ΥΙ(Ι)) - ΡΗΙ(Ι) / ΥΙ(Ι) + l#)
Fork= 1 Το ONG

IfNU(k,1)<>0Then
ELNGM(I) = ELNGM(I) - (YK(k) * NU(k, Ι) / 2#) *

Log(XKLI(k, k, Ι) / YK(k, Ι))
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Function CalculateGRAD(NParm As Integer, NParml As Integer, SCALES)

Uim L As Integer, Ll As Integer
ReDim GRD(10) As Uouble

For L 1 = 1 Το Ν NParm
For L = Ll Το NParml

NORMAL(J2, L 1) = NORMAL(L, L1) / (SCALES(L1 1) * SCALES(L1))
Next L2

NORMAL(NParml, L1) = NORMAL(NParml, L1) / SCALES(J1)
GRD(Jl) = NORMAL(NParml, L1)

Next L1

'Normal Equations now Scaled.
'the GRAS() vector contains the Gradient vector

CalculateGRAD = GRU

End Function
Function CalculateRATIO(NParm As Integer, NParml As Integer, LAMBDA As Double)

Dim Ll As Integer, L As Integer
Uim I As Integer, L As Integer

Uim RATIOS As Double

For L1 = 1 To NParml
NORMALLY 1, L 1) = NORMALLY 1, L 1) + LAMBDA

Next Ll

For I = 1 To NParml
Ll = 1 + 1
For L = 1 To I

If NORMALLY, L) < 0# Then
'Singular Matrix was encountered
'generate error code -2 and terminate

ERROR = I
ERROR = -2
MsgBox ("NORMAL <0 ")
CalculateRATIO = -1
Exit Function

Else
RATIOS = NORMALLY 1, L) / NORMALLY, L)
For L = L 1 To NParml 1

NORMAL(J, L1) = NORMAL(J, L1) - RATIO * NORMAL(J, L)
Next L

NORMAL(J1 1, L) = RATIOS
End If

Next L
Next I
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APPENDIX B

SYSTEMS SLIMMARY

This appendix presents a summary of the database used to perform the calculations for

the model. The summary includes the number of systems and datapoints organized by

chemical categories and their mixtures. It also reports their range of temperature and

pressure as well as the number of isothermal and isobaric systems.
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Table Β.2 Chemical Group Summary
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Table B.3 Mixture Systems
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Table B.4 Mixture Summary
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APPENDIX C

REFERENCES FOR THE DATABASE ARTICLES

The database used in this research is the compilation of a set of VALE articles. The

references for these articles are shown in Table C.l.
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