

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

ALGORITHMS AND COMPLEXITY ANALYSES FOR SOME
COMBINATORIAL OPTIMΙΖΑΤΙOΝ\ PROBLEMS

by
Haring Chao

The main focus of this dissertation is on classical combinatorial optimization problems in

two important areas: scheduling and network design.

In the area of scheduling, the main interest is in problems in the master-slave model.

In this model, each machine is either a master machine or a slave machine. Each job is

associated with a preprocessing task, a slave task and a postprocessing task that must be

executed in this order. Each slave task has a dedicated slave machine. All the preprocessing

and preprocessing tasks share a single master machine or the same set of master machines.

A job may also have an arbitrary release time before which the preprocessing task is not

available to be processed. The main objective in this dissertation is to minimize the total

completion time or the makespan. Both the complexity and algorithmic issues of these

problems are considered. It is shown that the problem of minimizing the total completion

time is strongly NP-hard even under severe constraints. Various efficient algorithms are

designed to minimize the total completion time under various scenarios.

In the area of network design, the survivable network design problems are studied

first. The input for this problem is an undirected graph G = (V, F), a nonnegative cost for

each edge, and a nonnegative connectivity requirement Tuv for every (unordered) pair of

vertices u, v. The goal is to find a minimum-cost subgraph in which each pair of vertices

u, v is joined by at least ruv edge (vertex)-disjoint paths. A Polynomial Time Approxi-

mation Scheme (PTASs) is designed for the problem when the graph is Euclidean and the

connectivity requirement of any point is at most 2. PTAs or Quasi-PTASs are also de-

signed for 2-edge-connectivity problem and connectivity problem and their variations in

weighted or weighted planar graphs.

Next, the problem of constructing geometric fault-tolerant spanners with low cost

and bounded maximum degree is considered. The first result shows that there is a greedy

algorithm which constructs fault-tolerant spanners having asymptotically optimal bounds

for both the maximum degree and the total cost at the same time. Then an efficient algo-

rithm is developed which finds fault-tolerant spanners with asymptotically optimal bound

for the maximum degree and almost optimal bound for the total cost.

ALGORITHMS AND COMPLEXITY ANALYSES FOR SOME
COMBINATORIAL ΟΠΤΙΜΙΖΑΤΙΟΝ PROBLEMS

by
Haring Chaco

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Sciences

Department of Computer Science

May 2005

Copyright © 2005 by Haring Chao

ALL RIGHTS RESERVED

APPROVAL PAGE

ALGORITHMS AND COMPLEXITY ANALYSES FOR SOME
COMBINATORIAL ΟΠΤΙΜΙΖΑΤΙΟΝ PROBLEMS

Haring Zhao

Dr. 4 Jose^^h Leung, Dissertation Co-Advisor 	 Date
Distinguished Professor of Computer Science, New Jersey Institute of Technology

Dr. Arthur Czumaj, Dissertation Co-Advisor 	 Date
Associate Professor of Computer Science, New Jersey Institute of Technology

Dr. Tennis J. Ott, Committee Member 	 Date
Professor of Computer Science, New Jersey Institute of Technology

Dr. Wojciech Ratter, Committee Member 	 Date
Professor of Computer Science, New Jersey Institute of Technology

Dr. Clifford Stein, Committee Member 	 Date
Professor of Industrial Engineering and Operations Research, Columbia University

BIOGRAPHICAL SKETCH

Author:	 Haring Chao

Degree:	 Doctor of Philosophy

Date:	 May 2005

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2005

• Master of Computer Science,
Beijing University of Posts & Telecommunications, Beijing, China, 1997

• Bachelor of Computer Science,
Taiyuan University of Technology, Shanxi, China, 1994

Major:	 Computer Science

Presentations and Publications:

J. Y T. Leung and H. ZZhao, "Minimizing Mean Flowtime and Makespan on Master-Slave
Systems," Journal of Parallel and Distributed Computing, accepted for publication.

J. Y T. Leung and H. Chao, "Minimizing Mean Flowtime on Master-Slave Machines," Pro-
ceedings of the 2004 International Conference on Parallel and Distributed Processing
Techniques and Applications, vol. 2, pp. 939-945, 2004.

A. Czumaj, M. Grigni, P. A. Sissokho, and H. Chao "Approximation Schemes for Minimum
2-Edge-Connected and Reconnected Subgraphs in Planar Graphs," Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 489 - 498, 2004.

A. Czumaj and H. Chao "Fault-Tolerant Geometric Spanners," Discrete and Computational
Geometry, Vol. 32, pp. 207-230, 2004.

A. Czumaj and H. Chao "Fault-Tolerant Geometric Spanners," Proceedings of the 19th
ACM Symposium on Computational Geometry, pp. 1-10, 2003.

J. Y T. Leung and H. Chao "Real-Time Scheduling Analysis," Final report to Federal Avi-
ation Administration, 2003.

iv

A. Czumaj, A. Linger, and D. Chao "Polynomial-Time Approximation Schemes for the
Euclidean Survivable Network Design Problem, " Proc. of the 29th International Col-
loquium on Automata, Languages and Programming (ICALP'02) , pp. 973-984, 2002.

A. Berger, A. Czumaj, M. Grigni and D. Chaco. "Approximate Minimum reconnected Sub-
graphs in Weighted Planar Graphs," submitted.

A. Czumaj, W. Ratter, X. Wang and D. Chao, "A Linear-Time Algorithm for 3-Path Color-
ing of 2-Regular Digraphs," submitted.

A. Berger, M. Grigni and Haring Chao, "A Well-Connected Separator for Planar Graphs,"
submitted.

Y. Duo, J. Y T. Leung and D. Chao, "Complexity of Two Dual Criteria Scheduling Prob-
lems," submitted.

Y. Duo, J. Y T. Leung and D. Chao, "Bi-criteria Scheduling Problems: Number of Tardy
Jobs and Maximum Weighted Tardiness," submitted.

J. Y T. Leung and D. Chao, "Minimizing Total Completion Time in Master-Slave Systems,"
submitted.

D. ZhLao, "Survivable Network Design and Fault Tolerant Spanners," invited talk at Los
Alamos National Laboratory, March, 2005.

D. Chao, "Minimizing Mean Flowtime and Makespan on Master-Slave Systems," invited
talk at INFORMS Annual Meeting, October 2004.

D. Chao, "Fault Tolerant Spanners and Their Applications," DIMACS Light Seminar:
Theoretical Computer Science, DIMACS Center, Rutgers Universe, March, 2004.

D. Chao, "Approximation Schemes for Minimum 2-Edge-Connected and Reconnected Sub-
graphs in Planar Graphs," presentation at SODA 2004, New Orleans, January, 2004.

D. ZZhao, "Fault-Tolerant Geometric Spanners," DIMACS Workshop on Computational Ge-
ometry, DIMACS Center, Rutgers University, November, 2002.

ν

This dissertation is dedicated to my parents. Their
support, encouragement, and constant love have
sustained me throughout my life.

vi

ACKNOWLEDGMENT

I have been very lucky to have two great advisors during my graduate study in NJIT —

Joseph Leung and Artur Czumaj. Without their support, patience and encouragement, this

dissertation would not exist.

I sincerely thank Joseph Leung for bringing my attention to the field of computa-

tional complexity and scheduling theory in the first place. I am grateful for his generous

support during my study. I thank him for spending a great deal of valuable time giving me

technical and editorial advice for my research. I am deeply indebted to Artur Czumaj, who

is not only an advisor, but also a mentor and a friend. I am grateful to him for teaching me

much about research and scholarship, for giving me invaluable advice on presentations and

writings among many other things, for many enjoyable and encouraging discussions with

him.

My thanks also go to the members of my dissertation committee, Cliff Stein, Tennis

Ott and Wojciech Rytter, for reading previous drafts of this dissertation and providing many

valuable comments that improved the contents of this dissertation. I must also thank my

coauthors, Artur Czumaj, Joseph Leung, Michelangelo Grigni, Wojciech Rytter, Andre

Berger, Andrzej Linger, Xin Wang, Yumei Duos and Papa Sissokho. It her been such a

wonderful experience to work with each of them. Although I have not even had a chance

to meet some of them, each her taught me a great deal about research and about writing

research.

I am also grateful to my colleagues, Haibing Li, Yumei Duos and Xin Wang for nu-

merous interesting and good-spirited discussions about research. The friendship of Jingx-

uan Liu, Binghu ZZhang, Hong ZZhao, Yayi Du, Sen Chang, Min Chang, Chang Liu, Thou

Hoang, is much appreciated. They have given me not only advice on research in general,

but also valuable suggestions about life, living and job hunting, etc. I must give my thanks

to my best friends in my life, Qingrui Ping, Li Gab, Xiangping Wei. They are more than

vii

friends, they are part of my family. Though they are far away from me, their support is al-

ways with me. Their sincere care for me and my family is a treasure of my life. I thank

Maryann McCoul for her trust in me and for her great advice when I needed it the most.

Last, I would like to thank my husband, Wenxin Mao, for his understanding and

love during the past few years. Dis support and encouragement were in the end what made

this dissertation possible. I give my deepest gratitude to my parents for their endless love

and support which provided the foundation for this work. I also thank my dearest brother

and sister for their love and for taking care of my parents during my absence.

This work is supported in part by NSF Grant DΜΙ-0300156 and by FAA Grant

01-C-AW NJIT.

viii

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Machine Scheduling Problems 	 2

1.2 Network Design Problems 	 5

1.3 Outline 	 9

PART I: SCHEDULING PROBLEMS IN MASTER-SLAVE MODEL 	 12

2 COMPLEXITY OF SCHEDULING PROBLEMS IN MASTER-SLAVE MODEL 13

2.1 Master-slave Model 	 13

2.2 Applications of Master-slave Model 	 14

2.3 Scheduling Problems in Master-slave Model: Definitions and Notations . 	 16

2.4 Previous Work 	 18

2.5 New Results: Complexity of Scheduling Problems in Master-slave Model 	 20

3 OPTIMAL AND APPROXIMATION ALGORITHMS: SPECIAL CASES . . 	 30

3.1 Optimal Algorithms for Σ C: Canonical and Order Preserving Schedules 	 30

3.2 Approximation Algorithms for Σ C: Canonical Schedules 	 31

3.3 Approximation Algorithms for No-wait-in Makespan 	 40

4 APPROXIMATION ALGORITHMS: GENERAL CASES 	 48

4.1 Preliminaries 	 48

4.2 New Results and Techniques 	 50

4.3 Single-master 	 51

4.3.1 Canonical Preemptive Schedules 	 51

4.3.2 Non-canonical Preemptive Schedules 	 54

4.3.3 Arbitrary Release Times 	 56

4.4 Multi-master 	 57

4.4.1 Non-canonical Preemptive Schedules 	 57

4.4.2 Arbitrary Release Times 	 59

ix

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.5 Distinct Preprocessing and Postprocessors Masters 	 63

4.6 Converting Preemptive Schedules into Non-preemptive Schedules 	 66

4.6.1 Single Master and Multi-Master Systems 	 68

4.6.2 Distinct Preprocessors and Preprocessors 	 70

4.7 Linear Programming: Distinct Preprocessors and Preprocessors 	 73

4.7.1 m1 = m2 = 1 	 74

4.7.2 m1>1 and m2>1 	 76

PART II: NETWORK DESIGN PROBLEMS 	 79

5 POLYNOMIAL-TIME APPROXIMATION SCHEMES FOR THE EUCLIDEAN
SURVIVABLE NETWORK DESIGN PROBLEM 	 80

5.1 Introduction 	 80

5.1.1 Related works 	 80

5.1.2 New Contributions 	 81

5.2 Definitions 	 82

5.3 Steiner Minimum Tree Problem 	 87

5.4 Filtering for SMT 	 88

5.4.1 First Filtering Property 	 90

5.4.2 Second Filtering Property 	 99

5.4.3 Complexity of SMT-Filtering 	 101

5.5 Lightening for SMT 	 102

5.6 Searching for SMT 	 107

5.7 Polynomial-Time Approximation Scheme for SMT 	 109

5.8 {0, 1, 2}-Connectivity Problem 	 110

5.8.1 Lightening for {0, 1, 2}-Εdge-Connectivity 	 110

5.8.2 Dynamic Programming for {0, 1, 2}-Edge-Connectivity 	 111

5.9 Extensions 	 115

χ

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.10 Auxiliary Claims 	 116

6 APPROXIMATION SCHEMES FOR MINIMUM 2-EDGE-CONNECTED AND
RECONNECTED GRAPHS IN PLANAR GRAPHS 	 118

6.1 Introduction 	 118

6.2 Cuts and 2-EC Types 	 120

6.3 Planar Separators 	 124

6.4 The 2-EC Algorithm 	 126

6.5 The 2-ECSS Algorithm 	 131

6.5.1 	 Types of (2-VC, P)-Safe Planar Graphs 	 132

6.5.2 	 Recursive Decomposition 	 138

6.5.3 	 Dynamic Programming 	 140

7 APPROXIMATION SCHEMES FOR MINIMUM recONNECTED SPANNING
GRAPHS IN WEIGHTED PLANAR GRAPHS 	 143

7.1 Introduction 	 143

7.1.1	 Related Results 	 143

7.1.2 	 New Contributions and Techniques 	 144

7.2 ETAS for the 2-ECSS Problem 	 146

7.3 Augmented Planar Spanners 	 147

7.4 Spanners and 2-VC Subgraphs 	 150

7.5 Approximation Schemes for the 2-EC and 2-VCSS Problems 	 152

7.6 Extensions to the {1, 2}-Connectivity Problem 	 154

8 FAULT-TOLERANT GEOMETRIC SPANNERS 	 157

8.1 Introduction 	 157

8.1.1 	 Previous Results 	 157

8.1.2 	 New Contributions 	 159

8.2 Preliminaries 	 161

xi

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

8.2.1 Mender's Theorem and Its Consequences 	 161

8.3 k-Vertex Fault-Tolerant Spanners of Low Degree and Low Cre 	 162

8.3.1 Analyzing the Maximum Degree 	 163

8.3.2 Upper Bound for the Cre of Spanners Generated by the k-Greedy
Algorithm 	 166

8.4 Efficient Construction of Fault Tolerant Spanners 	 168

8.4.1 Basic Auxiliary Properties 	 169

8.4.2 Sufficient Conditions for Being a k-Vertex Fault-Tolerant Spanner 	 170

8.4.3 Efficient Construction of k Fault-Tolerant Spanner 	 176

9 CONCLUSIONS 	 186

9.1 Scheduling Problems 	 186

9.2 Network Design Problems 	 187

REFERENCES 	 192

xli

LIST OF TABLES

Table 	 Page

4.1 New Results for Single-Master System 	 51

4.2 New Results for Multi-Master System, All Schedules are Non-Canonical . . . 51

4.3 New Results for Distinct Preprocessor and Postprocesor System, m1 = m2 = 1 52

4.4 New results for distinct preprocessor and postprocesor, m1 > 1 and m2 > 1 	 . 52

LIST OF FIGURES

Figure	 Page

2.1 An illustration of the optimal schedule in the proof of Theorem 2.5.2.. . . . 	 22

2.2 An illustration of the optimal schedule in the proof of Theorem 2.5.4.. 24

2.3 An illustration of the optimal schedule in the proof of Theorem 2.5.5.. 25

3.1 Illustration of Algorithm 1 	 40

3.2 Illustration of Algorithm 2 	 43

3.3 Illustration of the proof of Theorem 3.3.3. 	 43

4.1 Convert a preemptive schedule into a non-preemptive schedule 	 70

5.1 Dissection of a bounding cube in R2 	 87

5.2 Illustration of connectivity type construction 112

5.3 Illustration to the proof of Lemma 5.10 1 	 116

6.1 The three different types of the separator. 	 126

6.2 Type of a (2-VC, P)-safe graph used in the 2-VC Algorithm 	 142

7.1 A non-simple face fin H, a chord e, and walks P i and P2. 	 148

7.2 (a) Face f of H* (oval) with chord c, path Ρ (bold), and chords removed from
S by the chord move at c (dotted). (b) Face f with a face-edge e (dashed)
crossed by five chords from S. 	 151

8.1 Any FTS for points in Β1 and B2 must have weight at least Ω(k2), while the MST
has weight O (1) 	 160

8.2 The 2-Gap-Greedy Algorithm 	 173

9.1 Light spanners do not always exist 	 190

9.2 Greedy algorithm does not always find light spanners of planar graphs 	 190

Div

CHAPTER 1

INTRODUCTION

A combinatorial optimization problem is concerned with selecting, from among a finite

set of possible solutions, the one that maximizes or minimizes a certain function, the so-

called objective function. Such problems are of great importance because a large number

of practical problems in various fields can be formulated as combinatorial optimization

problems: for example, inventory control, the scheduling of lines in flexible manufacturing

facilities, planning communication in traffic networks, finding the shortest or mre reliable

paths in traffic or communication networks, etc. Extensive surveys of related applications

of combinatorial optimization are given in [49], [60].

Because of its importance, combinatorial optimization has attracted a great deal

of research effort and has experienced a particularly fast development during the last few

decades. Given any specific optimization problem of interest, the first question that arises

is whether there exists an efficient (polynomial-time) algorithm. While some problems in

this area are relatively well understood and have known efficient algorithms, many others

are intractable, typically NP-hard, e.g. scheduling problems, partitioning problems. So

under the widely believed assumption that P Ο NP, there is no hope of getting polynomial

time algorithms for solving these problems.

However, very large instances of these problems frequently arise in practice. Thus,

one is forced to look for algorithms that run in polynomial time and hopefully return a nears-

optical solution. Such algorithms are called approximation algorithms. An approximation

algorithm is called an approximation algorithm for a problem fl, if for any instance I of

fl, it always returns a solution with value at mre (at least for maximization problems) α

times the optimal. The value α is called the approximation ratio or the performance ratio of

the algorithm. Of course, one hopes that c. is as close to 1 as possible. However, it turns out

1

2

that different NP-hard problems exhibit different approximability properties. Some prob-

lems, e.g. the knapsack problem, allow a polynomial-time approximation scheme (ETAS);

i.e., a family of algorithms {,,4 ε} such that, for each fixed ε > 0, {λε } runs in time poly-

nomial in the size of the input and produces a (1 + ε) -approximation. On the other hand,

some other problems have intrinsic limitations to approximation. For example, there is no

ETAS for the general traveling salesman problem unless P = N P.

This dissertation focuses on classical combinatorial optimization problems in two

important areas: scheduling and network design. Not surprisingly, mre of these prob-

lems have been or will be shown in this dissertation to be NP-hard. Thus, various constant

approximation algorithms or approximation schemes are designed throughout the disserta-

tion.

1.1 Machine Scheduling Problems

Scheduling is an intensively studied class of discrete optimization problems. Scheduling

problems are motivated by the allocation of limited resources to jobs over time, subject to

some constraints. It is a decision-making process with the goal of optimizing one or more

objectives. The resources and jobs can take on many different forms. The resource can

be machines in a workshop, runways at an airport, processing units in a computing envi-

ronment. The jobs can be operations in a workshop, takeoffs and landings of air planes or

computer programs. Standard scheduling requirements include: a job cannot be processed

by two or more machines at a time, or a machine cannot process two or more jobs at the

same time. Depending on the type of scheduling system, specific constraints should be sat-

isfied. For example, jobs may have different release times and deadlines, different jobs may

have different priorities, a job may not be allowed to preempt other jobs, etc. The objective

can also take on many different forms; e.g., minimizing the makespan (the maximum com-

pletion time among all jobs) or the total completion time or the maximum response time,

3

or maximizing the number of on time jobs. For an extensive introduction into the theory of

scheduling, see, e.g., [7], [22], [76], [96].

Although scheduling problems may concern different types of resources, many of

them can be modeled as scheduling jobs on machines. A schedule specifies, for each

time instant, the set of jobs executing at that instant, and the machines on which they are

executing.

Depending on the properties of the jobs, the number and type of machines, and

the optimization goal, there are various problems under different models. In the simplest

model, there is a single machine and n jobs, each of which is ready at time 0 and must be

executed without interruption. In a complex model, there are different types of machines;

each job has several tasks which have to be executed on different machines and may be in

certain order. These models are known as shop models. In the open shop model, there is

no restriction on the order of the tasks. In the flow shop model, each job has exactly one

task that needs to be processed in each machine, and the tasks of each job must follow the

same order. In the job shop model, each job has its own ordering of the tasks, and several

tasks can visit the same machine.

Scheduling problems in master-slave model. Scheduling problems in the master-slave

model was recently introduced by Sahni [104]. In this model there are n jobs and m ma-

chines. Each job is associated with a preprocessing task, a slave task and a preprocessing

task that must be executed in this order. Each machine is either a master machine or a slave

machine. While the preprocessing and reprocessing tasks are scheduled on the master

machine, each slave task is scheduled on a dedicated slave machine.

The master-slave model is closely related to the two-machine flow shop model with

transfer lags. In this flow shop model, each job j has two operations: the first operation is

scheduled on the upstream machine and the second operation is scheduled on the down-

stream machine. The interval or time lag between the finish time of the first operation and

4

the start time of the second operation must be exactly or at least t o . If the lib's are large

enough such that all of the first operations finish before the start of any second operation,

then the flow shop problem is equivalent to the problem of scheduling on a single machine

with time lags and two tasks per job, subject to the constraint that all of the first opera-

tions are scheduled first. The latter problem is identical to the single-master master-slave

scheduling model.

The master-slave model finds many applications in parallel computer scheduling

and industrial settings such as semiconductor testing, machine scheduling, transportation

maintenance, etc.; see [104], [106], [105], [115]. For example, suppose there is a main

thread running on one processor whose function is to prepare data then fork and initiate new

child threads that do the computations on different processors. After the computation of a

child thread, the main thread collects the computation results and performs some processing

on the results. Here, each child thread can be seen as a job with three tasks: the thread

initiation and data preparation is the preprocessing task, the computation is the slave task

and the preprocessing of the results from the computation is the preprocessing task.

The main objective in this dissertation is to minimize the total completion time or

makespan under various scenarios. First, it is shown that many of the problems are GNP-

hardy in the strong sense. Then some special cases are considered. It is assumed that (1)

there is a single master, (2) all jobs have the same release time 0, same preprocessing

task length a and same preprocessing task length c; i.e. the jobs are different from each

other only by their slave tasks, (3) no preemption is allowed. Optimal or approximation

algorithms are developed for some problems in this case. Finally, more general cases are

considered. A job can have an arbitrary release time and arbitrary processing time. There

can be one or more masters. The problem can be online or offline. Efficient approximation

algorithms are developed to minimize the total completion time in various settings. These

are the first general results for the total completion time problem in the master-slave model.

5

Furthermore, these algorithms are shown to generate schedules with small makespan as

well.

1.2 Network Design Problems

The problem of network design is concerned with connecting a collection of sites into a

"good" network that satisfies some desired properties. Problems of this type arise in ap-

plications in VLSI design, telecommunication, clustering, robotics, graph theory, and dis-

tributed systems. In all these areas, it is often important to construct high quality networks.

From the topology point of view, typical quality measures of networks include the surviv-

ability (resistance to failures) of the network, its stretch factor (dilation), minimum and

maximum degree, and its diameter. The goal is to minimize the cost of the network that

satisfy certain required properties. This dissertation focuses on the survivability and stretch

factor of the network.

Survivability. In some applications such as communication network design, VLSI de-

sign, networks must be able to withstand the failure/deletion of one or several links or

nodes. This requirement leads to survivable network design problems.

Networks and their quality can be modeled by graphs. The sites correspond to ver-

tices (points), and the connections can be represented by edges. In the survivable network

design problem, the input is an undirected graph G = (V, F), a nonnegative cost for each

edge, and a nonnegative connectivity requirement Tuv for every (unordered) pair of vertices

u, v. The goal is to find a minimum-cost subgraph in which each pair of vertices u, v is

joined by at least r, disjoint paths between v and u. In the edge-connected version of

the problem the paths must be internally vertex-disjoint and in the edge-connected version

of the problem the paths must be edge-disjoint.

In many applications of this problem, often regarded as the most interesting ones

[41, 53], the connectivity requirement function is specified with the help of a one-argument

6

function which assigns to each vertex v its connectivity type r„ E Ν. Then, for any pair of

vertices v, u Ε V. the connectivity requirement r e „ is simply given as min{ru , r„}. Notice

that, in particular, this includes the Steiner tree problem [97], in which r„ Ε {0, 1 } for any

vertex v E V. It also includes the most widely applied variant of the survivability problem

in which r„ Ε {0, 1, 2} for any vertex v Ε V (see, e.g., [53, 91, 113]). If the connectivity

requirements are uniform, i.e., r,,,„ = 2 (2 > 1) for every pair of vertices u and v, then this

is the classical k-connectivity problem.

All these problems mentioned above are well known NP-hard graph problems. Fur-

thermore, these problems have been shown to be MaxSNP-hard for general graphs [23, 35].

This implies that there is no hope for a ETAS in general (unless P=NP), but a ETAS could

still exist for special cases. Indeed, based on the framework of Aurora [3], a BETAS was

found [25, 26] for the problem of finding a minimum-cost vertex (or k-edge) connected

spanning subgraph in complete Euclidean graphs in bounded dimension.

This dissertation concentrates on efficient construction of good approximations for

the above problems. The aim is to develop PTASs for some special class of graphs, specif-

ically, the geometric graphs and planar graphs. Following the literature, this disserta-

tion adopts the standard simplification of the connectivity requirements function. That

is, each vertex v has a connectivity type r„ and the connectivity requirement rug,„ is simply

min{%, r„}.

In the geometric version of the survivable network design problem, the input is a

complete Euclidean graph. The vertices are points in Rd and the cost of each link is equal

to the Euclidean distance between its endpoints (which is a good approximation in many

applications, since often the "installation" and the "service" cost is roughly proportional to

the length of the link [91]). The first polynomial-time approximation schemes (PTAS) for

basic variants of the survivable network design problem in Euclidean graphs are presented.

First a ETAS is described for the Steiner tree problem, which is the survivable network

design problem with r„ Ε {0, 1 } for any vertex v. Then, the ETAS is extended to the widely

7

applied use where rv Ε {0, 1,2) for any vertex v. Finally, it is shown that the techniques

yield also a BETAS for the multigraph variant of the problem where the biconnectivity

requirements satisfy TV Ε {0, 1,... , 2} and k = 0(1).

Next the 2-edge-connectivity and biconnected problems for planar graphs are

considered: given a planar graph, find the minimum cost spanning subgraph that is l-

edge connected and reconnected, respectively. For weighted planar graphs, approxi-

mation schemes are designed for both the minimum 2-edge-connectivity problem and the

minimum biconnectivity problem, both running in polynomial time. For weighted planar

graphs, Quasi-polynomial Time Approximation Schemes are designed for the 2-edge con-

nectivity problem and biconnected problem. Some other variations are also considered.

Stretch factor. Let G be a weighted graph and H be a spanning subgraph of G. The

stretch factor of H is the smallest positive t such that for any pair of vertices Z and v,

dB (u, v) < tdG (Z, v), where dh (Z, v) and tdG (u, v) are the weights of the shortest path

distance between the vertices Z and v in H and G, respectively. The graph H is called a t-

spanner of G. If G is the complete Euclidean graph, then tdG (u, v) is simply the Euclidean

distance Zvi of Z and v. The graph H is simply called a spanner for V.

Traditionally, the main measure of quality of spanners are the number of edges,

maximum degree, and total cost. In this context, in any Euclidean space Rd with constant

d, for every positive constant ε, one can construct in 0(n logτι) time a (1 + t-spanner in

which every vertex has constant degree and whose total cost is in the order of the cost of the

MST for the input point set [5, 55]; all these bounds are asymptotically optimal. (See also

[1, 6, 15, 29, 30, 31, 81] for other related results on spanners.) For an arbitrarily weighted

graph G, Aithofer et al. [1] designed a simple greedy algorithm that computes a spanner

H of G for any t> 1. In the case of planar graphs, it is shown in [1] that this spanner has

weight w (H) < (1 -I- 2/(t - 1)) MST (G), where MST (G) is the weight of a minimum

spanning tree in G.

8

Spanners are important structures that provide a sparse or economic representa-

tion of a given graph. They were introduced by Peleg and Schaffer [93] in the context

of distributed computing and later, by Chew [20] in the context of computational geome-

try. Spanners have many applications in robotics, graph theory, network topology design,

distributed systems; the recent O (n log n) -time BETAS for Euclidean ASP [1011 is heav-

ily based on the use of spanners, and so is the recent BETAS for Euclidean biconnectivity

[26]. Spanners are also very extensively used in recent advances on topological issues in

ad-hoc networks (see, e.g., [42, 54, 100] and the reference therein). Survey expositions

[15, 34, 87, 92, 110] contain an extensive description on spanners and their applications.

Spanners are also heavily used by the approximation schemes in this dissertation.

For the geometric version of the survivable network design problem, the PPTASs work on the

geometric spanners of the input vertices (or the subset of the input vertices). For the 2-edge

connectivity problem and biconnectivity problem in weighted planar graphs, the approxi-

mation schemes also depend in a crucial way on the new construction of light spanners for

weighted planar graphs.

Fault-tolerant spanners are natural extensions of spanners to graphs resistant to edge

and vertex removal. They were introduced by Levcopoulos et al. [83]. Such graphs contain

short paths between each pair of vertices even after removing a vertex or an edge.

In [83] and [86], several algorithms have been proposed to construct geometric

fault-tolerant spanners with low cost and bounded maximum degree. But none of them

could achieve the optimal bounds in maximum degree and total cost at the same time. The

main open problem left is whether there exist fault-tolerant spanners having good bounds

for both the maximum degree and the total cost.

This dissertation gives the first construction of vertex and edge fault-tolerant span-

ners having optimal bounds for both maximum degree and total cost at the same time. It is

shown that there is a greedy algorithm that for any t > 1 and any non-negative integer k,

constructs a fault-tolerant spanners in which every vertex is of degree 0(k) and whose

9

total cost is 0(22) times the cost of minimum spanning tree; these bounds are asymp-

totically optimal. An efficient algorithm is designed to find fault-tolerant spanners with

asymptotically optimal bound for the maximum degree and almost optimal bound for the

total cost based on a new, sufficient condition for a graph to be a fault-tolerant spanner.

1.3 Outline

The dissertation contains two parts. Part I is dedicated to scheduling problems in master-

slave systems. The new results are joint work with J. Leung which appear in [79, 80].

These results are presented in three chapters. In Chapter 2, the master slave model and

some of its applications are first introduced. Then the problems going to be studied are

defined. Finally the new complexity results are presented. The complexity results show

that many makespan and total completion time problems, with or without constraints, are

NP-hard in the strong sense. Thus the following two chapters concentrate on approximation

algorithms.

Chapter 3 considers special cases of the problems in master slave model, which

assume that (1) there is a single master, (2) all jobs have the same release time 0, same

preprocessing task length a and same preprocessing task length c; i.e. the jobs are different

from each other only by their slave tasks, (3) no preemption is allowed. First it is proved

that if there are canonical and order preserving constraints, then in O (n log n) time one

can find an optimal schedule that minimizes the total completion time, when a ; = a and

cif = c for all 1 < i < n and a < c. After that, approximation algorithms are developed

for the canonical total completion time problem and the no-wait-in makespan problem,

respectively.

Chapter 4 considers the general cases of total completion time problem. Efficient

approximation algorithms are developed to minimize the total completion time in various

settings. These are the first general results for the total completion time problem in the

10

master-slave model. Furthermore, these algorithms are shown to generate schedules with

small makespan as well.

The second part of this dissertation is dedicated to network design problems. In

Chapter 5, the PTASs for the geometric version of the survivability problems are presented.

This include the first BETAS for the Steiner tree problem, the {O, 1, connectivity problem

and the multigraph variant {0, 1,... , kl-edge connectivity problem. The results of this

chapter have been published in [27] and they are joint work with A. Czumaj and A. Linger.

Chapters 6 and 7 consider the connectivity problem and its variations in planar

graphs. In Chapter 6, the PTASs for the 2-edge-connected and connectivity problem in

weighted planar graphs are described. Chapter 7 discusses the weighted planar graphs.

First a PPTAS is presented for the problem of finding minimum-weight 2-edge-connected

spanning subgraph where duplicate edges are allowed. Then a new greedy spanner con-

struction for edge-weighted planar graphs are given. This construction augments any con-

nected subgraph Α of a weighted planar graph G to a (1 + t -spanner of G with total weight

bounded by weight(Α)/ε. Based on this spanner, quasi-polynomial time approximation

schemes are derived for the problems of finding the minimum-weight 2-edge-connected

or reconnected spanning subgraph in planar graphs. Approximation schemes are also de-

signed for the minimum-weight 1-2-connectivity problem, which is the variant of the sur-

vivable network design problem where vertices have nonuniform (1 or 2) connectivity

constraints. Chapter 6 contains joint work with A. Czumaj, M. Grigni, P. Sissokho, and ap-

pears in [24]. Chapter 7 contains joint work with A. Berger, A. Czumaj and M. Grigni in

[9].

Chapter 8 presents two new results about vertex and edge fault-tolerant spanners in

Euclidean spaces. First it is shown that a greedy algorithm that for any t> 1 and any non-

negative integer k, constructs a fault-tolerant spanner in which every vertex is of degree

0(k) and whose total cost is 0 (22) times the cost of minimum spanning tree; these bounds

are asymptotically optimal. The next contribution is an efficient algorithm for constructing

11

good fault-tolerant spanners. A new, sufficient condition for a graph to be a fault-tolerant

spanner is developed. Using this condition, one can design an efficient algorithm that finds

fault-tolerant spanners with asymptotically optimal bound for the maximum degree and

almost optimal bound for the total cost.

Finally, Chapter 9 summarizes the contributions of the dissertation. Some possible

extensions and future research directions are also remarked.

PART I

SCHEDULING PROBLEMS IN
MASTER-SLAVE MODEL

CHAPTER 2

COMPLEXITY OF SCHEDULING PROBLEMS IN MASTER-SLAVE MODEL

2.1 Master-slave Model

The master-slave model was recently introduced by Sahni [104]. In this model, each job

has to be processed sequentially in three stages. In the first stage, the preprocessing task

runs on a master machine; in the second stage, the slave task runs on a dedicated slave

machine; and in the last stage, the reprocessing task again runs on a master machine,

possibly different from the master machine in the first stage. The preprocessing, slave and

reprocessing tasks and task times of job i are denoted by chit, bib and cif, respectively. It is

assumed that ail > 0, bib > 0 and cif > 0.

A job may have a release time F ri > 0, i.e., Hai cannot start until r ib. Without loss of

generality, one can assume that min η = 0. Unless stated otherwise, all jobs are assumed to

have the same release time. There are two cases when arretrary release time is present. The

first case deals with offline problems, i.e., the release times and processing times of all jobs

are known in advance. The second case deals with online problems, i.e., no information of

a job i is given until it arrives at Ti , and when it arrives, all parameters about job i is given.

The quadruple (rib, Hai, bib, cif) is used to denote job I. For simplicity, if Fri = 0, one can use

the triplet (at, bib, cif) to represent job I.

Each machine is either a master machine or a slave machine. The master machines

are used to run preprocessing and/or reprocessing tasks, and the slave machines are used

to run slave tasks, one slave machine for each slave task. In a single-master system, there

is a single master to execute all preprocessing tasks (a tasks) and preprocessing tasks

(c tasks). In a multi-master system, there are more than one master, each of which is

capable of processing both a tasks and c tasks. Finally, in some systems, there are distinct

13

14

preprocessing masters (preprocessors) and preprocessing masters (preprocessor), which

are dedicated to process a tasks and c tasks, respectively.

The master-slave model is closely related to the flow shop model. The system

which has a single preprocessor and a single preprocessors can be seen as a two-machine

flow shop with transfer lags. In this flow shop model, each job j has two operations: the

first operation is scheduled on the upstream machine and the second operation is scheduled

on the downstream machine. The interval or time lag between the finish time of the first

operation and the start time of the second operation must be exactly or at least I j . If the li's

are large enough such that all of the first operations finish before the start of any second

operation, then the flow shop problem is equivalent to the problem of scheduling on a single

machine with time lags and two tasks per job, subject to the constraint that all of the first

operations are scheduled first. The latter problem is identical to the single-master master-

slave scheduling model.

When there are more than one preprocessing and reprocessing masters, the master-

slave model can be seen as a two-stage hybrid flow shop with transfer lags. In this sense,

the single master case can be regarded as a three-stage hybrid flow shop where the first and

the last stage has a single machine and the second stage has n machines. Hybrid flow shop

is often found in electronic manufacturing environment such as IC packaging and make-

to-stock wafer manufacturing. In recent years, hybrid flow shop has received significant

attention, see [12], [75], [78] and [112].

2.2 Applications of Master-slave Model

The master-slave model finds many applications in parallel computer scheduling and in-

dustrial settings such as semiconductor testing, machine scheduling, transportation main-

tenance, etc. Some of them are listed in the following. For more applications, see [104],

[106], [105] and [115].

15

Several applications of the master-slave model are found in parallel computer schedul-

ing. Α common parallel programming paradigm involves the use of a main computational

thread whose function is to prepare data then fork and initiate new child threads that do the

computations on different processors. After the computation of a child thread, the main

thread collects the computation results and performs some processing on the results. Here,

each child thread can be seen as a job with three tasks: the thread initiation and data prepa-

ration is the preprocessing task, the computation is the slave task and the preprocessing of

the results from the computation is the reprocessing task.

The master-slave paradigm also has applications in certain semiconductor testing

operations. In the case of burn-in operations, chips are subject to thermal stress for an

extended period of time. The whole process for each chip consists of three phases. First, an

initial burn-in operation is accomplished by maintaining the oven at a constant temperature

while powering up the chip. The burn-in times for each chip are specified by the customer

and thus fixed a priori. Then, in the second phase, the chip cools off for a specified amount

of time that depends on the length and intensity of the initial burn-in period. In the last

phase, the chip is subject to a final burn-in operation. In this application the burn-in oven

corresponds to the master machine, the two burn-in tasks correspond to preprocessing and

preprocessing and the cooling period corresponds to the slave task. Since the burn-in

operations are near the end of the production process, scheduling is critical in determining

one-time delivery and output performance for the entire company.

Industrial applications of the master-slave paradigm include the case of consolida-

tors that receive orders to manufacture quantities of various items. The actual manufac-

turing is done by a collection of slave agencies. In this example, the consolidator is the

master machine and the slave agencies are the slave machines. The consolidator needs to

assemble the raw material needed for each task, load the trucks that will deliver this mate-

rial to the slave machines, and perform an inspection before the consignment leaves. All of

these work belong to preprocessing task. The slave machines need to wait for the arrival of

16

the raw material, inspect the received goods, perform the manufacture, load the goods on-

to the trucks for delivery, perform an inspection as the trucks are leaving. These activities

together with the delay involved in getting the trucks to their destination (i.e., the consol-

idator) represent the slave work. When the finished goods arrive at the consolidator, they

are inspected and inventoried. This represents the preprocessing.

It is easy to see that all of the above examples generalize to multi-master systems

or distinct preprocessing and reprocessing master systems.

2.3 Scheduling Problems in Master-slave Model: Definitions and Notations

Given a set of jobs in the master-slave system and a schedule S of the jobs, two jobs

i and j are said to overlap in S if the master machine is working on the preprocess-

ing/preprocessing task of job i while a slave machine is working on the slave task of

job j. Note that there may be several jobs overlapping with a given job I.

The completion (or finish) time of job i in a schedule S is the time when the post-

processing task c if finishes. The completion time of i in S is denoted by Cif (5) . If 5 is clear

from the context, Cif, instead of Cif (5) , is used. The makespan of S is the earliest time when

all the tasks have been completed. The makespan of S is denoted by C maX (5), or Amax if S

is clear from the context. The total completion time of S, denoted by A(S), is the sum of

the completion times of all n jobs, i.e.,

Makespan and total completion time are two common objectives to minimize. The

problems of finding a schedule that minimizes the makespan and total completion time are

referred to as the makespan (Aka.) problem and total completion time (Σ A5) problem, re-

spectively. Α schedule that minimizes Amax or Σ C ; is usually denoted by S*. Throughout

this dissertation, Aπίaχ and A* are used to denote the minimum makespan and the minimum

total completion time, respectively.

Α non-preemptive schedule is one that schedules each task without interruption.

Note that in such a schedule, it is still possible that there is an interval between the finish

17

time of ail and the start time of bib, or the finish time of bib and the start time of cif. How-

ever, without loss of generality, one can always assume that b ib is scheduled immediately

as soon as ail completes. In a preemptive schedule, a job running on one machine may be

interrupted for some time, and later resumed on possibly a different machine. Both non-

preemptive and preemptive schedules have some applications. In the consolidators exam-

ple, non-preemptive schedules are more realistic than preemptive schedules. On the other

hand, in the parallel computer scheduling example, preemptive schedules are as realistic as

non-preemptive schedules.

Α non-preemptive schedule S is order preserving if for any two jobs i and j such

that ail completes before a3 , cifmust also complete before c3. Αno-wait-inschedule is one

such that each slave task must be scheduled immediately after the corresponding prepro-

cessing task finishes and each preprocessing task must be scheduled immediately after the

corresponding slave task finishes. In other words, once a job starts, it will not stop until it

finishes. It is easy to see that a no-wait-in schedule must be non-preemptive.

Α canonical schedule on the single master system is one such that all the prepro-

cessing tasks complete before any preprocessing tasks can start (Note that the definition

of canonical schedule is slightly different from the one given in [104]). In the multi-master

system, a canonical schedule is one that is canonical on each master. Both canonical and

non-canonical schedules have some applications. In the consolidators example, canonical

schedules make sense while non-canonical schedules do not. On the other hand, in the par-

allel computer scheduling example, non-canonical schedules make sense while canonical

schedules do not.

It is easy to see that if all jobs have the same release time, one can always arrange a

schedule to be canonical without increasing the makespan. Thus, in order to minimize the

makespan in this case, one only needs to focus on canonical schedules. However, this is

not true if one wants to minimize ΣΡ C 3 . In fact, the ratio of the total completion time of the

best canonical schedule versus that of the best non-canonical schedule can be arretrarily

18

large. Consider the example: (τι —1) identical jobs (1, ε, 1) and one job (n2 , ε, 1), where ε

is an arbitrary small positive number. The optimal canonical schedule has total completion

time O (n3), while the optimal non-canonical schedule has total completion time O (n 2) .

2.4 Previous Work

So far the main research efforts to the master-slave model are for makespan minimization,

assuming all jobs have the same release time. As noted before, it is sufficient to focus on

canonical schedules for the makespan objective in this case. The general makespan problem

without constraints has been shown to be NP-hard by Kern and Nawijn [69]. Sahni [104]

showed that the no-wait-in makespan problem is NP-hard in the ordinary sense, even when

there is order preserving constraint. He also gave an O (i log n)-time algorithm that solves

the order preserving makespan problem.

Sahni and Vairaktarakis [106] proposed several constant approximation algorithms

for the makespan problem in the single-master and multi-master systems. For the general

problem without any constraints, they gave a 2 -approximation algorithms for the single

master system and a approximation algorithms for the multi-master systems.

Further algorithms were given by Vairaktarakis [115] when there are m1 preproces-

sors and m2 preprocessor. Let m = max{m ι , m2}. He gave approximation algorithms

with a worst-case bound of 2 — m for the makespan problems with no constraint, or with

the constraints of order preserving.

Flow shop is a classical model that has been studied for a long time. Let m be the

number of stages. For the makespan problem, Johnson [65] developed an O (τι log n) time

optimal algorithm when m = 2. The problem becomes NP-hard when m > 3. In this case,

Hall [58] presented a (1 + ε) -approximation algorithm for any fixed positive ε. For the total

completion time problem, it is NP-hard in the strong sense even if m = 2 and preemption

is allowed [33]. Gonzalez and Sahni [46] developed an approximation algorithm for this

problem in the rn-stage flow shop model. The approximation ratio of their algorithms is

19

m. Let R ;, be the total processing time of all operations of job Ι. The algorithm schedules

the jobs in nondecreasing order of A t, at each stage. By a careful analysis, Hoogeveen et

al. 161] showed that this algorithm has approximation ratio 2 β / (α + β) , where 'x denotes

the minimal processing time of all tasks and β denotes the maximal processing time of all

tasks. If the jobs have different weights, Schulz [108] obtained an approximation algorithm

with performance guarantee of 2m (or 2m + 1 in case of arretrary release time) for total

weighted completion time based on linear programming.

When there are more than one machine in either or both stages, the model is called

a flexible or hybrid flow shop. Both makespan and total completion time minimization

problems are NP-hard, even if preemption is allowed; see [57] and [33]. Lee and Vairak-

tarakis [78] developed heuristics for makespan minimization with approximation ratio of

2 - 1 / max{m ι , m2}, where m1 and m2 are the number of machines in stages 1 and 2,

respectively. Based on linear programming, Schulz [108] obtained an approximation algo-

rithm with performance guarantee of 3m (or 3m + 1 in case of arretrary release time) for

the total weighted completion time, where m is the number of stages. Thus, if m = 2, it is

a approximation in the case of identical release times and a approximation in the case

of arretrary release times.

For the two-stage flow shop with transfer lags model, some research has been done,

most of which is about makespan minimization. Dell'Amico [2] proved that the makespan

problem is NP-hard, even if preemption is allowed and each stage has only one machine.

Later, Vu, Hoogeveen and Lenstra 1121] showed that the problem is NP-hard even if all

tasks have unit length. This is in contrast to the fact that the problem is solvable in polyno-

mial time when there is no transfer lags. By the above discussion, this model is the same

as the master-slave model when the preprocessing and reprocessing masters are distinct.

Thus, the heuristics given in [115] for the master-slave model also work here. Little is

known about the total completion time minimization problem.

20

2.5 New Results: CompleDity of Scheduling Problems in Master-slave Model

First, some previous complexity results for the makespan problem is strengthened. Then

some new results for the total completion time problem are developed, based on the re-

sult from 1121]. It is shown that many problems are strongly NE-hard, even with some

constraints. The main results can be summarized as follows:

• The makespan problem is strongly NE-hard, even if α;, = cif = 1 for 1 < i < n and

only no-wait-in schedules are considered.

• The order preserving and no-wait-in makespan problem is NP-hard in the strong

sense, even if a1 = cif for all 1 < i < n.

• The total completion time problem is NE-hard in the strong sense, even if (i) all the

preprocessing and reprocessing tasks have unit time, (ii) only canonical, or no-

wait-in, or canonical and no-wait-in schedules are considered.

• The order preserving and no-wait-in total completion time problem is NP-hard in the

strong sense, even if ail = cif for all 1 < i < n.

It is sufficient to prove the above results in the simple case: a single master and

all jobs have the same release time. Following is a theorem about C max problem in a twos-

Lachine flow shop with delays which was recently proved by Yu et al. [121].

Theorem 2.5.1 (See Theorem 21 and Corollary 221121]) The flow shop problem F2Ί11, Atii =

11 Ajax is strongly NP-hard, even if exact delays are required.

By the discussion in Section 2.1, the above theorem immediately implies the fol-

lowing theorem.

Theorem 2.5.2 The makespan problem in master slave system with ail = cif = 1 for all

1 < I < n is strongly NE-hard, even if there is no-wait-in constraint.

21

Proof: The outline of the proof of this theorem is given below, as it is relevant to the

discussion of the total completion time problem later. The reduction is almost the same

as in the proof of Theorem 21 in [121]. But for each job i, instead of having a lag 1

between its two tasks, it now has a slave task bib which must start after the preprocessing

task and finish before the preprocessing task. The preprocessing and reprocessing tasks

are performed on the same master machine, instead of two machines. To ensure the same

argument goes through, let bib = lib+ Y for each job i, where Y = n - (ma +2) and n is the

number of jobs in the instance of the two-machine flow shop with delays. The bound for

the makespan is also increased by Y . The proof of Theorem 21 in [121] used a reduction

from the 3-partition problem, which is known to be strongly NP-complete; see [43].

Using the same argument as in [121], one can show that if there is a canonical

schedule S with makespan less than or equal to 2n, then S must have the following prop-

erties: (1) The makespan of S is exactly 2n, (2) S is a no-wait-in schedule and the finish

times of the jobs are n + 1, ... , 2n. See Figure 2.1 for an illustration of the schedule on

the master machine. Also, it can be shown that there is a solution to the 3-partition problem

if and only if there is a schedule S with makespan exactly 2n. ❑

The above result can be used to show that the total completion time problem is also

strongly NP-hard.

Theorem 2.5.3 The total completion time problem with a;, = c if = 1 for all 1 < i < n is

strongly NP-hard, even if (1) only canonical schedules are considered, or (2) only no-wait-

in schedules are considered, or (3) canonical and no-waited-in schedules are considered.

Proof : The reduction is still almost the same as above, the only difference is that now

one asks the question: is there a schedule of the n tasks with total completion time at most

This completes the proof.	 σ

The above theorem implies that the total completion time problem is NE-hard in

the strong sense even if preemption is allowed. Observe that the optimal schedule S for the

constructed instance in the proof of Theorem 2.5.2 is not order preserving, so the above

results are not applicable to order preserving scheduling problems. In the following, the

complexity of no-wait-in makespan and no-wait-in total completion time problem with the

constraint of order preserving will be considered. Both problems will be shown to be GNP-

hardy in the strong sense by a reduction from the partition problem.

Theorem 2.5.4 The problem of minimizing the order preserving and no-wait-in makespan

is strongly NP-hard, even if at = cif for 1 < i < n.

Proof: To reduce an instance of partition problem to an instance of the scheduling

problem, one first create two types of jobs. This include (1) 3m partition jobs: Ai = cif = x i

and (2) 2m separation jobs: Ai = cif = Β + 1 and

problem is to determine whether there is an order

preserving and no-wait-in-schedule such that Cmax < 2m(3Β + 2). Clearly, the reduction

can be done in polynomial time.

Figure 2.2 An illustration of the schedule on the master machine for the instance reduced from 3-
partitions in Theorem 2.5.4. Jobs 1,2 and 3 are partition jobs, jobs 3m + 1 and 3m + 2 are separation

jobs.

If there is a solution to the partition problem, then one can schedule the separation

jobs in any order without overlapping, and for each group of partition jobs corresponding

to a partition subset, schedule their preprocessing tasks fully overlapping with the slave task

of one separation job and the postprocessing tasks fully overlapping with slave task of the

separation job immediately following the previous one. See Figure 2.2 for an illustration

of the schedule. It is clear that the schedule is order preserving and no-wait-in and C max =

2m(3Β + 2). Now suppose the scheduling problem has a solution; i.e., there is an order

preserving and no-wait-in schedule S such that Amax < 2m(3Β + 2). Since only no-wait-

in schedules are considered and since AA = ci > bib for any two separation jobs i and 5, a

which means that all the partition jobs must fully overlap with the separation jobs. For

each partition job i, 2Β < bib < 3Β + 2. Therefore, each partition job i must overlap with

exactly two adjacent separation jobs in the schedule S. Because Β/4 < ail = cif < Β/2,

at most three preprocessing and/or preprocessing tasks of the partition jobs overlap with

one separation job. Since there are 2m separation jobs only, there must be exactly three

preprocessing or preprocessing tasks fully overlapping with each separation job. For each

separation job j, bib = Β. Thus, the integers corresponding to the three preprocessing or

preprocessing tasks that overlap with bib have a total exactly Β. Hence, the partition

problem has a solution. Π

Theorem 2.5.5 The problem of minimizing the order preserving and no-wait-in total com-

pletion time is strongly NP-hard, even if a1 = cif for 1 < i < n.

Figure 2.3 An illustration of the schedule on the master machine for the instance reduced from 3-
partitions in Theorem 2.5.5. Jobs 1, 2 and 3 are partition jobs, jobs 3m + 1 and 3m + 2 are medium

jobs and job 5m + 1 is a large job.

Proof: As in the previous proof, the reduction is from partition problem. First three

types of jobs are created for the scheduling problem: (1) 3m small jobs: ail = cif = χ and

Let

If the partition problem has a solution, then schedule the jobs as follows: first sched-

ule the medium jobs in any order without overlapping; schedule any three small jobs that

correspond to the three integers in the same partition subset fully overlapping with two ad-

jacent medium jobs; finally, schedule the large jobs after the medium jobs one by one in

any order without overlapping. See Figure 2.3 for an illustration of the schedule. One can

easily verify that the schedule is an order preserving and no-wait-in schedule. To bound

the total completion time, the total completion time of each type of jobs is calculated sepa-

rately. Without loss of generality, suppose that the medium jobs are scheduled in the order

of 3m + 1, 3m + 2, ... , 5m. Since the medium jobs are scheduled one by one from time

26

0 withniit overlap, the tntαl completion time of α11 medium inhς is

Similarly, the total completion time of all large jobs is

Now consider the total completion time of the small jobs. Suppose that the small

jobs corresponding to the partition subset X is, 1 < j < m, are 51, j2 and j3; furthermore,

suppose that Si is scheduled before 52 which is scheduled before j3. Suppose that these jobs

overlap with two consecutive medium jobs 3m + 2j — 1 and 3m + 2j. Let Cji denote the

completion time of the small job j. Then

Similarly, one can get

and

Therefore, the total completion time of all lobs is

Now, suppose there is an order preserving and no-wait-in schedule of all these jobs

One need to show that there is a solution to the partition prob-

lem. Let S* be such a schedule with the smallest total completion time. Some observations

about S* are listed as follows.

First, a3 = cif>bib for any two jobs i and j that are both medium jobs or large

jobs. Therefore, i. and j can not overlap with each other in S*. For the same reason, a large

job can not overlap with a medium job in S*, nor can it overlap with a small job. Hence,

overlapping can only occur between the small jobs or between the small and medium jobs.

Next, because AA = cif = xi>a/4 for any small job 1, 1 < i < 3m, there are at most

three small preprocessing/preprocessing tasks that can overlap with the slave task b; of a

27

28

medium job j. Since 2a <b 1 < 3a + 2 for any small job i, bi can overlap with tasks of at

most two medium jobs in the schedule S*.

Finally, there are two other properties of S*.

• Large jobs are scheduled after all medium jobs finish in S*.

As shown above, the large jobs can not overlap with the medium jobs and small jobs.

Suppose that some medium jobs and small jobs are scheduled between two large

jobs. Then one can modify the schedule by moving the first large job so that it is

scheduled immediately before the second large job. Since no small or medium jobs

can overlap with the large jobs, this movement will not affect the feasirelity of the

schedule, i.e., it is still an order preserving and no-wait-in schedule. However, the

new schedule has a smaller total completion time which contradicts the assumption

that S* is optimal.

• Exactly three small jobs overlap with a medium job in S .

It is clear that a small job can not be scheduled after a large job; otherwise, one can

interchange them without increasing the total completion time. Similarly, a small job

can not be scheduled between two medium jobs. Therefore, a small job can only be

scheduled either before all medium and large jobs or fully overlapping with medium

jobs.

Suppose there is a preprocessing task ail of a small job i which is scheduled before

any medium or large jobs in S*. Then,

Therefore, every small job must overlap with exactly two adjacent medium jobs in

S*. Since there are 2m medium jobs and 3m small jobs, there must be exactly three

preprocessing tasks or three preprocessing tasks overlapping with a medium job.

For any medium job j, there are exactly three small jobs overlapping with it in S*.

Because b 5 = a, the sum of the preprocessing or reprocessing tasks of the three small

jobs overlapping with j is exactly a, which means that the corresponding three integers

have a total exactly a. Thus, the partition problem has a solution.

Ο

CHAPTER 3

OPTIMAL AND APPROXIMATION ALGORITHMS: SPECIAL CASES

This chapter considers special cases of the total completion time minimization problem and

no-wait-in-makespan problem. It is assumed that (1) there is a single master, (2) all jobs

have the same release time 0, same preprocessing task length a and same reprocessing

task length c; i.e., the jobs are different from each other only by their slave tasks, (3) no

preemption is allowed. It is proved that in this case if there are canonical and order preserv-

ing constraints, then in Ο (n log n) time one can find an optimal schedule that minimizes

the total completion time, when A;, = a and cif = c for all 1 < i < n and a < c. After

that, some approximation algorithms are developed for the canonical total completion time

problem and the no-wait-in makespan problem.

3.1 Optimal Algorithms for Σ C: Canonical and Order Preserving Schedules

It has been shown in Chapter 2 that minimizing total completion time is strongly NP-hard,

even under severe constraints. This section shows that there is a special case that admits a

polynomial time algorithm.

Theorem 3.1.1 The problem of minimizing the canonical and order preserving total com-

pletion time can be solved in Ο (n log n) time if ail = a and C1 = c for 1 < i < n and

a < C.

Proof: The proof is by showing that a canonical schedule S* that schedules the pre-

processing tasks in nondecreasing order of the processing times of the slave tasks gives an

optimal order preserving schedule.

For any job i, let πι denote the rank of job i in S*; i.e., a t is the πι-th task scheduled

in S*. Because only canonical schedules are considered, the earliest possible time to start

30

11

r;, < r^. By the definition of canonical schedules, c ι will be scheduled before c ; . Thus, S*

is order preserving.

The next step is to show that S* has the minimum total completion time among all

canonical and order preserving schedules. Suppose there is another canonical and order

preserving schedule S that is optimal. Suppose the jobs in S are in the order of 1, 2, ... ,

n, and there are two jobs i and i + 1 such that b ι > b +1 . Let their finish times in S be Cι

and C ±1, respectively. By interchanging them, one can get new finish times Ci and C^+1

and all the other jobs have the same finish times as before. One can show that Ci < C1+1

and Ci±1 < C1. Thus, the new schedule has total completion time no larger than before.

By repeatedly interchanging jobs, one will arrive at the schedule S*. ❑

Note that Sahni [104] showed that when a t = A, ct = c and a = c, scheduling

jobs in nondecreasing order of the processing times of the slave tasks also minimizes the

makespan.

If a> c, then the canonical schedule that schedules the jobs in nondecreasing order

of the processing times of the slave tasks is still order preserving but may not be optimal.

The complexity of the problem of finding an optimal canonical and order preserving sched-

ule when a> c is not known at the present time. However, we will show in the next section

that scheduling the jobs in nondecreasing order gives a 4-approximation.

3.2 Approximation Algorithms for Σ C) : Canonical Schedules

This section considers canonical schedules only. So a schedule in this section always means

a canonical schedule. The goal is to minimize the total completion time when aι = a and

cι = c for all i.

Consider n jobs all of which have preprocessing time a and postprocessing time c.

Each job i has a slave task b 1 . Let S be a canonical schedule of these n jobs. Let π(S)

denote the rank of job i in S; i.e., ai is the π (S)-th preprocessing task that is processed.

32

Let rib (S) = max (nay, π(S) • a + bib) be the ready time of cif; i.e., at time rib (S) the master

machine will schedule cif if it finishes the postprocessing tasks that are ready earlier than

cif. Let S* be the canonical schedule of these ii jobs with minimum total completion time

Given a subset G of the ii jobs, let S denote the schedule that minimizes

among all schedules of the ii jobs. Let CMG be the sum of the completion time of the jobs

from G in S*GG

The next lemma gives a lower bound of the total completion time of the optimal

schedule S*. This lemma is useful for later analysis.

Lemma 3.2.1

Proof: First since only canonical schedules are considered, the earliest possible time to

schedule a preprocessing task is tea. Hence, the best possible schedule is one that first

executes a preprocessing task at ha, and thereafter the remaining reprocessing tasks,

one after another without any idle time. Thus,

33

σ

The next two lemmas show that there are some special cases that can be solved by

a polynomial time algorithm.

Lemma 3.2.2 If max <i<, bib < (rib - 1) • min(a, c), then any canonical schedule is an

optimal schedule.

For job j 2 , the following can be derived.

ri2 (S) = max(na, 2a + j2) < max(τιA, (2d + (n —1) min a, c))) < nay + c = Cif,

Therefore, c7 2 will start immediately after c;, completes at tic+ c. Similarly, one can prove

scheduling jobs in nondecreasing order of the processing times of the slave tasks.

Proof: Let S be a schedule that schedules jobs in nondecreasing order of the processing

times of the slave tasks. Then ιτi (S) = i. Because bib > (n — 1) a, r ib (S) = max (n a, is +

bib) = id + bib.

that the master machine can schedule cif at rib and finish at r ib + c by the time c1±1 becomes

34

By (3.2), S is an optimal schedule.

order of the processing times of the slave tasks, then the total completion time is 51. But if

the jobs are scheduled in the order of j, , J3 and J2, one can get a smaller total completion

time of 50.

The next theorem gives a bound of the worst schedule versus the best schedule.

Theorem 3.2.4 Let S be a schedule that schedules jobs in an arbitrary order. If a < c,

then

be the completion times in S. Let j be the last job that

finishes before the first idle time. The jobs will be divided into two subsets G1 and G2 as

follows.

Let j and all the jobs that finish before j be in G Ι . By assumption, for any k < j,

k E G1 and Ck(S) = Arta + 2c. By (3.1), the total completion time of the jobs in G1 in any

schedule can not be smaller than that in S. Thus, Σ kJ G, Ck(S) = C^ 1 .

Let the remaining jobs k> j be in G2. Then, for any job k in G2, one can derive

35

It is unknown whether the bounds in the above theorem are tight or not. For the

case that a = c = 1, there are examples approaching the 3 bound. If n = 5, let the

If b's are used to represent the jobs, then the optimal order of the

with total completion time 40, while the worst scheduling order is

o6, 5, 4, 3, 2) with total completion time 50. If n = 9, let the b's be 4,5,6,... ,12. The

optimal order is (8, 9,10,12,5, 11, 7, 4, 6) with completion time 126, while the worst order

is o12, 11, 10, 9, 8, 7, 6, 5, 4) with total completion time 162.

Now consider simple algorithms that improve upon the previous bounds. The next

two theorems show that if the jobs are scheduled in nondecreasing order of the processing

times of the slave tasks, then one can obtain better bounds.

Theorem 3.2.6 Suppose a> c. Let S be a schedule that schedules jobs in nondecreasing

Proof: Suppose b1 < b2 < ... < b a-,. Since S schedules the jobs in this order, for any

1 < i < n, rib = maxona, is + bib). Therefore, r1 < τ ±1 , which implies that Cif < Ci+ι.

Let j be the last job that finishes before the first idle time. The jobs will be divided into two

subsets G1 and G2 as in the proof of Theorem 3.2.4. Let j and all the jobs that finish before

j be in G1. By the above analysis, k E G1 if and only if k < 5. Because there is no idle

time before j finishes, Cc oS) = n a + kc for all k < 5. Thus, ΑΡ kJ G Ι Cc oS) = C6 1 .

The remaining jobs are in G2. Since there is idle time before ci + ι starts, we have

By assumption, a > c and bi+2 < bi+2. Therefore,

It is clear that the schedule obtained by scheduling jobs in nondecreasing order

of the processing times of the slave tasks must be an order preserving schedule. Since

the optimal canonical and order preserving schedule can not have a total completion time

smaller than n2 α + z non + 1)c, the above bound also applies to canonical and order

preserving schedules.

38

Corollary 3.2.7 Given n jobs such that ';, = a and cif = c for all 1 < i < n. Suppose

that a > c. Then, in O on log n) time, one can find a canonical and order preserving

schedule with total completion time at most á of the minimum among all canonical and

order preserving schedules.

The case a < c is considered next.

Theorem 3.2.8 Suppose a < c. Let S be the schedule that schedules jobs in nondecreasing

order of the processing times of the slave tasks. Then

Proof: Suppose that b1 < b2 < ... < bat. Let S be the schedule that schedules jobs

in this order. The jobs are divided into groups according to their completion times. Those

jobs that complete before the first idle interval are in G0. Those jobs that complete after the

first interval and before the second idle interval are in G1. Those jobs that complete after

the second interval and before the third idle interval are in G2, and so on. Suppose there

are m + 1 groups. Let the numbers of jobs in these groups be χ 0 , ..., m, respectively.

39

By assumption, byi+1 < b 1 . Therefore, Cui+1 σS) < yid a+ ooa+bi 1 +c) < y k a+ Cif 1 (SG i) .

Since there is no idle time between jobs of Gib under S, for any other job j Ε Gib, it must be

true that Cif (S) = C 1 1 σS) + σ5 — yid — 1)c. Thus,
✓i+xi

C5 σS) = 	 [C y+1o5) + σj — yid — 1)ε]
iEGi
	

k-1J+ 1

✓i+Xi

< Σ [yi α + Ci1oSGi) +oj—yi-1)ε]

xi

=Χ'yία+Σ[Ci1oSG i) + (k — 1)c]
k=1

= κ; • yid a + C. .

Therefore,
π 	 Απ
Σ cccs^ = Σ Cocos) + Σ Σ Cc(s)
k-1 	 kEGO 	 k-1 cEGi

m
<C 0 + Σ (CMG. + Ft Via)

k=1

	m 	 m k=1

= Σ chi + Σ ΣFίFμι)
	ίσο	k-1 i-0

	

η 	 m k=1

< Σ ckos*)+ Σ Σχ,F i a
	k=1 	 k-1 k-0

π 	 1 	m	 2
< Σckos*) + 2 . ΣΧι ak-1π
= Σ CcoS *) + 1τι2 a

2

Thus,

Σπ lCkoS) <1+ π1τ
2 a 	< 1 + 	 Ζη2 a 	 < 1 + 1 < ,

Σκ=1 CcoS*) 	 Σκ-1 CcoS*) 	 η2a + i ηση + 1) c 	 2 + ά 3
π

and if 4a < ε, then Lk ^'kksS)) < 7
.

c-1

c=1

3.3 ApproDimation Algorithms for No-wait-in Makespan

In this section two algorithms will be proposed to minimize the makespan of no-wait-in

schedules in the special case; i.e. at = a and cif = c for all i. The first algorithm is for the

case when a? c, while the second algorithm is for the case when a < C.

Algorithm 1- a > c

1. Sort the jobs in nondecreasing order of the processing times of the slave tasks. Sup-

pose the sorted jobs are in the order of 1, 2, ... , n.

2. Schedule task a1 at time 0, b1 at time a and c i at time a + b1.

3. Repeat until all jobs are scheduled (see Figure 3.1):

Suppose the jobs 1, 2, ... , i - 1 have been scheduled. Find the first idle interval

[2 , K2) before Ci_2 such that K2 - K2 = a, schedule at at t2 on the master machine,

bibatt2on the slave machine and cif att2 + bibon the master machine. If no such idle

interval exists, schedule Hai at time

Theorem 3.3.1 Let S be a schedule produced by Algorithm 1 for a given set of n jobs

with preprocessing tasks a and preprocessing tasks c and a > c. Then S is a feasible

no-wait-in schedule, and

41

It is sufficient to show that after the jobs 1, 2, ... , i —1 are scheduled, the intervals

So, every task cif starts after the task c t_i completes, which means that the interval [K(i),

tc(A) + c) must be idle.

If there is no idle time before t a(n), then this is obviously true. Otherwise, there

must be some idle intervals before K o (n) . By the algorithm, the length of each idle interval

before KB (n) must be less than a; additionally, there are two types of intervals: those that

overlap with bi's and those that are between Cif and tc (i + 1) for some i, where 1 <

i < n - 2. Let ID denote the total length of first type of idle intervals and 12 denote the

total length of the second type of idle intervals. Because only no-wait-in schedules are

considered, the first type of idle intervals are inevitable even in an optimal schedule. There

are at most (n - 1) idle intervals of the second type all of which are smaller than a. Hence,

2m, and b2m+i = 4m. The optimal schedule schedules job 2m + 1 first, and all other

jobs completely overlapping with b2m±i . The ratio between the algorithm and the optimal

solution for this instance is 1 + 42' which approaches 2 when m is large enough.

Note that Algorithm 1 actually produces order preserving schedules. Since the

minimum order preserving and no-wait-in makespan cannot be smaller than the minimum

no-wait-in makespan, one can obtain the following corollary.

Corollary 3.3.2 Let S be a schedule produced by Algorithm 1 for a given set of n jobs with

preprocessing tasks a and reprocessing tasks c and a > c. Then S is an order preserving

and no-wait-in schedule and

Algorithm 2- a < c

1. Sort the jobs in nondecreasing order of the processing times of the slave tasks. Sup-

pose the sorted jobs are in the order of 1, 2, ... , n.

2. Schedule task a1 at time 0, b1 at time a and c1 at time a + b1.

3. Repeat until all jobs are scheduled (see Figure 3.2):

Figure 3.3 Illustration of the proof of Theorem 3.3.3. The idle interval between cji and
c; has length less than a; the idle interval between a k+l and ak+l has length less than c - a
and the idle interval between ak±m and c^ + ι has length less than C.

the master machine. If no such idle interval exists, schedule a il at time C_ ι , b;, at

Theorem 3.3.3 Let S be a schedule produced by Algorithm 2 for a given set of n jobs

with preprocessing tasks a and reprocessing tasks c and a < c. Then S is a feasible

no-wait-in schedule, and

Proof: One can use a similar argument as in the proof of Theorem 3.3.1 to show that S

is a feasible no-wait-in schedule.

44

Consider the time when job k + 1 is going to be scheduled. By the algorithm, the

jobs 1, ... , k have been scheduled at this time. Because a ka is scheduled before cif ,

Suppose that Mc (j + 1) - C 5 > a. Let ti = C 5 and Kl = C5 + a. Then Kl < M c (j + 1) .

Thus, [t1, Kl) is an idle interval whose length is equal to a. According to the above

inequality, K2 + bk+ι > CC. By the algorithm, aκΡ+l will be scheduled by to, which

contradicts the assumption that uk+t is scheduled after Mc (j + 1) > Kl. Therefore, it

must be true Mc (j + 1) — C 5 < a. In other words, the idle interval has length less than

a which is less than c.

2. There is a single task ak±l scheduled between C 5 and Mc (j + 1) .

By the analysis in Case 1, ak+l must be scheduled immediately after C 5 . Thus, the

Let ti = C5 + a and K2 = t^ (j + 1) . Consider the time when the job k+2 is scheduled.

By assumption, ak+2 is scheduled after Kl. Since [t1 , Kl) is an idle interval, by the

algorithm, there are only two possible reasons that ak±2 is not scheduled during the

interval: (1) the length of the idle interval is less than a or (2) Kl — t> > a but

the assumption, a < c. Therefore, in both cases,

3. There are several a tasks ak+l , ... , ak±m scheduled between C 5 and Mc (j + 1) .

As in Γαse 2_ the task fl,. , mιιst he scheduled immediately after G _ An there are

45

First consider the length of the idle interval between t a (k + p) + a and to (k + p + 1),

where 1 < p < m-1. Without loss of generality, suppose that this interval has length

Thus, by the algorithm, the task ak+p+l must be scheduled at or before t1; that is,

which means that

For the interval [(tack + m) + a), ta(n + 1)), one can use the same argument as in

Case 2 to show that the length of the idle time during this period is less than c.

Now, one can bound the length of the interval [Mc (1) , to (n)) . The interval consists

of three types of smaller intervals: (i) the intervals occupied by a tasks, (ii) the intervals

occupied by c tasks and (iii) idle intervals.

Suppose that ail , al, ... , ' q are the a tasks scheduled before tc (1) . Then, there are

(n —1 — q) a tasks scheduled during the interval [M c (1) , toe (n)) . Therefore, the total length

of the type (i) intervals is (n — 1 — q) a. Recall that it is assumed that C if < to (n) < C1± 1.

So the number of c tasks during the interval [M c (1), tan)) is i and the total length of the

type (ii) intervals is Bic.

By Cases 1, 2 and 3, the length of the idle interval after each a task is at most c.

Since there are (n - 1 - q) tasks during the interval [Mc (1), ta (n)), the total length of the

idle intervals after these a tasks is at most (n — 1 — q)c. If there is no a task between C;

46

and C5±1 for 1 < n <i-i, then there is an idle interval between Cj and Cj +2 with length at

most a. Since there are i jobs that finish before t α (n), the total length of the idle intervals

between the jobs Cj and Cj+2 with no a task between them and 1 < 5 < i. — 1 is at most

47

τ^' 	 τ^ 	 1 Α1 	 Αι 	 Γ• ι - 	 ι 	 rn TV

ratio between the algorithm and the optimal solution can approach 2 arbitrarily closely.

Note that Algorithm 2 produces schedules that are order preserving. Since the min-

imum order preserving and no-wait-in makespan cannot be smaller than the minimum no-

wait-in makespan, Theorem 3.3.3 implies the following corollary.

Corollary 3.3.4 Let S be a schedule produced by Algorithm 2 fora given set of n jobs with

preprocessing tasks a and preprocessing tasks c and a < c. Then S is an order preserving

and no-wait-in schedule and

CHAPTER 4

APPROXIMATION ALGORITHMS: GENERAL CASES

In this chapter, the total completion time minimization problem will be considered under

various scenarios. This includes single-master systems, multi-master systems, and distinct

preprocessing and reprocessing master systems. Since the problem is strongly NP-hard,

the focus will be on approximation algorithms. For each type of system, both the case

when all jobs have the same release time and the case when the jobs have different release

times will be considered. Algorithms are designed to approximate the best preemptive or

non-preemptive schedules in these cases. The organization of this chapter is as follows. In

Sections 4.3 - 4.5, algorithms are designed to minimize total completion times of preemp-

tive schedules. Section 4.3 is devoted to the single-master case, Section 4.4 is devoted to

the multi-master case, and Section 4.5 is devoted to the case of distinct preprocessor and

preprocessors. In Section 4.6, conversions from preemptive schedules into non-preemptive

schedules will be considered. In section 4.7, linear programming relaxation approach is

applied to systems with distinct preprocessor and preprocessors.

4.1 Preliminaries

An ι -approximation algorithm for makespan (or total completion time) is an algorithm

that for any set of jobs generates a schedule S whose makespan (or total completion time)

is at most x times the optimal makespan (or total completion time). It is an (α, β) -

approximation algorithm if it is an approximation algorithm for makespan and at the

same time a approximation algorithm for total completion time. For a schedule S, if

then S is said to be an (cc, β)-schedule.

The Shortest-Processing-Time (SPAT) rule, which always runs the job with the least

processing time, and the Shortest-Remaining-Processing-Time (SRPT) rule [107, 111],

48

49

which always runs the job with the least remaining processing time, are two well-known

algorithms for minimizing total completion time. Usually, the SPT rule is used to generate

non-preemptive schedules, while the SPT rule is used to generate preemptive schedules.

Suppose each job consists of a single task. If all jobs are available at time 0, then the SPT

rule is optimal for total completion time in the single-machine or multi-machine environ-

ment. If the release times are arretrary, then the SPT rule is optimal for a single machine

and it is a 2-approximation (see 195]) in the multi-machine environment.

In this chapter, both rules will be adapted for the problems in master slave model.

Both are applied to generate preemptive schedules. A scheduling decision is made when an

a task or a c task completes so that a master machine becomes free, or when a new a task or

a c task becomes available. At any such time instant, the SPAT rule schedules, from the set

of available tasks (including those that have been preempted but have not yet completed),

the one with the smallest processing time. Depending on how one chooses from the set of

available jobs, one can obtain the SPT rule and the SPC C rule. Specifically, in the SPT Q

rule, preemption occurs only among the a tasks and the preemption is based on the length

of AA. In the SPTc rule, preemption occurs only among the c tasks and the preemption is

based on the length of cif. On the other hand, the SPT rule schedules, from the set of

available tasks, the one with the smallest remaining processing time. Similarly, one can

define the SRPTa rule and the SRPTa rule. Both the SPAT rule and the SRPTa rule may

generate schedules with migration when there are multiple machines, i.e., after interrupted

on one machine, a task is resumed on a different machine.

In this chapter, the jobs are frequently sorted in certain nondecreasing order of some

parameters xi of job i, e.g. xi = cif. For convenience, in this chapter xi < x) is used as long

as Fib comes before x) in the sorted order, even though it may be the case that xi = x. As in

the previous chapters, one can always assume that the b tasks are scheduled immediately

when they become available. Thus one can focus on the schedule of a tasks and c tasks

only.

50

4.2 New Results and Techniques

Preemptive relaxation and linear programming relaxation are two important techniques for

getting constant-factor approximations for total completion time of non-preemptive sched-

ules; see [95, 59, 14, 45, 109, 108]. Most of these algorithms work by first constructing a

relaxed solution, either a preemptive schedule or a linear programming relaxation. These

relaxations are then used to obtain an ordering of the jobs, and the jobs are list scheduled

(i.e., no unforced idle time) in this order. More about these methods will be discussed in

Section 4.6.

The advantage of the preemptive relaxation is that usually there are very efficient

algorithms to generate optimal or near-optimal schedules. In most cases, these algorithms

(both preemptive and non-preemptive) can be implemented to run in an online fashion, see

[95] and [59]. The linear programming relaxation, however, is more time consuming and

can only be implemented to run in an offline fashion. On the other hand, it provides better

approximation guaranties in some cases. Furthermore, the method usually works even if

one wants to optimize the total weighted completion time; see [59, 14, 45, 109, 108].

Both approaches will be used in this chapter. In all cases, efficient algorithms are

first developed to generate preemptive offline or online schedules with good approximation.

These schedules are shown to have small makespan as well. Then, by applying the ideas in

[95] and [16] to the master slave models, these preemptive schedules can be converted in-

to non-preemptive schedules with certain degradation in the quality of approximation. In

the case when there are distinct preprocessing masters and reprocessing masters, linear

programming relaxation is also used. It is shown that non-preemptive schedules obtained

in this way sometimes have better performance guaranties than those obtained by the pre-

emptive relaxation approach. The results are summarized in Tables 4.1, 4.2, 4.3 and 4.4,

where e is the base of natural logarithm.

Table 4.1 New Results for Single-Master System

51

Table 4.2 New Results for Multi-Master System, All Schedules are Non-Canonical

4.3 Single-master

This section assumes that there is a single master. Canonical schedules are studied first,

and then non-canonical schedules. Finally, the case when jobs have different release times

4.3.1 Canonical Preemptive Schedules

First, two lower bounds of the total completion time in canonical schedules are developed.

Suppose there are n jobs 1, 2, ... , n. For canonical schedules, whether preemption is

allowed or not, one can derive the following lower bound

52

Table 4.3 New Results for Distinct Preprocessor and preprocesor System, ma = m2 = 1

Table 4.4 New results for distinct preprocessor and preprocessor, m1 > 1 and m2 > 1

which assumes that there is no idle time in the schedule and that the c tasks are scheduled

in ascending order of their lengths. Another lower bound is

which assumes that jobs are scheduled in increasing order of the Ai, and that the b tasks

and the c tasks are scheduled immediately after they are available. Finally, the following

trivial lower bound which is simply the summation of all the processing times holds for any

schedule.

This follows from the observation that C ; > c; + b ; + c) . Summing ; from 1 ton gives the

result in (4.3).

53

In canonical schedules, all the a tasks are scheduled first. Since all the a tasks are

available at time Ο and the c tasks cannot start until all the a tasks finish, there is no need to

preempt the a tasks. Hence, only a c task can be preempted by another c task in this case.

Algorithm Canonicals PTA: Schedule the a tasks in an arretrary order without preemp-

tion. After all the a tasks finish, schedule the available c tasks by the SPA T rule.

Theorem 4.3.1 Algorithm Canonical-SΡTΤ generates a (2,2) canonical preemptive sched-

ule in O (n log n) time.

Proof: Let Caj denote the time a; completes. Then at time t) = max(A, (C ab + b)),

all the a tasks finish and the c; is available to be scheduled. Since Cai < A, it must be

true that t < Α + b) . According to the algorithm, if there is another available task cif that

hasn't finished at time ti and cif < c;, then c ; has to wait until cif finishes. Also, during the

execution of c;, if there is another task cif < c; that becomes available, then cif preempts C) .

In both cases, it is said that c5 is delayed by cif. Let C; be the completion time of c; in the

schedule generated by Algorithm Canonical-SΡTΤ . Then,

where the last inequality comes from the lower bounds (4.1) and (4.3).

The above armroximatioii ratio is tight. Consider this example: for 1 < i < n — 1,

The optimal canonical

schedule schedules a1, al, ... , an_ι first and then followed by an . The total completion

time is about (n + 1) a. However, if one schedules aa1 first followed by a1, ... , an_ ι , then

the total completion time is about Ana. (For this example, the optimal preemptive schedule

has the same total completion time as the optimal non-preemptive schedule.)

54

It has been shown in [106] that any canonical schedule without preemption is a 2-

approximation for makespan. Since preemption among the c tasks can not increase the

makespań, the schedule generated by Algorithm CanonicalsPΤc has makespań at most

two times the optimal.

Suppose the jobs in Se are arranged

in increasing order of the bps and the jobs in 52 are arranged in decreasing order of the bps.

In [106], it was shown that the canonical schedule in which the a tasks of S ι are scheduled

before the A tasks of Sl has makespań at most 3/2 times the optimal schedule. If the a

tasks are scheduled in this order in Algorithm Canοnical-SPΤ c, then one still gets a 3/2-

approximation for makespań, since preemption on the available c tasks will not increase

the makespań.

Corollary 4.3.2 There is an O (n log n) time algorithm that generates a (3/2, 2) canonical

preemptive schedule.

Note that when preemption occurs, algorithm Canonical-SPΤc uses SPAT rule, in-

stead of the SRPT rule. This is for the purpose of analysis only. In practice, one can use

the SRPT rule to get a better approximation for total completion time.

4.3.2 Non-canonicals Preemptive Schedules

In this model, the A tasks and the c tasks can be scheduled alternatively. A lower bound on

the C* can be obtained by assuming all the b tasks have length 0:

Algorithm Non-canonicals PTQ+c: For any two jobs, if (Raj + c;) < (chit -1- c1), then

both chiand c; are said to have higher priority than ailandcif. Atany time, if the master

processor is free for assignment, assign the available task with the highest priority. If a new

task becomes available and has higher priority than the currently running task, the new task

preempts the currently running task.

Proof: Since all the a tasks are ready at time 0, there is no need for an a task to

preempt another task. Thus, preemption occurs only between a higher priority c task and a

lower priority c task or a lower priority a task. Let C abs denote the completion time of Raj

in the schedule generated by Algorithm Non-canonicalsPTa +c. If none of the a tasks is

preempted by a c task, then Cad would be R aj+ Σαi+ci<α;+cjHai. Because of preemption,

Cabscan be delayed by some higher priority c tasks. In other words, cifcan delay Rajonly if

at + cif < Raj + c 3. At time to= Ca+ bo, the task cobecomes available. According to the

algorithm, co can only be delayed by a task cif such that Hai + cif < aj + c. Note that if cif

delays aj, it will not delay co again. Thus, one can bound the completion time C) :

To bound the makespan of the schedule, pick the last job n such that co is scheduled

immediately when it is ready. Such a job always exists since the job i with the highest

priority always satisfy this criterion. Then, the interval Ι ι = [0, Cab) and the interval after

4.3.3 Arbitrary Release Times

When arbitrary release times are present, it is not meaningful to have canonical schedules

any more. Thus, only non-canonical schedules will be considered. The lower bound (4.4)

still holds for this case. Let R = Σ r1 . Then, a trivial lower bound for the minimum

total completion time of any schedule is

VUJGι VG L1υι1 i-uguiiiiiiii 1'U1- ιιυιιι .1-3 C I a±c ιιυικ s IΗU 	 υιιιν11UIlb ιAUU1 111C lC1C'1 C

time of a job. So, one can still apply Algorithm non-canonical-SPT a±c when jobs have

arretrary release times. Unlike the case when all jobs have the same release times, in this

case, a higher priority a task may also delay a lower priority a task or c task.

Theorem 4.3.4 Algorithm Non-canonical-SPTa±c generates a (2,2) preemptive online sched-

ule for a single-master system even when the jobs have arbitrary release times.

Proof: 	 One can first bound the total completion time of the schedule generated by

Algorithm Non-canonical-SPT a±c . Let Cabs be defined as before. Then,

57

where the last inequality comes from the fact that the two sets of tasks delaying a) and c;

are disjoint, and they all have higher priority than a ; and c;. Similarly, one can bound the

total completion time

To bound the makespan, one picks the last job 5 such that c5 starts immediately after it is

To conclude the proof, note that Algorithm Non-canonicalsPTa+c schedules jobs in an

online fashion.	 ❑

4.4 Multi-master

This section assumes that there are m? 2 masters, each of which is capable of processing

both the a tasks and the c tasks.

4.4.1 Non-canonical Preemptive Schedules

58

Algorithm FAM-SPTa+c (1) Assign the jobs in order of n, n — 1, ... , 1 using FAME

(First Available Machine, see [106]) rule: associate each machine i with a variable A i .

Initially all machine are available and AA = Ο. Pick the next unassigned job n and assign it

to the machine i with the smallest T t and after the assignment Ti is increased by an amount

of ail + cif. Repeat this procedure until all jobs are assigned. (2) Apply Algorithm Non-

canonical-SPTa+c to each master machine to schedule the jobs assigned to it

Theorem 4.4.1 Algorithm FAM-SPTa+c generates a (2,2) preemptive schedule for multi-

master systems without migration when all jobs have release time Ο.

Proof: Without loss of generality, we may assume that n = mk for some integer 2.

Otherwise, one can add dummy jobs with at = bi = cif = Ο. For convenience, one can

reindex the jobs assigned to each machine p in the form of (p, q) such that c(p,q) + c(p , q) <

c(p,q) + C(p , q+l) . A lower bound of the total completion time comes from the fact that

Algorithm FAME ΡΤα+c is optimal if b (p , q) = 0 for every job (p, q) .

59

Suppose the job with the maximum completion time among all jobs is assigned to machine

p. Let t be the last job assigned to p. If there is no idle time on machine p, then the

makesuan is

4.4.2 Arbitrary Release Times

Offline schedule without migration In this case, one can still apply Algorithm

FAM-SPTa+c . However, note that to assign jobs to machines, Algorithm FAM-SPT a+c requires

that one has full knowledge of all the jobs at the beginning. Thus, Algorithm FAM-SPT a+c

is an offline algorithm. One can comrene the arguments in Sections 4.3.3 and 4.4.1 to get

the following theorem.

60

Theorem 4.4.2 Algorithm FΑΜ-SPT'± , generates a o2, 2) offline preemptive schedule with-

out migration for multi-master systems when jobs have arbitrary release times.

Now consider the makespan. Suppose the job with the maximum completion time

among all jobs is assigned to machine p. Let l' be the last job on machine p so that Al is

scheduled immediately after it is ready. Define C al , as before. Then the machine p is busy

Online schedule with migration In this case, one can apply Algorithm non-canonical-

SPTa+c to multi-master systems. Note that if a new task becomes available and one or more

currently running tasks have lower priority than the new task, then the task with the lowest

priority will be preempted.

Theorem 4.4.3 Algorithm non-canonical-SPTa+c generates a (3, 2) online preemptive sched-

ule with migration on multi-master systems when jobs have arbitrary release times.

Proof : The proof needs another lower bound for multi-master systems. Consider the

on m masters. Let S* be an optimal schedule of these n jobs. Then, starting from time

0, for each time unit, if Hai or Cif is scheduled in this unit on some machine, then one can

schedule 1 /m of the task to the single master in the same time unit. It is easy to see that

the constraint of release time are preserved and that the interval between the finish time of

Hai and the start time of ci is either the same or increased. Thus one obtains a valid schedule

of the instance I on the single-master system. Therefore,

which is a lower bound of the original instance defined by (Fri, Hai, bib, i)

Let Cab denote the completion time of d i in the schedule generated by Algorithm

non-canonical-SPTa+c . After α is released at T i , it may be delayed by other tasks with

higher priority before it completes. That is, a il or i can delay ad only if Hai + i < a5 + C 5 . It

62

is easy to see that there is no idle time on any machine during the interval

cj)); otherwise, ail would have completed earlier. Furthermore, only tasks with higher

priority than n can be scheduled during this interval. At time tj = C ap + b5 , the task

c5 becomes ready. Similarly, there is no idle time on any machine during the interval

and only tasks with higher priority than n can be scheduled

during this interval. Note that the task sets in the intervals 1ι and Ιl are disjoint. Let 11i ί

and 112 1 denote the lengths of Ιι and 12 , respectively. Then, it must be true that 1Ι1(+ (Ιl1 <

Σaί+cί<ιι;+ci (at + ci)/m. Thus, one can bound the completion time C 5 as follows:

For the makespan of the schedule, let k be the job with the maximum completion time

among all jobs. Let 1 be the last job among all jobs so that A 1 is scheduled immediately

after it is ready. Define C a , as before. Then, all machines must be busy during the intervals

The total length of the two intervals

63

4.5 Distinct Preprocessing and Preprocessing Masters

Ιn this section, the model with distinct preprocessing masters and preprocessing masters

will be discussed. Different from the previous cases, here an cif task can only be preempted

by another a task and a c task can only be preempted by another c task. In all cases,

Algorithm SRPΤa SΡTc will be applied to obtain a preemptive schedule.

Algorithm SRPTa SPTa : Schedule the available a tasks using the SPTa rule on the pre-

processing master. Schedule the available c tasks using the SPAT rule on the preprocessing

master.

Let ma and ml denote the numbers of preprocessing masters and reprocessing

masters, respectively. First the simple case m.1 = m2 = 1 will be studied.

Theorem 4.5.1 Algorithm SRPAa-SPΤς generates a (3, 2) online preemptive schedule when

ma = ml = 1 and re > 0 for all n.

Proof: First consider the total completion time. Let C. be the time di finishes in an

optimal schedule. Then.

Let
^ai

 De the tune ιιnι Des in the scπeUυle υ [d1Πeυ Dye t'lguHinm J Kr 1a α r 1 a . JiIlce

the SPTa rule is optimal if bj = cj = 0, Algorithm SRΡΤα SPAT must have the minimum

Ca; among all possible schedules. That is

Thus, the total completion time is at most

64

The length of each interval is at most Cm . Therefore, the

makespan is

Theorem 4.5.2 Algorithm SRPTa SPAT generates a (4,2) preemptive schedule with mi-

gration when m> > 1, ml > 1 and η = 0 for all n .

Proof : Since all a tasks are available at time 0, then the SPTa rule is the same as the

SPAT rule. As mentioned before, the SPAT rule is optimal when the b tasks and the c tasks

have zero length; that is, it minimizes the total completion time of the a tasks. Let C 1

be the finish time of ail in an optimal schedule, and let C a; be the finish time of ail in the

schedule generated by Algorithm SRPT0 SPAT. Then, as in the case of in = m2 = 1, a

lower hound of the total completion time is

65

Theorem 4.5.3 Algorithm SRPTa-SPTa generates a (4,3) preemptive schedule with mi-

gration when m> > 1, ml > 1 and η > 0 for all 5.

Proof: Let C. be the completion time of ι in an optimal schedule. As in the last

section, one can get

Let Cab be the completion time of a; in the schedule generated by Algorithm SRPT 0 SPAT .

As mentioned before, the SRPT 0 rule is a 2-approximation when b ; = c; = Ο. Thus, it

must true that

66

4.6 Converting Preemptive Schedules into Non-preemptive Schedules

As mentioned before, non-preemptive schedules can be obtained by converting preemptive

schedules. Our approach is based on the techniques introduced by Phillips et al. in [95],

and improved by Checker et al. in [16]. For completeness, their approaches are described

in the following.

The model studied in [95] consists of one or more identical machines and n jobs.

For this model, a general approach of converting a preemptive schedule S into a none-

presumptive schedule S' has been given in [95]. The idea is to form a list of jobs in in-

creasing order of their completion times in S and then list schedule the jobs in this list one

by one, respecting their release times.

Let 2Cj and C; denote the completion time of job n in S and S', respectively. Sup-

pose the jobs are indexed such that Cif < C1±1. Then they showed that C)' < 2C

for a single machine environment and C) < 3Ci for a multi-machine environment. Let

Om = maxi<i<iOil. The result is based on the observations that (1) Cif > rm, (2)

Cif>Σi-1p1in the single-machine case, and Cif>Σi.-1pi/m in the multi-machine case,

where p i is the processing time of job n, (3) C) < Om + Σi-1 Ai if there is onemachine

if there are two or more machines. These results im-

ply that it 5 is a β-approximation tor total completion time, then S' is a 2β-approximation

for total completion time in the single-machine environment, and a 3 β-approximation for

total completion time in the multi-machine environment. In addition, this conversion also

yields an online non-preemptive algorithm if the preemptive schedule can be generated on-

line: simply simulate the algorithm for preemptive schedule, start a job n if n completes in

the preemptive schedule or put it in the waiting queue if the machine is busy.

67

Later, Chekuri et al. [16] improved the above results for total completion time. They

designed a deterministic O on l) time offline algorithm such that the schedule obtained has

total completion time at most e ti 1.58 times that of the preemptive schedule. They also

gave a randomized online algorithm which generates schedules having expected completion

time e times that of the preemptive schedule. The difference between the two approaches

in [16] and [95] is how to obtain the list of jobs. Given S and a parameter b Ε o0,1], let

At (S), the λ-pοint of n, be the time when bp i (a λ-fraction) of job n is completed. Instead

of forming a list based on A i o5), now form a list based on A^ oS) . Α b-scheduler is a none-

presumptive schedule obtained by list scheduling jobs in increasing order of Ate oS), possibly

introducing idle time to account for the release times. It is easy to see that the algorithm

given by [95] is a b-scheduler with b = 1. It is also clear that a b-schedule can be made to

be an on-line algorithm if the underlying preemptive algorithm is an on-line algorithm.

The main result in [16] is that for each given instance, there exists a b, the best λ,

such that the b-scheduler has total completion time at most e times that of S. and has

makespan at most o1 + b) times that of S. One can obtain such a b-scheduler by finding the

best b in O (nl) time offline deterministically; or one can obtain, through a randomized on-

line algorithm, a schedule whose expected total completion time is at most e e times that

of S and whose makespan is at most o1 + b) times that of S.

In the multi-machine case, Chakrabarti et al. [14] showed that the convert procedure

given in [95] has a bound of 7/3 for total completion time, instead of 3 times that of S.

The following sections describe how to convert preemptive schedules generated in

Sections 4.3-4.5 to non-preemptive schedules. The difficulty of the conversion in the master

slave model is that one needs to respect not only the release time of A 1, 1 < i < n, but also

respect the constraint that the interval between the finish time of ail and the start time of i

has length at least bi.

68

4.6.1 Single Master and Multi-Master Systems

First consider the single master systems.

Theorem 4.6.1 In O (nl) time, one can obtain a o2 , ee^) non-preemptive canonical sched-

ule when there is a single master and η = 0 for all 5.

Proof: Let S be a preemptive canonical schedule of n jobs obtained by applying

Corollary 4.3.2. Let Sacbe the partial schedule of S during the interval (0, A], and Sabe the

partial schedule of S a during the interval oA, A ka,] .

Clearly Sac contains all a tasks only. By the Algorithm Canonical-SPT a , there is no

preemption in Sac. Let C ad be the completion time of α; . It is easy to see that the partial

schedule S a contains all c tasks only and it can be seen as a preemptive schedule of n tasks

on a single machine where each task 5 has a "release time" maxoA, C abs +b) and processing

time c.

Theorem 4.6.2 In O on log n) time, one can obtain a (3, 4) online non-preemptive sched-

ule when there is a single master and r ; > 0 for all job 5.

Proof : Let S be a non-canonical preemptive schedule S. One can get a reschedule S',

b = 1, similarly as [95] : (1) Sort all tasks (both a tasks and c tasks) in increasing order

of their completion times. (2) List schedule these tasks on the master machine, with the

constraint that each task a; must start after r3 and the interval between the time α; finishes

and the time c; starts is at least b).

69

For the purpose of analysis, one can visualize the above procedure as follows (see

Figure 4.1): For each task, a; or c) , remove all but the last scheduled piece of the task.

Suppose the last piece of a) and c ; have length Bab and ka ^ , respectively. Now process the

tasks one by one in the scheduling order of their last pieces in S. If the current task is a,

complete its last piece by inserting an extra piece with length (a5 - kaj) immediately after

the last piece of a 5 ; at the same time push backward in time all the last pieces of the tasks

which finish after a; in S by an amount of (a5 - Bab) . If the task is c;, complete its last

piece by inserting an extra piece with length (c; — Ca)) immediately after the last piece of

c 5 ; at the same time push backward in time all the last pieces of the tasks which finish after

c; in S by an amount of (C ; — C 3). Let the schedule be S". It is easy to see that during

this process, the two constraints, (a) each task A M is scheduled after η and (b) the interval

between the time AM finishes and the time c ; starts is at least b;, are not violated. Thus S"

is still a feasible schedule.

Now one pushes all jobs forward in time as much as possible without changing the

order of the tasks, or violating the constraints (a) and (b) mentioned above. The result

is exactly the schedule S'. Since a task c ; can only be moved back by processing times

associated with tasks finished earlier than c; in S, we have A; < 2A 5 and A) < A; +

Σ (a1 + i) < A 5 -1- Ak , where A5 is the completion time of c; in S'. This implies that

if one takes the (2, 2) non-canonical schedule in Theorem 4.3.4, then one can get a (3, 4)

non-preemptive schedule. Furthermore, it can be implemented online if the preemptive

schedule is online. ❑

The following theorem shows how to get offline non-preemptive schedules for

multi-masters systems. It is not known how to obtain an online non-preemptive schedule.

Theorem 4.6.3 When there are multi-masters, one can obtain a (4,4) non-preemptive of-

fline schedule.

Proof: Let S be the (2,2)-schedule generated by Algorithm FΑΜ-SPT αΡ+a . Then S has

no migration. One can obtain the non-preemptive schedule S' by converting the schedule

70

on each machine separately in the same way as described in the proof of Theorem 4.6.2.

Thus, the total completion time of S' is at most two times that of S. Since S is a 2-

approximation for total completion time, S' is a approximation for total completion time.

For the makespan, C; < C5 + maim ι Δ1 where Δί is the total length of the a tasks and the

c tasks assigned on machine i. In Section 4.4, it has been shown that Δία < 2 C. Thus,

C; < Cob + maim Ai < C5 + 2 Aka. Since S is approximation for makespan, S' is a

approximation for the makespan. This concludes the proof. ❑

4.6.2 Distinct Preprocessors and Preprocessors

This subsection considers the case when there are ma preprocessors and ml preprocessor.

Proof: Let S be the (3, 2)-schedule generated by Algorithm SRPTa SΡAa . Since rob= Ο

for all n, there is no preemption on the single preprocessor. Let Cab; be the completion time

of αα in S. To get a non-preemptive schedule, one can fix the schedule of the a tasks and do

the conversion simply on the single preprocessors using exactly the approach given in [16],

71

respecting the "release time" of task cj (Ca + b y). Following exactly the same argument,

σ

When the release times are arretrary, one needs to do the conversion carefully so as

to make sure that the difference between the finish time of Raj and the start time of c3 is at

least b 3 .

preempcιve onitne scneuute or Dun onitne non -preempuve scrieaute wain expecceu perJor-

Proof: Let S be the (3, 2)-schedule generated by Algorithm SRΡA α SΡAa . Let Cif be the

completion time of job n in S. Let C a) be the completion time of ail in S.

The conversion consists of two steps. First one can remove the preemptions among

the a tasks to get the best (offline) rescheduled of the a tasks on the single preprocessor by

using the approach of [16]. Let C. be the new completion time of Raj. Then, one must have

Chi < e e Ca; . Now fix the schedule of a tasks, and remove the preemptions among the c

tasks to get a rescheduled of the c tasks, where b = 1, and make sure the interval between

C and the start time of c; is at least b; for each job i.

72

Thus, S' is a (4, 4 +) non-preemptive offline schedule. Similarly as in [161, one can

also get an online schedule whose expected performance is (4, 4 + i) . This concludes

the proof. O

Theorem 4.6.6 In O (n log n) time, one can obtain a (4, 14/3) non-preemptive schedule

when rib = 0 for all n, m1 > 1 and ml? 1.

Proof: Let S be the (4, 2)-schedule generated by Algorithm SRΡAα SΡAa. Since all

jobs have the same release time, no preemption occurs on the preprocessors. Now fix the

schedule of the a tasks. Let C a) be the completion time of ail in S. The task cj can be seen

as a task with release time (C ' + b). The conversion is performed on the preprocessor

using the approach given in [95], subject to the constraint that cc can not start earlier than

its "release time" (C a ; + be) . Then by [14], the total completion time of S' is at most

times that of S, i.e., S' is a 3 -approximation for total completion time.

Theorem 4.6.7 In O (n log n) time, one can obtain a (5, 13) non-preemptive online sched-

ule when m> > 1 and ml > 1.

Proof: Let S be a (4, 3)-schedule generated by Algorithm SRΡΤα SΡAa . The conversion

consists of two steps. First we use the approach of [95] to remove preemptions among the a

tasks to get a b = 1 schedule of the a tasks, respecting the release times of the a tasks. Let

C. be the new completion time of a) . By the result of [14], one must have

Now, fix the schedule of the a tasks. Each task c c can be seen as a task with

Next, one can remove preemptions among the c tasks to get a rescheduled of the

73

c tasks, where b = 1, and make sure that the interval between A. and the start time of c5

is at least b5 for each job 5.

4.7 Linear Programming: Distinct Preprocessors and Preprocessor

As mentioned before, another important approach for NP-hard scheduling problems is to

formulate the problem as a linear programming problem. This method has the advantage

that it also works for total weighted completion time. However, its disadvantage is that it

takes relatively long time to obtain a solution. In this section approximation algorithms are

presented for the case when there are distinct preprocessing and preprocessing processors.

Each job n is allowed to have a weight we.

The basis of the approximation algorithms in this section is a linear programming

relaxation that uses as variables the completion times of the A tasks and the c tasks. For

each task n, define Cab; and Cif to be the completion time of Ai and cif, respectively. The

total weighted completion time minimization problem can be formulated as follows:

The difficulty with the above characterization is the so-called "disjunctive" constraints

(4.12)-(4.13), which are not linear inequalities and cannot be modeled using linear inequal-

ities. Instead, one can use a class of valid inequalities for any feasible schedules (maybe

preemptive), introduced by Queyranne [98] and Woolsey [119]. Suppose a set N of n tasks,

denoted by 1, 2, ... , n, are scheduled on a single machine. Let p 3 be the processing time

of n and A; be the completion time of n in any feasible schedule. Then, the following in-

equality is valid for any subset X C Ν .

The key to the quality of the approximation deriving from the above relaxations is

the following lemma.

Queyranne [98] has shown that the linear program with constraints (4.14) is solv-

able in polynomial time via the ellipsoid algorithm; the key observation is that there is a

polynomial time separation algorithm for the exponentially large class of constraints given

by (4.14).

In our model, one can apply the above constraints to the preprocessing master and

the reprocessing master, respectively.

Algorithm List-Schedule-Guided-by-LP-Single-Master: First obtain an optimal solu-

tion to the linear program formed by (4.9), (4.10), (4.11), (4.15) and (4.16). Denote the

completion time of the jobs by ςι, ... , C,ti. Then one can form a schedule by scheduling

both the a tasks and the c tasks in increasing order of Cj under the condition that A can

not start until r,, and the interval between the start time of c; and the finish time of a) is at

least b;, i.e., c; can not start until b; finishes.

Theorem 4.7.2 Suppose that m1 = ml = 1. Then Algorithm List-Schedule-Guided-by-

LP-Single-Master produces a (3,5)-schedule when all jobs have the same release time and

(4, 6)-schedule when each job has an arbitrary release time. Furthermore, the a tasks and

the c tasks complete in the same order.

Proof :	 Let S be the schedule obtained by Algorithm List-Schedule-Guided-by-LP-

Single-Master. Let Ca1 be the completion time of a; in S. By the way the a tasks are

76

'1k since the latest time the preprocessor be-

comes oust' is maxk<jtrk f. ι.eτ be me completion time of job 5 in S. Because the c tasks

are scheduled in the same order as the a tasks, it is possible that c; can not start even af-

ter b ; finishes at C a; + b ; . This is because c ;_ι may not have completed yet. However, the

time that c ; needs to wait after it is ready is at most max k

Thus, if all jobs have the same release times, then C ; < 6 C; ; otherwise, C, < 6 C; . This

implies that S is a 6-approximation for total completion time when r ; = Ο for all 5, and a

6-approximation when η > Ο. This is so even if each job 5 has a weight.

For the makespan,

Algorithm List-Schedule-Guided-by-LP-Multi-Master: First obtain an optimal solu-

tion to the linear program given by (4.9), (4.10), (4.11), (4.18) and (4.19). Denote the

completion time of the jobs by A ι , ... , Ana. Schedule both the a tasks and the c tasks one

by one in nondecreasing order of j under the condition that: a j can not start until T i , and

the interval between the finish time of a j and the start time of c ; is at least bj. In other

words, c ; can not start until b; finishes.

Theorem 4.7.4 Suppose that ma > 1 and ml? 1. Then Algorithm List-Schedule-Guided-

by-LP-Multi-Master produces a (4, 6)-schedule when all jobs have the same release time

and (6, 7)-schedule when each job has an arbitrary release time.

Proof: Let S be the schedule obtained by Algorithm List-Schedule-Guided-by-LP-Multi-

Master. Let Ca5 be the completion time of task aj in S. By the way the a tasks are

78

the c tasks are scheduled in the same order as the a tasks, it is possible that c; can not start

even after b; finishes at CQ5 + b;, because c5_1 may not have completed yet. However, the

time that c; needs to wait after it is ready is at most maxk <5{bk + Σk<5_ι ck/m2. Thus,

PART II

NETWORK DESIGN PROBLEMS

CHAPTER 5

POLYNOMIAL-TIME APPROXIMATION SCHEMES FOR THE EUCLIDEAN

SURVIVABLE NETWORK DESIGN PROBLEM

5.1 Introduction

This chapter considers the geometric version of the survivable network design problem.

The input vertices are assumed to be points in W and the cost of each link is equal to

the Euclidean distance between its endpoints (which is a good approximation in many

applications, since often the "installation" and the "service" cost is roughly proportional to

the length of the link [91]).

The focus is on two most basic variants of the geometric survivable network design

problem: (1) SMT problem in which r„ Ε {0,1 } for any v Ε V and (2) {0, 1, 2)-vertex- and

-edge-connectivity problem in which rv Ε {0, 1,2) for all v E V. Note that SMT problem

is a special case of {0, 2)-vertex- and -edge-connectivity problem.

The arguments provided by Grdtschel eta!. [53] (see also [91, 113]), suggest that

the second special case in the above models well many applications of the survivarelity

problem, e.g., the problem of designing survivable fiber telephone networks [91, 113]. In

the case of fiber communication networks for telephone companies, network topologies

with connectivity requirements in {0, 1,2) provide an adequate level of survivarelity for

the distinguished central nodes of connectivity type 2. Simply, most failures usually can

be repaired relatively quickly and, as statistical studies have revealed, it is unlikely that a

second failure will occur for their duration.

5.1.1 Related Works

There has been a lot of research on the survivable network design problem. Typically,

the research addresses either practical heuristics and algorithms (see, e.g., [21, 50, 51, 53,

53, 91, 113]) or the general problem for arretrary networks (see, e.g., [36, 37, 41, 64,

80

81

117]), or the problem restricted to very specific networks. In particular, the result due

to Jain [64] gives a polynomial-time approximation algorithm for the edge-connected

survivable network design problem (for arbitrary connectivity requirements). Also,

polynomial-time approximation algorithms for arretrary networks in the case τv,u , Ε {0, 1,2)

for every v, u have been recently presented [36, 37]. There is no other good polynomial-

time approximation algorithm specialized for the geometric version of the survivability

problem except the case when rv Ε {0,1 } for every v [97]. If r„ E {0,1 } for every v

and U = {v Ε V : TV = 11, then one can easily show that a minimum spanning tree of

U guarantees the approximation ratio of 2 in any metric space (and thus, in particular, in

any Euclidean space Rd). Importantly, in this case the geometric survivarelity problem

is a generalization of the classical Euclidean (complete) Steiner tree problem (see, e.g.,

[44, 62, 63, 97, 118]). The Euclidean (complete) Steiner tree problem for a finite set of

points S in Ι is to construct a minimum length tree whose vertex set consists of all points

in S and possibly some other points in Rd . Thus, the latter problem can be regarded as a

survivable network design problem on an infinite vertex domain, i.e., V = Rd and T V = 1

for any v Ε S, and TV = 0 otherwise. By the celebrated results due to Aurora [3] and Mitchell

[90] (see also [101]), the Euclidean (complete) Steiner tree problem admits a polynomial-

time approximation scheme for any constant d.

5.1.2 New Contributions

The first polynomial-time approximation schemes (PTAs) are designed for the two afore-

mentioned basic variants of the geometric survivable network design problem.

First, the simplest case in which TV Ε {0,1 } for any vertex v Ε V is considered, that

is, the Steiner tree problem. An algorithm is designed such that that for any constant d and

any constant ε, it returns a Steiner tree whose cost is at most (1 + t times larger than the

minimum. The algorithm runs in time O (n log n) . For general d and ε, its running time is

82

Next, the case when r„ Ε {0,1, 2} for any vertex v E V is considered; this is the

classical problem investigated thoroughly by Griitschel and Monma et al. [50, 51, 52, 53,

91, 113]. The algorithm for the Steiner tree problem is extended to design an algorithm

that, for any constant d and any constant ε, returns a graph satisfying all the vertex (or

edge, respectively) connectivity requirements and having the cost at most (1 -1- t times

the minimum. The algorithm runs in time O (n. log ii). When d and ε are allowed to vary

arretrarily, its running time is 0 (n login. (d/ε) °(d)) + 0 (n (d/ε)ίdνε)°(112^).

Finally, observe that the techniques yield also a PTASs for the multigraph variant

where the edge-connectivity requirements satisfy rv Ε {0, 1,... , kl and k = 0(1).

All the polynomial-time approximation schemes in this cheater follow an approach

similar to those used in the recent PTAs for finding ASP, (complete) Steiner trees, and

minimum-cost biconnected spanning subgraph in Euclidean graphs, see [3, 26, 101]. How-

ever, there are many important differences that make the new results significantly more

complicated. First of all, one has to deal with the restriction of the Steiner points to the set

given a priori (unlike in the minimum-cost Euclidean (complete) Steiner trees problem, in

which Steiner points are allowed to be any points in Rd). Furthermore, one has to deal with

nonuniform connectivity requirements. The substantial differences and complications oc-

cur in the so called filtering phase and searching phase (dynamic programming).

All the PTASs are randomized and achieve the promised approximation guarantees

and running time on the average. However, all these algorithms can be randomized in

a way similar to that used by Rao and Smith in [101]. The derandomization preserves the

running time of 0 (n log n) for constant d and ε.

5.2 Definitions

Following are some notations and definitions for Euclidean (geometric) graphs that will be

used in this chapter.

83

A Euclidean graph, which frequently will be called in this chapter a graph, is a

pair G = (P, E), where P is a set of points in a Euclidean space i',d and Σ is a subset of

the pairs of points in P. Every Euclidean graph is weighted and the cre of edge (x, y) is

equal to the Euclidean distance between points x and y. The cre of the graph is the sum of

the costs of its edges. Additionally, Euclidean multigraph, which are as Euclidean graphs

but may contain parallel edges, are also considered. Consistently with the definition, the

edges of a Euclidean graph or multigraph G = (P, Σ) are in one-to-one correspondence

with the straight-line segments (in Rd) connecting the incident vertices. (Such graphs are

frequently called straight-line graphs in the literature.) Sometimes, for technical reasons,

it is also allowed to bend some edges. A bent edge between a pair of points in P will be

identified with a straight-line path (a path consisting of straight-line segments connecting

the points).

Spanners for general graphs have been defined in Chapter 1. In this chapter, geo-

metric spanners of a set of points are considered.

Definition 5.2.1 (Geometric spanners) Let P be a set of points in Rd. A graph G on P is

called a geometric spanner of P, t? 1, if for any pair of points p, q E P there exists a

path in G from p to q of length at mre t times the Euclidean distance between p and q.

Since only geometric spanners are considered. For simplicity, a geometric spanner

is simply referred to as a spanner. The following result is proven in [561 1 .

Lemma 5.2.2 [56] Let P be a set of n points in Ι ί d, where d is a constant. Let ε be any

positive constant. Then, there exists an O (n log n)-time algorithm that finds a (1 + t -

spanner of P having constant maximum degree and the total cre of order of the minimum

spanning tree of P.

1 Notice that the algorithms used in Lemma 5.2.2 are in the so-called real RAM model, which is the
algebraic decision tree model extended with indirected addressing [56]. If one assumes the algebraic
decision tree model, then the running time will be by a factor of log n/ log log n larger [56].

84

For arbitrary d and ε, the running time of this algorithm is U

and the resulting (1 + ε) -spanner of Ρ has maximum degree upper bounded by εd,ε and the

total cre upper bounded by d , ε times the cre of the minimum spanning tree of P, where

Τd, ε = (d/t°fd and εd,ε = (d/t°fd.

Informally, this definition says that if there exists an edge between υο and von, then

any path not including (υ 0 , ν0) must have length greater than t' • 1w00 1.

Lemma 5.2.4 ([30]) If a set of line segments Σ in d-dimensional space satisfies the (t', t)-

leapfrog property where t > t' > 1, then the weight of Σ is wt(MST) where wt(MST)

is the cre of a minimum spanning tree connecting the endpoints of Σ. The constant implicit

in the 0- notation depends on t and d.

Definition 5.2.5 (Steiner trees) Let P ι be a set of points in Rd . A Euclidean tree is called

a Steiner tree of Ρ1 if its vertex set includes all the points Ρ1. All the vertices of a Steiner

tree of Ρ 1 outside Pea are called its Steiner points. If the Steiner points are restricted to a

point set Po, the tree is called a Steiner tree of Ρ a with respect to Ρ0 and the points in Po

are called Steiner point candidates.

Definition 5.2.6 (Euclidean (complete) Steiner trees) Let P be a set of points in Rd . The

Euclidean (complete) Steiner minimal tree of Ρ is a Steiner tree of P having the minimum

cre.

85

Definition 5.2.7 (Steiner minimum trees (SMT)) Let Ρ = Ρο U Ρι be a point set in the

Euclidean space Rd . A Steiner tree of Αι with respect to o having the minimum cre will

be called a Steiner minimum tree (SMT) of P i with respect to Bo .

Observe the difference between the definition of Euclidean (complete) Steiner tree

and Steiner minimum tree; in this chapter the abbreviation SMUT is used only to denote a

Steiner minimum tree.

As mentioned before, the focus in this chapter is on the variant of the problem

when Sp Ε {0, 1, 2} for any p Ε Α. This problem. is called the {0, 1, vertex- or -edged-

biconnectivity problem, depending on whether the edge-connected or the edge-connectivity

version of the problem is considered. (Notice that the {0, 1, vertex- and -biconnectivity

problem includes the SMT problem in which Sp Ε {0,1 } for any p Ε P(see Definition

5.2.7).) Furthermore, one can repeat the arguments used in [26] (which were also used

earlier in [38, Section 3]) to show that in metric spaces {0, 1, two-edge-connectivity and

{0, 1, edge-connectivity are essentially equivalent (the arguments in [26] and [38] were

given only for biconnectivity vs. two-edge-connected).

Lemma 5.2.8 Let o , Pι, Ρl be any three sets of points in a metric space. Let Η be a

multigraph with the vertex set Po U ι U Αl such that for any pair of vertices Z E P i and

V E P j there are at least min{i, nl, 0 < i, n < 2, edge-disjoint paths from Z to v in Η.

Then, in linear time, one can transform Η into a graph G without increasing the total cre

such that for any pair of vertices Z Ε P i and v Ε Α j there are at least min{i, nl internally

vertex-disjoint paths form Z to v in G.

Proof : Initially set G = Η and a sequence of modification will be performed to transform

G to get the required properties. It is easy to see that if Z Ε o U Ρ1, then graph G already

has the required properties with respect to Z. Therefore one only has to deal with points

u Ε Ρl all of which are in the same two-edge-connected component of G. If this single

component is also a block, it is done; otherwise pick any two edges (v, Z) and (v, w) such

86

that Z and w are in different blocks, in other words, v is an articulation point. Replace

edges (v, Z) and (v, w) by (Z, w). Now, Z and w will be in the same block. By the triangle

inequality, the cost of the new block will not be larger than the sum of the older two blocks.

One does this replacement until all points of Ρ2 are in the same block. Then remove all

parallel edges from the graph, and G becomes a graph has a cost not greater than that of

H, and for any pair of vertices Z Ε P ;, and v Ε P j there are at least minfi, n} internally

vertex-disjoint paths form Z to v in G.

Using standard techniques this transformation can be performed in time linear in

the number of edges in H. 	 ❑

This lemma allows one to concentrate only on the f0, 1, 2}-edge-connectivity prob-

lem, and to allow the output to be given in a form of a multigraph.

Partitioning the space. An important component of the approximation algorithms in this

chapter is a partitioning scheme introduced by Aurora in [3] and later extended in [25, 26].

Definition 5.2.9 (Dissection, 2dary tree) Given a set S of points in 1" d, a bounding box

of S is the smallest d-dimensional axis-parallel cube Ad containing the points in S. A (

2dary) dissection[3](see Figure 5.1) ofSis the recursive partitioning of the cube into smaller

sub-cubes, called regions. Each region Ad of volume > 1 is recursively partitioned into

2d regions (U/2)d . A 2dary tree (for a given 2 d-αry dissection) is a tree whose root

corresponds to Ad , and whose other non-leaf nodes correspond to the regions containing

at least two points from S (see Figure 5.1). For a non-leaf node v of the tree corresponding

to a region R, its children in the tree correspond to the 2d regions that partition R in the

dissection.

For any d-vector a = ('ii,... , αά), where all α are integers 0 < a1 < A, the

shifted dissection [3, 25] of a set X of points in the cube A d in Ii. d is the dissection of

the set X' in the cube (2 A) d in Rd obtained from X by transforming each point D Ε X to

D + a. A random shifted dissection of a set of points X in a cube A d in Rd is an shifted

Figure 5.1 Dissection of a bounding cube in R2 (left) and the corresponding 2 2 -ary tree
(right). In the tree, the children of each node are ordered from left to right: Top/Left square,
Bottom/Left square, Bottom/Right square, and Top/Right square.

In this chapter a special class of geometric graphs with respect to a given dissection

[26] will also be studied.

Definition 5.2.10 (r-locally-light graphs) A graph is r-locally-light [26] with respect to

a shifted dissection if for each region in the dissection there are at mre r edges having

exactly one endpoint in the region. The crossings on the border of the region generated by

these edges are called relevant crossings.

The main reason of introducing this class of graphs is that while it is λίΡ-hard to

solve the {0, 1, 2}-vertex- or -edge-connectivity problem (or even the minimum-cost Steiner

tree problem) for arbitrary Euclidean graphs, one can show how to solve this problem

efficiently for r-locally-light graphs in Section 5.8.

5.3 Steiner Minimum Tree Problem

In the attempt to provide an efficient approximation scheme for the {0, 1, edge-connectivity

problem in Euclidean graphs, the SMUT problem will be considered first. The new approach

can be seen as a combination of the approach of Aurora [3] and Rao and Smith [101] devel-

oped to design a ETAS for the TSP problem with the approach of Czumaj and Linger [26]

88

developed to design a BETAS for k-connectivity problems. The new algorithms is based on

efficient implementations of the following three procedures.

Filtering: Let Ρ0 and Ρ 1 be sets of points in Rd and let t be any positive real number. Find

a subset X of o that satisfies the following two properties:

• The cost of the SMUT of P, with respect to X is at most 1 + t times the cost of

the SMUT of Ρ 1 with respect to Ρ0 .

• The cost of the minimum spanning tree of X U Ρ 1 is upper bounded by bd,t times

the cost of the minimum spanning tree of Ρ1, where bd,t is a function of d and

t only bd,t will be set to 20(d4)/t014)).

Lightening: Let Ρ0 and Ρ 1 be sets of points in Rd and let t be any positive number. Let G

be any (1 + t) -spanner of Ρ0 U Ρ 1 satisfying the so called (t', 1 + t) -leapfrog property

f56] for 1 < t' < 1 + t. Modify G to obtain an r-locally-light graph with the vertex

set Ρ0 U ι that has as its subgraph a Steiner tree of Ρ 1 with respect to Ρ0 whose cost

is at most (1 + 2 t) times the cost of the SMUT of Ρ 1 with respect to Ρ0.

Searching: Let Ρ0 and Ρ1 be sets of points in Rd and let r be any positive integer. Let G

be any r-locally-light graph on Ρο U Ρ1. Find a minimum-cost Steiner tree of Ρ 1 with

respect to Ρ0 that is a subgraph of G.

5.4 Filtering for SMT

In this section it will be shown how to perform the filtering phase efficiently. First it will be

droved that the following algorithm finds a subset X of Ρ0 that satisfies the required filtering

89

2. For each edge e of the spanner whose cost exceeds the Pi 1 -4 fraction of the cost

of minimum spanning tree of 13 1 , circumscribe a d-dimensional ball a(e) with the

center at the middle of e and of radius R(e) equal to ρ d/ε times the length of the

edge, where Ρd is a function depending only on d, Ρd =

3. Let Y be a subset of o that includes all points contained in the constructed balls and

possibly some other points in Ρ ο at distance at most 4 R(e) from the center of such a

ball BB(e).

4. For each ball B(e) define a (rectilinear) d-dimensional cube Coe) of side length

8 Roe) that is concentric with the ball Bode). Within each cube Coe) introduce a grid

with interfacing Be ε l/(8 Δ Pd Ad), where Δ is the bound of maximum degree of

any MST of n points in dimension d. Let set X be initially empty. Repeatedly, in the

increasing length order of the edges e of S, assign each point p Ε Y associated with

ball aloe) to the closest point of the grid Coe). For each grid point in Coe) if there is

at least one point p Ε Y assigned to it, add one such a point to X.

Lemma 5.4.1 (SMT Filtering) For any point sets o and ι in Rd and any positive real

number ε, the subset X of o satisfies the filtering property.

In order to prove Lemma 5.4.1. One has to prove that the set X ς o obtained in

the above construction satisfies the following two properties:

1. The cost of the SMT of Ρ ι with respect to X is at most 1 + 2 ε times the cost of the

SMT of Ρ 1 with respect to Ρ0.

2. The cost of the minimum spanning tree of X U Αι is upper bounded by 2°Νd4)/εoςd)

times the cost of the minimum spanning tree of Ρ1.

In the following, the set X is first shown to satisfy the first property and then it is

shown to satisfy the second property. The proof is rather long and will be presented in a

general form that can eventually be used in some further applications.

90

5.4.1 First Filtering Property

The proof needs a couple of auxiliary lemmas. Following is a standard result about the

upper bound for the cost of the minimum spanning trees contained in a dndimensional ball

(for a proof, see, e.g., [77]).

Lemma 5.4.2 Let P be a set of n points in Rd contained in a dndimensional ball of ra-

dius 'r. Then, the minimum spanning tree of P has cre upper bounded by r - n1-1/^

2d
(d-1) (1_n_1/d)

In particular, if n > 2d and d> 2 then the cre of the MST of P is upper bounded

by gΤn1-1 /d.	 ❑

The second lemma gives an upper bound for the maximum degree in a minimum

spanning tree (and an SMT) of a point set in Rd.

Lemma 5.4.3 [102] Let P be a set of Ti points in Rd . Then, any minimum spanning tree of

P has maximum degree Δ upper bounded by Add = 20(d) , where c is an absolute constant.

Ο

From now on, Δ will be used to denote the upper bound for the maximum degree of

any minimum spanning tree of a set of points in Rd (though we will not use in the notation

the dependence on d).

Now, a simple lemma will be proved which shows some basic property of SMUT

(which holds also for MST) and paths in spanners, and in general, in arbitrary connected

graphs.

Lemma 5.4.4 Let Ρ0 and P 1 be disjoint point sets in Rd . Let G be any graph connected

with respect to P1 (for example, a spanner on Ρ 1) and let T be an SMUT of P1 with respect

to Ρσ . Let Z and v be any two points in P 1 and let A,,,,,.,v be the shortest path in G between

Z and v. Let e be any edge in T of length £. If after removal of e from T, points Z and v

are in different connected components of the resulting forest, then at least one edge on the

path Ρ,,,,,.,ν is not shorter than f.

91

Proof: The proof is by contradiction. Suppose after removal of e from A two subtrees

A1 and Al with Z Ε A1 and v Ε A2 are obtained and suppose that all edges on /3 4, in G

are shorter than f. Since Z and v are in different subtrees, then there must exist an edge

Cy on the path Aυ,-,νsuch that C Ε Τ1, y ΕΤl. Bythe assumption, ιCy1 < f. Therefore,

Τι + Al + xy forms a Steiner tree of Ρ 1 with respect to Ρ0 whose cost is smaller than the

cost of A. But this contradicts the assumption that Τ is an SMT of Ρ1 with respect to P o . ❑

Next lemma is concerned with balls containing no points from Ρ1. Ιt will be shown

that in that case in any SMT any concentric ball of a slightly smaller radius has the number

of Steiner points upper bounded by 2 0{d2) . Notice that a similar lemma is used by Rao

and Smith in [101] and the proof is this chapter uses many ideas from [101]. The main

differences are caused by the fact that in this chapter the Steiner trees considered have the

vertex set in a subset of o U P 1 while the proof in [101] worked for o = Rd. This implies,

among other, that Rao and Smith could use many well known properties of such Steiner

trees (for example, in that case, the maximum degree in a minimum-cost Steiner tree is 3).

Lemma 5.4.5 Let o and ι be any disjoint point sets in Rd . Let Ι and Ι be any two

concentric d-dimensional balls in Rd of radius 1 and S, 0 < r < 1, respectively. Then for

any SMUT of P1 with respect to o , if Idοcontains no points from P1then Ιι contains at mre

(16 e d Δ) 4d = 20(d2) Steiner points, i.e., SMUT points from Ρ0.

Proof: First fix an SMT of Ρ 1 with respect to o and denote it by A. Let Δ denote

the maximum degree of Steiner points in the SMT. (Notice that Lemma 5.4.3 ensures that

Δ < Cd for certain constant A.) Ιt can be assumed without loss of generality, that every

Steiner point is of degree at least 3. Hence, also, the number of points in P ι , which will

be denoted by n, is bigger than the number of Steiner points. Let s denote the number of

Steiner points contained in Ι: ; ι ; the goal is to prove that s < (16 e d Δ)4 d

92

of places where A touches the border of BR, i.e., the number of edges that have exactly one

endpoint contained in aR. Next, let SR denote the number of Steiner points contained in

BR, and let TRH denote the portion of Τ contained in BR. Note that by assumption, for any

Pick any R and R* such that S < R < R* < 1. Notice that if Ν r < 2d, then

s < Ν,. < 2d and hence the lemma is proved. So, suppose that Ν,. > 2 d , and thus

NR > 2d• Observe that since BR* contains no points from Ρ 1 , BR contains SR Steiner

points, and all Steiner points are of degree at least 3, thus Ν R* > SR + 2 > SR. (This

follows from the fact that TRH* contains at least SR* "internal" nodes of degree at least 3 and

NR* "leaves" which are of degree 1.) Furthermore, notice that the length of TRH* is at least

(R* — R) • SR. On the other hand, TRH* contains at least SR Steiner points and additional N R*

points on its border. Therefore, by Lemma 5.4.2,

Recall that Ν Rob = Ν 1. Therefore, one can combine the inequality NR < Δ • SR that

holds for all 0 < R < 1, with all the inequalities above to obtain

Therefore, since N ι < n, one can get

A more general form of this result is stated as follows.

93

Since NR < Δ - SR for any 0 < R < 1, one can apply the claim above to obtain the

following bound

Notice that if S ι _ ι δ < Δ for any integer 1, 0 < t < 1j1, then (by Lemma 5.4.3) the

lemma is proven. Therefore, one can assume that S ι ι ό > Δ, and hence the upper bound

above can be simplified to get

First filtering property of set Y Now Y will be proved to satisfy the first property. Sim-

ilarly as in the proof of Lemma 5.4.5, some of the arguments are similar to those used by

Rao and Smith [101] in their ETAS for the Euclidean (complete) Steiner tree problem. This

time, however, the differences caused by the fact that Rao and Smith worked with Ρρ = Rd

are even bigger. Therefore, most of the details of the following proof are completely new.

94

Then, there is a sub graph Η of G that is connected with respect to vertices in P i

and whose cre is upper bounded by (1 + ε) times the minimumncre Steiner tree of P ι with

respect to Ρ0.

Proof: Let T be the SMUT of Ρ 1 with respect to Ρ0. It can be assumed without loss of

generality, that every Steiner point in T is of degree greater than 2. The approach is to

construct the subgraph Η of G using the following twonstep procedure:

1. For every edge Zv in T with Z, v Ε Y U P i , Η contains the shortest path in G between

Z and v.

2. After Step 1 Η may be disconnected with respect to Ρ 1 ; make Η connected by adding

additional edges having total minimum weight.

It is easy to see that the obtained graph Η is connected with respect to Y U P i (and so, with

respect to vertices in Ρ 1 too). What will be proven below is that its cost is upper bounded

by (1 + ε) times the cost of T . The proof consists of two parts. Because of the spanner

property, the graph Η obtained in Step 1 has its cost upper bounded by (1 + z ε) times the

cost of the edges used in this step. Therefore, what really has to be proven is that the second

part of graph Η has an upper bound such that the total cost of Η is bounded by (1 + ε) times

the cost of T.

95

v, respectively. In the following it will be shown that (assuming u ςΙ Y U Ρ1) there must be

an edge Cy in at least one of Tub and Tv whose length is greater than or equal to r/k.

• First it will be shown that it is impossible that at the same time all edges in Tub are

of length smaller than 2 r/k, S SMTu contains a point C Ε Ρ 1 that is contained in B2

and S MTv contains a point y Ε Pi that is contained in B2 (An equivalent case is

when Z is exchanged with v, that is, when all edges in Tv are of length smaller than

2 r/k, S ΜΤΣ contains a point C Ε Pi that is contained in B2 . and S MTv contains a

point y E ι that is contained in B2,..)

If all edges in Tu are of length smaller than 2 r/k then Tu is contained in B2 r . Since

x and y are disconnected after removal of edge Zv, Lemma 5.4.4 implies that S has

at least one edge e on a shortest path p^, , between x and y whose length eV is at

least ε.

Now it will be shown that path A χ ,,.,y cannot have a vertex outside B ^l±ε) r • Indeed, if

path p^ ^, were not contained in 1(l±0) Y., then there were a point z in Aχ.,,.,y that is not

contained in Β 2±ε) r• The length of the path A χ .,,.± is not shorter than IxzI + zijl. But

this contradicts the definition of the spanner, because the length of p^.,.,y is assumed

to be upper bounded by 1 + ε/4 times the length of Cy, and one can easily show (see,

e.g., Lemma 5.10.1) that

So, now it is known that path A χ ,,,.,y must be contained in B (l+ε) r • This in particular

means that edge e is contained in Β (l±ε) . • Notice that the endpoints of edge e belong

to Pi. Therefore, by the construction of set Y, all the points from Ρ0 that are contained

in the ball Bode) (having the center at the midpoint of e and radius Ad • ιeΙ/ε) belong

to Y. Now, since the length of e is greater than or equal to £, the radius of B oe) is at

least Add Εεε. Since Add Επε = (3 + t r , observe that Bode) contains the entire ball Β.

96

Therefore points Z and v must belong to Y U Ρ 1 . This is a contradiction, because it is

assumed that Z Y U P i .

• Otherwise, there either must be edges in each of T ub and Tv of lengths greater than or

equal to 2 rεk, or S SMTu must contain no point from P 1 that is contained in ^2,., or

SMT must contain no point from Ρ1that is contained in

Consider the case when S ΜΤΣ contains no point from Ρ 1 that is contained in

Then, either A is contained in Β or there is an edge in T ub of length greater than

or equal to rεk. First show that Tu cannot be contained in Β. Indeed, if A were

contained in AT, then ATEwould contain more than ΙΤυ > 2k= o16 e d L)4 dSteiner

points. On the other hand, it is known that Β2 r contains no points from Ρ1 in 5ΜAυ.

By Lemma 5.4.5, this yields a contradiction. Hence, Tu cannot be contained in Β.

This in turn, implies that one of T ub and Tv, say Tu , must contain an edge of length

greater than or equal to r/k.

Thus, one can conclude that there is an edge xy in T ub whose length is greater than

The cost of edge Zv will be "charged" to Cy in Step 1 of the

construction of H.

Let Κ1 be the set of edges in Τ having both endpoints in Y U ι and let Κl denote the

set of the remaining edges in Τ. Eick any edge e in T and denote its cost by A. Observe that

e may be charged to by at most 2 (2 Lk — 1) <4 Lk "short" edges. Notice further, that the

cost of each such a short edge is upper bounded by A εε o16 Lk) . (Indeed, by construction,

a short edge of length Ε is charged to edge e only if A > 16 Ε L kεε.) Therefore, the total

cost of all edges in A charged to e is upper bounded by 4 ε A. Furthermore, notice that only

the edges in Κl are charged in this way. This implies that the total length of all edges in Κ2

is upper bounded by 4 ε times the total cost of Τ.

Let Η 1 denote the subgraph of Η obtained in Step 1 and Η2 denote the subgraph

of Η obtained in Step 2 of the construction. Notice that the subgraph of A induced by the

97

edges in Κl is a forest. Pick any tree τ in this forest and let L be the set of vertices in τ

belonging to L C Y U P1. Clearly, τ is a Steiner tree of L. It is well known that the cost

of a minimum spanning spanning tree for any set of points (in any metric space) is upper

bounded by twice the cost of the SMUT. Therefore, the cost of a minimum spanning tree of

L is upper bounded by twice the cost of τ. Hence, since the cost of Ηl is upper bounded by

the sum of the costs of minimum spanning trees of L over all trees τ in Κl, the cost of Ηl

is upper bounded by twice the cost of the edges in Κl. By the discussion above, the total

length of all edges in Κ2 is upper bounded by 4 ε times the total cost of T. Thus, the cost

of H2 is upper bounded by 2 ε times the total cost of T.

To summarize, the graph H consists of graph Η 1 and Hl. By the spanner property,

the cost of Η1 is upper bounded by o1 + 2 t times the total cost of T. By our arguments

above, the cost of Ηl is upper bounded by 2 ε times the total cost of T. This implies that

the total cost of Η is upper bounded by o1 + ε) times the total cost of A. and hence yields

the proof of the lemma. ❑

First filtering property of set X. Lemma 5.4.6 gives "almost" a subset of P o we want

to obtain in the Filtering phase. However, the so obtained set Y does not have to satisfy

the second Filtering property, that is, that the cost of a minimum spanning tree of Y U Pi

is proportional to the cost of a minimum spanning tree of P ι . The problem is that if there

are too many points in Y, even the cost of the minimum spanning tree of Y can be arbitrary

large. Therefore, for investigations one can choose a subset of Y that is obtained by a

"sparsilkation" of Y. One can slightly modify the proof of Lemma 5.4.6 to obtain the

following result.

Lemma 5.4.7 Let Αρ and P i be two point sets in Rd . Let S be an (1 + 4 spanner of

Ρ 1 . For each edge e of the spanner whose cre exceeds the Α 1 L fraction of the cre of

minimum spanning tree of Α 1 , let Coe) be the ball with the center at the midpoint of e and

with the radius equal to ρ d/ε tines the length of the edge e, where Add = 20(d3) • For each

98

ball Β oe), let Ye be the subset of o consisting of all points that are contained in it. Let Be

Then, there is a subgraph H of G that is connected with respect to vertices in P i

and whose cost is upper bounded by (1 + 2 ε + 0(1)) times the minimum-cost Steiner tree

of P1 with respect to o.

Proof: The proof is a slight modification of the proof of Lemma 5.4.6. Therefore, only

the places where that proof has to be modified will be referred.

Suppose first that even for the very short edges e of S the balls Bode) and the sets

Υλι Bed induced by them have been created.

One follows the arguments from the proof of Lemma 5.4.6. One needs to modify

them only when there is a path A ., that is contained in C l+ε) r and therefore there is

an edge e of length greater than or equal to £ that is contained in B Ιl+ε) Τ and has its both

endpoints in 13 1 . Ιn this case the contradiction will not be obtained as in the proof of

Lemma 5.4.6. However, observe that since the length of e is less than or equal to 2 (2 + t S

and since the ball Bode) contains Z and v (and hence both points are in Ye), there must

their endpoint in w and z, respectively. It is easy to see that each such a modilkation may

increase the cost of the graph by at most

Therefore, the construction of H can be modified as follows:

1. For every edge Zv in T with u, v Ε Χ* U P 1 , H contains the shortest path in G between

Z and v.

2. Otherwise, for every other edge Zv in T, if there is an edge e in S (and hence, with

both endpoints in Ρ 1) such that Z and v belong to Y e, then pick the closest points

99

W, z Ε Χ* for Z and v, respectively. Then, modify T by moving all edges incident

to Z and v to have their endpoint in w and z, respectively. If any new edge has both

endpoints in B* U Pi then do as in Step 1.

3. Afterwards Η may be still disconnected with respect to P 1 ; make Η connected by

adding additional edges having total minimum weight.

One can apply the same arguments as in the proof of Lemma 5.4.6 to show that the cost of

the edges in Η created in Steps 1 and 3 is upper bounded by (1 + t times the minimum-

cost Steiner tree of P1 with respect to Α0. On the other hand, by the arguments above, the

total cost of the modilkations performed in Step 2 is upper bounded by

which is i ε times the minimum-cost Steiner tree of ι with respect to A. .

To obtain the claimed result, it remains to move all the points in Χ for the edges

e whose costs do not exceed P1 I-4 of the cost of the minimum spanning tree of Pi to an

endpoint of e. Such movements can increase the total cost of G by

(since the total number of edges in the spanner is (d/ε) °(d) n) time:

mum spanning tree which with increasing P 1 Ι is arbitrarily small in comparison to the cost

of a minimum Steiner tree of ι with respect to A . 	 ❑

The following is immediate corollary of Lemma 5.4.7.

5.4.2 Second Filtering Property

In order to prove that set Χ satisfies the second filtering property, the following Lemma will

be proved first.

Lemma 5.4.9 Let A and ι be two point sets in Rd. Let S be an (1 + 4 spanner of

ι. For each edge e of the spanner whose cost exceeds the 113, (=4 fraction of the cost of

100

minimum spanning tree of P 1 , let B oe) and B oe) be the balls with the center at the midpoint

of e and with the radius equal to le Ed/ε and 4• le • E d/ε, respectively, where Ad = 20(d3).

For each ball B oe), let YS be the subset of B0 consisting of all points that are contained in

it, and let YD be any subset of Bo containing all points in Y D and possibly some other

points contained in the ball B oe). Let Bed be any subset of Y D such that (i) if y E Y S — B ed

then that there is C E Bed such that 1yxl < el εl/(8 L Ed V) and (ii) if C, y E Be then

Icy > Ie εl /(8 L Ad ‚/). Let B = USES BSI

Then, there is a spanning tree of B U ι whose total cost is upper bounded by

(Ad/t • (ο (L Ρ2d/ε3)) d-1
 _

 2°4/ε°

times the cost of the spanner S.

Proof: First a spanning graph Τ of B U ι will be constructed. First of all, Τ contains

a minimum spanning tree of B 1 . Then, for every edge e E S we find a minimum spanning

tree Tea of Bed (for convention, if BSI is undefined, it will be treated as an empty set), connect

it to any of the endpoints of edge e, and add the obtained tree to T. It is easy to see that so

defined graph T is a spanning tree of B U B 1 . Therefore, the cost of the minimum spanning

tree of B U ι is upper bounded by the cost of Τ and therefore the attention will be focused

on estimating the cost of Τ.

g y S ly1 - 112/(A^Fix an arbitrary edge e in S. Note that if x, Ε B , then x > e ^ 8 ^ ^ d).

Furthermore, all points in BSI are contained in a ball of radius upper bounded by 4 Ice) ρd/ε.

This immediately implies that the size of BSI is (0 (ν'Η L E
d

á/ε3)) . Hence, by Lemma

5.4.2, the cost of De is (41el Ed/ε) • (ο (V L Eá/ε 3))
d1

 . Therefore, if ΜSΤ(ι) denotes

the cost of the minimum spanning tree of ι and by cοsτ (S) the cost of the spanner S, one

can obtain the following upper bound for the total cost of T:

MST(ι) + Σ(4BeBA8/t • (ο) d-1 < (4Ad/ε) • (οο
	d-1 , COST'S)

DES

101

Since B satisfies the two properties of B, let B = B and apply B to the above lemma,

then there is a spanning tree of X U P 1 whose total cost is upper bounded by

Ι times the cost of the spanner S. Recall that the B

is vuunn upon me spanner nose cost is bounded by εd, ε = (d/t times ΜSΤ(ι), one

can easily see that the cost of Minimum Spanning tree of B U P i is bounded by: ba,ε =

(2°(ί14) /ε°(d)) • (d/t° (d) = Ο(2°(ι14) /ε°(d)) times the cost of Minimum Spanning tree of

ι Μsτ(ι)

5.4.3 CompleDity of SMUT Filtering

This section shows how to implement SMT Filtering phase. The construction of the set

B described above has been specially tuned to enable an eflkient implementation. The

following lemma will be proved first.

Lemma 5.4.10 The filtering algorithm for SMUT can be implemented to determine the set

B in time (d/ε) ° • n loge, where n = 1Α0 U Pi .

Proof: By Lemma 5.2.2, Step 1 can be implemented in time (d/t) °(dι) .r1+0 (d• ι.log ii).

To implement Steps 2, 3, i.e., to determine the set Y, one can use a core data struc-

ture for approximate point location in equal balls due to Ιndyk and Motwani [67]. For a

given approximation factor c > 1 and a given real r, they designed a static data structure

for a set of points S C Rd, called (c, r)-PLEB, such that for any point q Ε R', if S contains

a point within distance r from q then (c, τ)nELEB outputs a point q E S that is promised

to be within a distance at most c r from q. Indyk and Motwani [67, Theorem 3] show that

there is an algorithm for (2, τ)nELEB (in the Euclidean d-dimensional metric) that after

an O(ISI 2°))-time preprocessing achieves 0(d) query time. Note that in the algorithm

above, the costs of the spanner edges from which the balls originate fall into a logarith-

mic number of intervals of the form [2t l o , 2k± la), where to is their minimum cost (which

is lower bounded by the cost of the minimum spanning tree of P 1 over Pi 14). To deter-

103

Remark 5.5.2 The key property of the construction in Lemma 5.5.1 is that the obtained graph Η

has Αρ U Ρι as its vertex set. This distinguishes it from previous constructions, e.g., (3, 101), where

a related graph Η was allowed to use arbitrary points outside ΑΒ U ι. This property is critical in the

approximation of SMUT and other connectivity problems (in contrast to, e.g., ASP approximation).

Indeed, suppose that Η has as a vertex a point q Ρσ U Pι which is a cutnvertex in Η and that Η

contains some tree T to be pruned to a Steiner tree for Ρ (or its subset). Then, if the degree of q in

T is very high, it might be impossible to remove q from T to obtain a tree of the cost as good (or

almost as good) as the cost of (in contrast, ASP on a superset of Ρ can be easily modified to obtain

a TSP on Ρ without any cost increase). Observe that this construction allows to bend the edges, that

is, an edge between two points x and y in Ρ is a path of straight-line segments between x and y, see

the discussion at the beginning of Section 5.2.

Now the main ideas behind the proof Lemma 5.5.1 will be discussed. As mentioned,

this lemma uses (almost directly) results already developed in [26]. Therefore the results

presented here are given without proofs.

Theorem 3.1 from [26] is the key technical theorem in that paper.

Lemma 5.5.3 [26] Let t and b be any positive but otherwise arbitrary realms (that is, they

may depend also on other parameters). Let k be an arbitrary positive integer. Let P be an

arbitrary point set in Rd. Let G be a spanner for P that has n (dot °(d) edges, has total

cost COST (G), and that satisfies the (t, 1 + 2 t nleapfrog property, where 1 < t < 1 + 2 t.

Choose a shifted dissection uniformly at random. Then, one can modify G to a graph Η

with vertex set P such that

• there exists a knedgenconnected multigraph Μ which is a spanning subgraph of Η

with possible parallel edges (of multiplicity at most k) whose expected cost (over the

102

for all the center points of spanner edges having cost in the interval [2 1 lo, 2ti+1 to), and then

query it with all the points in Ρ0. The time needed for the construction of the logarithmic

number of PLEB data structures is 0 (log rho) times the number of spanner edges (which is

εd , ε = ιι. (dotted))) and the time needed for the P o t queries is 0(Ιοgrt.) x 11' o1 x 0(d)

167]. Hence, the total time required in Steps 2 and 3 is 0 (n (do t) 0(d) log τι) .

Observe that during the construction of Y, one can also insert each point accounted

to Y into a list corresponding to the smallest ball it belongs to (approximately) by processing

the 0 (log ii) PLEB queries without increasing the asymptotic time performance. These

lists are useful in the implementation of Step 4. Simply, for each of the balls B oe), and

for each point p in the corresponding list Aoe), one checks whether or not the point p after

rounding off to the nearest point on the grid Coe) is already marked. If not, one marks the

grid point and add p to B. It is easy to see that in this way Step 4 can be implemented in

time 0((dot) ° ί d) • τι). ❑

5.5 Lightening for SMUT

For the Lightening phase, the framework developed in [26] will be used to transform span-

ners into r-locally-light graphs maintaining connectivity properties.

the minimum-cost k-edge-connected multigraph spanning P, where MST (P) denotes

the cost of the minimum spanning tree of P .

Moreover, the modification can be performed in time 0(d 32 • n • log n) + n • (2d°cd +

(d/t) ° k d)). 	 ❑

Remark 5.5.4 Notice that the original theorem in [26] the soncalled "isolation property"

of the spanner was required. However, the proof of that theorem can be easily modified to

spanners satisfying the "leapfrog property" (see [56] for a precise definition). The reason

of this change is that in [26] the authors were using the spanner construction due to Aryan

et al. [5]. Unfortunately, it has been shown (see, e.g., [56]) that there is a serious flaw

in the construction due to Aryan et al. The only known existing construction of "optimal"

spanners is due to Gudmundsson et al. [56], see Lemma 5.2.2. This construction satisfies

the leapfrog property and therefore we gave a modified version of Theorem 3.1 from [26].

Remark 5.5.5 Some brief intuitions why the leapfrog property is required (and why it can

replace the isolation property) in the proof of Lemma 5.5.3will be given here . As it is

shown in [25, Lemma 2.3] (a predecessor paper of [26]), with a very little cost increase

one can transform any spanner (or any k-edge-connected multigraph) into a graph that

is "almost" r-locally-light. By "almost" it is meant that the number of "short" relevant

crossings is at most r/2, where a "short" crossing of a facet of side length A is of the

length O(Va • A). However, the number of longer crossings may be significantly larger.

But if the input spanner satisfies the leapfrog property then one can show that the number

of "long" relevant crossings is small. This allows to prove that the construction leads to

an r-locally-light graph.

105

Remark 5.5.6 Actually, Lemma 5.5.3 requires that the input points are slightly "perturbed"

and are soncalled "well-rounded." This modification of the input points is used in all pa-

pers following Aroma's framework (see, e.g., [3, 26, 101]). It requires to move all input

points (by a very tiny vector) to a certain grid in Rd. Although formally this step is very

Remark 5.5.7 Finally notice that the key feature of the construction in Lemma 5.5.3 is that

the obtained graph Η has P as its vertex set. This is the key property that distinguishes it

from previous construction, for example, as in [3, 101]. This property is not required if one

wants to find an approximation, for example, for ASP, but it is critical when dealing with

the SMUT problem and other connectivity problems. Indeed, suppose that Η is using some

new point q P and this vertex is a cut-vertex in Η and suppose that Η contains a certain

tree T that we would like to use as a Steiner tree for P (or its subset). Then, if the degree of

q in this tree is very high, then it might be impossible to remove q from T to obtain a tree

of the cost as good (or almost as good) as the cost of T . (Notice that this is easy to be done

in the case of TSP, as in [3, 101], because ASP on a superset of P can be easily modified

to obtain a TSP on P without any cost increase.) Additionally, this construction allows to

bend the edges, that is, an edge between two points C and y in P is a path of straight-line

segments between C and y, see the discussion at the beginning of Section 5.2.

Keeping in mind the remarks above, notice that the proof of Lemma 5.5.3 is actually

much stronger. The proof of Lemma 5.5.3 is performed by a sequence of removals of

certain edges from and inserting new edges to G. The idea behind inserting the edges is

that they are required to keep the same connectivity of the obtained graph as of G. This does

not mean only global connectivity, but also the local one (up to connectivity k). Therefore,

the proof (without any modification) of Lemma 5.5.3 leads to the following much stronger

result (that is stated here without a proof).

106

Lemma 5.5.8 Let ε and b be any positive but otherwise arbitrary realms (that is, they may

depend also on other parameters). Let k be an arbitrary positive integer. Let Α be an

arbitrary point set in Rd. Let G be a (1 + 2 t)-spanner for P that has n (d/t°ίd) edges,

has total cost COST (G), and that satisfies the (1 + 2 t, t) -leapfrog property, where 1 < t <

1 + i t. Choose a shifted dissection uniformly at random. Then, one can modify G to a

graph Η with vertex set P such that

• there exists a multigraph Μ which is a spanning subgraph of Η with possible parallel

edges (of multiplicity at most k) such that

1. for every pair of points x, y in P, if there are r edge-disjoint paths between C

and y in G then there are at least minfrxy , kl edge-disjoint path between C and

y in Μ.

2. the expected cost of M (over the random choice of the shifted dissection) is

) times the minimum-cost multigraph span-

ning P satisfying the above property 1, where MST(P) denotes the cost of the

minimum spanning tree of P.

107

5.6 Searching for SMUT

The approach in the Searching phase is to apply dynamic programming to find an optimal

Steiner tree in a r-locally-light graph.

Lemma 5.6.1 Let Α0 and ι be sets of jointly n points in Rd and let r be any integer. Let

G be an r-locally-light (with respect to a certain given shifted dissection) graph on P0 U ι.

Then, in time Οίτι • r° (ldΤ)) one can find a minimum-cost Steiner tree A of P 1 with respect

to Ρσ that is a subgraph of G.

This lemma is proved by showing how to use dynamic programming to find a

minimum-cost Steiner tree Τ of P ι with respect to Α0. It will be shown that the running

time of the construction is O(ri • r0(lάΓ)). The dynamic programming procedure is essen-

tially the same as the one used in BETAS algorithms for TSP and the Euclidean complete

Steiner tree problems due to Aurora [3, 101], but for the sake of completeness it is presented

here in details.

It should be mentioned here that like [3, 25, 26, 101], in the dynamic programming

procedure, the input is assumed to be a well-rounded point set, which is done by Perturba-

tion to the original points. Like mentioned before, for simplicity of presentation it will be

neglected.

First define the subproblem in a region R of the dissection. Let S be a set containing

m < r relevant crossings on the facets of R. Given a partition (Si, 52,... , Ski), 1 < k < m

of S, find a minimum-cost steiner forest that (i) consist of k trees, (ii) the i-th tree -F;, of the

forest contains all the crossings (called portals in [3, 101]) in S i as their leaves, and (iii)

all the trees of the forest collectively contain all points p Ε ι in this region. If no such

forest exists for this partition, this partition is said to be invalid.

The tree A is found in a bottom-up fashion. First a minimum-cost Steiner forest

for each leaf region is found, then the minimum cost forests for each non-leaf region by

combining the optimal solutions of its child regions. The A we are looking for is the

minimum-cost forest for the root region.

108

1. For the subproblems of a leaf region, there is at most one point in the region. The

computation is trivial, one can easily compute the optimal solution in 0(r). There

are three cases, depending on the number and type of the point:

• No point, therefore no relevant crossings at all. The forest is empty, and the

cost is always Ο.

• One point p Ε Α ι . There are only several ways of partition of S that are valid,

and p must be contained in one of the tree, which makes the total cost of the

forest for the partition minimum.

• One point p Ε Α0. Almost the same as the second case, except that here p is a

Steiner candidate, so p is not required to be contained in the forest. Specilkally

when k = m, the optimal solution is a forest with m trees each containing only

one crossing and the total cost is 0 .

2. For each maximal sequence of regions R1, ... Re such that for i = 1, ... , q - 1,

R±1 is the only child region of R ib that has points in it, the minimum cost forest within

R1 can be easily computed from that within Red just by extending the latter along the

edges that cross the facets of R ed .

3. For the subproblems arising from a non-leaf region with more than one point in it, it

will be shown that one can compute all its optimal solutions each with respect to a

particular partition of the crossings in time 0 (rο(ld r)) .

Each forest in parent region R is a combination of forests from its child regions

R1, Rl,... , Red respectively. So the minimum-cost forest in R can be found by enu-

merating all combinations of forests from its child region. The combination is done

through overlapping crossings on the shared facets of child regions. If there is no

mismatched crossings, a forest in the parent region is obtained. This forest also de-

fines the crossings set S on the border of R and a partition of S. For a specilk set S

109

and a specilk partition of S, there may be many combinations correspond to it, one

needs to find the one that gives the minimum cost forest.

Note that if a crossing shared by two child regions is relevant for one child, but not

for another. That is there is an edge which comes from a point outside the region,

gets through one of its child and ends in another child. The combination is still valid.

The segment of the edge in the former child is not included in the computation for

the child, but it needs to be added to the cost of the parent region.

There are 0(rr) forests for each child region, so the time complexity of combination

is Ο(r (2d r)

For a shifted dissection, it has O(n) leaf regions with a point in it, and has only

0(n) non-leaf regions with more than one point in them, so the time complexity of the

whole problem is O (n • r°1)) .

5.7 Polynomial-Time ApproDimation Scheme for SMT

Now, it will be shown how to combine all the arguments from Sections 5.4 — 5.6 to obtain

a ETAS for the Euclidean SMUT problem. The input to the problem consists of two sets Ρ0

with rcsρect ιο po wιιυSC 1S 1055 iimIi or equal ιο 1 -1- ε times me minimum.

First apply Lemma 5.4.1 to find a subset B of Bo having the promised properties

(with t = á ε). Then, take a (1 + t) -spanner G for B U P i and apply Lemma 5.5.1 to

modify G in order to obtain an r-locally-light graph Η that has as a subgraph a Steiner tree

of P1 with respect to B whose cost is upper bounded by (1 -f- 2 t times the cost of the SMT

of ι with respect to B. Finally, apply Lemma 5.6.1 to find a minimum-cost Steiner tree

of ι with respect to B that is a subgraph of Η and output it. This leads to the following

theorem.

110

Theorem 5.7.1 There is a polynoiiiial-time approximation scheme for the Steiner Mini-

mum Problem in Euclidean space Rd . In particular, for any sets of points P0 and Ρ1 in ‚Rd

one can find a Steiner

tree of P i with respect to Ρο whose cost is at most 1 -1- ε times the minimum.

For constant d and t, the ruιτniηg time of this algorithm is O (n log Ft). 	 Ο

5.8 f0, 1, connectivity Problem

One can extend the algorithm from the previous section to obtain a polynomial-time ap-

proximation scheme for the {0, 2)-Connectivity Problem in Euclidean graphs. Actually,

special attention has been paid to present the algorithm for the SMT problem in a form

extendable to include the f0, 1, connectivity Problem.

Due to Lemma 5.2.8, one may consider only the f0, 1,2)-edge-connectivity problem

and allow the output to be given in a form of a multigraph. The algorithm uses similar three

phases as the algorithm for the SMUT problem. The Filtering phase is essentially the same

as for the SMUT problem except that one works on the spanner of Ρ ι U Ρl now in order to

find B and Y. Similarly, the Lighting phase, is essentially the same as for the SMT problem,

see Section 5.8.1. Searching phase is the only phase that is completely different and rather

tricky, but still one can implement this phase eflkiently by using the idea of connectivity

type of the multigraph within a region of the dissection, the detailed description of the

dynamic procedure and the proof of its correctness is in Section 5.8.2.

5.8.1 Lightening for f0, 1, 2)-Edge-Connectivity

For f0, 1,2)-edge-connectivity, one can argue analogously as in the proof of the Lightening

Lemma for SMT.

Remark 5.8.2 The arguments above can be also easily modified to include the Lightening

Lemma for arbitrary f0,1, ... , 21-edge-connected in the same time complexity.

5.8.2 Dynamic Programming for {0, 1,2)-Edge-Connectivity

The goal of searching phase for f0, 1, 21-edge-connected is using dynamic programming

to solve the following problem: Let P = Ρ0 U ι U Pl be a well-rounded point set in Ι';

where P1 is the set of points whose connectivity requirement is i. Given an arbitrary shifted

dissection, let G be an Euclidean graph on P that is v-locally-light with respect to this

dissection. Find the minimum-cost {0, 1, 21-edge-connected multigraph Η on Ρ for which

the induced graph is a subgraph of G.

Before describing the procedure of dynamic programming, some definitions will be

introduced first.

For any region R of the dissection, after duplicating some of the edges of G, a

multigraph within R is the part of the multigraph contained within R resulting from the

removal of all edges that cross R but have no endpoint inside R (see, Figure 5.2 (a-b)). The

multigraph within R has two types of points, those from P, which will be called the input

Figure 5.2 Illustration of connectivity type construction: (a) Α part of graph G inside a region R,
(b) a multigraph MR within R, (c) contraction of two-edge-connected components in MR, and (d)
contraction of paths in MR.

points, and those defined by the crossings of the edges with the border of P, which will be

called the border points.

The idea of connectivity type introduced in 125, 26] will be used here, but different

and more subtle characterizations are needed. The connectivity type of a multigraph is the

("pseudo"-)forest obtained by the following steps (See Figure 5.2 for an illustration).

• Contracting each maximal two-edge-connected component in the multigraph induced

by its non-leaf vertices to a single vertex, and associate a connectivity requirement

with this vertex which equals to the maximum connectivity requirement among all

vertices of the component.

• Contracting each maximal path composed of input and/or contracted points of de-

gree two into the single edge with the endpoints being the first and the last vertex

at the path, and associating with each endpoint of the new edge the connectivity re-

quirement equal to the maximum connectivity requirement among all the points on

the path.

It can happen that a "leaf" in such a pseudo-forest have two edges connecting it with

its parents(thus, there are possible cycles of length two). This explains the name "pseud-

forests". This issue shall be ignored and the notation shall be slightly abused by calling such

"pseudo- forests" as forest in the continuation.

113

From the definition above, it is known that a connectivity type is a forest and two

multigraph are said to have the same connectivity type if the forests are isomorphic. For

a region with at most r relevant crossings, each forest obtained from a multigraph whose

induced graph is the graph within the region has at most r leaves, thus less than 0(2r)

vertices, so there are at most r0(11 such forests, and therefore there are at most rn(r) con-

nectivity types.

Dynamic programming. The dynamic programming procedure will determine for each

region and for each possible connectivity type, the minimum-cost multigraph of this type

within the region.

1. For each leaf region, each possible multiset S of at most r crossings on the facets of

the region, since there is at most one point in the region, the minimum-cost multi-

graph of each connectivity type corresponding to S can be easily computed in time

2. Like dynamic programming in SMUT, for each maximal sequence of regions R1, ...

Rqsuch that for i = 1, ... ,q — 1,Rti+1is the only child region of Ribthat has points

in it, the minimum cost multigraph of each connectivity type within R1 can be easily

computed from those within R ed in constant time. Since there are 0(1r) connectivity

types, so the total time needed is O (Br) .

3. Let R be any other non-leaf region R. Let Q ι , Ql, ... Q2d be an arbitrary

connectivity types for the child regions R1,Rl, ... Redrespectively. These connectivity

types(pseodo-forests) are combined through the overlapping crossings and then elim-

inate these vertices from the resulting graph and add single or double edges crossing

the common facets at these vertices. If a crossing on a common facet is a relevant

crossing in one child region, but not in the other, then the combination is valid. If a

valid graph is obtained from the combination, then its connectivity type is comput-

ed by performing the necessary contraction. By enumerating all combinations, the

114

minimum-cost of each connectivity type and its corresponding multigraph in R can

be found.

The total running time of the combination, contraction is obviously linear in the to-

tal size of these connectivity types, that is 0(2 d r). Since there are at most (^(r ° ίτ)) ld

4. Finally after the minimum-cost multigraph of each connectivity type for the root

region is computed, the optimal multigraphs for the original problem can be easily

found by just taking the one with minimum cost among those connectivity types

which consist of a tree with only one vertex having connectivity requirement of 2

and some isolated vertices belonging to Ρ0.

Correctness of the dynamic programming. Now, a sketch will be given to prove that the

multigraphs obtained satisfies the connectivity requirements and has minimum cost. First

the multigraph will be shown to meet the connectivity requirement of each input point.

This is obviously true if one looks at connectivity type of this multigraphs found. It is a

tree together with some points of Ρ^, so all points of Ρ1 U Pl are connected, furthermore

only one vertex having connectivity requirement of 2, this means all points belong to Ρl

are contained in a two-edge-connected components represented by this vertex.

Next, it will be proved that its cost is minimum among all such multigraphs. It is

enough to show that the solution is optimal in each region, i.e., in each region the

multigraphs of the solution within it has minimum cost among all multigraph within this

region having the same connectivity type. This can be proven by contradiction. Suppose

the solution is not optimal in some regions. Take any such a region at the lowest level.

Replace the multigraphs in this region of the solution by the optimal solution having

115

the same connectivity type in this region. It is easy to see that a new multigraphs satisfying

the connectivity requirements but with lower cost than the solution is obtained, but this is

contradict to the fact that the solution has minimum cost among all multigraphs having the

the same connectivity type.

5.9 EDtensions

1. All the arguments from Section 5.8 except the dynamic programming part can be eas-

ily generalized to include f0, 1,... , k-edge-connectivity for multigraphs. Regard-

ing the dynamic programming, one can combine the dynamic programming for the

edge-connectivity from [25] with the method of dealing with nonuniform connec-

tivity requirements. Thus, the variant of the geometric survivability problem, where

the edge-connectivity requirements satisfy r„ E f0, 1,... , k} and k = 0(1), admits

also a PTASs. The running time is however, signilkantly greater than 0(n log n),

though it is still polynomial for constant d and t.

2. Using the same arguments as in [3], one can extend the PTASs to include other Bp
metrics as well.

3. The PTAs could be also extended to an infinite domain for Steiner candidate points

(e.g., if Ρσ = Χ'1 one has the Euclidean complete Steiner problem) provided one can

determine the set Y (or its good approximation) as fast as claimed in Lemma 5.4.10.

Figure 5.3 Illustration to the proof of Lemma 5.10.1. (a) An example of input configuration. (b)
Rays Αχ , Αν , and Α. (c) Construction of x', υ' , z' (notice that the same construction is valid even
when ΑΖ does not lie between A and Α tν).

5.10 AuDiliary Claims

Lemma 5.10.1 Let r and p be any positive real numbers and let

and BR be two concentric dndimensional balls of radius r and R, respectively. If x and u

are points contained in Β,. and z is not contained within of B R then

Proof: First notice that it is sufficient to prove the lemma for d = 2. Furthermore, it is

easy to see that it is enough to consider the case when x and u are on the boundary of B,.

(otherwise one could move the triangle Δ (x, u, z) to have x and u on the boundary of B,.

while still having z not contained within BR) and z is on the boundary of BR (otherwise, one

could move z to the boundary of B R without changing Ix Ί and with decreasing IxzI + luzi).

Now, see Figure 5.3 for an illustration for the remaining of the proof. Draw three

rays ΑΧ , Au , and ΑΑ from the center of B,. through points x, u, and z, respectively (see

Figure 5.3 (b)). Define x' and y' to be the points on the intersection of the boundary of BR

and ΑΧΕ, Au , respectively. Let z' be the point on the ray ΑΙ that lies on the boundary of B.

(See Figure 5.3 (c) for an illustration.) By the Shales theorem

117

Now, consider the quadrilateral ox, x', z, z') (see Figure 5.3 (c)). Since the segments

xz' and C'z are parallel, ox, x', z, z') is a trapezoid. Furthermore, Z(x, x', z) = Z(x', z, z')

CHAPTER 6

APPROXIMATION SCHEMES FOR MINIMUM 2-EDGE-CONNECTED AND

RECONNECTED GRAPHS IN PLANAR GRAPHS

6.1 Introduction

This chapter considers approximation algorithms for the most basic case of the survivable

network design problem in which the resulting subgraph should be resistant to the removal

of a single edge or vertex. She two classical problems considered here are to find a min-

imum 2-edge-connectivity (2-VC) spanning subgraph (a 2-ECSS), or a 2-vertex-connected

(2-VC or reconnected) spanning subgraph (a 2-ECSS) of planar graphs.

As mentioned before, these problems are max-SNP-hard [25], even for unweighted

graphs or when duplicate edges are allowed; therefore one can not expect a PSASs. But this

does not preclude a PTAS for restricted classes of graphs: in particular, a ESAS exists for

both problems in geometric graphs of constant dimension [25]. She goal in this chapter is

to design PTASs for the two problems in planar graphs.

Many polynomial time approximation algorithms are already known for these prob-

lems, see the survey [70] and more recent advances [19, 39, 40, 66, 74] . In unweighted

graphs, the best currently known approximation ratios are 6/4 for 2-ECSS problem [66],

and a 4/3 for the 2-ECSS problem [116]. For both problems in weighted planar graphs,

the best known subexponential-time approximation guarantee is still 2 [73, 94]. All these

approximations are achieved by polynomial-time algorithms working for general weighted

graphs.

Shis chapter describes a PTAS for the minimum 2-edge-connectivity problem and a

PTAS for the minimum reconnectivity problem, both for unweighted planar graphs. More

generally, when the planar graph has edge weights the algorithms approximately solve the

minimum-cost problems in time 0h'1, where Ύ is the ratio of the total edge cost to the

118

119

optimum solution cost. Shis is a PTAS when γ is bounded; note that γ is bounded (by 3)

when the edge weights are uniform.

She new general approach resembles the approximation schemes for metric-TSP

in planar graphs [4, 47, 48]. It uses a separator theorem, hierarchical decomposition, and

dynamic programming. She new separator finds low-cost cycles in a planar graph so that

after contracting those cycles (and committing their edges to the approximate solution),

the remaining graph has a logarithmic size vertex separator. Using this, the input graph G

is recursively divided into pieces, forming a decomposition tree Τ of logarithmic depth.

Each piece has a logarithmic number of "portal" vertices connecting it to the rest of G. For

each piece, one can enumerate all the different ways that some subgraph of G (outside this

piece) may influence the connectivity constraints within this piece. Shese are called the

external types of the piece, and one can show that the number of such types is a simple

exponential in the number of portals. For each piece in Τ and for each external type, one

must find a near minimum cost subgraph H of the piece, so that H together with the external

type can meet the global connectivity constraints. Shese problems are solved by dynamic

programming, working up Τ from the leaves to the root G.

In the following, 2-VC denotes "2-edge-cοnnected", 2-EC denotes "2-vertex-connected"

(or bibiconnected), 2-EC denotes "2-edge-cοnnected spanning subgraph", 2-VC de-

notes "2-vertex-connected spanning subgraph", and c (H) denotes the total edge cost of a

subgraph H. She main results are summarized in the following two theorems.

120

As remarked above, each claimed algorithm is a ETAS when the ratio y = c(G)/OPT

is bounded. In particular, Sheorems 6.1.1 and 6.1.2 imply a PTAS for the unlighted min-

imum 2-edge-connectivity and the minimum biconnectivity problems.

In the following, Sheorem 6.1.1 will be discussed first, then the new ideas required

for Sheorem 6.1.2 will be presented. Shroughout the chapter, it is assumed that graphs

are undirected, without self-loops but possibly with parallel edges. Each edge e has a

nonnegative cost ce ; a subgraph or minor H inherits edge costs from its parent graph, and

c(H) denotes the total edge cost of Η.

121

A cycle has no repeated vertex, but it may consist of two vertices joined by two

the edges of A. After contraction self-loops are discarded, but parallel edges are retained.

A minor of graph G is a graph obtained from G through a series of such edge contractions

and edge/vertex deletions.

Definition 6.2.1 A repartition of a set P is a pair of nonemply subsets fS1, Sl} such that

Si US =Α and S e Π S2 = Q.

Suppose ti and tl are (k—EC, P) -types of two graphs sharing the vertex subset P;

Intuitively, the (k-EC, P)-type describes how Α is crossed by edge cuts using less than k

edges. Usually only the type when G is (k-EC, P)-safe is interesting, meaning that all

edge cuts of G not crossing P use at least k edges. She relevance of such types to the

k-EC problem follows from this simple claim.

She third condition above can be abbreviated by saying that H 1 and H2 (or H1 and the type

of Hl, or vice versa) are compatible.

122

1. For each possible type toe of a subgraph of G1, find a mm-cost (k-EC, P)-safe span-

ning subgraphs Hl of Gl compatible with ti .

2. For each possible type t2 of a subgraphs of Gl, find a mm-cost (k-EC, P)-safe span-

ning subgraph H 1 of G1 compatible with tl .

3. Consider all pairs of H 1 from Step 1 and Hl from Step k. Return the mm-cost

compatible pair.

A similar approach is used in the BETAS of Sheorem 6.1.1. It is necessary to have in par-

ticular a polynomial bound on the number of distinct subgraph types considered is needed.

One may succinctly represent the (k-EC, P) -type of G by a smaller graph t(G) which con-

tains Ρ and has the same type. In particular a minor of G contains P as long as no vertex of

P is deleted, nor two vertices of P are contracted together.

In the special case of k = 2, one can construct t(G) from G by applying the fol-

lowing rules, until none apply:

1. If a cycle C has a chord (an edge e ¢ E (C) connecting two vertices of C), delete the

chord.

2. If a cycle C has at most one vertex in P, contract C to a point.

3. If a vertex v ¢ P has degree 2, contract it with a neighbor.

She correctness of the above follows from the observation that all 0-edge cuts and 1-edge

cuts of P are invariant under the above rules. Note that if G is planar, then so is t(G) . Also

-safe, then so is t(G) . For the application considered in this chapter, one

needs to consider the situation where G is embedded in a disk with the vertices of Α on

the boundary. In the next two lemmas the size of t(G) and the total number of possible

(k-EC, P)-types induced by subgraph of G are bounded.

Lemma 6.2.3 Suppose G is a (2—ΣC, P)-safe planar graph embedded in the disk, with

the vertices of P on the disk boundary. Then t(G) is a planar graph embedded in the same

way, with 0(113 1) vertices.

123

Proof: By considering the three rules used to form t(H), it is also a planar (k—EC, P)-

safe graph embedded in the disk with P on the boundary. Every internal face f of t(H) has

at least two portals. If f has exactly two portals, one draws an arc ef inside f between those

two portals. If f has d > 3 portals, one draws a cycle of d arcs within f connecting the

portals. Shese arcs form an outerplanar graph Α on the portals.

One can claim that Α has no parallel edges. Suppose instead that two portals p, q Ε

Ρ are connected by two parallel arcs c1 and coil, from faces f1 and fl. Since all faces must

involve at least two portals, one can choose 'ii and al consecutive at p, so that f1 and f2

share at least one edge. Now consider the part of t(G) drawn between 'Ι and al: it has no

cycles (by rule k) and is connected, so it is a tree. Because t(H) is (k—EC, P)-safe, it is a

path from p to q. By rule 3 it must be an edge directly between p and q. But then it is a

chord between f1 and fl, so it should have been deleted by rule 1.

Sherefore Α is a simple outerplanar graph on vertex set P, so it has less than 2 P 1

arcs. Further if one add arcs from the outer faces of t(H) (those faces bounded by a segment

of the boundary), there are at most three parallel arcs per pair of portals, therefore at most

61P1 arcs. For each p Ε P, its degree in t(G) is at most the number of adjacent arcs;

therefore the sum of the degree of p in t(H), over all p Ε P, is at most B = 121P1.

Now if one erases each portal and an infinitesimal neighborhood around it, the graph

t(H) is transformed into a forest (by rule k) with B leaves, and all internal vertices of degree

at least 3 (by rule 3). Shen t(H) has less than B vertices not in P, or in other words t(H)

has less than 131P 1 vertices overall. ❑

Lemma 6.2.4 With H and P embedded as in the previous lemma, the number of distinct

Proof: Let H be a subgraph of H containing P. By trimming H, one can make it

(k—EC, P)-safe without changing its (2—EC, P)-type. In the previous proof it is shown

that t(G) can be described by a planar forest T with at most 12P leaves, internal vertices

124

of degree at least three, and each leaf labeled by some p Ε P, where the labels for a given

p are on consecutive leaves. By standard tree counting techniques, there are 2(1P1) such

6.3 Planar Separators

Suppose one needs to approximately solve the 2-ECSS problem in a planar graph G em-

bedded on a sphere. If a low-cost simple cycle C in G can be found, then one may divide

the problem into subproblems by contracting C. Shis follows from two observations:

Fact 6.3.2 When C is contracted, the sphere pinches into two spheres kissing at the new

contracted vertex (a cut-point). Therefore the 2-ECSS problem in G/C is equivalent to two

disjoint 2-ECSS problems, one on each sphere.

Sherefore to approximately solve the 2-ECSS problem in G, one may contract C and ap-

proximately solve the two independent 2-ECSS subproblems. Shen lift the edges of those

two solutions back to G and add the edges of C. She obtained graph is a 2-ECSS in G.

The additive error of this solution (the difference between its cost and the optimal cost) is

at most the sum of the errors of the two subproblems plus c (C) .

One can not always luckily find a light cycle which does a good enough job of

separating G, therefore a more general kind of separator combining cycles with a Jordan

cut is considered: a Jordan cut of G is a closed Jordan curve in the embedding of G that

does not cross (intersect the interior of) any edge. Given a Jordan cut J, every edge is

either in the interior or the exterior of J, but those vertices and faces intersected by J are not

counted in either the interior or the exterior of J.

She following theorem is from [10] which is a modilkation of Miller's planar sep-

arator theorem, as already used for the planar ASP [4, 47, 89, 10].

125

Theorem 6.3.3 Let G be a connected planar graph on n > 3 vertices embedded in the

plane. Suppose G has non-negative weights on its vertices, edges and faces, and non-

negative costs on its edges. Let W be the total light of the graph and let M be its total

cost and assume that no edge has weight more than (3/4)W.

Then, for any positive integer k, one can find a subgraph F of G and a closed Jordan

curve J in O(n) time such that:

1. F is the union of at most two vertex-disjoint simple cycles (maybe none). The total

cost of the edges on each cycle is at most M/k. If F contains two cycles B and B,

then int(B) C int(B).

2. The interior of Β and the exterior of Α (if they exist) both have weight at most W/2.

3. Denote by G' the embedded graph that results after deleting the interior of Β and the

exterior of Α (if they exist) and contracting each cycle in F to a vertex of weight Ο.

Then J is a Jordan curve through the new contracted vertices, which intersects edges

of G' only at their endpoints. The interior and exterior of J both have weight at most

(3/4)W.

4. The set of vertices of G' on J has size 0(k).

She three possible types of the separator (according to the number of cycles in F)

are illustrated in Figure 6.1. Note that it is necessary to assume that each edge weighs at

most (3/4)W. If a graph has an edge e that has weight larger than (3/4)W and has cost

exceeding M/k, then no such separator would exist. Because of its high cost e cannot be

on any of the cycles in F and due to its high weight it cannot be in the contracted interior of

Β or in the contracted exterior of B. Hence e is also an edge in G' and any Jordan curve in

the contracted graph G' has e either in its interior or exterior and so would not satisfy the

third property.

114-

Figure 6.1 She three different types of the separator. In the first two cases the Jordan
curve is closed after the contraction.

When the above theorem is applied, Q is said to be the set of new 1 portal vertices

introduced by the separator. She original graph G has been divided into at most four parts

of weight at most (3/4)W: the interior of the cycle B denoted by GB (with B contracted),

the exterior of the cycle A denoted by G A (with A contracted), the interior of J, and the

exterior of J. Let G1 denote Q together with the subgraph of G' interior to J, and let Gl

denote Q together with the subgraph of G' exterior to J. In this way G1 U Gl = G',

Ε(G1) n Ε(G) = Ο, and ν(G1) Π ν(G) = Q. In the inherited embedding of G1 (or Gl)

all vertices of Q appear on a single new face which is called a portal face; the old faces

that intersected J are gone. When solving 2-EC in G, one will see that the subproblems

in GA and GB become independent 2-ΕCSS problems, but the subproblems in G1 and Gl

are dependent because they share Q.

6.4 The 2-ECSS Algorithm

Let G 0 be the input which is an embedded planar 2-ECSS graph with n vertices, non-negative

edge costs, and a parameter t > 0. She algorithm assigns weight 1 to each vertex and

weight Ο to each face. By existing approximation algorithms one estimates ΟΡT(G0), the

i "Α" is reserved 10 denote all portals in a graph, new or old.

A rooted decomposition tree T is built from G0 as follows. Each node of T stores

an embedded planar graph G, which has edge costs, vertex/face weights, and some distin-

guished subset Α of "portal" vertices. She root of T stores G0 itself, with no portals. Each

node of T has at most four children, defined inductively as follows.

Let G be the graph stored at a node of T, and let W be its total vertex/face weight.

If W is 0(22), then this node is a leaf of T. Otherwise, apply Sheorem 6.3.3 to partition G

into at most four pieces (interior of B and exterior of A, and G1, Gl), each of total weight at

most (3/4)W. contraction portal vertices from G remain as portals in each piece where

they appear; the graphs G1 and Gl each get at most k new portals, the set Q. In G1 and Gl,

assign a weight of W/(1 62) to each new portal, and weight W/1 ό to the new portal face.

By the Separator Sheorem, the number of new portals obtained in this phase is at most k,

thus the weight of each of G1 and G2 is at most W -Ilk- (1 ΙίW) + i6 W = s W. In the graph

GA and GB, assign the new (non-portal) vertex weight 1 and all the the remaining vertices

have the same weight as in G. Since each child has weight at most constant fraction of the

weight of the parent, the tree T has depth O (log n) and size O (n log n). Furthermore, if

G0 is k-edge connected, by the separator properties, each G in T is (k-EC, P)-safe.

By the construction, Α is the set of portals in G which have been introduced by some

Jordan cut but not yet cut off by a cycle contraction or another Jordan cut. Now, consider

the number of portals and faces of the smaller graphs. Since G A and GB do not have new

portals and portal faces, one needs consider G1 and G2 only. She construction ensures that

the portals that G1 and Gl inherited from G are always heavier than the new portals in the

vertices of J, and the inherited portal faces are always heavier than the new portal face.

Shis implies that in G1 and Gl, every portal has weight at least 6 W, and every portal face

has weight at least ^i6 W. Since G1 and G2 each has weight at most s W, one can conclude

that G1 and G2 each contains at most 142 portals and at most 13 portal faces. Each portal

128

face contains a hole made by a Jordan cut at some ancestor of G in Τ. Note that a Jordan

cut might cut (simply) across an existing portal face, in which case some old portals may

appear on the new portal face, but this still counts as a single portal face. Or in terms of an

embedding on a sphere with holes, all old holes crossed by the Jordan cut disappear, with

segments of their boundaries incorporated into the one new hole boundary.

G is connected via P to the rest of Go (really a pinched and contracted version of

G0) which can be embedded as disjoint pieces, one in each portal face of G. Sherefore the

(k—EC, P)-types imposed on P by the rest of Go decomposes into independent types, one

in each portal face of G. By applying Lemma 6.k.4 to each portal face, one may bound and

enumerate the 2°e 1' 1) = n°(Y/ε) different (2—EC, P)-types that may be imposed on P by

the rest of Go. Call this list the list of external types for G. It is more eflkient, although not

essential, if each external type t of G is represented as a planar graph of size 00) 1) (see

Lemma 6.k.3) embedded in the portal faces of G. In particular at the root of Τ the input

graph G0 has no portals, and therefore it has the "empty" external type to.

Having computed Τ and these external type lists, one may now define a set of

subproblems that need to be approximately solved:

Definition 6.4.1 For G in Τ (with portal set P) and an external type t for G, the subprob-

lem (G, t) is this: find a mm-cost (2—EC, P)-safe spanning subgraph H of G which is

compatible with t, or else declare that (G, t) is infeasible (no such H).

Checking feasirelity is simple: just check whether t is compatible with G itself. She to-

tal number of subproblems (over all choices of G and t) is n °1 " , and the subproblem

(G0, t0) is the original 2-ECSS problem. She subproblems will be approximately solved

starting at the leaves of Τ and finishing at the root. Using dynamic programming, the

solutions are stored to avoid recompilation.

In the base case, G is a leaf of Τ and has size N = 0(2 2). Shen enumerative

method can be applied based on Lipton-Tarjan separators [85] to exactly solve such sub-

129

problems in 20(") = n°(Ύ/ε) time (this may be regarded as a continuation of our method,

using Jordan cuts without cycle contractions).

Otherwise G is not a leaf, and has up to four children in Τ as found by Sheo-

rem 6.3.3. She external type t is decomposed into independent external types, one for each

portal face of G.

Let G c denote either G A or GB and let Mc be the subtype oft induced by the portal

faces of G. Lookup the solution He to the subproblem (G c, Tc) and lift the edges of He

and the edges of C to be part of the approximate solution Η for the (G, t) subproblem.

Now consider the two remaining children G1 and Gl. As in Sheorem 6.3.3, let G'

be what is left of G after the (up to two) cycles are contracted and their interior or exterior

is pinched; so G1 U Gl = G'. Let t' denote the external type induced by t in the portal

faces of G'. Not knowing the optimal choice of external types ti and tl for G1 and Gl,

one needs to try them all. Shat is, for every pair (t1 , tl) where subproblems (G1 , t) and

(Gl, tl) were found feasible, one lookups their solutions Η 1 and Ηl and check whether

H' = Η1 U Ηl is compatible with t'. She cheapest compatible H' found are taken, and its

edges are lifted back to G. Shese edges of H', together with the C and Η edges mentioned

earlier, comprise the approximate solution Η for the (G, subproblem.

Although G' is not actually associated with a node of Τ. note that one can still

speak sensibly of the (G' , t') subproblem as defined above. In fact it would be a simple

matter to reformulate T as a renary tree including G': at each internal node of Τ one would

either pinch one cycle, or apply a Jordan cut.

Analysis She above algorithm solves n° ίΥ/ε) subproblems, each in TiO(y/C) time, so the

total running time is n°(Y/ε) .

Consider a feasible subproblem (G, t) . By planarity, t decomposes into indepen-

dent types in each portal face, and these faces cannot cross a cycle; therefore each cycle-

pinched subproblem (G c , tc) and the remaining subproblem (G', t') are all feasible. Tak-

130

ing the external type on G1 induced by Gl U t' as toe , we see that (G1 , to) is feasible. Sup-

posing (by induction) that the algorithm found some solution Η 1 for (G1 , t1), then Η1 U t'

induces an external type tl on Gl such that (Gl, tl) is also feasible. Sherefore by induction

up T, the algorithm finds some solution for each feasible (G, subproblem.

Now suppose Η is the solution that the algorithm finds for a feasible subproblem

(G, t) . Define the error on (G, t) as the difference between the cost A (H) and the minimum

possible cost. For each pinched cycle C (up to two), by Facts 6.3.1 and 6.3.2 subproblem

(G, t) will inherit the error of (H e , t) plus an additional additive error of at most c (C) .

After pinching cycles, the remaining error of (G, t) is that from (G', t'). Recall

, _ _ _ _ _ Cie the unknown optimal solution for (G', t') . Let t denote the

external type of G1 induced by (H* Γ G l) U t', and similarly let t2 denote the external type

Shen (Gib, ti) has the optimal solution H* fl Gib (for

i = 1, 2), and (t, t2) is a compatible type pair considered by the algorithm; if these two

subproblems are solved optimally, the solution cost would be A (H *) . Sherefore the error

on (G', t') is at most the sum of the errors on (G1 , t') and (Gl, t2), even though one might

not actually find the best solution' using this pair. Sherefore error terms simply add at a

Jordan cut.

Sherefore the total error of the root problem (G0, t0) is at most the sum of c(C)

over all cycles contracted in T. Ιt is easy to see that for any level of T, the total edge cost

of that level is at most A(G0). Sherefore the total edge cost of all cycles contracted on that

level is O (A (Go) /k) . Summing over all O (log n) levels of T, the total error from all levels

of Τ is O ((A (Go) /k) log n) . By an appropriate choice of the leading condranr '1efininσ lib

this is at most t • ΟΡΤ(G0) . Sherefore the final solution has cost at most

proving Sheorem 6.1.1.

131

6.5 The 2-VCSS Algorithm

She main idea of the k-ECSS algorithm is similar to the 2k-ECSS algorithm. Given the

input plane graph G0, the separator theorem is applied to decompose G0 hierarchically into

small pieces. For each piece, types are used to enumerate the different ways that the "rest"

of the graph may influence the connectivity constraints within this piece. Shen, dynamic

programming is used to approximately find the minimum subgraph compatible for each

type of each piece. Similarly one can prove that the number of external types of each

piece is a simple exponential in the number of portals (Lemma 6.5.4), yielding the same

running time analysis. Again the only source of error is in the weight of the separating

cycle edges, yielding the same error analysis.

However, there are some difficulties preventing one from using the same technique

to solve the 2-ECSS problem. She principle diflkulty is cycle contraction. In the 2-ECSS

algorithm, the decomposition, type definition and dynamic programming are all performed

on the minors of G0, and it is shown that this is suflkient. But it is no longer reasonable to

contract the cycles in the 2k-ECSS problem, because this changes the problem (in particular,

it may introduce a false vertex). Sherefore for each node in Τ. a pair of graphs are kept,

the compressed subgraph G as defined in the 2k-ECSS algorithm and its corresponding

uncompressed subgraph G, that is the subgraph of G0 induced by all vertices which appear

(after cycle contractions) as some vertex in G. As before, the separator theorem is still

applied to G, and the decomposition of G is obtained naturally. But the type and dynamic

programming will be defined on G.

She uncompressed graph G also contains portal vertices and portal faces, which are

the presages of the portals and portal faces in G. Specilkally, let J be the Jordan cut when

the separator theorem is applied to G. Let p be a vertex on J. If p is mapped to a single

vertex of G, then p is a new portal that will be contained in the subgraph of G. Otherwise,

p is mapped to many vertices which are on a series of cycles in G, then at most k of these

vertices will be specified as new portals of G. Shese two vertices are where the Jordan cut J

132

would intersect G if the cycles represented by p are uncontracted. Shus there are still 0(k)

portals in G. Each portal appears on some portal face in G corresponding to the portal faces

of G, and the portal faces identify where "the rest of G0" would appear in the embedding.

She edges of each separating cycle will appear in G as hard edges which are committed to

the final solution as in the 2-ECSS algorithm.

She notion of types must also be redeveloped in the biconnected context, so that one

may again use types to characterize the possible counterparts of an uncompressed graph;

this is the point of Lemma 6.5.k below. For convenience, types are simply represented as

graphs (rather than abstract cut tables represented by graphs, as in Section 6.k). Following

is a definition analogous to "(k-EC, P)-safe" graphs.

6.5.1 Types of (k-VC, P)-Safe Planar Graphs

Definition of the type. She definition of type is operational and it is oriented towards

Lemmas 6.5.k and 6.5.4 below. Let H = (VHF, £ H) be any (2-VC, P)-safe graph (does

not have to be planar) with a distinguished portal set Α and a distinguished set of hard

edges ΕH, τ . She type t(H) of H is defined by performing a series of operations on H. See

Figure 6.k for an illustration.

133

1. Let H,. be the graph consisting all portals of P and all the edges of EH , ,.. From H,
construct a simplified graph H, which is a forest formed by a collection of (possibly

connected) stars:

(a) All vertices of H,. are included in H.

(b) Every portal of P is marked as a super-portals.

(c) For each vertex q ΦΑ P, if it is a vertex or an end vertex of an isolated edge

in H,., mark it as a super-portals in H.

(d) For each block of H,. (hard block) with at least two vertices, create a new vertex

in H,. as a super-portals and connect by an edge the super-portals to every vertex

in the block.

(e) Assign distinct IDs to all super-portals.

2. Replace the subgraph H,. of H by the graph H,. and remove those vertices that have

no ΙD and are adjacent only to a super-portals (notice that the removed vertices are all

connected only to vertices of a hard block of Η,.). Let the obtained graph be 11.

3. For each block off that is not a bridge, if it has exactly two vertices and does not

contain a super-portals, contract it into a single vertex.

4. Repeat the following two operations until none apply.

(a) Remove all chords in any cycle of ii.

(b) For each path π of Γ with no super-portals as internal vertices and all internal

vertices with degree exactly 2, contract π to an edge with the same end vertices

as Π.

Notice a similarity of this construction to the standard construction of cutvertex-trees, see, e.g.,
[32].

134

5. Let H' be the graph obtained after Steps 1-4. She type t(H) is a graph with some

vertices labeled (having IDs, these are vertices corresponding to super-portals and

will be called portal nodes). It is constructed from H' as follows:

(a) Add each cutvertex x in H' to t(H), and refer to C as a vertex in t(H). If it

is a super-portals p in H', then it is a portal-nodes in t(H) with the ID of p.

(b) For each block in H' that does not contain any super-portal, contract it to a

vertex in t(H). Shis vertex in t(H) is referred as a block-vertex.

(c) For each block in H' containing exactly one super-portals p, contract this block

to a block-vertex. If the block is not a bridge and p is not a cutvertex in H',

then this block-vertex is a portal node in t(H) with the ID of p.

(d) Connect a block-vertex by an edge in t(H) to each cutvertex adjacent to it or to

the vertices of the bridge if the block-vertex is obtained from the bridge in

H'.

(e) If a block has two or more super-portal, then keep the block in t(H) as it is in

H'.

(f) Finally, for each path π of t(H) with no portal-nodes as internal vertices and

all internal vertices with degree exactly 2, contract π to a single edge with the

same end vertices as π.

Note the concept of super-portals can be applied to any graph H that contains portals

and hard edges, and it is completely determined by the portal set and the hard edge set of

H.

Properties of the types. Some basic properties of the types are listed here. First of all,

the number of labels of t(H) is identical to the number of super-portal of H. Secondly,

notice that the type t(H) is uniquely defined. Let H 1 and H2 be two (2-VC, P)-safe graphs

on the same vertex set and with the same set of portals and hard edges. Shen H1 and Hl

135

are said to have the same type if t (H 1) and t (Hl) are identical with respect to their IDs.

Shirdly, all vertices that are not portal-nodes have degree at least 3. Next, notice that if

H is reconnected and the portal set and hard edges are empty, then t (H) contains a single

vertex (block-vertices). Finally, it is easy to see that the connections among portals in H are

preserved and presented by the connections of portal nodes in t(G). Shese properties can

be summarized in the following lemma.

Lemma 6.5.2 Let G and H be two (2-VC, P) -safe graphs that have the same set of portals

P and the same set of hard edges Ε. Let t (H) be the type of H. Then for any spanning

subgraph G' of H that contains all hard edges in Ε,., t(H') and t (H) have the same set of

portal-nodes with respect to IDs, and G' U H is biconnected if and only if t(H') U t(G) is

2-edge connected and the cutvertices ces of t(G') U t (H) are cutvertices of t (H) or t(G')

or the super portals resulting from contractions of hard blocks as defined in the type.

Let H be a counterpart of G with the same set of portals and hard edges, if H U H is

biconnected, then H is said to be compatible with t(G). To check whether H is compatible

with t(H), by the above lemma, it is enough to check whether t(H) U t' (H) is 2-edge

connected and the vertices of t(G) U t (H) are cutvertices of t(G) or t (H) or superb-

mortals representing hard blocks of G and H.

Next, the number of types, specilkally, the number of external types of (2-VC, P)-

saferplanegraphs is considered. Let G be a (2-VC, P)-safe plane graph with a hard edge

set Ε,. and a portal face set F. Let the super-portals set of G determined by P and E. be P s .

If H be a counterpart of G that can be embedded in F, 3 then the type t(G) of H is said to

be an external type of H with respect to F. She focus will be on the counterpart H of G

that also is (2-VC, P)-safe and shares the same set of super-portals P S (i.e., H and G have

the same set of portals and hard edges). Shen, the type t (H) is called an external type of H

with respect to P S and F. She goal is to show that the number of external types of G with

That is, Η is drawn on the plane such that all vertices and edges of Η are contained in the portal
faces F (including the boundaries of all faces in F).

136

respect to P S and F is small, that is, it is only exponential in PSI. She following lemma

shows a type of a plane graph Η can always maintain some topology of Η.

Lemma 6.5.3 Let Η = (V, E) be a planar graph with a set of portals P C V that is

embedded on the plane. Then, one can draw t(H) on the plane such that t(H) is planar

and each portal node of t(H) is drawn at the same location as one 4 of the corresponding

portals in Η.

Proof: Every single operation performed on Η while constructing t(H) satisfies this

property, and hence any sequence of such operations satisfies it too. 	 ❑

Following is the the main lemma bounding the number of types.

Lemma 6.5.4 Let G = (VG, DEG) be a (2-VC, P)-safe plane graph with a hard edge set

a super-portal set P S and a portal face set F. G is embedded in a way such that all

super portals of P S will be on the border of the portal faces if the graph Br consisting of all

portals and hard edges is replaced with Bra as in the definition of type. Then the number of

external types of G with respect to P S and F induced by (2-VC, P)-safe graphs is at most

20ίιρ.1),

Proof: Let Η be any (2-VC, P)-safe plane graph that has super-portal set P and is

embedded in F. For each portal face F ib, let the subgraph of Η embedded in F ib be Ai .

Because Η is plane, A i is disjoint with Η 5 for i 4 n. Correspondingly, the subgraph of

t(H) in different faces are also disjoint. Hence the type of the subgraph in each face can be

considered independently.

Fix any face Fib Ε F and the subgraph Η 1 of Η in Fib. Let its type be ti. Now consider

the structure of ti. She vertices in t i whose degree is at most one are going to be called as

leaves. Α leaf must be a portal node of P, because all vertices that are not portal nodes have

degree at least 3 by the construction of t(H). Secondly, there may be some parallel edges

4Α portal node in t(H) may corresponds to many portals because the hard edges are compressed.

137

in ti which must be between two portal nodes (super-portals), because otherwise it will be

contracted according to Step 4a-4b of the definition. If ti contains a block, then the block

must be a cycle. Shis is because by assumption and Lemma 6.5.3, all portal nodes are on

the boundary of Fib, thus can not be inside a block. But after Step 1-3, no vertex will remain

inside the cycle. Furthermore, by construction of ti, each such cycle in ti contains at least

two portal nodes and all non-portal vertices on the cycle must have degree at least 3.

For the purpose of counting, one can transform ti into a forest with only 10(3i)1

leaves. If one erases each portal node and an infinitesimal neighborhood around it, then a

forest will be obtained with all internal nodes have degree at least 3 with no ID assigned.

She leaves correspond to portals-nodes, they have the same ID as the corresponding portal-

nodes. It can be claimed that the number of the leaves is 0 (Α 1) 5 . Shus, there are at most

2°e 1311) such forests.

Hence, the number of types t i in face Fib is proved to be 2 0(1P10 . Because ti and t)

are independent for i Ο n, the total number of possible external types with respect to Α and

Let ('H', H) be a pair stored in a node of Τ where Μ is the uncompressed (2-VC, Α)-

safer graph. Suppose Ε has a portal setΑand a hard edge set Ε,.. Lettbe an external type

of HL Ε is said to be compatible with t if t(IH) U t is 2-edge connected and the cutvertices

of t(IH U t are cutvertices of t(IH) or t or super-portals representing hard blocks.

By Lemma 6.5.4, the number of possible external types is determined by the number

of super-portals of Μ. Now it will be shown that the number of super-portals in each

subgraph obtained from separator theorem is 0(k). By definition, the number of superb-

mortals of Ε is at most the number of portals in it plus the number of separating cycles (hard

cycles) and the cutvertices between these cycles. Because the depth of the decomposition

The operation can be seen as two steps. First break the cycles at the portals on the cycle by erasing
only the neighborhood on the cycle edge. Thus one gets at most 21Ρ1Ι new leaves, and the obtained
graph is a forest with internal vertices degree at least three except those portal nodes. Therefore, the
number of edges of the forest is 0 (0 P 11) . To make all portal nodes be leaves, one can do the same
operation to the internal portal nodes and gets the final forest.

138

tree is at most 0(log1t) and at each node at most 2 "cycles" are introduced 6 , the number

of hard "cycles" is at most 0(logii). Hence the number of super-portals of ΕΙ is 0(k) +

0(log1t) = 0(k). By Lemma 6.5.4, Ε has at most 2 0(1') = na(Υ/ε) external types.

6.5.2 Recursive Decomposition

In this section, a procedure is presented to build a decomposition tree T in a way suitable

to solve the k-ECSS problem in planar graphs. She procedure is similar as for the k-ECSS

problem. However at each node of T, a pair of graphs are kept, the compressed subgraph

G as defined in the 2-ECSS algorithm and its corresponding uncompressed subgraph G. In

the root the input graph G0 and G 0 = C0 are stored. Let t be a positive real, fix certain

k = Θ((γ/t) log n) for the rest of this section.

Let G and C be the pair of graphs stored at some node of T. G has a set of portals,

a set of portal faces F and a set of hard edges. She Separator Sheorem is applied to the

compressed graph G to obtain up to two cycles .Τ and a Jordan cut J having at most k

vertices. Shis decomposes C (explicitly) and G (implicitly) into at most 4 smaller graphs:

• For each cycle C in Υ, take the subgraph of C contained inside (outside if the cycle

is A) C together with the cycle C. One can contract C to a single vertex (all edges

incident to any vertex of C are now incident to the new vertex with all self-loops

removed) and call the resulting graph Cc. Assign weight 1 to the new vertex.

There are no new portals in G, but Gc may inherit some old portals and portals

faces from C. She weight of Cc is at most 4 W, where W is the weight of G.

• Let G' be defined as in the Separator Sheorem. One needs to define two other com-

pressed graphs G1 and Cl that are the interior and the exterior of the Jordan cut J in

G', respectively. All vertices in J are added to the set of portals of G1 and Gl. Ad-

ditionally, the algorithm assigns the weight of 6W to each new portal, and weight

i66 W to the new portal face. Thus the weight of each of C1 and Gl is at most 8 W.

They may not be simple cycles in IR{. but a set of cycles glued together

139

While G is decomposed explicitly, the decomposition of C is obtained implicitly.

Corresponding to C, Cc which is C c but no cycles are contracted. Besides, the edges on

C will be new hard edges in C c

Before defining C1 and C2 which correspond to C1 and Cl, respectively, one needs

to first define the new portals. Ιntuitively, these are the vertices where the Jordan cut J

would intersect the uncompression graph C. Let p be a portal on the Jordan cut J. Ιf p is

mapped to a single vertex of C, then p itself is a new portal of C. Otherwise, p is mapped to

many vertices which are on a series of cycles in C. Consider those edges E that are incident

to some vertex on some of these cycles and are in the interior of J in G. Assume it is not

empty; otherwise consider those edges in the exterior of J in C. Let el be the leftmost edge

in E for the fixed embedding. Suppose el is incident to Z which is on one of the cycles.

Shen Z will be designated as a new portal in C. Ιf there are edges of E not incident to Z,

pick the rightmost edge el in the embedding. Suppose el is incident to v which is on one

of the cycles. Shen v is also designated as the new portal. Ιn this way, for each new portal

mapped to a cycle in C, at most 2 new portals are defined.

Now, C1 and G2 would be the graphs inside and outside J respectively, with no

cycle contracted. Further, they will not only inherit some old portals and hard edges from

G, but also have all the new hard edges and portals defined as above. Additionally, besides

the inherited portal faces, both C1 and Cl have a new portal face.

By the Separator Sheorem and the definition of (2-VC, P)-safe, it is easy to see

that if C is (2-VC,13)-safe, then Cc and C1 and Cl are also (2-VC, P)-safe with respect

to their portals.

Now consider the number of portals and faces. As for the 2-ECSS, by the way of

setting the weight of new portals and new portal faces, one can show that G1 and G2 each

contains at most 14k portals and at most 13 portal faces. She number of portal faces in C1

and Gl are the same as that of G1 and Gl. But the number of portals in G1 and G2 may

be larger because two portals in C1 and Cl may be mapped to a single portal in G1 and

140

Gl. However, these portals must be on the cycles in G1 and Gl found by the Separator

Sheorem. Each time the Separator Sheorem is applied, at most 2 "cycles" (also called hard

cycles) are introduced in the uncompression graph C. 7 On the other hand, each time the

recursive call reduces the weight of the graph by a constant ratio, thus, the depth of the

recursion is at most 0(logn). Hence, the number of hard "cycles" is at most 20(logn).

Sherefore, the number of portals in C 1 and Cl is at most the number of portals of G1 and

Gl plus 0(logn), i.e., 0(k). The number of super-portals of C1 or Cl is at most the

number of portals in them plus the number of hard cycles and the cutvertices between these

cycles, which is 0(k) + 20(logn) = 0(k). Since C1 and Cl have constant number of

portal faces, by Lemma 6.5.4, they have at most 2 k = n° ^ ε�) external types each. Similarly

it can be shown that C c has constant number of portal faces, 0(k) super-portals, and n ° ί É

external types with respect to Ας and its portal faces.

6.5.3 Dynamic Programming

After the decomposition, the next step of the algorithm is using dynamic programming to

solve the problem. Let C be a plane graph with a distinguish set of hard edges. A subgraph

Η of G is said to be consistent if H is a spanning subgraph of G and contains all hard edges

of C. She subproblems are defined as follows and the goal is to solve the subproblems

approximately.

As before, the total number of subproblems over all choices of C and t is 20(k) =
n°(Y/ε) . She subproblem (C0 , t0) is the original k-ECSS problem, where to is empty and

7Τhey may not be simple cycles in G, but be glued with a set of other cycles from previous recursive
calls.

141

G0 is the input graph with no portals and no hard edges. Each vertex in G0 has weight 1,

each face and edge has weight Ο.

As for the 2-ECSS problem, the problems associated with the leaves where the

compressed C has size Ν = 0(k2) are considered first. All hard edges of G are included

in the solution to (G, t). She subproblem instance are solved exactly in 2° (`?'Ν) = r^°(Ύ/ε)

time by applying Lipton-Tarjon Sheorem [85] to C (explicitly) and G (implicitly).

Let (G, t) be a subproblem associated with an internal node of A based on the

solutions to the subproblems associated with the children nodes. Suppose the problem

instance for the children of C, CA, CB, C1 and Gl, have been solved.

Let G c represent either GA or GB. Let t(C) be the subgraph oft that is induced by

the super-portals of Gc . She minimum subgraph Etc of Gc compatible with type t(C) can

be found by looking up the solution to the problem instance of Gc .

Let t' = t — t(C). She solution]RI' to (C' , t) can be found by combining the

solutions to (C1 , to) and (C2 , tl) where toe U t2 = t'. Shen, Etc U ΕΙ'is approximately the

minimum consistent subgraph of C for external type t.

Analysis of the algorithm As the algorithm for 2-ECSS, the only source of error comes

from the cycles in the the separator, i.e., the hard edges. Using similar analysis, one can

show that by selecting an appropriate constant in k = 0((γ/t)logn), the error is at most

t times the optimal.

For the time complexity, the time spent in the decomposition phase is mainly for

the run of the Separator Sheorem which is applied at most Ο (n log n) times, so the total

time is 0(112 log 1t). In the dynamic programming, there are nn1Y/ε) subproblems, each

can be solved in nn(Y/ε) time. So, the running time for the whole algorithm is υ ο ίγ/ε) .

Shis proves Sheorem 6.1.2.

142

CHAPTER 7

APPROXIMATION SCHEMES FOR MINIMUM RECONNECTED SPANNING

GRAPHS IN WEIGHTED PLANAR GRAPHS

7.1 Introduction

In this chapter the approximation algorithms for the k-ECSS and k-ECSS problem in ar-

retrary weighted planar graphs are studied. A standard relaxation of the k-ECSS prob-

lem is also considered which is to find a minimum weight 2-ECSS spanning sub-multi graph

(2-ECSS) H of C, meaning that an edge of G can be used multiple times in H (conse-

quently its weight is also counted multiple times in H). Another classical extension is the

1-2-connectivity problem: each vertex v is assigned a connectivity type r„ Ε f1, 2}. The

problem is to find a minimum weight spanning subgraph such that for any pair of vertices

v, u E V, there are at least Tuv = minfBu , B„} edge-disjoint or vertex-disjoint paths between

v and Z. She 1-2-edge-connectivity is denoted by { 1,2}-EC, and 1-2-vertex-connectivity

by { 1,2}-EC. She relaxed 1-2-edge-connectivity problem where each edge may be used

more than once is also considered.

7.1.1 Related Results

All the problems mentioned above have been extensively studied in the literature. Since all

these problems are NP-hard, the main research has been devoted to designing eflkient ap-

proximation algorithms, see the survey [70] and more recent advances [19, 39, 40, 66, 74].

In general, one would prefer to design a PTAS. However, all the problems considered in

this chapter are max-SNE-hard [25]. Sherefore they do not have a PTAS unless Ρ = NP.

But this does not preclude a ETAS for restricted classes of graphs: indeed, in the previous

chapter, it has been shown that there are PTAs for both k-ECSS and 2-ECSS problems

in weighted planar graphs as. In fact, the approximation schemes of in Chapter 6 alb-

143

7.1.2 New Contributions and Techniques

Eflkient approximation schemes for all the above mentioned problems in weighted planar

graphs will be presented. Shese approximation algorithms depend in a crucial way on the

new construction of light spanners for planar graphs.

Let C be a weighted graph. Let dB (Z, v) denote the weighted shortest path distance

between the vertices Z and v in C. An spanner of G is a spanning subgraph Η of G such

that AB (Z, ν) < s • AGE (Z, v) for all Z, v. A spanner provides an approximate representation

of the shortest path metric (1-connectivity) in C, but it may be much lighter than G.

Althδfer et al. 111 designed a simple greedy algorithm that for an arbitrary graph G

computes an spanner Η of G for any s > 1. In the case of planar graphs, it is shown in [1]

this bounds the ratio w(H)/OPT in terms of just s. If all weighted graphs in a graph

family have spanners with such a bound on ω(H)/OPT (depending only on s), then the

family is said to have light spanners for this problem. Light spanners are known to be very

145

useful for solving various optimization problems on graphs. For example, planar graphs

have light spanners for metric-TSP: the first step in the metric-TSP PTAS for weighted

planar graphs [4] is to replace the input graph with an accurate enough s-spanners (using

[1]), thus effectively bounding w(G) /OPT for the remainder of the algorithm. Spanners

are also used in complete geometric graphs to design efficient PTA's for geometric TTSP

and related problems [101], and to design PTA's for the 2-edge and 2-vertex-connectivity

problems [26, 27].

By comrening the spanner constructed in [1] with the planar separator decomposi-

tion approach tuned to analyze reconnected graphs in Chapter 6, it will be shown that one

can design a ETAS for the reECSS problem and a PTAS for the { 1,2}-ECSSM problem.

However, this approach of replacing the input graph with an s-spanners fails for the reECSS

and 2-VCSS problems. She reason is that a spanner does not have to be recollected, thus

the spanner may not contain the optimal or a near optimal solution in most cases. Naturally,

one may think to use light fault-tolerant spanners (see, e.g., in [82]), which are subgraph

that persist as s-spanner even after deleting a constant number of vertices or edges. Un-

fortunately, this concept is not useful for weighted planar graphs, since simple examples

show that light fault-tolerant spanners do not exist in weighted planar graphs, not even for

a single edge deletion.

To solve the problem mentioned above, the main contribution is described: a new

greedy spanner construction which produces a light planar spanner with certain desirable

properties. Specilkally, given a weighted planar graph G, a connected spanning subgraph

A of G and s > 1, it computes an s-spanners H of G. H contains A as a subgraph and

Shus if the algorithm is fed with α-

approximate solutions H to the various connectivity problems in a weighted planar graph

G, then an Ο (α/(s — 1))-approximation H* for that problem is obtained where H* is an s-

scanner for G at the same time. Furthermore, one can show that while H* need not contain

146

an (1 + t) -approximate solution S, the number of edges of S "crossing" each face of H*

(Lemma 7.4.2) is bounded.

Organization. First a ETAS for the reECSSM problem is presented in Section 7.2. Shis

section contains also a description of the main algorithmic approach used in our approxi-

mation schemes, which is a combination of the use of spanners, a recursive approach driven

by a variant of the planar separator theorem, and dynamic programming. Next, in Sections

7.3 and 7.4, the new construction of spanners is described and the special properties of

the spanners are discussed. In Section 7.5, quasi-polynomial approximation schemes for

7.2 ETAS for the REECSSM Problem

Let G be a connected weighted graph. A reECSSM H of G is a spanning sub-multigraph

of G in which edges can have some multiplicity and in which every pair of vertices is

connected by at least two edge-disjoint paths. Note that G may not have any multiple

edges at all. If an edge is used multiple times in H, its weight also contributes multiple

times to the weight of H. Since it never helps to use an edge more than twice, one may cap

all edge multiplicities at two. Following is a PTAS for this problem which runs in n° (Ι/ε2)

time.

uses only edges from H. Suppose S* is an optimal 2- ECSSM in G with w(e*) = OPT.

Now S* is modified such that it uses only edges from H. For each edge e of S* not in H,

remove e and add a shortest path from H of total weight at most s • wee). When the path

is added, the edges are added with multiplicity, but capped at two. She result of all these

modilkations is another 2-ECSSM S, using only edges from H, each edge used at most

twice, with w(S) <s • OPT.

Next the algorithm applies the reECSS approximation algorithm from Chapter 6

to the graph H', which is H with each edge duplicated. In summary, one can get the

following theorem.

Theorem 7.2.1 Let ε > 0 and let G be a connected lighted planar graph with n vertices.

There is an algorithm running in time 1tΟ(1 /ε2) that outputs a 2-ECSSΜof G whose weight

is at most (1 + t) times the minimum.

Why this technique fails for other problems: She above technique does not work for

other problems considered in this chapter, because in these problems, we are not allowed

to duplicate edges from G in the output graph. Instead, our approximation schemes must

consider the possibility that the near-optimal S needs some "extra" edges from outside the

spanner. In Sections 7.3 and 7.4 a new type of light planar spanners are developed and the

number and arrangement of those extra edges outside the spanner are limited.

7.3 Augmented Planar Spanners

In this section a new greedy algorithm is presented to construct s-spanner in weighted

planar graphs, resembling the standard greedy algorithm [1] for general graphs. Just as in

the standard algorithm, the algorithm takes a connected weighted graph G and a parameter

s > 1, and produces an spanner H. Unlike the general algorithm, our G must be planar,

and for each edge e of G not in H it is guaranteed that s • wee) is at least the length of

148

Figure 7.1 Α non-simple face f in H, a chord e, and walks ι and Αl.

some path in the face of H containing e. She new algorithm is also provided with a third

argument: a "seed" spanning subgraph A, containing edges that must appear in H. In

Section 7.4 A will be used to enforce some reconnectivity properties in the spanner.

Suppose G is a weighted plane graph (that is, an embedded planar graph) and H is

a subgraph. A chord e of H is an edge of G not in H. Note that H and e inherit embeddings

from G. For each chord e YV H (e) is defined to be the length of the shortest walk connecting

the endpoints of e, along the boundary of the face of H containing e.

More precisely, if the endpoints of e are disconnected in H, then define wH(e) =

+ooh. Otherwise e connects two vertices in a component of H, and e is embedded in some

face f of this component. She boundary of f is a cyclic walk of (oriented) edges, with total

weight w(f); note that a cut-edge may appear twice in the boundary (once per orientation),

and its weight would then count twice in w(f). Similarly a cut-vertex may appear multiple

times. She edge e splits the boundary sequence into two walks Α and Αl, both connecting

the endpoints of e, with w(f) +w(Ρl) = w(f). Now define we (e) = min(w(P), ω(Αl))

(see Figure 7.1).

Given G, s, and A as above, H = Bυgment(G, s, A) is computed as follows:

149

add e to Η

return H

like the general greedy spanner algorithm [1], except that WHO replaces Ad.

Theorem 7.3.1 Let G be a weighted plane graph, s > 1, and B a spanning subgraph of

G. Then H = HZgment(G, s, A) is an spanner of G. If H is connected, then w(H) <

(1 +2/(s - 1)) - w(H).

Proof : To show that H is an spanner it suflkes to show that each edge of G is s-

approximated in H. For e not in H, at the moment it was rejected it must be the case that

we (e) < s - weed). Note that W H (e) may only decrease after that, so Ad (e) < Ed (e) <

s - wee) at the end of the algorithm.

For the second part one needs to show that the weight of all edges in H but not A is

at most (2/(s - 1)) - w(A). Suppose e is such an edge; then e is not a cut edge in H since

H is a connected spanning subgraph. Sherefore e is bounded by two distinct faces. Let H

be either face bounding e. First one can claim that w(H) > (1 + s) - w(e). To see this,

consider the last edge e' added to H whose boundary consists of a path P plus e'. Since e'

150

7.4 Spanners and 2-EC subgraph

Suppose a weighted plane reECSS graph G is given, where the goal is to find an (1 + t)-

approximate 2-reECSS. First one can construct an auxiliary subgraph H*, as follows:

Given a face H in H*, the chords of H are the edges of G embedded inside this face,

according to Gps embedding. A Aface-edge e of H is an abstract edge connecting two vertices

of H; unlike a chord, a face-edge is not necessarily an edge of G. (If vertices appear more

than once on H, one must specify which appearances is the endpoints of e.) She face edge

e is said to crosses a chord c if: c is a chord of the same face H, their endpoints are distinct

vertex appearances on H, and they appear in cyclic "ecec" order around the boundary of H.

Note that e may be embedded inside H so e intersects only the crossed chords.

Suppose S is a reEC in G, and an edge c of S is not in H*. Shen c is a chord

of some face H of H*. Let Α be the path in H connecting the endpoints of c, such that

w (Ρε) < ' • w (c) . Shen the chord move at c is the following modilkation of 5: add

to S all the edges of P a that were not already in S, and remove from S any chords inside

the cycle c U Ας (see Figure 7.2(a)). Since H* is reECSS, the cycle has no repeated edges,

and therefore S is still a 2-reECSS after the chord move. She chord move is improving if

w (S) decreases; this happens whenever w (Α a) (or ‚/ • w (c)) is less than the weight of

the discarded chords. Any nontrivial chord move brings S closer to H* (in Hamming

distance), thus at most Ο (n) improving chord moves apply to any given reEC S.

Proof: First one can suppose that S has no improving chord move at a chord crossing

e, since such a move could only remove some chords crossing e. Let Cf be the set of

chords in S crossing e. Arrange Cf in "left to right" order, according to how they intersect

e. Let e0 Ε Cf be the chord with maximum weight. Say that a chord e Ε Cf is short if

w (c) < t • w(c0)o(2\/). Now if there are short chords to the left of co, perform a chord

move at the rightmost one, el . Similarly if there are short chords to the right of c^, perform

152

a chord move at the leftmost one, C. S' is the result of these (at most) two chord moves;

note that C f contains no short chords except possibly c 1 and A,..

7.5 ApproDimation Schemes for the 2-reECSS and 2-VACS Problems

Ιn this section it will be shown how to use our new spanner construction to find quasi-

polynomial time approximation schemes for the 2-reECSS and the 2-VACS problems in

weighted planar graphs. Following is the PTAS for reECSS problem.

A similar framework as that in the PTAS for 2-ECSSΜ problem in Section 7.2

is used. But instead of using the spanner constructed as in [1], now one may use the

augmented spanner H* as constructed in Section 7.4.

First Sheorem 6.3.3 is applied to H* with k = O(log1t/t) to decompose H*. How-

ever, different from the PTAS for the reECSS problem, H* may not contain a near-

optimal solution of the reECSS problem. Shus one cannot work on the pieces of H* di-

rectly. Fortunately, Lemma 7.4.2 guarantees that there exists a near-optimal solution with

153

at most 0 (k log (1 /t)) edges crossing the Jordan curve J. Shese crossing edges can be

guessed by trying all n°(k1°g(1/ε)) possibilities. She guessed edges are added to the corre-

sponding pieces, and the vertices of H* along J together with the endpoints of the guessed

edges determine the set of portals P for the new pieces. For each possible new piece with

the guessed edges, weights are assigned to the new portals such that each new piece has

cost at most constant fraction of H* and 0 (k) portals. Shen the new pieces are recursively

decomposed.

As in the ETAS for the reVCSS problem, for each piece edge-connecti-vity types

are defined to describe how these portals may be connected outside one of the pieces in a

(1 + approximation solution. She number of types for each piece is 2°('1°g(0/)), exponen-

tial in the number of portals. Shen, dynamic programming is used to solve the subproblems

as before and the cycle edges are committed to the solution.

She approximation scheme for the reVCSS problem is similar, and only the differ-

ences are mentioned here: first, H* is redefined as remarked at the end of Section 7.4, and

then vertex-connectivity types are defined using the same techniques as in Chapter 6.

She error of the final solution comes from two sources. First, the edges of the cycles

that arose from the application of the separator theorem to the solution are added. Since

each piece in the decomposition has weight at most constant fraction of its parent weight,

the depth of the recursive calls is Ο (log ii). As before, the total error per recursive level is

O((w (H*)/k) log n), where k = O(logn/t) andw(H*) = Ο (ΟΡΡ/t). By an appropriate

choice of the leading constant defining 2, this is at most (ε/2) • OPT.

Moreover, each time a face of H* (or its pieces) is cut by a Jordan curve, Ο (log(1 /ε))

crossing edges are guessed. If these edges are guessed optimally (they were edges in some

original optimal e*), then by Lemma 7.4.2 an additive error of at most ε/2 times the weight

of these guessed edges is paid. Summing over the entire assembly of a possible solution,

the total of these errors is at most (t/2) - OPT.

154

She dominating factor in the running time comes from trying all .1°0'1°g0/0) pos-

sibilities for the guessed edges. She weights of the subproblems are only a constant times

the weight of their respective parents and therefore a pure recursive approach (without dy-

namic programming) leads to a time bound of A(ii < 1tοϊ"°g(Ι/ε))T (c • n) (0 < c < 1),

with solution n0((1/01°g (Ι/ε).1°g2 n) Shis bound may be improved by a logarithmic factor

in the exponent by using dynamic programming and by a more careful count of subprob-

lems. She following lemma proved in [10] bounds the number of ways how a graph can be

decomposed regardless of its weight scheme.

Lemma 7.5.1 Let G be a planar graph on n vertices with non-negative edge costs, em-

bedded in the plane, and a parameter k > 1. Then one can find a list of 0 (τ l) separations

of G, such that for any valid weight scheme of the vertices, edges and faces of G, some

separation in this list satisfies the properties of Theorem 6.3.3.

Lemma 7.5.1 shows that a piece is partitioned in only 0(n l) different ways, no

matter how many arrangements of the vertices along the Jordan curve and incident with the

"guessed" edges. Shis implies the following lemma.

Lemma 7.5.2 The total number of distinct pieces (contracted graphs) of the

originalH*that occur during our recursive decomposition is1ο(1°gn).Therefore the number

of distinct subproblems (a piece, P = O (2 log (1 /t) portals selected in the piece, and an

external connectivity type on those portals) is 1tο(1°gn)^.LΟ(ΙPΙ)2Ο(ΙPΙ) = .^.Lο(κι°g(1/ε))

7.6 EDtensions to the f1, connectivity Problem

In this section, one can extend the previous results to the f1 , connectivity problems in

weighted planar graphs. One needs to focus on the algorithm for the f1 , 2}-ECSS problem

155

only. She algorithm for the {1, 2}-ECS problem can be obtained similarly. She algorithms

presented are modilkations of the respective algorithms in Sections 7.2 and 7.5.

First, consider the f1, 2}-ECSS problem, which is a relaxed version of the f1,

2}-ECS problem where duplicate edges are allowed. As in Section 7.2, it can be shown that

there is a (1 + t -approximate f1 , 2}-ECSS AM that uses only edges from a light (1 + t) -

spanner H. So instead of G, one can work on H with duplicated edges.

She main difference from Section 7.2 is the dynamic programming part. She con-

nectivity types need to be redefined to reflect the nonuniform connectivity requirement.

For this, one can use the connectivity type construction in Chapter 5. Informally, the main

difference is that each time a recollected component or path is contracted, the highest

connectivity requirement among all contracted vertices is assigned to the new vertex. Shis

increases the number of types from 2°(21P1) to 2°(21P1), where P is the set of portals in the

given graph. Again a BETAS is obtained with running time n ° (' /ε2) •

Now consider the f1, 2}-ECS problem. First a 2-approximate solution Α can be

found using algorithms from [64] (or [36] for f1, 2}-ECS). Shen Α is augmented into a

light spanner H* as in Section 7.4. Using similar arguments as in the proof of Lemma

7.4.2, one can show that there is a (1 + approximate f1, 2}-ECSS e so that for each

picked face-edge e, only 0 (log(1 /t)) edges of e cross e. Now redefine the connectivity

types as above. Finally, dynamic programming is used to solve the problem. She running

time is still dominated by the number of subproblems n°(Ιogυ·Ι0g(Ι/ε)/ε). Hence, a QPTAS

is obtained in this case.

She results in this section are summarized as follows.

156

Theorem 7.6.2 Let t > 0 and let G be a weighted planar graph with n vertices. There is

an algorithm running in time lo g Αι 1οg(1/ε)/ε) that outputs a {1,2}-ECSSΗofGsuch that

w(H) < (1 + t) • OPT.

Theorem 7.6.3 Let t > 0, and let G be a lighted planar graph with n vertices. There is

an algorithm running in time 10 gτιlοg(1/ε)/ε) that outputs a {1,2}-VCSS Η of G such that

w(H) < (1 + t - OPT.

CHAPTER 8

FAULT-TOLERANT GEOMETRIC SPANNERS

8.1 Introduction

Shis chapter considers geometric fault-tolerant spanners in Euclidean spaces which are

formally defined as follows.

8.1.1 Previous Results

Shis problem of eflkiently constructing good fault tolerant spanners has been proposed

recently by Levcopoulos et al. [83]. Shey presented in [83] three algorithms constructing

vertex fault-tolerant spanners. Sheir first algorithm is based on the observation that the (k+

s-power of a spanner is a (k, t)-VFTS (an empower of a graph G is a graph with the same

vertex set as G and it contains an edge between any pair of vertices that are connected by a

path in G with at most s edges). Sherefore, if one starts with the spanner construction from

157

158

[55], then in time 0 (n log n) + n 20(k) one can obtain a (k, t)-VFTS of maximum degree

2° 01' and the total cost of 20(k) times the cost of a MST. For a constant k, this construction

leads to a fault-tolerant spanner with asymptotically optimal parameters. She other two

algorithms described by Levcopoulos et al. [83] use the well-separated pair decomposition

[13]. It is shown that a vertex fault-tolerant spanner can be constructed (i) in 0(n. log n+

22 n) time with 0 (22 n) edges, or (ii) in 0 (n k log n) time with 0(n k log n) edges.

Neither the maximum degree nor the total cost of the fault-tolerant spanner is bounded in

these two algorithms.

In a follow-up paper, Lukovszki [86] gave a construction of (k, t)-VFTS with the

optimal number of edges 0 (n 2) ; the running time of this algorithm is 0 (n logd—Ι n +

n k log login). Lukovszki presented also a construction of (k, t)-VFTS with the maxi-

mum degree of 0 (22) and investigated fault-tolerant spanners that allow the use of Steiner

points.

She main idea of that construction in [86] is to take a high-quality (that is, with

constant maximum degree and total cost proportional to the cost of MST, see [5, 55]) t-

scanner and then put around each point k Steiner points, so that the distance between

the point and any Steiner point associated with it is infinitesimally small. Each point is

connected with all Steiner points associated with it. Furthermore, whenever there is an

edge in the spanner between a pair of input points x and u, then this edge is left in our

fault-tolerant spanner and k new edges are created by connecting in a matching the Steiner

points associated with x and u . It is not diflkult to see that the obtained graph has exactly

k n additional Steiner points, the degree of each vertex (either input point or a Steiner one)

is upper bounded by 0(k), and that the total cost of the graph is 0(k) times the cost of

minimum spanning tree. Furthermore, one can show that if one removes any set of at most

k vertices from that graph, then for any pair of vertices corresponding to the remaining

points there is a path connecting these points whose length is upper bounded by t + t times

the Euclidean distance between the points.

159

8.1.2 New Contributions

She main open problem left in [83] and [86] is whether there exist fault-tolerant spanners

having good bounds for the maximum degree and the total cost. She best bounds obtained

in the prior constructions were the fault-tolerant spanners having the maximum degree

of 0(kl) by Lukovszki [86], and the one having the total cost of 20(1') times the cost of an

MST by Levcopoulos et al. [83].

She first result in this paper resolves that problem and gives a construction of opti-

mal (k, t) -VFTS.

Theorem 8.1.3 Let V be a set of points in 11 d . Let t > 1 and let k be a positive integer.

Then, one can construct a (k, t) -EFTS for V that has maximum degree 0(k) and whose

total cost is 07 (kl . WMST), where MST denotes the cost an MST of V. The constants implicit

in the 0-notation depend on t and d.

Notice that by the arguments above this result implies the identical result for k-edge

fault-tolerant spanners.

It is not diflkult to see that the spanner promised in Sheorem 8.1.3 has asymptot-

ically optimal bounds both for the maximum degree and the total cost. Indeed, since a

(k, t)-EFTS ((k, t)-EFTS) has to be k + 1-edge connected, every vertex must have degree

0(k). To see that the total cost must be Ω(k 2 . MST) in the worst-case, consider the fol-

lowing construction (see also [83]), see Figure 8.1. Suppose that k is even. Let eV and cl be

two points with Ί e i el j = 1 and let r « 1 /n. Consider n points such that k/2 of them are

contained in a ball Β ι of radius r centered at e ι and the remaining n - k/2 points are con-

tained in another ball Βl of radius T with the center at cl. Since any MST of these n points

has only a single edge between Β 1 and Β2, MST = 0(s. However, since the minimum

degree of any vertex (or k-edge) fault-tolerant spanner is k + 1, every vertex in Β 1 has to

be connected to at least k/2 + 2 vertices contained in ball Βl. Sherefore, there are 0(kl)

edges between Β Ι and Bl, and the cost of any vertex (or k-edge) fault-tolerant spanner is

07(kl . MST)

160

Figure 8.1 Any EFTS for points in Ai and Bl must have weight at least Ω(kl), while the MST
has weight 0(1).

She construction in Sheorem 8.1.3 is a generalization of the greedy algorithm that

has been used before to construct spanners [1, 5, 15, 30, 55]. She main contribution in this

context is the first, precise analysis of the fault-tolerant spanners obtained in that construc-

tion.

She next contribution gives an efficient construction of good fault-tolerant span-

ners. She construction from Sheorem 8.1.3 gives fault-tolerant spanners having optimal

parameters, but it does not lead to an efficient algorithm for constructing the spanners.

She following theorem shows that one can construct very eflkiently a fault-tolerant span-

ner whose total cost is just slightly larger than optimal (and the maximum degree remains

optimal).

Our eflkient algorithm from Sheorem 8.1.4 is based on a new, interesting property

of Euclidean graphs that gives a sufficient condition (characterization) for graphs to be

(k, t)-EFTSs.

161

8.2 Preliminaries

In this chapter, many algorithms investigated will consider pairs of points (edges) in some

sequential order. For convenience, the total order on the costs of the edges in E is intro-

As mentioned before, both, directed and undirected Euclidean graphs will be con-

sidered. Shroughout the chapter (x, u) will denote both, an undirected and a directed edge

from x to u. In the first part of the chapter, in Section 8.3, undirected graphs and undirect-

ed fault-tolerant spanners are analyzed, while in the second part of the chapter, in Section

8.4, for convenience, directed graphs and their spanners will be considered. Notice howev-

er that this distinction is really for convenience only, since any undirected spanner can be

converted to directed one by replacing each edge with two directed edges; similarly any di-

rected spanner can be transformed to be undirected by making every edge undirected and

then removing the parallel edges between all pairs of vertices.

8.2.1 Mender's Theorem and Its Consequences

She following lemma that follows easily from Mangers theorem (see [11, Chapter III,

Theorem 5]) will be used later.

• either (v, x) Ε Ε or there are s internally vertex-disjoint vu-paths in G, and

• either (x, u) E E or there are s internally vertex-disjoint vu-paths in G.

Then, there are s internally vertex-disjoint vu-paths in G. In particular, if one removes any

s - 1 vertices in V \ fv, u} from G, then the obtained graph still contains a vu-path. 	 ❑

One can easily extend the above lemma to obtain the following.

Then, there are s internally vertex-disjoint vu-paths in G. In particular, if one removes any

s — 1 vertices in V \ fv, u} from G, then the obtained graph still contains a vZ path.	 ❑

8.3 k-VerteD Fault-Tolerant Spanners of Low Degree and Low Cre

In this section, the following algorithm will be analyzed to show it constructs (k, t)-EFTS

of both low degree and low cost.

Claim 8.3.1 The k-Greedy Algorithm constructs a (k, t)-EFTS.

163

Proof: Let V' be any subset of V having size at most k. First prove that G' \ V' is a

spanners for V \ V'.

Remark 8.3.2 Notice that Claim 8.3.1 holds even if the edges are taken in an arbitrary

order (that is, not necessarily nondecreasing).

Furthermore, this claim holds not only for Euclidean graphs and the assumption

8.3.1 Analyzind the MaDimum Dedree

Shis section is devoted to prove that the (k, t)-EFTS constructed by the k-Greedy Algo-

rithm has maximum degree O (k) . She analysis is in a similar spirit as the analysis of the

greedy algorithm for normal spanners, see, e.g., [1, 15].

Following is an auxiliary claim that will be used in later analysis.

164

Proof: Let p be any t-spanner ux-path in G'. Let q be the ux-path obtained by taking

the edge (u, u) followed by p. Shen

Furthermore, if Ζ denotes the point on the segment ux such that L (uzu) = L (uzu) = π/2,

then

Next, observe that ΙνΖΙ = Ιuν^ • sin(X(Ζuu)) < Ιόν • sin and luzi = ΙυνΙ • cos(L(zuu)) >

ΙυνΙ • cos Θ. Sherefore, combining these two identities with (8.1) and (8.2), one obtains

165

edges in G' that are shorter than (u, v). Consider first any edge (u, z) Ε Ε υ such that

(v, z) Ε F'. By Claim 8.3.3, the uv-path consisting of the edges (u, z), (z, v) is of length

upper bounded by t • Iiivk

Next, consider any edge (u, z) Ε υ such that (v, z) F'. Shen, since the k-

Greedy Algorithm has not taken edge (u, z) to E', there must exist k + 1 internally vertex-

disjoint t-spariner uu-paths, and each edge on these paths is shorter than (v, z), which is

less than (u, v). Sherefore, by Claim 8.3.3, there exist k + 1 t-spariner uv-paths between

u and u such that all paths begin with edge (ό, z) and then are internally vertex-disjoint.

Summarizing, there are k + 1 vertices z1, zl, ... , zk+ l such that for each i, 1 < i <

k + 1, (i) (u, zi) Ε Ε and (ii) either (zip, u) Ε E' and (υτj + Ιziν < t • Ιόν , or G' contains

k + 1 t-spariner uv-paths between ό and v such that all paths begin with edge (u, zip)

and then are internally vertex-disjoint, and each edge on each path is shorter than (u, v).

Therefore, one can apply Lemma 8.2.1 to conclude that G' contains at least k+ 1 internally

vertex-disjoint t-spariner uv-paths, each path using only edges shorter than (u, v). Shis,

however, contradicts to the fact that (ό, u) is an edge of G', and hence, this completes the

proof of the claim. ❑

In [120], it was shown that there is a constant c > 0 such that for any point p Ε d

and any angle θ, 0 < 8 < π, there is always a collection C of 0((c/8) d-1) cones in IEBd

having the apex at point p such that (i) UcEC C = Rd , and (ii) each cone C Ε C has the

angular diameter at most θ. One can incorporate this upper bound for the number of cones

in C with Claims 8.3.1 and 8.3.4 to obtain the following lemma.

Lemma 8.3.5 Let V be any point set in a Euclidean space 1' d . Let k be any non-negative

integer and let t be any real number, t > 1. Then, the Greedy Algorithm returns a

(k, t) -EETS for V having maximum degree of 0 ((e/8) d-1 k), where cos θ - sin θ > t . In

particular, if the dimension d and t are constant, then the maximum degree is Oak). ❑

166

8.3.2 Upper Bound for the Cre of Spanners Generated by the k-Greedy Aldorithm

She most diflkult and challenging part of the proof of Sheorem 8.1.3 is the analysis of the

total cost of the spanner generated by the k-Greedy Algorithm. Ιn order to bound the cost

of that spanner, one needs to first introduce the concept of "leapfrog property" [29], which

yields a bound for the total cost of a set of edges in terms of the relative position of these

edges in Euclidean space.

For convenience, let e = (ΙΙ o , ν0) . Let G e be the graph obtained from G after

removing all vertices in Vet together with their incident edges and then by removing all

edges not shorter than (Ι1 , ν 0) . By the discussion above and by Mangers theorem, any

υ' ν0-path in C e must have total length greater than t • Ιυ0ν0 Ι. She goal is to show that

8.4 Efficient Construction of Fault Tolerant Spanners

In the previous section, it has been proved that the k-Greedy Algorithm generates (k, t)-

VFTSs with low maximum degree and low total cost. She disadvantage of this algorithm,

however, is that it is not known how to implement it eflkiently. In this section an alternative

169

approach to construct fault tolerant spanners will be discussed. For convenience, in this

section directed graphs and their spanners will be considered.

First the notion of gap property and near parallel edges is introduced, and then a

new suflkient property for graphs to be (k, t)-EFTSs is parented. Shen, one can use this

characterization to design a simple algorithm that generates good (k, t)-EFTSs in polyno-

mial time. Finally, algorithm is tuned to decrease the running time to U ((n k log s n +
n k2 log k)) .

8.4.1 Basic AuDiliary Properties

She following are two important notions on directed edges that will be heavily used in the

chapter.

Definition 8.4.1 (Near parallel edges) Two directed edges (p, q) and (x, u) are called α-

near parallel if after translating vector xi such that x coincides with p, that is, to the

vector p± with z = u — (x - p), the angle between vectors p^ and 51 is upper bounded by

Definition 8.4.2 (Gap property) Let ω > Ο. Let G = (V, F) be a directed Euclidean graph.

A set of edges Ρ C F satisfies w-gap property if for any two edges (νι , iii) , ("l, υl) Ε Ρ

the distance betlen the heads and the tails of (vi , iii) and (νl, u2) is greater than w times

the length of the shorter of the two edges, that is,

min{Ινι νl 1, Ιu ι ιιl^} > ω • minf1νιυι1,1νlυl1} .

She following result is shown in [15]. (The constant implicit in the 0-notation does

not depend on A.)

Our next claim states, informally, that if two edges in a directed Euclidean graph

are near parallel and close to each other, then one can form a spanner path between the

endpoints of the "longer" edge by concatenating the "shorter" edge and the spanner paths

between endpoints of the two edges. Shis claim is essentially proven in [6, Lemma 2].

8.4.2 Sufficient Conditions for Beind a k-VerteD Fault-Tolerant Spanner

In this section a new sufficient condition for a Euclidean graph to be a (k, t)-EFTS will

be presented. Later it will be shown how this condition can be used to obtain an eflkient

algorithm for constructing (k, t)-EFTS. She approach is motivated by a similar charac-

terization of spanners developed by Aryan and Smid in [6].

Notice that in Lemma 8.4.6, it is allowed that some of the ui and vi are equal to ii

or v, but otherwise, all other endpoints of the edges in f (Hui , ν1) , ... , (14+1, v'+l)} must be

pairwise distinct.

Proof: In order to prove that G is a (k, t) -HEFTS, one need to show that for any two

vertices u, v Ε V, either (u, u) Ε E or G contains k + 1 disjoint t-spanner uv-path, each

iiv-path having all edges shorter than uνΙo cos α. She proof is by induction on the rank of

the distances between the pairs of points in V.

If ΙυνΙ has the minimum distance among all pairs of vertices, then (u, v) must be an

edge of E, and hence the claim holds for u, v. Next, one can proceed by induction. Consider

a pair of vertices ii, v Ε V. By induction, for all ordered pairs of vertices x, y E V with

Ixy Ι < ΊυνΙ , either (x, y) Ε E or G contains k + 1 disjoint t-spanner by-paths, each having

all edges shorter than Ιxυ Ιo cos α. She goal is to prove that either (ii, v) Ε E or G contains

k + 1 disjoint t-spanner uv-paths in G, each having all edges shorter than IuvIo cos α.

One only has to consider the case when (u, v) ςΙ E. Shen, by the lemma's assump-

(i) for each 1 < i < k + 1, edge (Hui, νι) is shorter than (υν1/ cos α,

(ii) all Hui and νι that are neither u nor v are pairwise distinct,

(iii) for each 1 < i < k + 1, edges (ut , vi) and (u, v) are x-near parallel, and

172

(iv) for each 1 < i < k + 1, minf uvtk VtV }< ω•ιι1ν

Pick any edge (ut , vi). Assume without loss of generality that ιuu i = minfIuuj j, 11)^v4}.

Since, (υ1 , Ai) and (u, u) are α-near parallel by (iii), !iiiVίΙ < ίυν1/ cos a by (i), and

Ιυυι < ω • ΊυίνίΙ by (iv), Claim 8.4.4 (i) implies that νiν < IIuvl. Hence, by induc-

tion, either (vi, v) Ε E or there are k + 1 disjoint t-spanner A iν-paths in G, all using only

edges shorter than VV cos ix. Similarly, since ουί < VV < ΙυνΙ, either (u, Ai) Ε E or

G contains k+ 1 disjoint t-spanner uuk-paths that use only edges shorter than Iuvtl/ cos α.

Furthermore, by Claim 8.4.4 (ii), each uv-path consisting of a t-spanner uuk-paths (or edge

(u, u1)), edge (1k, Vi), and a t-spanner A iν-path (or edge (vi, v)) is a t-spanner uv-path.

So far it has been proven that there are 2+1 edges (u1, ν1) , (υl, Vl),... , (k+1 , Vj'±i)

such that for each i, 1 < i < k + 1, (i) either (u, Hui) Ε E or G contains k + 1 dis-

joint t-spanner viv-paths that use only edges shorter than Ιυ1kΙ/ cos a, and (ii) either

(Vi, v) Ε E or there are k + 1 disjoint t-spanner uuk-paths in G that use only edges short-

er than IuvIl/ cos a. Now, the claim follows directly from the Mender's theorem (for more

details, see Lemma 8.2.2). ❑

Essentially identical arguments can be used to prove the following characterization

for edge fault-tolerant spanners.

Lemma 8.4.7 Let t, α, ω be real numbers such that 0 < α < π/4, 0 < ω < 2 (cos α -

sin α — t). Let G = (V, E) be a Euclidean graph. Suppose that for any two vertices u and

v of V, either (u, v) Ε E or there are k + 1 edges f(Jul , Al), ... , (k+1 , vk+l)} C E such

that

• for 1 <i < 2+1, Iuiνil < ΙυνΙ/ cos α,

173

Figure 8.2 She k-Gap-Greedy Algorithm

She characterization of (k, t)-EFTSs in Lemma 8.4.6 almost immediately implies

a simple polynomial-time algorithm for constructing such spanners, which is called k-Gap-

Greedy Algorithm and describe in a form of a meta-algorithm in Figure 8.2.

She following central lemma describes main properties of the k-Gap-Greedy Ago-

174

Proof: First it will be prove that G' is a (k, t)-EFTS by showing that for any ordered

pair of vertices u, v, one of the two conditions of Lemma 8.4.6 is satisfied. If (u, v) Ε F',

then the first condition is obviously true. Otherwise, (u, v) E' and consider the iteration

of the algorithm when (u, v) is chosen. She only reason that (u, v) is not added to F' is

that jF*I > k + 1. But this implies that the second condition of Lemma 8.4.6 is satisfied for

(u, u). Sherefore, G' is a (k, t)-EFTS by Lemma 8.4.6.

Next, it will be prove that the maximum out-degree and the maximum in-degree of

each vertex is 0(k). Let u be any vertex. First prove the out-degree of u is 0(k). Let

Cu be any cone in Rd with the apex at u and the angular diameter at most α. Let Εcυ be

the set of edges in G' beginning at u that are contained in the cone C u . It will be proved

that Ι Ε Ι < k + 1, which immediately implies that the out-degree of u is 0(k). Now

analyze the behavior of the algorithm at the moment when ΙΕ Ι = k+ 1 and the algorithm

considers a new edge (u, v) with v Ε C Σ . Observe that in that case one will have Ecυ C Ε*,
and hence, E* will be of size at least k + 1. Sherefore, the algorithm will not add the edge

(u, v) to the spanner. This implies that E'cu < k + 1, and hence, the out-degree of u is

0(k). One can use essentially identical arguments to prove the in-degree of u is 0(k).

(Similar arguments show that u is the head/tail of at most k + 1 pairwise 'x-near parallel

edges.)

Finally, one needs to prove that G' has small cost. One can proceed similarly as in

the proof of Lemma 8.3.8 and first partition E' into disjoint sets Ε, Ε... such that each

E is a maximal set of edges which are a.-near parallel. By the discussion in the proof of

Lemma 8.3.8, there are 0((e/c) d-1) such disjoint sets Ε , Ε Let us fix one set Ε

and divide the edges in Ε into a minimal number of groups such that the edges in the same

group satisfy the w-gap property. It will be proved that 0(2 2) groups are suflkient. It is

enough to show that for any edge e E Ε there are at most 0(22) edges e' E Fib shorter

than e such that fe, e'} does not satisfy the w-gap property.

175

Fix an edge (u, v) Ε Ε . Let V(uv) = {A Ε V:](A, q) Ε Ε ,ΙAgΙ < uνΙ,0 <

ΙupΙ < w • pq} and let Ε) be the set of edges in Ε that (i) begin at vertices in Vίu ,v) ,

and (ii) are shorter than Div . Note that since Ε (u „) ς Ε , all edges in Ε ν) are pairwise

α-near parallel. One can show that ΙE (u,ν) Ι < 2 (k + s l by contradiction. Suppose that

> 2 (2 + s 2 and consider the iteration in which the edge (u,v) is picked by the

algorithm. Let E* be the set taken by the k-Gap-Greedy Algorithm when the edge (ii » v)

is considered. It will be proved that Ε > k + 1, which contradicts to the assumption

that (u , v) Ε F'. Let Ε be the set of all edges in F' shorter than (u, u) such that for every

edge e Ε E, (i) e is a-near parallel to (u, v) and (ii) fe, (u , v)} does not satisfy the w-

gap property. Note that because the algorithm picks edges in nondecreasing order, the

condition 3 of the algorithm implies that none of the edges in E* satisfies w-gap property

with (u, v). Shus, E* can be defined as the sum of certain maximal matching in Σ and the

set of all edges in Σ that either begin at u or end at v. Sherefore, to prove that ΙF* > k + 1

it is suflkient to show that every maximal matching in Σ contains at least k + 1 edges.

Furthermore, because of the well known relation between the cardinality of the maximum

matching and the minimum cardinality of a maximal matching, it is enough to show that the

maximum matching in Σ contains at least 2 (k + s edges. One can prove this property by

considering the edges in (u V) . First observe that by the definition (u „) ς Σ . Sherefore,

one only must show that Ε (u ν) has a matching of size at least 2 (k + s . Note that there

are at most k + 1 edges in 1Ξ starting at each vertex as proved above. Since it is assumed

that ΙEίu,ν) > 2 (2 + s2 , one can conclude that set tau ν) must contain at least 2 (2 + s

disjoint edges. Sherefore, there is a matching of size at least 2 (k + s in Σ. But this leads

to a contradiction, and hence one proved that ^(u V) < 2 (k + sl .

Symmetrically, one can define (u ν) , and prove that E(u ν) < 2 (k+ s l . Sherefore,

ΙE(u,ν) U E(u„) < 4 (2 + 1) 2 . Hence one can conclude that one needs at most 4 (2 + s l

groups of edges from Fib such that the edges in each group satisfy w-gap property. Thus,

it is proved that one can partition the edges in E' into O((e/α) d—1 22) groups such that the

176

edges in each group satisfy w-gap property. To conclude the proof one can apply Claim

8.4.3 to obtain an upper bound for the total cost of E' to be 0((e/ x) d— ' 22 ώ log n) times

the cost of minimum spanning tree of V. ❑

8.4.3 Efficient Construction of k Fault-Tolerant Spanner

It is easy to implement the k-Gap-Greedy Algorithm in polynomial time, however, direct

implementations lead to the running time of Ω (n l) . Shis section discusses how that algo-

rithm can be modified to achieve the running time of 0 (n k log s n + n kl log 2) while still

returning a spanner having the parameters promised in Lemma 8.4.8. She new approach

is similar to the one developed by Aryan and Smid [6] to construct spanners with bounded

degree and low cost.

The main idea behind the new approach is not to consider all the O (nl) edges but

to have an eflkient procedure that will "forbid" certain edges without considering them

explicitly during the run of the algorithm. Since every vertex is of degree 0(k), the goal

is to ensure that only 0(k) edges incident to any vertex are considered by the algorithm.

She rules of inserting an edge in the k-Gap-Greedy Algorithm will be relaxed in order to

obtain a more eflkient implementation. On one hand, the goal is to maintain the properties

of the output spanner required by Lemma 8.4.6 and on the other hand, the aim is to output

a spanner having properties described in Lemma 8.4.8. Below the main idea is described

behind that relaxation, and the algorithm itself is described in Section 8.4.3.

Main idea behind the modified aldorithm A collection of cones of angular diameter α

(see, Section 8.3.1) will be used to test whether two edges are α-near parallel to each other.

Shat is, it is assume that there is a collection C of cones with apexes at the origin and the

angular diameter α, so that the cones in C cover Rd . Shen, an edge (u, v) is said to be in

a cone C if the vector u - u Ε C. Using this notion, each time a pair of points u, v with

(u, v) Ε C are consider, one only needs to look at those edges (x, y) Ε E' that are in C.

177

Since if (u, v) and (x, u) are in the same cone, then they are α-near parallel to each other,

this notion allows one to relax testing of α-near parallel edges.

Once the collection C of cones is fixed, the cones from C will be considered sepal-

irately. She spanner is built by defining the edge set E' which will be the union of the edge 	1,

sets constructed for each cone separately. Let Ε denote all those edges of E' inside the

cone C Ε C.

a cone is that it can be efficiently maintained by a dynamic algorithm (see also [6, 103]).

Furthermore, it is easy to show that if disc (x, y) < disc (u, v), then ii < υνί / cos Ft.

Sherefore, by Claim 8.4.4 and Lemma 8.4.6, the algorithm remains correct (in the sense

that it satisfies the properties from Lemma 8.4.6) even if edge (x, y) is considered before

edge (u, u).

Summarizing, the algorithm is going to consider the edges inside each cone in none-

degreasing order of their disc length.

178

Let (x, y) be an edge in a cone C Ε C that is to be taken by the algorithm. Observe

that if there are already at least k + 1 edges in C with the head at x then the edge (x, y) will

not be taken by the algorithm. Sherefore, whenever a vertex x already has k + 1 outgoing

edges in C, then no further edge starting at x in C will be considered. Symmetrically, one

only needs to consider at most k + 1 incoming edges for any point u.

She other reason for rejecting edge (x, u) is that there are many disjoint edges in

C which are shorter than (x, u) with respect to disc length and are very close to either x

or u . Let x Ε V be any input point. Two special data structures will be used to maintain

a maximal set of disjoint edges in C that have starting or ending points close to x, respec-

tively. Shese two data structures will be modified not when an edge in C incident to x is

considered, but instead, they will be updated each time an edge close to x is inserted in-

to Ε. To be more precise, at each moment of the algorithm, a set Cc (x) is maintained for

each x Ε V which contains a set of disjoint edges in £^ such that for any (υ,ν) Ε Fc~(x),

179

edges in Ε and V6 containing points that still can be the tails of new edges in Ε . Each

time the size of certain Fc (x) is greater than or equal to k + 1, x is deleted from V; no fur-

ther edges in C that begin at x will be considered, c (x) will not be updated anymore, nor

will x be considered in any further sets N (u V) . Similarly, if He (x) > k + 1, x is deleted

from V6, no further edges in C ending at x will be considered, He (x) will not be updated

and x will not be considered in any further sets N fu,v) • In this way, since both c (x) and

Cc (x) have a size between 0 and k + 1, the total number of operations for updating the sets

c (x) and He (x) in the entire algorithm (for a given cone C) will be 0 (k n) .

Observe that once a vertex x has been reported 2 (k + 1) l times in the sets N (u,ν),

head of at most k + 1 edges in C, there must be 2 (k + s disjoint edges among all these

edges. Sherefore, in this case, the size of c (x) must be greater than or equal to k + 1 (see

Lemma 8.4.8 for a more detailed discussion on similar arguments). Hence, at this moment

x will be deleted and will not be reported in Ν D u ν) for any u Ε V any more. For the same

180

Improved k-Gap-Greedy Aldorithm In the previous subsection the main ideas behind

the modifications of the k-Gap-Greedy Algorithm are presented. Shese ideas allow one to

design a new algorithm that finds good fault-tolerant spanners eflkiently. A more formal

description of the algorithm is presented below, on page 185. A formal proof of its cor-

rectness will be given first and then an eflkient implementation of the algorithm will be

discussed.

Properties of the Improved k-Gap-Greedy Aldorithm. Shis section is devoted to a

formal proof of the following lemma.

Proof: One needs to prove that the output of Improved k-Gap-Greedy Algorithm has

the same properties as the output of k-Gap-Greedy Algorithm after some conditions are

relaxed. She proof is similar to that of Lemma 8.4.8.

i. (u, v) is considered explicitly in the "while" loop but is not inserted to Ε .

In this case, disc (u, v) is minimum at the beginning of certain iteration. Since (u, v)

is not added to Ε , there must exist either k + 1 edges with heads at u or k + 1 edges

with tails at u which are already inserted to Ε. Shese edges have length at most

181

uνΙ/ cos a, are α-near parallel to (u, v), and they have one common endpoint with

(u, v) . Sherefore, the second condition of Lemma 8.4.6 is satisfied.

ii. (u, v) is deleted when some other pair (x, u) is picked and added to Ε in the "while"

To summarize, it has been proved for each pair (x, ‚j), either (x, y) is an edge in G'

 1 ννill v' ^^v vu

is 0(k). She proof is basically the same as the proof of Lemma 8.4.8. Let u be any vertex.

According to the Improved k-Gap-Greedy Algorithm it is easy to see at most k + 1 edges

beginning at u can be added to the Ε for any given cone C Ε C. Sherefore the out-degree

of u in G' is 0(k). Similarly, one can show that the in-degree is O(k).

Finally, one needs to prove that G' has small cost. Fix a cone C and divide the

P^σPC in F inn a minimal nιnmher of στnnnc cnrh that the 	 in the came grnυη satisfy

182

are "shorter" than e in terms of the disc length and such that fe, e'} does not satisfy the

-gap property.

Fix an edge (u, v) Ε Ε . Let Ε V) = f(x, u) Ε Ε : disc (x, u) < disc (u, v) and

ΙuxΙ < • Ιxu l} and Ε fu,V) = f(x, y) Ε Ε : disc (x, y) < disc (u, v) and lay Ι < xy }.

Observe that if an edge (x, u) is "shorter" than (u, v) with respect to the disc length and it

fails to satisfy the 5-gap property with (u, v), then (x, y) Ε Εru V) U Είν V) . Sherefore, to

prove the claim it is sufficient to show that Ι^^u V) U ^ίu V) Ι = 0 (kl).

First it will be proved that ΙΕΙu V) = O(kl). Let 8(Σ V) = {(x, y) Ε Ε : distc (x, u) <

distc (υ, ν) and ΙυχΙφ < % • Cy }. Note that since lux φ < υ, Ε) C ευ ν)ν) . Αη the foal-

lowing it will be shown that lείΣ V) = 0 (kl) which directly implies that Ε
 (u V)

 ! = O(kl).

Shere are two observations. First because all edges in ε(u,V) are "shorter" than (u, u)

with respect to disc, all these edges are picked and inserted to Ε by the algorithm before

(u, v) . Secondly, each time after one of these edges (x, y) is inserted to Ε , the algorithm

inserts (x, y) to c (u) if (x, u) is disjoint with edges already in c (Di). In other words, at

the end of each iteration of the Improved k-Gap-Greedy Algorithm c (u) keeps a maximal

matching of the edges in είν V) that have been inserted to Ε so far.

Now one can prove by contradiction that lείú V) <2 (k+sl . Suppose that lείu,V) >

2 (k+ s 2 . It has already been shown that each vertex has out-degree (in-degree) in Ε L of at

most k+ 1. Sherefore, the maximum matching of ε ίν V) must contain at least 2 (k+ s edges

and thus any maximal matching of Ε V) must have at least (k + s edges. Since Cm (u) is a

maximal matching of είν V) , c (u)Ι > k+1. Shen, there must exist an edge (x, y) Ε ε(υ,V)

such that during the iteration when (x, y) is inserted to Ε , (x, y) is also inserted to c (u),

and Fc (u) Ι becomes k + 1. However, the Improved k-Gap-Greedy Algorithm is designed

such that in that moment u must have been deleted from V and all edges with head at u

including (u, v) are also deleted from EC and will not be inserted to Ε . Shis contradicts

ευ Ι < Ιε υ̂,ν) Ι <2(k±s l .
 -

to the fact that (u, v) E Ε . Shus, it is proved that

Details of the implementation of the Improved k-Gap-Greedy Aldorithm. She de-

scription of the Improved k-Gap-Greedy Algorithm is on a high level and now it will be

disscussed how one can implement that algorithm efficiently. In order to obtain an eflkient

implementations one must provide eflkient data structures that allow one to query for (i) an

edge (u, v) Ε Cc with minimum disc, (ii) the number of edges in Ε beginning or ending

at u, (iii) reporting all points in N Dub V) and N ^u ν^, and (iv) for verifying if an edge (u, v) is

disjoint to all edges in CAC) or He (x) .

It is easy to see that one can maintain the data structure (ii) reporting the number

of edges in Ε beginning or ending at a given vertex with constant query time and update

time. Similarly, one can easily maintain the data structure (iv) verifying if an edge (u, v)

is disjoint to all edges in Fc(x) or Hc(x) with 0(logd) query time and update time. (The

bound for the query time follows immediately from the fact that c (x) or HC (x) contains

0(k) edges and one can use a balanced binary search tree to store the endpoints of these

edges.)

Aryan and Smid [6] gave an eflkient data structure supporting queries (i) for an edge

in Ec with minimum disc. As it is demonstrated (and discussed in details) in [6], the total

running time needed to perform all these operations is in our case 0 (n k log s 1t) . (This

bound follows from the fact that one can use query (i) 0(k) times, and as shown in [6],

efficient data structure can be built in time 0(ii log s 11) that has constant query time and

0(logd 11) amortized update time per edge.)

184

To eflkiently report all points in N (u V) and Ν Ευ ν) one can use dynamic data struc-

ture for orthogonal range queries (see [88]). She algorithm only deletes points and therefore

the amortized deletion time is 0(logd-l n) and the query time is 0(logd_l n) time plus the

number of reported points [88]. Since each point is deleted at most once, the total dele-

tion time is 0(n log d-Ι n). Α query operations is performed on the dynamic data structure

each time after an edge is inserted, so the total time is 0(1t2 log s=l n) for 0(nk) edges.

Each vertex is reported at most 0 (22) times, when reported, one needs to verify whether

c (x) or He (x) can be enhanced by adding an edge, the verification and update takes time

0 (log 2), thus the total time for reporting, verification, and update is 0 (n 22 log k) .

In summary, one can conclude the discussion in this section with the following

lemma.

Lemma 8.4.10 Let V be a set of n points in Rd. Let α, ω be real numbers such that

0 < α < π/4 and 0 < w < z (cos a — sin a). Let t = 1/(cos x - sin a — 2 ω). There is a

constant c such that the Improved k-Gap-Greedy Algorithm can be implemented to run in

time 0((e/α) d-l (n k logs n + n 22 log k)). 	 ❑

One can conclude the discussion in this section with the following main theorem

that follows immediately from Lemmas 8.4.9 and 8.4.10.

Theorem 8.4.11 Let α, w be real numbers such that 0 < a < π/4, 0 < ω < 2 (cos cc -

sin'x). Let V be a set of n points in Rd. Let t = 1 /(cos a - sin a — 2w). There is

a constant c such that in 0 ((e/a) d-l (n k logs n + n 22 log 2)) time the Improved k-

Gap-Greedy Algorithm computes a directed (k, t)-EFTS having the maximum degree of

0 ((e/α) d- l k) and the total cost of 0 ((c/a) dal 22 Td/w) log n MST). 	 ❑

To conclude this section, notice that Sheorem 8.4.11 implies directly Sheorem 8.1.4.

185

CHAPTER 9

CONCLUSIONS

Shis dissertation studied combinatorial optimizations problems arising from two areas:

scheduling and network design. She main focus was to design eflkient approximation

algorithms for NP-hard problems.

9.1 Schedulind Problems

In the scheduling area, problems in master-slave model have been considered. She master-

slave model finds many applications in parallel computer scheduling and industrial settings

such as semiconductor testing, machine scheduling, transportation maintenance and paral-

lel computing.

She complexity issues are considered first. It is shown that many makespan and

total completion time problems with constraints such as canonical, order preserving and

no-wait-in, are NP-hard in the strong sense.

Motivated by the computational complexity, some special cases of the problem are

considered. Several eflkient algorithms are designed to minimize the total completion time

and makespan. Shese algorithms are proven to have very good approximation ratio. Next

more general cases are discussed. A job can have an arbitrary release time and arbitrary

processing time. Shere can be a single master, multi-masters, or distinct preprocessor and

preprocessor. Constant approximation algorithms are designed for the total completion

time problem. It is shown that these algorithms give good approximation for makespan at

the same time.

Shere are several questions that have not been answered. In this dissertation, it is

assumed that there are no precedence constraints among the jobs. Shese assumption may

not hold in some applications. It is worthwhile to develop approximation algorithms which

186

187

work well even with precedence constraints. Only the makespan and total completion time

are considered so far. Other objectives such as maximum lateness, number of tardy jobs

and total tardiness, have not been studied. In view of the NP-hardness of makespan and

total completion time, minimizing these objectives must also be NP-hard. In that case, it

will be desirable to have good approximation algorithms.

9.2 Network Desidn Problems

She survivable network design problem is the problem of designing graphs that resist edge

and/or vertex removal. Shis is a fundamental problem in algorithmic graph theory with

numerous applications in computer science and operations research. It is well-known that

all nontrivial variants of the survivable network design problem are NP-hard and therefore

the main research interest lies in the design of eflkient approximation algorithms.

First the geometric version of the survivable network design problem is considered.

A PTASs is developed for the f0, k-connectivity problem in which each vertex has a

connectivity requirement at most 2. Shen it is shown that the techniques can be generalized

to other Sp metrics and to the f0, 1,... ,B}-edge-connectivity problems for multigraphs.

PTAs or Quasi-PTASs are designed for the minimum 2-connectivity problem and some

of its variations in weighted or weighted planar graphs.

Shen the problem of eflkient construction of fault-tolerant spanners are considered.

A greedy algorithm is presented which finds the fault-tolerant spanners with both maximum

degree and total cost asymptotically optimal. An eflkient algorithm is then developed to

find a fault-tolerant spanners with asymptotically optimal bound for the maximum degree

and almost optimal bound for the total cost.

Two important components used in all the approximation schemes are hierarchical

decomposition and dynamic programming. Shrough the decomposition, a large graph is

decomposed into smaller ones which have small interface with the rest of the graph. In

the Euclidean space, random shifted dissection is used to decompose a set of points into

188

regions. She interface between two regions contains only constant number of portals. In

planar graphs, a modified separator theorem is developed and applied to decompose the

graphs into small pieces. Each small piece has at most logarithmic number of portals. She

small interface between subdraph allows one to solve the problem by dynamic program-

ming in polynomial time.

It would be great if one can extend the above techniques to other related problems.

Following are some possible problems.

k-connectivity problem in doublind metrics. She doubling dimension of a metric is the

smallest k such that any ball of radius 2r can be covered using 2 k balls of radius r. Shis

concept for abstract metrics has been proposed as a natural analog to the dimension of a

Euclidean space. Doubling metric appears in several practical applications such as peer-to-

peer networks and data analysis. In [114], Taiwar showed that for low dimensional metrics

there exist quasi-polynomial time approximation schemes for ASP and other optimization

problems.

She geometric version of the k-connectivity problem has been considered and poly-

nomial approximation schemes have been designed k-connectivity problem in geometric

graphs by Czumaj and Lingers in [26]. Sheir algorithm is based on the framework of Aurora

[3]. Like the approach used by Rao and Smith [101] for the ASP problem, their algorithm

depends on spanners and some other nontrivial techniques.

For the problem in the low dimension doubling metric, there is no known results

about construction of light and sparse spanners. Sherefore one can not use the approach as

in [26]. However, it is still possible to achieve a Quasi-PTAS by using some novel ideas

and those from [114], [27] [26].

Minimum strondly connected subgraph in planar draphs. For the general unlighted

graphs, constant approximation algorithms have been given by Schuller et al. in [71, 72].

189

She existing separator theorems only work for undirected graphs. A ETAS for the problem

in planar graphs will heavily depend on light, directed cycle separators.

Forbidden minor 2-ECSS (or 2-ECSS). Shere are two diflkulties here: first, the usual

separator theorems do not produce cycles (just trees). Also the appropriate generalization

of Lemma 6.2.4 may require a careful application of the Robertson-Seymour theory, which

appears difficult. For the special case of bounded-genus graphs, both of these issues look

more tractable.

For the fault tolerant spanners, an obvious open question that is left is whether one

can design an efficient algorithm that outputs fault-tolerant spanners having properties from

Sheorem 8.1.3. It is believed that it should be possible to design an 0 (Lk pollywog L) -time

algorithm for that problem.

In all existing analysis of fault-tolerant spanners, the cost of fault-tolerant spanners

is compared with that of MST. Since a fault-tolerant spanner must be (k+ s connected, a

natural question is how to compare its cost with the cost of the minimum (2 + s connected

spanning subgraphs. One can extend the example in Figure 9.1 to show that the cost ratio

between the optimal (1,1 + t) fault-tolerant spanner and the minimum (2 + s connected

spanning subgraphs can be arbitrarily large in planar graphs. It is believed that the cost

ratio for the geometric graphs should be bounded by constant. It is desirable if one could

design eflkient algorithm to construct such light spanners.

Shere are many algorithmic applications of spanners, perhaps the most appealing

being the recent application in an 0(L log 1t)-time approximation algorithm for the Eu-

clidean ASAP [10 i [101]. On the other hand, not many applications of fault-tolerant spanners are

known. Actually, even in the most natural application to the connectivity problem, the

fastest approximation algorithms do not use fault-tolerant spanners [25, 26, 27]. Sherefore,

investigating the relationship between the connectivity problems in Euclidean graphs and

the notion of fault-tolerant spanners would be an interesting topic.

It is tempting (and very interesting) to try to extend the results for geometric fault

tolerant spanners to non-Euclidean graphs. One could extend Claim 8.3.1 to hold for ar-

bitrary graphs, that is to show that the graph obtained in the k-Greedy Algorithm is a

(k, t)-EFTS for arbitrary (that is, also for non-Euclidean) graphs.

Furthermore, since the k-Greedy Algorithm is an extension of the classical greedy

that has been used extensively in the construction t-spanner, see, e.g., [1], it is plausible

to ask whether it produces good quality spanners for arbitrary graphs or for planar graphs.

For example, it follows from [ii that if the k-Greedy Algorithm with k = 0 is run on a

planar graph, then it produces a spanners whose total cost is upper bounded by 0(1 /(t —

s) times the minimum spanning tree cost. However, this result cannot be generalized to

larger 2. First there are graphs that does not have light spanners at all, see Figure 9.1 for an

example. Furthermore, even if there is one, the greedy algorithm can not always produce

good spanners, see Figure 9.2.

191

Due to its potential applications in various situations, ad hoc wireless network has

received signilkant attention over the last few years for its various applications. In an ad

hoc network the links between neighboring nodes get up and down from time to time be-

cause of mobility of the nodes and the communication capabilities of each node is usually

constrained by its limited battery power. This makes fault tolerance of the network one of

the fundamental and critical issues. Because the network is distributed, the global algo-

rithms for survivable network design and fault-tolerant spanner in this dissertation do not

work any more. Li et al. [84] studied how to set the transmission radius to achieve the

k-connectivity with certain probability for a network of n devices; they also proposed a

construction of fault-tolerant spanners. Although the number of links is bounded, the to-

tal cost (transmission polr) may be unbounded. A natural question is how to assign the

transmission power for each node to minimize the total transmission polr assignment.

REFERENCES

[1] I. Althίfer, G. Das, D. Dobkin, D. Joseph, and J. Snares. On sparse spanners of weighted
graphs. Discrete & Computational Geometry, vol. 9, pp. 81 - 100, 1993.

[2] M. Dell'Amico. Shop problems with two machine and time lags. Operations Research,
44, 5, 777-787, 1996.

[3] S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. Journal of the ACM, 45(5):753-782, 1998.

[4] S. Arora, M. Grigni, D. KBarger, P. Sclein, and A. Woloszyn. A polynomial time approxi-
mation scheme for weighted planar graph ASP. Proceedings of the of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 33 -41, 1998.

[5] S. Aryan, G. Das, D. M. Mount, J. S. Sallow, and M. Smid. Euclidean spanners: Short,
thin, and lanky. In Proceedings of the 27th Annual ACM Symposium on Theory of
Computing, pp. 489-498, Las Vegas, NV, May 29 - June 1, 1995. ACM Press, New
York, NY.

[6] S. Arya and M. Smid. Eflkient construction of a bounded-degree spanner with low weight.
Algorithmic, 17(1):33-54, January 1997.

[7] Cc.R. Baker. Introduction to Sequencing and Scheduling. John Wiley & Sons, New York,
1974.

[8] M. de Berg, M. van Screveldd, M. Overmans, and O. Schwarzkopf. Computational Geometry
- Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[9] A. Berger. Czumaj, M. Grigni, and H. Chao. Approximate minimum recollected sub-
graphs in lighted planar graphs. Manuscript, 2004.

[10] A. Berger, M. Grigni, and H. Zhao. A lll-connected separator for planar graphs.
Manuscript, 2004.

[11] M. Bollobas. Modern Graph Theory. Springer-Verlag, Berlin, 1998.

[12] ROE. Butte and V.. Shen. A scheduling model for computer systems with two classes
of processors. Sagamore Computer Conference on Parallel Processing, pp. 130- 138,
1973.

[13] P. B. Callahan and S. R. Scosarajuu. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and 1t-body potential fields. Journal of the ACM,
42(1):67-90, January 1995.

[14] S. Chakrabarti, C. Phillips, A. Schulz, DAB. Shmoys, C. Stein and J. Wein. Improved
scheduling algorithms for minsum criteria. In Proceedings of the 23rd International
Colloquium on Automata, Languages and Programming, pp. 646 -657, 1996

192

193

[15] B. Chandra, G. Dabs, G. Narasimhan, and J. Snares. New sparseness results on graph span-
ners. In Proc. of the 8th Annual ACM Symposium on Computational Geometry, pp.
19re201, Berlin, Germany, June 10-12, 1992. ACM Press, New York, NY.

[16] C. Chekuri, R. Motwani, B. Natarajan and C. Stein. Approximation techniques for average
completion time scheduling. SIAM Journal on Computing, 31(1), pp. 146-166, 2001.

[17] J. Cheriyan, A. Seb6, and C. Szigeti. An improved approximation algorithm for minimum
size k-edge connected spanning subgraphs. Proceedings of the of the 6th International
Integer Programming and Combinatorial Optimization Conference, LNCS, 1412:126-
136, 1998.

[18] J. Cheriyan, S. Impala, and A. Etta.. Approximation algorithms for minimum-cost k-
vertex connected subgraphs. Proceedings of the of the 34th ACM Symposium on
Theory of Computing, pp. 306-312, 2002.

[19] J. Cheriyan, S. Impala, and A. Etta. An approximation algorithm for the minimum-size
vertex connected subgraphs. SIAM Journal on Computing, 32(4):1050-1055, 2003.

[20] P. L. Chew. Shere is a planar graph as good as the complete graph. In Proc. of the 2nd
Annual ACM Symposium on Computational Geometry, pp. 169-177, 1986.

[21] S. Copra and C.-Y. Tsai. A branch-and-cut approach for minimum cost multilevel net-
work design. Discrete Mathematics, 242:65-92, 2002.

[22] E. G. Coffman, Jr.(ed.) Computer and Job-Shop Scheduling Theory. John Wiley and Sons,
New York, 1976.

[23] B. Casaba, M. Scarpinskii, and P. Scrystaa. Approximation of dense sparse instances of min-
imum reconnectivity, ASP and path problems. Proc. of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 74-83, 2002.

[24] A. Czumaj, M. Grigni, P. Sissokho, and H. Chao. Approximation schemes for minimum
reedge-connected and reconnected subgraphs in planar graphs. In Proceedings of
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 489-498, New
Orleans, LA, January 11 - 13, 2004. SIAM, Philadelphia, PA.

[25] A. Czumaj and A. Lingas. On approximability of the minimum cost spanning subgraphs
problem. Proceedings of the of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 281-290, 1999.

[26] A. Czumaj and A. Lingas. Fast approximation schemes for Euclidean multi-connectivity
problems. In Proceedings of the of the 27th Annual International Colloquium on
Automata, Languages and Programming, pp. 856-868, 2000.

[27] A. Czumaj, A. Lingas, and H. Chao. Polynomial-time approximation schemes for the
Euclidean survivable network design problem. Proceedings of the of the 29th Annual
International Colloquium on Automata, Languages and Programming, LNCS, 2380,
pp. 973-984, 2002.

194

[28] A. Czumaj and H. Chaco. Fault-tolerant geometric spanners. In Proceedings of the 19th
Annual ACM Symposium on Computational Geometry, pp. 1-10, San Diego, CA, June
8-10, 2003. ACM Press, New York, NY.

[29] G. Das, P. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-dimensional
Euclidean space. In Proceedings of the of the 9th Annual ACM Symposium on Com-
putational Geometry, pp. 53-62, San Diego, CA, May 19-21, 1993. ACM Press, New
York, NY.

[30] G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean spanners.
International Journal of Computational Geometry and Applications, 7(4):293-315,
1997.

[31] G. Das, G. Narasimhan, and J. Salon.. A new way to weigh malnourished Euclidean
graphs. In Proc. of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 215-222, 1995.

[32] R. Diestel. Graph Theory. Springer-Verlag, New York, 2000.

[33] J. Du and JAY T. Leung. Minimizing mean flow time in two-machine open shops and flow
shops. Journal of Algorithms, 14:24-44, 1993.

[34] D. Epstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors, Handbook
of Computational Geometry, chapter 9, pp. 425-461. Elsevier Science B.., 1997.

[35] C. G. Fernandes. A better approximation ratio for the minimum size k-edge-connected
spanning subgraph problem. Journal of Algorithms, 28:105-124, 1988.

[36] L. Fleischer. A approximation for minimum cost f0, 1, 2} vertex connectivity. In Pro-
ceedings of the 8th International Integer Programming and Combinatorial Optimiza-
tion Conference, volume 2081 of Lecture Notes in Computer Science, pp. 115-129,
Utrecht, The Netherlands, June 13-15, 2001. Springer-Verlag, Berlin.

[37] L. Fleischer, Sc. Jain, and D. P. Williamson. An iterative rounding approximation algo-
rithm for the element connectivity problem. In Proceedings of the 42nd IEEE Sym-
posium on Foundations of Computer Science, pp. 339-347, Las Vegas, NV, October
14-17, 2001. IEEE Computer Society Press, Los Alamitos, CA.

[38] G. N. Frederickson and J. JέJά. On the relationship betlen the biconnectivity augmen-
tation and traveling salesman problem. Theoretical Computer Science, 19(2), pp.
189-201, 1982.

[39] H. N. Gabon. An ear decomposition approach to approximating the smallest 3-edge con-
nected spanning subgraph of a multigraph. Annual ACM-SIAM Symposium on Dis-
crete Algorithms 2002, pp. 84-93.

[40] H. N. Gabow. Better performance bounds for finding the smallest kedge connected span-
ning subgraph of a multigraph. Annual ACM-SIAM Symposium on Discrete Algo-
rithms 2003, pp. 460-469.

195

[41] H. N. Gabon, Μ. X. Goemans, and D. P. Williamson. An eflkient approximation algorithm
for the survivable network design problem. Mathematical Programming, 82(1-2):13-
40, 1998.

[42] J. Gab, L. J. Guides, J. Hershburger, L. Change, and A. Chu. Geometric spanner for routing
in mobile networks. In Proceedings of the 2nd ACM Symposium on Mobile Ad Hoc
Networking & Computing (MobiHoc 2001), pp. 45-55, Long Beach, CA, October 4-5,
2001.

[43] M.. Carey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, New York, 1979.

[44] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathe-
matics, 16(1):1-29, 1968.

[45] MAX. Goemans. Improved approximation algorithms for scheduling with release dates. In
Proceedings of the Eighth ACM-SIAM Symposium on Discrete Algorithms, pp. 591-
598, 1997.

[46] T.F. Gonzalez and S. Sahni. Flowshop and jobshop schedules: complexity and approxima-
tion. Operations Research, 26, pp. 26-52, 1978.

[47] M. Grigni, E. Scoutsoupiass, and C. Papadimitriou. An approximation scheme for planar
graph ASP. Proceedings of the of the 36th IEEE Symposium on Foundations of Com-
puter Science, pp. 640-645, 1995.

[48] M. Grigni and P. Sissokho. Light spanners and approximate ASP in weighted graphs with
forbidden minors. Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 85re857, 2002.

[49] M. GrOtschel. Discrete mathematics in manufacturing. Proceedings of the of the 2nd
International Conference on Industrial and Applied Mathematics, pp. 119-145, 1991.

[50] M. Griitschel and C. L. Monma. Integer polyhedra arising from certain network design
problems with connectivity constraints. SIAM Journal on Discrete Mathematics,
3(4):50re523, November 1990.

[51] M. Griitschel, C. L. Monma, and M. Stoker. Computational results with a cutting plane
algorithm for designing communication networks with low-connectivity constraints.
Operations Research, 40(2):309-330, 1992.

[52] M. GrOtschel, C. L. Monma, and M. Stoker. Polyhedral and computational investigations for
designing communication networks with high survivability requirements. Operations
Research, 43:101re1024, 1995.

[53] Μ. Griitschel, C. L. Monma, and M. Stoker. Design of survivable networks. In Μ. O. Ball,
T. L. Magnate, C. L. Monma, and G. L. Nemhauser, editors, Handbooks in Opera-
tions Research and Management Science, volume 7: Network Models, chapter 10, pp.
617-672. North-Holland, Amsterdam, 1995.

196

[54] M. Griinewald, T. Lukovszki, C. Schindelhauer, and Sc. Colbert. Distributed maintenance
of resource eflkient wireless network topologies. In B. Monied and R. Feldmann,
editors, Proceedings of the 8th Euro -Par, volume 2400 of Lecture Notes in Comput-
er Science, pp. 935-946, Paderbom, Germany, August 27-30, 2002. Springer-Verlag,
Berlin.

[55] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy algorithms for con-
structing sparse geometric spanners. SIAM Journal on Computing, 31(5):1479-1500,
August 2002.

[56] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Improved greedy algorithms for
constructing sparse geometric spanners. In M. M. Halldόrsson, editor, Proceedings of
the 7th Scandinavian Workshop on Algorithm Theory, volume 1851 of Lecture Notes
in Computer Science, pp. 314-327, Bergen, Norway, July 5-7, 2000. Springer-Verlag,
Berlin.

[57] J.N.D. Gupta. Two-stage, hybrid flowshop scheduling problem. Journal of the Operational
Research Society, 38, pp. 359-364, 1988.

[58] LEA. Hall. Approximation of flow shop scheduling. Mathematical Programming, 82, pp.
175-190, 1998.

[59] LEA. Hall, ADS. Schulz, DAB. Shmoys and J. Wein, Scheduling to minimize average com-
pletion time: Office and online algorithms. Mathematics of Operations Research, 22,
pp. 513-544,

[60] D. S. Hochbaum(ed.). Approximation Algorithms for NP -Hard Problems. PAWS Publishing
Company, Boston, MA, 1995.

[61] J.A. Hoogeveen and T. Kawaguchi. Minimizing total completion time in a two machine
flowshop: Analysis of special cases. Mathematics of Operations Research, 24(4),
887-910, 1999.

[62] F. Sc. Hwang and D. S. Richards. Steiner tree problems. Networks, 22:55-89, 1991.

[63] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. North-Holland,
Amsterdam, 1992.

[64] Sc. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39-60, 2001. A preliminary version appeared in Proceedings
of the 39th IEEE Symposium on Foundations of Computer Science, pp. 448 -457, Palo
Alto, CA, November 8-11, 1998. IEEE Computer Society Press, Los Alamitos, CA.

[65] P.M. Johnson. Optimal two and three-stage production schedules with setup times includ-
ed. Naval Research Logistics Quarterly, 1, pp. 61-68, 1954.

[66] R. Jothi, B. Raghavachari, and S. Varadarajan. A 5/4-approximation algorithm for mini-
mum 2-edge-connectivity. Proceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 725 -734, 2003.

197

[67] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, pp. 604-613, Dallas, TX, May 23 -26, 1998. ACM Press, New York, NY.

[68] A.H.G. Rinnooy Kan. Machine Scheduling Problems: Classification, complexity and com-
putations, Nijhoff, The Hague, 1976.

[69] W. Scem and W. Nawijn. Scheduling multi-operation jobs with time lags on a single ma-
chine. University of Twenty, 1993.

[70] S. Schuller. Approximation algorithms for finding highly connected subgraphs. In D. S.
Hochbaum, ed., Approximation Algorithms for λίρ -Hard Problems, pp. 236 -265,
1996.

[71] S. Schuller, B. Raghavachari and N. Young. Approximating the minimum equivalent di-
graph. Proceedings of the of the 5th Annual ACM -SIAM Symposium on Discrete Al-
gorithms, pp.177-186, 1994.

[72] S. Schuller, B. Raghavachari and N. Young. On strongly connected digraphs with bounded
cycle length. UΜΑΑCS-TR-94-10/CS-TR-3212, 1994.

[73] S. Schuller and U. Vishkin. Biconnectivity approximations and graph carvings. Journal of
the ACM, 41(2):214-235, March 1994.

[74] G. Kortsarz and C. Nutov. Approximation algorithm for k-node connected subgraphs via
critical graphs. Annual ACM Symposium on Theory of Computing 2004, pp. 138 - 145.

[75] M.A. Langston. Interstate transportation planning in the deterministic flowshops environ-
ment. Operations Research, 35(4), pp. 556-564, 1987.

[76] E.L.Lawler, J.Scc. Lenstra, A.H.G. Rinnooy Scan, and DAB. Shmoys. Sequencing and
scheduling: Algorithms and complexity. In S.C. Graves, A.H.G. Rinnooy Scan, and
P.M. Zipkin (eds.), Logistics of Production and Inventory, Handbooks in Operations
Research and Management Science 4, North-Holland, Amsterdam, 445-522, 1993.

[77] E. L. Lawler, J. Sc. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors. The
Traveling Salesman Problem. John Wiley & Sons, New York, NY, 1985.

[78] C.-Y. Lee and G.L. Vairaktarakis. Minimizing makespan in hybrid flowshops. Operations
Research Letters, 16, pp. 149-158, 1994.

[79] J. Y T. Leung and H. Chao. Minimizing Mean Flowtime and Makespan on Master-Slave
Systems. To appear in Journal of Parallel and Distributed Computing.

[80] J. Y T. Leung and H. Chaco. Minimizing Total Completion Time in Master -Slave Systems.
Manuscript.

[81] C. Levcopoulos and A. Linger. There are planar graphs almost as good as the complete
graphs and almost as cheap as minimum spanning trees. Algorithmic, 8:251-256,
1992.

198

[82] C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Efficient algorithms for constructing
fault-tolerant geometric spanners. Annual ACM Symposium on Theory of Computing
1998, pp. 186-195.

[83] C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Improved algorithms for constructing
fault-tolerant spanners. Algorithmica, 32(1):144-156, 2002.

[84] X. Li, W. P. Wan and C. Vi. Robust deployment and fault tolerant topology control for wire-
less ad hoc networks. Journal of Wireless Communications and Mobile Computing,
4(1), pp. 109-125, 2004.

[85] R. Lipton and R. Tartan. Applications of a planar separator theorem. SIAM Journal on
Computing, 9(3):615-627, 1980.

[86] T. Lukovszki. New results on fault tolerant geometric spanners. In Proc. of the 6th Work-
shop on Algorithms and Data Structures, volume 1663 of LNCS, pp. 193-204, 1999.

[87] T. Lukovszki. New Results on Geometric Spanners and Their Applications. PhD thesis,
University of Paderborn, 1999.

[88] Sc. Mehihorn and S. Cher. Dynamic fractional cascading. Algorithmic, 5:215-241, 1990.

[89] G. L. Miller. Finding small simple cycle separators for recollected planar graphs. Journal
of Computer and System Sciences, 32:265-279, 1986.

[90] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A sim-
ple polynomial-time approximation scheme for geometric ASAP, k-MST, and related
problems. SIAM Journal on Computing, 28(4):1298-1309, August 1999.

[91] C. L. Monma and D. F. Shallcross. Methods for designing communications networks with
certain twonconnected survivability constraints. Operations Research, 37(4):531-541,
July 1989.

[92] D. Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial
and Applied Mathematics, Philadelphia, PA, 2000.

[93] D. Peleg and A. Schiffer. Graph spanners. Journal of Graph Theory, 13:99-116, 1989.

[94] M. Penn and H. Shasha-Scrupnik. Improved approximation algorithms for weighted re
and 3-vertex connectivity augmentation problems. Journal of Algorithms, 22:187-196,
1997.

[95] C. Phillips, C. Stein and J. Wein. Minimizing average completion time in the presence of
release dates. Mathematical Programming, 82:199-223, 1998.

[96] M. Pined. Scheduling : Theory, Algorithms, and Systems. Prentice Hall, 1995.

[97] H. J. Propel and A. Steger. The Steiner Tree Problem. A Tour Through Graphs, Algorithms
and Complexity. Vielg Verlag, Wiesdeden, 2002.

199

[98] M. Queyranne. Structure of a simple scheduing polyhedron. Mathematical Programming,
58:263-285, 1993.

[99] M. Queyranne. Personal communication, 1995.

[100] R. Rajaraman. Topology control and routing in ad hoc networks: A survey. SIGACT
News, 33:60-73, June 2002.

[101] S. B. Rao and W. D. Smith. Approximating geometrical graphs via "spanners" and
"banyan. " In Proceedings of the 30th Annual ACM Symposium on Theory of Com-
puting, pp. 540-550, Dallas, TX, May 23-26, 1998. ACM Press, New York, NY.

[102] G. Robins and J. S. Sallow. Low-degree minimum spanning trees. Discrete & Compu-
tational Geometry, 14:151-166, 1995. A preliminary version (entitled "On the maxi-
mum degree of minimum spanning trees") appeared in Proceedings of the 10th Annual
ACM Symposium on Computational Geometry, pp. 250-258, Stony Brook, NY, June
6-8, 1994. ACM Press, New York, NY.

[103] J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean graph.
In Proceedings of the of the 3rd Canadian Conference on Computational Geometry,
pp. 207-210, 1991.

[104j S. Sahni. Scheduling master-slave multiprocessor systems. IEEE Transactions on Com-
puters, 45(10), 1195-1199, 1996.

[105] S. Sahni and G. Vairaktarakis. The master-slave scheduling model. In J. Y T. Leung
(Ed): Handbook of Scheduling: Algorithms, Models, and Performance Analysis, CRC
Press, Boca Raton, FL, 2004.

[106] S. Sahni and G. Vairaktarakis. The master-slave paradigm in parallel computer and indus-
trial settings. Journal of Global Optimization, 9, 357-377, 1996.

[107] L. Storage. A proof of the optimality of the shortest remaining processing time discipline.
Operations Research, 16:687-690, 1968.

[108] A. S. Schulz. Scheduling to minimize total weighted completion time: Performance guar-
antees of LP-based heuristics and lower bounds. In Proceedings of the 5th Integer
Programming and Combinatorial Optimization (SIPCO), pp. 301-315, 1996.

[109] ADS. Schulz and M. Skutella. Scheduling-LPs bear probabilities: Randomized approxima-
tions for minimum criteria, In Proceedings of the Fifth Annual European Symposium
on Algorithms, pp. 416 429, 1997.

[110] M. Smid. Closest-point problems in computational geometry. In J.-R. Sack and J. Urru-
tia, editors, Handbook of Computational Geometry, chapter 20, pp. 877-935. Elsevier
Science B.., 1997.

[11 1] D. Smith. A new proof of the optimality of the shortest remaining processing time disci-
pline. Operations Research, 26(1):197-199, 1976.

200

[112] C. Sriskandarajah and SAP. Sethi. Scheduling algorithms for flexible flowshop: worst
and average case performance. European Journal of Operational Research, 43, pp.
143-160, 1989.

[113] M. Stoker. Design of Survivable Networks, volume 1531 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1992.

[114] Sc. Taiwar Bypassing the embedding: approximation schemes and compact representa-
tions for low dimensional metrics. In Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, pp. 281-290, 2004.

[115] G. Vairaktarakis. Analysis of algorithms for masterimlave system. lIE Transactions, 29,
11, 939-949, 1997.

[116] S. Impalas and A. Vetta. Factor 4/3-approximations for minimum reconnected sub-
graphs. In Proceedings of the 3rd Workshop APPROVE, LNCS, 1913:26re273, 2000.

[117] D. P. Willimason, M. X. Goemans, M. Mikhail, and V. V. Vazirani. A primal-dual approx-
imation algorithm for generalized Steiner network problem. Combinatorica, 15:435-
454, 1995.

[118] P. Winter. Steiner problem in networks: A survey. Networks, 17:129-167, 1987.

[119] L.A.Wolsey. Mixed integer programming formulations for production planning and
scheduling problems. Invited talk at the 12th International Symposium on Mathe-
matical Programming, MIT, Cambridge, 1985.

[120] A. C. Lao. On Constructing minimum spanning trees in dimensional spaces and related
problems. SIAM Journal on Computing, 11:721-736, 1982.

[121] W. Vu, H. Hoogeveen and J.Scc. Lenstra. Minimizing makespan in a two-machine flowshop
with delays and unit-time operations is NP-hard. Journal of Scheduling, 7(5), 333 -
348, 2004.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Complexity of Scheduling Problems in Master-Slave Model
	Chapter 3: Optimal and Approximation Algorithms: Special Cases
	Chapter 4: Approximation Algorithms: General Cases
	Chapter 5: Polynomial-Time Approximation Schemes for the Euclidean Survivable Network Design Problem
	Chapter 6: Approximation Schemes for Minimum 2-Edge-Connected and Biconnected Subgraphs in Planar Graphs
	Chapter 7: Approximation Schemes for Minimum 2-Connected Spanning Subgraphs in Weighted Planar Graphs
	Chapter 8: Fault-Tolerant Geometric Spanners
	Chapter 9: Conclusions
	References

	List of Tables
	List of Figures

