Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

Mew |ersey’s Science &
Technology University

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

ALGORITHMS AND COMPLEXITY ANALYSES FOR SOME
COMBINATORIAL OPTIMIZATION PROBLEMS

by
Hairong Zhao

The main focus of this dissertation is on classical combinatorial optimization problems in
two important areas: scheduling and network design.

In the area of scheduling, the main interest is in problems in the master-slave model.
In this model, each machine is either a master machine or a slave machine. Each job is
associated with a preprocessing task, a slave task and a postprocessing task that must be
executed in this order. Each slave task has a dedicated slave machine. All the preprocessing
and postprocessing tasks share a single master machine or the same set of master machines.
A job may also have an arbitrary release time before which the preprocessing task is not
available to be processed. The main objective in this dissertation is to minimize the total
completion time or the makespan. Both the complexity and algorithmic issues of these
problems are considered. It is shown that the problem of minimizing the total completion
time is strongly NP-hard even under severe constraints. Various efficient algorithms are
designed to minimize the total completion time under various scenarios.

In the area of network design, the survivable network design problems are studied
first. The input for this problem is an undirected graph G = (V, E), a non-negative cost for
each edge, and a nonnegative connectivity requirement 1,,,, for every (unordered) pair of
vertices u, v. The goal is to find a minimum-cost subgraph in which each pair of vertices
u, v is joined by at least 1y, edge (vertex)-disjoint paths. A Polynomial Time Approxi-
mation Scheme (PTAS) is designed for the problem when the graph is Euclidean and the
connectivity requirement of any point is at most 2. PTASs or Quasi-PTASs are also de-
signed for 2-edge-connectivity problem and biconnectivity problem and their variations in

unweighted or weighted planar graphs.

Next, the problem of constructing geometric fault-tolerant spanners with low cost
and bounded maximum degree is considered. The first result shows that there is a greedy
algorithm which constructs fault-tolerant spanners having asymptotically optimal bounds
for both the maximum degree and the total cost at the same time. Then an efficient algo-
rithm is developed which finds fault-tolerant spanners with asymptotically optimal bound

for the maximum degree and almost optimal bound for the total cost.

ALGORITHMS AND COMPLEXITY ANALYSES FOR SOME
COMBINATORIAL OPTIMIZATION PROBLEMS

by
Hairong Zhao

A Dissertation
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Computer Sciences

Department of Computer Science

May 2005

Copyright (© 2005 by Hairong Zhao
ALL RIGHTS RESERVED

APPROVAL PAGE

ALGORITHMS AND COMPLEXITY ANALYSES FOR SOME
COMBINATORIAL OPTIMIZATION PROBLEMS

Hairong Zhao

Dr./Joseph Leung, Disserfation Co-Advisor Date
Distinguished Professor of Computer Science, New Jersey Institute of Technology

Dr. Artur Czundaj, Dissertation Co-Advisor Date
Associate Professor of Computer Science, New Jersey Institute of Technology

Dr. Teunis J. Ott, Committee Member Date
Professor of Computer Science, New Jersey Institute of Technology

Dr. Wojciech Rytter, Committee Member Date
Professor of Computer Science, New Jersey Institute of Technology

Dr. Clifférd’Stein, Committee Member Date

Professor of Industrial Engineering and Operations Research, Columbia University

BIOGRAPHICAL SKETCH

Author: Hairong Zhao
Degree: Doctor of Philosophy
Date: May 2005

Undergraduate and Graduate Education:

e Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2005

e Master of Computer Science,
Beijing University of Posts & Telecommunications, Beijing, China, 1997

e Bachelor of Computer Science,
Taiyuan University of Technology, Shanxi, China, 1994

Major: Computer Science

Presentations and Publications:

J. Y-T. Leung and H. Zhao, “Minimizing Mean Flowtime and Makespan on Master-Slave
Systems,” Journal of Parallel and Distributed Computing, accepted for publication.

J. Y-T. Leung and H. Zhao, “Minimizing Mean Flowtime on Master-Slave Machines,” Pro-
ceedings of the 2004 International Conference on Parallel and Distributed Processing
Techniques and Applications, vol. 2, pp. 939-945, 2004.

A. Czumaj, M. Grigni, P. A. Sissokho, and H. Zhao “Approximation Schemes for Minimum
2-Edge-Connected and Biconnected Subgraphs in Planar Graphs,” Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 489 - 498, 2004.

A. Czumaj and H. Zhao “Fault-Tolerant Geometric Spanners,” Discrete and Computational
Geometry, Vol. 32, pp. 207-230, 2004.

A. Czumaj and H. Zhao “Fault-Tolerant Geometric Spanners,” Proceedings of the 19th
ACM Symposium on Computational Geometry, pp. 1-10, 2003.

J. Y-T. Leung and H. Zhao “Real-Time Scheduling Analysis,” Final report to Federal Avi-
ation Administration, 2003.

iv

A. Czumaj, A. Lingas, and H. Zhao “ Polynomial-Time Approximation Schemes for the
Euclidean Survivable Network Design Problem, ” Proc. of the 29th International Col-
loquium on Automata, Languages and Programming (ICALP’02) , pp. 973-984, 2002.

A. Berger, A. Czumaj, M. Grigni and H. Zhao. “Approximate Minimum 2-Connected Sub-
graphs in Weighted Planar Graphs,” submitted.

A. Czumaj, W. Rytter, X. Wang and H. Zhao, “A Linear-Time Algorithm for 3-Path Color-
ing of 2-Regular Digraphs,” submitted.

A. Berger, M. Grigni and Hairong Zhao, “A Well-Connected Separator for Planar Graphs,”
submitted.

Y. Huo, J. Y-T. Leung and H. Zhao, “Complexity of Two Dual Criteria Scheduling Prob-
lems,” submitted.

Y. Huo, J. Y-T. Leung and H. Zhao, “Bi-criteria Scheduling Problems: Number of Tardy
Jobs and Maximum Weighted Tardiness,” submitted.

J. Y-T. Leung and H. Zhao, “Minimizing Total Completion Time in Master-Slave Systems,”
submitted.

H. Zhao, “Survivable Network Design and Fault Tolerant Spanners,” invited talk at Los
Alamos National Laboratory, March, 2005.

H. Zhao, “Minimizing Mean Flowtime and Makespan on Master-Slave Systems,” invited
talk at INFORMS Annual Meeting, October 2004.

H. Zhao, “Fault Tolerant Spanners and Their Applications,” DIMACS/CS Light Seminar:
Theoretical Computer Science, DIMACS Center, Rutgers Universe, March, 2004.

H. Zhao, “Approximation Schemes for Minimum 2-Edge-Connected and Biconnected Sub-
graphs in Planar Graphs,” presentation at SODA 2004, New Orleans, January, 2004.

H. Zhao, “Fault-Tolerant Geometric Spanners,” DIMACS Workshop on Computational Ge-
ometry, DIMACS Center, Rutgers University, November, 2002.

This dissertation is dedicated to my parents. Their
support, encouragement, and constant love have
sustained me throughout my life.

vi

ACKNOWLEDGMENT

I have been very lucky to have two great advisors during my graduate study in NJIT -
Joseph Leung and Artur Czumaj. Without their support, patience and encouragement, this
dissertation would not exist.

I sincerely thank Joseph Leung for bringing my attention to the field of computa-
tional complexity and scheduling theory in the first place. I am grateful for his generous
support during my study. I thank him for spending a great deal of valuable time giving me
technical and editorial advice for my research. I am deeply indebted to Artur Czumaj, who
is not only an advisor, but also a mentor and a friend. I am grateful to him for teaching me
much about research and scholarship, for giving me invaluable advice on presentations and
writings among many other things, for many enjoyable and encouraging discussions with
him.

My thanks also go to the members of my dissertation committee, Cliff Stein, Teunis
Ott and Wojciech Rytter, for reading previous drafts of this dissertation and providing many
valuable comments that improved the contents of this dissertation. I must also thank my
coauthors, Artur Czumaj, Joseph Leung, Michelangelo Grigni, Wojciech Rytter, Andre
Berger, Andrzej Lingas, Xin Wang, Yumei Huo and Papa Sissokho. It has been such a
wonderful experience to work with each of them. Although I have not even had a chance
to meet some of them, each has taught me a great deal about research and about writing
research.

I am also grateful to my colleagues, Haibing Li, Yumei Huo and Xin Wang for nu-
merous interesting and good-spirited discussions about research. The friendship of Jingx-
uan Liu, Binghu Zhang, Hong Zhao, Yayi Hu, Sen Zhang, Min Zhang, Chang Liu, Thoa
Hoang, is much appreciated. They have given me not only advice on research in general,
but also valuable suggestions about life, living and job hunting, etc. I must give my thanks

to my best friends in my life, Qingrui Ping, Li Gao, Xiangping Wei. They are more than

vii

friends, they are part of my family. Though they are far away from me, their support is al-
ways with me. Their sincere care for me and my family is a treasure of my life. I thank
Maryann McCoul for her trust in me and for her great advice when I needed it the most.
Last, I would like to thank my husband, Wenxin Mao, for his understanding and
love during the past few years. His support and encouragement were in the end what made
this dissertation possible. I give my deepest gratitude to my parents for their endless love
and support which provided the foundation for this work. I also thank my dearest brother

and sister for their love and for taking care of my parents during my absence.

This work is supported in part by NSF Grant DMI-0300156 and by FAA Grant
01-C-AW-NIJIT.

viii

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION e e e e e e et e et e e e o 1
1.1 Machine Scheduling Problems 2
1.2 Network DesignProblems 5
1.3 Outline e e 9
PART I: SCHEDULING PROBLEMS IN MASTER-SLAVE MODEL 12

2 COMPLEXITY OF SCHEDULING PROBLEMS IN MASTER-SLAVE MODEL 13

2.1 Master-slave Model, 13
2.2 Applications of Master-slave Model 14
2.3 Scheduling Problems in Master-slave Model: Definitions and Notations . . 16
24 PreviousWork 18

2.5 New Results: Complexity of Scheduling Problems in Master-slave Model . 20
OPTIMAL AND APPROXIMATION ALGORITHMS: SPECIAL CASES . .. 30
3.1 Optimal Algorithms for }_ C;: Canonical and Order Preserving Schedules . 30

3.2 Approximation Algorithms for }_ C;: Canonical Schedules 31
3.3 Approximation Algorithms for No-wait-in Makespan 40
APPROXIMATION ALGORITHMS: GENERALCASES 48
4.1 Preliminaries e 48
4.2 NewResultsand Techniques 50
4.3 Single-master e e e e e e e 51
4.3.1 Canonical Preemptive Schedules 51
4.3.2 Non-canonical Preemptive Schedules 54
43.3 Arbitrary Release Times 56
44 Multi-master e 57
4.4.1 Non-canonical Preemptive Schedules 57
442 ArbitraryRelease Times 59

ix

TABLE OF CONTENTS

(Continued)

Chapter Page
4.5 Distinct Preprocessing and PostprocessingMasters 63
4.6 Converting Preemptive Schedules into Non-preemptive Schedules 66

4.6.1 Single Master and Multi-Master Systems 68

4.6.2 Distinct Preprocessors and Postprocessors 70

4.7 Linear Programming: Distinct Preprocessors and Postprocessors 73

471 mi=ma=1 ... e 74

472 miy>2Tlandm,>1 76

PART II: NETWORK DESIGNPROBLEMS 79
5 POLYNOMIAL-TIME APPROXIMATION SCHEMES FOR THE EUCLIDEAN

SURVIVABLE NETWORK DESIGNPROBLEM 80

5.1 Imtroduction e e e 80

51.1 Relatedworks. e 80

5.1.2 New Contributions v v i i 81

52 Definitions e e 82

5.3 Steiner Minimum Tree Problem 87

5.4 Filteringfor SMT e 88

54.1 FirstFiltering Property, 90

5.4.2 Second Filtering Property 99

543 Complexity of SMT-Filtering 101

5.5 Lighteningfor SMT, 102

5.6 Searchingfor SMT e 107

5.7 Polynomial-Time Approximation Scheme for SMT 109

58 {0,1,2}-ConnectivityProblem 110

5.8.1 Lightening for {0, 1, 2}-Edge-Connectivity 110

5.8.2 Dynamic Programming for {0, 1, 2}-Edge-Connectivity 111

59 EXensions i e e e e e 115

TABLE OF CONTENTS

(Continued)

Chapter Page
510 Auxiliary Claims e 116

6 APPROXIMATION SCHEMES FOR MINIMUM 2-EDGE-CONNECTED AND
BICONNECTED SUBGRAPHS IN PLANARGRAPHS 118
6.1 Introduction e 118
6.2 Cutsandk-ECTypes i i it i e 120
6.3 Planar Separators e e e e 124
6.4 The2-ECSS Algorithm 126
6.5 The2-VCSS Algorithm 131
6.5.1 Types of (2-VC, P)-Safe Planar Graphs 132
6.5.2 Recursive Decomposition, 138
6.5.3 Dynamic Programming, 140

7 APPROXIMATION SCHEMES FOR MINIMUM 2-CONNECTED SPANNING
SUBGRAPHS IN WEIGHTED PLANARGRAPHS 143
7.1 Introduction e e 143
7.1.1 RelatedResults 143
7.1.2 New Contributions and Techniques 144
7.2 PTAS forthe 2-ECSSM Problem 146
7.3 Augmented Planar Spanners 00, 147
74 Spannersand 2-EC Subgraphs 150
7.5 Approximation Schemes for the 2-ECSS and 2-VCSS Problems 152
7.6 Extensions to the {1, 2}-Connectivity Problem 154
8 FAULT-TOLERANT GEOMETRIC SPANNERS 157
81 Introduction 157
81.1 PreviousResults 157
8.1.2 New Contributions 159
82 Preliminaries 161

TABLE OF CONTENTS

(Continued)

Chapter Page
8.2.1 Menger’s Theorem and Its Consequences 161
8.3 k-Vertex Fault-Tolerant Spanners of Low Degree and Low Cost 162
8.3.1 Analyzing the MaximumDegree 163

8.3.2 Upper Bound for the Cost of Spanners Generated by the k-Greedy
Algorithm 166
8.4 Efficient Construction of Fault Tolerant Spanners 168
8.4.1 Basic Auxiliary Properties 169

8.4.2 Sufficient Conditions for Being a k-Vertex Fault-Tolerant Spanner . 170

8.4.3 Efficient Construction of k Fault-Tolerant Spanner 176

9 CONCLUSIONS e e 186
9.1 SchedulingProblems 186
9.2 Network DesignProblems 187
REFERENCES e e e e e 192

xii

LIST OF TABLES

Table Page
4.1 New Results for Single-Master System 51
4.2 New Results for Multi-Master System, All Schedules are Non-Canonical . . . 51
4.3 New Results for Distinct Preprocessor and Postprocesor System, m; = m,; =1 52
4.4 New results for distinct preprocessor and postprocesor, m; > landm, > 1 . 52

xiil

LIST OF FIGURES

Figure Page
2.1 An illustration of the optimal schedule in the proof of Theorem 2.5.2. 22
2.2 An illustration of the optimal schedule in the proof of Theorem 2.54. 24
2.3 An illustration of the optimal schedule in the proof of Theorem 2.5.5.. 25
3.1 Ilustration of Algorithm 1. 40
3.2 Iustration of Algorithm2. 43
3.3 Illustration of the proof of Theorem 3.33. 43
4.1 Convert a preemptive schedule into a non-preemptive schedule. 70
5.1 Dissectionof aboundingcube inR? 87
5.2 Tlustration of connectivity type construction. 112
5.3 Ilustration to the proof of Lemma 5.10.1. 116
6.1 The three different types of the separator. 126
6.2 Type of a (2—VC, P)-safe graph used in the 2-VCSS Algorithm 142
7.1 A non-simple face f in H, a chord e, and walks Pyand P,. 148
7.2 (a) Face f of H* (oval) with chord c, path P, (bold), and chords removed from

8.1

8.2
9.1
9.2

S by the chord move at ¢ (dotted). (b) Face f with a face-edge e (dashed)

crossed by five chords fromS.,, 151
Any VFTS for points in By and B, must have weight at least Q (k?), while the MST

hasweight O(1). 0 0 0 e s e e e e e e e e e 160
The k-Gap-Greedy Algorithm 173
Light spanners donotalwaysexist. 190
Greedy algorithm does not always find light spanners of planar graphs 190

xiv

CHAPTER 1

INTRODUCTION

A combinatorial optimization problem is concerned with selecting, from among a finite
set of possible solutions, the one that maximizes or minimizes a certain function, the so-
called objective function. Such problems are of great importance because a large number
of practical problems in various fields can be formulated as combinatorial optimization
problems: for example, inventory control, the scheduling of lines in flexible manufacturing
facilities, planning communication in traffic networks, finding the shortest or most reliable
paths in traffic or communication networks, etc. Extensive surveys of related applications
of combinatorial optimization are given in [49], [60].

Because of its importance, combinatorial optimization has attracted a great deal
of research effort and has experienced a particularly fast development during the last few
decades. Given any specific optimization problem of interest, the first question that arises
is whether there exists an efficient (polynomial-time) algorithm. While some problems in
this area are relatively well understood and have known efficient algorithms, many others
are intractable, typically NP-hard, e.g. scheduling problems, partitioning problems. So
under the widely believed assumption that P # NP, there is no hope of getting polynomial
time algorithms for solving these problems.

However, very large instances of these problems frequently arise in practice. Thus,
one is forced to look for algorithms that run in polynomial time and hopefully return a near-
optimal solution. Such algorithms are called approximation algorithms. An approximation
algorithm is called an a-approximation algorithm for a problem [T, if for any instance I of
TT, it always returns a solution with value at most (at least for maximization problems) &
times the optimal. The value « is called the approximation ratio or the performance ratio of

the algorithm. Of course, one hopes that « is as close to 1 as possible. However, it turns out

2

that different NP-hard problems exhibit different approximability properties. Some prob-
lems, e.g. the knapsack problem, allow a polynomial-time approximation scheme (PTAS);
i.e., a family of algorithms {4.} such that, for each fixed ¢ > 0, {A.} runs in time poly-
nomial in the size of the input and produces a (1 + ¢)-approximation. On the other hand,
some other problems have intrinsic limitations to approximability. For example, there is no
PTAS for the general traveling salesman problem unless P = NP.

This dissertation focuses on classical combinatorial optimization problems in two
important areas: scheduling and network design. Not surprisingly, most of these prob-
lems have been or will be shown in this dissertation to be NP-hard. Thus, various constant
approximation algorithms or approximation schemes are designed throughout the disserta-

tion.

1.1 Machine Scheduling Problems
Scheduling is an intensively studied class of discrete optimization problems. Scheduling
problems are motivated by the allocation of limited resources to jobs over time, subject to
some constraints. It is a decision-making process with the goal of optimizing one or more
objectives. The resources and jobs can take on many different forms. The resource can
be machines in a workshop, runways at an airport, processing units in a computing envi-
ronment. The jobs can be operations in a workshop, takeoffs and landings of air planes or
computer programs. Standard scheduling requirements include: a job cannot be processed
by two or more machines at a time, or a machine cannot process two or more jobs at the
same time. Depending on the type of scheduling system, specific constraints should be sat-
isfied. For example, jobs may have different release times and deadlines, different jobs may
have different priorities, a job may not be allowed to preempt other jobs, etc. The objective
can also take on many different forms; e.g., minimizing the makespan (the maximum com-

pletion time among all jobs) or the total completion time or the maximum response time,

3

or maximizing the number of on time jobs. For an extensive introduction into the theory of
scheduling, see, e.g., [7], [22], [76], [96].

Although scheduling problems may concern different types of resources, many of
them can be modeled as scheduling jobs on machines. A schedule specifies, for each
time instant, the set of jobs executing at that instant, and the machines on which they are
executing.

Depending on the properties of the jobs, the number and type of machines, and
the optimization goal, there are various problems under different models. In the simplest
model, there is a single machine and n jobs, each of which is ready at time 0 and must be
executed without interruption. In a complex model, there are different types of machines;
each job has several tasks which have to be executed on different machines and may be in
certain order. These models are known as shop models. In the open shop model, there is
no restriction on the order of the tasks. In the flow shop model, each job has exactly one
task that needs to be processed in each machine, and the tasks of each job must follow the
same order. In the job shop model, each job has its own ordering of the tasks, and several

tasks can visit the same machine.

Scheduling problems in master-slave model. Scheduling problems in the master-slave
model was recently introduced by Sahni [104]. In this model there are n jobs and m ma-
chines. Each job is associated with a preprocessing task, a slave task and a postprocessing
task that must be executed in this order. Each machine is either a master machine or a slave
machine. While the preprocessing and postprocessing tasks are scheduled on the master
machine, each slave task is scheduled on a dedicated slave machine.

The master-slave model is closely related to the two-machine flow shop model with
transfer lags. In this flow shop model, each job j has two operations: the first operation is
scheduled on the upstream machine and the second operation is scheduled on the down-

stream machine. The interval or time lag between the finish time of the first operation and

4

the start time of the second operation must be exactly or at least 1;. If the |;’s are large
enough such that all of the first operations finish before the start of any second operation,
then the flow shop problem is equivalent to the problem of scheduling on a single machine
with time lags and two tasks per job, subject to the constraint that all of the first opera-
tions are scheduled first. The latter problem is identical to the single-master master-slave
scheduling model.

The master-slave model finds many applications in parallel computer scheduling
and industrial settings such as semiconductor testing, machine scheduling, transportation
maintenance, etc.; see [104], [106], [105], [115]. For example, suppose there is a main
thread running on one processor whose function is to prepare data then fork and initiate new
child threads that do the computations on different processors. After the computation of a
child thread, the main thread collects the computation results and performs some processing
on the results. Here, each child thread can be seen as a job with three tasks: the thread
initiation and data preparation is the preprocessing task, the computation is the slave task
and the postprocessing of the results from the computation is the postprocessing task.

The main objective in this dissertation is to minimize the total completion time or
makespan under various scenarios. First, it is shown that many of the problems are NP-
hard in the strong sense. Then some special cases are considered. It is assumed that (1)
there is a single master, (2) all jobs have the same release time 0, same preprocessing
task length a and same postprocessing task length c; i.e. the jobs are different from each
other only by their slave tasks, (3) no preemption is allowed. Optimal or approximation
algorithms are developed for some problems in this case. Finally, more general cases are
considered. A job can have an arbitrary release time and arbitrary processing time. There
can be one or more masters. The problem can be online or offline. Efficient approximation
algorithms are developed to minimize the total completion time in various settings. These

are the first general results for the total completion time problem in the master-slave model.

5

Furthermore, these algorithms are shown to generate schedules with small makespan as

well.

1.2 Network Design Problems
The problem of network design is concerned with connecting a collection of sites into a
“good” network that satisfies some desired properties. Problems of this type arise in ap-
plications in VLSI design, telecommunication, clustering, robotics, graph theory, and dis-
tributed systems. In all these areas, it is often important to construct high quality networks.
From the topology point of view, typical quality measures of networks include the surviv-
ability (resistance to failures) of the network, its stretch factor (dilation), minimum and
maximum degree, and its diameter. The goal is to minimize the cost of the network that
satisfy certain required properties. This dissertation focuses on the survivability and stretch

factor of the network.

Survivability. In some applications such as communication network design, VLSI de-
sign, networks must be able to withstand the failure/deletion of one or several links or
nodes. This requirement leads to survivable network design problems.

Networks and their quality can be modeled by graphs. The sites correspond to ver-
tices (points), and the connections can be represented by edges. In the survivable network
design problem, the input is an undirected graph G = (V, E), a non-negative cost for each
edge, and a nonnegative connectivity requirement T,,, for every (unordered) pair of vertices
u, v. The goal is to find a minimum-cost subgraph in which each pair of vertices u, v is
joined by at least 1y, disjoint paths between v and u. In the vertex-connected version of
the problem the paths must be internally vertex-disjoint and in the edge-connected version
of the problem the paths must be edge-disjoint.

In many applications of this problem, often regarded as the most interesting ones

[41, 53], the connectivity requirement function is specified with the help of a one-argument

6

function which assigns to each vertex v its connectivity type 1, € N. Then, for any pair of
vertices v, u € V, the connectivity requirement T, ,, is simply given as min{r,,, ,}. Notice
that, in particular, this includes the Steiner tree problem [97], in which r,, € {0, 1} for any
vertex v € V. It also includes the most widely applied variant of the survivability problem
in which r, € {0, 1,2} for any vertex v € V (see, e.g., [53, 91, 113]). If the connectivity
requirements are uniform, i.e., 1., = k (k > 1) for every pair of vertices u and v, then this
is the classical k-connectivity problem.

All these problems mentioned above are well known NP-hard graph problems. Fur-
thermore, these problems have been shown to be MaxSNP-hard for general graphs [23, 35].
This implies that there is no hope for a PTAS in general (unless P=NP), but a PTAS could
still exist for special cases. Indeed, based on the framework of Arora [3], a PTAS was
found [25, 26] for the problem of finding a minimum-cost k-vertex (or k-edge) connected
spanning subgraph in complete Euclidean graphs in bounded dimension.

This dissertation concentrates on efficient construction of good approximations for
the above problems. The aim is to develop PTASs for some special class of graphs, specif-
ically, the geometric graphs and planar graphs. Following the literature, this disserta-
tion adopts the standard simplification of the connectivity requirements function. That
is, each vertex v has a connectivity type T, and the connectivity requirement T, ,, is simply
min{r,, 1, }.

In the geometric version of the survivable network design problem, the input is a
complete Euclidean graph. The vertices are points in R® and the cost of each link is equal
to the Euclidean distance between its endpoints (which is a good approximation in many
applications, since often the “installation” and the “service” cost is roughly proportional to
the length of the link [91]). The first polynomial-time approximation schemes (PTAS) for
basic variants of the survivable network design problem in Euclidean graphs are presented.
First a PTAS is described for the Steiner tree problem, which is the survivable network

design problem with 1, € {0, 1} for any vertex v. Then, the PTAS is extended to the widely

7

applied case where 1, € {0, 1, 2} for any vertex v. Finally, it is shown that the techniques
yield also a PTAS for the multigraph variant of the problem where the edge-connectivity
requirements satisfy 1, € {0,1,...,k}and k = O(1).

Next the 2-edge-connectivity and biconnectivity problems for planar graphs are
considered: given a planar graph, find the minimum cost spanning subgraph that is 2-
edge connected and biconnected, respectively. For unweighted planar graphs, approxi-
mation schemes are designed for both the minimum 2-edge-connectivity problem and the
minimum biconnectivity problem, both running in polynomial time. For weighted planar
graphs, Quasi-polynomial Time Approximation Schemes are designed for the 2-edge con-

nectivity problem and biconnectivity problem. Some other variations are also considered.

Stretch factor. Let G be a weighted graph and H be a spanning subgraph of G. The
stretch factor of H is the smallest positive t such that for any pair of vertices u and v,
dy(u,v) < tdg(u,v), where dy(u,v) and dg(u,v) are the weights of the shortest path
distance between the vertices u and v in H and G, respectively. The graph H is called a t-
spanner of G. If G is the complete Euclidean graph, then dg(u, V) is simply the Euclidean
distance [uv| of u and v. The graph H is simply called a t-spanner for V.

Traditionally, the main measure of quality of spanners are the number of edges,
maximum degree, and total cost. In this context, in any Euclidean space R¢ with constant
d, for every positive constant ¢, one can construct in O(n logn) time a (1 + ¢)-spanner in
which every vertex has constant degree and whose total cost is in the order of the cost of the
MST for the input point set [5, 55]; all these bounds are asymptotically optimal. (See also
[1, 6, 15, 29, 30, 31, 81] for other related results on spanners.) For an arbitrarily weighted
graph G, Althofer et al. [1] designed a simple greedy algorithm that computes a t-spanner
H of G for any t > 1. In the case of planar graphs, it is shown in [1] that this spanner has
weight w(H) < (1 + 2/(t — 1))MST(G), where MST(G) is the weight of a minimum

spanning tree in G.

8

Spanners are important structures that provide a sparse or economig representa-
tion of a given graph. They were introduced by Peleg and Schiffer [93] in the context
of distributed computing and later, by Chew [20] in the context of computational geome-
try. Spanners have many applications in robotics, graph theory, network topology design,
distributed systems; the recent O(n logn)-time PTAS for Euclidean TSP [101] is heav-
ily based on the use of spanners, and so is the recent PTAS for Euclidean biconnectivity
[26]. Spanners are also very extensively used in recent advances on topological issues in
ad-hoc networks (see, e.g., [42, 54, 100] and the reference therein). Survey expositions
[15, 34, 87, 92, 110] contain an extensive description on spanners and their applications.

Spanners are also heavily used by the approximation schemes in this dissertation.
For the geometric version of the survivable network design problem, the PTASs work on the
geometric spanners of the input vertices (or the subset of the input vertices). For the 2-edge
connectivity problem and biconnectivity problem in weighted planar graphs, the approxi-
mation schemes also depend in a crucial way on the new construction of light spanners for
weighted planar graphs.

Fault-tolerant spanners are natural extensions of spanners to graphs resistant to edge
and vertex removal. They were introduced by Levcopoulos et al. [83]. Such graphs contain
short paths between each pair of vertices even after removing a vertex or an edge.

In [83] and [86], several algorithms have been proposed to construct geometric
fault-tolerant spanners with low cost and bounded maximum degree. But none of them
could achieve the optimal bounds in maximum degree and total cost at the same time. The
main open problem left is whether there exist fault-tolerant spanners having good bounds
for both the maximum degree and the total cost.

This dissertation gives the first construction of vertex and edge fault-tolerant span-
ners having optimal bounds for both maximum degree and total cost at the same time. It is
shown that there is a greedy algorithm that for any t > 1 and any non-negative integer k,

constructs a k-fault-tolerant t-spanner in which every vertex is of degree O(k) and whose

9

total cost is O(k?) times the cost of minimum spanning tree; these bounds are asymp-
totically optimal. An efficient algorithm is designed to find fault-tolerant spanners with
asymptotically optimal bound for the maximum degree and almost optimal bound for the

total cost based on a new, sufficient condition for a graph to be a k-fault-tolerant spanner.

1.3 OQutline

The dissertation contains two parts. Part I is dedicated to scheduling problems in master-
slave systems. The new results are joint work with J. Leung which appear in [79, 80].
These results are presented in three chapters. In Chapter 2, the master slave model and
some of its applications are first introduced. Then the problems going to be studied are
defined. Finally the new complexity results are presented. The complexity results show
that many makespan and total completion time problems, with or without constraints, are
NP-hard in the strong sense. Thus the following two chapters concentrate on approximation
algorithms.

Chapter 3 considers special cases of the problems in master slave model, which
assume that (1) there is a single master, (2) all jobs have the same release time O, same
preprocessing task length a and same postprocessing task length c; i.e. the jobs are different
from each other only by their slave tasks, (3) no preemption is allowed. First it is proved
that if there are canonical and order preserving constraints, then in O(nlogn) time one
can find an optimal schedule that minimizes the total completion time, when a; = a and
ci =cforall1 <i<mnanda < c. After that, approximation algorithms are developed
for the canonical total completion time problem and the no-wait-in makespan problem,
respectively.

Chapter 4 considers the general cases of total completion time problem. Efficient
approximation algorithms are developed to minimize the total completion time in various

settings. These are the first general results for the total completion time problem in the

10
master-slave model. Furthermore, these algorithms are shown to generate schedules with
small makespan as well.

The second part of this dissertation is dedicated to network design problems. In
Chapter 5, the PTASs for the geometric version of the survivability problems are presented.
This include the first PTAS for the Steiner tree problem, the {0, 1, 2}-connectivity problem
and the multigraph variant {0, 1, ..., k}-edge connectivity problem. The results of this
chapter have been published in [27] and they are joint work with A. Czumaj and A. Lingas.

Chapters 6 and 7 consider the 2-connectivity problem and its variations in planar
graphs. In Chapter 6, the PTASs for the 2-edge-connectivity and biconnectivity problem in
unweighted planar graphs are described. Chapter 7 discusses the weighted planar graphs.
First a PTAS is presented for the problem of finding minimum-weight 2-edge-connected
spanning subgraphs where duplicate edges are allowed. Then a new greedy spanner con-
struction for edge-weighted planar graphs are given. This construction augments any con-
nected subgraph A of a weighted planar graph G to a (1+ ¢)-spanner of G with total weight
bounded by weight(A)/e. Based on this spanner, quasi-polynomial time approximation
schemes are derived for the problems of finding the minimum-weight 2-edge-connected
or biconnected spanning subgraph in planar graphs. Approximation schemes are also de-
signed for the minimum-weight 1-2-connectivity problem, which is the variant of the sur-
vivable network design problem where vertices have non-uniform (1 or 2) connectivity
constraints. Chapter 6 contains joint work with A. Czumaj, M. Grigni, P. Sissokho, and ap-
pears in [24]. Chapter 7 contains joint work with A. Berger, A. Czumaj and M. Grigni in
[9].

Chapter 8 presents two new results about vertex and edge fault-tolerant spanners in
Euclidean spaces. First it is shown that a greedy algorithm that for any t > 1 and any non-
negative integer k, constructs a k-fault-tolerant t-spanner in which every vertex is of degree
O(k) and whose total cost is O(k?) times the cost of minimum spanning tree; these bounds

are asymptotically optimal. The next contribution is an efficient algorithm for constructing

11

good fault-tolerant spanners. A new, sufficient condition for a graph to be a k-fault-tolerant
spanner is developed. Using this condition, one can design an efficient algorithm that finds
fault-tolerant spanners with asymptotically optimal bound for the maximum degree and
almost optimal bound for the total cost.

Finally, Chapter 9 summarizes the contributions of the dissertation. Some possible

extensions and future research directions are also remarked.

PART 1

SCHEDULING PROBLEMS IN
MASTER-SLAVE MODEL

12

CHAPTER 2

COMPLEXITY OF SCHEDULING PROBLEMS IN MASTER-SLAVE MODEL

2.1 Master-slave Model

The master-slave model was recently introduced by Sahni [104]. In this model, each job
has to be processed sequentially in three stages. In the first stage, the preprocessing task
runs on a master machine; in the second stage, the slave task runs on a dedicated slave
machine; and in the last stage, the postprocessing task again runs on a master machine,
possibly different from the master machine in the first stage. The preprocessing, slave and
postprocessing tasks and task times of job 1 are denoted by a;, b; and c;, respectively. It is
assumed that a; > 0, b; > O and ¢; > 0.

A job may have a release time ; > 0, i.e., ; cannot start until r;. Without loss of
generality, one can assume that minT; = 0. Unless stated otherwise, all jobs are assumed to
have the same release time. There are two cases when arbitrary release time is present. The
first case deals with offline problems, i.e., the release times and processing times of all jobs
are known in advance. The second case deals with online problems, i.e., no information of
a job i is given until it arrives at T;, and when it arrives, all parameters about job i is given.
The quadruple (r;, a;, by, c;) is used to denote job i. For simplicity, if ; = 0, one can use
the triplet (a;, by, ¢;) to represent job 1i.

Each machine is either a master machine or a slave machine. The master machines
are used to run preprocessing and/or postprocessing tasks, and the slave machines are used
to run slave tasks, one slave machine for each slave task. In a single-master system, there
is a single master to execute all preprocessing tasks (a tasks) and postprocessing tasks
(c tasks). In a multi-master system, there are more than one master, each of which is

capable of processing both a tasks and c tasks. Finally, in some systems, there are distinct

13

14

preprocessing masters (preprocessors) and postprocessing masters (postprocessors), which
are dedicated to process a tasks and c tasks, respectively.

The master-slave model is closely related to the flow shop model. The system
which has a single preprocessor and a single postprocessor can be seen as a two-machine
flow shop with transfer lags. In this flow shop model, each job j has two operations: the
first operation is scheduled on the upstream machine and the second operation is scheduled
on the downstream machine. The interval or time lag between the finish time of the first
operation and the start time of the second operation must be exactly or at least 1;. If the 1;’s
are large enough such that all of the first operations finish before the start of any second
operation, then the flow shop problem is equivalent to the problem of scheduling on a single
machine with time lags and two tasks per job, subject to the constraint that all of the first
operations are scheduled first. The latter problem is identical to the single-master master-
slave scheduling model.

When there are more than one preprocessing and postprocessing masters, the master-
slave model can be seen as a two-stage hybrid flow shop with transfer lags. In this sense,
the single master case can be regarded as a three-stage hybrid flow shop where the first and
the last stage has a single machine and the second stage has n machines. Hybrid flow shop
is often found in electronic manufacturing environment such as IC packaging and make-
to-stock wafer manufacturing. In recent years, hybrid flow shop has received significant

attention, see [12], [75], [78]) and [112].

2.2 Applications of Master-slave Model
The master-slave model finds many applications in parallel computer scheduling and in-
dustrial settings such as semiconductor testing, machine scheduling, transportation main-
tenance, etc. Some of them are listed in the following. For more applications, see [104],

[106], [105] and [115].

15

Several applications of the master-slave model are found in parallel computer schedul-
ing. A common parallel programming paradigm involves the use of a main computational
thread whose function is to prepare data then fork and initiate new child threads that do the
computations on different processors. After the computation of a child thread, the main
thread collects the computation results and performs some processing on the results. Here,
each child thread can be seen as a job with three tasks: the thread initiation and data prepa-
ration is the preprocessing task, the computation is the slave task and the postprocessing of
the results from the computation is the postprocessing task.

The master-slave paradigm also has applications in certain semiconductor testing
operations. In the case of burn-in operations, chips are subject to thermal stress for an
extended period of time. The whole process for each chip consists of three phases. First, an
initial burn-in operation is accomplished by maintaining the oven at a constant temperature
while powering up the chip. The burn-in times for each chip are specified by the customer
and thus fixed a priori. Then, in the second phase, the chip cools off for a specified amount
of time that depends on the length and intensity of the initial burn-in period. In the last
phase, the chip is subject to a final burn-in operation. In this application the burn-in oven
corresponds to the master machine, the two burn-in tasks correspond to preprocessing and
postprocessing and the cooling period corresponds to the slave task. Since the burn-in
operations are near the end of the production process, scheduling is critical in determining
on-time delivery and output performance for the entire company.

Industrial applications of the master-slave paradigm include the case of consolida-
tors that receive orders to manufacture quantities of various items. The actual manufac-
turing is done by a collection of slave agencies. In this example, the consolidator is the
master machine and the slave agencies are the slave machines. The consolidator needs to
assemble the raw material needed for each task, load the trucks that will deliver this mate-
rial to the slave machines, and perform an inspection before the consignment leaves. All of

these work belong to preprocessing task. The slave machines need to wait for the arrival of

16

the raw material, inspect the received goods, perform the manufacture, load the goods on-
to the trucks for delivery, perform an inspection as the trucks are leaving. These activities
together with the delay involved in getting the trucks to their destination (i.e., the consol-
idator) represent the slave work. When the finished goods arrive at the consolidator, they
are inspected and inventoried. This represents the postprocessing.

It is easy to see that all of the above examples generalize to multi-master systems

or distinct preprocessing and postprocessing master systems.

2.3 Scheduling Problems in Master-slave Model: Definitions and Notations
Given a set of jobs in the master-slave system and a schedule S of the jobs, two jobs
i and j are said to overlap in S if the master machine is working on the preprocess-
ing/postprocessing task of job i while a slave machine is working on the slave task of
job j. Note that there may be several jobs overlapping with a given job i.

The completion (or finish) time of job i in a schedule S is the time when the post-
processing task c; finishes. The completion time of i in S is denoted by C;(S). If S is clear
from the context, C;, instead of C;(S), is used. The makespan of S is the earliest time when
all the tasks have been completed. The makespan of S is denoted by Cax(S), or Cpax if S
is clear from the context. The total completion time of S, denoted by C(S), is the sum of
the completion times of all n jobs, i.e., C(S) = Z;‘:, G;(S).

Makespan and total completion time are two common objectives to minimize. The
problems of finding a schedule that minimizes the makespan and total completion time are
referred to as the makespan (Cnnax) problem and total completion time (}_ C;) problem, re-
spectively. A schedule that minimizes Cpax or 3_ C; is usually denoted by S*. Throughout
this dissertation, C;,,, and C* are used to denote the minimum makespan and the minimum
total completion time, respectively.

A non-preemptive schedule is one that schedules each task without interruption.

Note that in such a schedule, it is still possible that there is an interval between the finish

17

time of a; and the start time of b;, or the finish time of b; and the start time of c;. How-
ever, without loss of generality, one can always assume that b; is scheduled immediately
as soon as a; completes. In a preemptive schedule, a job running on one machine may be
interrupted for some time, and later resumed on possibly a different machine. Both non-
preemptive and preemptive schedules have some applications. In the consolidators exam-
ple, non-preemptive schedules are more realistic than preemptive schedules. On the other
hand, in the parallel computer scheduling example, preemptive schedules are as realistic as
non-preemptive schedules.

A non-preemptive schedule S is order preserving if for any two jobs i and j such
that a; completes before a;, ¢; must also complete before ¢;. A no-wait-in schedule is one
such that each slave task must be scheduled immediately after the corresponding prepro-
cessing task finishes and each postprocessing task must be scheduled immediately after the
corresponding slave task finishes. In other words, once a job starts, it will not stop until it
finishes. It is easy to see that a no-wait-in schedule must be non-preemptive.

A canonical schedule on the single master system is one such that all the prepro-
cessing tasks complete before any postprocessing tasks can start (Note that the definition
of canonical schedule is slightly different from the one given in [104]). In the multi-master
system, a canonical schedule is one that is canonical on each master. Both canonical and
non-canonical schedules have some applications. In the consolidators example, canonical
schedules make sense while non-canonical schedules do not. On the other hand, in the par-
allel computer scheduling example, non-canonical schedules make sense while canonical
schedules do not.

It is easy to see that if all jobs have the same release time, one can always arrange a
schedule to be canonical without increasing the makespan. Thus, in order to minimize the
makespan in this case, one only needs to focus on canonical schedules. However, this is
not true if one wants to minimize) C;. In fact, the ratio of the total completion time of the

best canonical schedule versus that of the best non-canonical schedule can be arbitrarily

18
large. Consider the example: (n — 1) identical jobs (1, ¢, 1) and one job (n2, ¢, 1), where ¢
is an arbitrary small positive number. The optimal canonical schedule has total completion

time O(n?), while the optimal non-canonical schedule has total completion time O(n?2).

2.4 Previous Work

So far the main research efforts to the master-slave model are for makespan minimization,
assuming all jobs have the same release time. As noted before, it is sufficient to focus on
canonical schedules for the makespan objective in this case. The general makespan problem
without constraints has been shown to be NP-hard by Kern and Nawijn [69]. Sahni [104]
showed that the no-wait-in makespan problem is NP-hard in the ordinary sense, even when
there is order preserving constraint. He also gave an O (n log n)-time algorithm that solves
the order preserving makespan problem.

Sahni and Vairaktarakis [106] proposed several constant approximation algorithms
for the makespan problem in the single-master and multi-master systems. For the general
problem without any constraints, they gave a %-approximation algorithms for the single
master system and a 2-approximation algorithms for the multi-master systems.

Further algorithms were given by Vairaktarakis [115] when there are m preproces-
sors and m; postprocessors. Let m = max{m,, m,}. He gave approximation algorithms
with a worst-case bound of 2 — # for the makespan problems with no constraint, or with
the constraints of order preserving.

Flow shop is a classical model that has been studied for a long time. Let m be the
number of stages. For the makespan problem, Johnson [65] developed an O(nlogn) time
optimal algorithm when m = 2. The problem becomes NP-hard when m > 3. In this case,
Hall [58] presented a (1+ ¢)-approximation algorithm for any fixed positive €. For the total
completion time problem, it is NP-hard in the strong sense even if m = 2 and preemption
is allowed [33]. Gonzalez and Sahni [46] developed an approximation algorithm for this

problem in the m-stage flow shop model. The approximation ratio of their algorithms is

19

m. Let p; be the total processing time of all operations of job i. The algorithm schedules
the jobs in nondecreasing order of p; at each stage. By a careful analysis, Hoogeveen et
al. [61] showed that this algorithm has approximation ratio 2 /(o +), where « denotes
the minimal processing time of all tasks and 3 denotes the maximal processing time of all
tasks. If the jobs have different weights, Schulz [108] obtained an approximation algorithm
with performance guarantee of 2m (or 2m + 1 in case of arbitrary release time) for total
weighted completion time based on linear programming.

When there are more than one machine in either or both stages, the model is called
a flexible or hybrid flow shop. Both makespan and total completion time minimization
problems are NP-hard, even if preemption is allowed; see [57] and [33]. Lee and Vairak-
tarakis [78] developed heuristics for makespan minimization with approximation ratio of
2 — 1/ max{m;, m,}, where m; and m, are the number of machines in stages 1 and 2,
respectively. Based on linear programming, Schulz [108] obtained an approximation algo-
rithm with performance guarantee of 3m (or 3m + 1 in case of arbitrary release time) for
the total weighted completion time, where m is the number of stages. Thus, if m = 2, it is
a 6-approximation in the case of identical release times and a 7-approximation in the case
of arbitrary release times.

For the two-stage flow shop with transfer lags model, some research has been done,
most of which is about makespan minimization. Dell’ Amico [2] proved that the makespan
problem is NP-hard, even if preemption is allowed and each stage has only one machine.
Later, Yu, Hoogeveen and Lenstra [121] showed that the problem is NP-hard even if all
tasks have unit length. This is in contrast to the fact that the problem is solvable in polyno-
mial time when there is no transfer lags. By the above discussion, this model is the same
as the master-slave model when the preprocessing and postprocessing masters are distinct.
Thus, the heuristics given in [115] for the master-slave model also work here. Little is

known about the total completion time minimization problem.

20

2.5 New Results: Complexity of Scheduling Problems in Master-slave Model
First, some previous complexity results for the makespan problem is strengthened. Then
some new results for the total completion time problem are developed, based on the re-
sult from [121]. It is shown that many problems are strongly NP-hard, even with some

constraints. The main results can be summarized as follows:

e The makespan problem is strongly NP-hard, evenif a; =ci =1for1 <i<nand

only no-wait-in schedules are considered.

e The order preserving and no-wait-in makespan problem is NP-hard in the strong

sense, evenif a; =c;forall1 <1< n.

e The total completion time problem is NP-hard in the strong sense, even if (i) all the
preprocessing and postprocessing tasks have unit time, (ii) only canonical, or no-

wait-in, or canonical and no-wait-in schedules are considered.

o The order preserving and no-wait-in total completion time problem is NP-hard in the

strong sense, even if a; =c; forall1 <i< n.

It is sufficient to prove the above results in the simple case: a single master and
all jobs have the same release time. Following is a theorem about C,,x problem in a two-

machine flow shop with delays which was recently proved by Yu et al. [121].

Theorem 2.5.1 (See Theorem 21 and Corollary 22 [121]) The flow shop problem F2|l;, py; =

1|Chnax is strongly NP-hard, even if exact delays are required.

By the discussion in Section 2.1, the above theorem immediately implies the fol-

lowing theorem.

Theorem 2.5.2 The makespan problem in master slave system with a; = ¢; = 1 for all

1 < i< nisstrongly NP-hard, even if there is no-wait-in constraint.

21

Proof : The outline of the proof of this theorem is given below, as it is relevant to the
discussion of the total completion time problem later. The reduction is almost the same
as in the proof of Theorem 21 in [121]. But for each job 1, instead of having a lag 1;
between its two tasks, it now has a slave task b; which must start after the preprocessing
task and finish before the postprocessing task. The preprocessing and postprocessing tasks
are performed on the same master machine, instead of two machines. To ensure the same
argument goes through, let b; = 1; 4+ Y for each job i, where Y = n— (mB+2) and n is the
number of jobs in the instance of the two-machine flow shop with delays. The bound for
the makespan is also increased by Y. The proof of Theorem 21 in [121] used a reduction
from the 3-partition problem, which is known to be strongly NP-complete; see [43].

A 3-partition problem instance has input as a set of non-negative integers X =
{x1,%2, ..., X3} and a non-negative integer B such that Zf:; x; =mBand B/4 < x; <
B/2 forall 1 < i < 3m. The problem is to decide whether X can be partitioned into m
disjoint subsets Xj, ..., X, such that forall 1 <j < m, inex,- x; = B? In the following
X; is used to denote a partition subset, where 1 < j < m.

An instance of the makespan problem can be constructed as follows. There are
n = m?B + mB jobs. For job i, 1 < i < 3m, referred to as a P-jobin [121], by =x; + Y
where Y = n — (mB + 2); forjob i, 3m + 1 < i < mB, referred to as a Z-job in [121],
b; = Y, and for job i, mB + 1 < i < m?B + mB, referred to as an L-job in [121],
bi=(m+1)B+1+4+Y.Foralljobi, 1 <1i<n,leta;=c;="1. Let the bound for the
makespanbe mB+n+24Y =2n.

Using the same argument as in [121], one can show that if there is a canonical
schedule S with makespan less than or equal to 2n, then S must have the following prop-
erties: (1) The makespan of S is exactly 2n, (2) S is a no-wait-in schedule and the finish
times of the jobs aren + 1, ..., 2n. See Figure 2.1 for an illustration of the schedule on
the master machine. Also, it can be shown that there is a solution to the 3-partition problem

if and only if there is a schedule S with makespan exactly 2n. O

22

M I FHRETT P A |
My TT2|H| T II%lHHH--IzI%I-ﬁM
* FE T P e [F N Tl
T B! j,-l e b P, Tht "j,-l Pk,-l T me Pizl

Figure 2.1 (a) An illustration of the schedule that minimizes the makespan for the problem in-
stance in the two-machine flow shop model with lags reduced from 3-partition in [121], (b) An
illustration of the schedule on the master machine that minimizes the makespan problem instance
reduced from 3-partition in Theorem 2.5.2.

The above result can be used to show that the total completion time problem is also

strongly NP-hard.

Theorem 2.5.3 The total completion time problem with a; = ¢; = 1 forall1 <i < mnis
strongly NP-hard, even if (1) only canonical schedules are considered, or (2) only no-wait-

in schedules are considered, or (3) canonical and no-waited-in schedules are considered.

Proof : The reduction is still almost the same as above, the only difference is that now
one asks the question: is there a schedule of the n tasks with total completion time at most
n? 4 2ty

It is sufficient to prove that there is a schedule with total completion time less than

or equal to n? + 2(¥1)

if and only if there is a schedule with makespan less than or equal
to 2n.

“If” part. Let S be a schedule with makespan less than or equal to mB4+n+Y—-2 =
2n. By the proof of Theorem 2.5.2, S must be a canonical and no-wait-in schedule and the
completion time of the jobs are n + 1, n + 2, ..., 2n. Thus the total completion time is
exactly n? + 2o Mnﬂ)

“Only if” part. Let S* be a schedule for the n jobs constructed above such that

Y G(S*) <n?+ “H) . For any job i, 1 <1 < n, let Cy,(S*) denote the time when

23

the task a; finishes in the schedule S*. Then, Cq,(S*) > 1, and if i # j then C,, (S*) #

Cq;(S*). Thus 3 7, Cq (S*) > (14+2+---4+n) =In(n+1). Since C; > Cq,(S*) +

i=1

b; + ¢i = Cq,(S*) + b; + 1, the following inequality holds.

ZC (%) >Z (S +bi+1) =ical Zb +n>%nn+l Zb +n .

i=1 i=1

Note that 3 by = nY + Y ™ x; + m?B((m + 1)B + 1) = n? — n. This means
that 3, Ci(S*) > n? + Tl(%ﬂ By the assumption about S*, it must be true that
Y G(S)=nt+ w Thus S* must be a canonical and no-wait-in schedule. Fur-
thermore, the completion time of the jobs mustbe n+1,n+2, ..., 2n. Thus the makespan
of the schedule is 2n.

This completes the proof. m]

The above theorem implies that the total completion time problem is NP-hard in
the strong sense even if preemption is allowed. Observe that the optimal schedule S for the
constructed instance in the proof of Theorem 2.5.2 is not order preserving, so the above
results are not applicable to order preserving scheduling problems. In the following, the
complexity of no-wait-in makespan and no-wait-in total completion time problem with the
constraint of order preserving will be considered. Both problems will be shown to be NP-

hard in the strong sense by a reduction from the 3-partition problem.

Theorem 2.5.4 The problem of minimizing the order preserving and no-wait-in makespan

is strongly NP-hard, even if a; = c;for1 <i<m.

Proof : To reduce an instance of 3-partition problem to an instance of the scheduling
problem, one first create two types of jobs. This include (1) 3m partition jobs: a; =c¢; = x;
and by =3B +2 —x;, 1 <1< 3m, and (2) 2m separation jobs: a; = c¢; = B+ 1 and
by = B,3m + 1 < i < 5m. The problem is to determine whether there is an order
preserving and no-wait-in-schedule such that Cpx < 2m(3B + 2). Clearly, the reduction

can be done in polynomial time.

24

0 B+1 2B+1 3B+2 4B+3 5B+3 6B+4 2m(3B+2)

Bmel |2y a,y| 25 C3m+1 Bme2 [C1f 2} ©3 3m+2 ¢ o0

Figure 2.2 An illustration of the schedule on the master machine for the instance reduced from 3-
partition in Theorem 2.5.4. Jobs 1, 2 and 3 are partition jobs, jobs 3m + 1 and 3m + 2 are separation
jobs.

If there is a solution to the 3-partition problem, then one can schedule the separation
jobs in any order without overlapping, and for each group of 3-partition jobs corresponding
to a partition subset, schedule their preprocessing tasks fully overlapping with the slave task
of one separation job and the postprocessing tasks fully overlapping with slave task of the
separation job immediately following the previous one. See Figure 2.2 for an illustration
of the schedule. It is clear that the schedule is order preserving and no-wait-in and C,,x =
2m(3B + 2). Now suppose the scheduling problem has a solution; i.e., there is an order
preserving and no-wait-in schedule S such that C.x < 2m(3B + 2). Since only no-wait-
in schedules are considered and since a; = ¢; > by for any two separation jobs 1 and j, a
separation job can not overlap with another one. Hence, Cpa > Zf:;m +1 (aj+b5+¢c) =
2m(3B + 2). By assumption, Cpa < 2m(3B + 2). Therefore Cpax = 2m(3B + 2),
which means that all the partition jobs must fully overlap with the separation jobs. For
each partition job i, 2B < b; < 3B + 2. Therefore, each partition job i must overlap with
exactly two adjacent separation jobs in the schedule S. Because B/4 < a; = ¢; < B/2,
at most three preprocessing and/or postprocessing tasks of the partition jobs overlap with
one separation job. Since there are 2m separation jobs only, there must be exactly three
preprocessing or postprocessing tasks fully overlapping with each separation job. For each
separation job j, b; = B. Thus, the integers corresponding to the three preprocessing or

postprocessing tasks that overlap with b; have a total exactly B. Hence, the 3-partition

problem has a solution. O

Theorem 2.5.5 The problem of minimizing the order preserving and no-wait-in total com-

pletion time is strongly NP-hard, even if a; =c;for1 <i<n.

25

0 B+1 2B+1 3B+2 4B+3 5B+3 6B+4 2m(3B+2) (2m+1)(3B+2) (2m+2)(3B+2)+ £ (2m+2i)(3B+2)+1 €
<
R
Bmel (3] 3] 2| Came Bme2 ’Cl G &l Cmez | * ¥ | Ama § Csme1 L

Figure 2.3 An illustration of the schedule on the master machine for the instance reduced from 3-
partition in Theorem 2.5.5. Jobs 1, 2 and 3 are partition jobs, jobs 3m + 1 and 3m + 2 are medium
jobs and job 5m + 1 is a large job.

Proof : As in the previous proof, the reduction is from 3-partition problem. First three
types of jobs are created for the scheduling problem: (1) 3m small jobs: a; = ¢; = x; and
bi =3B+2—x,1 <1< 3m; (2) 2m medium jobs: a; = c¢; = B+ 1and b; = B,
3m+1<i<5m;(3)liargejobs: a; =ci =3B+2andb; =¢,5m+1<1<5m+1¢
is a small positive number and 1 is an integer greater than 36m?+19m+24m?/B+12m/B.

Let
Bu=0BB+2)- m2m+1) ,
BL=21m(3B+2)+l(l+])(3B+2)+%1(l+1)£, and

Bs =3m 3mB+2m+§B+1

Let B* = Bs + Bm + Br. The scheduling problem is: Is there an order preserving and
no-wait-in schedule of these jobs such that 3 *"*' C; < B* ?

If the partition problem has a solution, then schedule the jobs as follows: first sched-
ule the medium jobs in any order without overlapping; schedule any three small jobs that
correspond to the three integers in the same partition subset fully overlapping with two ad-
jacent medium jobs; finally, schedule the large jobs after the medium jobs one by one in
any order without overlapping. See Figure 2.3 for an illustration of the schedule. One can
easily verify that the schedule is an order preserving and no-wait-in schedule. To bound
the total completion time, the total completion time of each type of jobs is calculated sepa-
rately. Without loss of generality, suppose that the medium jobs are scheduled in the order

of3m+1,3m+ 2, ..., 5m. Since the medium jobs are scheduled one by one from time

26

0 without overlap, the total completion time of all medium jobs is

5m

2m
D (i-3m)-(ai+bi+c)=) i-(3B+2)=(3B+2)-m2m+1)=Bu .
i=1

i=3m+1
Similarly, the total completion time of all large jobs is
Sm+l

D (2m(3B+2)+ (i—5m)- (a;+ by +¢1))
i=5m+1
1
=1-2m(3B+2)+) i(2(3B+2)+¢)

i=1

1
=21m(3B+2)+l(l+1)(3B+2)+2—1(1+1)e
=B .

Now consider the total completion time of the small jobs. Suppose that the small
jobs corresponding to the partition subset X;, 1 < j < m, are ji, j> and j3; furthermore,
suppose that j; is scheduled before j; which is scheduled before j3. Suppose that these jobs
overlap with two consecutive medium jobs 3m + 2j — 1 and 3m + 2j. Let C;, denote the
completion time of the small job j;. Then

G, =RG-1)(3B+2)+ (B+1)]+aj, + b, +¢,
=[2G -1)B3B+2) + (B+ 1) +x, + (3B +2—x,) +x,
=[(2j —1)3B+2) + (B+ 1) +x;,
<[(2j—1)(3B+2) +(B+1)]+%B .
Similarly, one can get
G,=RG-1BB+2)+(B+1)+a;] +aj, +bj, +c;,
=R3G-1BB+2)+ (B+1)+x5,] +x%, + BB+2—x5,) +x,
=[(2j-1)(3B+2)+ (B+1)]+x;, +x5,
<IB-T)EB+2)+(B+ 1) +5B

and

G, =2G-1)(3B+2)+ (B+1)+aj, +a,] +aj, +b;, +¢j,

27

=[2G-1)3B+2)+ (B+1)+x5, +%;,] + %5, + 3B+2—x5,) +%;,
=[(2—1)(3B+2)+ (B+1)] +x;, +x;, +x;,
=[2j—1)3B+2)+(B+1)]+B

Thus,

. 1 3
Cj,+Cj2+cj3<3-[(2;—1)(3B+2)+(B+1)]+§B+ZB+B

=3-[(2)'—1)(3B+2)+(B+1)]+§B .

Hence, the total completion time of all small jobs is

3m
) G= ZZC,1<Z[((25=1) 3B+2)+(B+1))+§B]
j=1

i=1 i=1

=3m2-(3B+2)+3m(B+1)+ZmB
=3m [3mB+2m+§B+]]
=B .

Therefore, the total completion time of all jobs is

3m S5m Sm+l
ZC5+ Z G+ Z C; <Bs+Bm+BL=B".
j=1 j=3m+1 j=5m+1

Now, suppose there is an order preserving and no-wait-in schedule of all these jobs
such that Zsm+1 C; < B*. One need to show that there is a solution to the partition prob-
lem. Let S* be such a schedule with the smallest total completion time. Some observations
about S* are listed as follows.

First, a; = ¢; > b; for any two jobs i and j that are both medium jobs or large
jobs. Therefore, i and j can not overlap with each other in S*. For the same reason, a large
job can not overlap with a medium job in S*, nor can it overlap with a small job. Hence,
overlapping can only occur between the small jobs or between the small and medium jobs.
Next, because a; = ¢; = x; > B/4 for any small job i, 1 < i < 3m, there are at most

three small preprocessing/postprocessing tasks that can overlap with the slave task b; of a

28

medium job j. Since 2B < b; < 3B + 2 for any small job i, b; can overlap with tasks of at
most two medium jobs in the schedule S*.

Finally, there are two other properties of S*.

e Large jobs are scheduled after all medium jobs finish in S*.

As shown above, the large jobs can not overlap with the medium jobs and small jobs.
Suppose that some medium jobs and small jobs are scheduled between two large
jobs. Then one can modify the schedule by moving the first large job so that it is
scheduled immediately before the second large job. Since no small or medium jobs
can overlap with the large jobs, this movement will not affect the feasibility of the
schedule, i.e., it is still an order preserving and no-wait-in schedule. However, the
new schedule has a smaller total completion time which contradicts the assumption

that S* is optimal.

o Exactly three small jobs overlap with a medium job in S*.

It is clear that a small job can not be scheduled after a large job; otherwise, one can
interchange them without increasing the total completion time. Similarly, a small job
can not be scheduled between two medium jobs. Therefore, a small job can only be
scheduled either before all medium and large jobs or fully overlapping with medium

jobs.

Suppose there is a preprocessing task a; of a small job i which is scheduled before

any medium or large jobs in S*. Then,

S5m+1 S5m+1
> asn> Y gsy
i=1 j=3m+1

5m
> I: Z (ai—+-(j——3m)-(aj+b,-+cj))j|

j=3m+1

5m+l
+[Z (a; +2m(3B+2) + (j —5m) - (a; + b; + ¢;))

j=5m+1

29
2m

=(2m+la; + [Zi - (3B +2)}
j=1

1
+ {IZm(SB +2)+) j-(23B+2)+ a)]
j=1
=2m+ Vg +M+L

1
> —(2m+1)B+B*—Bs .

=N

By assumption, 1 > 36m? + 19m + 24m?/B + 12m/B. Thus, Bs < § (2m + 1)B.

Hence, Y >™*' C;(S*) > B*, contradicting the assumption that Zf:,“ Ci(S*) < B~

i=1
Therefore, every small job must overlap with exactly two adjacent medium jobs in
S*. Since there are 2Zm medium jobs and 3m small jobs, there must be exactly three

preprocessing tasks or three postprocessing tasks overlapping with a medium job.

For any medium job j, there are exactly three small jobs overlapping with it in S*.
Because b; = B, the sum of the preprocessing or postprocessing tasks of the three small
jobs overlapping with j is exactly B, which means that the corresponding three integers

have a total exactly B. Thus, the partition problem has a solution.

CHAPTER 3

OPTIMAL AND APPROXIMATION ALGORITHMS: SPECIAL CASES

This chapter considers special cases of the total completion time minimization problem and
no-wait-in-makespan problem. It is assumed that (1) there is a single master, (2) all jobs
have the same release time 0, same preprocessing task length a and same postprocessing
task length c; i.e., the jobs are different from each other only by their slave tasks, (3) no
preemption is allowed. It is proved that in this case if there are canonical and order preserv-
ing constraints, then in O(nlogn) time one can find an optimal schedule that minimizes
the total completion time, when a; = aandc; =cforall1 < i < mand a < c. After
that, some approximation algorithms are developed for the canonical total completion time

problem and the no-wait-in makespan problem.

3.1 Optimal Algorithms for } C;: Canonical and Order Preserving Schedules
It has been shown in Chapter 2 that minimizing total completion time is strongly NP-hard,
even under severe constraints. This section shows that there is a special case that admits a

polynomial time algorithm.

Theorem 3.1.1 The problem of minimizing the canonical and order preserving total com-
pletion time can be solved in O(nlogn) time ifa; = aandcy = cfor1 < i< nand

a<c

Proof : The proof is by showing that a canonical schedule S* that schedules the pre-
processing tasks in nondecreasing order of the processing times of the slave tasks gives an
optimal order preserving schedule.

For any job 1, let 7r; denote the rank of job i in $*; i.e., a; is the 71;-th task scheduled

in $*. Because only canonical schedules are considered, the earliest possible time to start

30

31
ci is 13 = max(na,m; a + b;). For any two jobs i and j, if 7ty < 7; and b; < b, then
13 < 7;. By the definition of canonical schedules, c; will be scheduled before c¢;. Thus, S*
is order preserving.

The next step is to show that S* has the minimum total completion time among all
canonical and order preserving schedules. Suppose there is another canonical and order
preserving schedule S that is optimal. Suppose the jobs in S are in the order of 1, 2, ...,
n, and there are two jobs 1 and i + 1 such that b; > b;,;. Let their finish times in S be C;
and C;,q, respectively. By interchanging them, one can get new finish times C and C{
and all the other jobs have the same finish times as before. One can show that C{ < Ciy
and C{,; < C;. Thus, the new schedule has total completion time no larger than before.

By repeatedly interchanging jobs, one will arrive at the schedule S*. a

Note that Sahni [104] showed that when a; = a, ¢; = ¢ and a = ¢, scheduling
jobs in nondecreasing order of the processing times of the slave tasks also minimizes the
makespan.

If a > c, then the canonical schedule that schedules the jobs in nondecreasing order
of the processing times of the slave tasks is still order preserving but may not be optimal.
The complexity of the problem of finding an optimal canonical and order preserving sched-
ule when a > c is not known at the present time. However, we will show in the next section

5

that scheduling the jobs in nondecreasing order gives a 3-approximation.

3.2 Approximation Algorithms for }_ C;: Canonical Schedules
This section considers canonical schedules only. So a schedule in this section always means
a canonical schedule. The goal is to minimize the total completion time when a; = a and
¢y =c for all i.
Consider n jobs all of which have preprocessing time a and postprocessing time c.
Each job 1 has a slave task b;. Let S be a canonical schedule of these n jobs. Let 7;(S)

denote the rank of job i in S; i.e., a; is the 7t;(S)-th preprocessing task that is processed.

32
Let 7(S) = max(na, 7;(S) - a + b;) be the ready time of c;; i.e., at time 7;(S) the master
machine will schedule c; if it finishes the postprocessing tasks that are ready earlier than
ci. Let S* be the canonical schedule of these n jobs with minimum total completion time
2 G(SY).

Given a subset G of the n jobs, let Sg; denote the schedule that minimizes) ;. C
among all schedules of the n jobs. Let Cg be the sum of the completion time of the jobs
from G in S§,.

The next lemma gives a lower bound of the total completion time of the optimal

schedule S*. This lemma is useful for later analysis.

Lemma 3.2.1

n

ZCi(S*) > n2a+%n(n+ e 3.1

i=1

ZC (8") E n+1a+Zb +nc (3.2)
i=1

Proof : First since only canomcal schedules are considered, the earliest possible time to
schedule a postprocessing task is na. Hence, the best possible schedule is one that first
executes a postprocessing task at na, and thereafter the remaining postprocessing tasks,

one after another without any idle time. Thus,
n n
x . 1
Z Ci(S*) > Z(na+1c) =n?a+ En(n+ 1c
For (3.2), recall that a postprocessing task can not start earlier than its ready time

1(S). Therefore,

D) G =) (s +e)
i= i=1
> (m(S)a+bi+c)
i=1
= (Z 7Ti(5*)£1> + Z b +nc
i=1 i=1

—n(n+l)a+Zbi+nc .

i=1

33

O

The next two lemmas show that there are some special cases that can be solved by

a polynomial time algorithm.

Lemma 3.2.2 If maxi<i<n by < (n — 1) - min(q, ¢), then any canonical schedule is an

optimal schedule.

Proof : Let S be a canonical schedule. Suppose the jobs are scheduled in the order
of j1, j2, ..., in. By definition, 7; (S) = i. By assumption, b;; < (n — 1)a. Thus,

75, (S) = max(na, a + b;,) = na. So,
G, =1;(S)+c=na+c.
For job j3, the following can be derived.
15, (S) = max(na,2a + b;,) < max(na, (2a+ (n — 1) min(a,c))) < na+c =C;,

Therefore, c;, will start immediately after c;, completes at na+c. Similarly, one can prove
that there is no idle time before all ¢ tasks finish. Thus, } -, Ci(S) = Y ' ,(na +ic) =

n?a+ 3n(n+1)c. By (3.1), S is an optimal schedule. o

Lemma 3.2.3 Suppose (n — 1)a < by < b, < ... < bn. Ifa > ¢ ora < c but
biyi —bi > c—afor1 < i< n—1, then an optimal schedule can be obtained by

scheduling jobs in nondecreasing order of the processing times of the slave tasks.

Proof : Let S be a schedule that schedules jobs in nondecreasing order of the processing
times of the slave tasks. Then 7t;(S) = i. Because b; > (n — 1)q, 1;(S) = max(na,ia +
b;) =ia + b;.

Ifa>c,thent;1(S) = (14 1)a+ by > ia+ by + ¢ = 1;(S) + ¢, which means
that the master machine can schedule c; at r; and finish at ; + ¢ by the time c¢;,; becomes

ready. Thus, C;(S) = r; + ¢ = ia + b; + ¢. The total completion time of S is

iCi(S)=i(ia+bi+c)=%n(n+1)a+ibi+nc .

i=1 i=1 i=1

34
By (3.2), S is an optimal schedule.
If a < cbut b;11—b; > c—a, then itis still the case that 71 (S) = (i+1)a+biyq >

1(S) + c. Similarly, one can show that S is an optimal schedule. a

The above lemma does not apply if only a < ¢ holds. Consider the three jobs
Jh=(1,7,3),]2=(1,8,3) and J53 = (1, 20, 3). If the jobs are scheduled in nondecreasing
order of the processing times of the slave tasks, then the total completion time is 51. But if
the jobs are scheduled in the order of J;, J; and J,, one can get a smaller total completion
time of 50.

The next theorem gives a bound of the worst schedule versus the best schedule.

Theorem 3.2.4 Let S be a schedule that schedules jobs in an arbitrary order. If a < c,

then
ZTL—] Ci(S) 1
S Gy S TirEs (33)
If a > c, then
Z?:] Gi(S) 1
Y T G4

Proof: Let C; < C; < ... < C,, be the completion times in S. Let j be the last job that
finishes before the first idle time. The jobs will be divided into two subsets G and G; as
follows.

Let j and all the jobs that finish before j be in G;. By assumption, for any k < j,
k € Gy and Ci(S) = na + kc. By (3.1), the total completion time of the jobs in G; in any
schedule can not be smaller than that in S. Thus, 3 , ., Ck(S) = Cg,.

Let the remaining jobs k > j be in G;. Then, for any job k in G;, one can derive
that 1, = mca + b > na and 1 < T4, Forjob j + 1, Cj4y = 741 + c. Forjobj + 2,

one can obtain the following.

Ci42 = max(Cj41, 1542) + ¢ < max(rj42 + ¢, T42) + ¢ =742 + 2¢

Similarly, one can show that forj + 1 < k < n,

Ce <+ (k—jle=mca+ b+ (k—ij)c

Thus,
Z Ck(S) = Z Cx
keG, k=j+1
< Y (ma+be+ (k—jk)
k=j+1
n n—j
= (Z (7rka+bk)> +ch
k=j+1 k=1
n n n—j—1
=) ma+ (Z bk) + (Z kc)+(n—
k=j+1 k=j+1 1
n—j—1 n—j
5 Zka+(z bk)+ Y ke
K=j+1 k=j+1 =1 =1
n—j n—j—1
= (Z(ka+bk+,- +C)) + (n—j)ja+ Z kc
k=1 k=1
s 1 . .
< C’éz+(n—1))a+5(n—1)(n—1—1)c
1 . .
< Cg, +n=j)j+5 (n—j)n—j— 1) max(a,c)
<Cg, t]zn(n — 1) - max(a,c)
So,

n

Z Z C(S) + Z Ck(S)

k=1 kEeG, keG;
1
5C‘{;1+C‘éz+in(n~1)-max(a,c)
i 1
< Cx(S*)+ =m(n —1) -max(a,c) .
< YOS+ znn 1) max(ao

By (3.1), Y 1 Ck(S*) > n?a+ %n(n + 1) c. Therefore,

Y w1 Cx(S) %n(n—])-max(a,c]<1+]-f{_; ifa<c
2 o1 Cu(S*) ~ na+inn+1)c 1 ifa>c

35

36

Corollary 3.2.5 Let S be a schedule that schedules jobs in an arbitrary order. If a > c,
2 k=1 Ck(S) 3.:0, 2 2=1Cx(S) 4, . 2 2=1Cx(8)
then—z—%Ja‘% < 3 lfa—C, then% < 3 andlfa<c, thenf]% < 2

k=1 k=1

Proof : The correctness follows directly from (3.3) and (3.4). a

It is unknown whether the bounds in the above theorem are tight or not. For the
case that a = ¢ = 1, there are examples approaching the % bound. If n = 5, let the
bi’s be 2,3,4,5,6. If b;’s are used to represent the jobs, then the optimal order of the
jobs is (4,6,3,5,2) with total completion time 40, while the worst scheduling order is
(6,5,4,3,2) with total completion time 50. If n = 9, let the b;’s be 4,5,6,...,12. The
optimal order is (8,9, 10,12,5, 11, 7,4, 6) with completion time 126, while the worst order
is (12,11,10,9,8,7, 6,5, 4) with total completion time 162.

Now consider simple algorithms that improve upon the previous bounds. The next
two theorems show that if the jobs are scheduled in nondecreasing order of the processing

times of the slave tasks, then one can obtain better bounds.

Theorem 3.2.6 Suppose a > c. Let S be a schedule that schedules jobs in nondecreasing

order of the processing times of the slave tasks. Then,

ZE=1 Ck(S) 1
TeaCls) 1 |
S Gis) S TarEo (3.5)

L . D X o () 7 . 11 Cx(S) 5
which is a tight bound. If a = c, f%‘——‘m <gzandifa>c, Em <3

k=1%k

Proof : Suppose b; < b, < ... < by. Since S schedules the jobs in this order, for any
1 <1< n,n =max(na,ia+ b;). Therefore, ; < 7i41, which implies that C; < Ci4;.
Let j be the last job that finishes before the first idle time. The jobs will be divided into two
subsets G and G as in the proof of Theorem 3.2.4. Let j and all the jobs that finish before
j be in G;. By the above analysis, k € G, if and only if k < j. Because there is no idle
time before j finishes, Cy(S) = na + kc for all k < j. Thus, Z_keG] C«(S) = Cg,.

The remaining jobs are in G,. Since there is idle time before c; starts, we have

Cjy1 =Tj41+c¢ = (+1)a+b;41 +c. By assumption, a > c and bj41 < bj;,. Therefore,

37
C)'+1 < (] + 2)0 + bj.,_z = Tj42. Thus, Cj+2 = max(Cj+1,T,~+2) +c= Tj+2 +c. Similarly,
for any j + 1 < k < n, one can derive that Cy, = 1 + ¢ = ka + by + c¢. Thus,

D CuS) =) CulS)+) CulS)
k=1

keG; keG;

n
=Cg, +) (ka+be+c)
k=j+1
n—j
D _(ka+biy; +c)

k=1

< Cg, +Cy, +iln—jla

2
By (3.1), Y ¢, Ci(S*) > n?a+ n(n + 1)c. Therefore,

2 -1 G(S)
n < <lT4—s .

2GS T nZa+inn+1)c +4+£u9

n , Cie

It is easy to see that if a = ¢, &E=L55) < 7 andif a > ¢, k=t 2Bl < 8,
G5 <6 L I

k=

< Z Ck(S*) + 1n2a .
k=1

- InZa 1

To show that the bound is tight when a = c, set half of the jobs with b; = (% n—1)a
and the other half with b; = (% n — 1)a. For example, if n = 6 and a = ¢ = 1, let the
bi’sbe 2,2,2,8,8,8. The optimal schedule will schedule the jobs with b; = 8 first, then
schedule the jobs with b; = 2.

Ifa>c,letby =c,b, =aandb; = (i—1)(a+¢c)for3 < i< n. Then
the optimal schedule schedules the jobs in nonincreasing order of the b;’s and the total
completion time is nZa + %n(n + 1)c. However, scheduling the jobs in nondecreasing

order of the b;’s gives the total completion time % n?a + % n(n+ T)c. a

It is clear that the schedule obtained by scheduling jobs in nondecreasing order
of the processing times of the slave tasks must be an order preserving schedule. Since
the optimal canonical and order preserving schedule can not have a total completion time
smaller than nZa + %n(n + 1)c, the above bound also applies to canonical and order

preserving schedules.

38

Corollary 3.2.7 Given n jobs such that a; = aand ¢y = c forall 1 < 1 < n. Suppose
that a > c. Then, in O(nlogn) time, one can find a canonical and order preserving
schedule with total completion time at most % of the minimum among all canonical and

order preserving schedules.
The case a < ¢ is considered next.

Theorem 3.2.8 Suppose a < c. Let S be the schedule that schedules jobs in nondecreasing

order of the processing times of the slave tasks. Then

ZE:] Ck(s) 1
ket kD) gy

If4a < ¢, then the bound is g.

4
< 3 (3.6)

Proof : Suppose that b; < b, < ... < by,. Let S be the schedule that schedules jobs
in this order. The jobs are divided into groups according to their completion times. Those
jobs that complete before the first idle interval are in Go. Those jobs that complete after the
first interval and before the second idle interval are in Gy. Those jobs that complete after
the second interval and before the third idle interval are in G, and so on. Suppose there
are m + 1 groups. Let the numbers of jobs in these groups be xy, ..., X, respectively.

Let Sg, be the schedule that minimizes } ;.. Cx among all schedules of these n
jobs. Let C, = ZkeGi Ck(S’éi). Since the jobs in Gy complete one by one immediately
after all a tasks finish under S, ZkeGo Ci(S) = Cg,- ForG;, 1 <i<m,lety; = Z};(], X,
i.e., y; is the number of jobs scheduled before jobs of G;. It will be shown in the following
that ZjEGi G(S) < Cg, +xi-yia

Suppose that the jobs finish in the order ji, j2, .. . , j; under Sg,. Then C;, (Sg,) >

a+bj, +cand G, (Sg,) > G, (Sg,) + (k—1)c, 1 <k < x4. So

xXi Xi
&= Cp(St) > Y IC;,(Se) + (k—1)c] .
k=1 k=1
By Theorem 3.1.1, S is order preserving. So job y;+ 1 must finish first among all jobs of G;.

Because there is idle time before ¢, 11, it must be true that Cy,11(S) = (yi+1)a+by,1+c.

39

By assumption, by, 11 < b;,. Therefore, Cy 41(S) < yi a+(a+bj, +¢) < yi a+GCj, (St).

Since there is no idle time between jobs of G; under S, for any other job j € G;, it must be

true that C;(S) = Cy,+1(S) + (j — yis — 1)c. Thus,
Yi+xi

> G(S)= > [Cyn(S)+(i—yi— Nl

JEGt j=yi+1
Yit+xi

<) lwa+Gy(Se) + G-y~ Nl

i=yi+1

=x-yia+) [G(SE) + (k—1)c]
k=1
=x-yia+ Cg, .

Therefore,

D CS) =) CuS) +izck(5)

k=1 kEGo i=1 keG;

Ct, + Z (C&, + % wa)

i=1
1
x")
i-

(Ee)+(E
Lo +(—~
3 ()

i=0

™=
g T

1

Ma

[
-

i

IA

x =
E lM"‘ i

NI—‘

1
Ck[S*) + inza .

1

=~
Il

Thus,

Zk—]ck zna %nza 1 4
S AT <l+t——<=,
Y C(SY) S C(s) = nZa+in(n+1)c 2+2 3

and if 4a < c, then —Zh—-l% <1

40

o
[\
BN
(@)
~J
oo
[um—
)
[um—
[um—
[um—
o
[u—
w
S
oS

16 1819

T
T
T

4

Figure 3.1 Illustration of Algorithm 1: jobs are (2,5,1), (2,7,1), (2,7,1) and (2,8, 1).

3.3 Approximation Algorithms for No-wait-in Makespan
In this section two algorithms will be proposed to minimize the makespan of no-wait-in
schedules in the special case; i.e. a; = a and ¢; = c for all i. The first algorithm is for the
case when a > ¢, while the second algorithm is for the case when a < c.

Algorithm1-a > ¢

1. Sort the jobs in nondecreasing order of the processing times of the slave tasks. Sup-

pose the sorted jobs are in the order of 1, 2, ..., n.
2. Schedule task a; at time 0, b; at time a and c; at time a + b;.

3. Repeat until all jobs are scheduled (see Figure 3.1):

Suppose the jobs 1, 2, ..., i — 1 have been scheduled. Find the first idle interval
[t1,t2) before C;_; such that t, — t; = a, schedule a; at t; on the master machine,
b; at t; on the slave machine and c; at t; + b; on the master machine. If no such idle

interval exists, schedule q; at time C;_4, b;at C;_; + aandc; at C;_7 + a + b;.

Theorem 3.3.1 Let S be a schedule produced by Algorithm 1 for a given set of n jobs
with preprocessing tasks a and postprocessing tasks ¢ and a > c. Then S is a feasible

no-wait-in schedule, and

Con(S)
e < s
G5 =3

Proof : Suppose by < by < ... < b,. The first step is to show that S is a feasible no-
wait-in schedule. For convenience, let t,(1), tp(i) and t.(i) be the times that a;, b; and ¢;
start in S, respectively. By the algorithm, t,(1) = to(i) + a, tc(1) = tq(1) + a + b;. Thus,

it is enough to show that S is a feasible schedule.

41

It is sufficient to show that after the jobs 1, 2, ... ,1— 1 are scheduled, the intervals
[ta(i), ta(i) + a) and [tc(i), tc(i) + c) are both idle. By the algorithm, it must be the
case that [tq(i),te(i) + a) is idle. Besides, since the task q; is scheduled to the first
idle interval [to(1),to(1) + a), it must be true that t,(i — 1) + a < tq(i). Recall that
te(i—=-1)=t(i—1)+a+bj_yand t.(i) =t.(i) + by + a. Since b;_; < bjandc < q,

Cioi=t(i—-1)+c=t(i—-1)+a+b1+c<t (i) + b +a=1t(i) .
So, every task c; starts after the task c;_; completes, which means that the interval [t (i),
te(1) + c) must be idle.

By the above analysis, C;_1 < C; in S. Therefore, Cpa (S) = Cr, = to(n) + a +
b + c. The first step is to show that t,(n) < 2 Cpax(S*).

If there is no idle time before t,(n), then this is obviously true. Otherwise, there
must be some idle intervals before t,(n). By the algorithm, the length of each idle interval
before t,(n) must be less than a; additionally, there are two types of intervals: those that
overlap with b;’s and those that are between C; and t.(i + 1) for some i, where 1 <
i < n — 2. Let I; denote the total length of first type of idle intervals and I, denote the
total length of the second type of idle intervals. Because only no-wait-in schedules are
considered, the first type of idle intervals are inevitable even in an optimal schedule. There

are at most (n — 1) idle intervals of the second type all of which are smaller than a. Hence,
to(n) = non-idle time before to(n) + I; + I»
< Cnax(S¥) + I
< Chax{S*)+ (n—1)a
< 2 Crax(S) .
On the other hand, a + by, + ¢ < Cpax(S*). Therefore,

Cmax(s) = ta(n) +a+ bn +c<3 Cmax(s*] .

42

Note that if a = ¢, then (n — 1)a < % Cmax (S*). By the above analysis, t,(n) <

% Cmax- Thus, Cpa(S) < % Cmax(S*). If @ = ¢ = 1 and all task times are integers, then
there is no idle time of the second type before to(n), so tq(n) < Curax(S*). Therefore,
Cmax(S) = tq(n)+1+br+1 < 2 Cpax (S*). The bound of 2 can be achieved asymptotically.
Consider n = 2m + 1 jobs, where a; = ¢y = 1forall1 <i<n,by=1for1 <i<
2m, and by = 4m. The optimal schedule schedules job 2m + 1 first, and all other
jobs completely overlapping with byy,.1. The ratio between the algorithm and the optimal

solution for this instance is 1 + 431"4‘_2, which approaches 2 when m is large enough.

Note that Algorithm 1 actually produces order preserving schedules. Since the
minimum order preserving and no-wait-in makespan cannot be smaller than the minimum

no-wait-in makespan, one can obtain the following corollary.

Corollary 3.3.2 Let S be a schedule produced by Algorithm 1 for a given set of n jobs with
preprocessing tasks a and postprocessing tasks ¢ and a > c. Then S is an order preserving

and no-wait-in schedule and

Con ()
—maxlY) <
Co(5) =2

among all order preserving and no-wait-in schedule S*.

Algorithm2-a<c

1. Sort the jobs in nondecreasing order of the processing times of the slave tasks. Sup-

pose the sorted jobs are in the order of 1, 2, ..., n.
2. Schedule task a; at time 0, by at time a and c; at time a + by.

3. Repeat until all jobs are scheduled (see Figure 3.2):

Suppose jobs 1, 2, ... ,1— 1 have been scheduled. Find the first idle interval [t;, t3)
after t,(i—1)+a and before C;_; such that t;—t; = a and t,+b; > C;_;. Schedule

a; at t; on the master machine, b; at t; on the slave machine and c; at t; + b; on

43

01234 56 9 12 13 16 19 24 27
'\ \
a §a2 a3§a4 c, c, a, <, c, c

Figure 3.2 TIllustration of Algorithm 2: jobs are (1,5, 3), (1,6, 3), (1,9,3), (1,10, 3) and
(1,11,3).
0 t.(1) Cj tak+2) tG+1) ¢

al] alu

o~

a(m) Cn

Q

a2 o0 e Cl el (XX} Ci a

-1

ak+2 a“,q eee a‘kﬁn

W

T

i

’?3
T
0
T
o
i
o

Figure 3.3 Illustration of the proof of Theorem 3.3.3. The idle interval between c;_; and
¢; has length less than a; the idle interval between a4 and ay+; has length less thanc —a
and the idle interval between ay.m and ¢;41 has length less than c.

the master machine. If no such idle interval exists, schedule a; at time C;_;, b; at

Ci1+aandciat Ci_;+ a+ b

Theorem 3.3.3 Let S be a schedule produced by Algorithm 2 for a given set of n jobs
with preprocessing tasks a and postprocessing tasks ¢ and a < c. Then S is a feasible
no-wait-in schedule, and

Cmax(S

Em—:% <3.
Proof : One can use a similar argument as in the proof of Theorem 3.3.1 to show that S
is a feasible no-wait-in schedule.

Assume that b; < b for 1 <j <n — 1. By the algorithm, C; < C; < ... < C,,.
Suppose that C; < tq(n) < Ciyq for some i. In order to bound Ciax(S)/Crax(S*), first
consider the length of the idle times between C; and tc(j + 1) for 1 < j < i—1. There
are three cases depending on the number of a tasks scheduled between C; and t.(j + 1).

Assume that ay is the last task scheduled before t.(j). See Figure 3.3 for an illustration.

1. There is no a task scheduled between C; and t.(j + 1).

In this case the whole period between C; and t.(j + 1) is idle. It will be proved by

contradiction that t.(j + 1) — C; < a.

44

Consider the time when job k + 1 is going to be scheduled. By the algorithm, the
jobs 1, ..., k have been scheduled at this time. Because ay is scheduled before c;,

ta(k) + a < tc(j). By assumption, by < byy1. Thus,
Ck=ta(k)+a+bk+c§tc()')+bk+c=C5+bk< G +a+beyr .

Suppose that t.(j+ 1) — C; > a. Let t; = Cjand t; = Cj+ a. Then t; < t.(j+1).
Thus, [ty, t2) is an idle interval whose length is equal to a. According to the above
inequality, t; + b1 > Cy. By the algorithm, a,q will be scheduled by t;, which
contradicts the assumption that ay..q is scheduled after t.(j + 1) > t,. Therefore, it
must be true t.(j + 1) — C; < a. In other words, the idle interval has length less than

a which is less than c.

. There is a single task ay4+; scheduled between C; and tc(j + 1).

By the analysis in Case 1, ax41 must be scheduled immediately after C;. Thus, the
only idle interval between C; and t.(j + 1) is [C; + a, tc(j + 1)). It will be shown in

the following that t.(j + 1) — (C; + a) < c.

Lett; = Cj+aand t; = tc(j+1). Consider the time when the job k+2 is scheduled.
By assumption, ay.2 is scheduled after t;. Since [t;,t;) is an idle interval, by the
algorithm, there are only two possible reasons that ay., is not scheduled during the
interval: (1) the length of the idle interval is less than a or (2) t; — t; > a but
t2 + btz < Cyqa. Since Cyyp =ty + b1 + cand byyz > by, t2 — t3 < c. By

the assumption, a < c. Therefore, in both cases,

tc(j+1)—(Cj+a]=tz—t1<C . 3.7

. There are several a tasks ay41, ..., Qk4m scheduled between C; and t.(j + 1).

As in Case 2, the task a1 must be scheduled immediately after C;. So there are
at most m disjoint idle intervals during the period from C; and t.(j + 1). It will be

shown that the length of each of these idle intervals is less than c.

45
First consider the length of the idle interval between to(k+p)+aand to(k+p+1),
where 1 < p < m—1. Without loss of generality, suppose that this interval has length
greater than 0. If (to(k+p) + a)+c¢ > t.(j + 1), then the length of the idle interval

is obviously less than c. So one may assume that (to(k+p) +a)+c¢ < t(j+1).

Lett; = (to(k+p)+a)+candt; =t, — a = tq.(k + p) + c. Consider the time
when the job k + p + 1 is being scheduled. It is clear that the interval [t;, t;) must

be idle at this moment. Since by p+1 > by, it is true that
t2 + bispt1 = [(ta(k +p) + @) + c] + biiptr > ta(k+Pp) + a+ ¢+ brp = Cuyp -
Thus, by the algorithm, the task ay;p,+1 must be scheduled at or before t;; that is,

ta(k+p+1)<ti=to(k+p)+c, (3.8)
which means that

tak+p+1)—(ta(k+p)+a)<c—a<c. 3.9)

For the interval [(tq(k + m) + a),ta(j + 1)), one can use the same argument as in

Case 2 to show that the length of the idle time during this period is less than c.

Now, one can bound the length of the interval [t.(1), to(n)). The interval consists
of three types of smaller intervals: (i) the intervals occupied by a tasks, (ii) the intervals
occupied by c tasks and (iii) idle intervals.

Suppose that ay, a, . .. , aq are the a tasks scheduled before t.(1). Then, there are
(n—1—q) a tasks scheduled during the interval [t.(1), to(n)). Therefore, the total length
of the type (i) intervals is (n — 1 — gq)a. Recall that it is assumed that C; < to(n) < Ci41.
So the number of ¢ tasks during the interval [t.(1),tq(n)) is i and the total length of the
type (ii) intervals is ic.

By Cases 1, 2 and 3, the length of the idle interval after each a task is at most c.
Since there are (n — 1 — q) tasks during the interval [t.(1), to(n)), the total length of the

idle intervals after these a tasks is at most (n — 1 — g)c. If there is no a task between C;

46

and Cj;q for 1 <j < i—1, then there is an idle interval between C; and C;;1 with length at
most a. Since there are i jobs that finish before t,(n), the total length of the idle intervals
between the jobs C; and C;4; with no a task between them and 1 < j < i —1 is at most
ia.
Thus, the length of the interval [t (1), to(n)) is
ta(n) — t.(1) = total length of type (i) intervals + total length of type (ii) intervals

+ total length of type (iii) intervals (3.10)

<Mm=-1T-qlat+ic+[(n—1—q)c+ia] . |

Next, bound t.(1). By the above assumption, ay, az, ... , aq are scheduled before
C;. Using a similar analysis as in Cases 2 and 3, one can show that t,(j + 1) — t.(j) < ¢
(see (3.8))for 1 <j < q—1,and t. (1) — (ta(q) + a) < c (see (3.7)). Therefore,
te(1) =a+by < tala) + (tc(1) —ta(q)) < (g —Nec+ (c+a) =qc+a . (3.11)
By (3.11) and (3.10),
ta(n) = tc(1) + (ta(n) — tc(1)
=t()+[(n—-T-qla+ic+((n—1-q)c+1ia)]
=(a+b))+[n-1-qglatic+((n—1-q)c+ia)l
<(ge+aj+(n—-1-qlatic+(n—1-gjc+id
=Mm—-—qgq+i)a+(n—T1+1)c
<2na+2nc
=2n(a+c)
< 2Cma(S*) .
Hence,

Coax =tam)+a+b,+¢<2Chux(S)+ (a+bn+c) <3Cra(S*) .

47

It is not known whether there is a set of jobs achieving a ratio of 3. However, one can
show that the ratio can approach 2 asymptotically. Letn =2m +1,a=1landc=1+z¢,
where ¢ is arbitrarily small. Suppose b; =1+ ¢ for 1 <1 < 2m and bz = m(4 + 3¢).
The makespan of the schedule produced by Algorithm 2 is 2m(4 + 3¢) + (2+ ¢). However,
the optimal schedule schedules job 2m 4 1 first and all other jobs completely overlapping
with bam41. Thus, the optimal makespan is m(4 + 3¢) + (2 + €). If m is very large, the
ratio between the algorithm and the optimal solution can approach 2 arbitrarily closely.

Note that Algorithm 2 produces schedules that are order preserving. Since the min-
imum order preserving and no-wait-in makespan cannot be smaller than the minimum no-

wait-in makespan, Theorem 3.3.3 implies the following corollary.

Corollary 3.3.4 Let S be a schedule produced by Algorithm 2 for a given set of n jobs with
preprocessing tasks a and postprocessing tasks ¢ and a < c. Then S is an order preserving

and no-wait-in schedule and

Cos(S)
—maxlY)
Co(5) =3

among all order preserving and no-wait-in schedule S*.

CHAPTER 4

APPROXIMATION ALGORITHMS: GENERAL CASES

In this chapter, the total completion time minimization problem will be considered under
various scenarios. This includes single-master systems, multi-master systems, and distinct
preprocessing and postprocessing master systems. Since the problem is strongly NP-hard,
the focus will be on approximation algorithms. For each type of system, both the case
when all jobs have the same release time and the case when the jobs have different release
times will be considered. Algorithms are designed to approximate the best preemptive or
non-preemptive schedules in these cases. The organization of this chapter is as follows. In
Sections 4.3 - 4.5, algorithms are designed to minimize total completion times of preemp-
tive schedules. Section 4.3 is devoted to the single-master case, Section 4.4 is devoted to
the multi-master case, and Section 4.5 is devoted to the case of distinct preprocessor and
postprocessor. In Section 4.6, conversions from preemptive schedules into non-preemptive
schedules will be considered. In section 4.7, linear programming relaxation approach is

applied to systems with distinct preprocessor and postprocessor.

4.1 Preliminaries

An o-approximation algorithm for makespan (or total completion time) is an algorithm
that for any set of jobs generates a schedule S whose makespan (or total completion time)
is at most « times the optimal makespan (or total completion time). It is an («, f)-
approximation algorithm if it is an a-approximation algorithm for makespan and at the
same time a (-approximation algorithm for total completion time. For a schedule S, if
Cmax (S) € a CZ,, and C(S) < BC*, then S is said to be an («, 3)-schedule.

The Shortest-Processing-Time (SPT) rule, which always runs the job with the least

processing time, and the Shortest-Remaining-Processing-Time (SRPT) rule [107, 111},

48

49

which always runs the job with the least remaining processing time, are two well-known
algorithms for minimizing total completion time. Usually, the SPT rule is used to generate
non-preemptive schedules, while the SRPT rule is used to generate preemptive schedules.
Suppose each job consists of a single task. If all jobs are available at time 0, then the SPT
rule is optimal for total completion time in the single-machine or multi-machine environ-
ment. If the release times are arbitrary, then the SRPT rule is optimal for a single machine
and it is a 2-approximation (see [95]) in the multi-machine environment.

In this chapter, both rules will be adapted for the problems in master slave model.
Both are applied to generate preemptive schedules. A scheduling decision is made when an
a task or a ¢ task completes so that a master machine becomes free, or when a new a task or
a ¢ task becomes available. At any such time instant, the SPT rule schedules, from the set
of available tasks (including those that have been preempted but have not yet completed),
the one with the smallest processing time. Depending on how one chooses from the set of
available jobs, one can obtain the SPT, rule and the SPT, rule. Specifically, in the SPT,
rule, preemption occurs only among the a tasks and the preemption is based on the length
of a;. In the SPT, rule, preemption occurs only among the c tasks and the preemption is
based on the length of c;. On the other hand, the SRPT rule schedules, from the set of
available tasks, the one with the smallest remaining processing time. Similarly, one can
define the SRPT, rule and the SRPT, rule. Both the SPT rule and the SRPT rule may
generate schedules with migration when there are multiple machines, i.e., after interrupted
on one machine, a task is resumed on a different machine.

In this chapter, the jobs are frequently sorted in certain nondecreasing order of some
parameters x; of job 1, e.g. x; = c;. For convenience, in this chapter x; < x; is used as long
as x; comes before x; in the sorted order, even though it may be the case that x; = x;. Asin
the previous chapters, one can always assume that the b tasks are scheduled immediately
when they become available. Thus one can focus on the schedule of a tasks and c tasks

only.

50

4.2 New Results and Techniques

Preemptive relaxation and linear programming relaxation are two important techniques for
getting constant-factor approximations for total completion time of non-preemptive sched-
ules; see [95, 59, 14, 45, 109, 108]. Most of these algorithms work by first constructing a
relaxed solution, either a preemptive schedule or a linear programming relaxation. These
relaxations are then used to obtain an ordering of the jobs, and the jobs are list scheduled
(i.e., no unforced idle time) in this order. More about these methods will be discussed in
Section 4.6.

The advantage of the preemptive relaxation is that usually there are very efficient
algorithms to generate optimal or near-optimal schedules. In most cases, these algorithms
(both preemptive and non-preemptive) can be implemented to run in an online fashion, see
[95] and [59]. The linear programming relaxation, however, is more time consuming and
can only be implemented to run in an offline fashion. On the other hand, it provides better
approximation guaranties in some cases. Furthermore, the method usually works even if
one wants to optimize the total weighted completion time; see [59, 14, 45, 109, 108].

Both approaches will be used in this chapter. In all cases, efficient algorithms are
first developed to generate preemptive offline or online schedules with good approximation.
These schedules are shown to have small makespan as well. Then, by applying the ideas in
[95] and [16] to the master slave models, these preemptive schedules can be converted in-
to non-preemptive schedules with certain degradation in the quality of approximation. In
the case when there are distinct preprocessing masters and postprocessing masters, linear
programming relaxation is also used. It is shown that non-preemptive schedules obtained
in this way sometimes have better performance guaranties than those obtained by the pre-
emptive relaxation approach. The results are summarized in Tables 4.1, 4.2, 4.3 and 4.4,

where e is the base of natural logarithm.

51

Table 4.1 New Results for Single-Master System

preemptive non-preemptive
11=0 (%,2),canonical (%,e—z_%—)
T = (2,2), non-canonical (3,4)
1, > 0| (2,2), online and non-canonical (3,4)

Table 4.2 New Results for Multi-Master System, All Schedules are Non-Canonical

preemptive non-preemptive
T = (2,2), no migration (4,4)
T, > 0| (2,2), offline with no migration (4,4)

1, > 0| (3,2), online with migration -

4.3 Single-master
This section assumes that there is a single master. Canonical schedules are studied first,
and then non-canonical schedules. Finally, the case when jobs have different release times
will be studied. For convenience, throughout this chapter, let A = Z?:l a;, B = Z?:] b;

and C=} ;.

4.3.1 Canonical Preemptive Schedules
First, two lower bounds of the total completion time in canonical schedules are developed.
Suppose there are n jobs 1, 2, ..., n. For canonical schedules, whether preemption is

allowed or not, one can derive the following lower bound

C*ZnA+iZci , 4.1)

j=1 cigc,-

52

Table 4.3 New Results for Distinct Preprocessor and Postprocesor System, my = m; = 1

non-preemptive
preemptive
preemptive relaxation | LP relaxation
Tizo (3,2) (4,32781) (3v5)
T > 0| (3,2), offline 4,4+ 2) (4,6)
T > 0| (3,2), online (4,4 + 62—_21) -

Table 4.4 New results for distinct preprocessor and postprocesor, my > 1 and m; > 1

non-preemptive
preemptive
preemptive relaxation | LP relaxation
T, = (4,2), with migration (4,%) (4,6)
1, > 0| (4,3), offline with migration (5,13) (5,7)
T; > 0 | (4,3), online with migration (5,13) -

which assumes that there is no idle time in the schedule and that the ¢ tasks are scheduled
in ascending order of their lengths. Another lower bound is

cr > iZai +B+C, (4.2)

ji=1 a;<aq;j

which assumes that jobs are scheduled in increasing order of the a;, and that the b tasks
and the c tasks are scheduled immediately after they are available. Finally, the following
trivial lower bound which is simply the summation of all the processing times holds for any

schedule.
C->A+B+C 4.3)

This follows from the observation that C; > a; + b; + ¢;. Summing j from 1 to n gives the

result in (4.3).

53
In canonical schedules, all the a tasks are scheduled first. Since all the a tasks are
available at time 0 and the c¢ tasks cannot start until all the a tasks finish, there is no need to

preempt the a tasks. Hence, only a ¢ task can be preempted by another c task in this case.

Algorithm Canonical-SPT.: Schedule the a tasks in an arbitrary order without preemp-

tion. After all the a tasks finish, schedule the available c tasks by the SPT, rule.

Theorem 4.3.1 Algorithm Canonical-SPT, generates a (2, 2) canonical preemptive sched-

ule in O(nlogn) time.

Proof : Let C,, denote the time a; completes. Then at time t; = max(A, (Cq; + b;)),
all the a tasks finish and the c; is available to be scheduled. Since Cq; < A, it must be
true that t; < A + b;. According to the algorithm, if there is another available task c; that
hasn’t finished at time t; and c¢; < ¢;, then ¢; has to wait until ¢; finishes. Also, during the
execution of c;, if there is another task ¢; < c; that becomes available, then ¢; preempts c;.
In both cases, it is said that c; is delayed by c;. Let C; be the completion time of c; in the

schedule generated by Algorithm Canonical-SPT.. Then,

CG=t+¢+ Z ci < (A+by+c) + Z_Ci .

cy delays c; ci<cj
The total completion time is
n n n
G <) |A+b+g+) o) = [nA+) DY o) +(B+C) < 2C,
j=1 j=1 ci<cj i=1 ci<cj

where the last inequality comes from the lower bounds (4.1) and (4.3).

The above approximation ratio is tight. Consider this example: for 1 <i<n—1,
aa=c¢=¢bi=a+n—1)¢ a, =cn, = aand b, = ¢. The optimal canonical
schedule schedules ay, a, ..., a,—1 first and then followed by a,,. The total completion
time is about (n + 1)a. However, if one schedules a,, first followed by ay, ..., an_1, then
the total completion time is about 2Zna. (For this example, the optimal preemptive schedule

has the same total completion time as the optimal non-preemptive schedule.)

54

It has been shown in [106] that any canonical schedule without preemption is a 2-
approximation for makespan. Since preemption among the c tasks can not increase the
makespan, the schedule generated by Algorithm Canonical-SPT, has makespan at most

two times the optimal. a

LetS; ={i:qa; <ci}and S; = {i: a; > c¢;}. Suppose the jobs in S; are arranged
in increasing order of the b’s and the jobs in S, are arranged in decreasing order of the b’s.
In [106], it was shown that the canonical schedule in which the a tasks of S; are scheduled
before the a tasks of S, has makespan at most 3/2 times the optimal schedule. If the a
tasks are scheduled in this order in Algorithm Canonical-SPT,, then one still gets a 3/2-
approximation for makespan, since preemption on the available ¢ tasks will not increase

the makespan.

Corollary 4.3.2 There is an O(nlogn) time algorithm that generates a (3/2,2) canonical

preemptive schedule.

Note that when preemption occurs, algorithm Canonical-SPT, uses SPT rule, in-
stead of the SRPT rule. This is for the purpose of analysis only. In practice, one can use

the SRPT rule to get a better approximation for total completion time.

4.3.2 Non-canonical Preemptive Schedules
In this model, the a tasks and the c tasks can be scheduled alternatively. A lower bound on

the C* can be obtained by assuming all the b tasks have length O:

>) (atc) 4.4)

i=1 ait+ciLajtc;

Algorithm Non-canonical-SPT,,.: For any two jobs, if (a; + ¢;) < (a; + ci), then
both a; and c; are said to have higher priority than a; and c;. At any time, if the master
processor is free for assignment, assign the available task with the highest priority. If a new
task becomes available and has higher priority than the currently running task, the new task

preempts the currently running task.

55

Theorem 4.3.3 Algorithm Non-canonical-SPT,, . generates a (2,2) preemptive schedule

for a single-master system when t; = 0 for all job j.

Proof : Since all the a tasks are ready at time O, there is no need for an a task to
preempt another task. Thus, preemption occurs only between a higher priority ¢ task and a
lower priority c task or a lower priority a task. Let C,; denote the completion time of a;
in the schedule generated by Algorithm Non-canonical-SPT.. If none of the a tasks is
preempted by a c task, then C,; would be a; + Zai +ei<aj+c; Qi- Because of preemption,
Cg; can be delayed by some higher priority ¢ tasks. In other words, ¢; can delay a; only if
a; + ¢ < qj +¢5. Attime t; = Cg, + by, the task c; becomes available. According to the
algorithm, c; can only be delayed by a task c; such that a; + ¢; < a; + ¢;. Note that if ¢;

delays qj, it will not delay c; again. Thus, one can bound the completion time C;:

C; < Co+bj+ci+ Y

c; delays c;
= E a; + E Ci +Clj+bj+Cj+ E Ci
aitci<aj+c ci delays q; c¢; delays ¢;
< > a4 > o) +(g+bi+c)
ai+ci<aj+c; ai+ci<aj+cj

— Z (ai+ci) +(0.j+bj+cj) .

ai+ci<aj-+cj

Therefore, the total completion time is

Yog< Y > lwtec) | +a+bitg

j=1 j=1 ai+ci<aj+c;

< (a;+ci) | +(A+B+C) by (4.4) and (4.3)

—1 a1+c,<a,+c,
< 2C .
To bound the makespan of the schedule, pick the last job j such that ¢; is scheduled
immediately when it is ready. Such a job always exists since the job i with the highest

priority always satisfy this criterion. Then, the interval I; = [0, C,,) and the interval after

56
¢; starts till the end, i.e., I = [(Cq; + b;), Ciax), contain no idle time. Denote their lengths

by |I1| and |I,], respectively. Then |I;| + |I;| < C},. Thus, the makespan is

Cmax :|Il|+b)+|12| < C:nax+b) <2C;1ax

4.3.3 Arbitrary Release Times

When arbitrary release times are present, it is not meaningful to have canonical schedules
any more. Thus, only non-canonical schedules will be considered. The lower bound (4.4)
still holds for this case. Let R = Y [, ;. Then, a trivial lower bound for the minimum

total completion time of any schedule is

C*EZ(ri+ai+bi+ci)=R+A+B+C 4.5)
i=1

Observe that Algorithm Non-canonical-SPT,.. makes no assumptions about the release
time of a job. So, one can still apply Algorithm non-canonical-SPT,,. when jobs have
arbitrary release times. Unlike the case when all jobs have the same release times, in this

case, a higher priority a task may also delay a lower priority a task or c task.

Theorem 4.3.4 Algorithm Non-canonical-SPT . generates a (2, 2) preemptive online sched-

ule for a single-master system even when the jobs have arbitrary release times.

Proof : One can first bound the total completion time of the schedule generated by
Algorithm Non-canonical-SPT,,... Let Cq; be defined as before. Then,

Cq,- = Tj+ Z a; + Z Ci +Clj

a; delays a; cq delays aj

and

G = Coy+bj+e+| Y a+) o

a; delays c; c; delays c;

= T+ Z ay + Z ¢i|+a+b+¢+ Z a; + Z Ci

ay delays a; c; delays q; a; delays c; ¢y delays c;

57

< Z (ai+c) | +(+a+b5+¢) ,

ait+ci<aj+cj

where the last inequality comes from the fact that the two sets of tasks delaying a; and c;
are disjoint, and they all have higher priority than a; and c;. Similarly, one can bound the

total completion time

n
G Y (aitc) |+ 5+ +b+g)

j=1 j=1 ai+ci<aj+c;

M

(a;+c¢) | +(R+A+B+C) by (4.4) and (4.5)

j=1 aitci<aj+c;

Th
I\/l

*

<

To bound the makespan, one picks the last job j such that c; starts immediately after it is
ready. Then the intervals Iy = [r;, Cq;) and I = [(Cq, 4 b;), Crax) must be both busy, and
the total length |I;| + |I3| of these two intervals is at most Z;;] a; + Z;‘:, ¢g=A+C<

Chax- Thus,
Coax =75+ Ll + b5+ |I2] < (5+1b;)+Chx < 2C, -

To conclude the proof, note that Algorithm Non-canonical-SPT,.. schedules jobs in an

online fashion. O

4.4 Multi-master
This section assumes that there are m > 2 masters, each of which is capable of processing

both the a tasks and the c tasks.

44.1 Non-canonical Preemptive Schedules
Let us assume that the jobs are indexed in nondecreasing order of a;+c;. Thatis, a;+¢; <

41+ for1 <j<n-—-1.

58

Algorithm FAM-SPT,,.: (1) Assign the jobs in order of n, n — 1, ..., 1 using FAM
(First Available Machine, see [106]) rule: associate each machine i with a variable T;.
Initially all machine are available and T; = 0. Pick the next unassigned job j and assign it
to the machine 1 with the smallest T; and after the assignment T; is increased by an amount
of g; + c¢;. Repeat this procedure until all jobs are assigned. (2) Apply Algorithm Non-

canonical-SPT,.. to each master machine to schedule the jobs assigned to it

Theorem 4.4.1 Algorithm FAM-SPT,, . generates a (2,2) preemptive schedule for multi-

master systems without migration when all jobs have release time 0.

Proof : Without loss of generality, we may assume that n = mk for some integer k.
Otherwise, one can add dummy jobs with a; = b; = ¢; = 0. For convenience, one can
reindex the jobs assigned to each machine p in the form of (p, q) such that a(, q) +¢(p,q) <
Qp,q+1) T C(p,q+1). A lower bound of the total completion time comes from the fact that
Algorithm FAM-SPT,, is optimal if b,) = 0 for every job (p, q).

m k
c > Z Z(k —q+1)(ap,q +Cpa) (4.6)

p=1 q=1

Fix a machine p. Let C(;, q) denote the completion time of job (p, q) and B, = Z]‘;:] bp,q)-

Following the analysis of Algorithm non-canonical-SPT,. in Section 4.3.2,

k k
Y Copam < (Z(k —q+1){apq + C(p.q))) +Bp .

q=1 q=1
Thus, the total completion time is

m k m k
> 2 Com <) (Z(k— a+1){(apq +cpal + Bp)

p=1 q=1 p=1 q=1

m k
< Y (Z(k —q+1)(apq + c(p,q))> +B by (4.6) and (4.3)

p=1 \g=1
< 2C* .

Now analyze the makespan of the schedule. It is easy to see that

n

1
* >_§ . s
Cmax = m (al +C))

j=1

59

Suppose the job with the maximum completion time among all jobs is assigned to machine
p. Let 1 be the last job assigned to p. If there is no idle time on machine p, then the

makespan is

Crax = Y (gt t(m+c)
j scheduled on p,j#1
141

1
E Z(ai + Cj) + ((11 + C1)
j=n

IA

1 ! m—1
< — . : —_—
< ;m(a, +c5) + (ay+c1)

1 *

Otherwise, let 1’ be the last job on machine p so that ¢ys is scheduled immediately after it
is ready. Define C, , as before. Then machine p is busy during the intervals I = [0, Cq,)

and I; = [(C,,, + br/), Ciuax). The makespan is

Crmax = Il +bv + 1121 < Z_ (a5 +¢;) — (ay +cv) + (ay + by +cv)
j scheduled on p

(aj + ¢;) is at most = 3!

j=n

By the above analysis, 3 ; (pedued onp (aj+¢) + 2 ar+c)

and by the ordering of the jobs one has (a; + ¢1) < (ay + ¢y/). Thus
1 ¢ .
Cmax S a Z(aj + Cj) -+ [(11/ + bll +C1I) S ZCmax

=n

4.4.2 Arbitrary Release Times

Offline schedule without migration In this case, one can still apply Algorithm FAM-
SPT.... However, note that to assign jobs to machines, Algorithm FAM-SPT,.. requires
that one has full knowledge of all the jobs at the beginning. Thus, Algorithm FAM-SPT,,.
is an offline algorithm. One can combine the arguments in Sections 4.3.3 and 4.4.1 to get

the following theorem.

60

Theorem 4.4.2 Algorithm FAM-SPT, . generates a (2, 2) offline preemptive schedule with-

out migration for multi-master systems when jobs have arbitrary release times.

Proof : Fix a machine p.

K x
Z Cipa) < (1r<n§1§kr(p ot (k—a+1)(apq+ C(p.q)]> +B, .
_ q:

Thus, the total completion time is

k m k
Y Cow <) (Z(k —a+1(apa +Cpa) +Bp+ ,rgggkf(p,q))

NE

p=1 q=1 p=1 q=1
m k
< > (Z(k —q+1)(apq + c(p,q))) +B+R by (4.6)and (4.5)
p=1 \g=1
< 2C*.

Now consider the makespan. Suppose the job with the maximum completion time
among all jobs is assigned to machine p. Let 1’ be the last job on machine p so that ¢y is
scheduled immediately after it is ready. Define C, , as before. Then the machine p is busy

during the intervals Iy = [ry, Cy,) and I = [(Cq,, + br), Cax). The the makespan is
Coax = 1+ [Li+bi+ I

< Z (a5 +¢) | + (rv +by)

j assigned to machine p

= Z (a,-—i-cj) —(ay +cy)+ (rv +ay + by +cy) .

j assigned to machine p

Let 1 be the last job assigned to machine p according to the FAM rule. As in the previous
section one can show that

+1
> (q5+¢) < (Z(aj+cj))+(al+cl)

j assigned to machine p j=n

(%Z(aj + Cj)) +

=1

—1
(a1+ C[) .

IA

61

Since 1 is the last job assigned to machine p, (a; + ¢i) < (ay + cy). It is known that

Chax > (rv + ayr + by +cy), thus

1 mn
Cmax <= (;L Z(aj +Cj)) +(rv+ar+by+cp) < 2Cha -

j=1

Online schedule with migration In this case, one can apply Algorithm non-canonical-
SPT,+. to multi-master systems. Note that if a new task becomes available and one or more
currently running tasks have lower priority than the new task, then the task with the lowest

priority will be preempted.

Theorem 4.4.3 Algorithm non-canonical-SPT . generates a (3, 2) online preemptive sched-

ule with migration on multi-master systems when jobs have arbitrary release times.

Proof : The proof needs another lower bound for multi-master systems. Consider the
instance I defined by (a;/m, b;,c;/m), 1 < i < n, on a single-master system. Then, by
the bound of (4.4), its total completion time is at least }__ .. <a;+e; (ai + ¢4)/m. This can
be shown to be also a lower bound for the instance II defined by (a;, bi,¢i), 1 <1< n,
on m masters. Let S* be an optimal schedule of these n jobs. Then, starting from time
0, for each time unit, if a; or c; is scheduled in this unit on some machine, then one can
schedule 1/m of the task to the single master in the same time unit. It is easy to see that
the constraint of release time are preserved and that the interval between the finish time of
a; and the start time of ¢; is either the same or increased. Thus one obtains a valid schedule

of the instance I on the single-master system. Therefore,

cr> Z Z (i +ci)/m @.7)

j=1 aj+ci<aj+c;

which is a lower bound of the original instance defined by (r;, a;, b, ¢i).
Let C,; denote the completion time of a; in the schedule generated by Algorithm
non-canonical-SPT,,.. After a; is released at 1j, it may be delayed by other tasks with

higher priority before it completes. That is, a; or ¢; can delay q; only if a;+c¢; < q;+c;. It

62

is easy to see that there is no idle time on any machine during the interval I; = [r;, (Cq, —
a;)); otherwise, a; would have completed earlier. Furthermore, only tasks with higher
priority than j can be scheduled during this interval. At time t; = C,, + bj, the task
¢; becomes ready. Similarly, there is no idle time on any machine during the interval
I; = [Cq + b5, (Cj — c;)), and only tasks with higher priority than j can be scheduled
during this interval. Note that the task sets in the intervals I; and I, are disjoint. Let |I;]
and |I;| denote the lengths of I; and I, respectively. Then, it must be true that |I;| + |I| <
2 citci< a5+ (a; + c4)/m. Thus, one can bound the completion time C; as follows:
G < n+ILil+ a5+ by + I + ¢
< D> (aitc)/m|+(+a+bi+g) .

a;+ci<a;+c;

The total completion time is

n
G < Z Z (ai+c¢i)/m +(rj+a,-+b,-+cj)
j=1 j=1 aitci<aj+c;
< > > (ai+c)/m|+(R+A+B+C) by (4.7) and (4.5)
j=1 ai+ci<aj+c;
< 2C* .

For the makespan of the schedule, let k be the job with the maximum completion time
among all jobs. Let 1 be the last job among all jobs so that c; is scheduled immediately
after it is ready. Define Cg, as before. Then, all machines must be busy during the intervals
I; =[r,Cq, — a1) and I, = [(Cy, + by), Crmax — ck). The total length of the two intervals

is |I1] + |I2| £ Cp,,. Therefore, the makespan is

Cmax='r1+|I1l+a1+b1+|Iz|+ck=(T1+a1+b1)+(|11|+|Izl)+ck<3C;‘nax .

63

4.5 Distinct Preprocessing and Postprocessing Masters
In this section, the model with distinct preprocessing masters and postprocessing masters
will be discussed. Different from the previous cases, here an a task can only be preempted
by another a task and a c task can only be preempted by another c task. In all cases,

Algorithm SRPT,-SPT, will be applied to obtain a preemptive schedule.

Algorithm SRPT,-SPT.: Schedule the available a tasks using the SRPT, rule on the pre-
processing master. Schedule the available c tasks using the SPT, rule on the postprocessing
master.

Let my and m; denote the numbers of preprocessing masters and postprocessing

masters, respectively. First the simple case m; = m; = 1 will be studied.

Theorem 4.5.1 Algorithm SRPT,-SPT, generates a (3, 2) online preemptive schedule when

my; =my =1 and1; > 0 for allj.

Proof : First consider the total completion time. Let C5, be the time a; finishes in an

optimal schedule. Then,

C*>) (Ch+bj+c) = (ZCZ,-) +B+C.
i=1 j=1

Let Cg; be the time q; finishes in the schedule obtained by Algorithm SRPT,-SPT.. Since
the SRPT, rule is optimal if b; = ¢; = 0, Algorithm SRPT,-SPT, must have the minimum

Z]L Cq; among all possible schedules. That is

n
Coy <) Ch .
j =1

Thus, the total completion time is at most

n

1

n n

n
Y [Coyt+bjte+ Y) <) (Coutbi+eg)+) D) o < 2C .

j=1 ¢ delays c;j j=1 =1 ci<cj

For the makespan, consider the last job 1 such that ¢; runs immediately when it is available

at time Cq, + by. There is no idle time in the interval Iy = [r, Cq,) and the interval

64

I, = [(Cq, + b1), Cmax). The length of each interval is at most C},,. Therefore, the

makespan is

Coax =11+ [I1] + by + |1 S3C:nax .

Theorem 4.5.2 Algorithm SRPT,-SPT. generates a (4,2) preemptive schedule with mi-

grationwhenmy > 1, my > landv; =0 forallj.

Proof : Since all a tasks are available at time 0, then the SRPT, rule is the same as the
SPT, rule. As mentioned before, the SPT, rule is optimal when the b tasks and the c tasks
have zero length; that is, it minimizes the total completion time of the a tasks. Let Cf,
be the finish time of a; in an optimal schedule, and let C,, be the finish time of a; in the
schedule generated by Algorithm SRPT,-SPT,. Then, as inthe case of m;y =my =1, a

lower bound of the total completion time is

C*>) (Ch+b+c) = (Zc;) +B+C > (ani) +B+C (48
i=1

i=1 i=1

When the task c; is ready, it can be delayed by a task c; only if ¢; < c;. The length of the
interval [(Cq; +bj), Cj — ¢;) isat most §_ . < :1—2 since all postprocessing masters must
be busy and can only run the task c; such that c; < c; during this interval. Hence the total

completion time is at most

ZC <ZC + b +c,+Z (ZCQ,+B+C)+ZZ &< o0,

c1<c, i=1 ci<cj

where the last inequality comes from (4.7) and (4.8).

Now the makespan is shown to be at most four times the optimal makespan. As
before, let k be the job with the maximum completion time, and let 1 be the last job such that
the task ¢, runs immediately after it is ready at Cq,+b;. Then the intervals Iy = [0, Cq,—ai)
and I, = [(Cq, + by), (Cmax — €x)) must be both busy. And |[I;] < >
and |Io| < 3~

*
a;<ay aj/m1 < Cmax

*
i<y c;/my < C},,. Therefore,

Cmax = L[+ (ay + b1) + I + ek <4 Cp s

65

Theorem 4.5.3 Algorithm SRPT,-SPT. generates a (4,3) preemptive schedule with mi-

gration when my > 1, my > 1 and v; > 0 for all j.

Proof : Let Cg, be the completion time of a; in an optimal schedule. As in the last

section, one can get

c> (Y cy)+B+C
Let C,; be the completion time of q; in the schedule generated by Algorithm SRPT,-SPT..

As mentioned before, the SRPT, rule is a 2-approximation when b; = ¢; = 0. Thus, it

must true that

ZC“i §ZZCE~

and

-
F
M

Ca,. + b; +c+ Z ci/my

j=1 j=1 €i<C;
< (icai) +B+C+i Y ci/my
j=1 j=1 ci<cy
< C’;j+(ZC3j+B+C)+iZci/m2
s =1 ci<es

Now consider the makespan. As before, let k be the job with the maximum com-
pletion time, and let 1 be the last job such that ¢; runs immediately after it is ready at time
Cq, +b1. Then the intervals Iy = [, Cq, — i) and I; = [(Cq, + b1), (Cmax — Cx)) must be
both busy. And |I;| <)~ aj/mi < Chucand [l < 3 o ¢5/m2 < CR,. Therefore,

aj<a

Cmax=rl+|111+(al+b1)+|12!+ck<4crnax

66

4.6 Converting Preemptive Schedules into Non-preemptive Schedules
As mentioned before, non-preemptive schedules can be obtained by converting preemptive
schedules. Our approach is based on the techniques introduced by Phillips et al. in [95],
and improved by Chekuri et al. in [16]. For completeness, their approaches are described
in the following.

The model studied in [95] consists of one or more identical machines and n jobs.
For this model, a general approach of converting a preemptive schedule S into a non-
preemptive schedule S’ has been given in [95]. The idea is to form a list of jobs in in-
creasing order of their completion times in S and then list schedule the jobs in this list one
by one, respecting their release times.

Let C; and C; denote the completion time of job j in S and S', respectively. Sup-
pose the jobs are indexed such that C; < Ciyy. Then they showed that C{ < 2C;
for a single machine environment and C; < 3C; for a multi-machine environment. Let
szx = MaXj<i<;j Ti. The result is based on the observations that (1) C; > rmax, 2
G > ZL] P in the single-machine case, and C; > f_?:, pi/m in the multi-machine case,
where pj is the processing time of job j, (3) Cj < Toax + Zi_l Pp; if there is one machine
and Cj < o + 21—1 pi/m) + p; if there are two or more machines. These results im-
ply that if S is a B-approximation for total completion time, then S’ is a 23-approximation
for total completion time in the single-machine environment, and a 3-approximation for
total completion time in the multi-machine environment. In addition, this conversion also
yields an online non-preemptive algorithm if the preemptive schedule can be generated on-
line: simply simulate the algorithm for preemptive schedule, start a job j if j completes in
the preemptive schedule or put it in the waiting queue if the machine is busy.

Now, consider the makespan which is equal to the completion time of job nin S’. It
is easy to see that C}, < Cn+3 .7 pj < Cn+Ch,,. Therefore, if S is an a-approximation
for makespan, i.e., Cnax (S) = C,, < aC% ., then Cpa (S') = C, < (14 &) C7,,. In other

words, S’ is a (1 + «)-approximation for makespan.

67

Later, Chekuri et al. [16] improved the above results for total completion time. They
designed a deterministic O(n?) time offline algorithm such that the schedule obtained has
total completion time at most -5 ~ 1.58 times that of the preemptive schedule. They also
gave a randomized online algorithm which generates schedules having expected completion
time _%; times that of the preemptive schedule. The difference between the two approaches
in [16] and [95] is how to obtain the list of jobs. Given S and a parameter A € (0, 1], let
CJ?‘(S), the A-point of j, be the time when Ap; (a A-fraction) of job j is completed. Instead
of forming a list based on C;(S), now form a list based on C)?‘(S). A A-schedule is a non-
preemptive schedule obtained by list scheduling jobs in increasing order of Cj" (S), possibly
introducing idle time to account for the release times. It is easy to see that the algorithm
given by [95] is a A-schedule with A = 1. It is also clear that a A-scheduler can be made to
be an on-line algorithm if the underlying preemptive algorithm is an on-line algorithm.

The main result in [16] is that for each given instance, there exists a A, the best A,
such that the A-schedule has total completion time at most e%l times that of S, and has
makespan at most (1 + A) times that of S. One can obtain such a A-schedule by finding the
best A in O(n?) time offline deterministically; or one can obtain, through a randomized on-
line algorithm, a schedule whose expected total completion time is at most _%; times that
of S and whose makespan is at most (1 + A) times that of S.

In the multi-machine case, Chakrabarti et al. [14] showed that the convert procedure
given in [95] has a bound of 7/3 for total completion time, instead of 3 times that of S.

The following sections describe how to convert preemptive schedules generated in
Sections 4.3-4.5 to non-preemptive schedules. The difficulty of the conversion in the master
slave model is that one needs to respect not only the release time of a;, 1 < i < n, but also

respect the constraint that the interval between the finish time of a; and the start time of c;

has length at least b;.

68

4.6.1 Single Master and Multi-Master Systems

First consider the single master systems.

Theorem 4.6.1 In O(n?) time, one can obtain a (%, Ez_i]) non-preemptive canonical sched-

ule when there is a single master and r; = 0 for all j.

Proof : Let S be a preemptive canonical schedule of n jobs obtained by applying Corol-
lary 4.3.2. Let S, be the partial schedule of S during the interval (0, A], and S. be the
partial schedule of S. during the interval (A, Cpayl.

Clearly S, contains all a tasks only. By the Algorithm Canonical-SPT,, there is no
preemption in S,. Let Cq; be the completion time of a;. It is easy to see that the partial
schedule S, contains all ¢ tasks only and it can be seen as a preemptive schedule of n tasks
on a single machine where each task j has a “release time” max(A, Cq +b;) and processing
time c;.

To convert S into a non-preemptive schedule S’, one fixes S, and convert S to a
non-preemptive schedule S{ of c tasks by using the approach of [16]. Let C; and Cj be
the completion time of ¢; in S and S, respectively. As mentioned at the beginning of the
section, it has been shown in [16] that C{ < ;%;Cj and Cj < Cj 4 Cpax. Since Sisa (%, 2)
canonical schedule, the obtained schedule is a (%, e%) non-preemptive canonical schedule.

This concludes the proof. O

Theorem 4.6.2 In O(nlogn) time, one can obtain a (3,4) online non-preemptive sched-

ule when there is a single master and r; > 0 for all job j.

Proof : Let S be a non-canonical preemptive schedule S. One can get a A-schedule S’,
A = 1, similarly as [95]: (1) Sort all tasks (both a tasks and c tasks) in increasing order
of their completion times. (2) List schedule these tasks on the master machine, with the
constraint that each task a; must start after 1; and the interval between the time q; finishes

and the time c; starts is at least b;.

69

For the purpose of analysis, one can visualize the above procedure as follows (see
Figure 4.1): For each task, a; or ¢;, remove all but the last scheduled piece of the task.
Suppose the last piece of a; and c; have length ko, and k., respectively. Now process the
tasks one by one in the scheduling order of their last pieces in S. If the current task is a;,
complete its last piece by inserting an extra piece with length (a; — ko,) immediately after
the last piece of a;; at the same time push backward in time all the last pieces of the tasks
which finish after q; in S by an amount of (a; — kq,). If the task is c;, complete its last
piece by inserting an extra piece with length (c¢; — k¢,) immediately after the last piece of
c;; at the same time push backward in time all the last pieces of the tasks which finish after
c; in S by an amount of (c; — k,). Let the schedule be S”. It is easy to see that during
this process, the two constraints, (a) each task a; is scheduled after 1; and (b) the interval
between the time a; finishes and the time c; starts is at least b;, are not violated. Thus S
is still a feasible schedule.

Now one pushes all jobs forward in time as much as possible without changing the
order of the tasks, or violating the constraints (a) and (b) mentioned above. The result
is exactly the schedule S’. Since a task c; can only be moved back by processing times
associated with tasks finished earlier than ¢; in S, we have C{ < 2Cj and Cj < C; +
Z{;, (@i +¢i) < Cj + Cpax, where Cj is the completion time of ¢; in S’. This implies that
if one takes the (2, 2) non-canonical schedule in Theorem 4.3.4, then one can get a (3,4)
non-preemptive schedule. Furthermore, it can be implemented online if the preemptive

schedule is online. O

The following theorem shows how to get offline non-preemptive schedules for

multi-master systems. It is not known how to obtain an online non-preemptive schedule.

Theorem 4.6.3 When there are multi-masters, one can obtain a (4,4) non-preemptive of-

fline schedule.

Proof : Let S be the (2,2)-schedule generated by Algorithm FAM-SPT .. Then S has

no migration. One can obtain the non-preemptive schedule S’ by converting the schedule

70

0 1 2 3 4 5 6 7 6 9 10 11 12 13 14

S a a a |3 ||| a S N < c <
0 1 2 l 3 5 J 6 \ 7 6 9 10 1 12 13 14 1 18 19
0 1 2 3 5 6 7 6 9 10 1 12 13 14 15 16

g \§§ . a ‘, 3

Figure 4.1 Convert a preemptive schedule into a non-preemptive schedule: S is a pre-
emptive schedule of three jobs J;(0,4,2,2), J»(2,1,2,1), J3(4,2,4,2); S” is the non-
preemptive schedule obtained from S by completing the last piece of each task into a whole
piece; S’ is the non-preemptive schedule obtained from S” by removing unnecessary idle
intervals in S”.

on each machine separately in the same way as described in the proof of Theorem 4.6.2.
Thus, the total completion time of S’ is at most two times that of S. Since S is a 2-
approximation for total completion time, S’ is a 4-approximation for total completion time.
For the makespan, Cj’ < G + max; A; where A, is the total length of the a tasks and the
c tasks assigned on machine i. In Section 4.4, it has been shown that A; < 2 Cy ... Thus,
C; < G+ max; A; < G+ 2Cp,. Since S is 2-approximation for makespan, S’ is a

4-approximation for the makespan. This concludes the proof. a

4.6.2 Distinct Preprocessors and Postprocessors

This subsection considers the case when there are m preprocessors and m; postprocessors.

Theorem 4.6.4 In O(n?) time, one can obtain a (4, -ez_%) non-preemptive schedule when

1, =0forallj, and my = my = 1.

Proof : Let S be the (3, 2)-schedule generated by Algorithm SRPT,-SPT.. Since r; = 0
for all j, there is no preemption on the single preprocessor. Let C,; be the completion time
of a; in S. To get a non-preemptive schedule, one can fix the schedule of the a tasks and do

the conversion simply on the single postprocessor using exactly the approach given in [16],

71

respecting the “release time” of task c; (Cq; + b;). Following exactly the same argument,

one can show that S’ is a (4, e%e]) non-preemptive schedule. O

When the release times are arbitrary, one needs to do the conversion carefully so as
to make sure that the difference between the finish time of a; and the start time of c; is at

least b;.

Theorem 4.6.5 When m; = m,; = 1, and v; > 0, one can obtain a (4,4 + eA_eT) non-
preemptive offline schedule or an online non-preemptive schedule with expected perfor-

mance (4,4 + :Te]].

Proof : Let S be the (3, 2)-schedule generated by Algorithm SRPT,-SPT.. Let C; be the
completion time of job j in S. Let C,; be the completion time of a; in S.

The conversion consists of two steps. First one can remove the preemptions among
the a tasks to get the best (offline) A-schedule of the a tasks on the single preprocessor by
using the approach of [16]. Let C fl], be the new completion time of a;. Then, one must have
C ;). < & Cq;. Now fix the schedule of a tasks, and remove the preemptions among the ¢
tasks to get a A-schedule of the c tasks, where A = 1, and make sure the interval between
Cy, and the start time of c; is at least b; for each job j.

Suppose the jobs are indexed so that C; < Ci4q. Then, C; > max(maxfi=] Ti, max{___] b;

{=] ai, Zizl ci). Let the new schedule be S’ and let the completion time of c; in S’ be

C,-' . Then

G < Cg, +maxb; +ch_ Co, +2C < 2+ 5)G .

<igj e—
Thus, ZT;, G<2+5H Z 1 C By assumption, S is 2-approximation for total com-
pletion time. Thus, S’ is (4 + =%)-approximation for total completion time.

For the makespan,

C! < maxr + Z ai + max by +Zc154c:m.

IS b <C 1<i<j
a

72
Thus, S’ is a (4,4 + zzf—f) non-preemptive offline schedule. Similarly as in [16], one can
also get an online schedule whose expected performance is (4,4 + EZ%)' This concludes

the proof. m]

Theorem 4.6.6 In O(nlogn) time, one can obtain a (4,14/3) non-preemptive schedule

when v; =0 for allj, my > 1 and m, > 1.

Proof : Let S be the (4,2)-schedule generated by Algorithm SRPT,-SPT.. Since all
jobs have the same release time, no preemption occurs on the preprocessors. Now fix the
schedule of the a tasks. Let C,; be the completion time of a; in S. The task c; can be seen
as a task with release time (Cg; + b;). The conversion is performed on the postprocessors
using the approach given in [95], subject to the constraint that c; can not start earlier than
its “release time” (Cq; + bj) . Then by [14], the total completion time of S’ is at most %
times that of S, i.e., S'1sa %-approximation for total completion time.

Now consider the makespan. Suppose the jobs are indexed such that C; < Ciy
in S. By the algorithm, forany 1 < i < n, Cq, +b; < Zk# ax/my + (a; + b;) <
2Cr .« and ZL] ci/my < Cj i In ', the latest time the postprocessors become busy is

maxi<;(Cq; + bi). Therefore, Cj’ < maxic;(Cq, + b3) + ZH

i=1

ci/mz+c¢; <4Cr,,. O

Theorem 4.6.7 In O(nlogn) time, one can obtain a (5, 13) non-preemptive online sched-

ule when m; > land my; > 1.

Proof : Let S be a (4, 3)-schedule generated by Algorithm SRPT,-SPT,. The conversion
consists of two steps. First we use the approach of {95] to remove preemptions among the a
tasks to get a A = 1 schedule of the a tasks, respecting the release times of the a tasks. Let
C ;i be the new completion time of a;. By the result of [14], one must have C ('1,, < % Cq;»r
Now, fix the schedule of the a tasks. Each task c; can be seen as a task with a release time

(Cg, +bj). Next, one can remove preemptions among the ¢ tasks to get a A-schedule of the

73

¢ tasks, where A = 1, and make sure that the interval between C :.1), and the start time of c;
is at least b; for each job j.

Let C; be the completion time in the preemptive schedule. Suppose the jobs are
indexed such that C; < Ciyy in S. Then, C; > max;<icj(Cq, + bi + ¢i) and G >

):L] ci/m;. Let C; be the new completion time of job j. Then

' / i Ci 7 G . 13

Cj < max.(Cai +by) + Z ;Z-I—Cj <]rrglflxs)(g Co, +bi) + Z’E +¢ < ?Cj .
1<i<j

Thus, Y -, C/ < B 3 | C;. By assumption, S is a 3-approximation for total completion

time, thus C; is a 13-approximation for total completion time.

For the makespan, C},,, > max(A/my, C/m,, max(a; + b; + c;)). Therefore,

C<
C; < max n+ Z ax/m +(aj+Ca)+Cr¥lggbi+(Z“l)

1<k<n Cay <Ca; 1< ma
< 5Cha
Then S’ is a (5, 13)-schedule. m|

4.7 Linear Programming: Distinct Preprocessors and Postprocessors
As mentioned before, another important approach for NP-hard scheduling problems is to
formulate the problem as a linear programming problem. This method has the advantage
that it also works for total weighted completion time. However, its disadvantage is that it
takes relatively long time to obtain a solution. In this section approximation algorithms are
presented for the case when there are distinct preprocessing and postprocessing processors.
Each job j is allowed to have a weight wj.

The basis of the approximation algorithms in this section is a linear programming
relaxation that uses as variables the completion times of the a tasks and the c tasks. For
each task j, define Cq, and C; to be the completion time of a; and c;, respectively. The

total weighted completion time minimization problem can be formulated as follows:

74

n

minimize Z w; C; (4.9)
=1
subject to |
Co, 215+ g (4.10)
G > Cq; + b5+ 4.11)
C; > Cx+cjorCx > Cj+c foreach pairj #k 4.12)
Coy > CotagjorCq, > Cq +ax for each pairj #k 4.13)

471 mi=m =1

The difficulty with the above characterization is the so-called “disjunctive” constraints
(4.12)-(4.13), which are not linear inequalities and cannot be modeled using linear inequal-
ities. Instead, one can use a class of valid inequalities for any feasible schedules (maybe
preemptive), introduced by Queyranne [98] and Wolsey [119]. Suppose a set N of n tasks,
denoted by 1, 2, ..., n, are scheduled on a single machine. Let p; be the processing time
of j and C; be the completion time of j in any feasible schedule. Then, the following in-

equality is valid for any subset X C N.

2
1
> G2 5 > i+ (Zp;) foreach X C N (4.14)

jex jex jex
The key to the quality of the approximation deriving from the above relaxations is

the following lemma.

Lemma 4.7.1 ([59],[108]) Let C1, C,, ..., Cy, satisfy (4.14), and assume without loss of

generality that Cy < C; < ... < C,.. Then, foreachjobj=1,...,n,

1
G > Z Pk
k=1

N

75

A feasible solution C; < C; < ... < C, satisfying (4.14) need not correspond
to a feasible schedule. Lemma 4.7.1 states that merely satisfying the constraints (4.14) is
sufficient to obtain a relaxation of this: C; > % ZL] Px.

Queyranne [98] has shown that the linear program with constraints (4.14) is solv-
able in polynomial time via the ellipsoid algorithm; the key observation is that there is a
polynomial time separation algorithm for the exponentially large class of constraints given
by (4.14).

In our model, one can apply the above constraints to the preprocessing master and

the postprocessing master, respectively.

2
1
Z axCq, > 7 Z_ ajz + (Z a,-) foreach X C N 4.15)

keX jex jex
1 2
2 aCe25 |} of+ (Z c5> for each X € N (4.16)
kex jeX jex

Algorithm List-Schedule-Guided-by-LP-Single-Master: First obtain an optimal solu-
tion to the linear program formed by (4.9), (4.10), (4.11), (4.15) and (4.16). Denote the
completion time of the jobs by Cy, ..., C,. Then one can form a schedule by scheduling
both the a tasks and the c tasks in increasing order of C; under the condition that a; can
not start until rj, and the interval between the start time of c; and the finish time of q; is at

least b, i.e., ¢; can not start until b; finishes.

Theorem 4.7.2 Suppose that m; = m, = 1. Then Algorithm List-Schedule-Guided-by-
LP-Single-Master produces a (3,5)-schedule when all jobs have the same release time and
(4, 6)-schedule when each job has an arbitrary release time. Furthermore, the a tasks and

the ¢ tasks complete in the same order.

Proof : Let S be the schedule obtained by Algorithm List-Schedule-Guided-by-LP-

Single-Master. Let Cq; be the completion time of a; in S. By the way the a tasks are

76

scheduled, we have Co; < maxyg{ri}+ 3_y; ax since the latest time the preprocessor be-
comes busy is maxy<;j{ri}. Let C; be the completion time of job j in S. Because the c tasks
are scheduled in the same order as the a tasks, it is possible that ¢; can not start even af-
ter b; finishes at C,; + bj. This is because ¢;_; may not have completed yet. However, the

time that c; needs to wait after it is ready is at most maxy<;{bi} + ZK]-_] ck. Thus,
-1

L < .
G <Cq + rgg;({bk}+ ch +¢

k=1
j)]

< | max{r}+ ax | + max{by}+ c

< (st + T) o+ Y e

< max{ry} + Z—Caj + max{by} + 2C; by Lemma 4.7.1
k< k<j

< C.

< rgglx{rk} +5G;

Thus, if all jobs have the same release times, then C; < 5?5; otherwise, C; < 6_C_j. This
implies that S is a 5-approximation for total completion time when 1; = 0 for all j, and a
6-approximation when 1; > 0. This is so even if each job j has a weight.

For the makespan,

j
. < Cg
G < Cq +Tgbk+;ck

] i
<

< (rgg]x{rk} + ; ak) + max{bi] + ; Cx
< Iggc{rk} + 3Cux

Thus, if all jobs have the same release times, then C; < 3C otherwise, C; <4Cy ... O

* .
max?

472 m;y>Tandm; > 1
If the jobs are scheduled on m machines, then similar valid inequalities hold which were
also observed by Queyranne [99].

2
1
Zpkck 2> m Z_ pjz + (Z pj) foreach X C N 4.17)

keX jex jex

77

One can derive similar lemma as in the single machine case.

Lemma 4.7.3 Let Cy, Cy, ..., Cy satisfy (4.17), and assume without loss of generality

that C; < C3 < ... < Cy. Then, foreachjobj=1,...,n,
j

1
2 7 2P
In our model, one can apply the above constraints to the m, preprocessing masters
and the m; postprocessing masters, respectively.

Z axCq, 2 2 Z aj + (Z a,) foreach X C N (4.18)

keX jEX jEX

> oxCe>5— Zc + (Z c,) for each X C N (4.19)

keX jex jex

Algorithm List-Schedule-Guided-by-LP-Multi-Master: First obtain an optimal solu-
tion to the linear program given by (4.9), (4.10), (4.11), (4.18) and (4.19). Denote the
completion time of the jobs by Cj, ..., C,. Schedule both the a tasks and the c tasks one
by one in nondecreasing order of C; under the condition that: a; can not start until 1;, and
the interval between the finish time of a; and the start time of c; is at least b;. In other

words, ¢; can not start until bj finishes.

Theorem 4.7.4 Suppose that my > 1 and my > 1. Then Algorithm List-Schedule-Guided-
by-LP-Multi-Master produces a (4, 6)-schedule when all jobs have the same release time

and (5,7)-schedule when each job has an arbitrary release time.

Proof : Let S be the schedule obtained by Algorithm List-Schedule-Guided-by-LP-Multi-
Master. Let C,; be the completion time of task a; in S. By the way the a tasks are
scheduled, the latest time the preprocessor becomes busy is maxy<;j{ri}. Then ay, k < j—1,
are scheduled one by one. By time t < maxy;{ri} + 3, <1 ax/m,, the first j — 1 tasks
must be finished and there will be an idle machine to process the j*" task. Thus, Cqy <

max<;{Tic} + stj_] ax/my + q;. Let C; be the completion time of job j in S. Because

78

the c tasks are scheduled in the same order as the a tasks, it is possible that ¢; can not start
even after b; finishes at C4; + bj, because ¢;_; may not have completed yet. However, the

time that ¢; needs to wait after it is ready is at most maxk<;{bx} + 3y <;_; ¢x/m2. Thus,
j—1

1
C; < Cg. b — ;
i a,+1221?({ k}+m2kz=10k+(:)

1 2 1 2
< T — j b —) Cx+¢j
< (f{(lg({ k}+m];ak+a)) +I£I%X{ k}+m2; k + Cj

< I{clg;i{rk} +2 max Co, + rgg}x{bk} +2C; + (g + ;)
< T%?({Tk} + 6C;

Thus, if all jobs have the same release times, then C; < 6@; otherwise, C; < 7_C-j. Thus, S
is a 6-approximation for total completion time when 1; = 0 for all j, and a 7-approximation
when 1; > 0. This is so even if each job j has a weight wj.

Now consider the makespan.
1=
; < Cq. — 2 :
G <Cq + n]g%;c{bk} + R Ck + ¢

1= 1 &
< — . b — .
< (rgg{rk}-{- o é ax + a,) +r{12]x{ W+ ™ ;ck+c,
1= 1 2
< — b — i + C;
< n}gg{mh — ;akﬂgg{ o+ — g;lcu- (a5 +¢;)

max

< *
< reg;{rk} +4C

Thus, if all jobs have the same release times, then C; < 4C otherwise, C; < 5C; .. O

* .
max?

PART 11

NETWORK DESIGN PROBLEMS

79

CHAPTER 5

POLYNOMIAL-TIME APPROXIMATION SCHEMES FOR THE EUCLIDEAN
SURVIVABLE NETWORK DESIGN PROBLEM

5.1 Introduction
This chapter considers the geometric version of the survivable network design problem.
The input vertices are assumed to be points in R¢ and the cost of each link is equal to
the Euclidean distance between its endpoints (which is a good approximation in many
applications, since often the “installation” and the “service” cost is roughly proportional to
the length of the link [91]).

The focus is on two most basic variants of the geometric survivable network design
problem: (1) SMT problem in which r, € {0, 1} for any v € V and (2) {0, 1, 2}-vertex- and
-edge-connectivity problem in which 1, € {0, 1,2} for all v € V. Note that SMT problem
is a special case of {0, 1, 2}-vertex- and -edge-connectivity problem.

The arguments provided by Grotschel et al. [53] (see also [91, 113]), suggest that
the second special case in the above models well many applications of the survivability
problem, e.g., the problem of designing survivable fiber telephone networks [91, 113]. In
the case of fiber communication networks for telephone companies, network topologies
with connectivity requirements in {0, 1,2} provide an adequate level of survivability for
the distinguished central nodes of connectivity type 2. Simply, most failures usually can
be repaired relatively quickly and, as statistical studies have revealed, it is unlikely that a

second failure will occur for their duration.

5.1.1 Related Works
There has been a lot of research on the survivable network design problem. Typically,
the research addresses either practical heuristics and algorithms (see, e.g., [21, 50, 51, 53,

53, 91, 113]) or the general problem for arbitrary networks (see, e.g., [36, 37, 41, 64,

80

81

117]), or the problem restricted to very specific networks. In particular, the result due
to Jain [64] gives a polynomial-time 2-approximation algorithm for the edge-connected
survivable network design problem (for arbitrary connectivity requirements). Also, poly-
nomial-time 2-approximation algorithms for arbitrary networks in the case r,,, € {0,1, 2}
for every v, u have been recently presented [36, 37]. There is no other good polynomial-
time approximation algorithm specialized for the geometric version of the survivability
problem except the case when 1, € {0, 1} for every v [97]. If r, € {0, 1} for every v
and U = {v € V : 1, = 1}, then one can easily show that a minimum spanning tree of
U guarantees the approximation ratio of 2 in any metric space (and thus, in particular, in
any Euclidean space R%). Importantly, in this case the geometric survivability problem
is a generalization of the classical Euclidean (complete) Steiner tree problem (see, e.g.,
[44, 62, 63, 97, 118]). The Euclidean (complete) Steiner tree problem for a finite set of
points S in R¢ is to construct a minimum length tree whose vertex set consists of all points
in S and possibly some other points in R%. Thus, the latter problem can be regarded as a
survivable network design problem on an infinite vertex domain, i.e., V=R and r, = 1
forany v € S, and 1, = 0 otherwise. By the celebrated results due to Arora [3] and Mitchell
[90] (see also [101]), the Euclidean (complete) Steiner tree problem admits a polynomial-

time approximation scheme for any constant d.

5.1.2 New Contributions
The first polynomial-time approximation schemes (PTASs) are designed for the two afore-
mentioned basic variants of the geometric survivable network design problem.

First, the simplest case in which r, € {0, 1} for any vertex v € V is considered, that
is, the Steiner tree problem. An algorithm is designed such that that for any constant d and
any constant ¢, it returns a Steiner tree whose cost is at most (1 + ¢) times larger than the
minimum. The algorithm runs in time O(n logn). For general d and ¢, its running time is

O(n logn (d/e)2D) + O(n (d/e) ¥/,

82

Next, the case when 1, € {0, 1,2} for any vertex v € V is considered; this is the
classical problem investigated thoroughly by Grotschel and Monma et al. [50, 51, 52, 53,
91, 113]. The algorithm for the Steiner tree problem is extended to design an algorithm
that, for any constant d and any constant ¢, returns a graph satisfying all the vertex (or
edge, respectively) connectivity requirements and having the cost at most (1 + ¢) times
the minimum. The algorithm runs in time O(n logn). When d and ¢ are allowed to vary
arbitrarily, its running time is O(n logn (d/e)°d) + O(n (d/a)[d/‘)O(dz)).

Finally, observe that the techniques yield also a PTAS for the multigraph variant
where the edge-connectivity requirements satisfy v, € {0,1,... ,k}and k = O(1).

All the polynomial-time approximation schemes in this chpater follow an approach
similar to those used in the recent PTASs for finding TSP, (complete) Steiner trees, and
minimum-cost biconnected spanning subgraph in Euclidean graphs, see [3, 26, 101]. How-
ever, there are many important differences that make the new results significantly more
complicated. First of all, one has to deal with the restriction of the Steiner points to the set
given a priori (unlike in the minimum-cost Euclidean (complete) Steiner trees problem, in
which Steiner points are allowed to be any points in R). Furthermore, one has to deal with
non-uniform connectivity requirements. The substantial differences and complications oc-
cur in the so called filtering phase and searching phase (dynamic programming).

All the PTASs are randomized and achieve the promised approximation guarantees
and running time on the average. However, all these algorithms can be derandomized in
a way similar to that used by Rao and Smith in [101]. The derandomization preserves the

running time of O(n logn) for constant d and ¢.

5.2 Definitions
Following are some notations and definitions for Euclidean (geometric) graphs that will be

used in this chapter.

83

A Euclidean graph, which frequently will be called in this chapter a graph, is a
pair G = (P, E), where P is a set of points in a Euclidean space R¢ and E is a subset of
the pairs of points in P. Every Euclidean graph is weighted and the cost of edge (x,y) is
equal to the Euclidean distance between points x and y. The cost of the graph is the sum of
the costs of its edges. Additionally, Euclidean multigraphs, which are as Euclidean graphs
but may contain parallel edges, are also considered. Consistently with the definition, the
edges of a Euclidean graph or multigraph G = (P, E) are in one-to-one correspondence
with the straight-line segments (in R%) connecting the incident vertices. (Such graphs are
frequently called straight-line graphs in the literature.) Sometimes, for technical reasons,
it is also allowed to bend some edges. A bent edge between a pair of points in P will be
identified with a straight-line path (a path consisting of straight-line segments connecting
the points).

Spanners for general graphs have been defined in Chapter 1. In this chapter, geo-

metric spanners of a set of points are considered.

Definition 5.2.1 (Geometric spanners) Let P be a set of points in R®. A graph G on P is
called a geometric t-spanner of P, t > 1, if for any pair of points p, q € P there exists a

path in G from p to q of length at most t times the Euclidean distance between p and q.

Since only geometric spanners are considered. For simplicity, a geometric spanner

is simply referred to as a spanner. The following result is proven in [56]!.

Lemma 5.2.2 [56] Let P be a set of n points in R, where d is a constant. Let ¢ be any
positive constant. Then, there exists an O(n logn)-time algorithm that finds a (1 + ¢)-
spanner of P having constant maximum degree and the total cost of order of the minimum

spanning tree of P.

"Notice that the algorithms used in Lemma 5.2.2 are in the so-called real RAM model, which is the
algebraic decision tree model extended with indirected addressing [56]. If one assumes the algebraic
decision tree model, then the running time will be by a factor of log n/ log log nn larger [56].

84

For arbitrary d and ¢, the running time of this algorithm is O(14.-n+d-n-logn)
and the resulting (1 + €)-spanner of P has maximum degree upper bounded by &4 . and the
total cost upper bounded by &4 ¢ times the cost of the minimum spanning tree of P, where

Tae = (d/e)° D and &4 = (d/e)°9.

Definition 5.2.3 Leapfrog property ([30]) Let t > t’' > 1. E is a set of line segments
in d-dimensional space. E satisfies the (t',t) leapfrog property if the following is true for

every possible subset S = {(ug, Vo), (U1,V1),..., (Um,Vm)} of E:

' fuvol <) vl + te(vmol+) Iviwial)
1<i<m 0<i<m-—1

Informally, this definition says that if there exists an edge between u and vy, then

any path not including (uo, vo) must have length greater than t’ - fugvo|.

Lemma 5.2.4 ([30]) If a set of line segments E in d-dimensional space satisfies the (t',t)-
leapfrog property where t > t' > 1, then the weight of E is O(wt(MST) where wt(MST)
is the cost of a minimum spanning tree connecting the endpoints of . The constant implicit

in the O- notation depends on t and d.

Definition 5.2.5 (Steiner trees) Let Py be a set of points in R®. A Euclidean tree is called
a Steiner tree of Py if its vertex set includes all the points P. All the vertices of a Steiner
tree of Py outside Py are called its Steiner points. If the Steiner points are restricted to a
point set Py, the tree is called a Steiner tree of Py with respect to Py and the points in Py

are called Steiner point candidates.

Definition 5.2.6 (Euclidean (complete) Steiner trees) Let P be a set of points in R%. The
Euclidean (complete) Steiner minimal tree of P is a Steiner tree of P having the minimum

Ccost.

85

Definition 5.2.7 (Steiner minimum trees (SMT)) Let P = Py U Py be a point set in the
Euclidean space R®. A Steiner tree of Py with respect to Py having the minimum cost will

be called a Steiner minimum tree (SMT) of Py with respect to Py,.

Observe the difference between the definition of Euclidean (complete) Steiner tree
and Steiner minimum tree; in this chapter the abbreviation SMT is used only to denote a
Steiner minimum tree.

As mentioned before, the focus in this chapter is on the variant of the problem
when 1, € {0,1,2} for any p € P. This problem.is called the {0, 1, 2}-vertex- or -edge-
connectivity problem, depending on whether the vertex-connected or the edge-connected
version of the problem is considered. (Notice that the {0, 1, 2}-vertex- and -edge-connectivity
problem includes the SMT problem in which r, € {0, 1} for any p € P(see Definition
5.2.7).) Furthermore, one can repeat the arguments used in [26] (which were also used
earlier in [38, Section 3]) to show that in metric spaces {0, 1, 2}-vertex-connectivity and
{0, 1, 2}-edge-connectivity are essentially equivalent (the arguments in [26] and [38] were

given only for biconnectivity vs. two-edge-connectivity).

Lemma 5.2.8 Let Py, Py, P, be any three sets of points in a metric space. Let H be a
multigraph with the vertex set Po U Py U Py such that for any pair of vertices u € P; and
v € P; there are at least min{i,j},0 < i,j < 2, edge-disjoint paths from u to v in H.
Then, in linear time, one can transform H into a graph G without increasing the total cost
such that for any pair of vertices w € P; and v € P; there are at least min{i, j} internally

vertex-disjoint paths form u tov in G.

Proof : Initially set G = H and a sequence of modification will be performed to transform
G to get the required properties. It is easy to see that if u € Py U Py, then graph G already
has the required properties with respect to u. Therefore one only has to deal with points
u € P, all of which are in the same two-edge-connected component of G. If this single

component is also a block, it is done; otherwise pick any two edges (v, u) and (v, w) such

86

that u and w are in different blocks, in other words, v is an articulation point. Replace
edges (v,u) and (v, w) by (u, w). Now, u and w will be in the same block. By the triangle
inequality, the cost of the new block will not be larger than the sum of the older two blocks.
One does this replacement until all points of P, are in the same block. Then remove all
parallel edges from the graph, and G becomes a graph has a cost not greater than that of
H, and for any pair of vertices u € P; and v € P; there are at least min{i,j} internally
vertex-disjoint paths form wto v in G.

Using standard techniques this transformation can be performed in time linear in

the number of edges in H. O

This lemma allows one to concentrate only on the {0, 1, 2}-edge-connectivity prob-

lem, and to allow the output to be given in a form of a multigraph.

Partitioning the space. An important component of the approximation algorithms in this

chapter is a partitioning scheme introduced by Arora in [3] and later extended in [25, 26].

Definition 5.2.9 (Dissection, 2%-ary tree) Given a set S of points in R, a bounding box
of S is the smallest d-dimensional axis-parallel cube 1. containing the points in S. A (2¢-
ary) dissection [3](see Figure 5.1) of S is the recursive partitioning of the cube into smaller
sub-cubes, called regions. Each region U9 of volume > 1 is recursively partitioned into
29 regions (U/2)¢. A 2%ary tree (for a given 2%-ary dissection) is a tree whose root
corresponds to L%, and whose other non-leaf nodes correspond to the regions containing
at least two points from S (see Figure 5.1). For a non-leaf node v of the tree corresponding
to a region R, its children in the tree correspond to the 29 regions that partition R in the
dissection.

For any d-vector a = (ay,...,aq), where all a; are integers 0 < a; < L, the
a-shifted dissection [3, 25] of a set X of points in the cube 1% in RY is the dissection of
the set X* in the cube (21)% in R? obtained from X by transforming each point x € X to

X + a. A random shifted dissection of a set of points X in a cube L% in R® is an a-shifted

88

developed to design a PTAS for k-connectivity problems. The new algorithms is based on

efficient implementations of the following three procedures.

Filtering: Let Py and P, be sets of points in R and let t be any positive real number. Find

a subset X of Py that satisfies the following two properties:

e The cost of the SMT of Py with respect to X is at most 1 + t times the cost of

the SMT of P, with respect to Py.

o The cost of the minimum spanning tree of XUP; is upper bounded by Aq+ times
the cost of the minimum spanning tree of Py, where A4+ is a function of d and

t only (Aa.+ will be set to 2014%) /£0(d)),

Lightening: Let Py and Py be sets of points in R and let t be any positive number. Let G
be any (1+1t)-spanner of PoU Py satisfying the so called (t', 1+ t)-leapfrog property
[56] for1 < t' < 1+ t. Modify G to obtain an r-locally-light graph with the vertex
set Po U Py that has as its subgraph a Steiner tree of P, with respect to Py whose cost

is at most (1 + 2t) times the cost of the SMT of P, with respect to Py.

Searching: Let Py and Py be sets of points in R? and let T be any positive integer. Let G
be any r-locally-light graph on P, U Py. Find a minimum-cost Steiner tree of Py with

respect to Py that is a subgraph of G.

5.4 Filtering for SMT
In this section it will be shown how to perform the filtering phase efficiently. First it will be
proved that the following algorithm finds a subset X of Py that satisfies the required filtering

by 3
property with t = J¢.

1. Build a (1+ ¢)-spanner S on Py withn- &4 . edges whose total cost is upper bounded

by &4, times the cost of the minimum spanning tree of P;, where &4, = (d/ €)od),

as in Lemma 5.2.2.

89

2. For each edge e of the spanner whose cost exceeds the |P;|~* fraction of the cost
of minimum spanning tree of P;, circumscribe a d-dimensional ball B(e) with the
center at the middle of e and of radius R(e) equal to py/e times the length of the

edge, where py is a function depending only on d, pgq = 29(¢*),

3. Let Y be a subset of P, that includes all points contained in the constructed balls and

possibly some other points in Py at distance at most 4 R(e) from the center of such a

ball B(e).

4. For each ball B(e) define a (rectilinear) d-dimensional cube C(e) of side length
8 R(e) that is co-centric with the ball B(e). Within each cube C{e) introduce a grid
with interspacing e| é2/(8 A pg v/d), where A is the bound of maximum degree of
any MST of n points in dimension d . Let set X be initially empty. Repeatedly, in the
increasing length order of the edges e of S, assign each point p € Y associated with
ball B(e) to the closest point of the grid C(e). For each grid point in C(e) if there is

at least one point p € Y assigned to it, add one such a point to X.

Lemma 5.4.1 (SMT Filtering) For any point sets Py and Py in R and any positive real

number ¢, the subset X of Py satisfies the filtering property.

In order to prove Lemma 5.4.1. One has to prove that the set X C P, obtained in

the above construction satisfies the following two properties:

1. The cost of the SMT of P; with respect to X is at most 1 + %e times the cost of the

SMT of P; with respect to P,.

2. The cost of the minimum spanning tree of X U P, is upper bounded by 29(4*) /¢0(d)

times the cost of the minimum spanning tree of Pj.

In the following, the set X is first shown to satisfy the first property and then it is
shown to satisfy the second property. The proof is rather long and will be presented in a

general form that can eventually be used in some further applications.

90
5.4.1 First Filtering Property
The proof needs a couple of auxiliary lemmas. Following is a standard result about the
upper bound for the cost of the minimum spanning trees contained in a d-dimensional ball

(for a proof, see, e.g., [77]).

Lemma 5.4.2 Let P be a set of n points in R contained in a d-dimensional ball of ra-

dius v. Then, the minimum spanning tree of P has cost upper bounded by v - n'~1/4 .

2d
(a-1)(1—n-T72)

In particular, if n. > 2% and d > 2 then the cost of the MST of P is upper bounded

by 8rn'1/¢, 0

The second lemma gives an upper bound for the maximum degree in a minimum

spanning tree (and an SMT) of a point set in R¢,

Lemma 5.4.3 [102] Let P be a set of 1 points in R%. Then, any minimum spanning tree of
P has maximum degree A upper bounded by c® = 2°9), ywhere ¢ is an absolute constant.

d

From now on, A will be used to denote the upper bound for the maximum degree of
any minimum spanning tree of a set of points in R4 (though we will not use in the notation
the dependence on d).

Now, a simple lemma will be proved which shows some basic property of SMT
(which holds also for MST) and paths in spanners, and in general, in arbitrary connected

graphs.

Lemma 5.4.4 Let Py and Py be disjoint point sets in RE. Let G be any graph connected
with respect to Py (for example, a spanner on P1) and let T be an SMT of Py with respect
to Po. Let u and v be any two points in Py and let py..,, be the shortest path in G between
uwandv. Let e be any edge in T of length L. If after removal of e from T, points u and v
are in different connected components of the resulting forest, then at least one edge on the

path Py is not shorter than {.

91

Proof : The proof is by contradiction. Suppose after removal of e from T two subtrees
Ty and T; withu € Ty and v € T, are obtained and suppose that all edges on py.., in G
are shorter than . Since u and v are in different subtrees, then there must exist an edge
xy on the path p,,.,, such that x € T;, y € T,. By the assumption, |xy| < £. Therefore,
Ty + T2 + xy forms a Steiner tree of Py with respect to Py whose cost is smaller than the

cost of T. But this contradicts the assumption that T is an SMT of Py with respect to Po. O

Next lemma is concerned with balls containing no points from P;. It will be shown
that in that case in any SMT any co-centric ball of a slightly smaller radius has the number
of Steiner points upper bounded by 2°(4"). Notice that a similar lemma is used by Rao
and Smith in [101] and the proof is this chapter uses many ideas from [101]. The main
differences are caused by the fact that in this chapter the Steiner trees considered have the
vertex set in a subset of PoU Py while the proof in [101] worked for Py = R?. This implies,
among other, that Rao and Smith could use many well known properties of such Steiner

trees (for example, in that case, the maximum degree in a minimum-cost Steiner tree is 3).

Lemma 5.4.5 Let Py and Py be any disjoint point sets in RS. Let Bo and By be any two
co-centric d-dimensional balls in R® of radius 1 and v, 0 < v < 1, respectively. Then for

any SMT of P with respect to P, if Bo contains no points from Py then By contains at most

(16 e d A)*e = 294 Steiner points, i.e., SMT points from P,

Proof : First fix an SMT of P; with respect to Py and denote it by T. Let A denote
the maximum degree of Steiner points in the SMT. (Notice that Lemma 5.4.3 ensures that
A < c¢ for certain constant c.) It can be assumed without loss of generality, that every
Steiner point is of degree at least 3. Hence, also, the number of points in P, which will
be denoted by n, is bigger than the number of Steiner points. Let s denote the number of
Steiner points contained in By; the goal is to prove that s < (16 e d A)*<.

Let x be the center of balls B; and Bo. For any R € Ry, let Br denote the d-

dimensional ball of radius R with center at x. For any R € R, let Ng denote the number

92

of places where T touches the border of By, i.e., the number of edges that have exactly one
endpoint contained in Bgr. Next, let Sg denote the number of Steiner points contained in
Bg, and let Tk denote the portion of T contained in Bg. Note that by assumption, for any
O<RLST,Ng<A-Sk.

Pick any R and R* such that T < R < R* < 1. Notice that if N, < 29, then
s < N; < 2¢ and hence the lemma is proved. So, suppose that N, > 2¢, and thus
Ngr > 29, Observe that since Bg. contains no points from P;, By contains Sg Steiner
points, and all Steiner points are of degree at least 3, thus Ng+ > Sg + 2 > Sg. (This
follows from the fact that Tg. contains at least Sg« “internal” nodes of degree at least 3 and
Ng+ “leaves” which are of degree 1.) Furthermore, notice that the length of Tg. is at least
(R* —R) - Sg. On the other hand, Tg- contains at least Sg Steiner points and additional Ng.

points on its border. Therefore, by Lemma 5.4.2,

(R* —R)-Sg < 8-R*- (Ng+ +Sg)"™ /4 < 16 (Ng.)' "4 . (5.1)

Letd = —— and ' = d Inlnn. For any integer i, 0 < 1 < dInlnm =T,

Inlnn

letR; = 1— lr—é Consider the balls Bg, for 0 < i1 < I'. Now apply Inequality (5.1) to

BR0>BR1)BR2)- . ,BRF to obtain
t _ 5 _ d _
F'SRI <]6'(NR0)] /a y F'SR2<]6'(NR1)] 1/d)"'F'SRF <]6'(NRFA1)] 1/d .

Recall that Ng, = Ny. Therefore, one can combine the inequality Ng < A- Sg that

holds for all 0 < R < 1, with all the inequalities above to obtain
Ske < (16T/8)Ti=0 1=/ AT 0-1/a7 N(=1/an
Therefore, since Ny < n, one can get
Sg.<e-(16-T-A/8)=e-(16-A-d- (Inlnn)?)¢ .
A more general form of this result is stated as follows.

Letr +8 < R < 1 and let Ny be the number of places in which T
touches the border of Bg. Then Sg—s, the number of Steiner points in
Trs. is upper bounded by e - (16 - A - d - (Inln Ng)?)4.

93

Since Ng < A - Sg for any 0 < R < 1, one can apply the claim above to obtain the

following bound
Si—gens < e-(16-A-d- (InlnN1_15))¢ < e-(16-A-d- (InIn(A - Si_15)))*

that holds for any integer 1, 0 < 1 < ‘—g—’
Notice that if S1_15 < A for any integer 1, 0 < 1 < 13T, then (by Lemma 5.4.3) the
lemma is proven. Therefore, one can assume that S;_15 > A, and hence the upper bound

above can be simplified to get
Si—a+ns < e-(16-A-d- (InIn((S1-15)%))%)* < (16-e-A-d-InlnS;_15)*? .
This implies that for certain 1 = log* N1 + O(1), one has
Sioens < (16-e-A-d)*e .

This yields s < S1_q41)5 < (16 e Ad)*d =200, 0

First filtering property of set Y Now Y will be proved to satisfy the first property. Sim-
ilarly as in the proof of Lemma 5.4.5, some of the arguments are similar to those used by
Rao and Smith [101] in their PTAS for the Euclidean (complete) Steiner tree problem. This
time, however, the differences caused by the fact that Rao and Smith worked with Py = R4

are even bigger. Therefore, most of the details of the following proof are completely new.

Lemma 5.4.6 2 Let Py and Py be two disjoint point sets in RS, Let S be a (1+ % €)-spanner
of P1. For each edge e in S let B(e) be the ball with the center at the midpoint of e and
with the radius equal to pa/€ times the length of the edge e, where pg = 2008 Ler Y3 be
the subset of Py consisting of all points that are contained in at least one of the balls B(e),

e€S. LetGbea (l+ % ¢)-spanner of Y U Py,

2This and the next Lemma is not exactly the same as the first property, they implies the first property.
3This Y is a little different from what is defined in Section 5.4. Here we assume that every edge in
the spanner S has a ball surround it, however this assumption will not affect the final proof for X
later.

9%

Then, there is a subgraph H of G that is connected with respect to vertices in Py
and whose cost is upper bounded by (1 + ¢) times the minimum-cost Steiner tree of Py with

respect to Po.

Proof : Let T be the SMT of P; with respect to Py. It can be assumed without loss of
generality, that every Steiner point in T is of degree greater than 2. The approach is to

construct the subgraph H of G using the following two-step procedure:

1. Forevery edge uv in T with u,v € YUP;, H contains the shortest path in G between

uwand v.

2. After Step 1 H may be disconnected with respect to P; make H connected by adding

additional edges having total minimum weight.

It is easy to see that the obtained graph H is connected with respect to Y U Py (and so, with
respect to vertices in Py too). What will be proven below is that its cost is upper bounded
by (1 + ¢) times the cost of T. The proof consists of two parts. Because of the spanner
property, the graph H obtained in Step 1 has its cost upper bounded by (1 + % ¢) times the
cost of the edges used in this step. Therefore, what really has to be proven is that the second
part of graph H has an upper bound such that the total cost of H is bounded by (14-¢) times
the cost of T.

Take any edge uv in T, let £ denote its length, and let t be the midpoint of uv. Since
it is known how to deal with the edges in T in which u,v € Y U P4, only the case when
u € Y U Py needs to be considered. Remove edge uv from T and let SMT,, and SMT,
be the obtained two subtrees of T such that u is contained in SMT,, and v is contained in
SMT,, For any point x € R? and any real R, let B} denote the ball with center at x and of
radius R. Fix k = 4d log,(16eAd) = ©(d?) and T = 16 £k A¥/e = 28(¢*) . /¢, such
that pg = (3 + €)r¢e/L. Let T, and T,, respectively, denote the subgraph of SMT,, and

SMT,, respectively, induced by the vertices being at distance at most k edges from u and

95

v, respectively. In the following it will be shown that (assuming u ¢ Y U P;) there must be

an edge xy in at least one of T,, and T, whose length is greater than or equal to 1/k.

e First it will be shown that it is impossible that at the same time all edges in T, are
of length smaller than 2 v/k, SMT,, contains a point x € P that is contained in B},
and SMT, contains a point y € P that is contained in B%.. (An equivalent case is
when u is exchanged with v, that is, when all edges in T, are of length smaller than
271/k, SMT,, contains a point x € P, that is contained in B}, and SMT, contains a

pointy € P; that is contained in B} .)

If all edges in T, are of length smaller than 2 v/k then T,, is contained in B},. Since
x and y are disconnected after removal of edge uv, Lemma 5.4.4 implies that S has
at least one edge e on a shortest path p,..,, between x and y whose length |e| is at

least £.

Now it will be shown that path p4..,, cannot have a vertex outside B'(‘2 +e)r Indeed, if

t

path py.., were not contained in B[2 Loy

then there were a point z in py.. that is not

t

contained in B, .

The length of the path py..,, is not shorter than |xz| + |zy|. But
this contradicts the definition of the spanner, because the length of py.., is assumed
to be upper bounded by 1+ ¢/4 times the length of xy, and one can easily show (see,

e.g., Lemma 5.10.1) that

(14 &/4) - [xy| < [xz| + |zy| < length of pyesy .

So, now it is known that path p,.,, must be contained in B’(‘2 +¢)r- This in particular

means that edge e is contained in B{

24¢)r Notice that the endpoints of edge e belong

to P;. Therefore, by the construction of set Y, all the points from Py that are contained
in the ball B(e) (having the center at the midpoint of e and radius p4 - |e|/€) belong
to Y. Now, since the length of e is greater than or equal to £, the radius of B(e) is at

least pq £/¢. Since pg /e = (3 + ¢) 7, observe that B(e) contains the entire ball Bt.

96

Therefore points u and v must belong to Y U P. This is a contradiction, because it is

assumed that u &€ Y U P;.

e Otherwise, there either must be edges in each of T,, and T, of lengths greater than or
equal to 21/k, or SMT,, must contain no point from P that is contained in B}, or

SMT, must contain no point from P; that is contained in B3 .

Consider the case when SMT,, contains no point from Py that is contained in B} .
Then, either T, is contained in B} or there is an edge in T, of length greater than
or equal to r/k. First show that T,, cannot be contained in B!. Indeed, if T, were
contained in Bt, then B! would contain more than |T,,| > 2% = (16 e d A)*¢ Steiner
points. On the other hand, it is known that B, contains no points from P; in SMT,,
By Lemma 5.4.5, this yields a contradiction. Hence, T, cannot be contained in B:.
This in turn, implies that one of T,, and T,, say T,, must contain an edge of length

greater than or equal to v/k.

Thus, one can conclude that there is an edge xy in T,, whose length is greater than
or equal to T/k = 16 £ A*/e. The cost of edge uv will be “charged” to xy in Step 1 of the
construction of H.

Let K; be the set of edges in T having both endpoints in Y UP; and let K, denote the
set of the remaining edges in T. Pick any edge e in T and denote its cost by L. Observe that
e may be charged to by at most 2 (2 A* — 1) < 4 A* “short” edges. Notice further, that the
cost of each such a short edge is upper bounded by L ¢/(16 A¥). (Indeed, by construction,
a short edge of length £ is charged to edge e only if L > 16 {A¥*/c.) Therefore, the total
cost of all edges in T charged to e is upper bounded by J—l ¢ L. Furthermore, notice that only
the edges in K are charged in this way. This implies that the total length of all edges in K
is upper bounded by % ¢ times the total cost of T.

Let H; denote the subgraph of H obtained in Step 1 and H; denote the subgraph

of H obtained in Step 2 of the construction. Notice that the subgraph of T induced by the

97

edges in K; is a forest. Pick any tree T in this forest and let £ be the set of vertices in T
belonging to £ C Y U Py. Clearly, T is a Steiner tree of L. It is well known that the cost
of a minimum spanning spanning tree for any set of points (in any metric space) is upper
bounded by twice the cost of the SMT. Therefore, the cost of a minimum spanning tree of
L is upper bounded by twice the cost of T. Hence, since the cost of H; is upper bounded by
the sum of the costs of minimum spanning trees of £ over all trees T in K3, the cost of H,
is upper bounded by twice the cost of the edges in K;. By the discussion above, the total
length of all edges in K is upper bounded by "7 ¢ times the total cost of T. Thus, the cost
of H; is upper bounded by % ¢ times the total cost of T.

To summarize, the graph H consists of graph H; and H;. By the spanner property,
the cost of H; is upper bounded by (1 + % ¢) times the total cost of T. By our arguments
above, the cost of H; is upper bounded by % ¢ times the total cost of T. This implies that
the total cost of H is upper bounded by (1 + €) times the total cost of T, and hence yields

the proof of the lemma. m]

First filtering property of set X. Lemma 5.4.6 gives “almost” a subset of P, we want
to obtain in the Filtering phase. However, the so obtained set Y does not have to satisfy
the second Filtering property, that is, that the cost of a minimum spanning tree of Y U Py
is proportional to the cost of a minimum spanning tree of P;. The problem is that if there
are too many points in Y, even the cost of the minimum spanning tree of Y can be arbitrary
large. Therefore, for investigations one can choose a subset of Y that is obtained by a
“sparsification” of Y. One can slightly modify the proof of Lemma 5.4.6 to obtain the

following result.

Lemma 5.4.7 Let Py and Py be two point sets in RS, Let S be an (1 + % ¢)-spanner of
Py. For each edge e of the spanner whose cost exceeds the |P1|™* fraction of the cost of
minimum spanning tree of Py, let B(e) be the ball with the center at the midpoint of e and

with the radius equal to pa/¢ times the length of the edge e, where pa = 2°'%°). For each

98

ball B(e), let Y be the subset of Py consisting of all points that are contained in it. Let X,
be an arbitrary subset of Y. such that if y € Y. — X then that there is x € X, such that
lyx| < le| €2/(8 A pa Vd). Let X* = Uees Xe and let G be a (1 + % €)-spanner of X* U Py.

Then, there is a subgraph H of G that is connected with respect to vertices in Py
and whose cost is upper bounded by (1 + % ¢ + o(1)) times the minimum-cost Steiner tree

of Py with respect to Py,.

Proof : The proof is a slight modification of the proof of Lemma 5.4.6. Therefore, only
the places where that proof has to be modified will be referred.

Suppose first that even for the very short edges e of S the balls B(e) and the sets
Ye, Xe induced by them have been created.

One follows the arguments from the proof of Lemma 5.4.6. One needs to modify
them only when there is a path p.., that is contained in sz +¢)r and therefore there is
an edge e of length greater than or equal to { that is contained in B'(‘2 +e)r and has its both
endpoints in P;. In this case the contradiction will not be obtained as in the proof of
Lemma 5.4.6. However, observe that since the length of e is less than orequalto 2 (2+¢) T
and since the ball B{e) contains u and v (and hence both points are in Y), there must
exist two points (that might be identical) w,z € X, with [uw| < |e|e2/(8 A pq v/d) and
vz| < le]€2/(8 A pa+/d). Thus, one can “modify” all edges incident to w and v to have

their endpoint in w and z, respectively. It is easy to see that each such a modification may

increase the cost of the graph by at most

lef €2 (2(2+¢e)r) e 2(2+¢€)pale?
Aluw|+ Alvz] < 2A < = < Le/2 .
huwl val < 8Apavd ~ 4pq (3+¢€)edpa — /

Therefore, the construction of H can be modified as follows:

1. Forevery edge uvin T with u,v € X*UP,, H contains the shortest path in G between

u and v.

2. Otherwise, for every other edge uv in T, if there is an edge e in S (and hence, with

both endpoints in P;) such that u and v belong to Y., then pick the closest points

99

w,z € X* for u and v, respectively. Then, modify T by moving all edges incident
to u and v to have their endpoint in w and z, respectively. If any new edge has both

endpoints in X* U Py then do as in Step 1.

3. Afterwards H may be still disconnected with respect to Py; make H connected by

adding additional edges having total minimum weight.

One can apply the same arguments as in the proof of Lemma 5.4.6 to show that the cost of
the edges in H created in Steps 1 and 3 is upper bounded by (1 + ¢) times the minimum-
cost Steiner tree of Py with respect to Py. On the other hand, by the arguments above, the
total cost of the modifications performed in Step 2 is upper bounded by 3,y luvl e/2,
which is § ¢ times the minimum-cost Steiner tree of Py with respect to Py.

To obtain the claimed result, it remains to move all the points in X, for the edges
e whose costs do not exceed [P1|™ of the cost of the minimum spanning tree of P; to an
endpoint of e. Such movements can increase the total cost of G by O(|P;|73 (d/€)°¥ n)
(since the total number of edges in the spanner is (d/&)®¥ n) times the cost of the mini-
mum spanning tree which with increasing [P, is arbitrarily small in comparison to the cost

of a minimum Steiner tree of P; with respect to Py. O

The following is immediate corollary of Lemma 5.4.7.

Corollary 5.4.8 Under the assumptions of Lemma 5.4.7, for any Z O X*, the cost of the
SMT of Py with respect to Z is at most 1 + % € times than the cost of the SMT of Py with

respect to Po. O

5.4.2 Second Filtering Property
In order to prove that set X satisfies the second filtering property, the following Lemma will

be proved first.

Lemma 5.4.9 Let Py and Py be two point sets in R®. Let S be an (1 + % ¢)-spanner of

P,. For each edge e of the spanner whose cost exceeds the |P1|™ fraction of the cost of

100

minimum spanning tree of Py, let B(e) and B/(E) be the balls with the center at the midpoint
of e and with the radius equal to |e|- pa/€ and 4- |e|- pa/ e, respectively, where pq = 2°! (),
For each ball B(e), let Y. be the subset of Py consisting of all points that are contained in
it, and let Ve be any subset of Py containing all points in Y. and possibly some other
points contained in the ball B’(—E) Let 5(: be any subset of \/(\e such that (i) ify € Ve -)/(:
then that there is x € i(\e such that lyx| < le|e2/(8 ApaV/d) and (ii) if x,y €)/(: then
xyl > lel €2/(8 Apa Vd). Let X = s Xe.

Then, there is a spanning tree of XU Py whose total cost is upper bounded by

(pa/e) - ((\/—Apd/a)) T =20 /0

times the cost of the spanner S.

Proof : First a spanning graph 7 of X U P; will be constructed. First of all, 7 contains
a minimum spanning tree of P;. Then, for every edge e € S we find a minimum spanning
tree T, of 5(: (for convention, if 5(: is undefined, it will be treated as an empty set), connect
it to any of the endpoints of edge e, and add the obtained tree to 7. It is easy to see that so
defined graph 7 is a spanning tree of X UP;. Therefore, the cost of the minimum spanning
tree of XUP; is upper bounded by the cost of 7 and therefore the attention will be focused
on estimating the cost of 7.

Fix an arbitrary edge e in S. Note thatif x,y € >’(: then [xy| > |e| €2/(8 VA A pa V4d).
Furthermore, all points in)/(: are contained in a ball of radius upper bounded by 4 |e| pa/e.
This immediately implies that the size of X, is ((\/_ dAp3/ 83)) ‘ Hence, by Lemma
5.4.2, the cost of T, is (4le| pa/e) - ((\/_A p%/&)) - Therefore, if MST(P;) denotes
the cost of the minimum spanning tree of Py and by COST(S) the cost of the spanner S, one

can obtain the following upper bound for the total cost of T

MST(P4) +Z_ (4lelpa/e) - ((\/—Apd/a)) - < (4pg/e) - ((\/_Apd/e)) - - COST(S) .

2]
a

101

Since X satisfies the two properties of X, let X = X and apply X to the above lemma,
then there is a spanning tree of X U P; whose total cost is upper bounded by (4p4/¢€) -
(0 (VdApd/ 83)) e 20(d%) /¢©(d) times the cost of the spanner S. Recall that the X
is built upon the spanner whose cost is bounded by &4, = (d/€)°@) times MST(P;), one
can easily see that the cost of Minimum Spanning tree of X U Py is bounded by: Aq, =
(201" /¢0d)) . (d/6)01) = ©(2014") /¢©(d)) times the cost of Minimum Spanning tree of

P] MST(P])

54.3 Complexity of SMT-Filtering
This section shows how to implement SMT-Filtering phase. The construction of the set
X described above has been specially tuned to enable an efficient implementation. The

following lemma will be proved first.

Lemma 5.4.10 The filtering algorithm for SMT can be implemented to determine the set

X in time (d/€)°Y . n logn, where n = [Py U P4 .

Proof: ByLemma5.2.2, Step 1 can be implemented in time (d/e)®®-n+O(d-n-logn).

To implement Steps 2, 3, i.e., to determine the set Y, one can use a core data struc-
ture for approximate point location in equal balls due to Indyk and Motwani [67]. For a
given approximation factor ¢ > 1 and a given real T, they designed a static data structure
for a set of points S C RY, called (c, T)-PLEB, such that for any point g € R9, if S contains
a point within distance r from g then (c, r)-PLEB outputs a point g € S that is promised
to be within a distance at most ¢ r from ¢. Indyk and Motwani [67, Theorem 3] show that
there is an algorithm for (2, r)-PLEB (in the Euclidean d-dimensional metric) that after
an O(|S]2°(@)-time preprocessing achieves O(d) query time. Note that in the algorithm
above, the costs of the spanner edges from which the balls originate fall into a logarith-
mic number of intervals of the form [2} 1y, 2! 1,), where 1, is their minimum cost (which
is lower bounded by the cost of the minimum spanning tree of Py over [P1/*). To deter-

mine Y, fori = 0,...,O(logn), one can build the (2,215 pa/¢e)-PLEB data structure

103

Remark 5.5.2 The key property of the construction in Lemma 5.5.1 is that the obtained graph H
has Po U Py as its vertex set. This distinguishes it from previous constructions, e.g., [3, 101], where
a related graph H was allowed to use arbitrary points outside PoU P1. This property is critical in the
approximation of SMT and other connectivity problems (in contrast to, e.g., TSP approximation).
Indeed, suppose that H has as a vertex a point q ¢ Po U Py which is a cut-vertex in H and that H
contains some tree T to be pruned to a Steiner tree for P (or its subset). Then, if the degree of q in
T is very high, it might be impossible to remove q from T to obtain a tree of the cost as good (or
almost as good) as the cost of T (in contrast, TSP on a superset of P can be easily modified to obtain
a TSP on P without any cost increase). Observe that this construction allows to bend the edges, that
is, an edge between two points x and Yy in P is a path of straight-line segments between x and y, see
the discussion at the beginning of Section 5.2. ®
Now the main ideas behind the proof Lemma 5.5.1 will be discussed. As mentioned,

this lemma uses (almost directly) results already developed in [26]. Therefore the results

presented here are given without proofs.

Theorem 3.1 from [26] is the key technical theorem in that paper.

Lemma 5.5.3 [26] Let € and A be any positive but otherwise arbitrary reals (that is, they
may depend also on other parameters). Let k be an arbitrary positive integer. Let P be an
arbitrary point set in R%. Let G be a spanner for P that has n. (d/e)°9Q) edges, has total
cost COST(G), and that satisfies the (t, 1+ % ¢)-leapfrog property, where 1 <t < 1+ % €.
Choose a shifted dissection uniformly at random. Then, one can modify G to a graph H

with vertex set P such that

o H is t-locally-light with respect to the shifted dissection chosen, where v = 2°(d) .

k2 4+ (d/e)°D +d- (OA-d¥?)9, and

e there exists a k-edge-connected multigraph M which is a spanning subgraph of H

with possible parallel edges (of multiplicity at most k) whose expected cost (over the

102

for all the center points of spanner edges having cost in the interval [2} 1y, 21" 1), and then
query it with all the points in Py. The time needed for the construction of the logarithmic
number of PLEB data structures is O(logn) times the number of spanner edges (which is
n&g. = n(d/e)??d) and the time needed for the |Py| queries is @(logn) x |Po| x O(d)
[67]. Hence, the total time required in Steps 2 and 3 is @(n (d/e)°@ logn).

Observe that during the construction of Y, one can also insert each point accounted
to Y into a list corresponding to the smallest ball it belongs to (approximately) by processing
the O(logn) PLEB queries without increasing the asymptotic time performance. These
lists are useful in the implementation of Step 4. Simply, for each of the balls B(e), and
for each point p in the corresponding list L(e), one checks whether or not the point p after
rounding off to the nearest point on the grid C(e) is already marked. If not, one marks the
grid point and add p to X. It is easy to see that in this way Step 4 can be implemented in

time O((d/e)®9) - n). O

5.5 Lightening for SMT
For the Lightening phase, the framework developed in [26] will be used to transform span-

ners into T-locally-light graphs maintaining connectivity properties.

Lemma 5.5.1 Let Py and Py be sets of points in R® and let ¢ > 0. Let v = (d/e)°'9*). Let
G beany (1+ JT ¢)-spanner of PoUPy that has n. (d/€)°Y) edges, whose total cost is upper
bounded by (d/e)°Y times the cost of the minimum spanning tree of P and that satisfies
the (t,1+ % €)-leapfrog property, where 1 < t < 1+ % €. Then, one can transform G to
obtain a graph H with vertex set Py U Py (i) that is r-locally-light and (ii) that contains as
its subgraph a Steiner tree of Py with respect to Py whose cost is at most (1+ % €) times the
cost of the SMT of Py with respect to P,,. Morem;er, this transformation can be performed

in time O(d*?n logn) +n (2°” + (d/e)°@),

104

CcosT(G)
A-MST(P)

random choice of the shifted dissection) is upper bounded by (1+ % e+) times
the minimum-cost k-edge-connected multigraph spanning P, where MST(P) denotes

the cost of the minimum spanning tree of P.

Moreover, the modification can be performed in time O(d*? - n - logn) +n - (29°% 4

(d/€)°). 0

Remark 5.5.4 Notice that the original theorem in [26] the so-called “isolation property”
of the spanner was required. However, the proof of that theorem can be easily modified to
spanners satisfying the “leapfrog property” (see [56] for a precise definition). The reason
of this change is that in [26] the authors were using the spanner construction due to Arya
et al. [5]. Unfortunately, it has been shown (see, e.g., [56]) that there is a serious flaw
in the construction due to Arya et al. The only known existing construction of “optimal”
spanners is due to Gudmundsson et al. [56], see Lemma 5.2.2. This construction satisfies

the leapfrog property and therefore we gave a modified version of Theorem 3.1 from [26].
®

Remark 5.5.5 Some brief intuitions why the leapfrog property is required (and why it can
replace the isolation property) in the proof of Lemma 5.5.3will be given here . As it is
shown in [25, Lemma 2.3] (a predecessor paper of [26]), with a very little cost increase
one can transform any spanner (or any k-edge-connected multigraph) into a graph that
is “almost” v-locally-light. By “almost” it is meant that the number of “short” relevant
crossings is at most v/2, where a “short” crossing of a facet of side length L is of the
length O(v/d - L). However, the number of longer crossings may be significantly larger.
But if the input spanner satisfies the leapfrog property then one can show that the number
of “long” relevant crossings is small. This allows to prove that the construction leads to

an v-locally-light graph. [)

105

Remark 5.5.6 Actually, Lemma 5.5.3 requires that the input points are slightly “perturbed”
and are so-called “well-rounded.” This modification of the input points is used in all pa-
pers following Arora’s framework (see, e.g., [3, 26, 101]). It requires to move all input
points (by a very tiny vector) to a certain grid in R, Although formally this step is very

important in the algorithm, for simplicity of presentation it will be neglected. ®

Remark 5.5.7 Finally notice that the key feature of the construction in Lemma 5.5.3 is that
the obtained graph H has P as its vertex set. This is the key property that distinguishes it
JSfrom previous construction, for example, as in [3, 101]. This property is not required if one
wants to find an approximation, for example, for TSP, but it is critical when dealing with
the SMT problem and other connectivity problems. Indeed, suppose that H is using some
new point q & P and this vertex is a cut-vertex in H and suppose that H contains a certain
tree T that we would like to use as a Steiner tree for P (or its subset). Then, if the degree of
q in this tree is very high, then it might be impossible to remove q from T to obtain a tree
of the cost as good (or almost as good) as the cost of T. (Notice that this is easy to be done
in the case of TSP, as in [3, 101], because TSP on a superset of P can be easily modified
to obtain a TSP on P without any cost increase.) Additionally, this construction allows to
bend the edges, that is, an edge between two points x and y in P is a path of straight-line

segments between x andy, see the discussion at the beginning of Section 5.2. [

Keeping in mind the remarks above, notice that the proof of Lemma 5.5.3 is actually
much stronger. The proof of Lemma 5.5.3 is performed by a sequence of removals of
certain edges from and inserting new edges to G. The idea behind inserting the edges is
that they are required to keep the same connectivity of the obtained graph as of G. This does
not mean only global connectivity, but also the local one (up to connectivity k). Therefore,
the proof (without any modification) of Lemma 5.5.3 leads to the following much stronger

result (that is stated here without a proof).

106

Lemma 5.5.8 Let ¢ and A be any positive but otherwise arbitrary reals (that is, they may
depend also on other parameters). Let k be an arbitrary positive integer. Let P be an

04 edges,

arbitrary point set in R%. Let G be a (1 + % e)-spanner for P that has n (d/e)
has total cost COST(G), and that satisfies the (1+ % €, t)-leapfrog property, where 1 < t <
1+ %s. Choose a shifted dissection uniformly at random. Then, one can modify G to a

graph H with vertex set P such that

o H is t-locally-light with respect to the shifted dissection chosen, where v = 20(d) .

K2+ (d/e)° 9 +d - (O(A- a¥?))4,

o there exists a multigraph M which is a spanning subgraph of H with possible parallel

edges (of multiplicity at most k) such that

1. for every pair of points x,y in P, if there are T, edge-disjoint paths between x
and y in G then there are at least min{ry,, k} edge-disjoint path between x and
yinM,

2. the expected cost of M (over the random choice of the shifted dissection) is

cosT(G

upper bounded by (1+ 3 e+ o=t AMST(P)

L) times the minimum-cost multigraph span-
ning P satisfying the above property 1, where MST(P) denotes the cost of the

minimum spanning tree of P.

Moreover, the modification can be performed in time O(d%? -n -logn) +n - (24°' 4

(d/e)°9).

This lemma directly implies Lemma 5.5.1 after setting the parameters appropriately.

Indeed, pick any (1 + 1 5 €)-spanner G of Py U Py that satisfies the assumptions of Lemma

5.5.1. Pick A = 2S95T8) — (q/¢)(@ and set k = 1. Apply Lemma 5.5.8 to G to construct

e-MST(P)

the promised graph H. Now, it is easy to verify that H satisfies the requirement of Lemma

5.5.1, which completes the proof of Lemma 5.5.1.

107

5.6 Searching for SMT
The approach in the Searching phase is to apply dynamic programming to find an optimal

Steiner tree in a T-locally-light graph.

Lemma 5.6.1 Let Py and Py be sets of jointly n points in R® and let v be any integer. Let
G be an r-locally-light (with respect to a certain given shifted dissection) graph on PoUP;.

O(Zdr))

Then, in time O(n - v one can find a minimum-cost Steiner tree T of Py with respect

to Py that is a subgraph of G.

This lemma is proved by showing how to use dynamic programming to find a
minimum-cost Steiner tree T of P; with respect to Py. It will be shown that the running
time of the construction is @(n - 1°2*")). The dynamic programming procedure is essen-
tially the same as the one used in PTAS algorithms for TSP and the Euclidean complete
Steiner tree problems due to Arora [3, 101], but for the sake of completeness it is presented
here in details.

It should be mentioned here that like [3, 25, 26, 101], in the dynamic programming
procedure, the input is assumed to be a well-rounded point set, which is done by Perturba-
tion to the original points. Like mentioned before, for simplicity of presentation it will be
neglected.

First define the subproblem in a region R of the dissection. Let S be a set containing
m < 71 relevant crossings on the facets of R. Given a partition(S1,S2,...,5),1<k<m
of S, find a minimum-cost steiner forest that (i) consist of k trees, (ii) the i-th tree T; of the
forest contains all the crossings (called portals in [3, 101]) in S; as their leaves, and (iii)
all the trees of the forest collectively contain all points p € Py in this region. If no such
forest exists for this partition, this partition is said to be invalid.

The tree T is found in a bottom-up fashion. First a minimum-cost Steiner forest
for each leaf region is found, then the minimum cost forests for each non-leaf region by
combining the optimal solutions of its child regions. The T we are looking for is the

minimume-cost forest for the root region.

108

1. For the subproblems of a leaf region, there is at most one point in the region. The
computation is trivial, one can easily compute the optimal solution in O(r). There

are three cases, depending on the number and type of the point:

e No point, therefore no relevant crossings at all. The forest is empty, and the

cost is always 0.

e One point p € P;. There are only several ways of partition of S that are valid,
and p must be contained in one of the tree, which makes the total cost of the

forest for the partition minimum.

e One point p € Py. Almost the same as the second case, except that here p is a
Steiner candidate, so p is not required to be contained in the forest. Specifically
when k = m, the optimal solution is a forest with m trees each containing only

one crossing and the total cost is 0 .

2. For each maximal sequence of regions Ry, ... Ry suchthatfori=1,...,q—1,
Ri1 is the only child region of R; that has points in it, the minimum cost forest within
R; can be easily computed from that within R4 just by extending the latter along the

edges that cross the facets of Rg.

3. For the subproblems arising from a non-leaf region with more than one point in it, it
will be shown that one can compute all its optimal solutions each with respect to a

particular partition of the crossings in time O(r°@°7)).

Each forest in parent region R is a combination of forests from its child regions
R1, Rz, ..., Rya respectively. So the minimum-cost forest in R can be found by enu-
merating all combinations of forests from its child region. The combination is done
through overlapping crossings on the shared facets of child regions. If there is no
mismatched crossings, a forest in the parent region is obtained. This forest also de-

fines the crossings set S on the border of R and a partition of S. For a specific set S

109

and a specific partition of S, there may be many combinations correspond to it, one

needs to find the one that gives the minimum cost forest.

Note that if a crossing shared by two child regions is relevant for one child, but not
for another. That is there is an edge which comes from a point outside the region,
gets through one of its child and ends in another child. The combination is still valid.
The segment of the edge in the former child is not included in the computation for

the child, but it needs to be added to the cost of the parent region.

There are O(1") forests for each child region, so the time complexity of combination

is O(r(24 1)

For a shifted dissection, it has O(n) leaf regions with a point in it, and has only
O(n) non-leaf regions with more than one point in them, so the time complexity of the

whole problem is O(n - (),

5.7 Polynomial-Time Approximation Scheme for SMT

Now, it will be shown how to combine all the arguments from Sections 5.4 — 5.6 to obtain
a PTAS for the Euclidean SMT problem. The input to the problem consists of two sets Py
and Py of points in R? of total size |Po| + |P1| = n. The goal is to find a Steiner tree of Py
with respect to Py whose cost is less than or equal to 1 + ¢ times the minimum.

First apply Lemma 5.4.1 to find a subset X of Py having the promised properties
(with t = }' €). Then, take a (1 + ; ¢)-spanner G for X U P; and apply Lemma 5.5.1 to
modify G in order to obtain an r-locally-light graph H that has as a subgraph a Steiner tree
of P; with respect to X whose cost is upper bounded by (1 + % ¢) times the cost of the SMT
of Py with respect to X. Finally, apply Lemma 5.6.1 to find a minimum-cost Steiner tree
of P; with respect to X that is a subgraph of H and output it. This leads to the following

theorem.

110

Theorem 5.7.1 There is a polynomial-time approximation scheme for the Steiner Mini-

mum Problem in Euclidean space R®. In particular, for any sets of points Py and Py in RS
. . . o(d) (d/e)O(dZ) .

of total size n, in time O(n logn (d/e)?)+ O(n (d/e)) one can find a Steiner

tree of Py with respect to Py whose cost is at most 1 + ¢ times the minimum.

For constant d and ¢, the running time of this algorithm is O(n logn). O

5.8 {0,1,2}-Connectivity Problem
One can extend the algorithm from the previous section to obtain a polynomial-time ap-
proximation scheme for the {0, 1, 2}-Connectivity Problem in Euclidean graphs. Actually,
special attention has been paid to present the algorithm for the SMT problem in a form
extendable to include the {0, 1, 2}-Connectivity Problem.

Due to Lemma 5.2.8, one may consider only the {0, 1, 2}-edge-connectivity problem
and allow the output to be given in a form of a multigraph. The algorithm uses similar three
phases as the algorithm for the SMT problem. The Filtering phase is essentially the same
as for the SMT problem except that one works on the spanner of P; U P, now in order to
find X and Y. Similarly, the Lighting phase, is essentially the same as for the SMT problem,
see Section 5.8.1. Searching phase is the only phase that is completely different and rather
tricky, but still one can implement this phase efficiently by using the idea of connectivity
type of the multigraph within a region of the dissection, the detailed description of the

dynamic procedure and the proof of its correctness is in Section 5.8.2.

5.8.1 Lightening for {0, 1, 2}-Edge-Connectivity
For {0, 1, 2}-edge-connectivity, one can argue analogously as in the proof of the Lightening

Lemma for SMT.

Lemma 5.8.1 Let Py, Py and P, be sets of points in R, Let ¢ > 0 and v = (d/e)0@%).
Let G be any (1 + €)-spanner of Po U Py U P, that has n.(d/e)°D) edges, whose total

cost upper bounded by (d/¢)°'Y) times the cost of the minimum spanning tree of Py U P

111

and that satisfies the (t,1 + %e) -leapfrog property, where 1 < t < 1+ %e. Then, one
can transform G to obtain a graph H with vertex set Py U Py U P (i) that is r-locally-
light and (ii)there is a sub-multigraph M whose induced graph is H, and it satisfies the
connectivity requirement of every vertex in M, the cost of M is at most (1 + ¢) times the
cost of the minimum-cost multigraph having the same connectivity property. Moreover, this

transformation can be performed in time O(d3? -n -logn) +n - (2¢°'“ + (d/¢)°9).

It is easy to transform the arguments used in the proof of Lemma 5.5.1 and in

Section 5.5 to prove the above claim. Pick any (1 + 3 ¢)-spanner G of Po U P; U P,

2.cosT(G) __

that satisfies the assumptions. One can still use Lemma 5.5.8 here, let A = easT(P)

(d/€)®@ and k = 2, construct the graph H, and it is easy to see H meets the requirement

of the claim.

Remark 5.8.2 The arguments above can be also easily modified to include the Lightening

Lemma for arbitrary {0, 1, ... , k}-edge-connectivity in the same time complexity.

5.8.2 Dynamic Programming for {0, 1, 2}-Edge-Connectivity
The goal of searching phase for {0, 1, 2}-edge-connectivity is using dynamic programming
to solve the following problem: Let P = Py U P; U P; be a well-rounded point set in R,
where P; is the set of points whose connectivity requirement is i. Given an arbitrary shifted
dissection, let G be an Euclidean graph on P that is r-locally-light with respect to this
dissection. Find the minimum-cost {0, 1, 2}-edge-connected multigraph H on P for which
the induced graph is a subgraph of G.

Before describing the procedure of dynamic programming, some definitions will be
introduced first.

For any region R of the dissection, after duplicating some of the edges of G, a
multigraph within R is the part of the multigraph contained within R resulting from the
removal of all edges that cross R but have no endpoint inside R (see, Figure 5.2 (a-b)). The

multigraph within R has two types of points, those from P, which will be called the input

(a)

112

/1IN

|~
2 1 2 1 1 2 2
1 1190, 2 2
:]] N Q 1<2Dool£ 5 < > e
1 1 1 1
1 ~ 1 ~
3 01 11 |~ Mo 1 1\ 2 o0 1 1 1\ 2 1 11
) T~ 2 2 2 2
l (b) (©) (d

Figure 5.2 Tlustration of connectivity type construction: (a) A part of graph G inside a region R,
(b) a multigraph My within R, (c) contraction of two-edge-connected components in Mg, and (d)
contraction of paths in Mg.
points, and those defined by the crossings of the edges with the border of P, which will be
called the border points.

The idea of connectivity type introduced in [25, 26] will be used here, but different

and more subtle characterizations are needed. The connectivity type of a multigraph is the

(“pseudo”-)forest obtained by the following steps (See Figure 5.2 for an illustration).

¢ Contracting each maximal two-edge-connected component in the multigraph induced
by its non-leaf vertices to a single vertex, and associate a connectivity requirement
with this vertex which equals to the maximum connectivity requirement among all

vertices of the component.

e Contracting each maximal path composed of input and/or contracted points of de-
gree two into the single edge with the endpoints being the first and the last vertex
at the path, and associating with each endpoint of the new edge the connectivity re-
quirement equal to the maximum connectivity requirement among all the points on

the path.

It can happen that a “leaf” in such a pseudo-forest have two edges connecting it with
its parents(thus, there are possible cycles of length two). This explains the name “pseudo-
forest”. This issue shall be ignored and the notation shall be slightly abused by calling such

“pseudo- forests” as forest in the continuation.

113

From the definition above, it is known that a connectivity type is a forest and two
multigraphs are said to have the same connectivity type if the forests are isomorphic. For
a region with at most T relevant crossings, each forest obtained from a multigraph whose
induced graph is the graph within the region has at most r leaves, thus less than O(2r)
vertices, so there are at most 1°(") such forests, and therefore there are at most () con-

nectivity types.

Dynamic programming. The dynamic programming procedure will determine for each
region and for each possible connectivity type, the minimum-cost multigraph of this type

within the region.

1. For each leaf region, each possible multiset S of at most r crossings on the facets of
the region, since there is at most one point in the region, the minimum-cost multi-

graph of each connectivity type corresponding to S can be easily computed in time

o),

2. Like dynamic programming in SMT, for each maximal sequence of regions Ry, ...
Rq such that fori =1, ... ,q — 1, R4 is the only child region of R; that has points
in it, the minimum cost multigraph of each connectivity type within Ry can be easily
computed from those within R in constant time. Since there are O(r") connectivity

types, so the total time needed is O(r7).

3. Let R be any other non-leaf region R. Let Q;, Q2, ... Qja be an arbitrary con-
nectivity types for the child regions Ry, Rz, ... Rya respectively. These connectivity
types(pseodo-forests) are combined through the overlapping crossings and then elim-
inate these vertices from the resulting graph and add single or double edges crossing
the common facets at these vertices. If a crossing on a common facet is a relevant
crossing in one child region, but not in the other, then the combination is valid. If a
valid graph is obtained from the combination, then its connectivity type is comput-

ed by performing the necessary contraction. By enumerating all combinations, the

114

minimum-cost of each connectivity type and its corresponding multigraph in R can

be found.

The total running time of the combination, contraction is obviously linear in the to-
. . . : 2d
tal size of these connectivity types, that is O (2% 1). Since there are at most @(r°(")

possible combinations, the computation for a non-leaf region takes @(29 r). (r™))Zd =

T.0(2" 1').

4. Finally after the minimum-cost multigraph of each connectivity type for the root
region is computed, the optimal multigraph for the original problem can be easily
found by just taking the one with minimum cost among those connectivity types
which consist of a tree with only one vertex having connectivity requirement of 2

and some isolated vertices belonging to Po.

From the analysis above, it is easy to see that the complexity of the searching phase

is O(n - 0247),

Correctness of the dynamic programming. Now, a sketch will be given to prove that the
multigraph obtained satisfies the connectivity requirements and has minimum cost. First
the multigraph will be shown to meet the connectivity requirement of each input point.
This is obviously true if one looks at connectivity type of this multigraph found. It is a
tree together with some points of Py, so all points of Py U P, are connected, furthermore
only one vertex having connectivity requirement of 2, this means all points belong to P,
are contained in a two-edge-connected components represented by this vertex.

Next, it will be proved that its cost is minimum among all such multigraphs. It is
enough to show that the solution is optimal in each region, i.e., in each region the sub-
multigraph of the solution within it has minimum cost among all multigraphs within this
region having the same connectivity type. This can be proven by contradiction. Suppose
the solution is not optimal in some regions. Take any such a region at the lowest level.

Replace the sub-multigraph in this region of the solution by the optimal solution having

115

the same connectivity type in this region. It is easy to see that a new multigraph satisfying
the connectivity requirements but with lower cost than the solution is obtained, but this is
contradict to the fact that the solution has minimum cost among all multigraphs having the

the same connectivity type.

Theorem 5.8.3 There exists a polynomial-time approximation scheme for the {0,1,2}-
vertex/edge-connectivity problem in Euclidean space R®. For ¢ > 0 and any sets of points
Po, P1, P2 in RY of total size 1, the algorithm in time n log 1 (d/€)P@ +n (d/e)(@/e°
finds a graph on Py U P, with possible Steiner points in Py that satisfies the connectivity

requirement for any pair of points and whose cost is at most 1 + ¢ times the minimum.

For constant d and ¢, the running time of this algorithm is O(n logn). O

5.9 Extensions
1. All the arguments from Section 5.8 except the dynamic programming part can be eas-
ily generalized to include {0, 1,... , k}-edge-connectivity for multigraphs. Regard-
ing the dynamic programming, one can combine the dynamic programming for the
k-edge-connectivity from [25] with the method of dealing with non-uniform connec-
tivity requirements. Thus, the variant of the geometric survivability problem, where
the edge-connectivity requirements satisfy r,, € {0,1,...,k}and k = O(1), admits
also a PTAS. The running time is however, significantly greater than O(n logn),

though it is still polynomial for constant d and €.

2. Using the same arguments as in [3], one can extend the PTASs to include other Eg

metrics as well.

3. The PTASs could be also extended to an infinite domain for Steiner candidate points
(e.g., if Po = R one has the Euclidean complete Steiner problem) provided one can

determine the set Y (or its good approximation) as fast as claimed in Lemma 5.4.10.

(@ (b)

Figure 5.3 Illustration to the proof of Lemma 5.10.1. (a) An example of input configuration. (b)
Rays Ay, Ay, and A,. (c) Construction of x’, y’, z’ (notice that the same construction is valid even
when A, does not lie between A, and A,)).

5.10 Auxiliary Claims
Lemma 5.10.1 Let v and p be any positive real numbers and let R = (1 + p) - 1. Let B,
and Bg be two co-centric d-dimensional balls of radius T and R, respectively. If x and y

are points contained in B, and z is not contained within of Bg then

(1+p)-xyl < xzl + lyz| .

Proof : First notice that it is sufficient to prove the lemma for d = 2. Furthermore, it is
easy to see that it is enough to consider the case when x and y are on the boundary of B,
(otherwise one could move the triangle A(x,y, z) to have x and y on the boundary of B,
while still having z not contained within Bg) and z is on the boundary of B (otherwise, one
could move z to the boundary of By without changing |xy| and with decreasing |xz| + |yz|).

Now, see Figure 5.3 for an illustration for the remaining of the proof. Draw three
rays Ay, Ay, and A from the center of B, through points x, y, and z, respectively (see
Figure 5.3 (b)). Define x’ and y’ to be the points on the intersection of the boundary of By
and A, Ay, respectively. Let z’ be the point on the ray A, that lies on the boundary of B,.

(See Figure 5.3 (c) for an illustration.) By the Thales theorem
(T+p) eyl =Ky . (5.2)
Furthermore, from the triangle inequality one can get

Ix'y'l < x'z'| + [y'z'| . (5.3)

117
Now, consider the quadrilateral (x, x', z,z') (see Figure 5.3 (c)). Since the segments
xz' and x'z are parallel, (x,x', z,z') is a trapezoid. Furthermore, Z(x,x’,z) = £(x’,z,2')
and Z(z',x,x') = Z(z,2’,x). Therefore
[xz| = |x'z'| . (5.4)
The same arguments imply

vzl =z’ . (5.5)

Thus, one can now summarize all our inequalities to obtain

ineq. (

ineq.(5.3) .
(1+p) - byl ™ iy < 2|+ '] * xz| + lyz)

CHAPTER 6

APPROXIMATION SCHEMES FOR MINIMUM 2-EDGE-CONNECTED AND
BICONNECTED SUBGRAPHS IN PLANAR GRAPHS

6.1 Introduction
This chapter considers approximation algorithms for the most basic case of the survivable
network design problem in which the resulting subgraphs should be resistant to the removal
of a single edge or vertex. The two classical problems considered here are to find a min-
imum 2-edge-connected (2-EC) spanning subgraph (a 2-ECSS), or a 2-vertex-connected
(2-VC or biconnected) spanning subgraph (a 2-VCSS) of planar graphs.

As mentioned before, these problems are max-SNP-hard [25], even for unweighted
graphs or when duplicate edges are allowed; therefore one can not expect a PTAS. But this
does not preclude a PTAS for restricted classes of graphs: in particular, a PTAS exists for
both problems in geometric graphs of constant dimension [25]. The goal in this chapter is
to design PTASs for the two problems in planar graphs.

Many polynomial time approximation algorithms are already known for these prob-
lems, see the survey [70] and more recent advances [19, 39, 40, 66, 74]. In unweighted
graphs, the best currently known approximation ratios are 5/4 for 2-ECSS problem [66],
and a 4/3 for the 2-VCSS problem [116]. For both problems in weighted planar graphs,
the best known subexponential-time approximation guarantee is still 2 [73, 94]. All these
approximaitons are achieved by polynomial-time algorithms working for general weighted
graphs.

This chapter describes a PTAS for the minimum 2-edge-connectivity problem and a
PTAS for the minimum biconnectivity problem, both for unweighted planar graphs. More
generally, when the planar graph has edge weights the algorithms approximately solve the

minimum-cost problems in time n°0/¢) where v is the ratio of the total edge cost to the

118

119

optimum solution cost. This is a PTAS when vy is bounded; note that -y is bounded (by 3)
when the edge weights are uniform.

The new general approach resembles the approximation schemes for metric-TSP
in planar graphs [4, 47, 48]. It uses a separator theorem, hierarchical decomposition, and
dynamic programming. The new separator finds low-cost cycles in a planar graph so that
after contracting those cycles (and committing their edges to the approximate solution),
the remaining graph has a logarithmic size vertex separator. Using this, the input graph G
is recursively divided into pieces, forming a decomposition tree 7 of logarithmic depth.
Each piece has a logarithmic number of “portal” vertices connecting it to the rest of G. For
each piece, one can enumerate all the different ways that some subgraph of G (outside this
piece) may influence the connectivity constraints within this piece. These are called the
external types of the piece, and one can show that the number of such types is a simple
exponential in the number of portals. For each piece in 7 and for each external type, one
must find a near minimum cost subgraph H of the piece, so that H together with the external
type can meet the global connectivity constraints. These problems are solved by dynamic
programming, working up 7 from the leaves to the root G.

In the following, 2-EC denotes “2-edge-connected”, 2-VC denotes “2-vertex-connected”
(or biconnected), 2-ECSS denotes ‘“2-edge-connected spanning subgraph”, 2-VCSS de-
notes “2-vertex-connected spanning subgraph”, and c(H) denotes the total edge cost of a

subgraph H. The main results are summarized in the following two theorems.

Theorem 6.1.1 Let ¢ > 0, let G be a 2-EC planar graph with edge costs, and let OPT be

the minimum cost of a 2-ECSS in G. There is an algorithm taking inputs G and €, running

in time GV OPTE) und producing a 2-ECSS H in G such that c(H) < (1 + ¢) - OPT.

Theorem 6.1.2 Let ¢ > 0, let G be a 2-VC planar graph with edge costs, and let OPT be
the minimum cost of a 2-VCSS in G. There is an algorithm taking inputs G and ¢, running

in time nO(CV/OPTe)) und producing a 2-VCSS H in G such that c(H) < (1 + ¢) - OPT.

120

As remarked above, each claimed algorithm is a PTAS when the ratioy = ¢(G)/OPT
is bounded. In particular, Theorems 6.1.1 and 6.1.2 imply a PTAS for the unweighted min-

imum 2-edge-connectivity and the minimum biconnectivity problems.

Corollary 6.1.3 Let ¢ > 0, let G be a 2-EC planar graph, and let OPT be the minimum
number of edges of a 2-ECSS in G. There is an algorithm taking inputs G and €, running

in time n°0/¢) and producing a 2-ECSS H in G that has at most (1 + ¢) - OPT edges.

Corollary 6.1.4 Let ¢ > 0, let G be a 2-VC planar graph, and let OPT be the minimum
number of edges of a 2-VCSS in G. There is an algorithm taking inputs G and €, running

in time n°U/%), and producing a 2-VCSS H in G that has at most (1 + ¢) - OPT edges.

In the following, Theorem 6.1.1 will be discussed first, then the new ideas required
for Theorem 6.1.2 will be presented. Throughout the chapter, it is assumed that graphs
are undirected, without self-loops but possibly with parallel edges. Each edge e has a
nonnegative cost C.; a subgraph or minor H inherits edge costs from its parent graph, and

c(H) denotes the total edge cost of H.

6.2 Cuts and k-EC Types
Suppose G = (V, E) is a graph and S1, S are disjoint subsets of its vertex set V = V(G).
S1 and S; are separated if there is no path in G from a vertex of S; to a vertex of S,. An
edge set F C E separates Sy and S; if they are separated in G — F; F is said to be an edge
cut for S; and S;. Similarly, a vertex cut for Sy and S; is some U C V — (S7 U S;) such
that Sy and S; are separated in G — U. Let Cut(Sy, S2) denote a minimum size edge cut,
and Cg(S1, S2) = [Cut& (S1, S2)| is the edge capacity between Sy and S;. Cut} (S5, S2) and
C%(S1,S2) are defined similarly. Such min cuts can be computed efficiently using max-
flow. For P C V, a (vertex or edge) cut is said to crosses P if it separates some Sy and S,

such that S; U S, =P.

121

A cycle has no repeated vertex, but it may consist of two vertices joined by two
parallel edges. For e € E, G/e denotes the graph obtained by contracting e (that is,
identifying its endpoints). If C is a cycle of G, G/C is the graph obtained by contracting
the edges of C. After contraction self-loops are discarded, but parallel edges are retained.
A minor of graph G is a graph obtained from G through a series of such edge contractions

and edge/vertex deletions.

Definition 6.2.1 A bipartition of a set P is a pair of nonempty subsets {S1, S} such that
SiUS; =Pand $;NS, =0.

Suppose G is a graph, P C V(G), and k is a positive integer. The (k—EC, P)-type
of G is a table t indexed by bipartitions {Sy, S} of P, and holding the values t(S41,S;) =
min (k, C&(S1, S2)).

Suppose t, and t; are (k—EC, P)-lypes of two graphs sharing the vertex subset P;
they are compatible iff t1(S1, S2) + t2(S1, S2) > k for all {Sy, Sz}

Intuitively, the (k—EC, P)-type describes how P is crossed by edge cuts using less than k
edges. Usually only the type when G is (k—EC, P)-safe is interesting, meaning that all
edge cuts of G not crossing P use at least k edges. The relevance of such types to the

k-ECSS problem follows from this simple claim.

Claim 6.2.2 Suppose Hy and H; are graphs with disjoint edge sets, and V(H;)NV(Hz) =
P. Then H, U H; is k-EC iff:

1. Hyis (k—EC, P)-safe,

2. Hy is (k—EC, P)-safe, and

3. the (k—EC, P)-types of Hy and H; are compatible.

The third condition above can be abbreviated by saying that H; and H; (or H; and the type
of Hj, or vice versa) are compatible.

Suppose Gy and G, are edge disjoint graphs with V(G;) N V(G;) = P. To solve
the k-ECSS problem in G; U G, it suffices to do the following:

122

1. For each possible type t; of a subgraph of G, find a min-cost (k—EC, P)-safe span-

ning subgraph H; of G, compatible with t;.

2. For each possible type t, of a subgraph of G, find a min-cost (k—EC, P)-safe span-
ning subgraph H; of G; compatible with t,.

3. Consider all pairs of Hy from Step 1 and H; from Step 2. Return the min-cost

compatible pair.

A similar approach is used in the PTAS of Theorem 6.1.1. It is necessary to have in par-
ticular a polynomial bound on the number of distinct subgraph types considered is needed.
One may succinctly represent the (k—EC, P)-type of G by a smaller graph t(G) which con-
tains P and has the same type. In particular a minor of G contains P as long as no vertex of
P is deleted, nor two vertices of P are contracted together.

In the special case of k = 2, one can construct t(G) from G by applying the fol-

lowing rules, until none apply:

1. If acycle C has a chord (an edge e ¢ E(C) connecting two vertices of C), delete the

chord.
2. If acycle C has at most one vertex in P, contract C to a point.
3. If avertex v € P has degree 2, contract it with a neighbor.

The correctness of the above follows from the observation that all 0-edge cuts and 1-edge
cuts of P are invariant under the above rules. Note that if G is planar, then so is t(G). Also
if G is (2—EC, P)-safe, then so is t(G). For the application considered in this chapter, one
needs to consider the situation where G is embedded in a disk with the vertices of P on
the boundary. In the next two lemmas the size of t(G) and the total number of possible

(2—EC, P)-types induced by subgraphs of G are bounded.

Lemma 6.2.3 Suppose G is a (2—EC, P)-safe planar graph embedded in the disk, with
the vertices of P on the disk boundary. Then t(G) is a planar graph embedded in the same

way, with O(|P|) vertices.

123

Proof : By considering the three rules used to form t(G), it is also a planar (2—EC, P)-
safe graph embedded in the disk with P on the boundary. Every internal face f of t(G) has
at least two portals. If f has exactly two portals, one draws an arc ey inside f between those
two portals. If f has d > 3 portals, one draws a cycle of d arcs within f connecting the
portals. These arcs form an outerplanar graph A on the portals.

One can claim that A has no parallel edges. Suppose instead that two portals p, q €
P are connected by two parallel arcs a; and a;, from faces f; and f,. Since all faces must
involve at least two portals, one can choose a; and a; consecutive at p, so that f; and f;
share at least one edge. Now consider the part of t(G) drawn between a; and a;: it has no
cycles (by rule 2) and is connected, so it is a tree. Because t(G) is (2—EC, P)-safe, itis a
path from p to q. By rule 3 it must be an edge directly between p and q. But then it is a
chord between f; and f3, so it should have been deleted by rule 1.

Therefore A is a simple outerplanar graph on vertex set P, so it has less than 2|P|
arcs. Further if one add arcs from the outer faces of t(G) (those faces bounded by a segment
of the boundary), there are at most three parallel arcs per pair of portals, therefore at most
6/P| arcs. For each p € P, its degree in t(G) is at most the number of adjacent arcs;
therefore the sum of the degree of p in t(G), over all p € P, is at most £ = 12|P|.

Now if one erases each portal and an infinitesimal neighborhood around it, the graph
t(G) is transformed into a forest (by rule 2) with £ leaves, and all internal vertices of degree
at least 3 (by rule 3). Then t(G) has less than £ vertices not in P, or in other words t(G)

has less than 13|P| vertices overall. O

Lemma 6.2.4 With G and P embedded as in the previous lemma, the number of distinct

(2—EC, P)-types defined by subgraphs of G is 2°0UP)),

Proof : Let H be a subgraph of G containing P. By trimming H, one can make it
(2—EC, P)-safe without changing its (2—EC, P)-type. In the previous proof it is shown

that t(H) can be described by a planar forest T with at most 12|P| leaves, internal vertices

124

of degree at least three, and each leaf labeled by some p € P, where the labels for a given
P are on consecutive leaves. By standard tree counting techniques, there are 2°UP) such

graphs, and therefore at most that many distinct (2—EC, P)-types. O

6.3 Planar Separators
Suppose one needs to approximately solve the 2-ECSS problem in a planar graph G em-
bedded on a sphere. If a low-cost simple cycle C in G can be found, then one may divide

the problem into subproblems by contracting C. This follows from two observations:

Fact 6.3.1 For any subgraph H of G containing C, His a 2-ECSS in G iff H/C is a 2-ECSS

in G/C. (This does not use planarity.)

Fact 6.3.2 When C is contracted, the sphere pinches into two spheres kissing at the new
contracted vertex (a cut-point). Therefore the 2-ECSS problem in G/C is equivalent to two

disjoint 2-ECSS problems, one on each sphere.

Therefore to approximately solve the 2-ECSS problem in G, one may contract C and ap-
proximately solve the two independent 2-ECSS subproblems. Then lift the edges of those
two solutions back to G and add the edges of C. The obtained graph is a 2-ECSS in G.
The additive error of this solution (the difference between its cost and the optimal cost) is
at most the sum of the errors of the two subproblems plus ¢(C).

One can not always luckily find a light cycle which does a good enough job of
separating G, therefore a more general kind of separator combining cycles with a Jordan
cut is considered: a Jordan cut of G is a closed Jordan curve in the embedding of G that
does not cross (intersect the interior of) any edge. Given a Jordan cut], every edge is
either in the interior or the exterior of], but those vertices and faces intersected by J are not
counted in either the interior or the exterior of J.

The following theorem is from [10] which is a modification of Miller’s planar sep-

arator theorem, as already used for the planar TSP [4, 47, 89, 10].

125

Theorem 6.3.3 Let G be a connected planar graph on m > 3 vertices embedded in the
plane. Suppose G has non-negative weights on its vertices, edges and faces, and non-
negative costs on its edges. Let W be the total weight of the graph and let M be its total
cost and assume that no edge has weight more than (3/4)W.

Then, for any positive integer K, one can find a subgraph F of G and a closed Jordan

curve | in O(n) time such that:

1. F is the union of at most two vertex-disjoint simple cycles (maybe none). The total
cost of the edges on each cycle is at most M /k. If F contains two cycles A and B,

then int(B) C int(A).
2. The interior of B and the exterior of A (if they exist) both have weight at most W/2.

3. Denote by G’ the embedded graph that results after deleting the interior of B and the
exterior of A (if they exist) and contracting each cycle in F to a vertex of weight 0.
Then] is a Jordan curve through the new contracted vertices, which intersects edges

of G' only at their endpoints. The interior and exterior of | both have weight at most

(3/4)W.
4. The set of vertices of G' on] has size O(k).

The three possible types of the separator (according to the number of cycles in F)
are illustrated in Figure 6.1. Note that it is necessary to assume that each edge weighs at
most (3/4)W. If a graph has an edge e that has weight larger than (3/4)W and has cost
exceeding M/Xk, then no such separator would exist. Because of its high cost e cannot be
on any of the cycles in F and due to its high weight it cannot be in the contracted interior of
B or in the contracted exterior of A. Hence e is also an edge in G’ and any Jordan curve in
the contracted graph G’ has e either in its interior or exterior and so would not satisfy the

third property.

126

&)
AN

contracted parts of the graph D cycles in F ~~7>~ Jordan curve J

Figure 6.1 The three different types of the separator. In the first two cases the Jordan
curve is closed after the contraction.

When the above theorem is applied, Q is said to be the set of new! portal vertices
introduced by the separator. The original graph G has been divided into at most four parts
of weight at most (3/4)W: the interior of the cycle B denoted by Gg (with B contracted),
the exterior of the cycle A denoted by Ga (with A contracted), the interior of J, and the
exterior of J. Let G, denote Q together with the subgraph of G’ interior to], and let G,
denote Q together with the subgraph of G’ exterior to J. In this way Gy U G, = G/,
E(G;) NE(G3) =0, and V(G;) N V(G;) = Q. In the inherited embedding of G (or G3)
all vertices of Q appear on a single new face which is called a portal face; the old faces
that intersected | are gone. When solving 2-ECSS in G, one will see that the subproblems
in Ga and Gp become independent 2-ECSS problems, but the subproblems in G; and G;

are dependent because they share Q.

6.4 The 2-ECSS Algorithm
Let Gg be the input which is an embedded planar 2-EC graph with n vertices, non-negative
edge costs, and a parameter ¢ > 0. The algorithm assigns weight 1 to each vertex and

weight 0 to each face. By existing approximation algorithms one estimates OPT(Gy), the

14P~ s reserved to denote all portals in a graph, new or old.

127

minimum cost of a 2-ECSS, within a constant factor. Fix an integer k = ©((y/¢)logn),
where vy = ¢(Gy)/OPT(Gy).

A rooted decomposition tree 7 is built from Gy as follows. Each node of 7 stores
an embedded planar graph G, which has edge costs, vertex/face weights, and some distin-
guished subset P of “portal” vertices. The root of T stores Gy itself, with no portals. Each
node of 7 has at most four children, defined inductively as follows.

Let G be the graph stored at a node of T, and let W be its total vertex/face weight.
If W is O(k?), then this node is a leaf of 7. Otherwise, apply Theorem 6.3.3 to partition G
into at most four pieces (interior of B and exterior of A, and G1, G;), each of total weight at
most (3/4)W. Uncontracted portal vertices from G remain as portals in each piece where
they appear; the graphs G and G, each get at most k new portals, the set Q. In G; and G,
assign a weight of W/(16k) to each new portal, and weight W/16 to the new portal face.
By the Separator Theorem, the number of new portals obtained in this phase is at most k,
thus the weight of each of G; and G; is at most %W+k- (]'@W]+,]—6W = %W. In the graph
Ga and Gg, assign the new (non-portal) vertex weight 1 and all the the remaining vertices
have the same weight as in G. Since each child has weight at most constant fraction of the
weight of the parent, the tree 7 has depth O(logn) and size O(nlogn). Furthermore, if
Go is 2-edge connected, by the separator properties, each G in T is (2—EC, P)-safe.

By the construction, P is the set of portals in G which have been introduced by some
Jordan cut but not yet cut off by a cycle contraction or another Jordan cut. Now, consider
the number of portals and faces of the smaller graphs. Since G4 and Gp do not have new
portals and portal faces, one needs consider G; and G; only. The construction ensures that
the portals that G; and G; inherited from G are always heavier than the new portals in the
vertices of], and the inherited portal faces are always heavier than the new portal face.
This implies that in G and G, every portal has weight at least "}—kW, and every portal face
has weight at least 1‘—6W. Since G; and G; each has weight at most gW, one can conclude

that Gy and G; each contains at most 14k portals and at most 13 portal faces. Each portal

128

face contains a hole made by a Jordan cut at some ancestor of G in 7. Note that a Jordan
cut might cut (simply) across an existing portal face, in which case some old portals may
appear on the new portal face, but this still counts as a single portal face. Or in terms of an
embedding on a sphere with holes, all old holes crossed by the Jordan cut disappear, with
segments of their boundaries incorporated into the one new hole boundary.

G is connected via P to the rest of G, (really a pinched and contracted version of
Gp) which can be embedded as disjoint pieces, one in each portal face of G. Therefore the
(2—EC, P)-type imposed on P by the rest of Gy decomposes into independent types, one
in each portal face of G. By applying Lemma 6.2.4 to each portal face, one may bound and
enumerate the 200 = n90/¢) different (2—EC, P)-types that may be imposed on P by
the rest of Go. Call this list the list of external types for G. It is more efficient, although not
essential, if each external type t of G is represented as a planar graph of size O(|P|) (see
Lemma 6.2.3) embedded in the portal faces of G. In particular at the root of 7 the input
graph Gy has no portals, and therefore it has the “empty” external type to.

Having computed 7 and these external type lists, one may now define a set of

subproblems that need to be approximately solved:

Definition 6.4.1 For G in T (with portal set P) and an external type t for G, the subprob-
lem (G, t) is this: find a min-cost (2—EC, P)-safe spanning subgraph H of G which is

compatible with t, or else declare that (G, t) is infeasible (no such H).

Checking feasibility is simple: just check whether t is compatible with G itself. The to-
tal number of subproblems (over all choices of G and t) is n°(*/¢), and the subproblem
(Go, to) is the original 2-ECSS problem. The subproblems will be approximately solved
starting at the leaves of 7 and finishing at the root. Using dynamic programming, the
solutions are stored to avoid recomputation.

In the base case, G is a leaf of 7 and has size N = O(k?). Then enumerative

method can be applied based on Lipton-Tarjan separators [85] to exactly solve such sub-

129

problems in 20(VN) = nO0v/¢) time (this may be regarded as a continuation of our method,
using Jordan cuts without cycle contractions).

Otherwise G is not a leaf, and has up to four children in 7 as found by Theo-
rem 6.3.3. The external type t is decomposed into independent external types, one for each
portal face of G.

Let G¢ denote either G4 or Gp and let tc be the subtype of t induced by the portal
faces of G¢. Lookup the solution H to the subproblem (G, tc) and lift the edges of Hc
and the edges of C to be part of the approximate solution H for the (G, t) subproblem.

Now consider the two remaining children G; and G;. As in Theorem 6.3.3, let G’
be what is left of G after the (up to two) cycles are contracted and their interior or exterior
is pinched; so G; U G, = G'. Let t’ denote the external type induced by t in the portal
faces of G’. Not knowing the optimal choice of external types t; and t, for G; and G,
one needs to try them all. That is, for every pair (t;, t;) where subproblems (G, t;) and
(G2, t2) were found feasible, one lookups their solutions H; and H, and check whether
H’ = H; U H; is compatible with t’. The cheapest compatible H’ found are taken, and its
edges are lifted back to G. These edges of H’, together with the C and H¢ edges mentioned
earlier, comprise the approximate solution H for the (G, t)-subproblem.

Although G’ is not actually associated with a node of 7, note that one can still
speak sensibly of the (G’,t’) subproblem as defined above. In fact it would be a simple
matter to reformulate 7 as a binary tree including G': at each internal node of 7 one would

either pinch one cycle, or apply a Jordan cut.

Analysis The above algorithm solves n°¥/¢) subproblems, each in n°0/¢) time, so the
total running time is /%),

Consider a feasible subproblem (G, t). By planarity, t decomposes into indepen-
dent types in each portal face, and these faces cannot cross a cycle; therefore each cycle-

pinched subproblem (G, tc) and the remaining subproblem (G’, t') are all feasible. Tak-

130

ing the external type on G induced by G, U t' as t, we see that (G, t1) is feasible. Sup-
posing (by induction) that the algorithm found some solution H; for (Gy, t), then Hy U t'
induces an external type t; on G such that (G, t;) is also feasible. Therefore by induction
up T, the algorithm finds some solution for each feasible (G, t)-subproblem.

Now suppose H is the solution that the algorithm finds for a feasible subproblem
(G, t). Define the error on (G, t) as the difference between the cost ¢(H) and the minimum
possible cost. For each pinched cycle C (up to two), by Facts 6.3.1 and 6.3.2 subproblem
(G, t) will inherit the error of (G, tc) plus an additional additive error of at most ¢(C).

After pinching cycles, the remaining error of (G, t) is that from (G’,t’). Recall
G’ = Gy U Gy; let H* be the unknown optimal solution for (G’,t’). Let t} denote the
external type of G; induced by (H* N G,) Ut’, and similarly let t; denote the external type
of Gz induced by (H* N G;) U t’. Then (Gs, t}) has the optimal solution H* N G; (for
i=1,2), and (17, t3) is a compatible type pair considered by the algorithm; if these two
subproblems are solved optimally, the solution cost would be ¢(H*). Therefore the error
on (G’,t) is at most the sum of the errors on (Gy, t}) and (G2, t}), even though one might
not actually find the best solution H' using this pair. Therefore error terms simply add at a
Jordan cut.

Therefore the total error of the root problem (G, to) is at most the sum of ¢(C)
over all cycles contracted in 7. It is easy to see that for any level of 7, the total edge cost
of that level is at most c(Gg). Therefore the total edge cost of all cycles contracted on that
level is O(c(Gp)/k). Summing over all O(logn) levels of T, the total error from all levels
of T is O((c(Gp)/k) logn). By an appropriate choice of the leading constant defining k,
this is at most € - OPT(Gy). Therefore the final solution has cost at most (1 + ¢)OPT(Gy),

proving Theorem 6.1.1.

131
6.5 The 2-VCSS Algorithm

The main idea of the 2-VCSS algorithm is similar to the 2-ECSS algorithm. Given the
input plane graph Go, the separator theorem is applied to decompose G hierarchically into
small pieces. For each piece, types are used to enumerate the different ways that the “rest”
of the graph may influence the connectivity constraints within this piece. Then, dynamic
programming is used to approximately find the minimum subgraph compatible for each
type of each piece. Similarly one can prove that the number of external types of each
piece is a simple exponential in the number of portals (Lemma 6.5.4), yielding the same
running time analysis. Again the only source of error is in the weight of the separating
cycle edges, yielding the same error analysis.

However, there are some difficulties preventing one from using the same technique
to solve the 2-VCSS problem. The principle difficulty is cycle contraction. In the 2-ECSS
algorithm, the decomposition, type definition and dynamic programming are all performed
on the minors of Gy, and it is shown that this is sufficient. But it is no longer reasonable to
contract the cycles in the 2-VCSS problem, because this changes the problem (in particular,
it may introduce a false cutvertex). Therefore for each node in 7, a pair of graphs are kept,
the compressed subgraph G as defined in the 2-ECSS algorithm and its corresponding
uncompressed subgraph G, that is the subgraph of G induced by all vertices which appear
(after cycle contractions) as some vertex in G. As before, the separator theorem is still
applied to G, and the decomposition of G is obtained nafurally. But the type and dynamic
programming will be defined on G.

The uncompressed graph G also contains portal vertices and portal faces, which are
the preimages of the portals and portal faces in G. Specifically, let J be the Jordan cut when
the separator theorem is applied to G. Let p be a vertex on J. If p is mapped to a single
vertex of G, then p is a new portal that will be contained in the subgraphs of G. Otherwise,
p is mapped to many vertices which are on a series of cycles in G, then at most 2 of these

vertices will be specified as new portals of G. These two vertices are where the Jordan cut |

132

would intersect G if the cycles represented by p are uncontracted. Thus there are still O (k)
portals in G. Each portal appears on some portal face in G corresponding to the portal faces
of G, and the portal faces identify where “the rest of Go”” would appear in the embedding.
The edges of each separating cycle will appear in G as hard edges which are committed to
the final solution as in the 2-ECSS algorithm.

The notion of types must also be redeveloped in the biconnected context, so that one
may again use types to characterize the possible counterparts of an uncompressed graph;
this is the point of Lemma 6.5.2 below. For convenience, types are simply represented as
graphs (rather than abstract cut tables represented by graphs, as in Section 6.2). Following

is a definition analogous to “(k—EC, P)-safe” graphs.

Definition 6.5.1 Fo? a graph G = (Vg, Eg) with a portal set P C Vg, a graph H =
(Vu, En) is called a counterpart (of G) if ViuN Vg C P. The graph G U H is obtained
by taking the union of the vertices and edges of the G and H and keeping the multiplicity
of each vertex and edge at most 1. The graph G is called (2—VC, P)-safe if it has a

counterpart H such that G U H is biconnected.

6.5.1 Types of (2-VC, P)-Safe Planar Graphs
The type of a (2—VC, P)-safe graph is a graph describing a simplified characterization of

the biconnectivity information of the portals in the graph.

Definition of the type. The definition of type is operational and it is oriented towards
Lemmas 6.5.2 and 6.5.4 below. Let H = (Vy, Ex) be any (2—VC, P)-safe graph (does
not have to be planar) with a distinguished portal set P and a distinguished set of hard
edges Ep ;. The type t(H) of H is defined by performing a series of operations on H. See

Figure 6.2 for an illustration.

133

1. Let H, be the graph consisting all portals of P and all the edges of Ey; ;. From H,,
construct a simplified graph }il\T which is a forest formed by a collection of (possibly

connected) stars®:

(a) All vertices of H, are included in F{\r
(b) Every portal of P is marked as a super-portal.

(c) For each vertex q ¢ P, if it is a cutvertex or an end vertex of an isolated edge

in H,, mark it as a super-portal in H,.

(d) For each block of H, (hard block) with at least two vertices, create a new vertex
in lil\1r as a super-portal and connect by an edge the super-portal to every vertex

in the block.
(e) Assign distinct IDs to all super-portals.
2. Replace the subgraph H, of H by the graph }-/l\r and remove those vertices that have

no ID and are adjacent only to a super-portal (notice that the removed vertices are all

connected only to vertices of a hard block of H,). Let the obtained graph be H.

3. For each block of H that is not a bridge, if it has exactly two cutvertices and does not

contain a super-portal, contract it into a single vertex.
4. Repeat the following two operations until none apply.

(a) Remove all chords in any cycle of H.

(b) For each path 7t of H with no super-portals as internal vertices and all internal
vertices with degree exactly 2, contract 7t to an edge with the same end vertices

as 7.

ZNotice a similarity of this construction to the standard construction of cutvertex-trees, see, €.g.,
[32].

134

5. Let H' be the graph obtained after Steps 1-4. The type t(H) is a graph with some
vertices labeled (having IDs, these are vertices corresponding to super-portals and

will be called portal nodes). It is constructed from H’ as follows:

(a) Add each cutvertex x in H' to t(H), and refer to x as a cutvertex in t(H). If it

is a super-portal p in H’, then it is a portal-node in t(H) with the ID of p.

(b) For each block in H' that does not contain any super-portals, contract it to a

vertex in t(H). This vertex in t(H) is referred as a block-vertex.

(c) For each block in H' containing exactly one super-portal p, contract this block
to a block-vertex. If the block is not a bridge and p is not a cutvertex in H’,

then this block-vertex is a portal node in t(H) with the ID of p.

(d) Connect a block-vertex by an edge in t(H) to each cutvertex adjacent to it or to
the endvertices of the bridge if the block-vertex is obtained from the bridge in
H'.

(e) If a block has two or more super-portals, then keep the block in t(H) as it is in
H'.

(f) Finally, for each path 7 of t(H) with no portal-nodes as internal vertices and

all internal vertices with degree exactly 2, contract 7t to a single edge with the

same end vertices as 7t.

Note the concept of super-portal can be applied to any graph H that contains portals
and hard edges, and it is completely determined by the portal set and the hard edge set of
H.

Properties of the types. Some basic properties of the types are listed here. First of all,
the number of labels of t(H) is identical to the number of super-portals of H. Secondly,
notice that the type t(H) is uniquely defined. Let H; and H; be two (2—VC, P)-safe graphs

on the same vertex set and with the same set of portals and hard edges. Then H; and H;

135

are said to have the same type if t(H;) and t(H,) are identical with respect to their IDs.
Thirdly, all vertices that are not portal-nodes have degree at least 3. Next, notice that if
H is biconnected and the portal set and hard edges are empty, then t(H) contains a single
vertex (block-vertex). Finally, it is easy to see that the connections among portals in H are
preserved and presenteed by the connections of portal nodes in t(H). These properties can

be summarized in the following lemma.

Lemma 6.5.2 Let G and H be two (2—VC, P)-safe graphs that have the same set of portals
P and the same set of hard edges E.. Let t(H) be the type of H. Then for any spanning
subgraph G' of G that contains all hard edges in E,, t(G') and t(H) have the same set of
portal-nodes with respect to IDs, and G' U H is biconnected if and only if t(G') U t(H) is
2-edge connected and the cutvertices of t(G') U t(H) are block-vertices of t(H) or t(G’)

or the super-portals resulting from contractions of hard blocks as defined in the type.

Let H be a counterpart of G with the same set of portals and hard edges, if GUH is
biconnected, then G is said to be compatible with t(H). To check whether G is compatible
with t(H), by the above lemma, it is enough to check whether t(G) U t’(H) is 2-edge
connected and the cutvertices of t(G) U t(H) are block-vertices of t(G) or t(H) or super-
portals representing hard blocks of G and H.

Next, the number of types, specifically, the number of external types of (2—VC, P)-
safe plane graphs is considered. Let G be a (2—VC, P)-safe plane graph with a hard edge
set E, and a portal face set F. Let the super-portal set of G determined by P and E, be P;.
If H be a counterpart of G that can be embedded in F, 3 then the type t(H) of H is said to
be an external type of G with respect to F. The focus will be on the counterpart H of G
that also is (2—VC, P)-safe and shares the same set of super-portals P (i.e., H and G have
the same set of portals and hard edges). Then, the type t(H) is called an external type of G

with respect to P and F. The goal is to show that the number of external types of G with

3That is, H is drawn on the plane such that all vertices and edges of H are contained in the portal
faces F (including the boundaries of all faces in F).

136

respect to P and F is small, that is, it is only exponential in |P|. The following lemma

shows a type of a plane graph H can always maintain some topology of H.

Lemma 6.5.3 Let H = (V,E) be a planar graph with a set of portals P C V that is
embedded on the plane. Then, one can draw t(H) on the plane such that t(H) is planar
and each portal node of t(H) is drawn at the same location as one * of the corresponding

portals in H.

Proof : Every single operation performed on H while constructing t(H) satisfies this

property, and hence any sequence of such operations satisfies it too. a

Following is the the main lemma bounding the number of types.

Lemma 6.5.4 Let G = (Vg, Eg) be a (2—VC, P)-safe plane graph with a hard edge set
E,, a super-portal set P and a portal face set F. G is embedded in a way such that all
super-portals of Ps will be on the border of the portal faces if the graph G, consisting of all
portals and hard edges is replaced with é\T as in the definition of type. Then the number of

external types of G with respect to Ps and F induced by (2—VC, P)-safe graphs is at most
20(Psl).

Proof : Let H be any (2—VC, P)-safe plane graph that has super-portal set P and is
embedded in F. For each portal face F;, let the subgraph of H embedded in F; be H;.
Because H is plane, H; is disjoint with H; for i # j. Correspondingly, the subgraphs of
t(H) in different faces are also disjoint. Hence the type of the subgraph in each face can be
considered independently.

Fix any face F; € F and the subgraph H; of H in F;. Let its type be t;. Now consider
the structure of t;. The vertices in t; whose degree is at most one are going to be called as
leaves. A leaf must be a portal node of P, because all vertices that are not portal nodes have

degree at least 3 by the construction of t(H). Secondly, there may be some parallel edges

4A portal node in t(H) may corresponds to many portals because the hard edges are compressed.

137

in t; which must be between two portal nodes (super-portals), because otherwise it will be
contracted according to Step 4a-4b of the definition. If t; contains a block, then the block
must be a cycle. This is because by assumption and Lemma 6.5.3, all portal nodes are on
the boundary of F;, thus can not be inside a block. But after Step 1-3, no vertex will remain
inside the cycle. Furthermore, by construction of t;, each such cycle in t; contains at least
two portal nodes and all non-portal vertices on the cycle must have degree at least 3.

For the purpose of counting, one can transform t; into a forest with only |O(P;)|
leaves. If one erases each portal node and an infinitesimal neighborhood around it, then a
forest will be obtained with all internal nodes have degree at least 3 with no ID assigned.
The leaves correspond to portals-nodes, they have the same ID as the corresponding portal-
nodes. It can be claimed that the number of the leaves is O(P;)°. Thus, there are at most
200PD) guch forests.

Hence, the number of types t; in face F; is proved to be 29, Because t; and t;
are independent for i # j, the total number of possible external types with respect to P and

Fis 2Zi212°™" This completes the proof. O

Let (H, H) be a pair stored in a node of 7 where H is the uncompressed (2—VC, P)-
safe graph. Suppose H has a portal set P and a hard edge set E,. Let t be an external type
of H. H is said to be compatible with t if t(H) U t is 2-edge connected and the cutvertices
of t(H) U t are block-vertices of t(H) or t or super-portals representing hard blocks.

By Lemma 6.5.4, the number of possible external types is determined by the number
of super-portals of H. Now it will be shown that the number of super-portals in each
subgraph obtained from separator theorem is O(k). By definition, the number of super-
portals of H is at most the number of portals in it plus the number of separating cycles (hard

cycles) and the cutvertices between these cycles. Because the depth of the decomposition

The operation can be seen as two steps. First break the cycles at the portals on the cycle by erasing
only the neighborhood on the cycle edge. Thus one gets at most 2|P;| new leaves, and the obtained
graph is a forest with internal vertices degree at least three except those portal nodes. Therefore, the
number of edges of the forest is O(|P;|). To make all portal nodes be leaves, one can do the same
operation to the internal portal nodes and gets the final forest.

138

tree is at most O(logn) and at each node at most 2 “cycles” are introduced , the number
of hard “cycles” is at most O{logn). Hence the number of super-portals of H is O(k) +

O(logn) = O(k). By Lemma 6.5.4, H has at most 2°0(%) = n©(/¢) external types.

6.5.2 Recursive Decomposition
In this section, a procedure is presented to build a decomposition tree T in a way suitable
to solve the 2-VCSS problem in planar graphs. The procedure is similar as for the 2-ECSS
problem. However at each node of T, a pair of graphs are kept, the compressed subgraph
G as defined in the 2-ECSS algorithm and its corresponding uncompressed subgraph G. In
the root the input graph Go and Gy = Gy are stored. Let € be a positive real, fix certain
k = O((y/e) logn) for the rest of this section.

Let G and G be the pair of graphs stored at some node of T. G has a set of portals,
a set of portal faces F and a set of hard edges. The Separator Theorem is applied to the
compressed graph G to obtain up to two cycles F and a Jordan cut] having at most k

vertices. This decomposes G (explicitly) and G (implicitly) into at most 4 smaller graphs:

e For each cycle C in F, take the subgraph of G contained inside (outside if the cycle
is A) C together with the cycle C. One can contract C to a single vertex (all edges
incident to any vertex of C are now incident to the new vertex with all self-loops

removed) and call the resulting graph G¢. Assign weight 1 to the new vertex.

There are no new portals in G¢, but G¢ may inherit some old portals and portals

faces from G. The weight of G is at most %W, where W is the weight of G.

e Let G’ be defined as in the Separator Theorem. One needs to define two other com-
pressed graphs G and G; that are the interior and the exterior of the Jordan cut] in

G’, respectively. All vertices in] are added to the set of portals of G; and G,. Ad-

L

ditionally, the algorithm assigns the weight of 74

W to each new portal, and weight

]’—6W to the new portal face. Thus the weight of each of G and G; is at most gW.

$They may not be simple cycles in H, but a set of cycles glued together

139

While G is decomposed explicitly, the decomposition of G is obtained implicitly.
Corresponding to G¢, Ge which is G but no cycles are contracted. Besides, the edges on
C will be new hard edges in Ge.

Before defining Gy and G, which correspond to G and G, respectively, one needs
to first define the new portals. Intuitively, these are the vertices where the Jordan cut]
would intersect the uncompression graph G. Let p be a portal on the Jordan cut J. If p is
mapped to a single vertex of G, then p itself is a new portal of G. Otherwise, p is mapped to
many vertices which are on a series of cycles in G. Consider those edges E that are incident
to some vertex on some of these cycles and are in the interior of J in G. Assume it is not
empty; otherwise consider those edges in the exterior of | in G. Let e be the leftmost edge
in E for the fixed embedding. Suppose e; is incident to u which is on one of the cycles.
Then u will be designated as a new portal in G. If there are edges of E not incident to u,
pick the rightmost edge e; in the embedding. Suppose e; is incident to v which is on one
of the cycles. Then v is also designated as the new portal. In this way, for each new portal
mapped to a cycle in G, at most 2 new portals are defined.

Now, G; and G; would be the graphs inside and outside J respectively, with no
cycle contracted. Further, they will not only inherit some old portals and hard edges from
G, but also have all the new hard edges and portals defined as above. Additionally, besides
the inherited portal faces, both G; and G, have a new portal face.

By the Separator Theorem and the definition of (2—VC, P)-safe, it is easy to see
that if G is (2—VC, P)-safe, then G¢ and Gy and G are also (2—VC, P)-safe with respect
to their portals.

Now consider the number of portals and faces. As for the 2-ECSS, by the way of
setting the weight of new portals and new portal faces, one can show that G; and G; each
contains at most 14k portals and at most 13 portal faces. The number of portal faces in Gy
and G, are the same as that of G; and G;. But the number of portals in G; and G, may

be larger because two portals in G, and G, may be mapped to a single portal in G; and

140

G,. However, these portals must be on the cycles in G; and G, found by the Separator
Theorem. Each time the Separator Theorem is applied, at most 2 “cycles” (also called hard
cycles) are introduced in the uncompression graph G. 7 On the other hand, each time the
recursive call reduces the weight of the graph by a constant ratio, thus, the depth of the
recursion is at most O(logn). Hence, the number of hard “cycles” is at most O(logn).
Therefore, the number of portals in Gy and G; is at most the number of portals of G; and
Gz plus 20(logn), i.e., O(k). The number of super-portals of Gy or G, is at most the
number of portals in them plus the number of hard cycles and the cutvertices between these
cycles, which is O(k) + O(logn) = O(k). Since G; and G, have constant number of
portal faces, by Lemma 6.5.4, they have at most 2% = n®(¢) external types each. Similarly
it can be shown that G¢ has constant number of portal faces, O(k) super-portals, and noG)

external types with respect to P¢ and its portal faces.

6.5.3 Dynamic Programming

After the decomposition, the next step of the algorithm is using dynamic programming to
solve the problem. Let G be a plane graph with a distinguish set of hard edges. A subgraph
H of G is said to be consistent if H is a spanning subgraph of G and contains all hard edges
of G. The subproblems are defined as follows and the goal is to solve the subproblems

approximately.

Definition 6.5.5 For a pair (G, G) in a node of T and an external type t for G, the sub-
problem (G, t) is to find a min-cost (2—VC, P)-safe consistent subgraph H of G which is

compatible with t, or else declare that (G, t) is infeasible (no such H).

As before, the total number of subproblems over all choices of G and t is 20 =

nO0/e) The subproblem (Gy, to) is the original 2-VCSS problem, where t, is empty and

"They may not be simple cycles in G, but be glued with a set of other cycles from previous recursive
calls.

141

Gy is the input graph with no portals and no hard edges. Each vertex in Gy has weight 1,
each face and edge has weight 0.

As for the 2-ECSS problem, the problems associated with the leaves where the
compressed G has size N = O(k?) are considered first. All hard edges of G are included
in the solution to (G, t). The subproblem instance are solved exactly in 20(VN) = nO(v/¢)
time by applying Lipton-Tarjon Theorem [85] to G (explicitly) and G (implicitly).

Let (G,t) be a subproblem associated with an internal node of T based on the
solutions to the subproblems associated with the children nodes. Suppose the problem
instance for the children of G, Ga, Gg, Gy and G;, have been solved.

Let G represent either G5 or Gg. Let t(C) be the subgraph of t that is induced by
the super-portals of G¢. The minimum subgraph Hc of G¢ compatible with type t(C) can
be found by looking up the solution to the problem instance of G¢.

Let t’ = t — t(C). The solution H' to (G’,t) can be found by combining the
solutions to (G, ty) and (G;, t;) where t; U t; = t’. Then, He U H' is approximately the

minimum consistent subgraph of G for external type t.

Analysis of the algorithm As the algorithm for 2-ECSS, the only source of error comes
from the cycles in the the separator, i.e., the hard edges. Using similar analysis, one can
show that by selecting an appropriate constant in k = @((7y/¢)logn), the error is at most
¢ times the optimal.

For the time complexity, the time spent in the decomposition phase is mainly for
the run of the Separator Theorem which is applied at most O(nlogn) times, so the total
time is O(n2logn). In the dynamic programming, there are n®(¥/¢) subproblems, each
can be solved in n®Y/¢) time. So, the running time for the whole algorithm is n©/¢),

This proves Theorem 6.1.2.

142

L@ @ .
® 4
® T .
OO0 x / ® @@%
® - ® O
® ! .
: @ . @
H
®.._
00 hard edge normal edge ; ;
. portal <> Jordan cut in the uncompressed graph @® super—portal

(b) H, obtained after step 1

)

EEZé |
/
'
'
\

A cuwvertex O block vertex

@® portal node

(e) H'obtained after step 4 (f) graph obtained after step Sa-5f

(g) the type t(H) of H

Figure 6.2 Type of a (2—VC, P)-safe graph used in the 2-VCSS Algorithm .

CHAPTER 7

APPROXIMATION SCHEMES FOR MINIMUM 2-CONNECTED SPANNING
SUBGRAPHS IN WEIGHTED PLANAR GRAPHS

7.1 Introduction
In this chapter the approximation algorithms for the 2-ECSS and 2-VCSS problem in ar-
bitrary weighted planar graphs are studied. A standard relaxation of the 2-ECSS prob-
lem is also considered which is to find a minimum weight 2-EC spanning sub-multigraph
(2-ECSSM) H of G, meaning that an edge of G can be used multiple times in H (conse-
quently its weight is also counted multiple times in H). Another classical extension is the
1-2-connectivity problem: each vertex v is assigned a connectivity type v, € {1,2}. The
problem is to find a minimum weight spanning subgraph such that for any pair of vertices
v,u € V, there are at least r,,, = min{r,, 1, } edge-disjoint or vertex-disjoint paths between
v and u. The 1-2-edge-connectivity is denoted by {1,2}-EC, and 1-2-vertex-connectivity
by {1,2}-VC. The relaxed 1-2-edge-connectivity problem where each edge may be used

more than once is also considered.

7.1.1 Related Results

All the problems mentioned above have been extensively studied in the literature. Since all
these problems are N/P-hard, the main research has been devoted to designing efficient ap-
proximation algorithms, see the survey [70] and more recent advances [19, 39, 40, 66, 74].
In general, one would prefer to design a PTAS. However, all the problems considered in
this chapter are max-SNP-hard [25]. Therefore they do not have a PTAS unless P = N'P.
But this does not preclude a PTAS for restricted classes of graphs: indeed, in the previous
chapter, it has been shown that there are PTASs for both 2-ECSS and 2-VCSS problems
in unweighted planar graphs as. In fact, the approximation schemes of in Chapter 6 al-

of &)
low weighted planar graphs, but then the algorithms will either run in time n (5'0") to

143

144

ensure an (1 + ¢)-approximate solution or they run in polynomial time with an approxima-

tion guarantee of 1+0(:"(()g%). Since the ratio w(G)/OPT could be arbitrarily large, these

algorithms are in general not PTAS’s for weighted planar graphs.

For both the 2-ECSS and 2-VCSS problems in weighted planar graphs, the best
known polynomial-time or even quasi-polynomial-time approximation guarantee is still 2
[73, 94], which is achieved by polynomial-time algorithms working for general weigh-
ted graphs. The best known result for {1,2}-ECSS in weighted planar graphs is a 2-
approximation algorithm, due to Jain [64], which in fact solves the more general problem
where T, < k for any k. For the weighted {1,2}-VCSS problem, Fleischer [36] gives a 2-
approximation algorithm, which actually solves the {0,1,2}-VCSS problem. A PTAS for

the geometric version of these problems is presented in [27].

7.1.2 New Contributions and Techniques

Efficient approximation schemes for all the above mentioned problems in weighted planar
graphs will be presented. These approximation algorithms depend in a crucial way on the
new construction of light spanners for planar graphs.

Let G be a weighted graph. Let dg(u, v) denote the weighted shortest path distance
between the vertices u and v in G. An s-spanner of G is a spanning subgraph H of G such
that di(u,v) < s-dg(u,v) for all u, v. A spanner provides an approximate representation
of the shortest path metric (1-connectivity) in G, but it may be much lighter than G.

Althofer et al. [1] designed a simple greedy algorithm that for an arbitrary graph G
computes an s-spanner H of G for any s > 1. In the case of planar graphs, it is shown in [1]
that this spanner has weight w(H) < (1+2/(s—1))MST(G), where MST (G) is the weight
of a minimum spanning tree in G. Since MST(G) < OPT for all the problems considered,
this bounds the ratio w(H)/OPT in terms of just s. If all weighted graphs in a graph
family have spanners with such a bound on w(H)/OPT (depending only on s), then the

family is said to have light spanners for this problem. Light spanners are known to be very

145

useful for solving various optimization problems on graphs. For example, planar graphs
have light spanners for metric-TSP: the first step in the metric-TSP PTAS for weighted
planar graphs [4] is to replace the input graph with an accurate enough s-spanner (using
[1]), thus effectively bounding w(G)/OPT for the remainder of the algorithm. Spanners
are also used in complete geometric graphs to design efficient PTAS’s for geometric TSP
and related problems [101], and to design PTAS’s for the 2-edge and 2-vertex-connectivity
problems [26, 27].

By combining the spanner constructed in [1] with the planar separator decomposi-
tion approach tuned to analyze 2-connected graphs in Chapter 6, it will be shown that one
can design a PTAS for the 2-ECSSM problem and a PTAS for the {1,2}-ECSSM problem.
However, this approach of replacing the input graph with an s-spanner fails for the 2-ECSS
and 2-VCSS problems. The reason is that a spanner does not have to be 2-connected, thus
the spanner may not contain the optimal or a near optimal solution in most cases. Naturally,
one may think to use light fault-tolerant spanners (see, e.g., in [82]), which are subgraphs
that persist as s-spanners even after deleting a constant number of vertices or edges. Un-
fortunately, this concept is not useful for weighted planar graphs, since simple examples
show that light fault-tolerant spanners do not exist in weighted planar graphs, not even for
a single edge deletion.

To solve the problem mentioned above, the main contribution is described: a new
greedy spanner construction which produces a light planar spanner with certain desirable
properties. Specifically, given a weighted planar graph G, a connected spanning subgraph
A of G and s > 1, it computes an s-spanner H of G. H contains A as a subgraph and
has total weight w(H) = O(1/(s — 1) - w(A)). Thus if the algorithm is fed with «-
approximate solutions H to the various connectivity problems in a weighted planar graph
G, then an O(/(s — 1))-approximation H* for that problem is obtained where H* is an s-

spanner for G at the same time. Furthermore, one can show that while H* need not contain

146

an (1 + ¢)-approximate solution S, the number of edges of S “crossing” each face of H*
(Lemma 7.4.2) is bounded.

Using the new spanner construction technique and the planar separator decompo-
sition, one can design approximation schemes for the 2-ECSS and 2-VCSS, {1,2}-ECSS
and {1,2}-VCSS problems, which find solutions with weight at most (1 + ¢) - OPT in

nOlogn log(1/e)/e) tyme: these are quasi-polynomial time approximation schemes (QPTAS’s).

Organization. First a PTAS for the 2-ECSSM problem is presented in Section 7.2. This
section contains also a description of the main algorithmic approach used in our approxi-
mation schemes, which is a combination of the use of spanners, a recursive approach driven
by a variant of the planar separator theorem, and dynamic programming. Next, in Sections
7.3 and 7.4, the new construction of spanners is described and the special properties of
the spanners are discussed. In Section 7.5, quasi-polynomial approximation schemes for
the 2-ECSS and the 2-VCSS problems are presnted. Finally in Section 7.6, {1,2}-ECSS
and {1,2}-VCSS problems are considered : a PTAS for the {1,2}-ECSSM problem and a
QPTAS for each of the {1,2}-ECSS and {1,2}-VCSS problems are presented.

7.2 PTAS for the 2-ECSSM Problem

Let G be a connected weighted graph. A 2-ECSSM H of G is a spanning sub-multigraph
of G in which edges can have some multiplicity and in which every pair of vertices is
connected by at least two edge-disjoint paths. Note that G may not have any multiple
edges at all. If an edge is used multiple times in H, its weight also contributes multiple
times to the weight of H. Since it never helps to use an edge more than twice, one may cap
all edge multiplicities at two. Following is a PTAS for this problem which runs in n°0/ e?)
time.

Given G and ¢ > 0, the algorithms chooses s so that s> < 1 + ¢. First an s-

spanner H in G is computed by the greedy spanner algorithm [1], with weight w(H) =

147

O((1/€) - OPT). Now it will be shown that there is a (1 4 ¢)-approximate 2-ECSSM that
uses only edges from H. Suppose S* is an optimal 2-ECSSM in G with w(S*) = OPT.
Now S* is modifed such that it uses only edges from H. For each edge e of $* not in H,
remove e and add a shortest path from H of total weight at most s - w(e). When the path
is added, the edges are added with multiplicity, but capped at two. The result of all these
modifications is another 2-ECSSM S, using only edges from H, each edge used at most
twice, with w(S) < s - OPT.

Next the algorithm applies the 2-ECSS s-approximation algorithm from Chapter 6
to the graph H’, which is H with each edge duplicated. In summary, one can get the

following theorem.

Theorem 7.2.1 Let ¢ > 0 and let G be a connected weighted planar graph with n vertices.
There is an algorithm running in time n°U/<*) that outputs a 2-ECSSM of G whose weight

is at most (1 + ¢€) times the minimum.

Why this technique fails for other problems: The above technique does not work for
other problems considered in this chapter, because in these problems, we are not allowed
to duplicate edges from G in the output graph. Instead, our approximation schemes must
consider the possibility that the near-optimal S needs some “extra” edges from outside the
spanner. In Sections 7.3 and 7.4 a new type of light planar spanners are developed and the

number and arrangement of those extra edges outside the spanner are limited.

7.3 Augmented Planar Spanners
In this section a new greedy algorithm is presented to construct s-spanners in weighted
planar graphs, resembling the standard greedy algorithm [1] for general graphs. Just as in
the standard algorithm, the algorithm takes a connected weighted graph G and a parameter
s > 1, and produces an s-spanner H. Unlike the general algorithm, our G must be planar,

and for each edge e of G not in H it is guaranteed that s - w(e) is at least the length of

148

Figure 7.1 A non-simple face f in H, a chord e, and walks P; and P,.

some path in the face of H containing e. The new algorithm is also provided with a third
argument: a “seed” spanning subgraph A, containing edges that must appear in H. In
Section 7.4 A will be used to enforce some 2-connectivity properties in the spanner.

Suppose G is a weighted plane graph (that is, an embedded planar graph) and H is
a subgraph. A chord e of H is an edge of G not in H. Note that H and e inherit embeddings
from G. For each chord e wy(e) is defined to be the length of the shortest walk connecting
the endpoints of e, along the boundary of the face of H containing e.

More precisely, if the endpoints of e are disconnected in H, then define wy(e) =
+o00. Otherwise e connects two vertices in a component of H, and e is embedded in some
face f of this component. The boundary of f is a cyclic walk of (oriented) edges, with total
weight w(f); note that a cut-edge may appear twice in the boundary (once per orientation),
and its weight would then count twice in w(f). Similarly a cut-vertex may appear multiple
times. The edge e splits the boundary sequence into two walks Py and P, both connecting
the endpoints of e, with w(P;)+w(P,) = w(f). Now define wy(e) = min(w(P;), w(P,))
(see Figure 7.1).

Given G, s, and A as above, H = Augment(G, s, A) is computed as follows:

Augment(G, s, A):
H«~ A
for all edges e of G in non-decreasing w(e) order do

ifeisnotin H and s - w(e) < wy(e) then

149

addetoH

return H

Note A C H C G. If A is empty (has all vertices of G but no edges), then this is

like the general greedy spanner algorithm [1], except that wy replaces dy.

Theorem 7.3.1 Let G be a weighted plane graph, s > 1, and A a spanning subgraph of
G. Then H = Augment(G, s, A) is an s-spanner of G. If A is connected, then w(H) <
(1+2/(s—1))-w(A).

Proof : To show that H is an s-spanner it suffices to show that each edge of G is s-
approximated in H. For e not in H, at the moment it was rejected it must be the case that
wr(e) < s-w(e). Note that wi(e) may only decrease after that, so dy(e) < wyn(e) <
s - w(e) at the end of the algorithm.

For the second part one needs to show that the weight of all edges in H but not A is
at most (2/(s — 1)) - w(A). Suppose e is such an edge; then e is not a cut edge in H since
A is a connected spanning subgraph. Therefore e is bounded by two distinct faces. Let f
be either face bounding e. First one can claim that w(f) > (1 + s) - w(e). To see this,
consider the last edge e’ added to f whose boundary consists of a path P plus e’. Since e’
is added to H, one must have s - w(e’) < wy(e') and wy(e’) < w(P). Adding w(e’) to
both sides of s - w(e’) < w(P), and noting w(e) < w(e’), one gets the claim.

For each face f of A, let E¢ be the set of edges in H crossing the interior of f.
Since the sum of w(f) over all faces of A is 2 - w(A), it suffices to show that w(E¢) <
(1/(s — 1)) - w(f). Note that the edges dual to E¢ define a tree on the faces of H inside
f. Orient this dual tree away from some arbitrarily chosen root: now for each e € E¢, an
adjacent face f, of H (only the root was not picked) is chosen. For each e € E¢ it is known
w(fe)—2-w(e) > (s—1)-w(e), from the previous paragraph. Summing these inequalities
over all e € E¢, one gets at most w(f) on the left hand side, and exactly (s — 1) - w(E¢) on

the right. O a

150

7.4 Spanners and 2-EC Subgraphs
Suppose a weighted plane 2-EC graph G is given, where the goal is to find an (1 + ¢)-

approximate 2-ECSS. First one can construct an auxiliary subgraph H*, as follows:
1. Compute a 2-approximate 2-ECSS A, in polynomial time.
2. Compute H* = Augment(G, v2, A).

The constant v/2 here is not critical, just convenient. By Theorem 7.3.1, H* is a 12-
approximate 2-ECSS. Below it will be shown that for every ¢ > 0, this H* has nice in-
tersection properties with some (1 + ¢)-approximate 2-ECSS in G.

Given a face f in H*, the chords of f are the edges of G embedded inside this face,
according to G’s embedding. A face-edge e of f is an abstract edge connecting two vertices
of f; unlike a chord, a face-edge is not necessarily an edge of G. (If vertices appear more
than once on f, one must specify which appearances is the endpoints of e.) The face edge
e is said to crosses a chord c if: c is a chord of the same face f, their endpoints are distinct
vertex appearances on f, and they appear in cyclic “ecec” order around the boundary of f.
Note that e may be embedded inside f so e intersects only the crossed chords.

Suppose S is a 2-ECSS in G, and an edge c of S is not in H*. Then c is a chord
of some face f of H*. Let P. be the path in f connecting the endpoints of c, such that
w(Pe) < v2-w(c). Then the chord move at ¢ is the following modification of S: add
to S all the edges of P, that were not already in S, and remove from S any chords inside
the cycle ¢ U P. (see Figure 7.2(a)). Since H* is 2-EC, the cycle has no repeated edges,
and therefore S is still a 2-ECSS after the chord move. The chord move is improving if
w(S) decreases; this happens whenever w(P) (or v/2 - w(c)) is less than the weight of
the discarded chords. Any non-trivial chord move brings S closer to H* (in Hamming

distance), thus at most O(n) improving chord moves apply to any given 2-ECSS S.

151

Figure 7.2 (a) Face f of H* (oval) with chord c, path P, (bold), and chords removed from
S by the chord move at ¢ (dotted). (b) Face f with a face-edge e (dashed) crossed by five
chords from S.

Lemma 7.4.1 Let e be a face edge of a face f in H* and S be a 2-ECSS of G. Suppose C is
a set of edges of S all of which are chords crossing e, v/2 - mineec w(c) > maxcec w(c),

and no chord in C gives an improving chord move. Then |C| < 4.

Proof : If not, S has five chords crossing e as in Figure 7.2(b). But then there is an

improving chord move at c3, since the discarded chords ({c1, c2} or {c4, c5}) weigh more

than v2 - w(cs). 0

Now one can argue that by accepting a small additive error in the 2-ECSS, one may

assume it has only a small number of chords crossing a given face-edge:

Lemma 7.4.2 Suppose G and H* are as above, ¢ > 0, S is a 2-ECSS, f is a face in H*,
and e is a face-edge in f. Then there exists a 2-ECSS S’ such that w(S') < w(S) +
e - W(Cy), where C{ is the set of edges of S’ that are chords crossing e, C; C S, and

|C¢l = O(log(1/¢)).

Proof : First one can suppose that S has no improving chord move at a chord crossing
e, since such a move could only remove some chords crossing e. Let Cs be the set of
chords in S crossing e. Arrange Cs in “left to right” order, according to how they intersect
e. Let ¢y € Cs be the chord with maximum weight. Say that a chord ¢ € Cs is short if
w(c) < & -w(co)/(2v2). Now if there are short chords to the left of ¢, perform a chord

move at the rightmost one, c;. Similarly if there are short chords to the right of ¢y, perform

152

a chord move at the leftmost one, ¢.. S’ is the result of these (at most) two chord moves;
note that C{ contains no short chords except possibly c; and c;.

Map each non-short chord ¢ € C; to the real number log(w(cy)/w(c)), a point in
the real interval I = [0,1log(1/¢) + 3/2]. Note that two edges can be mapped to the same
semi-open subinterval of I of length 1/2 only if the heavier edge has weight less than /2
times that of the lighter edge. By Lemma 7.4.1, at most four edges can be mapped into the
same subinterval of I of length 1/2. This implies |C{| = O(log(1/¢)).

The chord moves in f increased w(S’) by at most v2(w(c1) + w(cy)) < € -w(co),

which is at most ¢ - w(C}). O m]

Remarks: In the 2-VCSS case, the initial A should be a 2-approximate 2-VCSS, so that
H* is a 12-approximate 2-VCSS. Then in the chord move the cycle has no repeated vertices,
therefore S remains a 2-VCSS after the move. In Lemmas 7.4.1 and 7.4.2, the only proper-
ties of H* that are needed were that it was 2-EC (or 2-VC), and that wy (e) < v2 - w(e)

for each chord e.

7.5 Approximation Schemes for the 2-ECSS and 2-VCSS Problems
In this section it will be shown how to use our new spanner construction to find quasi-
polynomial time approximation schemes for the 2-ECSS and the 2-VCSS problems in
weighted planar graphs. Following is the QPTAS for 2-ECSS problem.

A similar framework as that in the PTAS for 2-ECSSM problem in Section 7.2
is used. But instead of using the spanner constructed as in [1], now one may use the
augmented spanner H* as constructed in Section 7.4.

First Theorem 6.3.3 is applied to H* with k = ®(logn/¢) to decompose H*. How-
ever, different from the PTAS for the 2-ECSSM problem, H* may not contain a near-
optimal solution of the 2-ECSS problem. Thus one cannot work on the pieces of H* di-

rectly. Fortunately, Lemma 7.4.2 guarantees that there exists a near-optimal solution with

153

at most O(klog(1/¢)) edges crossing the Jordan curve J. These crossing edges can be
guessed by trying all n©(kle(1/¢)) pogsibilities. The guessed edges are added to the corre-
sponding pieces, and the vertices of H* along J together with the endpoints of the guessed
edges determine the set of portals P for the new pieces. For each possible new piece with
the guessed edges, weights are assigned to the new portals such that each new piece has
cost at most constant fraction of H* and O(k) portals. Then the new pieces are recursively
decomposed.

As in the PTAS for the 2-ECSSM problem, for each piece edge-connecti-vity types
are defined to describe how these portals may be connected outside one of the pieces in a
(1+ ¢)-approximate solution. The number of types for each piece is 2°(%18(1/¢)) 'exponen-
tial in the number of portals. Then, dynamic programming is used to solve the subproblems
as before and the cycle edges are committed to the solution.

The approximation scheme for the 2-VCSS problem is similar, and only the differ-
ences are mentioned here: first, H* is redefined as remarked at the end of Section 7.4, and
then vertex-connectivity types are defined using the same techniques as in Chapter 6.

The error of the final solution comes from two sources. First, the edges of the cycles
that arose from the application of the separator theorem to the solution are added. Since
each piece in the decomposition has weight at most constant fraction of its parent weight,
the depth of the recursive calls is O(logn). As before, the total error per recursive level is
O((w(H*)/k) logn), where k = ©(logn/¢) and w(H*) = O(OPT/¢). By an appropriate
choice of the leading constant defining k, this is at most (¢/2) - OPT.

Moreover, each time a face of H* (or its pieces) is cut by a Jordan curve, O(log(1/¢€))
crossing edges are guessed. If these edges are guessed optimally (they were edges in some
original optimal $*), then by Lemma 7.4.2 an additive error of at most ¢/2 times the weight
of these guessed edges is paid. Summing over the entire assembly of a possible solution,

the total of these errors is at most (¢/2) - OPT.

154

The dominating factor in the running time comes from trying all nO(kle(1/¢)) pog.
sibilities for the guessed edges. The weights of the subproblems are only a constant times
the weight of their respective parents and therefore a pure recursive approach (without dy-
namic programming) leads to a time bound of T(n) < nOkle/eT(c.n) O <c < 1),
with solution nO((1/¢)1ee(1/e)}log* n) " This bound may be improved by a logarithmic factor
in the exponent by using dynamic programming and by a more careful count of subprob-
lems. The following lemma proved in [10] bounds the number of ways how a graph can be

decomposed regardless of its weight scheme.

Lemma 7.5.1 Let G be a planar graph on n vertices with non-negative edge costs, em-
bedded in the plane, and a parameter k > 1. Then one can find a list of O(n?) separations
of G, such that for any valid weight scheme of the vertices, edges and faces of G, some

separation in this list satisfies the properties of Theorem 6.3.3.

Lemma 7.5.1 shows that a piece is partitioned in only O(n?) different ways, no
matter how many arrangements of the vertices along the Jordan curve and incident with the

“guessed” edges. This implies the following lemma.

Lemma 7.5.2 The total number of distinct pieces (contracted subgraphs) of the origi-
nal H* that occur during our recursive decomposition is n°U%™, Therefore the number
of distinct subproblems (a piece, |P| = O(klog(1/€)) portals selected in the piece, and an

external connectivity type on those portals) is nC0e ™M OUPNR0(PI) — 1 Olklog(1/e)),

Theorem 7.5.3 Let ¢ > 0 and let G be a 2-EC (2-VC) weighted planar graph with n
vertices. There is an algorithm running in time nOUoe™18(1/€)/¢) thar outputs a 2-ECSS

(2-VCSS) H of G such that w(H) < (1 + ¢) - OPT.

7.6 Extensions to the {1, 2}-Connectivity Problem
In this section, one can extend the previous results to the {1, 2}-connectivity problems in

weighted planar graphs. One needs to focus on the algorithm for the {1, 2}-ECSS problem

155
only. The algorithm for the {1, 2}-VCSS problem can be obtained similarly. The algorithms
presented are modifications of the respective algorithms in Sections 7.2 and 7.5.

First, consider the {1, 2}-ECSSM problem, which is a relaxed version of the {1, 2}-
ECSS problem where duplicate edges are allowed. As in Section 7.2, it can be shown that
there is a (1 + ¢)-approximate {1,2}-ECSSM that uses only edges from a light (1 + ¢)-
spanner H. So instead of G, one can work on H with duplicated edges.

The main difference from Section 7.2 is the dynamic programming part. The con-
nectivity types need to be redefined to reflect the non-uniform connectivity requirement.
For this, one can use the connectivity type construction in Chapter 5. Informally, the main
difference is that each time a 2-connected component or path is contracted, the highest
connectivity requirement among all contracted vertices is assigned to the new vertex. This
increases the number of types from 29U0PD to 201IPD " where P is the set of portals in the
given graph. Again a PTAS is obtained with running time n©("/¢*),

Now consider the {1, 2}-ECSS problem. First a 2-approximate solution A can be
found using algorithms from [64] (or [36] for {1,2}-VCSS). Then A is augmented into a
light spanner H* as in Section 7.4. Using similar arguments as in the proof of Lemma
7.4.2, one can show that there is a (1 + ¢)-approximate {1,2}-ECSS S so that for each
picked face-edge e, only O(log(1/¢)) edges of S cross e. Now redefine the connectivity
types as above. Finally, dynamic programming is used to solve the problem. The running
time is still dominated by the number of subproblems nCUcsnlog(1/¢)/¢) Hence, a QPTAS
is obtained in this case.

The results in this section are summarized as follows.

Theorem 7.6.1 Let ¢ > 0 and let G be a weighted planar graph with n vertices. There is
an algorithm running in time n°0/<*) that outputs a {1,2}-ECSSM of G whose weight is

at most (1 + ¢) - OPT.

156

Theorem 7.6.2 Let ¢ > 0 and let G be a weighted planar graph with n vertices. There is
an algorithm running in time n°00s™18(/e)/¢) thar outputs a {1,2}-ECSS H of G such that

w(H) < (1+¢)-OPT.

Theorem 7.6.3 Let € > 0, and let G be a weighted planar graph with n vertices. There is
an algorithm running in time nOUce™1e(1/e)/e) that outputs a {1,2}-VCSS H of G such that

w(H) < (1+¢)-OPT.

CHAPTER 8

FAULT-TOLERANT GEOMETRIC SPANNERS

8.1 Introduction
This chapter considers geometric fault-tolerant spanners in Euclidean spaces which are

formally defined as follows.

Definition 8.1.1 (Fault-tolerant spanners [83]) Let V be a set of n points in a metric
space, t > 1 a real, and k a non-negative integer. A graph G = (V, E) is called a k-vertex
fault-tolerant t-spanner for V, denoted by (k,t)-VFTS, if for any subset V' of V of size at

most k, the graph G \ V' is a t-spanner for the point set V\ V'

Definition 8.1.2 (Edge fault-tolerant spanners [83]) Let V be a set of n points in a met-
ric space, t > 1, and k an integer. A graph G = (V,E) is called a k-edge fault-tolerant
t-spanner for V, denoted by (k,t)-EFTS, if for any subset E' of E of size at most k and for
any pair of points p and q in 'V, the graph G\ €' contains a pq-path of total length at most

t times the length of a shortest path between p and q in the graph Ky \ E'.

One can show (see [83] and [86]) that a (k, t)-VFTS is also a (k, t)-EFTS. There-

fore, from now on, the focus will be on vertex fault-tolerant spanners.

8.1.1 Previous Results

This problem of efficiently constructing good fault tolerant spanners has been proposed
recently by Levcopoulos et al. [83]. They presented in [83] three algorithms constructing k-
vertex fault-tolerant spanners. Their first algorithm is based on the observation that the (k+
1)-power of a t-spanner is a (k, t)-VFTS (an s-power of a graph G is a graph with the same
vertex set as G and it contains an edge between any pair of vertices that are connected by a

path in G with at most s edges). Therefore, if one starts with the spanner construction from

157

158

[55], then in time O(nlogn) + n 2°() one can obtain a (k, t)-VFTS of maximum degree
290€) and the total cost of 2°%) times the cost of a MST. For a constant k, this construction
leads to a fault-tolerant spanner with asymptotically optimal parameters. The other two
algorithms described by Levcopoulos et al. [83] use the well-separated pair decomposition
[13]. Itis shown that a k-vertex fault-tolerant spanner can be constructed (i) in O(n logn+
kZn) time with O(k?n) edges, or (ii) in O(nk logn) time with @(nk logn) edges.
Neither the maximum degree nor the total cost of the fault-tolerant spanner is bounded in
these two algorithms.

In a follow-up paper, Lukovszki [86] gave a construction of (k,t)-VFTSs with the
optimal number of edges O(n k); the running time of this algorithm is O(n log®'n +
nk loglogn). Lukovszki presented also a construction of (k,t)-VFTSs with the maxi-
mum degree of O(k?) and investigated fault-tolerant spanners that allow the use of Steiner
points.

The main idea of that construction in [86] is to take a high-quality (that is, with
constant maximum degree and total cost proportional to the cost of MST, see [5, 55]) t-
spanner and then put around each point k Steiner points, so that the distance between
the point and any Steiner point associated with it is infinitesimally small. Each point is
connected with all Steiner points associated with it. Furthermore, whenever there is an
edge in the spanner between a pair of input points x and y, then this edge is left in our
fault-tolerant spanner and k new edges are created by connecting in a matching the Steiner
points associated with x and y. It is not difficult to see that the obtained graph has exactly
k n additional Steiner points, the degree of each vertex (either input point or a Steiner one)
is upper bounded by O(k), and that the total cost of the graph is @ (k) times the cost of
minimum spanning tree. Furthermore, one can show that if one removes any set of at most
k vertices from that graph, then for any pair of vertices corresponding to the remaining
points there is a path connecting these points whose length is upper bounded by t + ¢ times

the Euclidean distance between the points.

159

8.1.2 New Contributions
The main open problem left in [83] and [86] is whether there exist fault-tolerant spanners
having good bounds for the maximum degree and the total cost. The best bounds obtained
in the prior constructions were the k-fault-tolerant spanners having the maximum degree
of O(k?) by Lukovszki [86], and the one having the total cost of 29(%) times the cost of an
MST by Levcopoulos et al. [83].

The first result in this paper resolves that problem and gives a construction of opti-

mal (k,t)-VFTSs.

Theorem 8.1.3 Let V be a set of points in R®. Let t > 1 and let k be a positive integer.
Then, one can construct a (k,t)-VFTS for V that has maximum degree O(k) and whose
total cost is O(k?-Wysr), where Wy denotes the cost an MST of V. The constants implicit

in the O-notation depend on t and d.

Notice that by the arguments above this result implies the identical result for k-edge
fault-tolerant spanners.

It is not difficult to see that the spanner promised in Theorem 8.1.3 has asymptot-
ically optimal bounds both for the maximum degree and the total cost. Indeed, since a
(k, t)-VFTS ((k, t)-EFTS) has to be k + 1-edge connected, every vertex must have degree
Q(k). To see that the total cost must be Q(k? - W) in the worst-case, consider the fol-
lowing construction (see also [83]), see Figure 8.1. Suppose that k is even. Let ¢; and ¢ be
two points with |cicz| = 1 and let 1 < 1/n. Consider n points such that k/2 of them are
contained in a ball B, of radius r centered at ¢ and the remaining n — k/2 points are con-
tained in another ball B, of radius T with the center at c;. Since any MST of these n points
has only a single edge between B, and By, Wysr = O(1). However, since the minimum
degree of any k-vertex (or k-edge) fault-tolerant spanner is k + 1, every vertex in By has to
be connected to at least k/2 + 2 vertices contained in ball B,. Therefore, there are Q(k?)
edges between By and B, and the cost of any k-vertex (or k-edge) fault-tolerant spanner is

Q(kz . WMST)'

160

k/2 vertices [Q (k%) edges n-k/2) vertices

Figure 8.1 Any VFTS for points in By and B, must have weight at least Q (k?), while the MST
has weight O(1).

The construction in Theorem 8.1.3 is a generalization of the greedy algorithm that
has been used before to construct spanners [1, 5, 15, 30, 55]. The main contribution in this
context is the first, precise analysis of the fault-tolerant spanners obtained in that construc-
tion.

The next contribution gives an efficient construction of good fault-tolerant span-
ners. The construction from Theorem 8.1.3 gives fault-tolerant spanners having optimal
parameters, but it does not lead to an efficient algorithm for constructing the spanners.
The following theorem shows that one can construct very efficiently a fault-tolerant span-
ner whose total cost is just slightly larger than optimal (and the maximum degree remains

optimal).

Theorem 8.1.4 Let V be a set of n points in R, Let t > 1 and let k be a positive integer.
Then, in time O(nk log® n + nk? logk), one can construct a directed (k,t)-VFTS that
has maximum degree O(k) and whose total cost is O(k?-1og N-Wysr), where Wy, denotes

the cost of an MST of V. The constants implicit in the O-notation depend on t and d.

Our efficient algorithm from Theorem 8.1.4 is based on a new, interesting property
of Euclidean graphs that gives a sufficient condition (characterization) for graphs to be

(k,t)-VFTSs.

161

8.2 Preliminaries
In this chapter, many algorithms investigated will consider pairs of points (edges) in some
sequential order. For convenience, the total order on the costs of the edges in E is intro-
duced, such that for two edges (x,x’), (y,y’) € E, edge (x, x') is shorter than edge (y,y’)
if either [xx'| < [yy’| or [xx'| = |yy’| and edge (x, x') is taken by the algorithm before edge
(u,y').

As mentioned before, both, directed and undirected Euclidean graphs will be con-
sidered. Throughout the chapter (x,y) will denote both, an undirected and a directed edge
from x to y. In the first part of the chapter, in Section 8.3, undirected graphs and undirect-
ed fault-tolerant spanners are analyzed, while in the second part of the chapter, in Section
8.4, for convenience, directed graphs and their spanners will be considered. Notice howev-
er that this distinction is really for convenience only, since any undirected spanner can be
converted to directed one by replacing each edge with two directed edges; similarly any di-
rected spanner can be transformed to be undirected by making every edge undirected and

then removing the parallel edges between all pairs of vertices.

8.2.1 Menger’s Theorem and Its Consequences
The following lemma that follows easily from Menger’s theorem (see [11, Chapter III,

Theorem 5]) will be used later.

Lemma 8.2.1 Let G = (V, k) be an undirected graph. Letv,u € V. Let X C (V\ {v,u})

be a set of s vertices such that for each x € X
e cither (v,x) € E or there are s internally vertex-disjoint vx-paths in G, and
e cither (x,u) € E or there are s internally vertex-disjoint xu-paths in G.

Then, there are s internally vertex-disjoint vu-paths in G. In particular, if one removes any

s — 1 vertices in V \ {v, u} from G, then the obtained graph still contains a vu-path. O

One can easily extend the above lemma to obtain the following.

162

Lemma 8.2.2 Let G = (V, E) be an undirected graph. Letv,u € V. Let Et = {(vi,w1), ..., (vs, us)}

be such that
o foreveryi, 1 <1i<s, either (vi,w;) € E, orv; =ujand vi #v,4,
e allw; and v; that are neither W nor v are pairwise distinct,

o foreveryi, 1 < i < s, either (v,v;) € E or there are s internally vertex-disjoint

vvi-paths in G, and

o foreveryi, 1 < i <s, either (W, u) € E or there are s internally vertex-disjoint

Wu-paths in G.

Then, there are s internally vertex-disjoint vu-paths in G. In particular, if one removes any

s — 1 vertices in V \ {v, u} from G, then the obtained graph still contains a vu-path. O

8.3 k-Vertex Fault-Tolerant Spanners of Low Degree and Low Cost
In this section, the following algorithm will be analyzed to show it constructs (k, t)-VFTSs

of both low degree and low cost.

k-Greedy Algorithm
Input: A complete undirected Euclidean graph G = (V, E), integer k > 0, real t > 1
Output: A (k,t)-VFTS G’ = (V,E’) for V
E'=90
G'=(V,E)
for each edge (u,v) € E taken in nondecreasing order by length do
if G’ = (V, E’) does not have k + 1 internally vertex-disjoint t-spanner uv-paths

then B/ = E' U {(u,v)}
G'=(V,E)

output G/ = (V, E)

Claim 8.3.1 The k-Greedy Algorithm constructs a (k,t)-VFTS.

163

Proof : Let V' be any subset of V having size at most k. First prove that G’ \ V'is a
t-spanner for V'\ V'.

Pick any pair of points u, vin V'\ V'. One has to show that G’ \ V' has a t-spanner
uv-path. Clearly, if (u,v) € E’, then this is true. So suppose that (u,v) ¢ E’. Then,
according to the algorithm, the only reason for not including edge (1, v) in E’ is that there
are (k + 1) internally vertex-disjoint t-spanner uv-paths in G’. Therefore, since |V'| < k,

there is at least one such path in G’ \ V. m]

Remark 8.3.2 Notice that Claim 8.3.1 holds even if the edges are taken in an arbitrary
order (that is, not necessarily nondecreasing).

Furthermore, this claim holds not only for Euclidean graphs and the assumption
that G is a complete graph can be weakened. For general graphs, a graph G* = (V*, E¥)
is said to be a (k*,t*)-VFTS of a weighted graph G = (V,E) if V* =V, E* C E, and for
any V' C V with |V'| < k*, for any pair of vertices vyu € V \ V', the graph G* \ V'
contains a vu-path of total length at most t* times the length of the shortest vu-path in
G \ V. Then, the proof of Claim 8.3.1 implies that if one begins the k-Greedy Algorithm
with an arbitrary (k + 1)-connected weighted graph G = (V,), then the obtained graph
G' will be a (k,t)-VFTS of G.

8.3.1 Analyzing the Maximum Degree

This section is devoted to prove that the (k,t)-VFTS constructed by the k-Greedy Algo-
rithm has maximum degree @(k). The analysis is in a similar spirit as the analysis of the
greedy algorithm for normal spanners, see, e.g., [1, 15].

Following is an auxiliary claim that will be used in later analysis.

Claim 8.3.3 Let 0 < 0 < 7 and suppose that t is chosen such that t > EEEE]—-sE—B' Let
G' = (V,E). Letu, v, x be any three points in V with (u,v), (u,x) € E' and £(vux) < 0.
Suppose further that luv| < |ux|. Then, for each t-spanner vx-path p in G' the path

consisting of the edge (\1,v) followed by the path p is a t-spanner ux-path.

164

Proof : Let p be any t-spanner vx-path in G'. Let q be the ux-path obtained by taking

the edge (u,v) followed by p. Then
length(q) = |uv| +length(p) < Juv|+t-|vx| . 8.1

Furthermore, if z denotes the point on the segment ux such that £ (uzv) = £(vzx) = /2,

then
x| < vzl +|zx] = [ux| + (lvz| — |uz|) . (8.2)

Next, observe that [vz| = [uv]| - sin(£(zuv)) < [uv|-sin 0 and |uz| = [uv| - cos(£L(zuv)) >

[uv| - cos 6. Therefore, combining these two identities with (8.1) and (8.2), one obtains
length(q) < |Juwv|+t-[vx] < Juv|+t- (Jux| + [uv|- (sin® — cos 8))
= t-jux|/+ uv|- (1 —1t(cos® —sinB)) .

Hence, by the assumption that t > 1/(cos® — sin8), one can conclude the claim that

length(q) < t- Jux|.]

This claim can be used to prove the following result.

Claim8.3.4 Let 0 < 0 < Jandt > — Bl—sinB' Let G' = (V,E') be the output of the k-
Greedy Algorithm for V. For any u € V, let C,, be any cone in R® with the apex at u and
the angular diameter' at most 0. Then, G' has at most k + 1 edges incident to u that are

contained in the cone C,,.

Proof : Let E; be the set of edges in G’ incident to u that are contained in the cone C,,.
Let (u,v) be the longest edge in E; . The proof is to show that if there are more than k
edges in E;. that are shorter than (u, v), then there are k+ 1 t-spanner uv-paths in G/, each
using only edges shorter than [uv|. This will imply that the k-Greedy Algorithm would not
add edge (u,v) to E’, which contradicts to the fact that (u, v) is an edge of G'.

Suppose there are k + 1 edges in E; that are shorter than (u,v). Then one can

prove the existence of k 4+ 1 internally vertex-disjoint uv-paths such that each path uses

YThe angular diameter of a cone C in R having its apex at point p € R is defined as the maximum
angle between any two vectors p% and Py, x,y € C.

165

edges in G’ that are shorter than (u,v). Consider first any edge (u,z) € E¢, such that
(v,z) € E'. By Claim 8.3.3, the uv-path consisting of the edges (u, z), (z,V) is of length
upper bounded by t - [uv|.

Next, consider any edge (u,z) € E; such that (v,z) ¢ E’. Then, since the k-
Greedy Algorithm has not taken edge (v, z) to E’, there must exist k + 1 internally vertex-
disjoint t-spanner vz-paths, and each edge on these paths is shorter than (v, z), which is
less than (u,v). Therefore, by Claim 8.3.3, there exist k + 1 t-spanner uv-paths between
u and v such that all paths begin with edge (u, z) and then are internally vertex-disjoint.

Summarizing, there are k + 1 vertices z1, 23, . .. , Zx+1 such that foreachi, 1 < i <
k+1, () (u,z) € E¢_ and (ii) either (z;,v) € E and juz;| +|zv| < t-|uv], or G’ contains
k 4+ 1 t-spanner uv-paths between u and v such that all paths begin with edge (u,z;)
and then are internally vertex-disjoint, and each edge on each path is shorter than (u,v).
Therefore, one can apply Lemma 8.2.1 to conclude that G’ contains at least k+ 1 internally
vertex-disjoint t-spanner uv-paths, each path using only edges shorter than (u,v). This,
however, contradicts to the fact that (u,Vv) is an edge of G’, and hence, this completes the

proof of the claim. a

In [120], it was shown that there is a constant ¢ > 0 such that for any point p € R¢
and any angle 8, 0 < 8 < 1, there is always a collection C of @((c/0)%¢~") cones in R¢
having the apex at point p such that (i) [Jcee C = R4, and (ii) each cone C € C has the
angular diameter at most 0. One can incorporate this upper bound for the number of cones

in C with Claims 8.3.1 and 8.3.4 to obtain the following lemma.

Lemma 8.3.5 Let V be any point set in a Euclidean space R®. Let k be any non-negative
integer and let t be any real number, t > 1. Then, the k-Greedy Algorithm returns a
(k, t)-VFTS for V having maximum degree of O((c/0)%"" k), where cos® — sin@ > % In

particular, if the dimension d and t are constant, then the maximum degree is ©(k). a

166

8.3.2 Upper Bound for the Cost of Spanners Generated by the k-Greedy Algorithm
The most difficult and challenging part of the proof of Theorem 8.1.3 is the analysis of the
total cost of the spanner generated by the k-Greedy Algorithm. In order to bound the cost
of that spanner, one needs to first introduce the concept of “leapfrog property” [29], which
yields a bound for the total cost of a set of edges in terms of the relative position of these

edges in Euclidean space.

Definition 8.3.6 (Leapfrog property [29]) Let t > 1. Let G = (V,E) be a Euclidean
graph. A set E* C E satisfies the t-leapfrog property if, for every s > 2, for every subset
E* ={(p1,a1),..., (ps, qs)} C E* it holds that

S s—1
t-lpral <) Ipwail + t- (‘QsP1T+Z|CIiPi+1|)

i=2 i=1

The following result is shown in [29, 31] (see also [30, Theorem 3]).

Claim 8.3.7 Let t be a constant greater than 1. Let G = (V,E) be a Euclidean graph.
If a set £ C E satisfies the t-leapfrog property then the total cost of the edges in E*
is O(MSTg.), where MSTg. is the cost of an MST connecting the endpoints of E*. The

constant implicit in the O-notation depends on t and d.]

The following result gives a tight upper bound for the cost of (k, t)-VFTSs gener-
ated by the k-Greedy Algorithm. This is one of the main results of this chapter; together

with Lemma 8.3.5, it directly yields Theorem 8.1.3.

Lemma 8.3.8 Let G = (V,E) be a (k, t)-VFTS of a point set V generated by the k-Greedy
Algorithm. Then, the cost of G is at most O(k? - W) The constant implicit in the O-

notation depends on t and d.

Proof : The idea of the proof is to partition the edges of G into O(k?) groups and then
show that the cost of edges in each group is upper bounded by O(W ys1).
First partition E into disjoint sets Eq, E;, ... such that each E; is a maximal set

of edges and any two edges in the set have an angle at most © where O satisfies t >

167

1/(cos® — sin 8). By the discussion before (see also [120]), there are @((c/0)%~") such
disjoint sets Eq, E5,. ...

Next, partition each E; into sets Eij, Eiz,... such that each Ej; satisfies the t-
leapfrog property. For each edge e = (v,u) € E, let V, C V be a minimum vertex set such
that after removal of all vertices of V, from G, there will be no t-spanner vu-paths con-
sisting only of edges shorter than e. Since G is a (k, t)-VFTS generated by the k-Greedy
Algorithm, besides e itself, there are at most k internally vertex-disjoint t-spanner vu-paths
having all edges shorter than e. Therefore, by Menger’s theorem one gets |V, | < k.

Fix a set E;. Let S, be a subset of E; containing edges that are shorter than e and
that are incident to a vertex in V.. Then, define the sets E;q, E;2, ... by picking the edges
e € E; one by one and adding e to any set E;; that does not contain any edge in Se. One can
claim that O(k?) sets Ey; are sufficient in the construction and that each set E;; satisfies the
t-leapfrog property. Indeed, by Claim 8.3.4, each vertex is incident to at most k + 1 edges
in E;. Therefore, since |V,| < k, it must be true that |S.] < k (k+ 1). Thus, k (k+ 1) + 1
sets Ey; are sufficient for each i.

Fix a set Ej;. Now prove that Ey; satisfies the t-leapfrog property. Let E/ =

{(uo,vo), (w1,v1), ..., (W, Vi) } be any subset of Ey;. The goal is to show that
m m—1
t- |'LL0V0| < Z |usVs| + t- (|Vmuol + Z 'Vsu-s+1|) .
s=1 s=0

Observe first that this inequality is trivial if either {ugvo| < [vimUol or [ugvel <
[vsusyq| for certain s, 0 < s < m — 1. Furthermore, it is enough to consider the case when
(uo, Vo) is the longest edge in E’. Therefore, from now on, it will be assumed that (ug, vo)
is the longest edge in E’' U {{vo, wih, (vi, w2l oo (Vi1 Ui {Vm»uo}}-

For convenience, let e = (up,Vvp). Let G, be the graph obtained from G after
removing all vertices in V. together with their incident edges and then by removing all
edges not shorter than (up, Vo). By the discussion above and by Menger’s theorem, any

Uovo-path in G, must have total length greater than t - ugvp|. The goal is to show that

168
> o sy 4+t (jvmuol + Z:;B] [vsusi1|) is at least the length of certain ugvo-path in
Ge.

For each {x, y} in {{vo,ul}, 1w, Vit Uy {vm,uo}}, either (x,y) € E
or there are k-1 internally vertex-disjoint t-spanner xy-paths in G consisting only of edges
shorter than (x,y), which is shorter than (19, Vo) by assumption. Furthermore, none of the
points U, U1, ... , Um, Vo, V1, . .. , Vi is in V.. (Indeed, if, for example, us € V,, then by
the assumption no edge incident to u, should be included in E;, but this contradicts to the
fact that (us, vs) € Ey;.)

Therefore, by Menger’s theorem there must be a t-spanner xy-path in G.. Hence,
one can create a UgVo-path 7 in G, as follows: 7t starts with a t-spanner vou,-path, then
uses edge (uy, V1), then uses a t-spanner viu,-path, then uses edge (uz,v;), ..., then
uses edge (Um, V), and finally terminates with a t-spanner v, up-path. By the discussion

above, 7t is a ugvp-path in G.. Moreover, one can derive that

length(7r) < t-[vow|+ [lwvi+ t- viugl + [ugva| + - - - [umvml + £+ [Vl

m m—1
= > v+t (vmltol+) vettenl)
s=1 s=0

However, by the arguments above, G, contains no t-spanner ugvo-path. Therefore,

m m—1
t-fuovol < length(m) = D Jugvel + t- (vmlol+) Meuel)
s=1 s=0

which implies the t-leapfrog property of set Ej;.
To summarize the discussion, one can partition the set of edges of G into @((c/8)%"-
k?) sets of edges, each set satisfying the t-leapfrog property. Therefore, by Lemma 8.3.7,

this concludes the proof. a

8.4 Efficient Construction of Fault Tolerant Spanners
In the previous section, it has been proved that the k-Greedy Algorithm generates (k, t)-
VFTSs with low maximum degree and low total cost. The disadvantage of this algorithm,

however, is that it is not known how to implement it efficiently. In this section an alternative

169

approach to construct fault tolerant spanners will be discussed. For convenience, in this
section directed graphs and their spanners will be considered.

First the notion of gap property and near parallel edges is introduced, and then a
new sufficient property for graphs to be (k,t)-VFTSs is prented. Then, one can use this
characterization to design a simple algorithm that generates good (k, t)-VFTSs in polyno-
mial time. Finally, algorithm is tuned to decrease the running time to O((nk logdn +

nk? logk)).

8.4.1 Basic Auxiliary Properties
The following are two important notions on directed edges that will be heavily used in the

chapter.

Definition 8.4.1 (Near parallel edges) Two directed edges (p, q) and (x,y) are called o-
near parallel® if after translating vector Xy such that x coincides with p, that is, to the
vector P2 withz =y — (x —), the angle between vectors ©q and Pz is upper bounded by

.

Definition 8.4.2 (Gap property) Let w > 0. Let G = (V, E) be a directed Euclidean graph.
A set of edges B* C E satisfies w-gap property if for any two edges (vi,u1), (v2,u;) € E*
the distance between the heads and the tails of (vy, W) and (v2,uy) is greater than w times

the length of the shorter of the two edges, that is,

min{[viva|, [uiuzl} > w - min{lviwl, voual} .

The following result is shown in [15]. (The constant implicit in the O-notation does

not depend on d.)

Claim 8.4.3 [15] (see also [6, Lemma 1]) Let w > 0. Let G = (V,E) be a directed

Euclidean graph. If a set £* C E satisfies the w-gap property then the total cost of the

2pairs of a-near parallel edges are called “similar directional” in [15].

170

edges in E* is 0(% -log [E*| - MSTg.), where MSTe. is the cost of an MST connecting the

endpoints of the edges in E*.]

Our next claim states, informally, that if two edges in a directed Euclidean graph
are near parallel and close to each other, then one can form a spanner path between the
endpoints of the “longer” edge by concatenating the “shorter” edge and the spanner paths

between endpoints of the two edges. This claim is essentially proven in [6, Lemma 2].

Claim 8.4.4 Let t, &, w be real numbers such that 0 < ¢ < /4, 0 < w < %(cosoc —
sinx — %) Let G be a directed Euclidean graph. Let (u,Vv) and (x,z) be two edges in
G that are &-near parallel to each other. Suppose [uv| < |xz|/cos &, and [ux| < |vz|. If

lux| < w - [uvl, then (i) lvz| < |xz| and (ii) t - [xu| + [uv| +t - jvz| < t-|xz|. a

Remark 8.4.5 It should be emphasized that Claim 8.4.4 holds not only when the length
of edge (u,V) is less than or equal to the length of edge (x,z), but it also holds when
Ixz| < luv| < |xz|/ cos «.

Furthermore, notice that Claim 8.4.4 still holds if one changes the assumption
lux| < w - [uvl to lux| < w - min{juv|, |xz|} since the latter assumption is stronger. There-
fore, this claim is true when edges (\u,Vv) and (x, z) do not satisfy the w-gap property.

These two observations are important for the efficient algorithm described in Sec-

tion 8.4.3.

8.4.2 Sufficient Conditions for Being a k-Vertex Fault-Tolerant Spanner

In this section a new sufficient condition for a Euclidean graph to be a (k, t)-VFTS will
be presented. Later it will be shown how this condition can be used to obtain an efficient
algorithm for constructing (k, t)-VFTSs. The approach is motivated by a similar charac-

terization of spanners developed by Arya and Smid in [6].

171
Lemma 8.4.6 Lett, &, w be real numbers such that 0 < o < 1t/4and 0 < w < 3(cos o—
sin x— %) Let G = (V, E) be a directed Euclidean graph. Suppose that for any two vertices

wandvinV,
1. either (u,v) € Eor
2. there are k+ 1 edges {(\1,v1), ..., (Wks1, Vir1)} C E such that

- foreach 1 <i<k+1, juyv;| < juv|/ cos &,
— all w; and v; that are neither W nor v are pairwise distinct,
— foreach 1 <i<k+1, edge (w,V;) is a-near parallel to (u,v), and

~ foreach 1 < i< k+ 1, min{jluul, viv]} < w - jugvil.
Then G is a (k,t)-VFTS for V.

Notice that in Lemma 8.4.6, it is allowed that some of the u; and v; are equal to u
or v, but otherwise, all other endpoints of the edges in {(w1,v1), ... , (W1, Vis1)} must be

pairwise distinct.

Proof : In order to prove that G is a (k,t)-VFTS, one need to show that for any two
vertices u,v € V, either (u,v) € E or G contains k + 1 disjoint t-spanner wuv-paths, each
uv-path having all edges shorter than [uv|/ cos . The proof is by induction on the rank of
the distances between the pairs of points in V.

If [uv| has the minimum distance among all pairs of vertices, then (u, v) must be an
edge of E, and hence the claim holds for u, v. Next, one can proceed by induction. Consider
a pair of vertices u,v € V. By induction, for all ordered pairs of vertices x,y € V with
Ixy| < [uv], either (x,y) € E or G contains k + 1 disjoint t-spanner xy-paths, each having
all edges shorter than |xy|/ cos «. The goal is to prove that either (u,v) € E or G contains
k + 1 disjoint t-spanner uv-paths in G, each having all edges shorter than juv|/ cos «.

One only has to consider the case when (u,v) ¢ E. Then, by the lemma’s assump-

tion, there exist k + 1 edges (uy,v1), (u2,v2), ..., (U1, Vis1) in E such that

172

(i) foreach 1 <1i < k+ 1, edge (u;,v;) is shorter than [uv|/ cos «,

(1) all w; and v; that are neither u nor v are pairwise distinct,
(iii) foreach 1 <1i < k+ 1, edges (u;,v;) and (u,v) are x-near parallel, and
(iv) foreach 1 <1 < k+ 1, min{|luuy/, vivl} < w - [uyvsl.

Pick any edge (u, v;i). Assume without loss of generality that [uu;| = min{jutw|, [v;v|}.
Since, (u;,vi) and (u,v) are a-near parallel by (iii), fuyvi| < |uv|/cos« by (i), and
luw| < w - jww by (iv), Claim 8.4.4 (i) implies that [v;v| < [uv|. Hence, by induc-
tion, either (v;,v) € E or there are k + 1 disjoint t-spanner v;v-paths in G, all using only
edges shorter than [v;Vv|/ cos . Similarly, since uw;| < [vyv| < [uv|, either (u,w;) € E or
G contains k4 1 disjoint t-spanner uu;-paths that use only edges shorter than juu;|/ cos a.
Furthermore, by Claim 8.4.4 (ii), each uv-path consisting of a t-spanner uu;-path (or edge
(u,w)), edge (wi,v;), and a t-spanner v;v-path (or edge (vi, v)) is a t-spanner uv-path.

So far it has been proven that there are k+1 edges (uy,v1), (Uz,v2), ... , (Wks1, Vis1)
such that for each i, 1T < 1 < k + 1, (i) either (u,u;) € E or G contains k + 1 dis-
joint t-spanner uu;-paths that use only edges shorter than [uu;|/cos &, and (ii) either
(vi,v) € E or there are k + 1 disjoint t-spanner v;v-paths in G that use only edges short-
er than |[vv;|/ cos &. Now, the claim follows directly from the Menger’s theorem (for more

details, see Lemma 8.2.2). a

Essentially identical arguments can be used to prove the following characterization

for edge fault-tolerant spanners.

Lemma 8.4.7 Let t, o, w be real numbers such that 0 < a < 7/4, 0 < w < %(cos o —
sinx — %) Let G = (V, E) be a Euclidean graph. Suppose that for any two vertices uw and
v of V, either (u,v) € E or there are k + 1 edges {(u1,v1),..., (Uks1,Vis1)} C E such

that

e for1 <i<k+1, upvi < [uv|/cosa,

173

e each edge (u;,V;) is «-near parallel to (u,v), and
e foreach1 <1i<k+ 1, min{juwy), (v} < w - v,

Then G is a (k,t)-EFTS for V. O

k-Gap-Greedy Algorithm

Input: A directed complete Euclidean graph G = (V, E), & and w, and integer k such that
k>0,0<a<n/4,and0 < w < %(coscx—sincx)

Output: A (k,t)-VFTS G’ = (V, E/) for V, where t = 1/(cos & — sin ot — 2w).

E'=0
for each edge (u,v) € E taken in nondecreasing order by length do

Let E* be a maximal (in the sense of inclusion) subset of E’ such that:

1. all edges in E’ beginning at u or ending at v are contained in E*,

2. for every (x,y) € E*, (x,y) is «-near parallel to (u,v),

3. forevery (x,y) € E*, min{jux|, jyv[} < w - [xy,

4. for any pair of distinct edges (x,y), (z,w) € E*,if x # uandy # v, then
x #zandy # w.

if [E*| <k+1then E' =E' U{(u,v)}
output G’ = (V, E')

Figure 8.2 The k-Gap-Greedy Algorithm

The characterization of (k, t)-VFTSs in Lemma 8.4.6 almost immediately implies
a simple polynomial-time algorithm for constructing such spanners, which is called k-Gap-
Greedy Algorithm and describe in a form of a meta-algorithm in Figure 8.2.

The following central lemma describes main properties of the k-Gap-Greedy Algo-

rithm.

Lemma 8.4.8 The k-Gap-Greedy Algorithm outputs a directed (k, t)-VFTS fort = 1/(cos a—
sin o« — 2 w) with maximum in-degree and out-degree O(k) and whose total cost is O E]}
k? logn) times the cost of an MST for V. The constant implicit in the O-notation depends

ontand d.

174

Proof : First it will be prove that G’ is a (k, t)-VFTS by showing that for any ordered
pair of vertices u, v, one of the two conditions of Lemma 8.4.6 is satisfied. If (u,v) € E’,
then the first condition is obviously true. Otherwise, (u,v) ¢ E’ and consider the iteration
of the algorithm when (u,v) is chosen. The only reason that (u,v) is not added to E’ is
that [E*| > k + 1. But this implies that the second condition of Lemma 8.4.6 is satisfied for
(u,v). Therefore, G’ is a (k, t)-VFTS by Lemma 8.4.6.

Next, it will be prove that the maximum out-degree and the maximum in-degree of
each vertex is O(k). Let u be any vertex. First prove the out-degree of u is O(k). Let
C.. be any cone in R? with the apex at u and the angular diameter at most «. Let E¢, be
the set of edges in G’ beginning at u that are contained in the cone C,. It will be proved
that [E¢ | < k + 1, which immediately implies that the out-degree of u is O(k). Now
analyze the behavior of the algorithm at the moment when [E¢ | = k+ 1 and the algorithm
considers a new edge (u,v) withv € C,. Observe that in that case one will have Eéu C E*,
and hence, E* will be of size at least k + 1. Therefore, the algorithm will not add the edge
(u,v) to the spanner. This implies that [E¢. | < k 4 1, and hence, the out-degree of u is
O(k). One can use essentially identical arguments to prove the in-degree of u is O(k).
(Similar arguments show that u is the head/tail of at most k + 1 pairwise «-near parallel
edges.)

Finally, one needs to prove that G’ has small cost. One can proceed similarly as in
the proof of Lemma 8.3.8 and first partition E’ into disjoint sets E1, E, ... such that each
E{ is a maximal set of edges which are o-near parallel. By the discussion in the proof of
Lemma 8.3.8, there are O((c/a)?") such disjoint sets E{, E5,.... Let us fix one set E/
and divide the edges in E{ into a minimal number of groups such that the edges in the same
group satisfy the w-gap property. It will be proved that O(k?) groups are sufficient. It is
enough to show that for any edge e € E! there are at most O(k?) edges e’ € E! shorter

than e such that {e, e’} does not satisfy the w-gap property.

175
Fix an edge (w,v) € E. Let Vi, ,, = {p € V: 3(p,q) € E,Ipq| < huv|,0 <
lup| < w - |pql} and let EKW) be the set of edges in E/ that (i) begin at vertices in VEL)\,),
and (ii) are shorter than [uv|. Note that since Eﬁw) C E/, all edges in E}Lu,\,) are pairwise
o-near parallel. One can show that [E|,,)| < 2 (k + 1)? by contradiction. Suppose that
IEL,V)I > 2(k + 1)2 and consider the iteration in which the edge (u,v) is picked by the
algorithm. Let E* be the set taken by the k-Gap-Greedy Algorithm when the edge (u,v)
is considered. It will be proved that [E*| > k + 1, which contradicts to the assumption
that (u,v) € E'. Let £ be the set of all edges in E’ shorter than (u,v) such that for every
edge e € £, (i) e is a-near parallel to (u,v) and (ii) {e, (u,v)} does not satisfy the w-
gap property. Note that because the algorithm picks edges in nondecreasing order, the
condition 3 of the algorithm implies that none of the edges in E* satisfies w-gap property
with (u,v). Thus, E* can be defined as the sum of certain maximal matching in £ and the
set of all edges in & that either begin at u or end at v. Therefore, to prove that [E*| > k + 1
it is sufficient to show that every maximal matching in £ contains at least k + 1 edges.
Furthermore, because of the well known relation between the cardinality of the maximum
matching and the minimum cardinality of a maximal matching, it is enough to show that the
maximum matching in £ contains at least 2 (k + 1) edges. One can prove this property by
considering the edges in E;, ,,. First observe that by the definition E,,,,, C £. Therefore,
one only must show that E?u,v) has a matching of size at least 2 (k 4+ 1). Note that there
are at most k + 1 edges in E/ starting at each vertex as proved above. Since it is assumed
that |E;lu‘v)| > 2 (k + 1)2, one can conclude that set E?u)v) must contain at least 2 (k + 1)
disjoint edges. Therefore, there is a matching of size at least 2 (k + 1) in £. But this leads
to a contradiction, and hence one proved that |E?u‘v]| <2(k+1)>2
Symmetrically, one can define E‘(’u’v), and prove that]E}’u,v)l < 2 (k+1)2. Therefore,
]E?u,v) U Eru)v)l < 4 (k + 1)2. Hence one can conclude that one needs at most 4 (k + 1)?
groups of edges from E! such that the edges in each group satisfy w-gap property. Thus,

it is proved that one can partition the edges in E’ into O((c/a)4~! k2) groups such that the

176

edges in each group satisfy w-gap property. To conclude the proof one can apply Claim
8.4.3 to obtain an upper bound for the total cost of E’ to be O((c/a)4' k* L logn) times

the cost of minimum spanning tree of V. 0

8.4.3 Efficient Construction of k Fault-Tolerant Spanner

It is easy to implement the k-Gap-Greedy Algorithm in polynomial time, however, direct
implementations lead to the running time of QO(n?). This section discusses how that algo-
rithm can be modified to achieve the running time of @(n k log® n+n k? log k) while still
returning a spanner having the parameters promised in Lemma 8.4.8. The new approach
is similar to the one developed by Arya and Smid [6] to construct spanners with bounded
degree and low cost.

The main idea behind the new approach is not to consider all the @(n?) edges but
to have an efficient procedure that will “forbid” certain edges without considering them
explicitly during the run of the algorithm. Since every vertex is of degree O(k), the goal
is to ensure that only O(k) edges incident to any vertex are considered by the algorithm.
The rules of inserting an edge in the k-Gap-Greedy Algorithm will be relaxed in order to
obtain a more efficient implementation. On one hand, the goal is to maintain the properties
of the output spanner required by Lemma 8.4.6 and on the other hand, the aim is to output
a spanner having properties described in Lemma 8.4.8. Below the main idea is described

behind that relaxation, and the algorithm itself is described in Section 8.4.3.

Main idea behind the modified algorithm A collection of cones of angular diameter o
(see, Section 8.3.1) will be used to test whether two edges are «-near parallel to each other.
That is, it is assume that there is a collection C of cones with apexes at the origin and the
angular diameter &, so that the cones in C cover R?. Then, an edge (u,v) is said to be in
a cone C if the vector v — u € C. Using this notion, each time a pair of points u, v with

(u,v) € C are consider, one only needs to look at those edges (x,y) € E’ that are in C.

177

Since if (u,v) and (x,y) are in the same cone, then they are x-near parallel to each other,
this notion allows one to relax testing of a-near parallel edges.

Once the collection C of cones is fixed, the cones from C will be considered sepa-
rately. The spanner is built by defining the edge set E’ which will be the union of the edge
sets constructed for each cone separately. Let Ei denote all those edges of E’ inside the
cone C € C.

In the k-Gap-Greedy Algorithm, one analyzes the edges in the order of their in-
creasing lengths. This is more complicated (in the sense of efficiency) if one wants to
consider the edges being in different cones separately. Therefore, following the approach
from [103] (see also [6]), one can approximate the distance between the points in a cone.
For each cone C, fix a ray {¢ that is incident to the apex of C and that is included in the
cone C. Then, the idea of approximating the distance between pairs of points is to use the
distance between the projections of the points on the ray £¢. To make this notion more for-
mal, a few definitions are needed. For any cone C € C and any point x € R4, let C, be the
translation of C so that the apex of C, is at x, that is, C, = {y € R : y — x € C}. Similar-
ly, for the ray £c, let cx ={y € R% :y —x € £c}. Then, one can approximate the distance

between the points in the cone C using the following function distc:

_ xRyl ify € Cy and Ry is the orthogonal projection of y onto £¢
diste(x,y) =
00 ify ¢ Cy .

The main reason of using this approximation of the distances between pairs of points inside
a cone is that it can be efficiently maintained by a dynamic algorithm (see also [6, 103]).
Furthermore, it is easy to show that if distc(x,y) < distc(u,v), then [xy| < fuv|/cos o
Therefore, by Claim 8.4.4 and Lemma 8.4.6, the algorithm remains correct (in the sense
that it satisfies the properties from Lemma 8.4.6) even if edge (x,y) is considered before
edge (u,v).

Summarizing, the algorithm is going to consider the edges inside each cone in non-

decreasing order of their dist¢ length.

178

Let (x,y) be an edge in a cone C € C that is to be taken by the algorithm. Observe
that if there are already at least k + 1 edges in C with the head at x then the edge (x,y) will
not be taken by the algorithm. Therefore, whenever a vertex x already has k + 1 outgoing
edges in C, then no further edge starting at x in C will be considered. Symmetrically, one
only needs to consider at most k + 1 incoming edges for any point y.

The other reason for rejecting edge (x,y) is that there are many disjoint edges in
C which are shorter than (x,y) with respect to distc length and are very close to either x
ory. Let x € V be any input point. Two special data structures will be used to maintain
a maximal set of disjoint edges in C that have starting or ending points close to x, respec-
tively. These two data structures will be modified not when an edge in C incident to x is
considered, but instead, they will be updated each time an edge close to x is inserted in-
to E¢. To be more precise, at each moment of the algorithm, a set F¢(x) is maintained for
each x € V which contains a set of disjoint edges in E{ such that for any (u,v) € Fc(x),
Ixu| < w-uv|. Similarly, Hc (x) is maintained to contain a set of disjoint edges in E¢ such
that for any (u,v) € He(x), vx| < w - [uv].

Now, suppose an edge (1, V) is inserted to E¢. Let Nit,) and N,) be the set of
points that are at distance at most w - [uv| from u and v, respectively. By the definitions of
Fe(x) and He(x), one needs to update those points in N,) and N, ., that are “affected”
by the edge (u,v). That is, for every point x € Ni;), if Fc(x) contains no edge incident
to either u or v, then one updates Fc(x) by inserting (u,V) to it. Similarly, one updates
Hc(y) for every pointy € NY, .

Notice that the operation of updating the sets F¢(x) and He(x) may be very expen-
sive, because both the vertex sets N7, |\, N, |, and the edge sets Fc(x), He(x) may be very
large. Therefore, one can relax the definition of the sets F¢(x) and He(x) by observing that
once Fe(x) or He(x) is of size larger than or equal to k 4 1, by Lemma 8.4.6, no new edge
in C beginning or ending at x, respectively, will have to be added to E(-. Therefore, two sets

of points from V are maintained: V! containing all points that still can be the heads of new

179

edges in E{ and V2 containing points that still can be the tails of new edges in E¢. Each
time the size of certain F¢(x) is greater than or equal to k + 1, x is deleted from V{; no fur-
ther edges in C that begin at x will be considered, Fc(x) will not be updated anymore, nor
will x be considered in any further sets N‘(*u)v). Similarly, if He(x) > k + 1, x is deleted
from V2, no further edges in C ending at x will be considered, Hc(x) will not be updated

and x will not be considered in any further sets N7 In this way, since both Fc(x) and

(uv)*
Hc(x) have a size between 0 and k+ 1, the total number of operations for updating the sets
Fc(x) and He(x) in the entire algorithm (for a given cone C) will be O(kn).

Observe that once a vertex x has been reported 2 (k + 1)2 times in the sets Ny
then there are 2 (k + 1)? edges (u,V) such that jux| < w - [uv|. Since each vertex is the
head of at most k + 1 edges in C, there must be 2 (k + 1) disjoint edges among all these
edges. Therefore, in this case, the size of Fc(x) must be greater than or equal to k + 1 (see
Lemma 8.4.8 for a more detailed discussion on similar arguments). Hence, at this moment
x will be deleted and will not be reported in N7, , for any u € V any more. For the same
reason x will be reported in N) at most 2 (k + 1)2 times. This allows one to conclude
that the total size of N, |, and NYu,v) for all vertices u and v in the entire algorithm (for a
given cone C) is 4n (k+ 1)2.

To define sets Nj;,) one needs to find all points that are at the distance at most
w - Juv| from u. However, since it is difficult to maintain dynamic data structures to find
NP

o, m the Euclidean metric, in the definition of N | one assumes the distances between

(u,v)
points according to the Lo, metric. That is, N}, | is redefined to be the set of all points
x with [ux|, < % luv|. (Here, one needs to output only the points that have not been
deleted, that is, those x for which [Fc(x)] < k + 1.) Since Jux|, < —\‘/% luv| implies that

lux| < w - [luv|, the new definition of N}* ives a subset ofethe set N | defined above.
(uv) 8 ()

Set N, ,, is redefined symmetrically.

180

Improved k-Gap-Greedy Algorithm In the previous subsection the main ideas behind
the modifications of the k-Gap-Greedy Algorithm are presented. These ideas allow one to
design a new algorithm that finds good fault-tolerant spanners efficiently. A more formal
description of the algorithm is presented below, on page 185. A formal proof of its cor-
rectness will be given first and then an efficient implementation of the algorithm will be

discussed.

Properties of the Improved k-Gap-Greedy Algorithm. This section is devoted to a

formal proof of the following lemma.

Lemma 8.4.9 LetV be a set of n points in Re. Let &, w be real numbers such that 0 < & <
n/4and 0 < w < %(cos o« —sina). Lett = 1/(cos o« — sinx — 2 w). There is a constant
¢ such that the Improved k-Gap-Greedy Algorithm outputs a directed (k, t)-VFTS with
maximum in-degree and out-degree O(k) and whose total cost is O((c/o) ¢! % k? logn)

times the cost of a MST for V.

Proof : One needs to prove that the output of Improved k-Gap-Greedy Algorithm has
the same properties as the output of k-Gap-Greedy Algorithm after some conditions are
relaxed. The proof is similar to that of Lemma 8.4.8.

Let G’ be the output of the Improved k-Gap-Greedy Algorithm. First, G’ is proved
to be a (k,t)-VFTS by showing that G’ satisfy the conditions of Lemma 8.4.6. Let u,v
be any ordered pair of vertices, and v —u € C for some C € C. If (u,v) € Eg, then the
first condition is obviously true. Otherwise, (u,v) ¢ E(and there are two possible reasons

why (u,v) was not inserted to E-.

i. (u,v) is considered explicitly in the “while” loop but is not inserted to E-.

In this case, distc(u, v) is minimum at the beginning of certain iteration. Since (u, V)
is not added to E¢, there must exist either k 4 1 edges with heads at u or k + 1 edges

with tails at u which are already inserted to Ei. These edges have length at most

181

|uv|/ cos &, are o-near parallel to (1, V), and they have one common endpoint with

(u,v). Therefore, the second condition of Lemma 8.4.6 is satisfied.

ii. (u,v) is deleted when some other pair (x,y) is picked and added to E- in the “while”

loop.

In this case, the only reason that (u, v) is deleted from E¢ is either |Fc(u)] = k+1or
[He(v)] = k+1 after (x,y) is inserted to Fc(u) or He (1) respectively. Suppose that
[Fc(u)! =k + 1 and consider the edges in Fc(uw) = {(x1,y1), ... , (Xk+1, Yk41)}. By
the Improved k-Gap-Greedy Algorithm, edge (xi,yi), 1 <1 < k+1, can be inserted
to Fe(u) only if: (a) luxile < \% Ix;yi|, which implies that [ux;| < w - [x;yil, and
(b) (x4,yi) is disjoint with all other edges in Fc(u). Furthermore, since (xi,)
is considered before (u,V) by the algorithm, it must be true that distc(xi,yi) <

distc(u, v), which means |x;y;| < Juv|/ cos «. Therefore, one can combine with (a)

and (b), to see that the second condition of Lemma 8.4.6 is satisfied.

To summarize, it has been proved for each pair (x, y), either (x,y) is an edge in G’
or there are k + 1 edges in G’ satisfying the second condition of Lemma 8.4.6. Therefore,
G'isa (k,t)-VFTS.

Next, it will be proved that the maximum in-degree and out-degree of each vertex
is O(k). The proof is basically the same as the proof of Lemma 8.4.8. Let u be any vertex.
According to the Improved k-Gap-Greedy Algorithm it is easy to see at most k + 1 edges
beginning at u can be added to the E{. for any given cone C € C. Therefore the out-degree
of win G’ is O(k). Similarly, one can show that the in-degree is O(k).

Finally, one needs to prove that G’ has small cost. Fix a cone C and divide the
edges in E{ into a minimal number of groups such that the edges in the same group satisfy
the % -gap property. It will be proved that O(k?) groups suffice. To prove this claim it

va
is enough to show that for any edge e € E. there are at most O(k?) edges e’ € E{. that

182
are “shorter” than e in terms of the distc length and such that {e, e’} does not satisfy the
%-gap property.

Fix an edge (u,Vv) € E¢. Let B¢,) ={(x,y) € E¢ @ diste(x,y) < diste(u,v) and
lux| < Z-ixylfand By,) ={(x,y) € E¢ : distc(x,y) < distc(u,v) and [vyl| < 75 Ixyl}.
Observe that if an edge (x, y) is “shorter” than (u, v) with respect to the distc length and it

U E}’u V)" Therefore, to

(u,v)

fails to satisfy the -2=-gap property with (u,v), then (x,y) € E}

prove the claim it is sufficient to show that [E}! y U EYu,V)l = O(K?).

(u,v)

First it will be proved that [E}!, || = O(K?). Let £,) = {(x,y) € E¢ :distc(x,y) <
distc(u, v) and [ux|,, < %-Ixy}}. Note that since [ux|e < |ux|, B,) € €,). In the fol-
lowing it will be shown that £}, ,\| = O(k?) which directly implies that [E},,)| = O(k?).

There are two observations. First because all edges in £ (v) A€ “shorter” than (u, v)
with respect to distc, all these edges are picked and inserted to E by the algorithm before
(u,v). Secondly, each time after one of these edges (x,y) is inserted to E(, the algorithm
inserts (x,y) to Fe(u) if (x,y) is disjoint with edges already in F¢(u). In other words, at
the end of each iteration of the Improved k-Gap-Greedy Algorithm Fc(u) keeps a maximal
matching of the edges in £}, | that have been inserted to E¢ so far.

Now one can prove by contradiction that |£},)| < 2 (k+1)2. Suppose that Il =
2 (k+1)2. It has already been shown that each vertex has out-degree (in-degree) in E. of at
most k+ 1. Therefore, the maximum matching of £,) must contain at least 2 (k+1)edges
and thus any maximal matching of Ef;, |, must have at least (k+ 1) edges. Since Fc(u)isa
maximal matching of £,), [Fc(u)| > k+1. Then, there must exist an edge (x,y) € £,
such that during the iteration when (x, y) is inserted to E¢, (x,y) is also inserted to Fc(u),
and |Fc(u)| becomes k + 1. However, the Improved k-Gap-Greedy Algorithm is designed
such that in that moment 1 must have been deleted from V¢ and all edges with head at u

including (u,v) are also deleted from E¢ and will not be inserted to E¢-. This contradicts

to the fact that (u,v) € E¢. Thus, it is proved that [EY,, || < IS(‘;‘V)I <2(k+1)2

183

In a similar way, one can prove that IE‘(’u,V)I < 2 (k+1)2. Therefore, IE’(“u,V)UE")I <

{u,v
4 (k + 1)?. Hence, one can partition the edges from E! into at most 4 (k + 1) groups such
that the edges in each group satisfy the %-gap property. Thus, the edges in E’ can be
partitioned into O((c/)94~! k?) groups such that the edges in each group satisfy J=-gap
property. To conclude the proof one can apply Claim §.4.3 to obtain an upper bound for

the total cost of E/, which is O((c /)41 k? @ log) times the cost of MST of V. O

Details of the implementation of the Improved k-Gap-Greedy Algorithm. The de-
scription of the Improved k-Gap-Greedy Algorithm is on a high level and now it will be
disscussed how one can implement that algorithm efficiently. In order to obtain an efficient
implementations one must provide efficient data structures that allow one to query for (i) an
edge (u,v) € Ec with minimum distc, (ii) the number of edges in E{ beginning or ending
at u, (iii) reporting all points in NltL.V) and N‘(’u,v), and (iv) for verifying if an edge (u,v) is
disjoint to all edges in Fc(x) or He(x).

It is easy to see that one can maintain the data structure (ii) reporting the number
of edges in E. beginning or ending at a given vertex with constant query time and update
time. Similarly, one can easily maintain the data structure (iv) verifying if an edge (u,v)
is disjoint to all edges in Fe(x) or He(x) with O(log k) query time and update time. (The
bound for the query time follows immediately from the fact that Fc(x) or He(x) contains
O(k) edges and one can use a balanced binary search tree to store the endpoints of these
edges.)

Arya and Smid [6] gave an efficient data structure supporting queries (i) for an edge
in Ec with minimum distc. As it is demonstrated (and discussed in details) in [6], the total
running time needed to perform all these operations is in our case O(nk log®n). (This
bound follows from the fact that one can use query (i) O(kn) times, and as shown in [6],
efficient data structure can be built in time O(n logd n) that has constant query time and

O(log® n) amortized update time per edge.)

184

To efficiently report all points in N) and Nj, |, one can use dynamic data struc-
ture for orthogonal range queries (see [88]). The algorithm only deletes points and therefore
the amortized deletion time is @ (log®~"' n) and the query time is O (log®~' n) time plus the
number of reported points [88]. Since each point is deleted at most once, the total dele-
tion time is @(nlogd~' n). A query operations is performed on the dynamic data structure
each time after an edge is inserted, so the total time is O(n k log?~' n) for O(nk) edges.
Each vertex is reported at most @ (k?) times, when reported, one needs to verify whether
Fc(x) or He(x) can be enhanced by adding an edge, the verification and update takes time
O(logk), thus the total time for reporting, verification, and update is O(n k? log k).

In summary, one can conclude the discussion in this section with the following

lemma.

Lemma 8.4.10 Let V be a set of n points in R®. Let «, w be real numbers such that
0<a<m/4and0 < w < 3(cosx —sina). Ler t = 1/(cos x —sinx — 2 w). There is a
constant ¢ such that the Improved k-Gap-Greedy Algorithm can be implemented to run in

time O((c/o)47 " (nk logdn + nk? logk)). a

One can conclude the discussion in this section with the following main theorem

that follows immediately from Lemmas 8.4.9 and 8.4.10.

Theorem 8.4.11 Let o, w be real numbers such that 0 < o < /4, 0 < w < 3(cos o —
sinx). Let V be a set of n points in RY. Lett = 1/(cosoc — sinx — 2w). There is
a constant ¢ such that in O((c/x)4" (nk logn + nk? logk)) time the Improved k-
Gap-Greedy Algorithm computes a directed (k,t)-VFTS having the maximum degree of
O((c/)¥ " k) and the total cost of O((c/x)4 " k2 (vV/d/w) logn Wygr). O

To conclude this section, notice that Theorem 8.4.11 implies directly Theorem 8.1.4.

185

Improved k-Gap-Greedy Algorithm
Input: Set V of n points in R¢, an integer k > 0, and positive «, w with & < 71/4 and
w < %(cosoc—sinoc)
Output: A (k,t)-VFTS G’ = (V, ') for V, where t = 1/(cos & — sin &« — 2w).
let C be any collection of cones with angular diameter o that cover RY

for each cone C € C do
Ec ={(u,v) : distc(u,v) < oo} {Ec contains all edges (u,v) such thatv —u € C}
E.=0 {E¢ collects the edges in E¢ that are to be included in the spanner}

foreach x € VdoFc(x) =0

{Fc(x) contains disjoint edges in E(. that begin at points near to x}

for each x € VdoHc(x) =0
{Hc(x) contains disjoint edges in E{ that end at points near to x }

Vé =V {V‘C contains all points u in V such that [Fe(x)| <k + 1}
Vi=V {V% contains all points v in V such that [He(x)| <k + 1}
while Ec # 0 do

let (u,v) € Ec be such that distc(u, v) is minimal
if the number of edges beginning at u in E(is at least k + 1 then
delete u from V(]: and delete from E¢ all edges beginning at u
if the number of edges ending at v in E. is at least k + 1 then
delete v from V% and delete from E all edges ending at v
if (u,v) isstill in E¢ then {edge (u,v) will be in the spanner}
Ec =Ec\{(u,v)}
Et =E-U{(y,v)}
let N}*u’v) be the set of points x € V(‘: with [ux|e < % luv|

let Ny,) be the set of points y € V(Z: with [WYleo < % [uv
for each x € N} . do

(uv)
if (u,v) is disjoint with all edges in Fc(x) then
Fc(x) = Fe(x) U{(u,v)}
if [Fc(x)| > k+ 1 then
delete x from Vé and delete from E¢ all edges beginning at x
for each y € Nt’u’v) do
if (u,v) is disjoint with all edges in H¢(y) then
He(y) = Hely) U{(u,v)}
if He(y)l > k+ 1 then
delete y from Vé and delete from E¢ all edges ending aty

E' = Jcee E¢ output G’ = (V,E')

CHAPTER 9

CONCLUSIONS

This dissertation studied combinatorial optimizations problems arising from two areas:
scheduling and network design. The main focus was to design efficient approximation

algorithms for NP-hard problems.

9.1 Scheduling Problems
In the scheduling area, problems in master-slave model have been considered. The master-
slave model finds many applications in parallel computer scheduling and industrial settings
such as semiconductor testing, machine scheduling, transportation maintenance and paral-
lel computing.

The complexity issues are considered first. It is shown that many makespan and
total completion time problems with constraints such as canonical, order preserving and
no-wait-in, are NP-hard in the strong sense.

Motivated by the computational complexity, some special cases of the problem are
considered. Several efficient algorithms are designed to minimize the total completion time
and makespan. These algorithms are proven to have very good approximation ratio. Next
more general cases are discussed. A job can have an arbitrary release time and arbitrary
processing time. There can be a single master, multi-masters, or distinct preprocessor and
postprocessors. Constant approximation algorithms are designed for the total completion
time problem. It is shown that these algorithms give good approximation for makespan at
the same time.

There are several questions that have not been answered. In this dissertation, it is
assumed that there are no precedence constraints among the jobs. These assumption may

not hold in some applications. It is worthwhile to develop approximation algorithms which

186

187

work well even with precedence constraints. Only the makespan and total completion time
are considered so far. Other objectives such as maximum lateness, number of tardy jobs
and total tardiness, have not been studied. In view of the NP-hardness of makespan and
total completion time, minimizing these objectives must also be NP-hard. In that case, it

will be desirable to have good approximation algorithms.

9.2 Network Design Problems

The survivable network design problem is the problem of designing graphs that resist edge
and/or vertex removal. This is a fundamental problem in algorithmic graph theory with
numerous applications in computer science and operations research. It is well-known that
all non-trivial variants of the survivable network design problem are NP-hard and therefore
the main research interest lies in the design of efficient approximation algorithms.

First the geometric version of the survivable network design problem is considered.
A PTAS is developed for the {0, 1, 2}-connectivity problem in which each vertex has a
connectivity requirement at most 2. Then it is shown that the techniques can be generalized
to other Eg metrics and to the {0,1,...,k}-edge-connectivity problems for multigraphs.
PTASs or Quasi-PTASs are designed for the minimum 2-connectivity problem and some
of its variations in unweighted or weighted planar graphs.

Then the problem of efficient construction of fault-tolerant spanners are considered.
A greedy algorithm is presented which finds the fault-tolerant spanners with both maximum
degree and total cost asymptotically optimal. An efficient algorithm is then developed to
find a fault-tolerant spanners with asymptotically optimal bound for the maximum degree
and almost optimal bound for the total cost.

Two important components used in all the approximation schemes are hierarchical
decomposition and dynamic programming. Through the decomposition, a large graph is
decomposed into smaller ones which have small interface with the rest of the graph. In

the Euclidean space, random shifted dissection is used to decompose a set of points into

188

regions. The interface between two regions contains only constant number of portals. In
planar graphs, a modified separator theorem is developed and applied to decompose the
graphs into small pieces. Each small piece has at most logarithmic number of portals. The
small interface between subgraphs allows one to solve the problem by dynamic program-
ming in polynomial time.

It would be great if one can extend the above techniques to other related problems.

Following are some possible problems.

k-connectivity problem in doubling metrics. The doubling dimension of a metric is the
smallest k such that any ball of radius 2r can be covered using 2* balls of radius r. This
concept for abstract metrics has been proposed as a natural analog to the dimension of a
Euclidean space. Doubling metric appears in several practical applications such as peer-to-
peer networks and data analysis. In [114], Talwar showed that for low dimensional metrics
there exist quasi-polynomial time approximation schemes for TSP and other optimization
problems.

The geometric version of the k-connectivity problem has been considered and poly-
nomial approximation schemes have been designed k-connectivity problem in geometric
graphs by Czumaj and Lingas in [26]. Their algorithm is based on the framework of Arora
[3]. Like the approach used by Rao and Smith [101] for the TSP problem, their algorithm
depends on spanners and some other nontrivial techniques.

For the problem in the low dimension doubling metric, there is no known results
about construction of light and sparse spanners. Therefore one can not use the approach as
in [26]. However, it is still possible to achieve a Quasi-PTAS by using some novel ideas

and those from [114], [27] [26].

Minimum strongly connected subgraph in planar graphs. For the general unweighted

graphs, constant approximation algorithms have been given by Khuller et al. in [71, 72].

189

The existing separator theorems only work for undirected graphs. A PTAS for the problem

in planar graphs will heavily depend on light, directed cycle separators.

Forbidden minor 2-ECSS (or 2-VCSS). There are two difficulties here: first, the usual
separator theorems do not produce cycles (just trees). Also the appropriate generalization
of Lemma 6.2.4 may require a careful application of the Robertson-Seymour theory, which
appears difficult. For the special case of bounded-genus graphs, both of these issues look

more tractable.

For the fault tolerant spanners, an obvious open question that is left is whether one
can design an efficient algorithm that outputs fault-tolerant spanners having properties from
Theorem 8.1.3. It is believed that it should be possible to design an O (nk polylogn)-time
algorithm for that problem.

In all existing analysis of fault-tolerant spanners, the cost of fault-tolerant spanners
is compared with that of MST. Since a k-fault-tolerant spanner must be (k+1) connected, a
natural question is how to compare its cost with the cost of the minimum (k + 1) connected
spanning subgraphs. One can extend the example in Figure 9.1 to show that the cost ratio
between the optimal (1,1 + ¢) fault-tolerant spanner and the minimum (k + 1) connected
spanning subgraphs can be arbitrarily large in planar graphs. It is believed that the cost
ratio for the geometric graphs should be bounded by constant. It is desirable if one could
design efficient algorithm to construct such light spanners.

There are many algorithmic applications of spanners, perhaps the most appealing
being the recent application in an O(nlogn)-time approximation algorithm for the Eu-
clidean TSP [101]. On the other hand, not many applications of fault-tolerant spanners are
known. Actually, even in the most natural application to the k-connectivity problem, the
fastest approximation algorithms do not use fault-tolerant spanners [25, 26, 27]. Therefore,
investigating the relationship between the connectivity problems in Euclidean graphs and

the notion of fault-tolerant spanners would be an interesting topic.

190

(a) (b) (©

Figure 9.1 (a) A weighted planar graph G, (b) the minimum cost biconnected spanning subgraph
of G, (c) the optimal (1,1 + ¢) fault-tolerant spanner which is G itself.

10-¢ 10—€ 10—-€

(b) (c)

Figure 9.2 (a) A weighted planar graph G, (b) (1, 1+¢)-VFTS (or (1, 14¢)-EFTS) of G generated
by the greedy algorithm with t = 1+ ¢, and (c) the minimum (1, 1+ ¢)-VFTS (or (1,14 ¢)-EFTS)
of G.

It is tempting (and very interesting) to try to extend the results for geometric fault
tolerant spanners to non-Euclidean graphs. One could extend Claim 8.3.1 to hold for ar-
bitrary graphs, that is to show that the graph obtained in the k-Greedy Algorithm is a
(k,t)-VFTS for arbitrary (that is, also for non-Euclidean) graphs.

Furthermore, since the k-Greedy Algorithm is an extension of the classical greedy
that has been used extensively in the construction of t-spanners, see, e.g., [1], it is plausible
to ask whether it produces good quality spanners for arbitrary graphs or for planar graphs.
For example, it follows from [1] that if the k-Greedy Algorithm with k = 0 is run on a
planar graph, then it produces a t-spanner whose total cost is upper bounded by O(1/(t —
1)) times the minimum spanning tree cost. However, this result cannot be generalized to
larger k. First there are graphs that does not have light spanners at all, see Figure 9.1 for an
example. Furthermore, even if there is one, the greedy algorithm can not always produce

good spanners, see Figure 9.2.

191

Due to its potential applications in various situations, ad hoc wireless network has
received significant attention over the last few years for its various applications. In an ad
hoc network the links between neighboring nodes get up and down from time to time be-
cause of mobility of the nodes and the communication capabilities of each node is usually
constrained by its limited battery power. This makes fault tolerance of the network one of
the fundamental and critical issues. Because the network is distributed, the global algo-
rithms for survivable network design and fault-tolerant spanner in this dissertaion do not
work any more. Li et al. [84] studied how to set the transmission radius to achieve the
k-connectivity with certain probability for a network of n devices; they also proposed a
construction of fault-tolerant spanners. Although the number of links is bounded, the to-
tal cost (transmission power) may be unbounded. A natural question is how to assign the

transmission power for each node to minimize the total transmission power assignment.

REFERENCES

[1] L Althéfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete & Computational Geometry, vol. 9, pp. 81-100, 1993.

[2] M. Dell’Amico. Shop problems with two machine and time lags. Operations Research,
44,5,777-7817, 1996.

[3] S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. Journal of the ACM, 45(5):753-782, 1998.

[4] S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. A polynomial time approxi-
mation scheme for weighted planar graph TSP. Proceedings of the of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 33-41, 1998.

[5]1 S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: Short,
thin, and lanky. In Proceedings of the 27th Annual ACM Symposium on Theory of
Computing, pp. 489-498, Las Vegas, NV, May 29 - June 1, 1995. ACM Press, New
York, NY.

[6] S. Aryaand M. Smid. Efficient construction of a bounded-degree spanner with low weight.
Algorithmica, 17(1):33-54, January 1997.

[7]1 K.R. Baker. Introduction to Sequencing and Scheduling. John Wiley & Sons, New York,
1974.

[8] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry
- Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[9] A. Berger,A. Czumaj, M. Grigni, and H. Zhao. Approximate minimum 2-connected sub-
graphs in weighted planar graphs. Manuscript, 2004.

[10] A. Berger, M. Grigni, and H. Zhao. A well-connected separator for planar graphs.
Manuscript, 2004.

[11] M. Bollobas. Modern Graph Theory. Springer-Verlag, Berlin, 1998.

[12] R.E. Buten and V.Y. Shen. A scheduling model for computer systems with two classes
of processors. Sagamore Computer Conference on Parallel Processing, pp. 130-1338,
1973.

[13] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM,
42(1):67-90, January 1995.

[14] S. Chakrabarti, C. Phillips, A. Schulz, D.B. Shmoys, C. Stein and J. Wein. Improved
scheduling algorithms for minsum criteria. In Proceedings of the 23rd International
Colloquium on Automata, Languages and Programming, pp. 646-657, 1996

192

193

[15] B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on graph span-
ners. In Proc. of the 8th Annual ACM Symposium on Computational Geometry, pp.
192-201, Berlin, Germany, June 10-12, 1992. ACM Press, New York, NY.

[16] C. Chekuri, R. Motwani, B. Natarajan and C. Stein. Approximation techniques for average
completion time scheduling. SIAM Jounal on Computing, 31(1), pp. 146-166, 2001.

[17] J. Cheriyan, A. Sebd, and Z. Szigeti. An improved approximation algorithm for minimum
size 2-edge connected spanning subgraphs. Proceedings of the of the 6th International
Integer Programming and Combinatorial Optimization Conference, LNCS, 1412:126-
136, 1998.

[18] J. Cheriyan, S. Vempala, and A. Vetta. Approximation algorithms for minimum-cost k-
vertex connected subgraphs. Proceedings of the of the 34th ACM Symposium on The-
ory of Computing, pp. 306-312, 2002.

[19] J. Cheriyan, S. Vempala, and A. Vetta. An approximation algorithm for the minimum-size
k-vertex connected subgraph. SIAM Journal on Computing, 32(4):1050-1055, 2003.

[20] P. L. Chew. There is a planar graph as good as the complete graph. In Proc. of the 2nd
Annual ACM Symposium on Computational Geometry, pp. 169-177, 1986.

[21] S. Chopra and C.-Y. Tsai. A branch-and-cut approach for minimum cost multi-level net-
work design. Discrete Mathematics, 242:65-92, 2002.

[22] E. G. Coffman, Jr.(ed.) Computer and Job-Shop Scheduling Theory. John Wiley and Sons,
New York, 1976.

[23] B. Csaba, M. Karpinski, and P. Krysta. Approximability of dense sparse instances of min-
imum 2-connectivity, TSP and path problems. Proc. of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 74-83, 2002.

[24] A. Czumaj, M. Grigni, P. Sissokho, and H. Zhao. Approximation schemes for minimum
2-edge-connected and biconnected subgraphs in planar graphs. In Proceedings of
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 489-498, New
Orleans, LA, January 11 - 13, 2004. SIAM, Philadelphia, PA.

[25] A. Czumaj and A. Lingas. On approximability of the minimum cost spanning subgraph
problem. Proceedings of the of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 281-290, 1999.

[26] A. Czumaj and A. Lingas. Fast approximation schemes for Euclidean multi-connectivity
problems. In Proceedings of the of the 27th Annual International Colloquium on
Automata, Languages and Programming, pp. 856-868, 2000.

[27] A. Czumaj, A. Lingas, and H. Zhao. Polynomial-time approximation schemes for the
Euclidean survivable network design problem. Proceedings of the of the 29th Annual

International Colloquium on Automata, Languages and Programming, LNCS, 2380,
pp- 973-984, 2002.

194

[28] A. Czumaj and H. Zhao. Fault-tolerant geometric spanners. In Proceedings of the 19th
Annual ACM Symposium on Computational Geometry, pp. 1-10, San Diego, CA, June
8-10, 2003. ACM Press, New York, NY.

[29] G. Das, P. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-dimensional
Euclidean space. In Proceedings of the of the 9th Annual ACM Symposium on Com-
putational Geometry, pp. 53-62, San Diego, CA, May 19-21, 1993. ACM Press, New
York, NY.

[30] G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean spanners.
International Journal of Computational Geometry and Applications, 7(4):293-315,
1997.

[31] G. Das, G. Narasimhan, and J. Salowe. A new way to weigh malnourished Euclidean
graphs. In Proc. of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp- 215-222, 1995.

[32] R. Diestel. Graph Theory. Springer-Verlag, New York, 2000.

[33] J. Du and J.Y-T. Leung. Minimizing mean flow time in two-machine open shops and flow
shops. Journal of Algorithms, 14:24-44, 1993.

[34] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors, Handbook
of Computational Geometry, chapter 9, pp. 425-461. Elsevier Science B.V., 1997.

[35] C. G. Fernandes. A better approximation ratio for the minimum size k-edge-connected
spanning subgraph problem. Journal of Algorithms, 28:105-124, 1988.

[36] L. Fleischer. A 2-approximation for minimum cost {0, 1, 2} vertex connectivity. In Pro-
ceedings of the 8th International Integer Programming and Combinatorial Optimiza-
tion Conference, volume 2081 of Lecture Notes in Computer Science, pp. 115-129,
Utrecht, The Netherlands, June 13-15, 2001. Springer-Verlag, Berlin.

[37] L. Fleischer, K. Jain, and D. P. Williamson. An iterative rounding 2-approximation algo-
rithm for the element connectivity problem. In Proceedings of the 42nd IEEE Sym-
posium on Foundations of Computer Science, pp. 339-347, Las Vegas, NV, October
14-17, 2001. IEEE Computer Society Press, Los Alamitos, CA.

[38] G. N. Frederickson and J. JdJa. On the relationship between the biconnectivity augmen-
tation and traveling salesman problem. Theoretical Computer Science, 19(2), pp.
189-201, 1982.

[39] H. N. Gabow. An ear decomposition approach to approximating the smallest 3-edge con-
nected spanning subgraph of a multigraph. Annual ACM-SIAM Symposium on Dis-
crete Algorithms 2002, pp. 84-93.

[40] H. N. Gabow. Better performance bounds for finding the smallest k-edge connected span-
ning subgraph of a multigraph. Annual ACM-SIAM Symposium on Discrete Algo-
rithms 2003, pp. 460-469.

195

[41] H. N. Gabow, M. X. Goemans, and D. P. Williamson. An efficient approximation algorithm
for the survivable network design problem. Mathematical Programming, 82(1-2):13-
40, 1998.

[42] J. Gao, L. J. Guibas, J. Hershburger, L. Zhang, and A. Zhu. Geometric spanner for routing
in mobile networks. In Proceedings of the 2nd ACM Symposium on Mobile Ad Hoc
Networking & Computing (MobiHoc 2001), pp. 45-55, Long Beach, CA, October 4-5,
2001.

[43] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, New York, 1979.

[44] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathe-
matics, 16(1):1-29, 1968.

[45] M.X. Goemans. Improved approximation algorithms for scheduling with release dates. In
Proceedings of the Eighth ACM-SIAM Symposium on Discrete Algorithms, pp. 591-
598, 1997.

[46] T.F. Gonzalez and S. Sahni. Flowshop and jobshop schedules: complexity and approxima-
tion. Operations Research, 26, pp. 26-52, 1978.

[47] M. Grigni, E. Koutsoupias, and C. Papadimitriou. An approximation scheme for planar
graph TSP. Proceedings of the of the 36th IEEE Symposium on Foundations of Com-
puter Science, pp. 640-645, 1995.

[48] M. Grigni and P. Sissokho. Light spanners and approximate TSP in weighted graphs with
forbidden minors. Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 852-857, 2002.

[49] M. Grotschel. Discrete mathematics in manufacturing. Proceedings of the of the 2nd
International Conference on Industrial and Applied Mathematics, pp. 119-145, 1991.

[50] M. Grotschel and C. L. Monma. Integer polyhedra arising from certain network design
problems with connectivity constraints. SIAM Journal on Discrete Mathematics,
3(4):502-523, November 1990.

[51] M. Grétschel, C. L. Monma, and M. Stoer. Computational results with a cutting plane
algorithm for designing communication networks with low-connectivity constraints.
Operations Research, 40(2):309-330, 1992.

[52] M. Grotschel, C. L. Monma, and M. Stoer. Polyhedral and computational investigations for
designing communication networks with high survivability requirements. Operations
Research, 43:1012-1024, 1995.

[53] M. Grotschel, C. L. Monma, and M. Stoer. Design of survivable networks. In M. O. Ball,
T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, editors, Handbooks in Opera-

tions Research and Management Science, volume 7: Network Models, chapter 10, pp.
617-672. North-Holland, Amsterdam, 1995.

196

[54] M. Griinewald, T. Lukovszki, C. Schindelhauer, and K. Volbert. Distributed maintenance
of resource efficient wireless network topologies. In B. Monien and R. Feldmann,
editors, Proceedings of the 8th Euro-Par, volume 2400 of Lecture Notes in Comput-
er Science, pp. 935-946, Paderborn, Germany, August 27-30, 2002. Springer-Verlag,
Berlin.

[55] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy algorithms for con-
structing sparse geometric spanners. SIAM Journal on Computing, 31(5):1479-1500,
August 2002.

[56] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Improved greedy algorithms for
constructing sparse geometric spanners. In M. M. Halldérsson, editor, Proceedings of
the 7th Scandinavian Workshop on Algorithm Theory, volume 1851 of Lecture Notes
in Computer Science, pp. 314-327, Bergen, Norway, July 5-7, 2000. Springer-Verlag,
Berlin.

[57] J.N.D. Gupta. Two-stage, hybrid flowshop scheduling problem. Journal of the Operational
Research Society, 38, pp. 359-364, 1988.

[58] L.A. Hall. Approximability of flow shop scheduling. Mathematical Programming, 82, pp.
175-190, 1998.

[59] L.A. Hall, A.S. Schulz, D.B. Shmoys and J. Wein, Scheduling to minimize average com-
pletion time: Offine and online algorithms. Mathematics of Operations Research, 22,
pp. 513-544,

[60] D.S. Hochbaum(ed.). Approximation Algorithms for NP-Hard Problems. PWS Publishing
Company, Boston, MA, 1995.

[61] J.A. Hoogeveen and T. Kawaguchi. Minimizing total completion time in a two machine
flowshop: Analysis of special cases. Mathematics of Operations Research, 24(4),
887-910, 1999.

[62] F. K. Hwang and D. S. Richards. Steiner tree problems. Networks, 22:55-89, 1991.

[63] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. North-Holland,
Amsterdam, 1992.

[64] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39-60, 2001. A preliminary version appeared in Proceedings
of the 39th IEEE Symposium on Foundations of Computer Science, pp. 448-457, Palo
Alto, CA, November 8-11, 1998. IEEE Computer Society Press, Los Alamitos, CA.

[65] S.M. Johnson. Optimal two and three-stage production schedules with setup times includ-
ed. Naval Research Logistics Quarterly, 1, pp. 61-68, 1954.

[66] R. Jothi, B. Raghavachari, and S. Varadarajan. A 5/4-approximation algorithm for mini-
mum 2-edge-connectivity. Proceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 725-734, 2003.

197

[67] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, pp. 604-613, Dallas, TX, May 23-26, 1998. ACM Press, New York, NY.

[68] A.H.G. Rinnooy Kan. Machine Scheduling Problems: Classification, complexity and com-
putations, Nijhoff, The Hague, 1976.

[69] W. Kern and W. Nawijn. Scheduling multi-operation jobs with time lags on a single ma-
chine. University of Twente, 1993.

[70] S. Khuller. Approximation algorithms for finding highly connected subgraphs. In D. S.
Hochbaum, ed., Approximation Algorithms for N'P-Hard Problems, pp. 236-265,
1996.

[71] S. Khuller, B. Raghavachari and N. Young. Approximating the minimum equivalent di-
graph. Proceedings of the of the 5th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pp.177-186, 1994.

[72] S. Khuller, B. Raghavachari and N. Young. On strongly connected digraphs with bounded
cycle length. UMIACS-TR-94-10/CS-TR-3212, 1994.

[73] S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings. Journal of
the ACM, 41(2):214-235, March 1994.

[74] G. Kortsarz and Z. Nutov. Approximation algorithm for k-node connected subgraphs via
critical graphs. Annual ACM Symposium on Theory of Computing 2004, pp. 138-145.

[75] M.A. Langston. Interstage transportation planning in the deterministic flow-shop environ-
ment. Operations Research, 35(4), pp. 556-564, 1987.

[76] E.L.Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequencing and
scheduling: Algorithms and complexity. In S.C. Graves, A.H.G. Rinnooy Kan, and
PH. Zipkin (eds.), Logistics of Production and Inventory, Handbooks in Operations
Research and Management Science 4, North-Holland, Amsterdam, 445-522, 1993.

[77] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors. The
Traveling Salesman Problem. John Wiley & Sons, New York, NY, 1985.

[78] C.-Y. Lee and G.L. Vairaktarakis. Minimizing makespan in hybrid flowshops. Operations
Research Letters, 16, pp. 149-158, 1994.

[79] J. Y-T. Leung and H. Zhao. Minimizing Mean Flowtime and Makespan on Master-Slave
Systems. To appear in Journal of Parallel and Distributed Computing.

[80] J. Y-T. Leung and H. Zhao. Minimizing Total Completion Time in Master-Slave Systems.
Manuscript.

[81] C. Levcopoulos and A. Lingas. There are planar graphs almost as good as the complete
graphs and almost as cheap as minimum spanning trees. Algorithmica, 8:251-256,
1992.

198

[82] C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Efficient algorithms for constructing

fault-tolerant geometric spanners. Annual ACM Symposium on Theory of Computing
1998, pp. 186-195.

[83] C.Levcopoulos, G. Narasimhan, and M. H. M. Smid. Improved algorithms for constructing
fault-tolerant spanners. Algorithmica, 32(1):144-156, 2002.

[84] X.Li, W.P. Wan and C. Yi. Robust deployment and fault tolerant topology control for wire-
less ad hoc networks. Journal of Wireless Communications and Mobile Computing,
4(1), pp. 109-125, 2004.

[85] R. Lipton and R. Tarjan. Applications of a planar separator theorem. SIAM Journal on
Computing, 9(3):615-627, 1980.

[86] T. Lukovszki. New results on fault tolerant geometric spanners. In Proc. of the 6th Work-
shop on Algorithms and Data Structures, volume 1663 of LNCS, pp. 193-204, 1999.

[87] T. Lukovszki. New Results on Geometric Spanners and Their Applications. PhD thesis,
University of Paderborn, 1999.

[88] K.Mehlhorn and S. Niher. Dynamic fractional cascading. Algorithmica, 5:215-241, 1990.

[89] G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs. Journal
of Computer and System Sciences, 32:265-279, 1986.

[90] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A sim-
ple polynomial-time approximation scheme for geometric TSP, k-MST, and related
problems. SIAM Journal on Computing, 28(4):1298-1309, August 1999.

[91] C. L. Monma and D. F. Shallcross. Methods for designing communications networks with
certain two-connected survivability constraints. Operations Research, 37(4):531-541,
July 1989.

[92] D. Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial
and Applied Mathematics, Philadelphia, PA, 2000.

[93] D. Peleg and A. Schiffer. Graph spanners. Journal of Graph Theory, 13:99-116, 1989.

[94] M. Penn and H. Shasha-Krupnik. Improved approximation algorithms for weighted 2-
and 3-vertex connectivity augmentation problems. Joural of Algorithms, 22:187-196,
1997.

[95] C. Phillips, C. Stein and J. Wein. Minimizing average completion time in the presence of
release dates. Mathematical Programming, 82:199-223, 1998.

[96] M. Pinedo. Scheduling : Theory, Algorithms, and Systems. Prentice Hall, 1995.

[97] H.J. Promel and A. Steger. The Steiner Tree Problem. A Tour Through Graphs, Algorithms
and Complexity. Vieweg Verlag, Wiesbaden, 2002.

199

[98] M. Queyranne. Structure of a simple scheduing polyhedron. Mathematical Programming,
58:263-285, 1993.

[99] M. Queyranne. Personal communication, 1995.

[100] R. Rajaraman. Topology control and routing in ad hoc networks: A survey. SIGACT
News, 33:60-73, June 2002.

[101] S. B. Rao and W. D. Smith. Approximating geometrical graphs via “spanners” and
“banyans.” In Proceedings of the 30th Annual ACM Symposium on Theory of Com-
puting, pp. 540-550, Dallas, TX, May 23-26, 1998. ACM Press, New York, NY.

[102] G. Robins and J. S. Salowe. Low-degree minimum spanning trees. Discrete & Compu-
tational Geometry, 14:151-166, 1995. A preliminary version (entitled “On the maxi-
mum degree of minimum spanning trees”) appeared in Proceedings of the 10th Annual
ACM Symposium on Computational Geometry, pp. 250-258, Stony Brook, NY, June
6-8, 1994. ACM Press, New York, NY.

[103] J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean graph.
In Proceedings of the of the 3rd Canadian Conference on Computational Geometry,
pp- 207-210, 1991.

[104] S. Sahni. Scheduling master-slave multiprocessor systems. IEEE Transactions on Com-
puters, 45(10), 1195-1199, 1996.

[105] S. Sahni and G. Vairaktarakis. The master-slave scheduling model. In J. Y-T. Leung
(Ed): Handbook of Scheduling: Algorithms, Models, and Performance Analysis, CRC
Press, Boca Raton, FL, 2004.

[106] S. Sahni and G. Vairaktarakis. The master-slave paradigm in parallel computer and indus-
trial settings. Journal of Global Optimization, 9, 357-377, 1996.

[107] L. Schrage. A proof of the optimality of the shortest remaining processing time discipline.
Operations Research, 16:687-690, 1968.

[108] A.S. Schulz. Scheduling to minimize total weighted completion time: Performance guar-
antees of LP-based heuristics and lower bounds. In Proceedings of the 5th Integer
Programming and Combinatorial Optimaization (IPCO), pp. 301-315, 1996.

[109] A.S. Schulz and M. Skutella. Scheduling-LPs bear probabilities: Randomized approxima-
tions for min-sum criteria, In Proceedings of the Fifth Annual European Symposium
on Algorithms, pp. 416 429, 1997.

[110] M. Smid. Closest-point problems in computational geometry. In J.-R. Sack and J. Urru-
tia, editors, Handbook of Computational Geometry, chapter 20, pp. 877-935. Elsevier
Science B.V., 1997.

[111] D. Smith. A new proof of the optimality of the shortest remaining processing time disci-
pline. Operations Research, 26(1):197-199, 1976.

200

[112] C. Sriskandarajah and S.P. Sethi. Scheduling algorithms for flexible flowshops: worst
and average case performance. European Journal of Operational Research, 43, pp.
143-160, 1989.

[113] M. Stoer. Design of Survivable Networks, volume 1531 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1992.

[114] K. Talwar Bypassing the embedding: approximation schemes and compact representa-
tions for low dimensional metrics. In Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, pp. 281-290, 2004.

[115] G. Vairaktarakis. Analysis of algorithms for master-slave system. IIE Transactions, 29,
11, 939-949, 1997.

[116] S. Vempala and A. Vetta. Factor 4/3-approximations for minimum 2-connected sub-
graphs. In Proceedings of the 3rd Workshop APPROX, LNCS, 1913:262-273, 2000.

[117] D. P. Willimason, M. X. Goemans, M. Mihail, and V. V. Vazirani. A primal-dual approx-
imation algorithm for generalized Steiner network problem. Combinatorica, 15:435-
454, 1995.

[118] P. Winter. Steiner problem in networks: A survey. Networks, 17:129-167, 1987.

[119] L.A.Wolsey. Mixed integer programming formulations for production planning and
scheduling problems. Invited talk at the 12th International Symposium on Mathe-
matical Programming, MIT, Cambridge, 1985.

[120] A.C. Yao. On Constructing minimum spanning trees in k-demensional spaces and related
problems. SIAM Journal on Computing, 11:721-736, 1982.

[121] W. Yu, H. Hoogeveen and J.K. Lenstra. Minimizing makespan in a two-machine flowshop
with delays and unit-time operations is NP-hard. Journal of Scheduling, 7(5), 333 -
348, 2004.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Complexity of Scheduling Problems in Master-Slave Model
	Chapter 3: Optimal and Approximation Algorithms: Special Cases
	Chapter 4: Approximation Algorithms: General Cases
	Chapter 5: Polynomial-Time Approximation Schemes for the Euclidean Survivable Network Design Problem
	Chapter 6: Approximation Schemes for Minimum 2-Edge-Connected and Biconnected Subgraphs in Planar Graphs
	Chapter 7: Approximation Schemes for Minimum 2-Connected Spanning Subgraphs in Weighted Planar Graphs
	Chapter 8: Fault-Tolerant Geometric Spanners
	Chapter 9: Conclusions
	References

	List of Tables
	List of Figures

