

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

HIGH-DIMENSIONAL INDEXING METHODS UTILIZING
CLUSTERING AND DIMENSIONALITY REDUCTION

by
Lijuan Zhang

The emergence of novel database applications has resulted in the prevalence of a new

paradigm for similarity search. These applications include multimedia databases, medi-

cal imaging databases, time series databases, DNA and protein sequence databases, and

many others. Features of data objects are extracted and transformed into high-dimensional

data points. Searching for objects becomes a search on points in the high-dimensional fea-

ture space. The dissimilarity between two objects is determined by the distance between

two feature vectors. Similarity search is usually implemented as nearest neighbor search

in feature vector spaces. The cost of processing k-nearest neighbor (k-NN) queries via a

sequential scan increases as the number of objects and the number of features increase. A

variety of multi-dimensional index structures have been proposed to improve the efficiency

of k-NN query processing, which work well in low-dimensional space but lose their effi-

ciency in high-dimensional space due to the curse of dimensionality. This inefficiency is

dealt in this study by Clustering and Singular Value Decomposition - CSVD with indexing,

Persistent Main Memory - PMM index, and Stepwise Dimensionality Increasing - SDI-tree

index.

CSVD is an approximate nearest neighbor search method. The performance of

CSVD with indexing is studied and the approximation to the distance in original space

is investigated. For a given Normalized Mean Square Error - NMSE, the higher the de-

gree of clustering, the higher the recall. However, more clusters require more disk page

accesses. Certain number of clusters can be obtained to achieve a higher recall while main-

taining a relatively lower query processing cost.

Clustering and Indexing using Persistent Main Memory - CIPMM framework is mo-

tivated by the following consideration: (a) a significant fraction of index pages are accessed

randomly, incurring a high positioning time for each access; (b) disk transfer rate is improv-

ing 40% annually, while the improvement in positioning time is only 8%; (c) query pro-

cessing incurs less CPU time for main memory resident than disk resident indices. CIPMM

aims at reducing the elapsed time for query processing by utilizing sequential, rather than

random disk accesses. A specific instance of the CIPMM framework CIPOP, indexing us-

ing Persistent Ordered Partition - OP-tree, is elaborated and compared with clustering and

indexing using the SR-tree, CISR. The results show that CIPOP outperforms CISR, and the

higher the dimensionality, the higher the performance gains.

The SDI-tree index is motivated by fanouts decrease with dimensionality increasing

and shorter vectors reduce cache misses. The index is built by using feature vectors trans-

formed via principal component analysis, resulting in a structure with fewer dimensions

at higher levels and increasing the number of dimensions from one level to the other. Di-

mensions are retained in nonincreasing order of their variance according to a parameter p,

which specifies the incremental fraction of variance at each level of the index. Experiments

on three datasets have shown that SDI-trees with carefully tuned parameters access fewer

disk accesses than SR-trees and VAMSR-trees and incur less CPU time than VA-Files in

addition.

HIGH-DIMENSIONAL INDEXING METHODS UTILIZING
CLUSTERING AND DIMENSIONALITY REDUCTION

by
Lijuan Zhang

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

May 2005

Copyright © 2005 by Lijuan Zhang

ALL RIGHTS RESERVED

APPROVAL PAGE

HIGH-DIMENSIONAL INDEXING METHODS UTILIZING
CLUSTERING AND DIMENSIONALITY REDUCTION

Lijuan Zhang

Dr. Alexander Thomasian, Dissertation Advisor 	 Date
Pro 	 Computer Science, NJIT

Dr. Narain Gehani, Committee Member
	 Date

Professor and Chairman of Computer Science, NJIT

Dr. Vincent Oria, Committee Member 	 Date
Assistant Professor of Computer Science, NJIT

Dr. Dimitrios Theodoratos, Committee Member
	 Date

Associate Professor of Computer Science, NJIT

. Jian Yang, Committee Member 	 Date
Assistant Professor of 	 Industrial and Manufacturing Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Lijuan Zhang

Degree:	 Doctor of Philosophy

Date:	 May 2005

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2005

• Master of Science in Computer Science,
Northeastern University, Shenyang, Liaoning, P.R. China, 1999

• Bachelor of Science in Computer Science,
Northeastern University, Shenyang, Liaoning, P.R. China, 1996

Major:	 Computer Science

Presentations and Publications:

L. Zhang and A. Thomasian, "The stepwise dimensionality increasing - SDI index for
high-dimensional data," The Computer Journal, submitted, 2005.

L. Zhang and A. Thomasian, "The persistent clustered main memory index for accelerating
k-NN queries on high dimensional datasets," Second International Workshop on
Computer Vision meets Databases (CVDB) , Baltimore, MD, June, 2005.

A. Thomasian, Y. Li and L. Zhang, "Exact k-NN queries on clustered SVD datasets," In-
formation Processing Letters, to appear, 2005.

Y. Li, A. Thomasian and L. Zhang, "Optimal subspace dimensionality for k-NN search on
clustered datasets," Proc. 15th Intl Conf. on Database and Expert Systems Appli-
cations (DEXA), 201-211, Zaragoza, Spain, Aug./Sep. 2004.

iv

To my beloved husband Dongpeng,
for his endless love, care, and support.

v

ACKNOWLEDGMENT

First of all, I would like to express my deepest appreciation to my advisor, Dr. Alexander

Thomasian, for introducing me to and guiding me through the wonderful world of high-

dimensional indexing. Furthermore, I would like to thank my Committee members, Dr.

Narain Gehani, Dr. Vincent Oria, Dr. Dimitrios Theodoratos, and Dr. Jian Yang, for

their insightful comments on my proposal. A special thank goes to Dr. Artur Czumaj for

his understanding, encouragement and support. I would like to thank my colleague, Yue

Li, for her generous discussion on many problems during my research. Many thanks to

my labmates Gang Fu, Chang Liu, Junilda Spirollari, Jun Xu, among others, for the good

research environment they provided.

Last, but not least, I would like to thank my husband, Dongpeng, for his love, stead-

fast support, encouragement and sharing my happiness and sadness. Without him, I would

not have the opportunity to write this acknowledgement. And finally, I thank my parents,

sister, brother, parents-in-law, and sister-in-law for giving me such a big happy family.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 	 1

1.1 High-Dimensional Applications 	 2

1.2 Motivations and Contributions 	 5

1.2.1	 Approximate Nearest Neighbor Search 	 5

1.2.2	 Persistent Main Memory Index 	 6

1.2.3	 Stepwise Dimensionality Increasing Index 	 7

1.3 Outline 	 8

2 INDEXING TECHNIQUES 	 9

2.1 Similarity Measures 	 10

2.2 Clustering 	 11

2.3 Dimensionality Reduction 	 14

2.4 High-Dimensional Index Structures 	 16

2.4.1	 A Brief Survey of Multi-Dimensional Indices 	 16

2.4.2	 Indexing on Order Spaces 	 19

2.4.3	 Indexing on Feature Vector Spaces 	 20

2.4.4	 Indexing on Metric Spaces 	 21

2.4.5	 Cost Models for Nearest Neighbor Query Processing 	 26

2.5 Nearest Neighbor Search Algorithms 	 26

2.5.1	 Sequential Scan 	 27

2.5.2	 The RKV Algorithm 	 27

2.5.3	 The HS Algorithm 	 30

2.5.4	 Range Search Based Algorithm 	 32

2.5.5	 Multi-Step Nearest Neighbor Search 	 32

2.5.6	 Approximate Nearest Neighbor Search 	 32

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3 PERFORMANCE STUDY OF CSVD WITH INDEXING 	 35

3.1 Introduction 	 35

3.2 Clustering and Singular Value Decomposition 	 36

3.3 Performance Comparison of Index Structures 	 38

3.4 Approximate Nearest Neighbor Search 	 42

3.5 Performance Study 	 46

3.5.1	 Experiment Setup 	 46

3.5.2	 Experimental Comparison of Index Structures 	 46

3.5.3	 Performance Study of CSVD with Indexing 	 50

3.6 Conclusions 	 54

4 PERSISTENT MAIN MEMORY INDEX 	 58

4.1 Introduction 	 59

4.2 Related Work 	 63

4.2.1	 Indexing Structures 	 63

4.2.2	 Karhunen-Loeve Transform 	 64

4.3 The OP-tree 	 65

4.3.1	 Number of Nodes 	 65

4.3.2	 Data Structure 	 66

4.3.3	 k -NN Search 	 68

4.3.4	 Experimental Evaluation 	 69

4.4 The CIPOP Indexing Method 	 82

4.4.1	 Motivation 	 82

4.4.2	 Two-Phase Serialization 	 85

4.4.3	 k-NN Processing 	 87

4.4.4	 Experimental Evaluation 	 88

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.5 Persistent Semi-Dynamic OP-tree 	 93

4.5.1 Semi-Dynamic OP-tree 	 93

4.5.2 One-Phase Serialization 	 97

4.5.3 Scalability 	 99

4.5.4 Experimental Evaluation 	 100

4.6 Conclusions 	 103

5 THE STEPWISE DIMENSIONALITY INCREASING - SDI INDEX FOR HIGH-
DIMENSIONAL DATA 	 107

5.1 Introduction 	 108

5.2 Related Work 	 111

5.2.1 Background on Index Structures 	 111

5.2.2 Background on Dimensionality Reduction 	 112

5.3 Stepwise Dimensionality Increasing - SDI tree 	 113

5.3.1 The Index Structure 	 114

5.3.2 Index Construction 	 116

5.3.3 k-NN Search in the SDI-tree 	 117

5.4 A Performance Study 	 118

5.5 Conclusions and Future Plans 	 122

6 CONCLUSIONS AND FUTURE WORK 	 124

APPENDIX A QUERY TYPES 	 127

APPENDIX B CHARACTERISTICS OF HIGH-DIMENSIONAL SPACE	 128

APPENDIX C THE OP-TREE VERSUS THE OMNI-FAMILY 	 133

C.1 The OMNI-Family 	 133

C.2 Experimental Results 	 134

APPENDIX D PERFORMANCE COMPARISON OF LOCAL DIMENSIONAL-
ITY REDUCTION METHODS 	 137

ix

TABLE OF CONTENTS
(Continued)

Chapter	 Page

APPENDIX E VAMSPLIT R-TREE CREATION 	 140

REFERENCES 	 141

x

LIST OF TABLES

Table	 Page

2.1 Average 20-NN Search Results over 1000 Randomly Selected Queries on
Dataset TXT55; PV - Average Number of Points Visited, FO - Average
Number of Floating Point Operations, CPU - Average CPU Time in Seconds 22

3.1 Node Structure of the R*-tree 	 40

3.2 Characteristics of the Four Datasets used in Experiments; N: Number of Fea-
tures, M: Number of Points 	 47

3.3 Comparison of the HS and RKV Algorithm Applied on R*-trees and SR-trees
over Different Datasets 	 48

3.4 Comparison of the HS and RKV Algorithm Applied on R*-trees and SR-trees
with Varying Dimensionality for SYN64 	 48

3.5 Comparison of the HS and RKV Algorithm Applied on SR-trees with Varying
Dimensionality for TXT55 	 49

3.6 Number of Page Accesses for Processing k-NN Queries 	 50

3.7 Comparison of CPU Time of SR-tree, Hybrid tree and R*-tree on Four Datasets 50

3.8 Average Number of Dimensions per Point for TXT55 	 51

3.9 The Value of k* to Attain Recall = 0.8 for 20-NN Queries 	 54

3.10 Average Number of Points Retrieved per Query for Gabor60 	 57

4.1 Varying the Split Factor for the First Few Dimensions While All Others are
Set to Two 	 74

4.2 Parameters for the OP-tree for Different Datasets 	 74

4.3 Tree Levels With 2 Splits on Each Dimension 	 76

4.4 Average Number of Dimensions Early Terminated by the Shortcut Method for
SYN64 	 80

4.5 Average Number of Dimensions Early Terminated by the Shortcut Method for
TXT55 	 81

4.6 Average Number of Dimensions Early Terminated by the Shortcut Method for
COLH64 	 81

4.7 Average Number of Dimensions Early Terminated by the Shortcut Method for
GABOR60 	 82

xi

LIST OF TABLES
(Continued)

Table Page

4.8 Sizes for the CIPOP, CISR, and Original Dataset 	 89

4.9 Comparison of CPU time and Elapsed Time in Seconds for CIPOP and CISR
with Respect to Different Datasets (Single Cluster) 	 90

4.10 Average Number of Clusters Visited (k) 	 93

4.11 Parameters for the OP-tree for Different Datasets and Resulting File Sizes,
Size of the SR-tree, the Original Size, and Index Building Time 	 100

4.12 Comparison of Three Split Policies for 20-NN Queries with 2 Splits 	 102

C.1 Fractal Dimensions 	 133

xii

LIST OF FIGURES

Figure Page

1.1 Architecture of a retrieval system for high-dimensional applications 	 4

2.1 Mahalanobis distance 	 11

2.2 Space-filling curves 	 16

2.3 The evolution of high-dimensional indexing structures 	 20

2.4 The vp-tree [1]. 	 23

2.5 Pruning principles for (a) Lemma 2.1, (b) Lemma 2.2 	 24

2.6 Search candidates (blind area) for a range query (Q, r) in the case of two foci. 24

2.7 Searching space for range queries using the iDistance 	 25

2.8 MINDIST and MINMAXDIST in two-dimensional space 	 28

2.9 The priority queue used in the incremental algoirthm for finding nearest neigh-
bors. 	 30

2.10 Outline of high-dimensional indexing structures 	 34

3.1 Two representations of the SR-tree 	 41

3.2 The internal (top) and leaf (bottom) node structure of the SR-tree 	 42

3.3 Effect of distance approximation by D'(P, Q) 	 44

3.4 Index size comparison over (a) different datasets, (b) different dimensionality
of SYN64. 	 49

3.5 Comparison of R*-trees, SR-trees and hybrid trees on number of pages ac-
cessed using the HS algorithm over variable dimensionality on SYN64. . . 51

3.6 Comparison of CPU time for R*-trees, SR-trees and hybrid trees on different
dimensionality of SYN64. 	 52

3.7 Performance comparison of different number of clusters versus NMSE for ap-
proximate 20-NNs on SYN64 using SR-trees. (a) Recall for 1 cluster. (b)
Recall for 1, 5, 16, 32 and 64 clusters. (c) Number of pages visited. (d)
CPU time. 	 53

3.8 (a, b, c) Recall, number of pages visited, and CPU time for different number
of clusters versus NMSE for approximate 20-NN search on TXT55 using
SR-trees. (d) Precision to achieve recall = 0.8. 	 55

LIST OF FIGURES
(Continued)

Figure	 Page

3.9 Number of clusters visited versus NMSE for approximate 20-NN search. (a)
For TXT55. (b) For SYN64 	 56

4.1 (a) The partition for a two-dimensional OP-tree. (b) The corresponding hier-
archical structure 	 67

4.2 Index structure for the OP-tree. Child: pointer to the left most child. Left
(right): pointer to left (right) sibling. IDs: pointer to a list of point IDs.
Points: pointer to data points. Lower (upper): lower (upper) bound values. 67

4.3 Eigenvalues for the four datasets 	 70

4.4 Comparison of linked list and array implementation with c = 40 for all cases. 	 71

4.5 Average CPU time for processing 1000 20-NN queries on SYN64 versus number of
splits as leaf node capacity is varied 	 72

4.6 CPU time for processing 1000 20-NN queries versus number of splits with
respect to different leaf capacities 	 73

4.7 Effect of leaf node capacity on CPU time of k-NN search with split factor of
2 and k = 20 	 75

4.8 The effect of shortcut Euclidean distance calculation on CPU time in process-
ing k-NN queries on SYN64 versus k. (a) Sequential scan. (b) OP-tree. (c)
The performance gains of OP-tree over sequential scan. 77

4.9 The effect of shortcut Euclidean distance calculation on CPU time in process-
ing k-NN queries on TXT55 versus k. (a, c, e) Sequential Scan. (b, d,

	

OP-tree. (a, b) TXT55. (c, d) COLH64. (e, GABOR60 78

4.10 Percentage of time spending on leaf searching and internal node search. (a, b)
For OP-tree. (c, d) For SR-tree. (a, c) For 16 clusters of SYN64. (b, d) For
32 clusters of TXT55 83

4.11 The structure of the contiguous memory area (CMA) and the index file format
on disk 	 86

4.12 Cluster identification 	 88

4.13 Performance comparison in processing k-NN queries for SYN64 with 16 clus-
ters (left column) and TXT55 with 32 clusters (right column). (a, d) Number
of points visited. (b, e) CPU time. (c, 0 Computed elapsed time versus num-
ber of retained dimensions. Elapsed time is for 1000 queries, while others
are averaged 92

4.14 Try to find optimal number of clusters for 20-NN search 	 94

xiv

LIST OF FIGURES
(Continued)

Figure	 Page

4.15 Percentage of time spending on leaf searching and internal node searching for
SYN64 	 95

4.16 Point removal 	 96

4.17 (a) Adding levels. (b) Varying fanouts. (c) Chaining overflow data 	 97

4.18 Page manager with two hash tables: all _pages and active_pages. all _pages is
a list of page pointers pointing to all the allocated pages. active_pages is a
list of page pointers pointing to the current active pages for each data type. 	 98

4.19 (a)Index file format. (b)Page layout. 	 99

4.20 Performance of one-phase serialization. (a) Index size. (b) Wall clock time. 	 101

4.21 Average CPU time and number of points visited for 1000 20-NN queries based
on different strategies for SYN64. 	 103

4.22 Comparison for different measurements on three datasets for applying partial
K-L transform and full K-L transform. (a, b, c) are levels of the trees and
their standard deviations. (d, e, f) are percentages of points visited. 105

4.23 Comparison for different measurements on three datasets for applying partial
K-L transform and full K-L transform. (g, h, i) are average CPU time for
running 1000 20-NN queries. (j, k, 1) are standard deviations for the levels
of the tree. 	 106

5.1 The SDI-tree representation 	 114

5.2 Index node structure. 	 114

5.3 Cumulative variance v.s. number of dimensions. (a) COLH64. (b) TXT55. . . 115

5.4 Cluster prune with projected distance. 	 118

5.5 Number of disk accesses versus variance increment step (p) . 	 120

5.6 Performance comparison of 20-NN searches for SDI-trees, SR-trees and VAMSR-
trees. 	 121

5.7 Details of k-NN search performance with k = 20 versus dimensionality over
1000 randomly chosen queries 	 122

B.1 (a) Window query. (b) Range query. Both are in N-dimensional space [0, 1] N 	 129

B.2 The probability of a point closer than 0.1 to an (N-1)-dimensional surface. . 	 130

XV

LIST OF FIGURES
(Continued)

Figure	 Page
•

C.1 CPU time versus number of focal points. (a) k-NN query with k = 20. (b)
Range query with radius = 0.5 and selectivity 2.4% 	 134

C.2 Range query. (a) CPU time versus the radius. (b) CPU time versus the selectivity. 135

C.3 The CPU time versus k for k-NN queries for three methods. 	 136

D.1 Results of using SR-tree as indexing structure for SYN64. (a) Index size
for four sets of partitions. (b) Recall versus NMSE. (c) Average number
of pages accessed versus NMSE. (d) Average elapsed system time versus
NMSE. (b, c, d) The average for 1000 20-nearest-neighbor searches. 138

D.2 Results of using the hybrid tree as indexing structure for SYN64. (a)Index
size for four sets of partitions. (b) Average number of pages accessed ver-
sus NMSE. (c) Average elapsed system time versus NMSE. All the mea-
surements are the average for 1000 20-nearest-neighbor searches 139

xvi

CHAPTER 1

INTRODUCTION

A growing number of new applications require novel database management systems to sup-

port new types of data and associated queries. Some examples are multimedia databases,

medical imaging databases, DNA and protein sequence databases, time series databases,

and databases for molecular biology. In these applications exact match queries no longer

play a major role, instead, searching for similar patterns is essential, since it helps in pre-

diction, decision making, and medical diagnosis.

Similarity queries can be classified into two categories: whole match and sub-pattern

match [2]. The query only specifies part of the object in sub-pattern match, while the

query and objects in the database are the same length for whole match. To further classify,

the nearest neighbor query, which belongs to whole match category, is the focus of this

study. GEneric Multimedia object INdexIng - GEMINI is a generic approach to indexing

multimedia objects for fast similarity searching [2].

The steps for GEMINI are: determine the distance function between two objects,

find one or more numerical feature-extraction functions, prove that the distance in feature

space lower-bounds the distance in object space, and store and retrieve the feature vectors

using a multi-dimensional indexing method. The distance function is usually provided by

domain experts. Features of data objects are extracted and represented as multi-dimensional

points. Searching for an object becomes a search on points in the multi-dimensional feature

space. The dissimilarity between two objects is the distance between two feature vectors.

Similarity search is transformed into nearest neighbor search in multi-dimensional feature

vector space.

With the rapid deployment of different types of applications, not only is the vol-

ume of data expanding everyday, but also the dimensionality is growing higher and higher.

1

2

The efficiency of multi-dimensional index structures for nearest neighbor search deterio-

rates rapidly as the number of dimensions increases due to the "curse of dimensionality"

[3]. Developing new approaches for searching and indexing high-dimensional data is a

challenging area and has attracted the attention of many researchers.

1.1 High-Dimensional Applications

The need to efficiently access large scale multi-dimensional data drives the design of the

new generation of database systems. Specific applications include the following:

• Multimedia databases, where images, audios, and videos are stored. Similarity queries

would retrieve similar images, music scores, or video clips. Features of images can

be color, texture and shape [4]. Color histograms and texture features based on Ga-

bor filters are usually used. A similarity query can be "Find k images which are most

similar to the query image in terms of colors".

• Medical databases, where gray scale medical images like 2-D images (e.g. X-rays)

and 3-D images (e.g. MRI brain scans) are stored. Quickly retrieving past cases with

similar symptoms would help to diagnose new cases, as well as medical education

and research. Typical queries would be "find a patient who has a similar MRI brain

scan with the current patient".

• Time series databases, which stores financial, marketing and production time series.

Queries like "find companies with the similar stock-price movement to this company

last year" can aid forecasting the stock-price movement of the company. Euclidean

distance is usually used as the distance function between two sequences. Coefficients

of Discrete Fourier Transform (DFT) can be used as the features [2].

• DNA and protein databases, which contain large collections of strings composed of

letters representing nucleotides or amino acids. In the newly emerging field of bioin-

formatics, genome databases are being used for drug design, medical care, phyloge-

3

netic analysis, evolutionary analysis, personalized medicine, and many other applica-

tions. Searching for similar sequences can determine whether a gene responsible for

some disease also appears in other species. Sequences are very long, and searching

is very expensive. The bovine pancreatic trypsin inhibitor gene at EMBL (European

Bioinformatics Institute, UK) data library has 3998 nucleotides [5]. The distance

function is the editing distance, which is the smallest number of insertions, deletions,

or substitutions required to transform one sequence to another.

The architecture of a content-based retrieval system for high-dimensional applica-

tions is illustrated in Figure 1.1. The features of images' or time series2 are extracted and

transformed into high-dimensional points (feature vectors) first. Then a multi-dimensional

index is built based on the feature vectors. The features of a query image or time series

is also extracted and transformed. Similarity search is transformed into a search of points

which are close to a query point in high-dimensional feature space. The actual search is

performed mainly on the index structure. Search results are returned to the user by extract-

ing the original data based on the matched feature vectors. The performance of the whole

system highly depends on the index structure.

Many tools for content-based retrieval system have been developed. Prominent ex-

amples for photographic images include IBM's QBIC (Query by Image Content) [6], MIT's

Photobook system [7], VisualSeek from the Columbia University, and the multimedia Dat-

ablade from Informix /Mirage. QBIC is an early prototyping and later commercial system.

Photobook describes the image content using colors and textures. Blobworld [8] is an

image retrieval system using regions. It automatically segments each image into regions

which roughly correspond to objects or parts of objects. Users can query the database based

on the object they selected. For image and video retrieval, Virage3 is worthy of mention.

'Images in Figure 1.1 are obtained from http : / /amazon. ece . utexas . edu/ —qas im/
samples/sample_landscapes4.html
2 The time series sequences in Figure 1.1 are obtained from http : / /www - per sonal . bus e c o .
monash.edu.au/ —hyndman/TSDL/
3 http://www.virage.com

4

Figure 1.1 Architecture of a retrieval system for high-dimensional applications.

These techniques can also be applied to medical images, artwork, and video clips. Queries

based on spatial relationships of the salient objects in the images are not as well studied as

feature-based queries. Spatial relationships, such as relative positioning, adjacency, over-

lap, and containment, enable users to ask queries of the type "show all the images where a

car is to the left of a building". Systems that couple spatial and feature-based querying en-

able sophisticated queries to be posed such as "show all the images where a red car is in

front of a building".

Visual features are classified in [9] into three levels of abstraction: primitive features

such as color, texture and shape, logical features such as the identity of objects shown, and

abstract attributes such as the significance of the scenes depicted. Color has been the most

popular feature in photography used by artists. All currently available systems only use

primitive features unless manual annotation is coupled with the visual features. Texture of

images can be captured by wavelets or Gabor filters. Segments of images can be described

by shape features.

This dissertation concentrates on image databases. Content-based image retrieval

(CBIR) has been an active research area over the last 20 years [10]. Images are produced in

5

an ever-increasing quantities. The need to query the visual or audio content in multimedia

repositories is immediate, especially with the expanding Internet.

1.2 Motivations and Contributions

A variety of multi-dimensional indexing methods have been proposed [11]. With new ap-

plications having higher dimensionality requirements emerging, and due to the curse of

dimensionality, most traditional index structures have lost their effectiveness. This dis-

sertation addresses three aspects of indexing high-dimensional data to speed up k-nearest

neighbor search.

1.2.1 Approximate Nearest Neighbor Search

The nearest neighbors problem is of major importance to high-dimensional applications.

Approximate nearest neighbor search has gained increasing interest. Since the selection of

features and distance metrics are rather heuristic and merely an attempt to make mathemat-

ically precise, it seems like an overkill to insist on exact nearest neighbors [12]. Resorting

to an E-approximate nearest neighbor for a small E should suffice for most applications.

The number of features of the objects of interest ranges anywhere from tens to thou-

sands. Dimensionality reduction techniques, such as Latent Semantic Indexing (LSI) [2],

Principal Component Analysis (PCA) [13], Singular Value Decomposition (SVD) [2], and

Karhunen-Loeve Transform (KLT) [2], are promising methods to solve the curse of dimen-

sionality problem and yield a dimensionality with minimum loss of distance information.

There are two categories of dimensionality reduction methods: Global Dimensionality Re-

duction (GDR) and Local Dimensionality Reduction (LDR) [14, 3]. GDR works well for

globally correlated datasets. However, datasets are usually locally correlated, which means

reducing the data dimensionality using GDR causes significant loss of distance informa-

tion. In this case, LDR performs dimensionality reduction on locally correlated clusters of

the dataset.

6

Clustering and Singular Value Decomposition (CSVD) [3] is an approximate similar-

ity search method, which clusters the dataset first before applying dimensionality reduction.

A multi-dimensional index is built for each cluster in the dimensionality reduced subspace.

The challenge here is to achieve dimensionality reduction with a limited loss of distance

information and in particular with little effect on information retrieval performance.

In this dissertation, three multi-dimensional indices are compared, the best one is

selected as the within cluster index. Then two approximate distances in the dimensionality

reduced subspace are presented and one is proved to be closer to the distance in the original

space. Experiments evaluate the performance of the CSVD method, which includes the

precision, recall, number of pages visited, CPU time, and effects of the degree of clustering.

1.2.2 Persistent Main Memory Index

Multi-dimensional indices can be classified as disk resident indices and memory resident

indices. The former aims at minimizing the number of disk pages accessed, while the

latter focuses on reducing the CPU time for query processing. Disk pages can be accessed

more efficiently sequentially, rather than randomly. Sequential access time is determined

by the disk transfer rate, which has been increasing by 40% per year. Random access time

to small index pages is mainly positioning time, which has been decreasing at a rate of

less than 10% per year. This trend makes sequential disk accesses increasingly desirable

compared to random accesses [15]. A method optimizing the processing time rather than

the number of page accesses is developed in this dissertation.

A general framework, Clustering and Indexing with Persistent Main Memory Index

- CIPMM, is proposed. In CIPMM, main memory indices are serialized into contiguous

memory areas, so that indices can be saved on disk and are loadable via sequential disk

accesses, for each of which positioning time is incurred only once. CIPMM utilizes the

dual filtering of clustering and indexing, and the increasing disk transfer rate. A specific

instance, CIPOP, partitions the dataset into small clusters first and then build a main mem-

7

ory Ordered Partion - OP-tree index [16] for each cluster. The index is then serialized and

written on disk so that it can be restored as fast as possible on demand. Two serialization

methods for the OP-tree are proposed. The two-phase dynamic memory allocation method

is static, while the one-phase method allows a semi-dynamic allocation for dealing with

the insertions of new points. Experiments show that the CIPOP outperforms Clustering

and Indexing using SR-tree [17] - CISR and Clustering and Indexing using VA-File [18]-

CIVAFile.

1.2.3 Stepwise Dimensionality Increasing Index

Multi-dimensional index structures can be used to improve the efficiency of k -NN query

processing, but lose their effectiveness as the dimensionality increases. The curse of dimen-

sionality manifests itself in the form of increased overlap among the nodes of the index,

so that a high fraction of index pages are touched in processing k-NN queries. The in-

creased dimensionality results in a reduced fanout and an increased index height. Fanout

can be varied within an index structure. Using fewer dimensions at upper levels and more

dimensions at lower levels, more branches can be checked at upper levels.

In this dissertation, a Stepwise Dimensionality Increasing - SDI-tree index is pro-

posed, which aims at reducing the number of disk accesses and CPU processing cost. It

combines dimensionality reduction with hierarchical structure with larger fanouts at top

levels and smaller fanouts at lower levels. The index is built using feature vectors trans-

formed via principal component analysis. Dimensions are retained in nonincreasing order

of their variance according to a parameter p, which specifies the incremental fraction of

variance at each level of the index. The optimal value for p is determined experimentally.

Experiments on three datasets have shown that SDI-trees access fewer disk pages and in-

cur less CPU time than SR-trees [17], VAMSR-trees, and Vector Approximation - VA-Files

[18].

8

1.3 Outline

The outline of this dissertation is as follows. In Chapter 2, frequently used techniques in

high-dimensional indexing are presented. In Chapter 3, several index structures are com-

pared, the best one is selected for indexing each cluster of CSVD and the performance of

CSVD with indexing is evaluated. In Chapter 4, a general framework CIPMM is proposed

and a specific instance - CIPOP is elaborated. Two serialized method for the main memory

index, OP-tree, are described and studied. In Chapter 5, the SDI-tree is proposed and com-

pared with SR-trees and VAMSR-trees. Conclusions and future work are given in Chapter

6. In addition, some useful information and results are described in Appendixes. The query

types in high-dimensional applications are defined in Appendix A. The characteristics of

high-dimensional space are described in Appendix B. The OP-tree and the OMNI-family

are compared in Appendix C. The performance of local dimensionality methods is reported

in Appendix D. Finally, the routines for VAMSplit R-tree creation are given in Appendix

E.

CHAPTER 2

INDEXING TECHNIQUES

In high-dimensional applications, a big challenge is to find the k nearest neighbors of a

query point efficiently. Data is usually stored on secondary storage. Disk access in response

to a query results in accesses to a large number of randomly placed data blocks, which is

quite slow. Sequentially scanning the whole dataset is too expensive. Reducing the search

space is crucial for efficient searches. Many indexing techniques have been developed, such

as clustering, indexing, clustering plus indexing, and approximate methods for applications

that can tolerate some error. By partitioning a large dataset into clusters, only a subset of

the clusters closest to the query point need to be visited. By using indexing, the search

space is expected to be reduced greatly. However, traditional index methods like B+-trees

and hashing [19] are not suitable for multi-dimensional data as they can handle only one-

dimensional data. Indices on lower dimensional data have been studied extensively [20,

21]. In fact, most multi-dimensional indices work well in low to medium dimensional

spaces, but do not scale with dimensionality. Clustering the dataset before building the

index has the advantage of introducing dual filters, which is used in this study. The cost of

k-NN queries can be lowered by reducing the number of dimensions. Several approximate

methods for k-NN queries have been proposed. However, their applications are limited.

This chapter is organized as follows. In Section 2.1, several similarity measures for

the feature vectors of application objects are introduced. In Section 2.2, clustering meth-

ods are surveyed and compared. In Section 2.3, dimensionality reduction techniques are

discussed. In Section 2.4, high-dimensional index structures are surveyed and classified,

and related cost models are described. In Section 2.5, different nearest neighbor search

algorithms are described.

9

10

2.1 Similarity Measures

The similarity measures are closely related to specific applications and domain experts are

usually needed to provide the appropriate distance (dissimilarity) function.

Euclidean Distance The Euclidean distance is the distance of choice in time series, finan-

cial and forecasting applications [2]. One of its valuable properties is that it is preserved

under orthonormal transforms [22]. The Euclidean distance is solely considered in this

study.

Definition 2.1 Given two N -dimensional vectors and g, the Euclidean distance between

the two is

Minkowski Metrics Minkowski metrics are a family of distance functions which are

generalizations of Euclidean distance formula. The formal definition is given as follows.

Definition 2.2 Given two N -dimensional vectors and the Minkowski distance between

them is

When p = 2, it becomes Euclidean distance. For p = 1, it yields the Manhattan dis-

tance or city block distance which is useful as a measure of the distance between two points

if walking on a grid of city streets (no real diagonals). Lp metrics assume all the dimen-

sions are independent and of equal importance. For dimensions that are interdependent and

vary in importance, the following Mahalanobis distance is introduced.

Mahalanobis distance Mahalanobis distance is the distance between two N-dimensional

points scaled by the statistical variation in each dimension of the point.

11

Definition 2.3 Given two N -dimensional vectors x and y, the Mahalanobis distance be-

tween them is

M(x,y) = (x-y)TC-1(x-y(x-yl),

where C is the covariance matrix of the distribution where the points come from. If the

dimensions are independent, C becomes the identity matrix and the distance degrades to

the Euclidean distance.

Based on the above property, elliptical clusters can be found if the Mahalanobis dis-

tance is used [23]. As in Figure 2.1, the point Q is closer to the centeroid of cluster C2

based on Euclidean distance, however, it is closer to the centroid of cluster C1 if Maha-

lanobis distance is utilized.

Figure 2.1 Mahalanobis distance.

2.2 Clustering

Clustering partitions a set of data into groups such that data within a group is similar to each

other and data that belongs to different groups is dissimilar. Clustering is used to speed up

the search for finding k nearest neighbors by reducing the number of distance computa-

tions in [24]. Clustering the dataset before building any index for each cluster is therefore

12

desirable. A large number of clustering algorithms have been developed to address the

varying requirements of different applications. Some can only discover specified number

of spherical-shaped groups (e.g. k-means [25]), some attempt to discover natural-shaped

groups (e.g. CURE [26]), while others can automatically determine the number of clusters

(e.g. DBSCAN [27], CLARANS [28]).

K-means K-means [25] is one of the simplest unsupervised learning algorithms that

solve the well known clustering problem. It tries to find a specified number of clusters (k)

represented by their centroids. The algorithm first chooses k initial centroids, which can

be picked using the bootstrap method in [29]. Each point is then assigned to its closest

centroid. The centroid of each cluster is then recalculated based on the points currently in

that cluster. The assignment is repeated until no point changes its cluster membership.

Clustering works well when clusters are compact and well separated. The shape of

clusters generated by k-means is spherical. The main task is to minimize the sum of squared

error (SSE) which is given below. When cluster sizes are highly variable, k-means splits

large clusters to minimize the SSE.

where H: number of clusters, Ch: cluster h, ph: mean of cluster h, and 11.11: Euclidean norm

of a vector.

CURE CURE (Clustering Using Representatives) [26] is an agglomerative hierarchical

clustering algorithm which identifies clusters having non-spherical shapes and unequal

sizes. Each cluster has multiple well scattered representative points, which help CURE

to capture well the geometry of non-spherical shapes. The representatives are formed as

follows. The first one is the point farthest from the centroid of the cluster, while others are

13

chosen farthest from all the previously chosen points. Then, they are shrunk toward the

centroid by a factor a to moderate the effect of outliers.

The closest clusters are merged step by step until specified number of clusters k is

achieved. The distance between two clusters is the minimum distance between any two

representative points with each from separate clusters, which can be formally described as

follows for given cluster u and v.

A heap [30] is used to keep track of all the clusters arranged by the increasing order

of distances to their closest cluster, while a k-d tree [31] stores all the representatives and

is used to find the closest cluster. Since the worst case time complexity of the CURE

algorithm is 0(M2logM) for M points, it can not be applied directly to large datasets, in

which case, sampling is used before the whole dataset is partitioned.

DBSCAN DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [27]

is a density-based clustering algorithm, which creates clusters with minimum size and den-

sity. Density for a particular point is defined as the number of points within a specified

radius around the point. The desired number of clusters, k, is not an input parameter, but

rather it is determined by the algorithm itself. The algorithm is based on the concept of core

point, border point, and noise point. A point is a core point if the number of points within

a user specified parameter, Eps, from the point exceeds a certain threshold, MinPts. A

border point falls within the neighborhood of a core point. A noise point is any point that

is neither a core point, nor a border point. Any two core points within a distance of Eps

are put in the same cluster. Any border point that is close enough to a core point belongs

to same cluster as the core point. All the noise points are discarded. Therefore not all the

points are assigned to clusters. The worst case time complexity of DBSCAN is 0(M2).

14

With the adoption of efficient index structures that retrieve all points within a given distance

of a specified point, the complexity can be as low as 0(MlogM).

2.3 Dimensionality Reduction

As existing multi-dimensional indexing methods do not scale well to higher dimensions,

reducing the dimensionality is an obvious and important possibility for diminishing the

dimensionality problem and should be performed whenever possible [32].

Several signal processing and statistical techniques can be used to reduce the dimen-

sionality. When data is known in advance, Principal Component Analysis - PCA [13],

Singular Value Decomposition - SVD [33, 2, 34], and Karhunen-Loève Transform - KLT

[2] are related methods which are optimal in dimensionality reduction. While for dynamic

data, Discrete Fourier Transform - DFT, Discrete Cosine Transform - DCT [35] and Dis-

crete Wavelet Transform - DWT [2, 34] are well known methods. They can perform as

well as the static methods if the data follows specific statistical models [36]. The coeffi-

cients of DFT are used as the features for time series databases. DCT performs well when

the dimensions are highly correlated.

Another set of techniques are space-filling curves. By following the visiting order

of the curve, data in multi-dimensional space can be mapped into one-dimensional space,

where efficient indexing methods are available.

DCT and DWT The JPEG standard divides images into pixel blocks, which are com-

pressed using quantized DCT coefficients. Although good compression is achieved, block-

ing effects also appear. The JPEG2000 [37] adopts DWT using the Daubechies(9,7) biorthog-

onal wavelet to compress images, which achieves much higher compression and/or much

lower image degradation. The basic idea of wavelets is hierarchical decomposition of a

function into a set of basis and wavelet functions. By using DWT, the following flexibili-

ties are gained: multi-resolution, fast image preview, and progressive image downloading,

15

which is important for internet applications. The compression performance improves at the

same compression ratio as the number of levels increase.

SVD and PCA The eigenvalues and eigenvectors are defined for square matrices. A

closely related concept for rectangular matrix is the Singular Value Decomposition - SVD.

The formal definition is given as follows:

Definition 2.4 (SVD) Given an MxN matrix X, it can be expressed as

where U is a column-orthonormal M x R matrix, R < N is the rank of the matrix X,

S is a diagonal R x R matrix, which contains singular values of X, and V is a column-

orthonormal N x R matrix.

PCA decomposes the covariance matrix C of X as

where V contains eigenvalues of X, and V is the same as in SVD.

The relationship between singular values and eigenvalues is Ai = 4/M, 1 < i < N,

which can be shown as follows:

Space-filling Curves Space-filling curves [11] provide the means to find a total order that

preserves spatial proximity to some extent. This technique can be used to transform a multi-

dimensional indexing problem to a classical single-attribute indexing problem. Several

space-filling curves have been proposed: z-ordering [38], the Hilbert curve [39] and the

Gray code [40, 41]. Starting from the lower-left, the order in which cells are visited by the

curves defines a total ordering on the cells. This is shown in Figure 2.2. Experiments in

[39, 42] show that the Hilbert curve is most promising.

16

(a)z-ordering (b)Hilbert curve	 (e)Gray code

Figure 2.2 Space-filling curves.

2.4 High-Dimensional Index Structures

In this section, a survey on most active index structures is presented first. The index struc-

tures can be classified into indexing on order spaces, indexing on feature vector spaces,

and indexing on metric spaces, each of them are further addressed. Finally cost models for

nearest neighbor query processing are described.

2.4.1 A Brief Survey of Multi-Dimensional Indices

Multi-dimensional indexing has been an active research area in recent years [11]. One

categorization is disk-resident versus memory-resident indices. For the disk-resident in-

dices, the number of disk pages accessed and the elapsed time are the major performance

measures. Since the elapsed time is hard to measure accurately, the number of disk pages

accessed usually determines the performance of an index. For the main-memory resident

indexing, the CPU time is the key performance measure. Unfortunately main memory in-

dices can not be scaled to larger datasets, since the index may not fit in main memory.

Using multiple B+-trees (one per dimension) or mapping multi-dimensional keys to

one dimensional key (using a space filling curve like the z-ordering [11]) followed by the

building of a B+-tree index are inefficient in higher dimensions. In order to achieve high

performance in query processing, multi-dimensional index structures are designed to index

17

data based on multiple dimensions simultaneously. Unfortunately, multi-dimensional index

structures deteriorate in performance when the dimension of the data space increases due

to a number of effects in high-dimensional space. For example, the first multi-dimensional

index structures (R-trees, K-D-B-trees and grid files) work well at low dimensional spaces,

they are not suitable for high-dimensional data.

Traditional DBMSs manage records which can be indexed based on their primary

keys. B+-trees are the widely used index structure for unique keys (one dimensional data).

Quad trees [43] proposed by Finkel and Bentley in 1974 and k-d trees [44] proposed by

Bentley in 1975 are primary storage structures for composite keys (low-dimensional data).

K-D-B-trees [45] proposed by Robinson in 1981 are secondary storage structures combin-

ing properties of k-d trees and B-trees for point data. With the requirement of the emerging

spatial databases, e.g. Computer Aided Design (CAD) and Geographic Information Sys-

tem (GIS), the R-tree [46] was proposed by Guttman in 1984. It is the first index structure

which can handle spatial data and is designed for secondary storage. The grid file proposed

by Nievergelt et al. in the same year is a typical access method based on hashing. Due

to the overlap of the minimum bounding boxes (MBRs), a query may take several paths

in R-trees. R+-trees [47] proposed by Sellis et al. in 1987 and R*-trees [48] proposed

by Beckmann in 1990 are two improved version of R-trees. R+-trees avoid overlap by in-

serting an object into multiple MBRs if necessary. R*-trees, which is the most successful

variant of R-trees, incorporate a combined optimization of area, margin and overlap and

use forced reinserts to reduce overlaps. Ranges are stored on each dimension, the index

requires much more space and time to process queries when the dimensionality is high.

The aforementioned methods are efficient in low dimensions (2-3 dimension). Many

new applications has data in the order of 10 or 100 dimensions. TV-trees [36] proposed

by Lin et al. in 1994 use telescopic vectors to extend or contract the dimensions for repre-

senting the bounding boxes. SS-trees [49] proposed by White and Jain in 1996 use hyper-

shperes to partition the space, they reduce the space storage of the index greatly without

18

causing performance degradation. Since hyperspheres tend to have large overlaps, SR-trees

[17] proposed by Katayama and Satoh in 1997 use the intersection of hyperspheres and hy-

perrectangles to represent regions. SR-trees outperform both R*-trees and SS-trees. Also,

in 1996, X-trees [32] proposed by Berchtold et al. are partially linear and partially hierar-

chical index structures using supernodes to avoid overlaps. The M-tree [50] proposed by

Ciaccia in 1997 is an index structure based on metric spaces.

Year 1998 is a milestone in high-dimensional indexing. Gaede and Giinther publish

a survey on the multi-dimensional index structures in [11]. Weber et al. [18] give a quan-

titative analysis of existing partitioning and clustering techniques for similarity search in

high-dimensional vector spaces and conclude that existing methods are outperformed by a

sequential scan when the number of dimensions exceeds ten. They also propose the Vector

Approximation - VA-File and report experimental results showing that it outperforms the

R*-tree and X-tree for nearest neighbor search when the number of dimensions is larger

than around six. In the same year, the Pyramid technique [51] is proposed. It is the only

index structure known so far that is not affected by the curse of dimensionality [52]. For

uniform data and range queries, its performance improves with increasing dimensional-

ity. CSVD [53, 33] proposed by Thomasian et al. reduces the number of dimensions by

singular value decomposition to tackle the curse of dimensionality.

In 1999, Beyer et al. [54] explore the effect of dimensionality on nearest neighbor

problems. They point out that as the dimensionality increases, all the points are equi-

distance to query point under a broad set of conditions. Even for the datasets for which this

effect does not occur, a linear scan outperforms most existing high-dimensional indices in

high (10-15) dimensionality.

In 2000, Ooi et al. proposed the iMinMax(0) [55] method which maps points in high-

dimensional space to single-dimensional space. Experiments show that iMinMax(0) can

outperform Pyramid for range queries. One year later, C. Yu et al. proposed the iDistance

[56] method which is for nearest neighbor search in high-dimensional spaces. It partitions

19

the data and selects a reference for each partition. Data in each cluster are transformed into

single-dimensional data which are then indexed by B+-trees. k-NN searches are performed

by using range queries on the B+-trees. The A-tree [57] proposed by Sakurai et al. in

2000 introduce the virtual bounding rectangles which contain and approximate MBRs and

objects.

In addition to CSVD, LDR [14] and MMDR [23] methods are proposed by Chakrabarti

and Mehrotra in 2000 and Jin et al. in 2003, respectively. LDR finds local correlations and

performs dimensionality reduction on the locally correlated data. MMDR uses an adaptive

Multi-level Mahalanobis-based Dimensionality Reduction technique to reduce the dimen-

sionality of the original dataset before constructing the index. The OMNI-family proposed

by Filho et al. in 2001 uses a set of predefined foci to filter the search space [58]. For

NN searches it has to employ an estimation method for the nearest neighbor sphere radius,

e.g. fractal dimensions. Also in 2003, the A-tree proposed by Cui et al., which is a main

memory index structure, represents each level with a different number of dimensions. The

number of dimensions increases towards the leaf level, which contains full dimensions of

the data.

In summary, the state-of-the-art techniques can be classified as dividing the space

into different shapes (e.g. hyperspheres, hyperrectangles), transforming high-dimensional

space into one-dimensional space, and transforming high-dimensional space into lower-

dimensional space.

2.4.2 Indexing on Order Spaces

Indexing methods in this category transform data in high-dimensional space onto one-

dimensional space using space-filling curves, such as z-ordering, the Hilbert curve, etc.

A single-dimensional indexing methods, like B+-tree is built for the order space. Queries

are transformed into the single dimensional space first, then search on the B+-tree. In [59],

N distinct dimensions are grouped into H disjoint clusters and each cluster is mapped into

20

Figure 2.3 The evolution of high-dimensional indexing structures.

a one-dimensional space by using the Hilbert curve. The resulting H-dimensional space

(which is much lower than N) is then indexed using efficient low-dimensional index struc-

ture, such as R-trees.

2.4.3 Indexing on Feature Vector Spaces

This category can be further divided into Space Partitioning (SP)-based and Data Partition-

ing (DP)-based index structures [60]. A DP-based index structure uses Bounding Regions

(BRs) to divide the space. The BRs tend to be heavily overlapped at high dimensions.

The index will have a lower fanouts with the dimensionality increasing. The BRs can be

bounding boxes (e.g., R-tree [46], R+-tree [47], R*-tree [48], X-tree [32]) or bounding

spheres (e.g. SS-tree [49]) or intersection of both (e.g. SR-tree [17]). An SP-based in-

dex structure partitions the space into mutually disjoint subspaces recursively. Some of the

examples are the k-d-tree [31], the K-D-B-tree [45], and the hB-tree [61]. SP-based tech-

niques have fanout independent of dimensionality. The hybrid tree [60] combines positive

aspects of DP-based and SP-based techniques to achieve improved search performance in

high dimensions. The DP-based index structure have much impact on this study, they will

be addressed in separate chapters.

21

The VA-File differs from any partitioning scheme and clustering technique, in that it

is a flat sequentially accessed file. Experiments in [18] show that its performance improves

as dimensionality increases. Thus, it is worth to describe here.

VA-File The Vector Approximation File (VA-File) [18] represents each data object using

the cell into which it falls. Due to the sparsity of high-dimensional space, it is very unlikely

that several points can share a cell. Let bi be the number of bits to represent the partition

along dimension i, the total number of bits to represent a cell in N-dimensional space is

b = Σi=1N bi and the total number of cells is 2b. The probability of a point falling into a cell

is 2-b and the probability of at least two points fall into one cell is approximately N/2b.

For aMxN dataset with M = 106 220 and N -= 50, with bi = 2, i = 1, . . . , N,

the probability for sharing a cell is 2-86. This discussion is true when the data points are

uniformly distributed in space.

Nearest neighbor search sequentially scans the VA-File to determine the upper bound

and lower bound distance from the query to each cell. During the filter step, if the lower

bound of an object approximation is greater than the current upper bound, it is out of

consideration. Otherwise, it is a candidate. During the refine step, all the candidates are

sorted according to their lower bound distances. The actual objects are retrieved and the

distance to the query is computed. The nearest ones are returned. The drawback is that the

performance is highly dependent on the number of bits per dimension bi. Table 2.1 shows

that bi= 4 gives best performance for k-nearest neighbors with k -= 20 for dataset TXT55.

The floating point operations (FO) include scanning the VA-File plus postprocessing.

2.4.4 Indexing on Metric Spaces

A broad class of index structures, metric trees [62], transform the feature vector space into

metric space, and then index the metric space. A metric space is a pair, .A4 =(F , d), where

is a domain of feature values, and d is a distance function with the following properties:

22

Table 2.1 Average 20-NN Search Results over 1000 Randomly Selected Queries on
Dataset TXT55; PV - Average Number of Points Visited, FO - Average Number of Floating
Point Operations, CPU - Average CPU Time in Seconds

Dim bi=3 bi=4 bi =5 bi=6

PV FO CPU PV FO CPU PV FO CPU PV FO CPU

55 157.52 2867390 0.1 74.51 15813.8 0.038 46.7 680349 0.041 34.05 512842 0.036

50 158.17 2630820 0.092 74.67 14399.8 0.035 46.77 655570 0.038 34.09 497484 0.033

40 154.32 198983 0.073 73.58 11389.4 0.031 46.03 567998 0.034 34.04 450326 0.031

30 155.12 1466710 0.056 74.38 8614.11 0.026 46.44 476371 0.028 34.35 387146 0.026

20 167.37 892583 0.038 79.41 6044.72 0.02 48.59 348464 0.023 35.49 294135 0.021

10 239.78 426341 0.022 99.6 3627.91 0.012 56.12 210860 0.015 38.47 182599 0,013

5 444.57 224213 0.013 161.77 2746.58 0.009 78.69 137875 0.01 47.55 125564 0.011

A metric tree organizes and partitions the search space based on relative distances of

objects, rather than their absolute positions in a multi-dimensional space. It requires that

the function used to measure the distance (dissimilarity) between objects is a metric, so that

the triangle inequality property applies and can be used to prune the search space.

The vp-tree The Vantage Point - vp-tree [1] partitions a dataset according to distances

between the objects and a reference (vantage) point. The corner point is chosen as the van-

tage point and the median value of the distances is chosen as separating radius to partition

dataset into two balanced subsets. The same procedure is applied recursively on each sub-

set, which is shown in Figure 2.4. The mvp-tree [63] uses multiple vantage points and

23

exploits pre-computed distances in the leaf nodes to provide further filtering during search

operations. Both of the trees are built in a top-down manner, balance can not be guaranteed

during insertion and deletion. Costly reorganization are required to prevent performance

degradation.

Figure 2.4 The vp-tree [1].

The M-tree The M-tree [50] is a paged metric-tree index. It is balanced and able to deal

with dynamic data. Leaf nodes of an M-tree store the feature vectors of the indexed objects

Oi and distances to their parents, whereas internal nodes store routing objects Or, distances

to their parents Op, covering radii r(0,) and corresponding covering tree pointers. The

M-tree reduces the number of distance computations by storing distances. The following

lemmas [50] are used to prune search space for a given query Q and search radius r(Q),

which is illustrated as in Figure 2.5.

Lemma 2.1 If d(Q , Op) > r(Q) + r(Op), then d(Q , j) > r(Q) for each object 0 in the

tree T (Op) rooted at Op. Thus, T(Op) can be safely pruned from the search.

Lemma 2.2 if Id(Q , Op) - d(Or, Op)| > r(Q) + r(Or), then d(Or, Q) > r (Q) + r(Or).

Thus, T (Or) can be safely pruned from the search.

24

Figure 2.5 Pruning principles for (a) Lemma 2.1, (b) Lemma 2.2.

The OMNI-Family The OMNI-Family [58] is a set of indexing methods based on the

same underlying theory that all the points Si located between / and u are candidate results

for a spherical query with radius r and given point Q for a specific focus Fi, where / =

d(Q, Fi) — r, u = d(Q, Fi) r. For multiple foci, the candidates are the intersections of Si.

Figure 2.6 shows the search candidates for a range query centered at Q with search radius

r.

Figure 2.6 Search candidates (blind area) for a range query (Q, r) in the case of two foci.

Given a dataset, a set of foci was found. For each point in the dataset, calculate and

store the distance to each of the foci. The search process can be applied to sequential scan,

25

B+-trees and R-trees. For B+-trees, the distances for each focus Fi are indexed, a range

query is performed on each index, finally the intersection is obtained. For R-trees, the

distances for all the foci, which forms a lower dimensional data, are indexed, and single

range query are performed.

The iDistance The iDistance [56] is proposed for efficient k-NN search in a high dimen-

sional space. Data is partitioned into several clusters and each partition has a reference

point. The data in each cluster are transformed into a single dimensional space according

to the similarity with respect to a reference point. The one-dimensional value of different

clusters are disjoint. A B+-tree can be used to index the one-dimensional space and k-NN

search are implemented using range searches. The search starts with a small radius and the

radius is increased step by step to form a bigger query sphere. The iDistance is lossy since

multiple data points in the high-dimensional space may be mapped to the same value in the

single dimensional space.

Figure 2.7 Searching space for range queries using the iDistance.

26

2.4.5 Cost Models for Nearest Neighbor Query Processing

Due to the high practical relevance of nearest neighbor queries, cost models for estimating

the number of necessary page accesses have been proposed [64], such as the traditional

NN-model [65], exact NN-model [66] and analytical NN-model [67].

The traditional NN-model [65] assumes that the number of data objects converges to

infinity and boundary effects are not considered, which is unrealistic.

The exact NN-model [66] determines the number of data pages which has to be

accessed on the average taking into account boundary effects. Experiments show that the

traditional NN-model overestimate the cost by orders of magnitude in high dimensions,

while the exact NN-model is accurate up to a moderate relative error. It has been used for

constructing the X-tree index [32] and DABS index [68].

The analytical NN-model [67] provides a closed formula for the processing costs of

nearest neighbor queries depending on the dimensionality, the block size and the dataset

size. Experiments show that the analytical cost model provides an accurate prediction of

R*-tree performance over a wide range of dimensions.

2.5 Nearest Neighbor Search Algorithms

Efficient support of nearest neighbor search is important in modern database applications.

Researches have focused on two aspects: developing algorithms applied to existing index

structures and developing specialized index structures suitable for nearest neighbor search.

Examples of specialized index structures are NN-cell approach [69], SR-tree [17], SS-tree

[49], OP-tree [16], PAT-tree [70], and iDistance [56]. In this section, the focus is on the

first aspect.

Two classes of algorithms have been proposed for k-NN search. One class utilizes

branch and bound algorithms, and the other class utilizes range queries. Two popular algo-

rithms in the first category are the HS [71] and RKV [72] algorithm. They can be applied

27

to any hierarchical index structures, such as R*-trees [48], SS-trees [49], and X-trees [32].

In the second case, iterative range queries are utilized to evaluate nearest neighbor queries.

A number of incremental algorithms for similarity ranking have also been proposed

that can efficiently compute the (k+1)th nearest neighbor, after the k nearest neighbors are

returned [73, 74]. A global priority queue of the objects to be visited is used.

2.5.1 Sequential Scan

For a given query point, the distance to each data objects is calculated and stored in a

minimum priority queue with the key as the distance. The queue can be implemented with

fixed length k. The top k objects are the k nearest neighbors. A simple way is to keep k

candidates, each time when a new candidate appears, remove the farthest one and insert the

new one.

2.5.2 The RKV Algorithm

Since R-tree [46] is designed for window queries which is defined in Appendix A, Rous-

sopoulos et al. proposed a branch-and-bound R-tree traversal algorithm to find nearest

neighbors in [72], which is referred to as the RKV algorithm [52] in this dissertation. An

R-tree is built by first presorting the data files using a Hilbert [39] number generating func-

tion, and then applying a modified version of [75] R-tree packing technique according to

the suggestion of [76]. Traversal of the tree is ordered and pruned based on a number of

heuristics. In fact, the algorithm is not limited to the R-tree. Cheung and Fu simplified this

algorithm without reducing its efficiency in [77].

Two important metrics, minimum distance - MINDIST and minimax distance - MIN-

MAXDIST are introduced. MINDIST is the nearest possible distance between a point and

a Minimum Bounding Rectangle - MBR [52], which means no points in the region has

distance to the given point closer than the MINDIST. The MINMAXDIST guarantees that

28

there is an object within the page region at a distance less than or equal to MINMAXDIST

[52]. Figure 2.8 shows the two metrics in two-dimensional space.

Figure 2.8 MINDIST and MINMAXDIST in two-dimensional space.

To give the formal definition, let a N-dimensional rectangle R be represented by

(/1, u1, • • . , /N, UN), where li and ui are the lower and upper boundaries along dimension i.

Definition 2.5 (MINDIST) The MINDIST between a point P and a rectangle R is defined

as:

Definition 2.6 (MINMAXDIST) The MINMAXDIST between a point P and a rectangle

R is defined as:

Z9

The RKV algorithm accesses pages in a depth-first order. During the search, any page

region whose MINDIST is larger than the current farthest distance dk will be pruned, any

MBR whose MINMAXDIST is smaller than dk will be visited. Although the MINDIST

metric produces most optimistic orderings, it is not always the best choice [72]. The pseu-

docode is given as Algorithm 1.

klgorithm 1 RKV_KNN(Node* n, Query* q, int k)

1: dk = co;	 //initiate distance to kth NN found so far

2: if n is not a leaf node then

3: compute the metrics to each entry; 	 //metric: MINDIST or MINMAXDIST

4: sort entries according to the metrics;

5: for each entry e do

6: if MINDIST(e, q) < dk then

7: RKV_KNN(e.node, q, k); 	 //recursively search subtree e.node

8: if MINMAXDIST(e, q) < dk then

9: dk = MINMAXDIST(e, q);

10: else

11: for each object o do

12: compute the distance d to q;

13: if d < dk then

14: insert (d, o) into the result set;

15:	 refine dk;

30

2.5.3 The HS Algorithm

Hjaltason and Samet propose an incremental nearest neighbor finding algorithm in [71].

The algorithm can be adapted to any tree-like hierarchical index structures. A minimum

priority queue is used to store addresses to the internal nodes (pages), leaf nodes (pages)

and data objects and their distances to the query with the distance as the priority. Index

pages are accessed in the order of increasing distance to the query point, which means the

accessed pages can jump between different levels and branches of the hierarchical index

structure [52]. Let's call a page active if its parent has been processed but not the page

itself APL denotes Active Page List which is implemented as the priority queue. Figure

2.9 illustrate the priority queue in the incremental algorithm.

Figure 2.9 The priority queue used in the incremental algoirthm for finding nearest neigh-
bors.

The HS algorithm referred here is the extended incremental algorithm for k-nearest

neighbor processing. Two priority queues are usually used, one is a min priority queue

pque _index for the indexed pages, the other is a max priority queue pque _knn with fixed

length k for the results. From the algorithm described below, pque index does not store in-

31

formation related to data objects which will be determined whether they should be inserted

into the result queue or not once they are encountered. This can reduce the burden of op-

erations on the queue since too many data points may be encountered. In experiments, this

can also reduce the running time greatly. The HS algorithm has been shown to be optimal

in terms of the number of pages accesses, which means it accesses as few pages as possi-

ble for a given index. The proof for the optimality can be found in [52]. The HS algorithm

can be summarized as Algorithm 2.

klgorithm 2 HS_KNN(Node* r, Query* q, int k)
1: dk = cx); 	 //initiate distance to kth NN found so far

2: push (0, r) into pque_index;

3: while pque_index is not empty do

4: pop up the top element t;

5: if t.d > dk then

6: break;

7: if t.node is not a leaf node then

8: for each entry e do

9: calculate the MINDIST d to q;

10: if (d < dk) then

11: insert (d, e.node) into pque_index;

12: else

13: for each object o do

14: calculate the distance d to q;

15: if (d < dk) then

16: insert (d, o) into pque _knn;

17:	 update dk;

32

2.5.4 Range Search Based Algorithm

k-NN queries are performed using iterative range queries. To retrieve the complete answer

set, the distance between query Q and the kth nearest neighbor is required. Unfortunately,

this radius is hard to predetermine. Usually, the approach begins with a relatively small

radius. The correlation fractal dimension can be used to estimate this radius for a given

k [78]. The data within the radius are checked and a set of candidate nearest neighbors

is found out. Then a larger radius is searched iteratively until no more new candidate is

added. This is very time consuming, since it is difficult to determine how large the radius

should be increased at each iteration. If the increase is too small, many iterations will be

needed. Otherwise, too much data will be examined.

2.5.5 Multi-Step Nearest Neighbor Search

There is a context where indices are built based on dimensionality reduced data and want to

find the nearest neighbors in the original data. Korn et al. proposes a multi-step algorithm in

[79, 80] by finding k-nearest neighbors first based on the dimensionality reduced indices,

then obtain the distance dk for the kth neighbors in the original space, and finally run a

range query with radius dk . Thomasian et al. extend this algorithm to multiple clusters.

Seidl and Kriegel propose an optimal multi-step algorithm in [81] by incorporating the

original distance finding step into the nearest neighbor search step on the dimensionality

reduced indices.

2.5.6 Approximate Nearest Neighbor Search

The above mentioned nearest neighbor search focuses on getting exact results for queries,

where exactness is defined in terms of the feature vectors and a distance function between

them [82]. However, exact results are very difficult to obtain. Besides, the meaning of

exact is highly subjective and depends on the way the feature vectors are created and the

distance function defined between the feature vectors. The data itself is an approximate

33

representation of real world entities, so close approximations may be good enough for

human perception. The quality of the result set is measured by a combination of recall and

precision [82]. Recall is a measure of completeness of retrieval and precision is a measure

of purity of retrieval. The irrelevant objects in the result set are called false hits and the

relevant objects that are not in the result set are false dismissals.

A variety of approximate nearest neighbor search algorithms are developed to im-

prove the query processing. Current approaches either reduce the dataset that needs to

be examined, or reduce the representation size of each data object [82]. Global Dimen-

sionality Reduction (GDR), Local Dimensionality Reduction (LDR) [14], Clustering and

Singular Value Decomposition (CSVD) [53, 33, 3], and Multi-level Mahalanobis-based Di-

mensionality Reduction (MMDR) [23] are efficient approximate nearest neighbor search

algorithms. The performance study of CSVD with indexing is studied in Chapter 3.

34

Year Index Query Type Compared with Dataset Metric Comments

75 k-d tree

Exact Match
Partial Match

Range
NN

-

-

. - -

81 k-d-b tree
Partial Match

Range
- - - -

84 R-tree Range - - - -

84 Grid file - - - -

87 R+-tree Range R-tree -
,

- -

90 R*-tree
Partial Match

Range
R-tree 2-D - Both spatial and point objects

94 TV-tree

Exact Match
Range

Spatial Join
NN

R*-tree 27-D Li
Experimented exact match

and range query

96 SS-tree NN R*-tree

11-D uniform
11-D Gaussian

100-D Eigenface

- -

96 X-tree
Point
NN

R*-tree
TV-tree

16-D fourier
16-D CAD data
32-D uniform

-
R*-tree better than TV-tree
when D<16 for point query

97 SR-tree NN
SS-tree

VAMSplit R-tree

16-D uniform
16-D histogram

- -

98 Pyramid Range
X-tree

Hilbert R-tree
Seqscan

100-D uniform
16-D text (www)
13-D warehouse

Lmax
The warehouse data includes

2 categorical, 2 int, and 2
float

98 VA file NN
R*-tree
X-tree

Seqscan

45-D features -

All approaches to NN in
HDVSs ultimately become

linear at high dimensionality.
VA-file outperforms all other

methods known to the
authors when D >= 6,

The tree methods degenerate
to a scan through all the leaf

nodes for NN

00 iMinMax Range Pyramid

8-50-D uniform
30-D normal

30-D exponential
-

Uniform and skewed data
sets

01 iDistance NN
A-tree

Seqscan
iMinMax

30-D uniform
30-D clustered

- -

01
Omni-
family

Range
NN

Seqscan
SlimTree

EnglishWords
16-D Eigenfaces
30-D Sinthetic

Ledit
L2
L2

For NN using OmniR-tree
and OmniB-tree need to use
fractal dimension to estimate

the range for NN sphere

03
Delta-
tree NN

iDistance
M-tree

TV-tree
CR-tree
Seqscan
VA-file

64-D uniform
8-64 LDRgen

64-D histogram

-

64-D color histogram is
obtained from the Corel

Database

Figure 2.10 Outline of high-dimensional indexing structures.

CHAPTER 3

PERFORMANCE STUDY OF CSVD WITH INDEXING

3.1 Introduction

The nearest neighbors problem is of major importance to a variety of applications, where

similarity search is usually employed. Typically, the application objects are represented

using the extracted features, which are in fact high-dimensional data points, and a distance

metric provided by domain experts is used to measure the (dis)similarity of objects. A

great attention has been paid to find the exact nearest neighbors in terms of the feature

vectors and the provided distance function. However, the selection of features and distance

metrics is based on heuristics, so the meaning of exact is highly subjective and depends

on an approximation of real world entities. Close approximations may be good enough for

human perception and it seems an overkill to insist on the exact nearest neighbor.

Clustering and Singular Value Decomposition (CSVD) [33, 3] is an approximate

similarity search method in high-dimensional spaces. CSVD groups homogeneous data

into clusters, and reduces the dimensionality by using SVD. Cluster selection relies on a

branch-and-bound algorithm, and within-cluster searches can be performed with sequential

scan or indexing methods.

The within-cluster index can be any multi-dimensional index structure, either main

memory or disk resident. A main memory index structure (ordered partition index [16]) is

used in [3]. There are two drawbacks. One is that the memory should be large enough to

hold all the indices, and the other is that a sufficient number of queries need to be executed

to trade off the cost of building the index, since it is volatile. Therefore, this study focus on

using disk resident index structures. First three multi-dimensional indices are compared,

the best one is selected as the within-cluster index. Then two approximate distance in the

dimensionality reduced subspace is presented and one is proved to be much closer to the

35

36

distance in the original space. Experiments evaluate the performance of the CSVD method,

which includes the precision, recall, number of pages visited, CPU time, and effects of the

degree of clustering.

The outline of this chapter is as follows. After introducing the CSVD method in

Section 3.2, three disk-resident index structures, R*-trees, SR-trees and hybrid-trees, are

described in Section 3.3. Section 3.4 describes the approximate nearest neighbor search

algorithm for CSVD. In Section 3.5, the performance of two nearest neighbor search al-

gorithms applied on the same structure are studied and the performance of different index

structures using the same algorithm are compared. The SR-tree index shows the best per-

formance and is selected as the within-cluster index for studying CSVD performance.

3.2 Clustering and Singular Value Decomposition

Given an M x N dataset X, let pi be the mean of column j, ,ti be a vector composed of

and X' = X — lmp,T. SVD decomposes X' as X' = USVT, where U is an M x N

matrix, V contains the eigenvectors and S contains singular values of X'. PCA decomposes

the covariance matrix C = ii-171X/TX' as C = VAVT, where sj/M = Ai. Let Y = X'V,

the number of dimensions n can be obtained for a given error tolerance and dimensionality

reduction is achieved by keeping the first n dimensions of Y.

NMSE The Normalized Mean Squared Error - NMSE quantify the loss of distance infor-

mation caused by dimensionality reduction [3, 83]. Equation 3.1 and 3.2 define the

NMSE for one cluster and H clusters, respectively.

37

Recall and Precision are useful measures for approximate methods. Recall is the per-

centage of relevant elements which are retrieved, while precision is the percentage of

retrieved elements which are relevant. Let R, denote the subset containing the k near-

est neighbors of query Q. To account for the approximation, more than k elements

are requested. Let Rt be the set of points retrieved and . denote the cardinality.

Recall 7Z and precision P are given as:

7Z and P are inversely related. One can be increased at the expense of another. Let

k* denote the number of results that must be retrieved for a k-NN query to yield a

precision equal to P and recall equal to 7Z, then k* k

Before constructing the index, data is preprocessed. Numerical values on different

features can be appropriately scaled to equalize their relative importance when the metric

of choice is the Euclidean distance. Studentization can be applied to each feature by sub-

tracting the mean and dividing the result by the standard deviation. The CSVD proceeds as

the following five steps:

Step 1. Specifying a target NMSE to tolerate.

Step 2. Partitioning the dataset.

The dataset is partitioned into H clusters, each containing data that are close to each

other in terms of Euclidean distance. All classical clustering methods such as k-

means, LBG [84], and TSVQ [85] are applicable, but in fact the k-means method is

used in this study. Each cluster has a radius which is defined as the distance between

its centroid and the point farthest from the centroid. The k-means method is usually

run several times and the partition with the smallest SSE (Equation 2.1) is kept.

To reduce the number of clusters visited during queries, outliers can be found from

the whole dataset, and kept in a separate list, then the remaining dataset (excluding

38

the outliers) is clustered. The radius of each cluster is expected to be smaller, and

thus less clusters are visited. However, in the experiments during this study for high-

dimensional data, this is not the case.

Step 3. Rotating each partition into an uncorrelated frame of reference.

The principal components of each cluster are found by applying SVD to clusters

individually. The data is rotated into the reference frame composed of the principal

components.

Step 4. Reducing the dimensionality of the partitions.

Dimensionality reduction is a global procedure which is applied to all the clusters

simultaneously. An H . N array L. is constructed, the jth element of which is a

triple (κj , dj, λ(dj(κj)); where κi E {1, . . . ,H} denotes a cluster,aj c {1,-. ,N}is

the label of a dimension, and A(atc3) = Ai is the eigenvalue associated with dimension

ai of cluster Ki . The elements of L. are sorted in increasing order of eigenvalues, so

that Ai < A3+1 for each j. The d, dimension of Kith cluster is removed from the

beginning of the array L until the target NMSE specified in step 1 is reached.

Step 5. Constructing the within-cluster index.

Due to the fact that nearest neighbor search based on sequential scan of large datasets

is computationally expensive, a multi-dimensional index is constructed for each clus-

ter. Any of the known indexing techniques can be relied on if the intrinsic dimension

of the cluster is low. Otherwise, an index which can handle relatively higher dimen-

sions should be selected.

3.3 Performance Comparison of Index Structures

The selection of the within-cluster index plays an important role on the performance of

nearest neighbor search of CSVD. When the properties of a dataset are known, a broad

39

class of indices can be used. For example, well-known efficient spatial indices in the R-tree

family for small intrinsic dimensions, specialized static indices for static high-dimensional

datasets, etc. Otherwise, an index with good overall performance is preferred.

Indexing method can be categorized into data partitioning and space partitioning

method. Data partitioning methods are based on hyperrectangles or hyperspheres. To deter-

mine which method works better with CSVD, three typical index structures, R*-tree [48],

hybrid tree[60] and SR-tree[17], are studied. The R*-tree is based on hyperrectangles, the

SR-tree is based on hyperrectangles and hyperspheres, and both are data partitioning index-

ing methods, while the hybrid tree is based on both data partitioning and space partitioning.

Analytical modelling of the performance for index structures is a difficult task. More-

over, comparisons based on theoretical upper bounds for worst case performance do not

reflect the performance of real world applications [86]. Furthermore, there is no well-

established benchmark. Therefore, empirical comparisons, which rely on the size of the

index, the search time of the query, the pages visited, etc. are used instead. A fair compar-

ison has to take into account the data type, search algorithm, and running platform. Even

the implementation plays an important role. A good implementation for a bad algorithm

can outperform a bad implementation for a good algorithm. The program codes used in this

study are obtained from the original author, thus the possibility of a bad implementation is

reduced. The R*-tree and hybrid tree codes are migrated from UNIX to Windows.

Due to the different nearest neighbor search algorithm they use, the HS algorithm

[71] and RKV algorithm [72] based on the same index structure are first compared, and

the conclusion is that the HS algorithm is always better. Then the HS algorithm is imple-

mented on each of the structure, and the nearest neighbor search performance is compared.

The above idea is especially useful to identify the best method to partition the data space,

since in the area of high-dimensional indexing an essential problem is how to partition the

data space. Various indices are compared based on different data space partitioning, each

with its own algorithm. It is hard to tell whether the partitioning method improves the per-

40

formance, or the k -NN search algorithm improves the performance. This idea can also be

used to develop new index structures which combines the best partitioning with the best

algorithm.

The R*-tree The R*-tree [48] is the most successful variant of the R-tree, which is a

multi-dimensional generalization of the B-tree. The R*-tree uses hyperrectangles to parti-

tion the search space. The hyperrectangle associated with a particular node covers all the

hyperrectangles of its children. The tree is constructed by inserting the feature vectors one

at a time. Different orders of the same data can result in well or poorly constructed trees,

thus affecting the search performance. Node splitting and merging are required for inser-

tion and deletion of objects. The commonly used nearest neighbor search algorithm is the

RKV algorithm, which is proposed based on the R-tree [46].

Each node has [e, E] entries. Good performance is obtained when e = 0.4 * E as

recommended in [48]. The size of an entry Se is sizeo f (childptr)+sizeo f (double) x 2 x M

and the fanout is [(pagesize — hdr size — sizeo f (bitmap)) I Sej. The format of a R* -tree

node is:

Table 3.1 Node Structure of the R*-tree

The SR-tree (Sphere/Rectangle-tree) R*-trees [48] use hyperrectangles and SS-trees

[49] use hyperspheres to partition the data space. Experiments show that bounding hy-

perspheres occupy much larger volume than bounding rectangles, and bounding hyper-

rectangles have much longer diameter than bounding spheres [17]. This affect the search

efficiency of R*-trees and SS-trees.

41

SR-trees [17] combine the advantages of R*-trees and SS-trees. The region of each

node is determined by the intersection of a bounding sphere and a bounding rectangle,

which results in a significant reduction in the overlap between two sibling nodes of the

SR-tree, especially for high dimensions. Figure 3.1 illustrates a SR-tree with 2-D repre-

sentation and hierarchical representation. The SR-tree reduces both the volume and the

diameter of regions compared with the R*-tree and the SS-tree and is more suitable for

nearest neighbor queries. The storage required for the SR-tree is higher than the R*-tree

and the SS-tree, and furthermore the creation cost of the SR-tree is higher than that of the

SS-tree. On the other hand, the SR-tree provides a good performance for high-dimensional

nearest neighbor queries. Figure 3.2 gives the internal and leaf node structure.

Figure 3.1 Two representations of the SR-tree.

The Hybrid Tree The hybrid tree [60] is neither a pure data partitioning (DP) index

structure, nor a pure space partitioning (SP) index structure. A DP-based index consists of

bounding regions (BRs) arranged in a containment hierarchy, like R-tree family, SS-trees

[48], and SR-trees [17], while a SP-based index consists of recursively partitioned disjoint

subspaces, like K-D-B trees [45] and hB-trees [61]. The hybrid tree combines positive

aspects of DP-based indices and SP-based indices to achieve better scalability.

42

Figure 3.2 The internal (top) and leaf (bottom) node structure of the SR-tree.

The hybrid tree uses space partitioning strategies when a node splits. The split sub-

spaces can be overlapped when trying to achieve an overlap-free split would cause down-

ward cascading splits. The partitioning inside each index node is organized as a k-d tree

[11] capable of representing possibly overlapping splits. This enables faster intranode

search compared to array-based organization. The k-d tree stores both the split dimension

and two split positions. The hybrid tree uses a single dimension to split the space, which

makes its fanout independent of the dimensionality, thus has larger fanouts and smaller

sizes.

Since operations on SP-based structures assume disjoint splits, the hybrid-tree treats

the indexed subspaces as bounding regions in a DP-based data structure. A logical mapping

is defined to map the kd-tree based representation to an "array of BRs" representation. Thus

the algorithms used in DP-based data structures can be applied directly to the hybrid tree.

The BRs are not computed during the tree traversal, rather computed only when necessary.

3.4 Approximate Nearest Neighbor Search

The approximate k-NN algorithm used by CSVD is as follows [3]:

43

Preprocessing The query point is studentized to yield Q. In order to remove the effect of

different scales of each feature, the dataset is studentized during the index construc-

tion step, which means the N columns of the dataset X are studentized separately to

obtain zero mean and unit variance. For each column j, the empirical mean ui is sub-

tracted and the result is divided by the estimated standard deviation b-j. The element

of studentized dataset S is obtained by sii = (xii — uj)/6-j, 1<i<M,1< j<N.

Primary Cluster Identification The primary cluster to which Q belongs is identified. For

k-means clustering, it is the cluster with the closest centroid to q. This conforms to

the nature of the spherical property originally generated by k-means.

Computation of Distances from Clusters The distance between Q and a cluster c is de-

fined as max {0, D(q,u(c)) — R(c)}. D(q,u(0) is the distance between Q and u(c),

which is the centroid of cluster c. The clusters are stored in increasing distance order

and ties are broken using D(Q,u(c)).

Searching the Primary Cluster A k* candidate results are produced to achieve a desired

recall for a k-NN query. The results are kept in a maximum priority queue pque _knn

with length k*, the priority is based on the distance to the query. Let dk be the

distance of the top element ofpque_knn.

Searching Candidate Clusters The next cluster is searched if its distance from Q does not

exceed dk; otherwise, the search terminates. If there exist points closer to the query

than dk, the points are inserted to pque_knn and dk is updated.

Postprocessing The distances between Q and the k* returned results are computed in the

original space and the closest k results are returned.

During the within-cluster search, an approximate distance to the distance in the orig-

inal space is required. In paper [3], an approximate distance D'2(P,Q) =-- D2(P' ,Q)

between projected point P' = {pi}, j E {1, . . , n} of P and a query Q {qi}, j c

44

Figure 3.3 Effect of distance approximation by D' (P, Q).

{1,. , N} to the original space is used with D2(P' ,Q) = D2 (P' , Q') 	 31Y_n+1 q . This

distance does not lower-bound the original distance D2 (p, q), which is shown in Figure 3.3.

With the position of the query point changing from farther to closer to the subspace, the

approximate distance varies from being larger to smaller than the original distance.

An more approximate distance -D2 (p, q) to the squared Euclidean distance D2 (q, p)

between the query point Q and a data point P is observed, which is stated in the following

lemma.

Lemma 3.1 Given point P = {pi} and Q =	 j E {1, , N}, and projected point

P' = {pj} and Q' = fqd, j E {1, ... ,n}, n < N, the Euclidean distance between P and

Q is..

An common approximate distance to D(P,Q) is..

45

An more accurate approximate distance is:

Proof of Lemma 3.1

That D"2 < :62 < D2 is proven at this point. Since D"2 < b2 is trivial, the following

is to show that b2 < D2 holds.

The first three items are the same, so only the last item needs to be compared. Let

E = Pj • qk	 F pk . qi

46

Given that (E — F)2 > 0, it follows A < B and b2 < D2 .

End of Proof.

3.5 Performance Study

3.5.1 Experiment Setup

Three real-life datasets are utilized, they are: texture dataset with 55 dimensions (TXT55),

color histogram with 64 dimensions (COLH64) Gabor dataset with 60 dimensions (GA-

BOR60), and one synthetic dataset with 64 dimensions (SYN64). More details for each

dataset are specified in Table 3.2. For preprocessing, the raw dataset of TXT55 and GA-

BOR60 are studentized since the value of different dimensions vary considerably, while

SYN64 and COLH64 are not studentized since the value of different dimensions are close

to each other.

The experiments are run on a laptop with Intel Pentium M CPU 1.1GHz and 768MB

RAM under Windows XP Professional.

3.5.2 Experimental Comparison of Index Structures

Three index structures are used in this study. They are hybrid trees', R*-trees2 and SR-

trees3. The hybrid tree and R*-tree are migrated from UNIX to Windows 2000.

Pages of the index are 8192 bytes. 1000 queries are randomly chosen without re-

placement from the original datasets. k-NN queries with k = 20 are issued to evaluate

the performance for different indices. The performance metrics are index sizes, number of

pages accessed, and elapsed time.

'Code at http: //www. ics .uci .edu/ —kaushik/research/htree . html
2Code received from C. Faloutsos and D. Chakrabarti at CMU
3 Code 	 at 	 http://research.nii.ac.jp/ —katayama/homepage/research/
srtree/

47

Table 3.2 Characteristics of the Four Datasets used in Experiments; N: Number of Fea-
tures, M: Number of Points

Name N M Description/Source

SYN64 64 99,972

Synthetic dataset generated by the source code used in

[14] with the same parameters.

COLH64 64 68,041

8 x 8 color histograms extracted from 68,041 color

images obtained from ht tp : / /kdd . ics . uci . edu/

databases/CorelFeatures.

GABOR60 60 56,644

Gabor features extracted from Landsat MMS images

from different parts of the country, obtained from V.

Castelli.

TXT55 55 79,814
Gabor, spatial, and wavelet features from 400 photos,

which also utilized in [3].

Comparison of the HS and RKV Algorithm Given an index structure, the search al-

gorithm plays an important role in its performance. Both the HS and RKV algorithm are

implemented on the SR-tree and R*-tree. Experiments on different datasets and varied di-

mensionality over a dataset show that the HS algorithm always visits fewer pages than the

RKV algorithm. Table 3.3, 3.4 and 3.5 report the results. The different dimensionalities

are obtained by keeping the first n dimensions, which is determined by using SVD and a

given NMSE.

Index Size Index sizes are compared for the four datasets and nine additional datasets

with variable number of dimensions that are generated from SYN64 by using the principal

component analysis and keeping the most significant dimensions. Figure 3.4 shows that

48

Table 3.3 Comparison of the HS and RKV Algorithm Applied on R*-trees and SR-trees
over Different Datasets

Page Accesses SR-tree R*-tree

Dataset HS RKV HS RKV

SYN64 363 406 7372 7993

COLH64 790 1200 5883 7099

TXT55 274 746 1429 2533

GABOR60 29 58 198 783

Table 3.4 Comparison of the HS and RKV Algorithm Applied on R*-trees and SR-trees
with Varying Dimensionality for SYN64

Page Accesses Dim 1 2 4 5 7 14 33 45 60 64

SR-tree HS 4 6 14 21 30 54 143 213 338 363

RKV 3 5 14 21 30 53 151 220 354 406

R*-tree HS 2 4 11 19 47 197 2134 4680 6663 7372

RKV 2 4 11 30 54 217 2379 5108 7190 7993

R*-trees are much larger than the other two, while SR-trees and hybrid trees always have

almost the same size. This is because R*-trees store duplicate coordinates in the leaf nodes.

Number of Pages Accessed The search performance of an index structure is more im-

portant than the size of the index. The average number of page accesses for a 20-NN query

is evaluated in Table 3.6. It shows that the R*-tree accesses significantly more pages than

the hybrid tree and the SR-tree, while the hybrid tree accesses a few more pages than the

SR-tree. For SYN64, R*-trees access 32.7% of the index pages, while hybrid-trees and

SR-trees access only 3.1% and 4.0%, respectively.

49

Table 3.5 Comparison of the HS and RKV Algorithm Applied on SR-trees with Varying
Dimensionality for TXT55

Page Accesses Dimensionality 5 10 20 30 40 50 55

SR-tree HS 19 46 84 145 198 271 274

RKV 24 94 150 364 550 772 746

Figure 3.4 Index size comparison over (a) different datasets, (b) different dimensionality
of SYN64.

For the scalability on dimensionality, Figure 3.5 shows that the R*-tree works well

under low-to-medium dimensions (<14 dimension) and has very poor performance as the

dimensionality increases. The number of pages visited is in the thousands when dimensions

> 22, which can be seen from Figure 3.5(a). The performance of the R*-tree is always

worse than the SR-tree and hybrid tree. The hybrid tree has a smaller index size than the

SR-tree. It visits more pages than the SR-tree and the gap widens with the dimensionality

increasing.

CPU Time In terms of the CPU time, experiments are performed both on different datasets

as in Table 3,7 and different dimensions for one dataset as in Figure 3.6. In both cases, the

50

Table 3.6 Number of Page Accesses for Processing k-NN Queries

SR-tree Hybrid tree R*-tree

Page Accesses Total Ratio Page Accesses Total Ratio Page Accesses Total Ratio

SYN64 363 11570 3,1% 448 11220 4.0% 7372 22542 32,7%

COLH64 790 8005 9.9% 793 7773 10.2% 5883 18232 32,3%

TXT55 274 7728 3.5% 533 8018 6.6% 1429 13761 10.4%

GABOR60 29 7223 0.4% 42 6363 0.7% 198 11288 1.8%

R*-tree runs slower than both the SR-tree and hybrid tree, while the SR-tree is consistently

faster than the hybrid tree.

Table 3.7 Comparison of CPU Time of SR-tree, Hybrid tree and R*-tree on Four Datasets

CPU SR-tree Hybrid tree R*-tree

SYN64 0.0226 0.106 0.7778

COLH64 0.0518 0.1716 1.91

TXT55 0.0199 0.1218 1.0516

GABOR60 0.0018 0.0384 0.336

In conclusion, the SR-tree gives the best overall performance. For the following

performance evaluation of CSVD, it will be used as the within-cluster index.

3.5.3 Performance Study of CSVD with Indexing

Experiments in [83, 87] show that the GM1 (Global Method 1) outperforms the GM2

(Global Method 2) and LM (Local Method) in terms of precision and CPU time. Thus

CSVD-GM1 is used in this study.

Figure 3.5 Comparison of R*-trees, SR-trees and hybrid trees on number of pages ac-
cessed using the HS algorithm over variable dimensionality on SYN64.

Number of Dimensions Retained Given an NMSE, the more clusters the dataset is par-

titioned into, the fewer the number of dimensions retained, which results in a higher data

compression ratio. The larger the NMSE, the more the dimensionality reduction. Table

3.8 shows the average number of dimensions retained over varying NMSE and number of

clusters on TXT55.

Table 3.8 Average Number of Dimensions per Point for TXT55

Dimensions NMSE
Clusters 0 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5

1 55 42 28 22 18 16 12 9 6
2 55 38 24 18 15 13 9 7 5

4 55 36 22 16 12 10 6 4 3

8 55 36 22 15 12 10 6 4 3

16 55 34 21 15 11 9 6 4 3

32 55 32 20 14 11 8 6 4 2

64 55 30 18 13 10 8 5 3 2

128 55 29 17 12 10 8 5 4 2

51

52

Figure 3.6 Comparison of CPU time for R*-trees, SR-trees and hybrid trees on different
dimensionality of SYN64.

Recall The recall drops with the NMSE increasing (the number of dimensions retained

decreasing) as shown in Figure 3.7 and 3.8. Figure 3.7(b) shows that given the same NMSE,

SVD (1 cluster) always produce lower recalls than CSVD, while the more clusters the

dataset is partitioned, the higher recalls CSVD obtains. In terms of indexing, 1 and 5

clusters visit almost the same number of pages, while 16, 32, and 64 clusters visit more

pages. The same applies to CPU time. Figure 3.7 shows that 16 is a better choice for the

number of clusters when CSVD is applied to SYN64, since it visits less number of pages,

resulting in less CPU time, while keeping a higher recall.

Figure 3.8 shows the results on TXT55. 1 cluster is omitted, since the compression

ratio is worse compared to clustered cases. 16 or 32 is a good choice for balancing the

processing cost and a higher recall.

Precision When the NMSE is large, the recall is very low. To achieve certain recall, more

nearest neighbors (k*) need to be asked. k* can be calculated offline, and Table 3.9 gives

the value of k* to attain recall = 0.8 for 20-NN queries for TXT55. For a larger NMSE, k*

also becomes larger, and this may cause a slow response time. There is a tradeoff between

the dimensionality reduction and the query cost for exact queries. A detailed study to find

53

Figure 3.7 Performance comparison of different number of clusters versus NMSE for
approximate 20-NNs on SYN64 using SR-trees. (a) Recall for 1 cluster. (b) Recall for 1,
5, 16, 32 and 64 clusters. (c) Number of pages visited. (d) CPU time.

the optimal value for NMSE is performed in [88]. In Figure 3.8, the precision goes higher

with more clusters and has the highest precision for 128 clusters.

Number of Clusters Visited Figure 3.9 shows the effect of clustering on reducing the

search space for nearest neighbor queries. Less than 3 out of 16 clusters and 6 out of 64

clusters need to be visited to execute approximate 20-NN queries for SYN64. This speeds

up the query processing significantly, while a very high recall is achieved when the dataset

54

Table 3.9 The Value of k* to Attain Recall = 0.8 for 20-NN Queries

k* for recall=0.8 NMSE

Number of Clusters 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5

1 16 17 19 20 22 24 29 74

2 16 17 18 20 22 34 72 168

4 16 17 18 19 21 30 72 400

8 16 17 18 19 20 28 65 158

16 16 16 17 18 19 22 33 60

32 16 16 17 18 18 22 32 57

64 16 16 17 18 19 23 34 80

128 16 16 17 17 18 21 26 40

is partitioned to 64 clusters (Figure 3.7). For TXT55, the search space is reduced to half

when the dataset is partitioned into 128 clusters.

Evaluation of Two Approximate Distances In this experiment, the effect of two ap-

proximate distances, b (p, q) and D (pi , q), is quantified. In the context of exact nearest

neighbor search [89] developed based on the CSVD, Table 3.10 gives the average number

of points retrieved per query using both distances. The result shows that fewer points need

to checked when using D(p , q), and the difference is magnified as NMSE increases.

3.6 Conclusions

The fanout of an index structure is directly affected by the page size. With the dimension-

ality increasing, for a given page size, the fanout decreases since the size of a node entry

is a monotonically increasing function of dimensionality. The reduction of the fanout may

require more nodes to be accessed on queries and causes the increase of the query cost.

For the evaluated index structures, the hybrid tree has a smaller index size than the

R*-tree, which is smaller than the SR-tree. The idea is to compare different space/data

55

Figure 3.8 (a, b, c) Recall, number of pages visited, and CPU time for different number
of clusters versus NMSE for approximate 20-NN search on TXT55 using SR-trees. (d)
Precision to achieve recall = 0.8.

partitioning methods in high-dimensional space using the same search algorithm can be

applied to other index structures.

The performance of CSVD is affected by the number of clusters visited and Normal-

ized Mean Square Error - NMSE. CSVD is better than SVD in terms of recall and precision.

The larger the NMSE, the fewer number of dimensions retained. The higher the degree of

clustering for partitioning the dataset, the higher the recall and precision. However, more

clusters require more disk accesses, resulting in more CPU time. Certain number of clus-

ters exist to achieve a higher recall, while requiring a relatively lower query processing

56

Figure 3.9 Number of clusters visited versus NMSE for approximate 20-NN search. (a)
For TXT55. (b) For SYN64.

cost. In this study, the k-means clustering algorithm is used to partition the dataset, since

spherical clusters are desirable for the nearest neighbor search algorithm based on the Eu-

clidean distance. Very few clusters are checked for SYN64, while many more clusters are

checked for TXT55, since SYN64 is constructed with spherical clusters, while TXT55 is

a real dataset with the generated clusters highly overlapped. Clustering high-dimensional

data is challenging problem.

Table 3.10 Average Number of Points Retrieved per Query for Gabor60

NMSE

NumCIsts 0.01 0.03 0.1 0.15 0.2 0.3

D V 15 D' b D' 15 V b D' 15 V

1 48 48 78 81 122 137 633 1155 2053 4708 8399 16891

4 171 175 328 341 613 643 1045 1101 1768 2001 5759 9102

5 117 124 201 212 308 324 493 520 794 885 2469 3722

57

CHAPTER 4

PERSISTENT MAIN MEMORY INDEX

Similarity search implemented via k-Nearest-Neighbor (k-NN) queries is an extremely use-

ful paradigm in content based image retrieval (CBIR), which is costly on multi-dimensional

indices due to the curse of dimensionality. Most of multi-dimensional indices are inefficient

in processing k-NN queries on high-dimensional data, since a significant fraction of index

pages are accessed randomly, incurring a high positioning (seek plus rotational latency)

time for each access. Moreover, the transfer rate is improving at a 40% annually, while

the improvement in positioning time is only 8%. k-NN query processing can be improved

by utilizing the double filtering effect of clustering and indexing on a persistent version

of the main memory index. In this chapter, a specific instance, CIPOP, is presented. The

Ordered-Partition tree (OP-tree) [16], a highly efficient index in processing k-NN queries,

is used as the main memory index. The OP-tree is made persistent by writing it onto disk

after serialization, i.e. arranging its nodes into contiguous memory locations, so that the

high transfer rate of modern disk drives is exploited.

Experimental results to optimize OP-tree parameters are first reported. OP-trees and

sequential scans with options for the Karhunen-Loève transform and Euclidean distance

calculation are next compared. Comparisons against OMNI-based sequential scan are also

reported. A clustered and persistent version of the OP-tree against a clustered version of the

SR-tree and the VA-File method are then compared. It is observed that the OP-tree index

outperforms the other two methods and that the improvement increases with the number of

dimensions. Since the OP-tree is static, a semi-dynamic version is finally studied.

58

59

4.1 Introduction

Similarity search is a popular paradigm in content based image retrieval - CBIR, where

images are represented by high-dimensional feature vectors based on color, texture, and

shape [90]. k-nearest-neighbors - k-NN queries with the Euclidean distance function are

commonly used for CBIR, although more general distance functions have been considered

[2].

The k nearest neighbors can be determined by scanning the feature vectors of images

sequentially, while updating a max-priority-queue with k elements. This may be costly if

the number of images M and the number of dimensions of feature vectors (N) is high. The

Vector Approximation - VA-File method [18], which involves a scan of quantized feature

vectors is quite competitive in CPU cost, however, and is therefore used in the comparison.

A variety of methods have been proposed to speed up k-NN queries: clustering,

indexing, clustering plus indexing, and dimensionality reduction, e.g., via Karhunen-Loeve

(K-L) transform. By partitioning a large dataset into clusters, only a few clusters closest

to the query point need to be visited. Each cluster can be represented by a sequential or

indexed structure. A side benefit of clustering is that the smaller dataset or index can be

held in main memory.

The processing cost of k-NN queries is expected to be lowered considerably if the

feature vectors are indexed by a multi-dimensional index, such as the R-tree [2, 11]. The

indices can be categorized into main memory resident and disk resident indices [11]. The

former aims at reducing the CPU time, but are restricted by the size of the main memory and

the fact that such indices are volatile. Memory size is not a problem for paged disk resident

indices. CPU time is the main performance metric for main memory indices, while for disk

resident indices it is the number of disk I/Os.

Indexing has a similar effect to clustering, i.e. only the minimum bounding rectan-

gles (MBRs) in R-trees [46] and hyperspheres in SS-trees [49], which overlap the search

hypersphere for k-NN queries, are visited. The hypersphere is defined as the query point

60

Q as the centroid and the distance to the kth nearest neighbor from Q as the radius. A

comparison of the performance of R-trees, hybrid trees [14], and SR-trees (spherical and

rectangular trees) [17] appears in Chapter 3, where it is shown that SR-trees outperform the

other two index structures from the viewpoint of the number of page accesses in processing

k-NN queries. Clustering plus indexing schemes take advantage of the dual filtering effect

of both clustering and indexing to reduce the search space even further.

k -NN queries can be accelerated by applying the query to a dimensionality reduced

dataset. This can yield approximate results for applications which can tolerate some degree

of error or exact results by using postprocessing steps [89]. Several approximate methods

have been proposed, such as CSVD [3], LDR [14] and MMDR [23].

Multi-dimensional indices are designed with the efficiency of disk access in mind.

Each index node corresponds to a disk page, the index is usually height balanced, and a

high fanout is used to minimize the depth of the tree. In processing a k -NN query, pages

on the search path are loaded into main memory one by one via random disk accesses.

Such disk accesses are slow and are improving at an intangible rate due to the mechanical

nature of the disk. Most multi-dimensional index structures work well in low to medium

dimensional spaces, but the fraction of index pages touched by k -NN queries grows quickly

with the number of dimensions due to the dimensionality curse [68]. Too many random disk

accesses degrades the performance of disk resident index dramatically.

Many studies compare disk resident index structures by counting the number of (ran-

dom) disk I/Os (a small fraction of index pages are cached in main memory). Such a view

made sense in the mid-1980s when a typical 1 MIPS machine would have 64-128KB of

RAM, but not anymore [91]. As DRAM is becoming cheaper, DRAM-based main mem-

ories are becoming larger, so that a seemingly promising way is to keep the index in main

memory. However, the sizes of the datasets for similarity search applications are potentially

increasing at a faster rate than DRAM, so that the main memory may not be large enough

to hold the whole index. Secondly the memory is volatile, i.e., the index has to be rebuilt

61

each time it is used. Main memory indices can be made persistent, e.g., e.g., K-D-B versus

k-d trees [11]. The solution chosen here is to partition the dataset into several clusters such

that the index of each cluster can be held in main memory.

Data can be accessed more efficiently via sequential accesses of large disk files, rather

than random accesses of disk pages. Sequential access time is determined by the disk trans-

fer rate, which has been increasing by 40% per year. Random access time to small index

pages is mainly positioning time, which has been decreasing at a rate less than 10% per

year. This trend makes sequential disk accesses increasingly desirable compared to ran-

dom accesses [92, 15], which are associated with popular disk resident indexing structures.

The Maxtor DiamondMax Plus 9 160G hard disk drives has 7200 RPM (rotations per

minute) or Trot = 8.33 ms per rotation and average seek time T„ek = 9.3 ms. There are

Si = 610 (resp. So = 1102) 512 byte sectors on inner (resp. outer) tracks and the mean

number of sectors is Smeam ≈ 2SO/3 + SI/3 ≈ 938. The mean transfer rate is (938 x 512 x

10-6)/(60/7200) '--,-' 57.6 Megabytes/second, so that Tpage_x f er = 8.192/57.6 = 0.142 ms.

The number of pages that can be accessed sequentially during a single random disk access

is given by: nseq'l ≈ (Tseek(Tseek + Tlatency + Tpage_x fer) / Tpage_xf er . Note that T„ek is incurred

only once for sequential accesses, while it is incurred for every random access. For the disk

under consideration:nseq'l ≈ 96 pages, which means instead of accessing nrandom 8 KB

pages randomly, a 768nrando, KB dataset can be loaded from disk sequentially.

To reduce the random disk accesses and take advantage of the efficient processing of

main memory indices, a general framework, Clustering and Indexing using Persistent Main

Memory indices - CIPMM, is proposed to accelerate k-NN processing of high- dimensional

datasets with a large number of points. The framework first partitions the dataset into

clusters of manageable size and then builds a main memory index for each cluster, for

which positioning time is incurred only once. The index is written out to disk as a nonpaged

BLOB (binary large object). The index can be reloaded quickly on demand. Clustering is

used to reduce the size of the BLOBs, so that they fit in main memory. Since OP-trees

62

and SR-trees are efficient in processing nearest neighbor search, the proposed method is

evaluated by indexing using the OP-tree (CIPOP) and compared with indexing using the

SR-tree (CISR). The results show that the proposed CIPOP outperforms CISR, and the

higher the dimensionality, the better the performance gains. Since the OP-tree is static, a

semi-dynamic version is also studied.

Two serialization methods for the OP-tree are proposed: a two-phase method and

a one-phase method. The two-phase serialization builds the index using dynamic storage

allocation as an ordinary linked tree structure, arranges the nodes into contiguous memory

locations, and then writes it to disk. The drawback is that the index has to be reserialized

and rewritten when new data is inserted. The one-phase method is flexible in that insertions

of new points requires only the rewriting of the modified parts of the index file.

The chapter is organized as follows. Section 4.2 surveys related work in this area.

Section 4.3 describes the structure and k-NN search algorithm of the OP-tree. The per-

formance of the OP-tree is studied by varying the parameters, the split factor and the leaf

node capacity, and compared with the OMNI sequential scan [58] and sequential scans with

the option of KL transformation and shortcut method to compute the Euclidean distance.

The results show that the OP-tree outperforms all the considered sequential scan methods.

Section 4.4 describes the CIPOP, the two-phase serialization method, and its k-NN pro-

cessing steps. Experiments show that CIPOP outperforms CISR. Section 4.5 describes the

insertion methods and the one-phase serialization method. Properties of the OP-tree on

inserting variable fraction of points using partial or full KL-Transform are studied. One

synthetic and three real-life datasets are used in this study. Conclusions and future work

are given in Section 4.6.

63

4.2 Related Work

Indexing structures, which have been proposed to cope with the shortcomings of indices

in the R-tree family, are first discussed. Dimensionality reduction via the Karhunen-Loève

(K-L) transform is then addressed.

4.2.1 Indexing Structures

There are many studies of the efficiency of k-NN queries which belong to the R-tree fam-

ily. According to [2] R-trees function successfully for 20-30 dimensions, after which the

dimensionality curse results in accesses to a large fraction of index pages, which is tan-

tamount to a sequential search of the dataset. Some researchers have realized that index

structures will benefit from accessing large chunks of data via sequential disk accesses.

Examples are the X-tree [32], the DABS-tree[68], and the Clindex [93].

The hierarchical organization is an efficient organization for low dimensionality,

since there is little overlap between directory rectangles [32]. However, the linear orga-

nization is more efficient for very high dimensionality, since most of the directory has to

be searched due to the high overlap. In this case a linearly organized directory needs less

space and can be read from disk much faster than a page-by-page reading of the directory.

The X-tree is partially hierarchical and partially linear. Data producing high overlap is or-

ganized linearly, while data producing low overlap is organized hierarchically. The linear

organization reduces the number of random disk accesses.

A cost model is used to identify the reason why sequential scan outperforms most

index structures [68]. The conclusion is that indices access data in small portions. The

DABS-tree, a linear single-level directory, adjusts the block size dynamically. Each di-

rectory entry consists of the minimum bounding rectangle of the page region, the number

of entries currently stored in the page and the reference to the page. The size of a page

grows or shrinks on demand, which is optimally determined during update operations ac-

cording to a query cost model. Pages have 100% utilization. A k-d tree is used to guarantee

64

overlap-free page regions. Given a query, the distances between the query and each entry

in the index are sorted in nonincreasing order, after which qualifying pages are loaded and

processed in that order.

The Clindex[93] combines clustering and indexing for approximate similarity search.

A large dataset is partitioned into small clusters first, and then a mapping table is built for

indexing the clusters. Each cluster is stored on disk sequentially as a separate file, so that

it can be retrieved with one access. The distances from each object in that cluster to the

query object are calculated, and the most similar objects are returned. Once the page or the

cluster are loaded in one disk IO, both the DABS-Tree[68] and Clindex[93] sequentially

scan all the data points in that page or cluster, and find the nearest neighbors.

4.2.2 Karhunen-Loeve Transform

Singular value decomposition - SVD and Principal Component Analysis - PCA are two

methods that lead to a Karhunen-Loève (K-L) transform of the original dataset, after which

the dataset is amenable to optimal dimensionality reduction. Given an M x N matrix

X for M images with N features, PCA computes the covariance matrix C XtX/M,

which is then decomposed as C = VAVt. The eigenvectors of matrix V define the

principal components. A is a diagonal matrix of eigenvalues: (A1, A2, , AN), which

without loss of generality are assumed to be in nonincreasing order. The KL transfor-

mation yields Y = XV, where the coordinates of Y are aligned with the principal com-

ponents of X. The normalized mean square error - NMSE with n retained dimensions:

NMSE ΣNi=n+1 λi/ΣNi=1λiis minimized for a given n, which is optimal in terms of di-

mensionality reduction. SVD decomposes X as X = USVT, where V is the eigenmatrix

and S is a diagonal matrix of singular values with An = S2n/M, 1 < n < N [3].

Clustering combined with SVD or PCA first clusters the feature vectors constituting

X and then applies SVD or PCA to individual clusters. The intuition behind this methods

is that datasets tend to be composed of heterogeneous points and that PCA yields better

65

results when applied to homogeneous data. It has been shown experimentally that given a

target NMSE, a global method results in more dimensionality reduction than a local method

[87]. The global method is used in this study to obtain different number of dimensions for

a dataset.

4.3 The OP-tree

The OP-tree [16] is a k-d tree like balanced hierarchical index structure, which recursively

partitions the points of a dataset into a fixed number of regions according to a prespeci-

fied split factor along consecutive dimensions until the leaf capacity c is not exceed. The

authors of [16] proved that the ordered partition algorithm can find k nearest neighbors in

a constant expected time. Simulations show that it is distribution free and only 4.6 dis-

tance calculations, on the average, were required to find a nearest neighbor among 10000

samples drawn from a bivariate normal distribution.

The OP-tree treats the features asymmetrically, using the features with the highest

variance in partitioning the data first. A good ordering of the features will result in a more

efficient search, since the features with the highest variance offer the largest contribution

to the expected squared Euclidean distance [3]. The dimensions of the dataset can be

ordered using PCA and the dataset can be transformed into uncorrelated coordinates with

corresponding eigenvalues in nonincreasing order.

4.3.1 Number of Nodes

Each leaf node holds only one point and the number of level in the tree (1) is equal to the

number of dimensions in [16]. For an M x N dataset the per-dimension splits are given

as: § = (si, 82, . . . , sN_1). Splitting over the first N — 1 dimensions yields a tree with T

nodes (leaf and non-leaf nodes):

66

where each term corresponds to the number of internal nodes (except the root), leaf nodes

and the root, respectively.

Since high-dimensional datasets (say N) are dealt, even a split factor of two results in

2N leaf nodes, which is usually much larger than the number of points in the dataset (M).

So that even if the leaf-node capacity is rather small, the partitioning need to be carried out

is limited.

For small N and large M, the OP-tree can be extended to have a parameter: the leaf

capacity c. The dimensions are reused in a round-robin manner. Two parameters are used

for constructing the OP-tree: c and g When all splits are s-ways, i.e., si = s2 = • • • =

sN_i = sN = s, the number of level of the OP-tree (1) is the smallest integer that satisfies

c x sl-1 sl-1 <M<cxsl, which leads to:

/ = F/ogs(M/c)1 	 (4.1)

The total number of nodes is given by:

_ 1 = sFi°gs(m/c)1+1 — 1 	 (4.2)

The selection of S-> and c affects the performance of the index structure, as shown in

Section 4.3.4.

The partition of the OP-tree for a hypothetical dataset is shown in Figure 4.1 with

si = 4, s2 3. The data is partitioned 4-ways along the first dimension and 3-ways along

the second. Each leaf node can hold at most 3 points. Assigning larger si for dimension

i with larger variance seems to have its advantages. But in practice, it is hard to find the

number of splits along each dimension.

4.3.2 Data Structure

The OP-tree can be implemented either by a linked list (Figure 4.2) or by an array represen-

tation to keep track of the splits along each dimension. Using a linked list representation,

each internal node is a 5-tuple: {lower, upper, child, left, right} and each leaf node is a

67

Figure 4.1 (a) The partition for a two-dimensional OP-tree. (b) The corresponding hier-
archical structure.

6-tuple: {lower, upper, left, right, ids, points} . Lower and upper are the lower and upper

values for bounding the region, left and right are pointers pointing to the left and right sib-

lings, child is a pointer pointing to the leftmost child for the internal node, ids is a pointer

to the list of ids corresponding to the feature vectors and points is a pointer to the list of

feature vectors for the leaf node. While using an array representation, each node (including

internal and leaf node) is a 3-tuple: {child, lower, upper} .

Internal node: I child I leftl lowed upped right

CCM upper= rightLeaf node

Figure 4.2 Index structure for the OP-tree. Child: pointer to the left most child. Left
(right): pointer to left (right) sibling. IDs: pointer to a list of point IDs. Points: pointer to
data points. Lower (upper): lower (upper) bound values.

Both representations are implemented. The linked list has two versions: one with the

system's memory management, the other with a self-implemented page manager, which

(ai — qi)2

D2 (qi, al, bi) =	 01 (qt — b i)2

qi <al

ai < qi < bi •

bsl < qi

(4.3)

68

allocates space in a contiguous manner. Experimentation shows that the array representa-

tion runs slightly faster than the linked list representation, especially when the number of

splits is high (say more than 20). This is because the array is more cache friendly by being

amenable to cache prefetching. The linked list representation utilizes more space than the

array representation, but it provides the flexibility of varying split factors. The linked list

representation is used in the following study.

4.3.3 k-NN Search

The pseudo-code described in Algorithm 3 is an improved version of the algorithm given

in [16]. It starts with the region to which Q belongs or Q has the shortest MINDIST.

Branches are pruned by only calculating partial distance up to that dimension. Line 1-2

search the leaf nodes. The actual points are searched and the current eh nearest neighbor

distance from the query is updated. Line 3-13 search the internal nodes. Line 4-6 handle

the case where the number of levels of the tree is greater than the number of dimensions.

Line 9 calculates the distance from the query point to the current node which actually is a

hyperrectangle. With the Euclidean distance, the distance calculation for each node only

requires at most two floating point operations (one multiplication and one addition) and

two tests (see Equation 4.3). Line 12-13 recursively search each candidate node.

D? = D? 1 + D2 (qI, ai , bi) .

A max-priority-queue with size k is used to implement the k-NN search. The key

value is the distance between the query point to the visited points. Each time when a

point closer to the query point is found, the top element is removed, and the new element

constructed from the better point is inserted.

69

klgorithm 3 krmSearch(Q, r, dp, 1)

1: if (r is a leaf node) then

2: leafSearch(r);

3: else	 //r is an internal node

4: if (/	 N) then

5: 1 = 0;

6: if (/	 0) then	 //set the distance to current node r

7: d = 0;

8: else	 //calculate d using the distance to parent dp

9: d = nodeDistance(Q, r, dp, 1);

10: find the closest child c of r to Q;

11: while (c exists && isCandidate(Q, c, d, /+1)) do

12: knnSearch(Q, c, d, 1+1);

13: 	find the next closest child c of r to Q;

4.3.4 Experimental Evaluation

The experiments are carried out for k-NN queries with k = 20. One thousand queries are

selected by simple random sampling without replacement (SRSWOR) from each dataset.

All the experiments are conducted on a Dell Precision 330 with Intel Pentium 4, 1700 MHz

CPU and 512 MB RAM, running Windows 2000 Professional.

The OP-tree is studied extensively in this section. The array and linked list represen-

tations of the OP-tree are first compared. Rules-of-thumb are developed for selecting the

split factor and the leaf node capacity ensure robust performance. The OP-tree is next com-

pared with sequential scans with the option of KL-transform or shortcut Euclidean distance

calculation method and it shows that the OP-tree outperforms the sequential scan methods.

The performance of the OP-tree against the SR-tree is then compared from the viewpoint of

CPU time and the OP-tree is a winner in this case too. At the end, the OP-tree is compared

with the OMNI-family.

70

Eigenvalues Figure 4.3 illustrates eigenvalues for the four datasets in Table 3.2. For

SYN64 and GABOR60, most eigenvalues are very small and the first keeps most of the

variance, while for TXT55 and COLH64, the eigenvalues decrease smoothly.

Figure 4.3 Eigenvalues for the four datasets.

Array versus linked list Both the array and linked list representations are implemented.

The linked list has two versions: one with the system's memory management, one with the

self-implemented page manager (PM). Figure 4.4 gives the experimental results on four

datasets for k-NN query with k = 20. The results show that the array implementation

takes less CPU time than the linked list, and the linked list managed by the page manager

is slower than the other two methods. This is reasonable, since pointers have to be traced

71

to locate different nodes by using linked list, while each pointer, which is the page base

address and offset, has to be resolved.

Figure 4.4 Comparison of linked list and array implementation with c = 40 for all cases.

Selecting Parameters of the OP-Tree The performance of the OP-tree in processing k-

NN queries is affected by the split factor (s) and the node capacity (c). To select appropriate

parameters for the OP-tree, the average CPU time (in milliseconds) over one thousand

20-NN queries on each dataset are measured as plotted in Figure 4.5 and Figure 4.6.

In Figure 4.5, the number of tree levels, which is 12 when the split factor is two,

decreases as the number of splits increases. The CPU time increases initially, but there

is a sudden drop in CPU time, when the number of tree levels drops to two. This can be

explained as follows: when the tree level is high, branches can be pruned based on more

72

Figure 4.5 Average CPU time for processing 1000 20-NN queries on SYN64 versus number of
splits as leaf node capacity is varied.

dimensions, while when the tree level is low, i.e., two, the OP-tree benefits from sequential

scan. In conclusion, a low fanout seems to be a sure bet regardless of the capacity of the

leaf node. A five-way split is used in [3]. The parameters optimized the CPU time are

selected as in Table 4.2, which will be used in the following experiments.

Some datasets have a significant fraction of the variance in first few dimensions. In

the case of SYN64 the first three eigenvalues are 15.1533, 1.1858, 0.978623. Assigning

a higher split factor to the first dimension is intuitively appealing. Table 4.1 presents ex-

perimental results via varying the split factor for the first dimension, while maintaining all

other split factors at two. There is a small reduction in the number of points accessed for

si = 4 over s1 = 2, while this number increases beyond s1 > 4. A split factor of two is

desirable for all dimensions, unless Ai is very large.

Effect of leaf capacity on CPU time of k-NN search Figure 4.7 shows that the CPU

time is slightly higher for larger k and has little sensitivity on the leaf capacity as long as

it is not too small. The former is due to the fact that the search radius and consequently

the hypersphere for k-NN queries will be larger during the search process and more leaf

73

Figure 4.6 CPU time for processing 1000 20-NN queries versus number of splits with
respect to different leaf capacities.

74

Table 4.1 Varying the Split Factor for the First Few Dimensions While All Others are Set
to Two

Si s2 ... s4 s5 ...s64 avg # of points visited

20 2 2 39165

20 10 2 35523

16 2 2 36879

10 4 2 39381

8 2 2 33757

4 2 2 30403

4 4 2 30403

2 2 2 32184

Table 4.2 Parameters for the OP-tree for Different Datasets

Dataset	 I SYN64 I COLH64 I GABOR60 I TXT55

Number of splits (fanout) 2 2 2 8

Leaf node capacity 40 40 60 40

nodes will be visited and more points will be processed. Since a max-priority-queue is

used to hold the results of k-NN queries, the maintenance of k-NN points has little effect

on performance.

In the latter case, the leaf capacity c determines l as given by Equation 4.1 is shown

in Table 4.3. When l is high, such as 16 for SYN64 while c is 1, the CPU time is high due

to large number of internal nodes need to be examined. For higher values of c, the value of

1 ranges from 9 - 13 and the CPU time does not vary significantly. The number of internal

nodes need to be checked is reduced dramatically (about three times from l = 17 to 15).

75

Figure 4.7 Effect of leaf node capacity on CPU time of k-NN search with split factor of
2 and k = 20.

OP-Trees versus Sequential Scan Methods Before the performance of the OP-tree with

other indexing structures is compared, a question remaining to be answered is whether the

OP-trees indeed outperform a sequential scan of the original dataset (X) or the dataset

transformed into its principal components Y = XV (see Section 4.2.2). All datasets are

assumed to be main memory resident, since they will incur about the same loading time if

they were originally disk resident. The effect of a shortcut method for Euclidean distance

calculation is also investigated. In summary, there are three issues under consideration:

OP-trees versus sequential scan, X versus Y matrices, and a standard versus a shortcut

method for Euclidean distance calculation.

The CPU time versus the number of nearest neighbors to be found (k) is plotted

in Figure 4.8 (a). k-NN processing is carried out via a sequential scan of the X and Y

76

Table 4.3 Tree Levels With 2 Splits on Each Dimension.

TreeLevels Leaf Capacity

Dataset 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

SYN64 16 14 13 12 12 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 9 9 9 9 9

TXT55 16 13 12 12 11 11 11 11 10 10 10 10 10 10 10 10 9 9 9 9 9 9 9 9 9

GABOR60 15 13 12 11 11 11 10 10 10 10 10 10 9 9 9 9 9 9 9 9 9 9 9 8 8

COLH64 16 13 12 12 11 11 11 10 10 10 10 10 10 10 9 9 9 9 9 9 9 9 9 9 9

datasets for SYN64. The standard and shortcut methods to compute Euclidean distances

are considered. The following conclusions can be drawn:

1. The shortcut method is 2 to 3 times faster than the standard method.

2. The shortcut method when applied to the X matrix requires 50% more CPU time

than the Y matrix, which is due to the fact that the columns of the Y matrix are

ordered according to their variance. This allows the decision to exclude a point to be

made after considering a few dimensions.

3. CPU time increases very slowly with k (except for k = 1, which is due to the effi-

ciency of max-priority queue.

Figure 4.8 (b) shows the effect of indexing the Y versus X dataset via the OP-tree.

The shortcut method does not improve performance with the X matrix and the improve-

ment is small for the Y matrix, as explained below. There is a significant improvement in

performance when the OP-tree is built with the Y rather than X matrix.

Figure 4.8 (c) gives the improvement in CPU time of the OP-tree versus sequential

scan method using the standard method on Y, since the shortcut method does not provide

much improvement with the OP-tree. The OP-tree index improves CPU time eight times

77

for k > 1. The improvement is more than 50 times for k = 1 with the standard and shortcut

method.

Figure 4.8 The effect of shortcut Euclidean distance calculation on CPU time in pro-
cessing k-NN queries on SYN64 versus k. (a) Sequential scan. (b) OP-tree. (c) The
performance gains of OP-tree over sequential scan.

Figure 4.9 The effect of shortcut Euclidean distance calculation on CPU time in process-
ing k-NN queries on TXT55 versus k. (a, c, e) Sequential Scan. (b, d, f) OP-tree. (a, b)
TXT55. (c, d) COLH64. (e, 0 GABOR60.

78

79

Figure 4.9 shows the experimental results for the other three datasets.

To explain the difference in cost of processing k-NN queries the following loop with-

out and with a test for early exit is considered. p[N] and q[N] denote the feature vectors

corresponding to a sample point P and the query Q. The vectors may be in the origi-

nal or the transformed domain. The squared Euclidean distance between the two points

(D2 (P, Q)) can be calculated as follows:

Standard Euclidean Distance Calculation:
f or (i =--- 0; i < N ; i + +){

temp = p[i] — q[i];
dist+ = temp * temp;

}

Shortcut Euclidean Distance Calculation:
for(i = 0;i < N;i + +){

temp = p[i] — q[i];
dist+ = temp * temp;
i f (dist < farthest) break;

1

Let tma denote the cost of the multiplication and additions and tex the cost of the

break statement. The shortcut method improves performance if the early exit for a point Q

is taken at dimension n such that

n x (tma + tex) < N x trna ,

where tma is the cost for one multiplication plus one addition and one substraction and tex

the cost for one test. The total cost for the standard method is N x trna, while the total cost

for the shortcut method is n x trna + n X tex•

The maximum value of n for which the shortcut method is still preferable is given as:

tma
nmax = N tma/(tma + tex) 	 .

tma + tex

80

There are reasons to believe that t„ is much larger than tma, so that nmaxIN is rather

small.

When dealing with a large number of points, it is the average number of dimensions

to the exit point which matters (n). Values of n in experiments are reported in Table 4.4,

4.5, 4.6, and 4.7. It is observed that n is quite small for sequential scan, because there are a

large number of points in the dataset and the majority of which are at a great distance from

the query point Q, so that they can be excluded easily.

The OP-tree is an excellent index in that it limits the number of points in the dataset

that need to be considered for k-NN processing. All the points being considered are in

neighborhoods close to Q, so that more dimensions need to be considered to find the nearest

neighbors.

As far as the improvement in 71 going from the X to the Y dataset is concerned,

this can be attributed to the fact that the dimensions of Y are ordered according to their

variances. The improvements is a factor of two for sequential scan and a factor of 1.5 for

the OP-tree.

Table 4.4 Average Number of Dimensions Early Terminated by the Shortcut Method for
SYN64

fi 1 5 10 15 20 25 30 35 40 45 50

seqscan(X) 3.09 5.67 6.07 6.33 6.54 6.72 6.88 7.03 7.16 7.29 7.40

seqscan(Y) 1.77 2.71 2.85 2.94 3.01 3.07 3.13 3.18 3.22 3.26 3.31

Op-tree(X) 23.06 13.28 13.56 13.73 14.02 14.11 14.18 14.25 14.32 14.38 15.66

Op-tree(Y) 19.24 8.1 9.20 9.44 9.62 9.77 9.90 10.02 10.12 10.22 10.31

There are other ways to make the evaluation of k-NN queries more efficient. For ex-

ample, precompute the norm for all points, e.g., 	 Pk?, so that D205;	 =

11/511+11-011 - 2/5. 	 An inner product instruction is provided by some processors. Fur-

81

Table 4.5 Average Number of Dimensions Early Terminated by the Shortcut Method for
TXT55

fi 1 5 10 15 20 25 30 35 40 45 50

seqscan(Y) 2.65 3.22 3.51 3.73 3.91 4.07 4.22 4.35 4.47 4.59 4.70

Op-tree(Y) 14.67 4.69 5.34 5.75 6.05 6.28 6.48 6.65 6.80 6.93 7.05

Table 4.6 Average Number of Dimensions Early Terminated by the Shortcut Method for
COLH64

n 1 5 10 15 20 25 30 35 40 45 50

seqscan(X) 2.23 9.10 9.91 10.42 10.81 11.13 11.40 11.64 11.86 12.06 12.24

seqscan(Y) 1.32 2.86 3.21 3.45 3.64 3.80 3.95 4.08 4.20 4.31 4.42

Op-tree(X) 16.63 11.17 11.71 12.08 12.37 12.61 12.82 13.01 13.18 13.35 13.49

Op-tree(Y) 16.12 3.37 3.47 3.50 3.65 3.71 3.80 3.82 3.88 3.91 3.94

thermore, some numerical packages, such as IBM's ESSL generate very efficient code for

vector computations.

OP-trees versus SR-trees From Figures 4.10, it is observed that SR-trees spent much

more time on internal node searching than leaf node searching, while OP-trees spent less

time, especially when the dimensionality is high. SR-trees are created with the minimum

utilization 0.4 and the reinsert factor 0.3 as suggested in [17] throughout this chapter. Since

leaf node searching mainly focus on the distance calculation of the query to each point in

that leaf, the OP-tree performance can be improved further by using the optimized distance

calculation.

OP-trees versus the OMNI-Family The OP-tree performs consistently better than the

naive-seqscan and OMNI-seqscan for k-NN queries and performs better only when the

82

Table 4.7 Average Number of Dimensions Early Terminated by the Shortcut Method for
GABOR60

n 1 5 10 15 20 25 30 35 40 45 50

seqscan(X) 11.76 12.34 12.64 12.89 13.09 13.27 13.42 13.57 13.73 13.91 14.10

seqscan(Y) 2.29 2.58 2.77 2.93 3.06 3.16 3.25 3.34 3.42 3.50 3.57

Op-tree(X) 22.18 4.97 5.87 6.35 6.77 7.09 7.45 7.76 7.97 8.18 8.41

Op-tree(Y) 12.41 3.18 3.27 3.30 3.40 3.45 3.48 3.52 3.58 3.63 3.67

selectivity is relatively low for range queries. The experimental results are reported as in

Appendix C,

4.4 The CIPOP Indexing Method

The viability of persistent versions of main memory indices is first discussed. The seri-

alization method is next introduced, which transforms the linked list index structure built

based on dynamic storage allocation into contiguous main memory locations. The k-NN

processing is then described and finally the experimental results are reported.

4.4.1 Motivation

Clustering before indexing has a double filtering effect, since only clusters or index nodes

intersecting the hypersphere of the current k nearest-neighbors of the query point need to

be visited [18]. The index can be main memory or disk resident. For disk resident indices

the time for processing queries is referred to as elapsed time Teidp„d, which is the sum of

Tio for loading the pages on the search path and Tcpu for querying the pages.

Telapsed = Tio Tcpu. 	 (4.4)

83

Figure 4.10 Percentage of time spending on leaf searching and internal node search. (a,
b) For OP-tree. (c, d) For SR-tree. (a, c) For 16 clusters of SYN64. (b, d) For 32 clusters
of TXT55.

For memory-resident indices, since the index is not persistent, the time for processing

k-NN queries is the sum of the time to build the index (Tbui/d) and querying it (Tepu).

Telapsed — Tbuild Tcpu•	 (4.5)

84

The query processing cost should be prorated over a sufficiently large number of

queries to make this method viable 1. Moreover, the main memory should be large enough

to hold the index.

Main memory indices are designed to reduce the CPU time, while disk resident in-

dices are designed to minimize the number of disk accesses by only retrieving the nodes

on the search path. CPU time for k-NN processing with main memory indices is expected

to be less than that for disk resident indices, which is due to the fact that data in main

memory indices is densely packed, ensuing a lower cache miss rate. This is shown by the

experimental study in Section 4.4.4.

The alternative solution used in this study is to make the main memory index per-

sistent by writing it onto disk. Serialization is required to make the index more compact,

before it is written to disk. CIPMM, defined below, takes advantage of the reduced CPU

time afforded by main memory indices and the high disk transfer rate to load persistent

versions of main memory indices into main memory.

Definition 4.1 (CIPMM) A general framework for Clustering and Indexing using Persis-

tent Main Memory indices.

The CIPMM can be applied to any main memory index structures with the difference

that the indices are stored on disk as a single file, so that they can be loaded into main

memory efficiently. The steps for constructing a CIPMM are:

• Partition the dataset into clusters.

• Build a main memory index for each cluster.

• Serialize the indices.

• Make indices persistent.

1A similar situation is encountered when conversion cost from a (relational) ROLAP table into a
(multi-dimensional) MOLAP array is incurred for efficient analytical processing [94].

85

In this study the standard k-means clustering algorithm [95] is used with the initial

set of centroids selected far apart from each other [29]. The number of clusters is chosen

such that the index representing each cluster can be held in main memory. The clustering

algorithm is run multiple times, and the partition with the minimal sum of squared error is

selected.

The performance of persistent main memory OP-trees [16] is compared with SR-trees

[17] and VA-Files [18] as the within cluster index, which are referred to CIPOP, CISR and

CIVAFile, respectively.

Definition 4.2 (CIPOP) A specific instance of CIPMM using Persistent OP-trees.

Definition 4.3 (CISR) Clustering and Indexing using SR-trees.

Definition 4.4 (CIVAFile) Clustering and Indexing using VA-Files.

The CIPOP will be used to illustrate how a main memory index can be serialized,

stored, and restored. In this case the KL transform is applied, which benefits the OP-tree

as shown before.

4.4.2 Two-Phase Serialization

The need for serialization is justified as follows. When the index is built in main mem-

ory using system's dynamic memory allocator, the allocated nodes are scattered in main

memory space. Writing these separately allocated nodes individually and reading them

back could be very expensive, since there are a large number of small nodes and each of

which requires the overhead of allocating space before it is loaded into main memory. This

problem can be alleviated by following the first phase of building the index with a second

phase, which serializes the index into a Contiguous Memory Area - CMA without losing

any structural information. The CMA can be written to or read from the disk as one file

access.

86

The OP-tree is serialized into a CMA as shown in Figure 4.11. The CMA consists of

four areas as follows.

Area A: The internal nodes and the leaf nodes. The pointers in the nodes are the offset to

the base address of the CMA. The size of area A = number of leaf nodes x sizeof(leaf node)

± number of internal nodes x sizeof(intemal node).

Area B: A list of point IDs, the order of the IDs depends on the order of the leaf nodes in

area A. The size of area B = number of points x sizeof(point ID),

Area C: A list of pointers to the points. The size of area C = number of points x sizeof (pointer).

Area D: The actual data in row order. The size of area D = number of points x dimension x

sizeof(data type for a point).

Figure 4.11 The structure of the contiguous memory area (CMA) and the index file format
on disk.

The size of the CMA is the sum of the sizes of the areas, which can be computed by

traversing the index. This is required to determine the size of the buffer, which has to be

preallocated for CMA. To build the CMA the dynamically allocated index tree is traversed

in depth-first order. For each node visited, its content is copied into the next available space

87

in the CMA and pointers are changed to be the relative offsets to the base address. At the

same time, addresses of words containing pointers are recorded into an address lookup

table.

The CMA is written to disk with the following additional information: the number

of points in the cluster, the number of dataset dimensions, split factor for each dimension,

the size of the index, the size of the address lookup table, the index, and the address lookup

table.

4.4.3 k-NN Processing

The algorithm for processing a k-NN query is described in Algorithm 4. The primary

cluster [3] is first identified. Since the k-means method is used for clustering, this is the

cluster with the closest centroid to the query Q. The distance between Q and a cluster c is

defined as max {0, D(Q,u(c)) — R(c)}. D(Q,u(c)) means the distance between Q and u(e).

The clusters are stored in increasing distance order and ties are broken using D(Q,u(c)) [3].

The OP-tree is loaded into main memory by using sequential disk accesses, i.e., by

first reading the index header, then reading in the index body and address lookup table into

a CMA according to the information in the header. Finally, the relative offsets are adjusted

to absolute addresses in memory.The entries in the address lookup table are used to replace

the offsets in the index with the actual address based on the new base address.

After the primary cluster is loaded from disk, it is searched using Algorithm 3.

A set of candidate results and the radius, search_radius, for the current search sphere

are determined. The next cluster is searched if its distance from Q does not exceed the

search_radius. Otherwise, the search terminates. If points closer to Q are found, they are

inserted to the current search results and search_radius is updated.

For example, in Figure 4.12, after searching cluster C4 which is the primary cluster

for query Q, cluster C2 will be searched as the next candidate cluster. The search sphere

will possibly shrink during each visit of a cluster. This process continues until the search

88

sphere does not intersect with any of the clusters. In this example, c4, c2, and c3 are visited

in order.

Figure 4.12 Cluster identification.

Algorithm 4 CIPOPKnnSearch(Q, r, dp,1)
1: calculate the distance from Q to the edge of each cluster;

2: sort the distances, ties are broken by considering the distance to the centroid of the cluster

3: find the primary cluster C;

4: load the index of C to /;

5: call knnSearch(Q, /, 0, 0);

6: while (the next candidate cluster C exists) do

7: load the index of C to /;

8: call knnSearch(Q, /, 0, 0);

There are three factors contributing to CPU time: (a) the maintenance of the k-NN

priority queue, (b) searching the index nodes, (c) scanning the points in the leaf nodes.

4.4.4 Experimental Evaluation

In this section, the performance of CIPOP is studied and compared with CISR and CIVAFile.

Index Size The size of the CISR is almost twice as large as the original dataset, while the

increase in size is less than 1% for CIPOP as reported in Table 4.8. The performance of

CIPOP benefits from its smaller size.

89

Table 4.8 Sizes for the CIPOP, CISR, and Original Dataset

Dataset SYN64 COLH64 GABOR60 TXT55

CIPOP (KB) 51,686 35,083 27,348 35,414

CISR (KB) 92,328 64,176 57,968 61,832

Original (KB) 51,186 34,823 27,189 35,118

CPU and Elapsed Time The performance of three disk-resident indexing structures are

compared with each other in Chapter 3. The disk-resident indices considered are R-trees

[46], SR-trees [17], hybrid trees [60]. Since the SR-tree incurs fewer page accesses, it

is chosen for comparison in this study. For SR-trees the page size is set to 8 KB and the

recommended parameters in [17] are used with the minimum utilization 0.4 and the reinsert

factor 0.3. The VA-File is also selected as a reference since it is efficient in processing

nearest neighbor queries for high-dimensional data.

The CPU time of CIPOP, CISR, and CIVAFile is first compared, then the elapsed

time is compared. Due to caching and aggressive prefetching used by modern operating

systems, it is difficult to compare the two methods by measuring the elapsed time when

disk I/O is involved. The operating system prefetches anticipatory blocks as soon as one

block is touched [96]. The CPU and I/O time are overlapped in an unpredictable manner.

In the experiments with SR-tree under windows 2000 with 512MB memory [96], after

running hundreds of queries, the measured elapsed time is quite close and slightly higher

than the CPU time. This means that prefetching of data from disk is heavily overlapped

with CPU processing. Instead, the computed elapsed time [60, 93, 15] is utilized, rather

than the measured elapsed time.

The average elapsed time t over 1000 queries on H clusters is calculated as follows:

te = tcpu+tio.In the case of the SR-tree, fic, =_75 x tp,where/5is the average number

of pages accessed and fp is the average time to access an 8KB page. In the case of the

90

persistent OP-tree, tio -= h x (tpositioning+ s/x fe r_rate) , where ts,positioning = tseek±tlatency,

is the average file size loaded for each cluster given as

h is the mean number of clusters visited by each query, and f [i] is the frequency of accesses

to cluster i and

For one cluster, the average CPU time and elapsed time over one thousand k-NN

queries with k = 20 for the four datasets are reported in Table 4.9. It is observed that

the OP-tree outperforms the SR-tree more than ten-fold in one case and less than 2-fold

in another. This is not unexpected. the SR-tree is an efficient index from the viewpoint of

reducing the number of page accesses for k -NN queries, while the OP-tree minimizes the

CPU time for tree traversal for k -NN queries.

Table 4.9 Comparison of CPU time and Elapsed Time in Seconds for CIPOP and CISR
with Respect to Different Datasets (Single Cluster)

CPU Time SYN64 COLH64 TXT55 GABOR60

CISR 0.037 0.093 0.07 0.005

CIPOP 0.016 0.023 0.005 0.003

Elapsed Time SYN64 COLH64 TXT55 GABOR60

CISR 5.36 13.95 10.22 0.75

CIPOP 0.93 0.64 0.65 0.50

For multiple clusters, two clustered datasets are considered: SYN64 partitioned into

16 clusters and TXT55 partitioned into 32 clusters. To study the effect of variable number

of dimensions, the global dimensionality reduction method in [3] is utilized for a given

91

target NMSE, and the average number of dimensions is used as the dimension of the dataset.

Figures 4.13 reports the number of points visited, CPU time, and elapsed time versus the

average number of retained dimensions for both clustered datasets. The target NMSEs for

SYN64 are given by {0, 0.01, 0.02, 0.03, 0.04, 0.1 } and for TXT55 by {0, 0.01, 0.05, 0.1,

0.15, 0.3, 0.45 }. The CIPOP outperforms the CISR and CIVAFile up to a factor of ten in

terms of CPU time, although CIPOP visits more points. In the case of elapsed time, the

CIPOP is so much faster than the CISR that they are plotted in a logarithmic scale in base

10 for 1000 queries as shown in Figure 4.13(c,f). In both cases the standard method for

distance calculation is used. Moreover, the higher the number of dimensions, the larger the

difference.

To understand why CIPOP runs much faster than CISR, the time spent on searching

internal nodes and leaf nodes is broken down for the two clustered datasets with CIPOP

and CISR indices in Figure 4.10. We observe that CISR spends more time than CIPOP on

internal nodes and that this is especially so when the dimensionality is high. The reason

is that searching an internal node on an OP-tree only incurs one multiplication and two

additions, while searching an internal nodes on SR-tree incurs the cost for the distance

calculation and sorting. The higher the dimension, the higher the distance calculation cost.

Clustering Experiments have shown that the elapsed time is insensitive to the number of

clusters (H) (Figure 4.14). The elapsed time is measured by flushing the buffer for each

run. When H is small, few clusters are visited, so that less time is spent on positioning

time (sum of seek and rotational latency), but more time is spent on transfer time, and the

CPU time for processing k-NN queries. When H is large, more clusters are visited, so

that positioning time is higher, but the transfer time per cluster and CPU processing time is

lower. Experiments on clustered dimensionality reduced datasets are carried out, varying

the number of clusters from 2 to 64 in multiples of 2 (Table 4.10 for SYN64). The elapsed

time does not exhibit an optimum H. Same conclusion is drawn for the other datasets as

92

Figure 4.13 Performance comparison in processing k-NN queries for SYN64 with 16
clusters (left column) and TXT55 with 32 clusters (right column). (a, d) Number of points
visited. (b, e) CPU time. (c, f) Computed elapsed time versus number of retained dimen-
sions. Elapsed time is for 1000 queries, while others are averaged.

93

in Figure 4.14. This is partially due to the aforementioned compensating effects, but also

caching, since the time measured to process a 1000 k-NN queries, i.e., the large file cache

was primed with all clusters after processing a few queries.

Table 4.10 Average Number of Clusters Visited (-Tic)

nc

Number of Clusters

2 4 8 12 16 32 64

8dim 1.262 2.286 3.922 5.514 7.27 9.423 16.526

16dim 1.311 3.196 3.936 7.841 9.788 15.282 25.49

32dim 1.362 3.361 5.969 8.095 10.969 17.158 27.608

64dim 1.987 3.987 6.286 7.132 12.119 20.902 39.164

4.5 Persistent Semi-Dynamic OP-tree

The OP-tree is a static structure. In this section, it is extended to be semi-dynamic. Several

strategies for handling the insertion are presented: (a) adding levels, (b) varying fanouts,

(c) chaining overflow data, and (d) forced reinsertions. The index is then serialized using

a one-phase serialization method so that it can be saved to and loaded from disk with a

sequential disk access and only the modified pages needed to be rewritten. The proposed

methods are evaluated by experimentation.

4.5.1 Semi-Dynamic OP-tree

Two parameters are used for constructing an OP-tree: the number of splits at level /, de-

noted by .9/, and the leaf capacity c, which is the maximum number of points that can be

held in a leaf node. When all splits are s-ways, the number of levels / is the smallest in-

teger that satisfies N < c x sl, which leads to / = r/ogs(N/c)] . The selection of the two

parameters affects the performance of the index structure.

94

Figure 4.14 Try to find optimal number of clusters for 20-NN search.

The k-NN search algorithm for OP-trees is given in Algorithm 3. Noting that if the

first dimensions have most contribution to the Euclidean distance, the pruning ability will

be enhanced. Before the index is built, the Karhunen-Loève (K-L) transform is applied to

the dataset, so that dimensions with the higher variance are assigned to top levels of the

index. In this way, the OP-tree recursively divides space one dimension at a time, starting

with dimensions with higher variances [3].

Methods for Dynamic Insertions The OP-tree is extended to handle dynamic insertions

in the following way. For a new point, the bucket to which the point belongs is first deter-

mined, If the bucket is full, the following four methods are considered to deal with bucket

overflows:

95

(a)Adding levels: The original leaf node is replaced with a new internal node. si+1 new

leaf nodes are created and the pointers between the internal node and the leaf nodes

are adjusted appropriately (Figure 4.17(a)). This maintains the property of the OP-

tree. In this way, 80% of the CPU time was spent on searching leaf nodes regardless

how many new points are inserted, which is shown in Figure 4.15. Each deletion just

remove the data from the index. When the bucket is empty, no more action is needed.

Figure 4.15 Percentage of time spending on leaf searching and internal node searching
for SYN64.

(b)Varying fanouts: The leaf node is replaced by two newly created leaf nodes with the

data points equally split among the two. When more and more nodes are split, the

linked list of leaf nodes will become longer and take more time to traverse. Although

the OP-tree will remain height balanced, it will have unequal fanouts in different

neighborhoods (Figure 4.17(b)). The fanout can be reduced when a bucket is empty,

or two neighboring buckets are less than 50% full, or more generally the sum of the

number of points belonging to the same set of sibling leaf nodes can fit into fewer

than the current number of buckets.

(c) Chaining overflow data: When a bucket overflow, space for another bucket is allo-

cated and pointers associated with each bucket is updated to point to the next bucket

96

(Figure 4.17(c)). During deletion, if two successive buckets are less than 50% full

they can be merged.

(d) Forced reinsertions: A certain percentage of the full nodes p are reinserted. The steps

are: 1. sort the distances between each point with the centroid of the c 1 points in

decreasing order. 2. remove the first p points. Adjust the lower and upper bounds

of the nodes on the path to the leaf node. 3. insert the p points. In step 2, it is easy

to operate at the leaf node. But to modify the lower and upper bounds of nodes at

higher levels, all the descendants need to be known in advance. This is very time

consuming and inefficient.

Figure 4.16 illustrates how to remove one point. After removing the point marked

with star (suppose it occurs at the 2nd dimension), lower bound and upper bound for

all the ancestors (the first dimension) have to be adjusted. It is easy to change u2 to

u2', but for changing ul to ul', we have to visit I and G. In general, for each ancestor,

all the descendants need to be visited. This is very time consuming and inefficient.

this strategy is not implemented.

Figure 4.16 Point removal.

k-NN queries based on different percent of insertions for different strategies are com-

pared in terms of the CPU time in Section 4.5.4. The conclusion is that the adding levels

method outperforms the others.

97

Figure 4.17 (a) Adding levels. (b) Varying fanouts. (c) Chaining overflow data.

4.5.2 One-Phase Serialization

A index can be serialized by first creating it and then compact it into a contiguous space

with full space utilization [97]. But whenever new data is inserted, it has to be reserialized

and the whole index file need to be rewritten. The index is serialized during the process

of creating it. Some space in the structure is reserved to support updates. Although the

utilization is not full, the index is more expandable. The insertion of new points requires

only the rewriting of the modified parts of the index

A page manager is responsible for memory allocation. Each page can hold only one

type of data, but there can be multiple pages for each data type. There are four data types:

Node (including internal nodes and leaf nodes), OrderedPointSet, OrderedPoint, and Point.

Each node is a 5-tuple {lower, upper, child, left, right} . Lower and upper are the lower

and upper values for bounding the region, left and right are pointers pointing to the left

and right siblings, child is a pointer pointing to the leftmost child for the internal node,

the list of feature vectors for the leaf node (OrderedPointSet). OrderedPointSet is a set of

OrderedPoint, with the size specifying the cardinality of the set and a pointer pointing to it.

OrderedPoint is a Point with its ID. Point contains the actual feature vector or coordinates.

98

Here, all pointers are all logical pointers consisting of a page number and offset, each

of which is an unsigned 16-byte integer. Each page has a maximum of 64 KB. The actual

memory address is calculated as: actual_address = page_base_address + offset.

The page manager has two direct hash tables: all _pages and active_pages. all _pages

keeps a list of base addresses for all the allocated pages. The hash key is the page number.

active_pages keeps a list of base addresses for the active pages, which are the pages with

free space for further allocation. The hash key is the type number. Each data type has one

active page. To allocate more space for a data type, say Node, the active page for that type

is first checked to see whether there is enough space available. If so, the page number and

offset are returned, otherwise, a new page from the memory pool is allocated. At the same

time, an entry is added in all_pages and the active pages for type Node in active_pages

is modified, then the newly allocated page number and offset (0) are returned. This is

illustrated in Figure 4.18. The pointer marked with 'X' points to the old active page for

Node. Since the page does not have enough space to satisfy the request, a new page pointed

by the current active pointer is allocated.

Figure 4.18 Page manager with two hash tables: all_pages and active_pages. all_pages
is a list of page pointers pointing to all the allocated pages. active_pages is a list of page
pointers pointing to the current active pages for each data type.

99

Once the index structure is serialized, it is made persistent by writing the pages out

to the disk one by one in addition to the aforementioned metadata. Figure 4.19 shows the

index file format and page layout.

Figure 4.19 (a)Index file format. (b)Page layout.

Loading the Persistent OP-tree The OP-tree can be loaded by a sequential disk access.

The metadata and all the actual pages are read in sequentially. Two hash tables all_pages

and active_pages are built after the loading process. Once finished reading, the index

structure is fully restored as before it is written out.

4.5.3 Scalability

The OP-tree can be build in main memory for a relatively large dataset due to rapid growth

in main memory sizes [92]. The main memory is three orders of magnitude smaller than

(aggregate) disk capacity, so that not all indices can be held in main memory.

When the number of feature vectors (or data points) to be indexed is very large, a

clustering step is introduced to partition the dataset into clusters before building the index,

For each cluster, an OP-tree is built and serialized.

The standard k-means clustering algorithm [95] is used to partition the dataset. The

number of clusters is chosen, such that the index of each cluster can be held in main mem-

100

ory. The clustering algorithm is run multiple times, and the partition with the minimal sum

of squared error, which satisfies the main memory constraint is selected.

When adding new data to a clustered dataset, the cluster to which it belongs is first

identified and loaded. The insertion process marks all newly allocated and modified pages

as dirty so that they are saved on disk.

For k-NN queries, a "high-level" main memory resident index is used to determine

the clusters that need to be loaded to process a k-NN query. The OP-trees of relevant

clusters are loaded into main memory via sequential disk accesses. The filter and re-

fine paradigm by clustering and indexing will obviously improve query processing per-

formance. The detailed description can be found in [97].

4.5.4 Experimental Evaluation

File Size For one cluster, the SR-tree takes almost twice as much disk space as the one-

phase persistent OP-tree while the one-phase persistent OP-tree is slightly larger than the

original dataset as in Table 4.11.

Table 4.11 Parameters for the OP-tree for Different Datasets and Resulting File Sizes,
Size of the SR-tree, the Original Size, and Index Building Time

Dataset SYN64 COLH64 GABOR60 TXT55

Number of splits (fanout) 2 2 2 8

Leaf node capacity 40 40 60 40

File size (Two-phase) (KB) 51,686 35,083 27,348 35,414

File size (One-phase) ((KB) 51,921 35,019 27,401 36,236

SR-tree (KB) 92,328 64,176 57,968 61,832

Original dataset (KB) 51,186 34,823 27,189 35,118

Tree building (Two-phase) (sec) 19.7 10.0 9.9 12.1

Tree building (One-phase) (sec) 17.6 9.5 9.6 11.7

101

Figure 4.20 shows that the file sizes of TXT55, COLH64 and GABOR60 do not vary

much, regardless how many new data points are inserted using the adding level method.

For SYN64 there is a major increase in file size if more than 10% of the points are to be

inserted. The reason is that there are more cases when a newly inserted point incurs a split

of its own. For the average wall clock time, the trend is almost the same as the filesize,

since the time is determined by the file loading time which depends on the filesize. It is

reassuring that the increase in file size and CPU processing in SYN64 occurs at the same

time.

Figure 4.20 Performance of one-phase serialization. (a) Index size. (b) Wall clock time.

Different Strategies for Splitting The first three splitting methods during insertions de-

scribed in Section 4.5.1 are implemented. Indices are first built based on 90%, 80%, ..., and

10% of the original data, then 10%, 20%, ..., and 90% of the original data obtained by sim-

ple random sampling without replacement are inserted respectively. 1000 20-NN queries

are run ten times. The average number of internal nodes and leaf nodes, and the average

number of points visited and CPU time for 1000 20-NN queries are reported in Table 4.12.

The average CPU time and number of points visited for 1000 20-NNs based on different

strategies are also plotted in Figure 4.21. The results show that method (a) is the best since

it is insensitive to the number of points inserted and visits less points than method (b) and

102

(c) when most of the points are inserted. In the following experiment, the adding levels

method is used.

Table 4.12 Comparison of Three Split Policies for 20-NN Queries with 2 Splits

Add Level (a) Expand Level (b) Chained (c)

build insert internals leaves points cpu internals leaves points cpu internals leaves points cpu

0.1 0.9 1522.32 1208.48 31639.2 0.0184 148.34 1733.25 47978.5 0.0239 148.34 130.86 51228.1 0.0252

0.2 0.8 1540.37 1215.38 31836.8 0.0185 148.34 1733.25 47978.5 0.0207 279.18 235.85 46198.3 0.0234

0.3 0.7 1555.06 1219.39 31770.7 0.0182 515.68 1353.16 36360.6 0.0184 515.68 414.68 40638 0.0212

0.4 0.6 1555.71 1222.47 31805.3 0.0183 516.1 1372.86 36355.2 0,0185 516.1 415.37 40651.3 0.0213

0.5 0.5 1583.14 1252.76 31941.7 0.0179 930.8 1217.44 31360.9 0.0163 930.8 702.81 34297.7 0.0187

0.6 0.4 1604.55 1269.68 31839.2 0.0179 930.55 1240.41 31232.1 0.0163 930.55 702.19 34274 0.0188

0.7 0.3 1629.2 1291.19 31789.7 0.0181 930.94 1266.79 31127.3 0.0164 930.94 702.66 34281.3 0.0188

0.8 0.2 1633.65 1296.13 31815.6 0.0181 930.81 1275.36 31115.6 0.0164 930.81 702.59 34300.9 0.0188

0.9 0.1 1632.84 1318.71 32181.4 0.0171 1632.84 1318.71 32181.4 0.0171 1632.84 1318.71 32181.4 0.0188

Partial versus Full K-L Transform In this section, the effects of transforming the data

onto a new frame of reference applied on the OP-tree are studied, which is based on the

uncorrelated eigenvectors obtained from an increasing fraction of the dataset. Without K-L

transform (KLT), the percentages of number of points visited for SYN64, COLH64 and

GABOR60 are about 31%, 67%, and 10% respectively. With K-L transform, the percent-

ages are 13%, 28%, and 4% respectively. By incrementally inserting points, the average

tree levels are almost the same as the original index. Figure 4.22 and 4.23 give the average

of ten experiments to build the tree by randomly selecting a fraction of points to insert and

in each case 1000 k-NN queries are run. The OP-trees built with partial KLT (eigenvectors

obtained based on fraction of the data) have almost the same number of tree levels and stan-

103

Figure 4.21 Average CPU time and number of points visited for 1000 20-NN queries
based on different strategies for SYN64.

dard deviations as those with full KLT (eigenvectors are obtained based on the whole data).

In either case, the more number of points inserted, the more standard deviations obtained.

The OP-trees with partial KLT visit more points, and needs a little bit more CPU time for

k-NN queries. This shows that the OP-tree is better built for data transformed using KLT,

and is suitable for dynamic insertion.

4.6 Conclusions

In this chapter a static main memory resident ordered partition index (OP-tree), which is

highly efficient in processing k-NN queries, is introduced. The performance of OP-trees

versus sequential scans is compared and a significant improvement is observed, which is

higher when the index is built on the K-L transformed dataset Y, rather than the original X

dataset. The effect of a shortcut Euclidean distance calculation method is also considered,

which is more effective when used with sequential scans over the Y matrix. The selection

of parameters of the OP-tree is experimentally carried out and results show that a split

factor of two provides the best performance, although a higher split factor for dimensions

with higher eigenvalues (for their covariance matrix) reduces the number points touched

slightly. The results also show that in conducting k-NN queries the leaf node size should

be larger than k. A sensitivity to the cache line size is also expected in this case.

104

To demonstrate that a sequentially loadable index can outperform traditional multi-

dimensional indexing structures, which are accessed one page at a time, the CIPMM frame-

work is proposed, which is a general framework for clustering and indexing using persistent

main memory indices. The OP-tree is selected as the main memory index to illustrate the

proposed method, which is referred to as CIPOP. A two-phase serialization method is de-

scribed, which is built via dynamic memory allocation, then serialized by writing it onto a

contiguous memory area, and saved and reloaded into main memory incurring a single se-

quential access. The CIPOP method is compared against CISR in processing k-NN queries

is compared and results show that CIPOP outperforms CISR as far as CPU time and calcu-

lated elapsed time is concerned.

Since the OP-tree is static, it is extended to be semi-dynamic. There are numerous al-

ternatives in implementing the dynamic index, and three are proposed and evaluated. Point

deletion can be implemented by utilizing a bit to indicate whether an entry is deleted or not.

The reorganization of index pages can be initiated as a low priority process when the ef-

fective utilization of a page drops below a certain threshold. The differential file paradigm

[98] can be used to defer the insertion of the new points, so that they can be inserted more

efficiently as a batch. Because the two-phase serialization method have to be rebuilt and

reserialized each time when new data is inserted, a one-phase serialization method is pro-

posed. In this case only modified pages need to be written to disk. This implementation

is quite flexible in dealing with insertions of new points, but many implementation alterna-

tives remain to be investigated.

Modern operating systems prefetch the pages of the index, so that CPU and disk

access time are heavily overlapped. The calculated elapsed time, which has been a common

practice in performance studies of indexing structures, is used.

105

Figure 4.22 Comparison for different measurements on three datasets for applying partial
K-L transform and full K-L transform. (a, b, c) are levels of the trees and their standard
deviations. (d, e, f) are percentages of points visited.

106

Figure 4.23 Comparison for different measurements on three datasets for applying partial
K-L transform and full K-L transform. (g, h, i) are average CPU time for running 1000
20-NN queries. (j, k, 1) are standard deviations for the levels of the tree.

CHAPTER 5

THE STEPWISE DIMENSIONALITY INCREASING - SDI INDEX FOR

HIGH-DIMENSIONAL DATA

Similarity search is a powerful paradigm for image and multimedia databases, time series

databases, and DNA and protein sequence databases. Features of data objects are extracted

and transformed into high-dimensional vectors. Object similarity is determined by the dis-

tance of the endpoints of these feature vectors and is usually implemented as k -NN queries.

The cost of processing k-NN queries via a sequential scan increases with the number of

objects and the number of features. Multi-dimensional index structures can be used to pro-

posed to improve the efficiency of k-NN query processing. but lose their effectiveness as

the dimensionality increases. The curse of dimensionality manifests itself in the form of

increased overlap among the nodes of the index, so that a high fraction of index pages are

touched in processing k-NN queries. The increased dimensionality results in a reduced

fanout and an increased index height. In this chapter, a Stepwise Dimensionality Increas-

ing - SDI-tree index is proposed, which aims at reducing the number of disk accesses and

CPU processing cost. The index is built by using feature vectors transformed via princi-

pal component analysis, resulting in a structure with fewer dimensions at higher levels and

increasing the number of dimensions from one level to the other. Dimensions are retained

in nonincreasing order of their variance according to a parameter p, which specifies the

incremental fraction of variance at each level of the index. The optimal value for p is de-

termined experimentally. Experiments on three datasets have shown that SDI-trees access

fewer disk pages than SR-trees and VAMSR-trees and incur less CPU time than Vector

Approximation - VA-Files in addition.

107

108

5.1 Introduction

The proliferation of novel database applications has necessitated new algorithms and paradigms.

Such applications include content-based image retrieval in image and multimedia databases,

sequence similarity search in DNA and protein databases, and similarity matching in time

series databases. Objects are represented by N-dimensional feature vectors, where N can

be quite high (in the hundreds) and similarity is defined by Euclidean distance or more

complex distance functions [91]. In the case of image databases, for example, features are

based on color, texture, and shape.

The processing of k-nearest neighbor - k-NN queries on the feature vector space is a

popular similarity search paradigm, whose performance is investigated in this study. These

queries can be carried out by scanning the dataset of M objects with the N-dimensional

feature vectors, but the CPU time and hence the elapsed time for this operation might be

unacceptably high for the online processing of k-NN queries. Building a multi-dimensional

index on the dataset is a popular method to reduce the cost, which ensures that only points

in appropriate neighborhoods are inspected [91].

With the increasing dimensionality of feature vectors, most multi-dimensional in-

dices lose their effectiveness. The so-called dimensionality curse [2] is due to an increased

overlap among the nodes of the index and a low fanout, which results in increased index

height. For a typical feature vector based hierarchical index structure, each node corre-

sponds to a page. Given a fixed page size S (minus space dedicated to bookkeeping), num-

ber of dimensions N, and s = sizeo f (dataType), the fanout for different index structures

is as follows.

Hyperrectangles R*-trees [48] consist of a hierarchy of hyperrectangles, with higher lev-

els hyperrectangles embedding those at the lower levels. Each hyperrectangle is

specified uniquely by the lower left and upper right coordinates of two extreme points

positioned diagonally in N-dimensional space or alternatively, by the centroid and

109

its distance from the N "sides" of the hyperrectangle. The cost is the same in both

cases, so that the fanout is F ,',', SI(2* N * s).1

Hyperspheres Similarity Search - SS-trees consist of a tree of hyperspheres [49], with

each node embedding the nodes at the lower level. SS-trees have been shown to out-

perform R-trees. Each hypersphere is represented by its centroid in N-dimensional

space and its radius, i.e., the fanout is F ≈ S/((N +1)* s).

Hyperspheres and hyperrectangles Spherical-Rectangular - SR-trees [17] combine SS-

trees with R-trees, which encapsulate all of the points in the index. The region of

the index is the intersection of the bounding hyperrectangle and the bounding hy-

persphere. This results in a significant reduction in the size of the region, since the

radius of the hypersphere is determined by the distance of the farthest point from its

centroid. The space requirement per node is the sum of the space requirements in

SS-trees and R* trees, so that the fanout is F ≈ S/((3 * N +1) * s).

The fanout is only five (F = 5) for SR-trees with page size S = 8K B, dataType

which is double (s = 8 bytes), and N = 64 dimensions. A direct consequence is that the

number of pages retrieved grows with the height of the tree: L =-- [logF (B), where B is

the number of leaf nodes. A higher L contributes to access cost, although the highest levels

of the tree are usually cached in main memory. The Stepwise Dimensionality Increasing

- SDI-tree indexing structure is the product of dimensionality reduction and hierarchical

organization. It uses a reduced number of dimensions at the higher levels of the tree to

increase the fanout, so that the tree height is reduced. The number of dimensions increases

level by level, until full dimensionality is attained at the lower levels.

The intuition comes from real life situations, where objects are categorized into a few

broad classes based on a few features first, but as the classification is further refined, more

and more features are added [36]. Each level has the characteristics of the level above it,

1An R*-tree might be implemented as a Spatial Access Method - SAM, rather than a Point Access
Method - PAM [11], so that points in the leaf nodes are represented as hyperrectangles.

110

plus some distinguishing features. The differences become negligible at the lower levels of

the tree.

Several dimensionality reduction methods have been applied recently in database

applications [2]. Principal Component Analysis - PCA [13], Singular Value Decomposition

- SVD [33], and Karhunen-Loève Transform - KLT [2] are different ways to achieve the

same goal. When all of the objects are known in advance, these methods introduce the

least normalized mean squared error - NMSE, in transforming the data from N to n < N

dimensions [33, 3]. A brief description of these methods is given as part of related work in

Section 2.

At the top levels of the index a few principal components with the highest variance

are used, but more and more dimensions are included at the lower levels of the tree. All

the dimensions are stored at the leaf nodes. In this manner fanouts at the upper levels

are large, and more branches can be hopefully pruned by retrieving just one disk page.

The inefficiency associated with the curse of dimensionality thus can be lowered. In fact,

experiments show that SDI-trees, especially those with carefully tuned parameters, incur

fewer disk accesses than SR-trees and VAMSR-trees.

A reduced number of dimensions results in a lower cost for processing k-NN queries,

but the search may no longer be exact, i.e., yield a recall [2] below 100% [3]. A postpro-

cessing step to achieve exact k-NN processing given in [80] and extended in [89] is not

required for SDI-trees, since the lowest level of the index has all of the dimensions. CPU

time is improved due to the fact that shorter vectors can be cached more efficiently [99].

The rest of this chapter is organized as follows. Section 5.2 is a review of related

work in this area, followed by a brief review of the SVD and PCA methods. Section 5.3

defines the SDI-tree and its nearest neighbor search algorithm. Section 5.4 evaluates the

performance of the SDI-tree and compares it with other index structures. Conclusion and

future plans are discussed in Section 5.5.

111

5.2 Related Work

There has been enormous activity in developing and evaluating multi-dimensional indices

in the last two decades [11, 91, 100]. Here two novel index structures are first described,

which bear the most similarity to SDI-trees. The mathematics behind the SVD and PCA

dimensionality reduction methods are then specified.

5.2.1 Background on Index Structures

The Li-tree is a memory-resident index structure [99], which addresses the problem of

minimizing misses in L2 caches (with 32-128 byte line sizes) as the dimensionality of

feature vectors increases. This results in a reduced CPU time. Each level of the index

represents the data space starting with a few dimensions and expanding to full dimensions,

while keeping the fanout fixed. The nodes of the index increase in size from the highest

level to the lower level and the tree may not be height-balanced. This is not a problem since

the index is main memory resident. Experiments show that the index reduces the cost of

distance calculation exploiting small cache line sizes.

The Telescopic Vector - TV-tree is a disk resident index with nodes corresponding to

disk pages [36]. TV-trees partition the data space using Telescopic Minimum Bounding

Regions - TMBRs, which have telescopic vectors as their centers. These vectors can be

contracted and extended dynamically by telescopic functions defined in [36], only if they

have the same number of active dimensions (a). Features are ordered using the Karhunen-

Loève-transform applied to the whole dataset, so that the first few dimensions provide the

most discrimination. The discriminatory power of the index is heavily affected by the value

of the parameter a, which is difficult to determine. In case the number of levels is large,

the tree will still suffer from the curse of dimensionality. The top levels of TV-trees have

higher fanouts, thus reducing the disk I/O cost for disk accesses. Experimental results on a

dataset consisting of dictionary words are reported in the paper.

112

The SDI-tree differs from the A-tree in that it is a disk resident index structure with

fixed node size, while the A-tree is a main memory resident index with variable node sizes

and fixed fanouts. The SDI-tree differs from the TV-tree in that it uses a single parameter,

specifying the fraction of variance to be added to each level, without the risk of having a

large number of active dimensions.

In the experiments, the SDI-tree is compared with the VAMSR-tree and the Vector

Approximation - VA-File [18]. The VAMSR-tree uses the same split algorithm as VAM-

Split R-tree [101], but it is based on an SR-tree structure, which is statically built in a

bottom-up manner. The dataset is recursively split top-down using dimension with the

maximum variance and choosing a pivot, which is approximately the median.

The VA-File method represents each data object with the cell to which it belongs.

Cells are defined by a multi-dimensional grid, where dimension i is partitioned 2bi ways.

Nearest neighbor queries sequentially scan the VA-File to filter the search space. This is

followed by a refinement step, which retrieves the actual objects and returns the nearest

neighbors.

5.2.2 Background on Dimensionality Reduction

SVD and PCA are different computational methods to achieve the same goal, i.e., to ro-

tate a dataset onto its principal components, so that optimal dimensionality reduction can

be attained by eliminating principal components with the smallest variance. Both meth-

ods can be used to transform the feature vectors of the original dataset (say X) into an

uncorrelated frame of reference (say Y). The coordinates of Y are in fact the principal

components, which without loss of generality are in nonincreasing order of corresponding

eigenvalues [2].

Given an M x N dataset X with M objects each represented by N features, let tti

denote the mean for column j:

113

Let lm denote a column vector of length M with all elements equal to 1. SVD

decomposes X — lmp,T , whose columns have zero means, as follows:

X — lm p,T = USVT ,

U is an M x N column-orthonormal matrix, S is aNxN diagonal matrix of singular

values, and V is an N x N unitary matrix of the eigenvectors.

Given that C denotes the covariance matrix of dataset X, PCA decomposes C as

follows:

C= XTX/M - μμT = VΛVT,

where V is the matrix of eigenvalues and VT is its transpose. The diagonal matrix A

contains the eigenvalues of C in nonincreasing order: Ai > A2 > . . > AN. All the

eigenvalues are positive, since the covariance matrix C is positive semi-definite. It is known

that Ai = 1 < j < N.

The following transformation yields zero-mean, uncorrelated features, which are

used for dimensionality reduction and indexing.

Y = (X — lmpT)V.

5.3 Stepwise Dimensionality Increasing - SDI tree

The SDI-tree shown in Figure 5.1 is a disk-resident index with each node corresponding to

a disk page, which is suited for high-dimensional indexing. Starting with a few features at

114

the highest level, the number of retained feature vector elements is increased to include all

of the dimensions.

Figure 5.1 The SDI-tree representation.

In this section, the structure of the index is first described, followed by index con-

struction and the algorithm for processing k-NN queries.

5.3.1 The Index Structure

A node of the index is an array of entries as shown in Figure 5.2. The size of each entry is

denoted by EntrySize, which is a function of the dimensionality. Given that the number

of dimensions at level / is nsl < N and the page size S, the fanout at level / is: Fsl

SI EntrySize(ni). The nodes of the tree are organized as hyperspheres, but unlike the

SS-tree [49], both the centroid and the radius is calculated based on 1'1 dimensions. The

number of points covered by this node is used to update the centroid when new data points

are inserted.

Figure 5.2 Index node structure.

To determine the number of dimensions ni and the fanout Fsl at level /, a parameter p

is employed to specify the fraction of variance introduced at successive levels of the index,

115

starting with the highest level and until 100% variance is achieved. At level l (1 > 1), the

number of dimensions is selected as the smallest nsl satisfying:

where Ai, 1 < i < N, correspond to the eigenvalues of the covariance matrix. The ratio

is equal to one for nsl = N. Since 5;_ Ak/Eikv_i A k is the Normalized Mean Squared

Error - NMSE [3], this is the error introduced by the index at level 1.

Figure 5.3(a) shows the cumulative normalized variance versus the number of dimen-

sions for dataset COLH64. With p = 0.20 the number of dimensions at level one through

five is given as 2, 4, 8, 16 and 64, respectively. Figure 5.3(b) shows the case for dataset

TXT55 with p = 0.30. The number of dimensions at level one through four in this case is

2, 8, 21, and 55.

Figure 5.3 Cumulative variance v.s. number of dimensions. (a) COLH64. (b) TXT55.

Given the fanout Fsl at level 1, which can be determined simply from the cumulative

normalized variation graph for a certain value of p, it seems to be possible to compute

the number of levels of the tree. This is impossible in practice, however, since given the

number of clusters, clustering algorithms may produce clusters with highly unequal sizes.

116

Not all leaf nodes are at the same depth, and the height of the tree slightly varies. The

method in [99] assigns a target value to the number of levels L of the index and then assign

1/L of the variance to each level.

5.3.2 Index Construction

The SDI-tree is constructed by recursively partitioning the dataset Y (in the transformed

domain) into Fsl clusters based on ni dimensions at level /. Since hypersphere clusters are

preferred, the k-means clustering method [95] is utilized, with the initial set of centroids

selected to maximize their pairwise distances, as in [29]. For each subcluster Cl,j, j =

1, . . . , Fl, if it fits in a page, then a leaf node is created. Otherwise, recursively construct

the subtree rooted at Cl,j. The algorithm for constructing the index is described as in

Algorithm 5.

Algorithm 5 constructIndex(/, p, data)

1: if (data fits in one page) then

2: create a leaf node .C; return ,C;

3: else

4: find the minimum dimension nsl up to which the calculated variance exceeds p x 1;

5: calculate the fanout Fsl;

6: while (average number of points in each cluster < half of the leaf capacity) do

7:

8: calculate the fanout Fsl;

9: partition the data into Fsl clusters using nsl dimensions;

10: create an internal node I;

11: for each subcluster C do

12: constructIndex(/+1, p, C);

13: fill out the entry in I;

14: return I;

The SDI-tree can be made balanced by generating equal sized clusters. The method

proposed in [102] is experimented to ensure that the size of each subcluster does not ex-

ceed half of the original cluster. Let Cm denote the subcluster with maximum size, which

118

Figure 5.4 Cluster prune with projected distance.

Two priority queues are used: (i) pque_index is a minimum priority queue for those nodes

whose parent has been processed, but itself has not. (ii) pque_knn is a maximum priority

queue with fixed length k for the candidate nearest neighbors. Line 1 transforms the query

point Q to Q' according to the eigenmatrix of the dataset. Line 7-8 terminates the search

process when the distance from the query to a node (either internal or leaf) is greater than

the current search radius. This follows the lower bounding property. Line 11-12 inserts the

nodes which have distance less than or equal to the current search radius to pque_index.

Line 15-16 inserts the points with distance less than or equal to the current search radius to

pque_index. Line 17-18 adjusts the search radius.

5.4 A Performance Study

Three datasets are used in the experiments: COLH64, GABOR60 and TXT55. COLH64 is

68,041 x 64 color histograms extracted from 68,014 color images2. GABOR60 is 56,644

x 60 Gabor features extracted from MMS (Multimission Modular Spacecraft for Landsat

2 http://kdd.ics.uci.edu/databases/CorelFeatures

118

No points
in this shell

Figure 5.4 Cluster prune with projected distance.

Two priority queues are used: (i) pque_index is a minimum priority queue for those nodes

whose parent has been processed, but itself has not. (ii) pque_knn is a maximum priority

queue with fixed length k for the candidate nearest neighbors. Line 1 transforms the query

point Q to Q' according to the eigenmatrix of the dataset. Line 7-8 terminates the search

process when the distance from the query to a node (either internal or leaf) is greater than

the current search radius. This follows the lower bounding property. Line 11-12 inserts the

nodes which have distance less than or equal to the current search radius to pque_index.

Line 15-16 inserts the points with distance less than or equal to the current search radius to

pque_index. Line 17-18 adjusts the search radius.

5.4 A Performance Study

Three datasets are used in the experiments: COLH64, GABOR60 and TXT55. COLH64 is

68,041 x 64 color histograms extracted from 68,014 color images2. GABOR60 is 56,644

x 60 Gabor features extracted from MMS (Multimission Modular Spacecraft for Landsat

2 http://kdd,ics,uci,edu/databases/CorelFeatures

119

Algorithm 6 knnSearch(Q, root, k)
1: transform Q to Q' according to the eigenmatrix;

2: PriorityQueue pque_index, pque_knn;

3: insert (0, root) into pque_index;

4: Rq = oo;	 II initialize the search radius

5: while (pque_index is not empty) do

6: top = pque_index.extractMin();

7: if (top.dist > Rq) then

8: break;

9: if (top.node is an internal node) then

10: for each child c of top.node do

11: if (dist_s(g, c)-R' < Rq) then	 // distance in subspace

12: insert (dist_s(Q', c)-R', c) into pque_index,

13: else	 II top.node is a leaf node

14: for each point P in the top.node do

15: if (dist(Q, P) < Rq) then

16: insert (dist(Q, P), P) into pque_knn;	 II distance in origin space

17: if (pque_knn is full) then	 II pque_knn has fixed length k

18: update Rq;

4) images from different parts of the country. TXT55 is 79,814 x 55 Gabor, spatial, and

wavelet features from 400 photos.

The average disk accesses of one thousand 20-nearest-neighbor queries are measured

for SDI-trees, SR-trees and VAMSR-trees. The queries are randomly selected without re-

placement from the datasets. The page size is 8KB in all cases. The split factor and reinsert

factor for the SR-tree is 40% and 30%, respectively. Given that the already introduced near-

est neighbor search algorithm for SDI-tree is based on the HS algorithm and this algorithm

accesses as few pages as theoretically possible [52], to make the comparison fair the HS al-

gorithm for SR-tree is implemented, instead of the embedded RKV algorithm provided at

[72]. The SR-tree is used as a reference since it outperforms SS-tree and R*-tree [17].

The variance increment p affects the number of levels. Experimental results show

that the number of levels differ at most by two levels. This is also the difference between

120

the maximum and minimum number of levels of the tree in the case of datasets used in this

experiments. When p < 0.3, the number of disk accesses is very high, so in Figure 5.5 the

number of disk accesses versus p ranging from 0.3 to 1 is plotted. The minimum number

of disk accesses is achieved at p = 0.4, where the height of the tree ranges from 3 to 5.

The graph for the Gabor dataset is not plotted, since p has little effect on the number of disk

accesses, although p -= 0.8 yields a slightly better performance.

Figure 5.5 Number of disk accesses versus variance increment step (p) .

Figure 5.6 compares the performance of SDI-trees, SR-trees and VAMSR-trees3. The

SDI-tree has fewer levels, but more nodes than the other two indices. The number of nodes

of the SDI-tree can be greatly reduced, to as much as one-fifth of the original size, by en-

forcing the full utilization of the leaf nodes. This can be achieved by sorting the data along

the maximum variance dimension and assigning the points one by one to the leaf nodes.

Unfortunately the overlaps increase, resulting in a significant degradation in search perfor-

mance (disk accesses and number of points visited). Since application search efficiency is

more important than space on modern disk drives, the full utilization implementation was

not adopted.

In processing k-NN queries, the SDI-tree visits less internal nodes and leaf nodes,

which leads to fewer disk accesses and fewer points checked. In terms of the total disk ac-

3 http://research.nii.ac.jp/ katayama/homepage/research/srtree/

121

cesses, Figure 5.6 shows that the SDI-tree improves 14% over SR-tree, 20% over VAMSR-

tree for COLH64 and 41% over SR-tree, 35% over VAMSR-tree for TXT55.

Dataset Index
Variance

step
Internal
created

Leaf
created Level

Internal
visited

Leaf
visited

Points
visited

Disk
accesses

COLH64

SDI-tree 0.4 1697 27484 4 262 314 2333 576

SR-tree 2198 5823 7 434 232 2900 666

VAMSR-
tree

1138 4537 6 343 378 5660 721

TXT55

SDI-tree 0.4 1512 26979 5 89 73 620 162

SR-tree 1794 5934 6 210 64 943 274

VAMSR-
tree

890 4435 5 122 126 2258 248

GABOR60

SDI-tree 0.8 1264 19053 4 8 13 60 21

SR-tree 2121 5124 7 22 7 80 29

VAMSR-
tree

889 3541 6 30 11 171 41

Figure 5.6 Performance comparison of 20-NN searches for SDI-trees, SR-trees and
VAMSR-trees.

The k-NN search performance has also been studied over datasets with varying num-

ber of dimensions, where after the transformation onto the principal components, the di-

mensions with the highest variability are retained. Figure 5.7 depicts the detailed search

performance in terms of page accesses, points visited, floating point operations and the

CPU time for TXT55. For the SDI-tree the value of p providing the optimal performance

is selected.

The SDI-tree requires less CPU time than the other two methods, since it always

touches fewer points and hence incurs fewer floating point operations. Another reason

why it requires less CPU time is that it deals with shorter vectors. Since the SDI-tree also

accesses fewer pages, it outperforms the other two methods in terms of the elapsed time,

which includes disk access time. The SDI-tree is suitable for high-dimensional data, since

with the dimensionality increasing, the gap between SDI-tree and other methods widens.

The SDI-tree is also compared with the VA-File [18]. Although the VA-File visits

fewer points in the dataset with the original precision, it has to sequentially scan the whole

approximation file, which contributes to CPU time. The performance (number of points

122

visited, floating point operations ,and search time) of the VA-File is highly dependent on the

number of bits (bi) per dimension. bi is varied and the best one (bi = 4 for all dimensions)

is chosen in the experiments. The search time is plotted in Figure 5.7(d) and it is observed

that the SDI-tree outperforms the VA-File.

Figure 5.7 Details of k-NN search performance with k = 20 versus dimensionality over
1000 randomly chosen queries.

5.5 Conclusions and Future Plans

The SDI tree assigns a variable number of dimensions to the successive levels of an index,

whose nodes are spherical and are obtained using the k-means clustering method. The

dataset to be indexed is subjected to principal component analysis, the dimensions are

123

ordered in decreasing order of their variance, and a fraction p of the variance of the dataset

is assigned to each level.

Experimental results with three datasets show that SDI-trees with carefully tuned

parameters access fewer pages from disk, visit fewer points and incur fewer floating point

operations, resulting in less CPU time than the SR-tree and VAMSR-tree. The SDI-tree

also outperforms the VA-File in terms of CPU time. Combining the fact that it accesses

less pages, the elapsed time (including disk I0s) will also outperforms the other two. The

SDI-tree is especially suitable for high-dimensional data, since with the dimensionality

increasing, the gap between SDI-tree and other indices widens.

Real world data is usually correlated either globally or locally [14, 3]. Global corre-

lation means most of the variance in the dataset can be captured by a few principal compo-

nents. It may be that global correlation does not exist and there are subsets of data that are

locally correlated. In the future, elliptical clustering [103] will be applied before building

the index which may be called clustered SDI - CSDI. The performance gains of the CSDI

method will be studied. Furthermore, since both the A-tree and SDI-tree are static indices,

methods to make them dynamic will be investigated. Other indexing structures will also be

used as references for comparison.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

High-dimensional indexing is indispensable to facilitate similarity search for modern database

applications. Due to the curse of dimensionality, the efficiency of indexing methods de-

grades. In this dissertation, the inefficiency is dealt with from three viewpoints.

• Dimensionality Reduction

Singular Value Decomposition - SVD can be used to reduce dimensionality for glob-

ally correlated datasets. Clustering and SVD (CSVD) can achieve higher dimension-,

ality reduction for datasets with local correlations. Exact nearest neighbor search is

difficult to obtain when the dimensionality is high. An approximate nearest neigh-

bor search algorithm has been proposed by using CSVD in [3] with minimum loss

of distance information. The performance of R*-trees, SR-trees, and hybrid trees is

compared from the viewpoint of CPU time and disk accesses. The SR-tree, with the

best overall performance, is selected as the within cluster index of the CSVD method.

The performance of CSVD with indexing has been studied in this dissertation. The

larger the NMSE, the few number of dimensions retained. Given an NMSE, the higher

the degree of clustering, the higher the recall. However, more clusters require more

disk page accesses. Experiments on two datasets show that certain number of clus-

ters can be obtained to achieve a higher recall while maintaining a relatively lower

query processing cost.

• Persistent Main Memory Index

Multi-dimensional index can be classified into disk resident index and main memory

resident index. Disk resident indices aim at minimizing the number of disk accesses

for query processing, while main memory resident indices focus on reducing the

124

125

CPU time for query processing. Since sequentially accessing large chunks of data

is tantamount to randomly accessing multiple small pieces of data and the idea that

a sequentially loadable index can outperform traditional multi-dimensional indexing

structures, which are accessed one page at a time, a general framework, Clustering

and Indexing using Persistent Main Memory - CIPMM, is proposed. A specific in-

stance CIPOP, indexing using the persistent OP-tree, is elaborated and evaluated.

Experiments show that CIPOP outperforms CISR, clustering and indexing using the

SR-tree, in terms of CPU time and calculated elapsed time for k-NN queries. Since

the OP-tree is static, semi-dynamic methods have been investigated and a serializa-

tion method supporting insertions have also been proposed.

• Dimensionality Varying Index

Multi-dimensional index usually has fixed fanout and dimensionality. The fanout de-

creases monotonically with the dimensionality increasing and lower fanouts increase

levels of the index. Dimensionality can be varied from top levels of the index to

lower levels starting with dimensions having larger variances, which can be achieved

by applying SVD or PCA (Principal Component Analysis). A Stepwise Dimension-

ality Increasing - SDI-tree is proposed. Branches can be pruned as early as possible

since dimensions at top levels contribute most to the Euclidean distance. Experi-

ments on three datasets show that the SDI-tree with carefully tuned parameters has

fewer disk accesses, visits fewer points, and incurs fewer floating point operations,

resulting in less CPU time than the SR-tree and VAMSR-tree. This fact implies that

the SDI-tree has less elapsed time than the other two. It also outperforms the VA-File

in terms of CPU time. The SDI-tree is especially suitable for high-dimensional data,

since with the dimensionality increasing, the gap between SDI-tree and other indices

widens.

126

As far as future work is concerned, the k-means clustering method needs to be com-

pared with other methods, especially elliptical clustering [103]. More work remains

to be done on the effectiveness of the point insertion methods into the OP-tree. Per-

formance of SDI-trees is expected to further improve if clustering is introduced prior

to build the index. More recently proposed high-dimensional indexing methods, such

as iDistance [56], are to be investigated.

APPENDIX A

QUERY TYPES

There are six types of queries in high-dimensional applications [52]. Let D (P , Q) be the

distance between point P and Q, the queries can be defined as follows.

Definition A.1 (Point Query) Given a query point Q, find if there is a point P such that
D (P, Q) = 0.

Definition A.2 (Window Query) Given a rectangular region in the data space, find all
points falling within the region. The specified hyperrectangle is always parallel to the axis.

Definition A.3 (Range/Spherical Query) Given a query point Q and a maximum search
distance r, select all the points P, such that D(P,Q) < r.

Definition A.4 (Nearest Neighbor Query) Find a point P in the dataset which is the clos-
est point to the query point Q.

Definition A.5 (k-Nearest Neighbor Query) Given a query point Q and an integer k > 1,
select k points knn(Q , k) in a dataset X, which have the shortest distance from Q.

knn(Q, k) = {P0, 	 , Pk_i E

E X — {P0, . . . , Pk_i}Λ 	E {0, . . . , k — 1} : D (Pi, Q) > D (o , Q)} .

Definition A.6 (Approximate Nearest Neighbor Query) Find points which are not much
farther away from the query point Q than the exact nearest neighbor

Above queries can be generally referred to as similarity search, which is an impor-

tant operation in high-dimensional applications. Since a meaningful hyperrectangle for

window queries and value for r in spherical queries is difficult to specify, all types of near-

est neighbor queries are more interesting. Approximate queries are useful since similarity

in real world applications is not an exact concept and approximate queries can reduce the

processing cost.

127

APPENDIX B

CHARACTERISTICS OF HIGH-DIMENSIONAL SPACE

High-dimensional space has its distinctive characteristics which result in multi-dimensional

indices to lose their efficiency when the number of dimensions is relatively high. The

following are some of the characteristics.

Lack of Imagination Given d-dimensional cubic data space [0, 1]d and the centroid c =

(0.5, . . . , 0.5), Lemma in [52] "Every N-dimensional sphere touching (or intersecting) all

the (N-1)-dimensional boundaries of the data space also contains the centroid c." seems

sound. Actually it does not held when the dimensionality is high. Consider a 16-dimensional

sphere centered at p (0.3, . , 0.3) with radius 0.7, it can not contain the centroid c even

it touches all 15-dimensional surface since the (Euclidean) distance between p and c is 0.8.

Sparsity Due to the exponential growth of the volume, data space in high dimension is

sparsely populated. The probability that a point lying within a window query with side w

is: P(w) wN in the d-dimensional space [0, 1] N. When the dimensionality is high, even

with very large w, the window query is not likely to contain a point, e.g., a window query

with w -= 0.95 only selects 0.59% of the data points in a uniform unit data space for N =

100. Similar effect can be observed for spherical queries. The probability that an arbitrary

point lies inside the largest possible sphere (radius r) within a hyper-cube whose sides are

2r is given as:

where the F function is defined as:

128

129

The probability of a point lying within a window query (w = 0.5) and range query

(r = 0.5) versus different dimensions is depicted in Figure B.1. It can be seen that the

probability decreases sharply as the number of dimensions increases [18].

Figure B.1 (a) Window query. (b) Range query. Both are in N-dimensional space [0, 1] N.

Since space organizing techniques index the whole domain space, a query window

may overlap part of a page that actually contains no points at all, which is the "dead space"

indexing problem [52].

The Surface is Everything The index structure usually splits the data space using (N-1)-

dimensional hyperplanes [52]. It recursively selects a split dimension and chooses a split

value along that dimension until the number of data items can be held in a data page. The

whole process can be described as a split tree which is actually a binary tree. The number

of split dimensions for a given data page is on the average:

where M is the number of data items, C(N) is the capacity of a data page. If all dimensions

are equally used as split dimensions (e.g. uniformly distributed data), a data page can be

split at most once or twice in each dimension. Thus, the majority of the data pages are lo-

130

cated at the surface of the data space. In other words, the probability of a point is closer

than 0.1 to an (N-1)-dimensional surface is increasing sharply with the dimensionality in-

creasing, which is shown in Figure B.2.

Figure B.2 The probability of a point closer than 0.1 to an (N-1)-dimensional surface.

Indistinctive Nearest Neighbors Since high-dimensional space has high degree of free-

dom, all of the points seem to be at similar distance to a given point such that no significant

difference exists. For example, when points are uniformly distributed in a unit hypercube,

the distance between two points is almost the same for any combination of two points. The

distance to the nearest data approaches the distance to the farthest data point as dimen-

sionality increases [54]. A new nearest neighbor search algorithm which determines the

distinctiveness of the nearest neighbors during search operation is proposed in [104]. In-

distinctive nearest neighbors are more likely to occur as dimensionality increases. When

M N-dimensional points are distributed uniformly within the hypersphere centered at the

query point with radius R, the expected distance to k-th nearest neighbor dk is given w

follows [104]:

131

The ratio of the (k + 1)th-NN distance to the kth-NN distance can be obtained[105]

as in Equation B.2, which indicates that the ratio decreases monotonically as the dimen-

sionality increases for high-dimensional uniform distribution.

This effect of dimensionality on nearest neighbors causes that the NN search per-

formance degrades, since many points have almost the same similarity with the nearest

neighbor and NN search operation is forced to examine many points before determining

the true nearest neighbor [104].

Overlap The overlap can be defined as follows[32]:

Definition B.1 (Overlap) The overlap of an R-tree node is the percentage of space covered

by more than one hyperrectangle. If the R-tree node contains n hyperrectangles the overlap

is

Definition B.2 (Weighted Overlap) The weighted overlap of an R-tree node is the per-

centage of data objects that fall in the overlapping portion of the space.

When query points are expected to be uniformly distributed over the data space, Def-

inition B.1 is an appropriate measure. When the distribution of queries corresponds to the

distribution of the data and is nonuniform, Definition B.2 is more appropriate. Experiments

in [32] show that the overlap of the bounding boxes in the R*-tree directory is rapidly in-

creasing to about 90% when increasing the dimensionality to five. Note that overlap is not

an R-tree specific problem, but a general problem in indexing high-dimensional data.

132

All of the above effects lead to the so-called "curse of dimensionality" i.e., the per-

formance of indexing methods deteriorates when going to higher dimensions. Simple se-

quential scan can outperform the indexing methods beyond 10-15 dimensions [54].

APPENDIX C

THE OP-TREE VERSUS THE OMNI-FAMILY

C.1 The OMNI-Family

The OMNI-Family [58] reduces distance calculations according to a set of focal points.

The focal points are selected as orthogonal as possible to minimize the search space. The

distances between each focal point and all the data points are calculated. Given a query

point q and a search radius r, the search space can be pruned to be [c/q,f, — r, clq,L + r],

where dq,f, is the distance between q and focal point L. Given F focal points, the search

space is reduced to be n,[dg,f, - r, clq,L + r]. Since the focal points are preselected, one

more extra focal point will maximize the average reduction if they are far apart and equally

distant from each other. So a good number of focal points would be between [Dl + 1 and

2 * ± 1, where b is the intrinsic dimension. The correlation fractal dimension can be

used as an approximation of the intrinsic dimension for a dataset. The linear algorithm in

[78] to estimate the correlation fractal dimension is used in this experiment. Results are

shown in Table C.1.

Table C.1 Fractal Dimensions

SYN64 COLH64 GABOR60 TXT55

OrigDim 64 64 60 55

FracDim 2.3 4.2 6.0 1.6

To find the range niF_, [01q,f,- r, clq,fi+ r], several alternative methods can be applied:

sequential scan, B+-trees, and R-trees. In the case of B+-trees, a B+-tree is built for each

focal point, the intersection of the range search results on each tree is the desired range.

In the case of R-trees, the distances between each point and all the focal points form a F

dimensional data, and a R-tree is built for this multi-dimensional data with pointers to the

original data stored on the leaf nodes. The k nearest neighbor search can be applied directly

133

134

on the R-tree. The prune distance is decreased whenever a new closer candidate is found

based on the original data.

C.2 Experimental Results

The OMNI sequential scan is implemented and compared with the the standard sequential

scan and the OP-tree in this section. To perform k-NN search on the OMNI sequential

scan, a range search with an initial radius, which is estimated using fractal dimensions as

in [78], is issued, then another range search with the distance to the current k-th nearest

neighbor is performed.

Number of Focal Points Selection The CPU time for 1000 queries is measured versus

variable number of focal points as in Figure C.1. The CPU time is first decreased, then

increased with the number of focal points increasing. The minimum CPU time occurs in

the range of [4, 7] for SYN64 which has fractal dimension 2.3 as shown in Table C.1. This

range matches the Lb] ± 1, 2 * rn] + 1 as mentioned above. Four is used as the number

of focal points in the following experiments.

Figure C.1 CPU time versus number of focal points. (a) k-NN query with k = 20. (b)
Range query with radius = 0.5 and selectivity 2.4%.

135

Range Query The OP-tree, standard and OMNI sequential scan are compared for range

query as in Figure C.2. It shows that the OP-tree outperforms the other two when the selec-

tivity is relatively low. This is due to the highly overlapped property in high-dimensional

space, which leads to multiple search paths being visited. The OMNI sequential scan is

better than standard sequential scan until a relatively high selectivity (e.g. 20%). The se-

lectivity is obtained from the corresponding radius.

Figure C.2 Range query. (a) CPU time versus the radius. (b) CPU time versus the selec-
tivity.

k-NN Search The OP-tree is also compared with the standard and OMNI sequential scan

for k-NN queries. All of the three methods are insensitive to the number of nearest neigh-

bors. The OP-tree performs consistently better than the other two methods.

Figure C.3 The CPU time versus k for k-NN queries for three methods.

136

APPENDIX D

PERFORMANCE COMPARISON OF LOCAL DIMENSIONALITY REDUCTION

METHODS

In this section, the performance of CSVD and LDR [14] is compared with indexing struc-

tures built for the clusters with SR-trees and hybrid trees. In both cases the page size is

8KB. The SR-tree is chosen because it is reported that the SR-tree outperforms both the

SS-tree and the R*-tree in [17]. The hybrid tree is chosen because it has been used in

conjunction with the LDR method [14].

Experimental setup. First, the LDR clustering method is used to generate four sets

of partitions and the NMSE for each set of partitions is calculated. Then the k-means

algorithm is used to cluster the whole dataset into the same number of partitions for each

set. Next according to the NMSEs in the first step, the GM1 method [83] is used to reduce

the dimensionality. Finally, an index is built for each partition. Both Figure D.1 (a) and

Figure D.2 (a) show that index sizes for CSVD generated clusters are smaller than those

for LDR generated clusters.

Results for 20-nearest-neighbor search. The SR-tree is used as the within cluster

indexing structure, with split factor 0.4 and reinsert factor 0.3, and 1000 randomly gener-

ated 20-nearest-neighbor queries are performed for CSVD and LDR. The average recall,

number of pages visited and elapsed system time for each query are obtained. Figure D.1

shows that CSVD has higher recall, accesses a fewer number of pages, and incurs less

elapsed system time on the average.

The hybrid tree is also used as the within cluster indexing structure and carried out

the same experiments as for the SR-tree. This experiment is LDR favored since hybrid tree

is used by the original LDR paper [14]). Figure D.2 leads to the same observation. The

figure for recall is omitted since it is independent of indexing structure, and is the same as

137

138

,
Figure D.1 Results of using SR-tree as indexing structure for SYN64. (a) Index size for
four sets of partitions. (b) Recall versus NMSE. (c) Average number of pages accessed

versus NMSE. (d) Average elapsed system time versus NMSE. (b, c, d) The average for

1000 20-nearest-neighbor searches.

figure D.1 (b). The elapsed system time per query is much longer (several seconds), which

is because the index is implemented to require load from disk before querying on it.

In conclusion, given an NMSE, CSVD incurs less query processing cost while keep-

ing higher recalls than LDR.

139

Figure D.2 Results of using the hybrid tree as indexing structure for SYN64. (a)Index
size for four sets of partitions. (b) Average number of pages accessed versus NMSE. (c)
Average elapsed system time versus NMSE. All the measurements are the average for 1000
20-nearest-neighbor searches.

REntry CreateVAMSRTree(FVectPtr start, FVectPtr end)
{

REntry outentry, *entries;

entries = new REntry[INTERNAL_FANOUT*MAX_TREE_LEVELS];
BuildVAMSRTree(start, end, entries, -1); 	 // level= = -1 means always return root of tree
outentry = entries[0]; 	 // root is returned in f irst entry
delete[] entries;
return out entry;

1

int BuildVAMSRTree(FVectPtr start, FVectPtr end, REntry* entries, int level)
{

int size, child_level, cscap, lo_size, lo_entries, hi_entries, out_entries;

size = end - start; // STL convention: end points to the location after the last element
if (size < BUCKET_SIZE) {

entries[0] = CreateRNodeBucket(start, end);
return 1;

1
// Calculate b(s_p) AKA cscap, the child subtrees' capacity
if (size < 2*BUCKET_SIZE) {

childlevel = 0;
cscap = 1;

} else {
// It would be faster to use a lookup table of possible cscap values...
child_level = (int)((log(size/(2*BUCKET_SIZE)))/LOG_INTERNAL_FANOUT);
cscap = (int)(BUCKET_SIZE*pow(INTERNAL_FANOUT, child_level));

1
lo_size = SplitDataset(start, end, size, cscap);
lo_entries = BuildVAMSRTree(start, start+lo_size, entries, childJevel);
htentries = BuildVAMSRTree(start+lo_size, end, entries+lo_entries, childJevel);
outentries = lo_entries + hi_entries;

// Create a new node, if needed
if (level == -1 II child_level < level) {

entries[0] = CreateRNodeFromEntries(entries, out_entries);
out_entries = 1;

1
return out_entries;

1

int SplitDataset(FVectPtr start, FVectPtr end, int size, int cscap)
{

int lo_size = cscap ** (size /(2 * cscap));
int split_dim = FindMaxVarianceDimension(start, end);
SelectOnDimension(split_dim, start, end, lo_size);
return lo_size;

// Calc s_l using b(s_p) AKA cscap

}

APPENDIX E

VAMSPLIT R-TREE CREATION

C++ routines for VAMSplit R-tree creation excerpted from [101].

140

REFERENCES

[1] P. N. Yianilos, "Data structures and algorithms for nearest neighbor search in general metric
spaces," in Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
(Austin, TX), pp. 311-321, January 1993.

[2] C. Faloutsos, Searching Multimedia Databases by Content. Kluwer Academic Publishers,
1996.

[3] V. Castelli, A. Thomasian, and C.-S. Li, "CSVD: Clustering and singular value decompo-
sition for approximate similarity search in high-dimensional spaces," IEEE Trans. on
Knowledge and Data Engineering (TKDE), vol. 15, pp. 671-685, May/June 2003.

[4] J. R. Smith, Integrated Spatial and Feature Image Systems:Retrieval, Analysis and Com-
pression. Doctor of philosophy, Graduate School of Arts and Sciences, Columbia
University, 1997.

[5] A. M. Lesk, Introduction to Bioinformatics. Oxford University Press, 2002.

[6] W. Niblack, R. Barber, et al., "The QBIC project: querying images by content using color
texture and shape," in Proc. Storage and Retrieval for Image and Video Databases
(SPIE), vol. 1908, (San Jose, CA), pp. 173-187, February 1993.

[7] A. Pentland, R. W. Picard, and S. Sclaroff, "Photobook: Content-based manipulation of
image databases," Intl Journal of Computer Vision, vol. 18, pp. 233-254, June 1996.

[8] C. Carson, S. Belongie, H. Greenspan, and J. Malik, "Blobworld: Image segmentation
using expectation-maximization and its application to image querying," IEEE Trans.
on Pattern Analysis and Machine Intelligence (PAMI), vol. 24, pp. 1026-1038, August
2002.

[9] J. P. Eakins and M. E. Graham, "Content-based image retrieval - A report to
the JISC technology applications programme." http : / /www . unn . ac . uk/ idr/
CBIR/report . html, 1999.

[10] H. Muller, N. Michoux, D. Bandon, and A. Geissbuhler, "A review of content-based image
retrieval applications - clinical benefits and future directions," Int '1 Journal of Medical
Informatics, vol. 73, pp. 1-23, February 2004.

[11] V. Gaede and 0. Gunther, "Multidimensional access methods," ACM Computing Surveys,
vol. 30, pp. 170-231, June 1998.

[12] P. Indyk and R. Motwani, "Approximate nearest neighbors: towards removing the curse
of dimensionality," in Proc. ACM Symposium on the Theory of Computing (STOC),
(Dallas, TX), pp. 604-613, May 1998.

[13] I. Jolliffe, Principal Component Analysis. Springer, 2002.

141

142

[14] K. Chakrabarti and S. Mehrotra, "Local dimensionality reduction: A new approach to in-
dexing high dimensional spaces," in Proc. 26th Intl Conf. on Very Large Data Bases
(VLDB), (Cairo, Egypt), pp. 89-100, September 2000.

[15] M. Jiirgens, Index Structures for Data Warehouses. Springer, 2002.

[16] B. S. Kim and S. B. Park, "A fast k nearest neighbor finding algorithm based on the ordered
partition," Trans. Pattern Analysis and Machine Intelligence (PAMI), vol. 8, pp. 761—
766, November 1986.

[17] N. Katayama and S. Satoh, "The SR-tree: An index structure for high-dimensional near-
est neighbor queries," in Proc. ACM SIGMOD Int 'l Conf. on Management of Data,
(Tucson, AZ), pp. 369-380, May 1997.

[18] R. Weber, H.-J. Schek, and S. Blott, "A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces," in Proc. 24th Intl Conf. on
Very Large Data Bases (VLDB), (New York), pp. 194-205, August 1998.

[19] R. Ramakrishnan and J. Gehrke, Database Management Systems. McGraw-Hill, 3rd ed.,
2003.

[20] E. Bertino, 0. B. Chin, et al., Indexing Techniques for Advanced Database Systems. Kluwer
Academic Publishers, 1997.

[21] Y. Manopopoulos, Y. Theodoridis, and V. J. Tsotras, Advanced Database Indexing. Kluwer
Academic Publishers, 2000.

[22] R. Agrawal, C. Faloutsos, and A. N. Swami, "Efficient similarity search in sequence
databases," in Proc. 4th Int'l Conf. of Foundations of Data Organization and Algo-
rithms (FODO) (D. Lomet, ed.), (Chicago, IL), pp. 69-84, Springer Verlag, October
1993.

[23] H. Jin, B. C. Ooi, H. T. Shen, C. Yu, and A. Y. Zhou, "An adaptive and efficient dimension-
ality reduction algorithm for high-dimensional indexing," in Proc. 19th Intl Conf. on
Data Engineering (ICDE), (Bangalore, India), pp. 87-98, March 2003.

[24] K. Fukunaga and P. M. Narendra, "A branch and bound algorithm for computing k-nearest
neighbors," IEEE Trans. on Computers, vol. 24, pp. 750-753, July 1975.

[25] J. MacQueen, "Some methods for classification and analysis of multivariate observations,"
in Proc. of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1,
(Berkeley, CA), pp. 281-297, University of California Press, 1967.

[26] S. Guha, R. Rastogi, and K. Shim, "CURE: an efficient clustering algorithm for large
databases," in Proc. ACM SIGMOD Int'l Conf. on Management of Data, (Seattle,
WA), pp. 73-84, June 1998.

[27] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering
clusters in large spatial databases with noises," in Proc. 2nd Intl Conf. on Knowledge
Discovery and Data Mining (KDD), (Portland, OR), pp. 226-231, August 1996.

143

[28] R. T. Ng and J. Han, "Efficient and effective clustering methods for spatial data mining," in
Proc. 20th Intl Conf. on Very Large Data Bases (VLDB), (Santiago de Chile, Chile),
pp. 144-155, September 1994.

[29] T. F. Gonzalez, "Clustering to minimize the maximum intercluster distance," Theoretical
Computer Science, vol. 38, pp. 293-306,1985.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. The
MIT Press, 2nd ed., 2001.

[31] J. H. Friedman, F. Baskett, and L. J. Shustek, "An algorithm for finding nearest neighbors,"
IEEE Trans. on Computers, vol. 24, pp. 1000-1006, October 1975.

[32] S. Berchtold, D. A. Keim, and H.-P. Kriegel, "The X-tree: An index structure for high-
dimensional data," in Proc. 22nd Intl Conf. on Very Large Data Bases (VLDB), (San
Jose, CA), pp. 28-39, August 1996.

[33] A. Thomasian, V. Castelli, and C.-S. Li, "Clustering and singular value decomposition for
approximate indexing in high dimensional spaces," in Proc. 7th Int 'l Conf on Informa-
tion and Knowledge Management (CIKM), (Bethesda, MD), pp. 201-207, November
1998.

[34] D. Barbara et al., "The New Jersey data reduction report," IEEE Data Eng. Bull., vol. 20,
no. 4, pp. 3-45,1997.

[35] G. K. Wallace, "The JPEG still picture compression standard," Comm. of the ACM, vol. 34,
pp. 30-44, April 1991.

[36] K.-I. Lin, H. V. Jagadish, and C. Faloutsos, "The TV-tree: An index structure for high-
dimensional data," The VLDB Journal, vol. 3, no. 4, pp. 517-542,1994.

[37] A. N. Skodras, C. A. Christopoulos, and T. Ebrahimi, "JPEG2000: The upcoming still
image compression standard," in Proc. 1 1 th Portuguese Conf on Pattern Recognition,
(Porto, Portugal), pp. 359-366, May 2000.

[38] J. A. Orenstein and T. H. Merrett, "A class of data structures for associative searching,"
in Proc. 3rd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
(Waterloo, Ontario, Canada), pp. 181-190, April 1984.

[39] H. V. Jagadish, "Linear clustering of objects with multiple attributes," in Proc. ACM SIG-
MOD Intl Conf on Management of Data, (Atlantic City, NJ), pp. 332-342, May
1990.

[40] C. Faloutsos, "Multiattribute hashing using gray-codes," in Proc. of the ACM SIGMOD
Int 'l Conf on Management of Data, (Washington, D.C.), pp. 227-238, May 1986.

[41] C. Faloutsos, "Gray-codes for partial match and range queries," IEEE Trans. Softw. Eng.,
vol. 14, no. 10, pp. 1381-1393,1988.

144

[42] C. Faloutsos and Y. Rong, "DOT: A spatial access method using fractals," in Proc. of the
IEEE Intl Coq: on Data Engineering (ICDE), (Kobe, Japan), pp. 152-159, April
1991.

[43] R. A. Finkel and J. L. Bentley, "Quad trees: A data structure for retrieval of composite
keys," Acta Informatica, vol. 4, no. 1, pp. 1-9,1974.

[44] J. L. Bentley, "Multidimensional binary search trees used for associative searching," Com-
mun. ACM, vol. 18, no. 9, pp. 509-517,1975.

[45] J. T. Robinson, "The K-D-B-tree: A search structure for large multidimensional dynamic
indexes," in Proc. ACM SIGMOD Int '1 Conf. on Management of Data, (Ann Arbor,
MI), pp. 10-18, April 1981.

[46] A. Guttman, "R-trees: A dynamic index structure for spatial searching," in Proc. ACM
SIGMOD Int '1 Conf. on Management of Data, (Boston, MA), pp. 47-57, June 1984.

[47] T. Sellis, N. Roussopoulos, and C. Faloutsos, "The R+-tree: A dynamic index for multi-
dimensional objects," in Proc. 13th Int'l Conf. on Very Large Data Bases (VLDB),
(Brighton, England), pp. 507-518, September 1987.

[48] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, "The R*-tree: An efficient and
robust access method for points and rectangles," in Proc. ACM SIGMOD Int'l Conf.
on Management of Data, (Atlantic City, NJ), pp. 322-331, May 1990.

[49] D. A. White and R. JaM, "Similarity indexing with the SS-tree," in Proc. 12th IEEE Intl
Conf. on Data Engineering(ICDE), (New Orleans, LA), pp. 516-523, March 1996.

[50] P. Ciaccia, M. Patella, and P. Zezula, "M-tree: An efficient access method for similarity
search in metric spaces," in Proc. 23rd Int'l Conf. on Very Large Data Bases (VLDB),
(Athens, Greece), pp. 426-435, August 1997.

[51] S. Berchtold, C. Böhm, and H.-P. Kriegel, "The Pyramid-Technique: Towards breaking the
curse of dimensionality," in Proc. ACM SIGMOD Int '1 Conf. on Management of Data,
(Seattle, Washington), pp. 142-153, June 1998.

[52] C. Böhm, S. Berchtold, and D. A. Keim, "Searching in high-dimensional spaces - index
structures for improving the performance of multimedia databases," ACM Computing
Surveys, vol. 33, pp. 322-373, September 2001.

[53] A. Thomasian, V. Castelli, and C.-S. Li, "RCSVD: Recursive clustering and singular value
decomposition for approximate high-dimensionality indexing," Tech. Rep. RC20704,
IBM T.J. Watson Research Center, 1997.

[54] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, "When is nearest neighbors mean-
ingful?," in Proc. 7th Intl Conf. on Database Theory (ICDT), (Jerusalem, Israel),
pp. 217-235, January 1999.

145

[55] B. C. Ooi, K.-L. Tan, C. Yu, and S. Bressan, "Indexing the edges - a simple and yet
efficient approach to high-dimensional indexing," in Proc. 19th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS), (Dallas,
TX), pp. 166-174, May 2000.

[56] C. Yu, B. C. Ooi, K.-L. Tan, and H. Jagadish, "Indexing the distance: An efficient method to
knn processing," in Proc. 27th Intl Conf. on Very Large Data Bases (VLDB), (Roma,
Italy), pp. 421-430, September 2001.

[57] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, "The A-tree: An index structure for
high-dimensional spaces using relative approximation," in Proc. 26th Int'l Conf. on
Very Large Data Bases (VLDB), (Cairo, Egypt), pp. 516-526, September 2000.

[58] R. F. S. Filho, A. Traina, C. T. Jr., and C. Faloutsos, "Similarity search without tears:
The OMNI family of all-purpose access methods," in Proc. 17th Int'l Conf on Data
Engineering (ICDE), (Heidelberg, Germany), pp. 623-630, April 2001.

[59] C. H. Goh, A. Lim, B. C. Ooi, and K.-L. Tan, "Efficient indexing of high-dimensional data
through dimensionality reduction," Data & Knowledge Engineering (DKE), vol. 32,
pp. 115-130, February 2000.

[60] K. Chakrabarti and S. Mehrotra, "The hybrid tree: An index structure for high dimensional
feature spaces," in Proc. 15th Int'l Conf on Data Engineering (ICDE), (Sydney, Aus-
tralia), pp. 440-447, February 1999.

[61] D. B. Lomet and B. Salzberg, "The hB-tree: A multiattribute indexing method with good
guaranteed performance," ACM Trans. on Database Systems (TODS), vol. 15, no. 4,
pp. 625-658,1990.

[62] J. K. Uhlmann, "Satisfying general proximity/similarity queries with metric trees," Infor-
mation Processing Letters (IPL), vol. 40, no. 4, pp. 175-179,1991.

[63] T. Bozkaya and M. Ozsoyoglu, "Distance-based indexing for high-dimensional metric
spaces," in Proc. ACM SIGMOD Intl Conf on Management of Data, (Tucson, AZ),
pp. 357-368, May 1997.

[64] S. Berchtold and D. A. Keim, "High-dimensional index structures database support for next
decade's applications (tutorial)," in Proc. ACM SIGMOD Intl Conf on Management
of Data, (Seattle, WA), pp. 501-501, June 1998.

[65] J. H. Friedman, J. L. Bentley, and R. A. Finkel, "An algorithm for finding best matches
in logarithmic expected time," ACM Trans. on Mathematical Software, vol. 3, no. 3,
pp. 209-226,1977.

[66] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel, "A cost model for nearest neigh-
bor search in high-dimensional data space," in Proc. 16th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS), (Tucson, AZ),
pp. 78-86, June 1997.

146

[67] S. Berchtold, C. Böhm, D. Keim, F. Krebs, and H.-P. Kriegel, "On optimizing nearest
neighbor queries in high-dimensional data spaces," in Proc. Int'l Conf. on Database
Theory (ICDT), (London, UK), pp. 435-449, January 2001.

[68] C. Böhm and H.-P. Kriegel, "Dynamically optimizing high-dimensional index structures,"
in Proc. 7th Int'l Conf. on Extending Database Technology (EDBT), (Konstanz, Ger-
many), pp. 36-50, March 2000.

[69] S. Berchtold, B. Ertl, D. A. Keim, H.-P. Kriegel, and T. Seidl, "Fast nearest neighbor search
in high-dimensional space," in Proc. 14th Int'l Conf. on Data Engineering (ICDE),
(Orlando, FL), pp. 209-218, February 1998.

[70] J. McNames, "A fast nearest-neighbor algorithm based on a principal axis search tree,"
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, pp. 964-975,
September 2001.

[71] G. R. Hjaltason and H. Samet, "Ranking in spatial databases," in Proc. 4th Intl Symp. on
Large Spatial Databases, (Portland, ME), pp. 83-95, August 1995.

[72] N. Roussopoulos, S. Kelley, and F. Vincent, "Nearest neighbor queries," in Proc. ACM
SIGMOD Intl Conf on Management of Data, (San Jose, CA), pp. 71-79, May 1995.

[73] G. R. Hjaltason and H. Samet, "Distance browsing in spatial databases," ACM Trans. on
Database Systems, vol. 24, no. 2, pp. 265-318,1999.

[74] A. Henrich, "A distance scan algorithm for spatial access structures," in Proc. 2nd ACM
Workshop on Geographic Information Systems, (Gaithersburg, MD), pp. 136-143,
December 1994.

[75] N. Roussopoulos and D. Leifker, "Direct spatial search on pictorial databases using packed
R-trees," in Proc. ACM SIGMOD Intl Conf on Management of Data, (Austin, TX),
pp. 17-31, May 1985.

[76] I. Kamel and C. Faloutsos, "Hilbert R-tree: an improved R-tree using fractals," in Proc.
20th Int'l Conf on Very Large Data Bases (VLDB), (Santiago de Chile, Chile),
pp. 500-509, September 1994.

[77] K. L. Cheung and A. W. Fu, "Enhanced nearest neighbor search on the R-tree," ACM
SIGMOD Record, vol. 27, no. 3, pp. 16-21,1998.

[78] C. T. Jr., A. Traina, L. Wu, and C. Faloutsos, "Fast feature selection using the fractal di-
mension," in Proc. XV Brazilian Symposium on Databases (SBBD), (Paraiba, Brazil),
October 2000.

[79] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas, "Fast nearest neighbor
search in medical image databases," in Proc. 22th Int 'l Conf on Very Large Data Bases
(VLDB), (Bombay, India), pp. 215-226, September 1996.

147

[80] P. F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas, "Fast and effective
retrieval of medical tumor shapes," IEEE Trans. on Knowledge and Data Engineering
(TKDE), vol. 10, pp. 889-904, November 1998.

[81] T. Seidl and H.-P. Kriegel, "Optimal multi-step k-nearest neighbor search," in Proc. ACM
SIGMOD Int 'l Conf. on Management of Data, (Seattle, WA), pp. 54-165, June 1998.

[82] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. E. Abbadi, "Approximate nearest
neighbor searching in multimedia databases," in Proc. 17th Int'l Conf. on Data Engi-
neering (ICDE), (Heidelberg, Germany), pp. 503-511, April 2001.

[83] Y. Li, Efficient Similarity Search in High-Dimensional Data Spaces. PhD thesis, New
Jersey Institute of Technology, Newark, NJ, May 2004.

[84] Y. Linde, A. Buzo, and R. Gray, "An algorithm for vector quantizer design," IEEE Trans.
Comm., vol. 28, pp. 84-95, January 1980.

[85] A. Nobel, "Recursive partitioning to reduce distortion," IEEE Trans. Information Theory,
vol. 43, pp. 1122-1133, July 1997.

[86] R. Widhopf, "Affic: A foundation for index comparisons," in Proc. 9th Int 'l Conf. on
Extending Database Technology (EDBT), (Heraklion, Crete, Greece), pp. 868-871,
March 2004.

[87] A. Thomasian, Y. Li, and L. Zhang, "Performance comparison of local dimensionality
reduction methods," Tech. Rep. ISL-03-01, Integrated Systems Laboratory, Computer
Science Department, New Jersey Institute of Technology, Newark, NJ, June 2003.

[88] Y. Li, A. Thomasian, and L. Zhang, "Optimal subspace dimensionality for k-nn search on
clustered datasets," in Proc. 15th Int 'l Conf. on Database and Expert Systems Appli-
cations (DEX_A), (Zaragoza, Spain), pp. 201-211, August 2004.

[89] A. Thomasian, Y. Li, and L. Zhang, "Exact k-NN queries on clustered SVD datasets,"
Information Processing Letters (IPL), To appear, 2005.

[90] V. Castelli and L. D. Bergman, eds., Image Databases: Search and Retrieval of Digital
Imagery. John Wiley and Sons, 2002.

[91] V. Castelli, "Multidimensional indexing structures for content-based retrieval," in Image
Databases: Search and Retrieval of Digital Imagery, pp. 373-434, John Wiley and
Sons, 2002.

[92] J. Gray and P. Shenoy, "Rules of thumb in data engineering," in Proc. Intl Conf on Data
Engineering (ICDE), (San Diego, CA), pp. 3-12, April 2000.

[93] C. Li, E. Y. Chang, H. Garcia-Molina, and G. Wiederhold, "Clustering for approximate
similarity search in high-dimensional spaces," IEEE Trans. on Knowledge and Data
Engineering (TKDE), vol. 14, pp. 792-808, July-August 2002.

148

[94] Y. Zhao, P. Deshpande, and J. F. Naughton, "An array-based algorithm for simultaneous
multidimensional aggregates," in Proc. ACM SIGMOD Int 'l Conf. on Management of
Data, (Tucson, AZ), pp. 159-170, May 1997.

[95] F. Farnstrom, J. Lewis, and C. Elkan, "Scalability for clustering algorithms revisited," ACM
SIGKDD Explorations, vol. 2, pp. 51-57, August 2000.

[96] M. Friedman and 0. Pentakalos, Windows 2000 Performance Guide. O'Reilly Publishers,
2000.

[97] L. Zhang and A. Thomasian, "Persistent clustered main memory index for accelerating
k-NN queries on high dimensional datasets," Tech. Rep. ISL-04-05, Integrated Sys-
tems Laboratory, Computer Science Department, New Jersey Institute of Technology,
Newark, NJ, October 2004.

[98] H. Aghili and D. G. Severance, "A practical guide to the design of differential files for
recovery of on-line databases," ACM Trans. Database Systems (TODS), vol. 7, no. 4,
pp. 540-565,1982.

[99] B. Cui, B. C. Ooi, J. Su, and K.-L. Tan, "Indexing high-dimensional data for efficient
in-memory similarity search," IEEE Trans. on Knowledge and Data Engineering
(TKDE), vol. 17, pp. 339-353, March 2005.

[100] C. Yu, High-Dimensional Indexing: Transformational Approaches to High-Dimensional
Range and Similarity Searches, vol. 2431 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[101] D. A. White and R. Jain, "Similarity indexing: Algorithms and performance," in Storage
and Retrieval for Image and Video Databases (SPIE), vol. 2670, (San Jose, CA),
pp. 62-73,1996.

[102] D. Yu and A. Zhang, "ClusterTree: Integration of cluster representation and nearest-
neighbor search for large data sets with high dimensions," IEEE Trans. on Knowledge
and Data Engineering (TKDE), vol. 15, pp. 1316-1337, September/October 2003.

[103] K. Sung and T.Poggio, "Example-based learning for view-based human face detection,"
Trans. Pattern Analysis and Machine Intelligence (PAMI), vol. 20, pp. 39-51, January
1998.

[104] N. Katayama and S. Satoh, "Distinctiveness-sensitive nearest neighbor search for efficient
similarity retrieval of multimedia information," in Proc. 17th Int 'l Conf. on Data En-
gineering (ICDE), (Heidelberg, Germany), pp. 493-502, April 2001.

[105] K. Fukunaga, Introduction to Statistical Pattern Recognition (2nd ed.). Academic Press,
1990.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedications
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)�
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Indexing Techniques
	Chapter 3: Performance Study of CSVD with Indexing
	Chapter 4: Persistent Main Memory Index
	Chapter 5: The Stepwise Dimensionality Increasing - SDI Index for High Dimensional Data
	Chapter 6: Conclusions and Future Work
	Appendix A: Query Types
	Appendix B: Characteristics of High-Dimensional Space
	Appendix C: The Op-Tree Versus the Omni-Family
	Appendix D: Performance Comparison of Local Dimensionality Reduction Methods
	Appendix E: VAMSPLIT R-Tree Creation
	References

	List of Tables(1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 4)
	List of Figures (2 of 4)
	List of Figures (3 of 4)
	List of Figures (4 of 4)

