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ABSTRACT

TRANSCEIVER DESIGN AND SYSTEM OPTIMIZATION FOR
ULTRA-WIDEBAND COMMUNICATIONS

by
Hongsan Sheng

This dissertation investigates the potential promises and proposes possible solutions to the

challenges of designing transceivers and optimizing system parameters in ultra-wideband

(UWB) systems. The goal is to provide guidelines for UWB transceiver implementations

under constraints by regulation, existing interference, and channel estimation.

New UWB pulse shapes are invented that satisfy the Federal Communications

Commission spectral mask. Parameters are designed to possibly implement the proposed

pulses. A link budget is quantified based on an accurate frequency-dependent path loss

calculation to account for variations across the ultra-wide bandwidth of the signal.

Achievable information rates are quantified as a function of transmission distance

over additive white Gaussian noise and multipath channels under specific UWB constraints:

limited power spectral density, specific modulation formats, and a highly dispersive

channel. The effect of self-interference (SI) and inter-symbol interference (ISI) on channel

capacity is determined, and modulation formats that mitigate against this effect is identified.

Spreading gains of familiar UWB signaling formats are evaluated, and UWB signals are

proved to be spread spectrum. Conditions are formulated for trading coding gain with

spreading gain with only a small impact on performance. Numerical results are examined to

demonstrate that over a frequency-selective channel, the spreading gain may be beneficial

in reducing the SI and ISI resulting in higher information rates.

A reduced-rank adaptive filtering technique is applied to the problem of interference

suppression and optimum combining in UWB communications. The reduced-rank

combining method, in particular the eigencanceler, is proposed and compared with a

minimum mean square error Rake receiver. Simulation results are evaluated to show that



the performance of the proposed method is superior to the minimum mean square error

when the correlation matrix is estimated from limited data.

Impact of channel estimation on UWB system performance is investigated when path

delays and path amplitudes are jointly estimated. Cramér-Rao bound (CRB) expressions

for the variance of path delay and amplitude estimates are formulated using maximum

likelihood estimation. Using the errors obtained from the CRB, the effective signal-to-noise

ratio for UWB Rake receivers employing maximum ratio combining (MRC) is devised in

the presence of channel path delay and amplitude errors. An exact expression of the bit

error rate (BER) for UWB Rake receivers with MRC is derived with imperfect estimates of

channel path delays and amplitudes.

Further, this analysis is applied to design optimal transceiver parameters. The BER

is used as part of a binary symmetric channel and the achievable information rates are

evaluated. The optimum power allocation and number of symbols allocated to the pilot are

developed with respect to maximizing the information rate. The optimal signal bandwidth

to be used for UWB communications is determined in the presence of imperfect channel

state information. The number of multipath components to be collected by Rake receivers

is designed to optimize performance with non-ideal channel estimation.
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CHAPTER 1

INTRODUCTION

Ultra-wideband (UWB) radio is a promising technology with uniquely attractive features

inviting major advances in wireless communications, networking, radar, imaging, and

position raging systems. This chapter overviews the current development status of UWB

systems, discusses the potentials and challenges, and summarizes the outline of the

dissertation.

1.1 Current Development Status

1.1.1 Regulations

Ultra-wideband technology has received increasing interest recently at both the theoretical

as well as the practical implementation levels [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Adminstration

organizations have been developing regulations to permit the introduction of ultra-

wideband devices. Worldwide regulatory activities are focused on the ITU-R Task

Group 1/8. In Europe, the European Telecommunications Standards Institute (ETSI)

drafted European rules for UWB emissions. In the USA, the Federal Communications

Commission (FCC) issued the rules, referred to as the First Report and Order, in

February 2002 [I1].

By the FCC's emission limits in the form of a spectral mask, a UWB system

can use the FCC Part 15 rules from 3.1 GHz to 10.6 GHz with a peak value of -41.3

dBm/MHz. Outside of this band, the transmitted power must be decreased. From 0.96

GHz to 1.61 GHz, the reduction in admissible transmitted power is necessary to protect

GPS transmissions. To protect PCS transmission for outdoor systems in the band from 1.99

GHz to 3.1 GHz, the required backoff is 20 dB, rather than the 10 dB for indoor systems.
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1.1.2 Major UWB Schemes

At first, a UWB was conveyed as a carrierless and baseband communication technique

known as impulse radio (IR) [I2]. According to the new FCC regulation, an intentional

UWB device is defined as one that has a bandwidth equal to or greater than 20% of the

center frequency, or that has a bandwidth equal to or greater than 500 MHz. Given the

recent spectral allocation and the new definition of UWB, any technology that uses more

than a 500 MHz spectrum can be regarded as UWB as long as it is within current emission

restrictions. New methods emerging today use technologies by direct sequence spread

spectrum, referred to as DS-UWB [13, 14], or multiband orthogonal frequency division

multiplexing (MB-OFDM) [15, 16, 17].

Impulse radio underlies the physical layer recently proposed for low-rate applications

because of the relatively low implementation complexity associated with carrierless pulses.

The IR UWB systems operate across a wide range of the frequency spectrum by sending

sequences of sub-nanosecond short pulses. Due to the short duration of the pulses,

the spectrum of the UWB signal can be several gigahertz wide. From a hardware

implementation perspective, an IR transceiver has inherently lower complexity given the

fact that RF carriers are eliminated [18].

Ultra-wideband technologies have been proposed as alternative air interfaces for

emerging wireless personal area networks (WPAN's) and wireless body area networks

(WBAN's). In particular, IEEE 802.15.3a has been established to investigate potential

solutions for high data rate, short range communications [19], while IEEE 802.15.4a is

focused on low data rate, low power, and longer range communications as well as high

precision ranging/location [20].
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1.1.3 UWB Channels

An attractive feature of UWB is its ability to resolve multipath. Numerous investigations

have confirmed that the UWB channel can be resolved into a significant number of distinct

multipath components [21, 22, 23, 24].

The key features of the UWB channel model are summarized below. The path loss

is by a law of d', where d is the transmitter-receiver distance, and n is the path loss

exponent. A line-of-sight (LOS) path loss exponent ranges from 1 in a corridor to about 2

in an office environment. Non-line-of-sight (NLOS) exponents typically range from 3 to 4

for soft NLOS, and from 4 to 7 for hard NLOS [22]. Due to the frequency dependence of

propagation effects in a UWB channel, over a wide bandwidth, the pathloss is a function

of frequency as well as of distance.

A modified Saleh-Valenzuela (SV) channel model is widely used to model the

impulse response of the UWB multipath channel [25]. Measurements show that the UWB

channel has an inherently sparse structure [26]. The arrival of paths is in clusters. The

distributions of the cluster arrival times and ray arrival times are assumed as Poisson

random processes. The power delay profile (PDP) of a cluster and a ray is assumed to

be a decaying exponential. The distribution of the small-scale amplitudes is assumed to

be a lognormal fading in [21]. The standard deviation of a cluster and ray fading term

is 3.3941 dB. The amplitude is also assumed to be Nakagami distributed in [22]. The

Nakagami fading parameter m is a lognormal random variable, with delay-dependent

mean and variance. These two channel models above are from different measurement

techniques (frequency or time domain sounding), different signal bandwidth, and different

environment [27]. Block fading is assumed to model the time-varying channel with a low

moving speed.
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1.2 Ultra-Wideband Systems: Promises and Challenges

Due to limits imposed by regulatory restrictions, a UWB device is authorized to operate

in a wide bandwidth under the constraints of a low power spectral density and a specific

spectral mask. The wide bandwidth of UWB signals with low power spectral density (PSD)

implies that such systems have potential that promises to provide a high data rate for short

range communications. Large bandwidth also enables not only large spreading ratios, but

very low coding rates. The spectral mask challenges the design of UWB pulse waveforms

employed by impulse radio UWB systems.

A core novelty underlying the use of UWB is the ability to optimally cohabit in

the frequency band currently occupied by existing applications without causing harmful

interference. This opens promising opportunities for a variety of applications including

a possible physical layer for emerging WPAN's and WBAN's. However, narrowband

interference emitted by existing networks in close proximity has to be suppressed.

One promise of UWB is that a very large bandwidth results in fine resolution

of multipath arrivals, since the impulse nature of the transmitted waveforms prevents

significant overlap [28]. This in turn leads to reduced fading per resolved path. One

attractive feature of UWB is the ability to resolve the multipath components. A Rake

receiver with maximum ratio combining (MRC) can be employed to exploit the multipath

diversity. However, practical Rake receivers require knowledge of multipath delays and

amplitudes. In practice, this is estimated through pilot aided channel estimation, producing

imperfect channel state information (CSI), which leads to degraded performance.

Therefore, transceiver implementations for UWB systems are particularly

challenging due to regulation, interference, and channel estimation issues. This dissertation

investigates the potential promises and proposes possible solutions to the above challenges.

The goal is to provide guidelines for the design of optimal transceiver parameters by

capturing the specific characteristics of UWB systems.
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1.3 Outline of the Dissertation

The main topics of this dissertation are:

1. Pulse waveform design for UWB transmission

2. UWB channel capacity computation as a function of distance

3. Interference suppression and optimum combining for UWB

4. Impact of channel estimation on UWB performance and transceiver design

The first topic is covered in Chapter 2, the second, in Chapter 3, the third, in Chapter 4, and

the fourth, in Chapters 5 and 6. The chapter outlines are as follows:

Chapter 2 proposes a new UWB pulse shape that satisfies the FCC spectral mask.

A possible implementation of this pulse is presented based on a general Gaussian pulse

passed through a highpass filter. Using this pulse, the link budget is calculated to quantify

the relationship between data rate and distance. The proposed pulses will be used in

discussions in the rest of the chapters.

Chapter 3 evaluates achievable information rates of a single-user UWB system

under specific UWB constraints: limited PSD, specific modulation formats, and a highly

dispersive channel. The information rates of several modulation formats are evaluated as a

function of transmitter-receiver separation for the additive white Gaussian noise (AWGN)

and the UWB multipath channel. Conditions are formulated for trading coding gain with

spreading gain with only a small impact on performance.

Chapter 4 applies a reduced-rank adaptive filtering technique to the problem of

interference suppression in UWB communications. The reduced-rank optimum combining

method, in particular the eigencanceler, is compared with minimum mean square error

(MMSE) Rake receiver. Simulation is performed to show that the eigencanceler is effective

in suppressing interference and requires a shorter data record than MMSE.

Chapter 5 investigates the impact of non-idea estimates on system performance when

path delays and path amplitudes are jointly estimated. Pilot symbols are transmitted over
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a multipath channel to estimate path delays and path amplitudes. The Cramér-Rao bounds

(CRB's) of the variance of the estimate of path delays and path amplitudes are derived.

Using the errors obtained from the CRB, the average signal-to-noise ratio (SNR) and bit

error rate (BER) are analyzed for a Rake receiver employing MRC. The effective SNR and

exact BER are expressed in terms of the number of paths and the number of pilot symbols.

Chapter 6 designs transceiver parameters such as the fraction of a transmitted packet

constituted by the pilot symbols, signal bandwidth, and the number of diversity paths used

at the receiver, when the path estimation errors are taken into account. To achieve this goal,

the derived BER in Chapter 5 is used as part of a binary symmetric channel (BSC), and the

achievable information rates are evaluated.

Chapter 7 summarizes the observations throughout this dissertation and proposes

future potential research topics.



CHAPTER 2

PULSE WAVEFORM DESIGN FOR UWB TRANSMISSION

Impulse radio UWB systems communicate using a baseband signal composed of sequences

of short duration pulses. Spectral masks imposed by the regulatory restrictions challenge

the design of UWB pulse waveforms. In this chapter, a new pulse waveform is proposed

that satisfies the FCC spectral mask. Using this pulse, the link budget is calculated to

quantify the relationship between data rate and distance. It is shown that UWB can be a

good candidate for high rate transmission over short ranges with the capability for reliably

transmitting 100 Mbps over distances of about 10 meters.

2.1 Introduction

Ultra-wideband technology has been proposed as an alternative air interface for WPAN's

because of its low power spectral density, high data rate, and robustness to multipath fading.

The FCC has permitted UWB devices to operate using spectrum occupied by existing radio

services as long as emission restrictions, in the form of spectral masks, are met [I1].

Impulse radio UWB does not use a sinusoidal carrier to shift the signal to a higher

frequency, but instead communicates with a baseband signal composed of subnanosecond

pulses (referred to as monocycles) [12]. Impulse radio systems employ a pulse train with

pulse amplitude modulation (PAM) or pulse-position modulation (PPM). Previously, the

UWB systems using PAM [29] and PPM [30] have been analyzed, with particular attention

to distance as a function of throughput. However, the standard monocycles used in [29]

and [30] do not satisfy the FCC spectral rules. Here, the transmission range is analyzed as

a function of data rate using a new pulse shape that meets the FCC regulations.

In Section 2.2, the PSD of the Gaussian-based monocycle which does not satisfy

the regulatory rules is computed. A new pulse that does meet the FCC emission key is

7
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proposed in Section 2.3. This pulse is based on higher-order derivatives of the Gaussian

pulse. In Section 2.4, the transmission range and data rate of a UWB system using the

proposed pulse is presented. A possible implementation of the proposed pulse is presented

in Section 2.5. Conclusions are drawn in Section 2.6.

2.2 Gaussian Pulse and Spectrum

A Gaussian pulse is one candidate for the monocycle in UWB impulse radio systems.

Due to the large bandwidth (occupied from DC to several GHz), antennas used in UWB

systems need to be optimized for a wide range of frequencies, and the pulse waveform

distortion by the antennas has to be considered [31]. The characteristics of UWB antennas

are complicated. In this dissertation, it is useful to model the effect of the antenna system

in the UWB transmitted pulse approximately as a derivative operation [32]. Due to the

derivative characteristics of the antenna, if a Gaussian pulse is transmitted, the output of the

transmitter antenna can be modelled by the first derivative of the Gaussian pulse. Therefore,

if a general Gaussian pulse is given by

then the output of the transmitter antenna will be

where the superscript ( m ) denotes the n-th derivative. The pulse at the output of the receiver

antenna is then given by
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A UWB transmitted signal using PAM, with uniformly spaced pulses over time can be

represented as

where T is the pulse-spacing interval and the sequence {ak } represents the information

symbol. The PSD of the transmitted signal, 8(f), is [33, p. 207]

where Xn (f) is the Fourier transform of the n-th derivative of a Gaussian pulse, σ2a and

/'a are the variance and mean, respectively, of the symbol sequence {ak }, and δ (.) is the

Dirac delta function. The second term in (2.5) is composed of discrete spectral lines and

will vanish if the information symbols have zero means. In what follows, it is assumed

that this is true and also that as = 1. Strictly speaking, the duration of the Gaussian pulse

and all of its derivatives is infinite. Here, the pulse width, Tp , is defined as the interval

in which 99.99% of the energy of the pulse is contained. Using this definition, it can be

shown that Tp ≈7σfor the first derivative of the Gaussian pulse.

The FCC has issued UWB emission limits in the form of a spectral mask for indoor

and outdoor systems [11]. In the band from 3.1 GHz to I0.6 GHz, UWB can use the FCC

Part 15 rules with a peak value of —41.3 dBm/MHz. Outside of this band, the PSD must be

decreased. From 0.96 GHz to 1.61 GHz, the reduction in admissible transmitted power is

necessary to protect GPS transmissions. To protect PCS transmission for outdoor systems

in the band from 1.99 GHz to 3.1 GHz, the required backoff is 20 dB, rather than the 10 dB

for indoor systems.

In Figure 2.1, the normalized PSD for the first derivative (n = 1) of the Gaussian

pulse is plotted for several values of the pulse width, Tp . The normalization factor is the

peak value allowed by the FCC, —41.3 dBm/MHz. It is clear that the PSD of the first

derivative pulse does not meet the FCC requirement no matter what value of the pulse
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Figure 2.1 Power spectral density for the first-derivative Gaussian pulse for various values
of the pulse width. The FCC spectral mask for indoor systems is shown for comparison.

width is used. Therefore, a new pulse shape must be found that satisfies the FCC emission

requirements.

One possibility is to shift the center frequency and adjust the bandwidth so that the

requirements are met. This could be done by modulating the monocycle with a sinusoid

to shift the center frequency and by varying the values of a. For example, by shifting the

center frequency of the monocycles by 3 GHz, for a pulse width Tp = 0.3 ns, the PSD

will fall completely within the spectral mask for the range 3.1 — 10.6 GHz. In Figure 2.2,

two different modulated monocycles, with center frequencies of 5.2 GHz and 8.5 GHz, are

illustrated. Impulse UWB, however, is a carrierless system; modulation will increase the

cost and complexity. Therefore, alternative approaches are required for obtaining a pulse

shape which satisfies the FCC mask.
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Figure 2.2 Two modulated Gaussian pulses and their power spectral densities. (a) The
modulation center frequency is 5.2 GHz; (b) The modulation center frequency is 8.5 GHz.

2.3 New Pulse Shape Satisfying FCC Mask

The design of UWB pulse waveforms has been investigated extensively [34, 35]. In this

dissertation, higher-order derivatives of the Gaussian pulse are proposed. In the time

domain, the higher-order derivatives of the Gaussian pulse resemble sinusoids modulated

by a Gaussian pulse-shaped envelope [36]. As the order of the derivative increases, the

number of zero crossings in time also increases; more zero crossings in the same pulse

width correspond to a higher "carrier" frequency sinusoid modulated by an equivalent

Gaussian envelope. These observations lead to considering higher-order derivatives of the

Gaussian pulse as candidates for UWB transmission. Specifically, by choosing the order

of the derivative and a suitable pulse width, a pulse can be found which satisfies the FCC's

mask. In this section, the spectrum of the higher-order derivatives of the Gaussian pulse is

derived, and a pulse shape is chosen that meets the emission requirements.
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2.3.1 Spectrum of Pulses Based on Higher-Order Derivatives

Using the general Gaussian pulse in (2.1), its n-th derivative can be determined recursively

from

The Fourier transform of the n-th order derivative pulse is

Consider the amplitude spectrum of the n-th derivative

The frequency at which the maximum value of (2.8) is attained, the peak emission

frequency, fm , can be found by differentiating (2.8) and setting it equal to zero.

Differentiating (2.8) gives

The peak emission frequency then must satisfy 2π fm σ - = √n , and the maximum value of

the amplitude spectrum is

Define the normalized PSD of the transmitted pulse, S t f) , as

which has a peak value of I (0 dB). If the n-th derivative of the Gaussian pulse is considered

as the UWB transmitted pulse, then the PSD of the transmitted signal is given by
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where Amax is the peak PSD that the FCC will permit. The parameters n and a can now

be chosen to satisfy the FCC mask. In the next subsection, an algorithm will be presented

which provides the appropriate pulse shape.

2.3.2 New Pulse Shape Parameters

The objective here is to obtain a pulse that matches the FCC's PSD mask as closely as

possible, but which also maximizes the bandwidth. Values of (n, a) in (2.11) are chosen to

achieve this goal. Note that the FCC spectral mask has several corner points and that any

pulse spectrum must pass through or be below the mask at the corner frequencies (0.96,

1.61, 1.99, 3.1, and I0.6 GHz). The approach used to find (n, a) is to first fix f equal to

the frequency of one of the corner points. This enables us to rewrite (2.11) in the following

form

where RdB Δ10log10|St(f)|is the backoff value in the spectral mask between the chosen

corner point and —41.3 dB (for example, if f = 10,6 GHz, RdB = —10 dB for indoor

systems). Then start with n = 1 and solve (2.13) for a. Notice that (2.13) has two roots for

f a with respect to a fixed RdB and n. Taking the peak emission frequency as one end point,

the bisection method, or some other root-finding algorithm, can be used to find the roots

of (2.I3) numerically. Once a is found, one simply checks to see if (2.1I) using the above

value of (n, a) will meet the FCC mask at the other corner points. If not, n is increased

and a new a from (2.13) is found. In Figures 2.3 and 2.4, the normalized PSD's for the

first-order through tenth-order derivatives of the Gaussian pulse are shown for indoor and

outdoor systems respectively. Note that there are different optimum values of a for indoor

and outdoor systems. For indoor systems, at least the fifth-order derivative should be used,

while for outdoor systems, the seventh or higher should be used. To keep the bandwidth
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Figure 2.3 PSD of the higher-order derivatives of the Gaussian pulse for UWB indoor
systems.

as wide as possible, the fifth-order derivative should be chosen for indoor systems and the

seventh order for outdoor systems.

As before, the time duration of these pulses is infinite. Using the definition of pulse

width previously given, for n = 5, there is Tp ≈8.5σ. For convenience, Tp= 10σis

chosen in this dissertation. The maximum PSD can be controlled by changing the value

of the amplitude A of the pulse. In Tables 2.I and 2.2, the pulse shapes are summarized

with the parameter a, the frequencies where the spectrum is 3 dB down from the peak, the

peak emission frequency, and the 3-dB bandwidth, W3dB  for indoor and outdoor systems,

respectively, where the frequency is in GHz. These results show that the pulse width will

be less than 1 nanosecond for all cases, and the 3-dB bandwidth is 2.5 GHz or greater. Note

that to transmit the fifth derivative over the air, the Gaussian pulse must be filtered to the

fourth-order derivative.
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Figure 2.4 PSD of the higher-order derivatives of the Gaussian pulse for UWB outdoor
systems.

Table 2.1 Summary of the Parameters for UWB Indoor Systems

n σ(ps) fL fH fm W3dB (GH Z )

1 33 2.31 7.84 4.79 5.53

2 39 3.57 8.33 5.78 4.76

3 44 4.33 8.60 6.34 4.28

4 47 4.85 8.79 6.72 3.93

5 51 5.25 8.92 7.01 3.67

6 53 5.57 9.03 7.23 3.46

7 57 5.83 9.12 7.42 3.29

8 60 6.05 9.19 7.57 3.14

9 62 6.24 9.26 7.70 3.01

10 64 6.41 9.30 7.81 2.90



Table 2.2 Summary of the Parameters for UWB Outdoor Systems

n σ(ps) IL fH fm W3dB (GH Z )

1 42 1.85 6.27 3.84 4.42

2 47 2.96 6.91 4.79 3.95

3 51 3.66 7.29 5.37 3.62

4 55 4.17 7.55 5.78 3.38

5 58 4.57 7.76 6.09 3.19

6 62 4.89 7.92 6.34 3.03

7 64 5.15 8.05 6.55 2.90

8 67 5.38 8.16 6.72 2.79

9 70 5.57 8.26 6.87 2.69

10 72 5.75 8.35 7.01 2.60

2.4 Link Budget and Data Rate

The bandwidth of the UWB signal is very large and should be able to transmit at a very

high data rate; in particular, 100 Mbps should be possible over short distances. In this

section, the permitted distances and data rates are determined using a simple link budget

analysis. In [29], the distance as a function of throughput was analyzed for PAM UWB

systems. However, the analysis was not performed using the more realistic monocycles

presented here, and the path loss was considered constant over the bandwidth of the signal.

In this section, the range and data rate relation are quantified for an M-PAM using the fifth

derivative of the Gaussian pulse as the transmitted monocycle, and a realistic wideband

path loss model.

16



17

Figure 2.5 The pulse shape for the fifth derivative of the Gaussian pulse.

In the assumed indoor system, the transmitted monocycle over the air, yT(t), is the

fifth-derivative of the Gaussian pulse,

where A is a constant chosen to meet the limitations set by the FCC. The normalized pulse

waveform is shown in Figure 2.5. For the outdoor system, the transmitted monocycle is the

seventh-derivative of the Gaussian pulse,

In the following analysis, only indoor systems are considered, and additive white

Gaussian noise is assumed at the receiver with a free-space propagation channel model. It

is noted that the received pulse waveform at the output of the receiver antenna is the sixth

derivative of the Gaussian pulse
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Figure 2.6 Comparison of the transmitted (the fifth derivative of the Gaussian pulse) and
the received pulse (the sixth derivative of the Gaussian pulse).

and its amplitude spectrum is

Figure 2.6 shows a comparison between the transmitted and received pulses which are

respectively, the fifth and sixth derivative of the Gaussian pulse.

For a narrowband signal, the received power at distance d is given by

and the free-space path loss Ls (d), is given by [37]

where Pt is the transmitted power, Gt and Gr are the transmitted and received antenna gains

respectively, fe is the carrier frequency, and c is the speed of light.
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The PSD is very wideband for a UWB transmission system. Therefore,

equation (2.19) must be modified to account for variations across the bandwidth of the

signal. In particular, the transmitted and received powers should be calculated using the

integral of the PSD within a frequency region, and the total transmitted power should be

based on the FCC restrictions. Note that Gt and Gr are also a function of the frequency. In

this dissertation, it is assumed that an ideal antenna is used so that Gt and Gr are assumed

constant over the frequency range. Therefore, the transmitted power is

where |St (f)| and St (f) are defined in (2.I2) and (2.11), respectively, and A max = —41.3

dBm/MHz is the maximum PSD permitted. Based on these parameters and σ = 51 ps and

n = 5, the total transmitted power is Pt = —5.1 dBm. If the received signal is assumed to

occupy a band from fL to fH , the received power at distance d becomes

where S(f) is the PSD of the received pulse, and L s (d, f) is the frequency-dependent path

loss for the free-space propagation model. The center frequency in (2.19) is replaced by

the variable f. With this frequency-dependent path loss, the received power becomes

In the calculations that follow, the noise spectral density is N 0 = kT0F0LM = —102.83

dBm/MHz, where k is Boltzmann's constant 1.38 x 10 -23 Joules/K, T0 is room temperature

(300 K), the noise figure is F0 = 6 dB, and a link margin, Lm , of 5 dB is assumed.

Normalized by the maximum signal PSD, it follows N0/Amax —62 dB. Then, if the

receiver bandwidth is chosen corresponding to a 62-dB signal bandwidth, the maximum

SNR can be achieved.
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The received power (2.22) necessary at a distance, d to achieve a given average SNR

can be computed from the relation

where PN is the received noise power and is equal to N 0 W, and where W is the noise

equivalent bandwidth of the receiver. If the symbol rate is assumed to be equal to the pulse

repetition rate, a single UWB pulse is transmitted for each data symbol, and the energy per

information symbol equals the energy per pulse. Then, the average output SNR is given by

where Es is the received symbol energy, Ts is the symbol duration, and Rs is the symbol

rate. For uncoded systems, Es = Eb log2 M and Rs = Rb / log2 M, where Eb is the bit

energy and Rb is the bit rate. The ratio W/Rb is related to the duty cycle of the signal

and can be thought of as the processing gain. By increasing the occupied bandwidth of the

pulse or reducing the pulse repetition frequency, the overall data rate and the distance can

be increased. This factor is what allows UWB systems to operate at a very low average

transmit PSD while achieving useful data rates and transmission ranges [29]. For a target

BER, the required Eb /N0 for PPM and PAM can be obtained in [33, p. 262-268].

From (2.22), (2.23), and (2.24), the maximum distance d for a required Eb /N0 is

expressed as a function of the data rate Rb

From (2.25), it is observed that the transmission range can be increased for a given data rate

by increasing the receiver antenna gain, using channel coding, and/or reducing the noise

figure.
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Figure 2.7 Transmission range for M-PAM for 100 Mbps data with different receiver
bandwidth.

In Figure 2.7, the achievable distance in a free-space environment is presented for

M-PAM at a 100-Mbps bit rate. Results are shown for two values of the target BER with

G t and Gr set to 0 dBi. For BER=10 -6 , binary PAM can reach about 7 meters for a receiver

with a bandwidth equal to the 3-dB bandwidth of the pulse. As indicated in Figure 2.7,

the range can also be extended if the receiver bandwidth is increased. The improvement

however is not significant.

In Figure 2.8, the achievable distance in a free-space environment is plotted as a

function of bit rate for various values of M. For these results, the target BER is set at 10 -6

with G t and Gr set to 0 dBi, and the receiver bandwidth is set equal to the 62-dB bandwidth

of the pulse. This achieves the maximum SNR. As expected, higher data rates can be

achieved at shorter distances. For binary PAM, 100 Mbps can be reliably transmitted at

a distance of approximately 8 meters; while 20 Mbps can be transmitted more than 18

meters. For 4-PAM, 100 Mbps can be reliably transmitted over a distance of only 5 meters.

This occurs because, although PAM is a spectrally efficient modulation technique, it is not
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Figure 2.8 The achievable range versus data rates for M-PAM UWB systems.

power efficient. For an AWGN channel, the lower order PAM signal would result in the

best performance for this power-limited system. In Figure 2.8, the allowed distance is also

plotted as a function of bit rate for various values of M for BER=10 -3 . This is the condition

specified in [29]. From Figure 2.8, binary PAM can be reliably transmitted at I00 Mbps

over about I3 meters. In [29], the permitted distance is about 20 meters. However, the

results in [29] are optimistic because the actual pulse spectrum and frequency variation of

the path loss were not considered. There is a 3 dB loss in received power by using the

fifth-derivative Gaussian pulse as shown in Figure 2.9.

2.5 Implementation of Proposed Pulses

Note that the derivative operation could be implemented as highpass filtering. As an

example, a 4th-order Chebyshev highpass filter with the stopband ripple 66 decibels down

from 3 GHz is used. The output waveform is shown in Figure 2.10 with its spectrum shown

in Figure 2.11.
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Figure 2.9 UWB received power as a function of distance by using the fifth-derivative of
the Gaussian pulse and the rectangular PSD permitted by the FCC.

Figure 2.10 Comparison of the pulse waveform of the fifth-derivative of the Gaussian
pulse (upper) and output waveform of a Chebyshev highpass filter (lower).
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Figure 2.11 PSD of the fifth derivative of the Gaussian pulse and a Gaussian pulse with a
4th-order Chebyshev highpass filter.

It is noted that the PSD of the Chebyshev pulse can make use of the low frequency

band. Therefore, the transmission range by the Chebyshev pulse is a little larger than that

by the fifth-derivative pulse. This is plotted in Figure 2.12, where the achievable distance

in a free-space environment is shown in terms of bit rate for 2-PAM and 4-PAM. The

desired BER is at 10 -6 . As observed, 100 Mbps can be reliably transmitted at a distance of

approximately 8.5 meters.

2.6 Chapter Summary

In this chapter, a new monocycle based on the higher-order derivatives of the Gaussian

pulse was proposed. This new pulse satisfies the FCC emission limits for UWB systems.

In particular, it was demonstrated that the fifth-derivative of the Gaussian pulse meets

the regulatory requirements. Possible implementation of this pulse was also presented.

Based on this pulse and a more accurate frequency-dependent path loss calculation, the

link budget was computed for an indoor UWB system, thus quantifying the relationship
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Figure 2.12 The achievable range for various data rates using the fifth-derivative of the
Gaussian pulse (dash lines) and a Gaussian pulse filtered by a Chebyshev highpass filter
(solid lines) at BER=10 -6 .

between data rate and distance. It was shown that UWB can be a good candidate for

high-rate transmission over short ranges with the capability for reliably transmitting 100

Mbps within large rooms.

If there is sufficiently large bandwidth, it can be shown that PPM provides significant

performance improvements over PAM for power-limited applications [38, 39]. It should be

emphasized that the PSD of a PPM signal is not linearly related to the PSD of the individual

pulse [40], and the spectral lines are not easily removed [41, p. 235].

The proposed pulse will be used in the subsequent chapters to evaluate the system

performance.



CHAPTER 3

CODING, SPREADING, AND RATE SCALING IN UWB SYSTEMS

The achievable information rates of a single-user UWB communications are investigated

under specific UWB constraints: limited power spectral density, specific modulation

formats, and a highly dispersive channel. The work focuses on practical, low-duty cycle

waveforms proposed for UWB applications such as the pulsed DS-UWB and impulse

radio. The achievable rates of several modulation formats are evaluated as a function

of the transmitter-receiver separation for the AWGN and the UWB multipath channel.

Modulation formats are identified that have favorable performance over the multipath

channel. Conditions are formulated for trading coding gain with spreading gain with only a

small impact on performance. It is demonstrated that over the frequency-selective channel,

the spreading gain may be beneficial in reducing the self and intersymbol interference

resulting in higher information rates.

3.1 Introduction

Ultra-wideband technology is being considered as an alternative air interface for both high-

rate [19] and low-rate [20] physical layers (PHYs). Two PHYs have been proposed for

high-rate applications: one based on orthogonal frequency division multiplexing [17] and

the other built on a pulsed direct sequence spread spectrum platform referred to as DS-

UWB [14]. The latter is an evolution of the original concept of impulse radio [12] in

the sense that its design includes the transmission of low duty-cycle waveforms. Impulse

radio underlies the PHY recently proposed for low-rate applications. The discussion in

this chapter comprises, in addition to DS-UWB, several other signaling formats proposed

for UWB, such as Mary pulse position modulation (M-PPM), biphase, and on-off keying

(00K) with time hopping (TH) [42].
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Due to the regulatory constraints [I1], UWB communication is inherently power-

limited and generally takes place at the low SNR. This presents a different problem than

other new technologies, such as multiple-input multiple-output (MIMO) [43], that operate

over bandwidth-limited channels at spectral efficiencies larger than 1. This dissertation

seeks to study the achievable information rates as a function of the transmitter-receiver

separation and subject to the FCC PSD mask. Further, the rates are constrained by specific

modulation formats that yield realistic performance evaluations of practical interest. The

work presented here extends previous work that concerned itself mainly with the PPM

modulation over the AWGN channel [44], multipath channel [45], and the presence of

multiuser interference over the AWGN channel [46]. A realistic performance evaluation

needs to take into account the highly dispersive nature of the UWB channel [21, 22]. Its

effect is to degrade the capacity through fading as well as self interference (SI), inter-pulse

interference (IPI), and intersymbol interference (ISI).

For a fixed bandwidth and due to the capping on the transmitted power, the main

mechanism under the control of the transmitter is the bandwidth expansion, defined as the

ratio of the Fourier bandwidth (see definition in the next section) to the information bit

rate. The bandwidth expansion can be exploited to yield either coding or spreading gains.

Coding gains are obtained by low-rate error correcting codes, whereas spreading gains are

a result of spreading the spectrum with sequences independent of the data. The latter is a

form of repetition coding. Spreading the spectrum might be more attractive to the design

engineer than very low coding rates both as a practical matter (the complexity of codes with

very low rates) as well as to accommodate other system requirements, such as multiple

users. It is well known that in the AWGN channel, spreading the spectrum cannot increase

capacity, but under certain conditions it ought not to significantly reduce it either [47].

Moreover, over the AWGN, spreading reduces capacity. This conclusion however, is not

true for the multipath channel. It will be shown that, in some cases, spreading is actually

beneficial in reducing the effect of SI and ISI and thus increases capacity. Understanding
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the exact spread spectrum nature of UWB signals and the coding-spreading trade-off

relation is of one the goals of this paper. By studying the performance of uncoded UWB

communications, it can also be assessed over what distances UWB can perform adequately

without coding.

Bandwidth scaling has been studied in the literature [48, 49]. The coding-spreading

trade-off has been the topic of recent investigations that focused on multiuser cells over

AWGN channels [50, 51, 52]. This dissertation is interested in this problem in a single

user cell, but in a realistic setting of a large, but finite bandwidth, a limited maximum PSD,

and a highly frequency-selective channel. Since practical systems are delay-limited, outage

performance will be investigated.

The rest of this chapter is organized as follows. The next section introduces the

system model. In Section 3.3, channel capacity is computed for various signaling inputs.

Coding and bandwidth scaling are discussed in Section 3.4. Conclusions are drawn in

Section 3.5.

3.2 UWB System Model

A UWB system diagram is shown in Figure 3.1. A UWB symbol consists of N p ≥  1 pulses

with an average inter-pulse interval of Tf . The pulse shape is denoted q(t). The general

model of the modulated UWB symbol is expressed

where s i (t) belongs to an M-ary signal set {81(0, s2(t), , sM(t)}. This expression is

sufficiently general to comprise familiar formats of UWB transmission. With a3 = di = 1,

a sequence of PPM signals is obtained with a time hopping signature determined by the

coefficients cj . With cj = bi= 0,equation (3.I) represents a DS-UWB transmission where

the ad 's form the user signature and di is the data symbol.
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Figure 3.1 A single user UWB system diagram.

The Fourier bandwidth is identified as the range of frequencies that encompass the

essential spectral bandwidth occupied by the pulse q(t). According to the current DS-UWB

proposal, the Fourier bandwidth of such signals is in either of the bands 3.1 to 4.85 GHz or

6.2 to 9.2 GHz [14]. With Tf W >> 1, UWB pulses are transmitted at a low duty-cycle. The

Shannon bandwidth, B, is defined as one-half the minimum number of dimensions (N) per

second required to represent the signal in a signal space,

where Ts is the symbol duration. For M-PPM, N = M, and for biphase and 00K, N = 1.

With these two quantities, Massey defines a spread spectrum signal as one for which the

spreading gain [47]

The UWB multipath channel is modeled by the impulse response h (t)

ΣL-1 l=0 αlδ(t-τl)  where L is the number of multipath components, o f and Te are the £-th

path amplitude and delay respectively, and 7 -,,a), TL-1 -r0 serves as the maximum delay

spread. The channel gains o are modeled as random variables with Nakagami-m statistics,

whereas the path delay arrival times are assumed to be Poisson distributed [24]. The

average received power of the f-th path is expressed C2i = E [4] = S2 exp [— (Tr/TL-1) 60],

where SZ is chosen such that the total average received power is unity, and 6 0 is a constant

which determines the power decay factor.
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The receiver implements a Rake receiver with L correlators (fingers) where each

finger can extract the signal from one of the multipath components. The outputs of the

correlators are combined coherently using MRC. The combiner requires knowledge of the

paths' delays and amplitudes. In practice, it is obtained by channel estimation. Imperfect

channel estimation leads to performance loss. The effect of imperfect CSI will be discussed

in Chapters 5-6. In this chapter, it is assumed that the channel parameters are perfectly

known. For a data symbol d 1 or b = 1, the output of the MRC is given by

where we is the noise term in the corresponding branch of the Rake receiver, and zl

represents the interference.

3.3 Achievable UWB Information Rates

One question answered in this section is, given the PSD constraint, bandwidth limitation,

and the UWB channel characteristics, how fast and how far can the information data be

transmitted reliably. The capacity of the AWGN channel is considered first, followed by

the multipath channel. Gaussian inputs as well as specific UWB modulation formats are

investigated.

3.3.1 Gaussian Signals

The capacity of the ideal linear Gaussian channel is achieved with a Gaussian distribution

of the input signals. Using a notation that emphasizes the path loss effect on capacity at

distance d from the transmitter, the Shannon capacity in bits/sec is
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where B is the Shannon bandwidth defined earlier and SNR(d) is the average SNR per

dimension at distance d from the transmitter and given by

In (3.6), P3 (d) is the average received signal power per dimension and N0 is the one-sided

noise power spectral density. Due to the wide bandwidth, path loss variations across the

bandwidth cannot be ignored, hence the signal power is expressed

where and fH denote the two ends of the frequency range of interest (the Fourier

bandwidth) and S(f) is the PSD of the received UWB pulse. The numerical results in the

sequel assume that fL , fH are measured at the —10 dB power spectrum points. In practice,

the PSD depends on the specific waveform, which in turn, is designed to meet the regulatory

restrictions [34, 35, 53]. As indicated earlier, numerical results in the sequel are generated

using the ideal PSD of the FCC mask. The term Ls (d, f) is the frequency-dependent path

loss

where c is the speed of light, and d0 is a reference distance at which the received power is

known. In the numerical calculations, this distance and the power are taken from the FCC

mask that allows for - 41.3 dBm/MHz at 3 meters from the transmitter. The term n is the

path loss exponent. In generating numerical results, the path loss exponent is assumed to

be n = 2 for LOS channels, and n = 4 for NLOS channels [22]. It is further assumed that

the antennas are ideal and have no gain.

It is well known that over the AWGN channel, the Gaussian input achieves the

capacity in (3.5). Different expressions are required to express the achievable information

rates with specific digital modulations. These are discussed in the next subsection.
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3.3.2 Modulated Signals

In this section, the information rate of UWB systems over AWGN channels is computed

when specific modulation formats are employed. Define γ (d) as the SNR per symbol at

distance d

where Es is the energy per symbol. Using (3.2) and (3.6), equation (3.9) becomes

For M-PPM, the achievable information rate over the AWGN channel is given by the

mutual information between the input and output to the channel when the input is

discrete-valued M-PPM, with uniform distribution, and the output is continuous-valued.

The mutual information in bits/symbol has been derived in [54] and given by

where um is a Gaussian random variable with mean \/'y (d) and variance 2. Due to the

symmetry of the PPM modulation and the assumption of uniform distribution of the inputs,

the mutual information can be computed conditioned on symbol s 1 (t), represented here by

the vector s 1 . The rate in bits/sec is obtained from the product of the mutual information

per symbol in (3.11) and the number of symbols per second. Since this information rate

represents the "capacity" of PPM, "CM-PPM " is used to denote it:
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The calculation of (3.12) has to be carried out numerically by Monte Carlo analysis. For

the special case of 2-PPM, a closed-form expression of (3.12) is available [44]:

Appendix A presents the derivation of the channel capacity for biphase modulation

and for 00K

respectively, both in bits/sec. Note that COOK (d) = 2C2-PPM (d ) for a fixed SNR per symbol.

Expressions (3.I3)-(3.15) have the general form of y = ∫∞ -∞ e-x2 f(x)dx. The numerical

evaluation of this infinite integral can be simplified by the Hermite formula [55]

where xk and Hxk are, respectively, the zeros and weight factors of the k-th order Hermite

polynomial tabulated in [55], and N is the highest order included in the calculation.

Typically, N = 10 terms are sufficient for good accuracy, resulting in considerable

computational savings over the direct numerical evaluation of the infinite integral.

The benefit of coding UWB transmissions can be assessed by evaluating the

performance of uncoded systems and comparing it to the information rates computed

above. The uncoded bit rate can be expressed as a function of signal power to noise spectral
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density ratio through the following relation

where (Eb/N0)e is the SNR per bit required for a desired bit error probability performance.

This information bit rate cannot be higher than what is allowed by the bandwidth.

From (3.2), and denoting the symbol rate Rs = 11Ts, it follows that for uncoded Mary

modulation in N-dimensional signal space, there is

By letting the Shannon and Fourier bandwidths be equal, B W, and substituting (3.17)

in (3.I8) leads to

from which the maximum distance can be found for which the uncoded bit rate is given

by (3.18).

Figure 3.2 compares the information rates versus distance for several modulation

formats. The capacity (Gaussian signaling) is also shown for reference. The Shannon

bandwidth is assumed to be equal to the Fourier bandwidth (no spreading). To be specific,

the bandwidth is assumed to be equal to the low-band in the DS-UWB proposal [14] for

which W = 1.75 GHz. For each of the modulations, the maximum distance (computed

from (3.I9)) at which the uncoded bit rate is still achieved is indicated by a marker on

the curve corresponding to the modulation. Three regions are distinguished as a function

of distance. In the high SNR region (d ti 1 m), the rate is limited by the spectral

efficiency of the specific modulation. The biphase being the most spectrally efficient, has

the highest rate, while 8-PPM is the least spectrally efficient and carries the lowest rate.

At medium SNR (d 10 m), the rate relations are less intuitive, and the three orthogonal

modulations (00K, 2-PPM, and 8-PPM) have very similar performance. The rates with



35

Figure 3.2 Capacity in AWGN for different modulation signals as a function of distance
when the low-band is used with p = 1. The largest bit rates in uncoded cases with a given
bit error rate 10 -5 are also marked.

biphase modulation approach that of Gaussian signaling. Similarly, little loss compared

to capacity is experienced if biphase is used at large distances (d 100 m). From (3.12)

it is observed that the rates achievable with M-PPM decrease with M, which explains

why 8-PPM has the lowest performance. The intuition to this effect is that with more

dimensions, the chances of the noise popping up in one of the dimensions increases.

For the uncoded cases, (Eb /N0 ) e was computed for a bit error rate of 10'. It is

seen that for the same maximum bit rate, biphase achieves a larger distance than 00K, and

8-PPM has a larger distance than 2-PPM. For a BER of 10 -5 , the largest distance for which

the maximum bit rate is attained is less than 10 m.

Over multipath channels, interference due to delay spread will degrade the channel

capacity. This is discussed in the next subsection.
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3.3.3 Multipath Channels

In the previous discussion, equal Shannon and Fourier bandwidths were assumed since

it is well understood that spreading reduces capacity over the AWGN channel [47]. The

multipath channel, however, requires further consideration. It is assumed that the channel is

known at the receiver, but not at the transmitter. The delay spread in the channel gives raise

to self interference (among echoes of the same symbol), inter-pulse interference (among

pulses representing the same symbol), and intersymbol interference. Irrespective of its

source, this interference reduces capacity by violating the orthogonality among symbols.

For example, delay spread may cause loss of orthogonality between PPM symbols.

As per Section 3.2, the multipath fading channel parameters {α l , 	 are modeled

as random variables.	 It follows that the information rates are also modeled as

random variables. For delay sensitive applications, it is of interest to characterize the

complementary cumulative distribution function (CCDF) of the channel rates. To apply

the results in (3.12)-(3.15) to the multipath channel, the Gaussian assumption is invoked,

i.e., it is assumed that the interference (ISI+IPI+SI) is Gaussian distributed. With this

assumption, the SNR in (3.9) can be replaced with the signal-to-interference plus noise

ratio (SINR) at the output of the Rake combiner. In practice, Rake receivers often process

and combines only a subset of the resolved multipath components (Le paths out of the L

resolved paths). Such a receiver is referred to as selective. With perfect knowledge of the

channel parameters {α l , τl , it can be verified that the SINR at the output of the combiner

is

where zl is assumed to be Gaussian random variable representing the interference at the

l-th path. Substituting in (3.12), (3.13), (3.14), and (3.15), one obtains the respective

instantaneous rate conditioned on the channel realization.
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Figure 3.3 Capacity with 10% outage probability for different signalings as a function of
distance over a UWB multipath channel. It is assumed Tmax = 50 ns, p 1, and L, = 20.

In Figure 3.3, the 10% outage capacity is plotted as a function of distance d for the

various modulations. The channel is assumed with a maximum delay spread of τmax = 50

ns. The Nakagami fading parameter is ml = 1. Results are shown for the low-band (same

as in the AWGN analysis) with a spreading ratio p = 1, and the number of selective-Rake

fingers L, = 20 (corresponding to approximately 60% of the total transmitted energy). At

short distances, performance is dominated by the effect of the interference. As a result,

the gap between the capacity (shown for the AWGN channel) and the rates for the various

modulations is larger than the corresponding quantities in Figure 3.2. Interestingly, in this

case, the rate for 4-PPM is the largest. This is due to the fact that for the same bandwidth,

the symbol interval for 4-PPM is twice that of 2-PPM, and four times that of biphase and

00K, mitigating against the effects of ISI. At large distances, the performance is noise-

limited and the order among the modulations reverts to that of the AWGN case.
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3.3.4 Spectrum Spreading in UWB

So far, the Fourier and Shannon bandwidths were assumed equal. In this subsection,

Massey's definition (3.3) is applied to evaluate the spreading ratio for various UWB

signaling formats. For an unambiguous definition of the Fourier bandwidth, a sinc pulse is

assumed, i.e., the pulse shape with bandwidth W is given by q (t) = sinc (2Wt).

1) PPM with Time Hopping. It was shown by Massey that M-PPM does not meet

the definition of spread spectrum [47]. Is a time hopping PPM signal spread spectrum?

An M-PPM signal with Np pulses per symbol and subject to time hopping with cardinality

Nh + M time slots is expressed in the time interval 0 <t < Ts,

where d 1 E {1, 2, . . . , M} are the data symbols, and 0 < cj < Nh is the TH sequence.

The Fourier bandwidth satisfies W = (M + Nh ) Np/(2Ts) . The signal space is minimally

spanned by the orthonormal basis functions ψi (t) = √ 2Wsinc(2Wt - i), i = 1, 2, , . . , M.

Hence, the Shannon bandwidth is B = M/(2Ts ). It follows that the spreading gain is given

by ρ  = (1 + Nh/M)Np . This signal is spread spectrum for a large cardinality of the TH

sequence or a large number of pulses per symbol.

2) Biphase with Time Hopping. A biphase signal with time hopping is expressed for

0 ≤  t ≤  Ts,

where d 1 is the data symbol and the other quantities were defined in connection with (3.21).

From (3.22), the Fourier bandwidth is W = NhNp/(2Ts), whereas the Shannon bandwidth

is B = 1/2Ts . It follows that the spreading gain ρ  = NhNp.

3) DS-UWB. The DS-UWB waveform consists of a sequence of coded pulses. A

parameter N f is introduced to denote the duty-cycle of the waveform. Using quantities

already defined, the duty-cycle can be expressed Nf = TfW.Then the DS-UWB signal is
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expressed as

where d 1 is the data symbol and cj E { —1, 0, 1}. This signal is characterized by the same

Fourier and Shannon bandwidths as the signal in (3.22), and hence it has the same spreading

gain.

The large bandwidth in UWB systems enables not only large spreading ratios, but

also low coding rates. In the next section, the coding-spreading trade-off is investigated.

3.4 Coding-Spreading Tradeoff

In this section, the coding-spreading trade-off is studied for UWB communications. The

goal is to determine how to allocate the bandwidth expansion inherent in low duty-cycle

between coding and spreading. This problem is form the single user point of view for both

the AWGN and multipath channels. The required Eb/N0 is derived as a function of the

coding rates for the various modulation schemes. For a single user scenario, it is optimal

to allocate all the bandwidth expansion to coding and none to spreading. A "threshold" is

determined in terms of coding rate beyond which the bandwidth expansion can be allocated

to spreading without much loss in information rate.

3.4.1 Coding Gain

The amount of information bits per dimension transmitted over the channel can be

interpreted as either coding rate (for an infinite length block code) or spectral efficiency.

The interpretation of coding rate is more insightful in the context of the discussion here.

The coding rate is defined as
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where Rb is the information bit rate in bits/sec, and Rs = 1/Ts is the symbol rate in

symbols/sec. Substituting (3.2) in (3.24), the coding rate is expressed in terms of the

Shannon bandwidth r = Rb/ (2B). At capacity, Rb = C, hence the spectral efficiency

C/B is related to the coding rate, C/B = 2r. Applying (3.2) and (3.24) in (3.6), the

following expression is obtained which links between the SNR, the coding rate and the

SNR per bit:

where Eb is the energy per bit. With the help of these relations, the Gaussian channel

capacity (3.5) can be expressed as

The SNR per bit required for reliable transmission is then related to the coding rate [56]

It is seen that the required Eb/N0 increases monotonically with r. Note that both Eb/N0

and r are implicit functions of the distance d (both decrease when d increases, see (3.25)).

In the limit, for r --> 0, Eb/N0converges to the familiar Shannon limit In 2 = —1.6 dB.

Using an argument similar to the one leading to (3.27), i.e., substituting C/B = 2r

and expressing (3.13)-(3.15) as a function of Eb/N0 , the required Eb/N0 as a function of

r is obtained for various modulation signaling formats. In particular, the relations are for

2-PPM,

for biphase,
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and for 00K,

Since no simple closed expression appears to he available to express Eb/N0(r), numerical

computations are used based on the Hermite formula.

The results are plotted in Figure 3.4. For a meaningful comparison between the

modulations, the abscissa in the figure is the normalized coding rate defined

The normalized coding rate in (3.31) is confined to the range 0 ≤  rnorm ≤  1. At one end

of this range is the Shannon limit, at the other is the uncoded case (SNR per bit values

shown in the figure are for BER = 10-s ). For a given modulation, Eb/No(1) - Eb/N0(rnorm) is

the coding gain at coding rate r norm , As the coding rate decreases from I, the increase

in coding gain is initially rapid, but it slows down at lower coding rates. It is observed

that little incremental coding gain can be achieved by lowering the coding rate below, say,

r = 1/4 (rnorm = (4 log2 M)). In other words, not much capacity is lost by limiting the

coding rate to 1/4 and applying the rest of the bandwidth expansion to spreading. It is also

noted that in this low SNR regime, biphase performs almost as well as Gaussian signaling,

consistent with the detailed discussion in [49].

3.4.2 Information Rate with Fixed Coding Rates

In this section, the achievable information rates are estimated in the presence of a fixed

coding rate. The coding rate r and the SNR per bit Eb/N0 are interdependent through one

of the relations (3.27)-(3.30). As the distance from the transmitter increases, the received

power and the SNR decrease. The optimal pair of values of coding rate and SNR per bit to

meet the SNR at some distance d is given by the capacity and rate relations. These relations

indicate that as the power decreases, the bandwidth expansion is set to meet the coding rate
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Figure 3.4 Required Eb/N0 to obtain a reliable transmission as a function of the
normalized coding rate for various signalings.

requirement. Initially, this decrease in coding rate (and the accompanying decrease in

capacity) is greatly mitigated by the decrease in required Eb/N0 . As the SNR continues

to decrease, there are diminishing returns in the gain of SNR per bit. Finally, as discussed

earlier, at low coding rates, any additional reduction in power is accommodated mainly by

the bandwidth expansion (coding rate). Let the spreading ratio be p. The SNR relation

(3.25) can be rewritten for the case of a spreading gain as

with 0 = 1/p. In (3.32), both terms r and 0 represent the reciprocal of a bandwidth

expansion. With r, the bandwidth expansion is applied to coding, whereas with /3, the

bandwidth expansion is applied to spreading. The difference between coding and spreading

is in their effect on No (r). While lowering r (lower coding rate) decreases the requiredNo

No (r), lowering 0 (increasing spreading ratio) has no impact on the SNR per bit. That
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is why applying the bandwidth expansion to coding gain is preferred, particularly at the

high SNR per bit. However, at the low SNR (for a given coding rate) when the gain in No
isalmost bottomed out, applying any additional bandwidth expansion to spreading rather

than coding, may carry only a small loss in capacity. In other words, under these conditions,

the spreading gain and coding gain will be roughly equal.

This is demonstrated numerically as follows: Let r 0 be the selected coding rate and

dr0 be the corresponding distance at which (3.32) is met. For d > d ro , the bandwidth

expansion is applied to spreading to compensate for the SNR attenuation with the distance.

Let ( k) be the SNR per bit required at capacity at this coding rate. The spreading gain0 ro

needs to ensure that this SNR per bit is met. For d > d r0 , it is required

From (3.24) and (3.2), the following relation is obtained between the Shannon bandwidth,

coding rate and information rate

From this expression it follows that for d > d ro , the spreading gain needs to be distance-

dependent, viz., ρ (d) = W/B(d).

To express the channel capacity for a specified spreading gain, it is needed to

substitute W/ρ  for B in the capacity expression. For the AWGN channel, the channel

capacity in (3.5) can be expressed as a function of spreading ratio

The last expression and the rate expression obtained by substituting B W/p in (3.14) are

used to generate Figure 3.5. A spreading gain of ρ = 100 was assumed for the calculations.

For clarity, only Gaussian and biphase signaling are shown. The signals were assumed to
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Figure 3.5 Bit rate and capacity versus distance for Gaussian and biphase inputs at a fixed
coding rate r0 = 1/4. The spreading ratio is p = 100.

conform to the FCC mask over the band 3.1-4.85 GHz. Marked on the capacity curves

in the figure are distances at which the coding rate is r0 = 1/4, for two types of path loss

(LOS and NLOS, respectively). Also shown in the figure are the information rates obtained

from (3.33). By design, where the latter curves intersect the capacity curves, the spreading

gain is ρ  = 100. However, for points d > d ro , there is ρ  > 100. The main lesson drawn

from the figure is that the loss in capacity is negligible if the coding rate is fixed and the

SNR attenuation is compensated for with spreading gain.

Figure 3.6 depicts the needed spreading ratio versus distance for a fixed coding rate

r0 = 1/4. Only the result for the LOS case is plotted. The SNR attenuation with the

distance is compensated by the buildup of the spreading ratio.

Figures 3.7-3.8 displays a metric referred to as capacity loss and defined
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Figure 3.6 Distance-dependent spreading ratio to maintain a desired Eb/N0 at a fixed
coding rate r0 = 1/4.

The capacity loss is a function of the spreading gain, but is distance dependent. For no

spreading gain ρ  = 1, η (d, ρ ) = 0, for all d, but the rate of change of η  versus ρ  depends

on d, with η  becoming less sensitive to p at larger distances (low SNR).

Figure 3.7 demonstrates capacity loss in terms of spreading ratio. It clearly shows

that spreading degrades channel capacity. However, in the low SNR regime, for example,

when d = 100 at NLOS, little capacity loss occurs. It is also indicated that biphase and

2-PPM have the same capacity loss. Using various signaling inputs result in little difference

of capacity loss. Figure 3.8 presents the loss in information rate as a function of distance for

three signaling formats, two types of channel, and for a specified value of spreading gain.

Due to the lower SNR, the rate loss is less noticeable for the NLOS channel. Conversely,

at the high SNR, the rate decreases fast with the increase in spreading. When d > 13 m

for NLOS, and d > 200 m for LOS, the rate loss is less than 10%. The actual modulation
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Figure 3.7 Capacity loss as a function of spreading ratio for different signaling inputs
with LOS (n = 2) and NLOS (n 4).

format seems to have little impact on the results. It is clearly demonstrated that at the low

SNR (corresponding to a large distance), the capacity loss due to spreading is small.

3.4.3 Information Rates in Multipath Channels

Throughout this section, it was argued that when the SNR is sufficiently low, substituting

spreading gain for coding gain carries only a small loss in performance over the AWGN

channel. Now turn the attention to the multipath channel. For the AWGN channel, it is

clear from inspecting (3.35) or any of the expressions for specific modulations that the

capacity (information rates for the modulations) is monotonically non-increasing with the

spreading gain p. The effect of the spreading gain on the capacity over multipath channels is

demonstrated in Figure 3.9. The figure plots the 10% outage probability of the information

rate versus spreading ratio for four different UWB modulation formats and two frequency

selective channels. The maximum delay spread is τm  a x 50 ns, or 88 resolved multipaths
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Figure 3.8 Capacity loss as a function of transmission distance for a given spreading ratio
p = 100.

over 1.75 GHz signal bandwidth. The distance from the transmitter is assumed d = 100 m

(for the purpose of computing the SNR), and the number of paths processed is Le = 20.

The channel C 1 features a Rayleigh channel, while the channel C2 is assumed to be

a log-normal fading with standard deviation 3.3941 dB [21]. In an interesting contrast with

the AWGN channel, it is observed for all the curves in the figure that there are regions for

which the rate rises with the spreading gain. An intuitive explanation to this is that for

the signals of interest, the spreading gain is realized by reducing the duty-cycle, which in

turn mitigates against the SI and ISI. The capacity increases when a higher spreading gain

improves the SINR.
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Figure 3.9 Capacity with 10% outage probability over multipath fading channels as a
function of spreading ratio for different signaling inputs. The C2 (IEEE 802.15.3a LOS
channel) is also plotted as a comparison. It is assumed ?-max = 50 ns, d = 100 m, and
Lc 20.

3.5 Chapter Summary

The achievable rates for UWB systems was investigated for different signaling formats

and under specific conditions: constrained power spectral density and a highly frequency-

selective channel. Under these conditions, the achievable rates were evaluated as a

function of the transmitter-receiver separation. For the multipath channel, the effect of

interference (SI, IPI, and ISI) was quantified, and modulation formats that mitigate against

the interference were identified. It was shown that modulations with larger separation

between signals are more favorable for use over the frequency-selective channel. Thus, at

high and medium SNR, where the performance is interference-limited, 4-PPM outperforms

2-PPM, and the latter outperforms biphase and 00K. At low SNR, where the performance
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is noise-limited, and over the AWGN channel, biphase provides the best performance

among conventional modulation formats.

The spreading gain was evaluated for several modulations. The relations between

the SNR per bit and coding rate at capacity were formulated for these modulations. It

was shown that limiting the coding to a low rate such as 1/4 and applying the rest of

the bandwidth expansion to spreading incurs only a small loss compared to exploiting the

full bandwidth for coding. Finally, it was demonstrated that over the multipath channel,

spreading is actually beneficial in reducing the effect of SI and ISI and thus, rather

surprisingly, leads to higher capacity in some cases.



CHAPTER 4

OPTIMUM COMBINING FOR UWB RAKE RECEIVERS

In this chapter, the application of reduced-rank adaptive filtering techniques is applied to

solve the problem of interference suppression in UWB communications. The performance

of the proposed reduced-rank combining methods, in particular the eigencanceler (EC), is

compared with the MMSE Rake receiver. It is shown that the EC is effective in suppressing

interference modeled as WLAN 802.11a signals. Simulation results are presented to show

that the EC requires a shorter data record than MMSE Rake receivers.

4.1 Introduction

Ultra-wideband technologies are proposed as an alternative physical layer for emerging

WPAN's. The ability to resolve multipath is one of the most attractive features of UWB.

Numerous investigations have confirmed that the UWB channel can be resolved into a

significant number of multipath components (for example, [57]). A Rake receiver can

be employed to exploit multipath diversity [42, 58]. The Rake receiver using MRC, is

optimum only when the disturbance to the desired signal is sourced by AWGN. The

WPAN's, including those with a UWB physical layer typically will be required to operate

in proximity to other wireless networks, for example, the proliferating WLAN's [59]. In

the presence of narrowband interference emitted by WLAN's, a UWB receiver with a

conventional Rake combiner will exhibit an error floor dependent on the SINR. A more

suitable diversity scheme to employ in this case is optimum combining (OC), whereby the

received signals are weighted and combined to maximize the output SINR [60].

The MMSE Rake is a possible implementation of OC [61, 62]. The MMSE scheme

is optimal (in the sense that it achieves the maximum likelihood solution for Gaussian

interference plus noise) if the correlation of the received signal (aggregate of transmitted

50
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signals, interference, and noise) is known. When this correlation matrix has to be

estimated, the MMSE solution is affected by measurement noise and is no longer optimal.

An eigenanalysis based OC scheme, referred to as the eigencanceler (EC), has been

suggested for various applications, among them suppression of narrowband interference

in direct-sequence spread spectrum [63]. The EC exploits the inherent low-rank property

of the narrowband interference correlation matrix. It is designed as a weight vector

orthogonal to the interference subspace. The interference subspace is defined as the signal

space spanned by the eigenvectors associated with the dominant eigenvalues. For the

method to be effective, the dominant eigenvalues need to be contributed mainly by the

interference. This is the case for low SINR. The EC is motivated by the observation that the

correlation matrix of the received signal consists of a limited number of large eigenvalues

contributed by the narrowband interference, and a large number of small and almost equal

eigenvalues contributed by the desired signal and AWGN. A tap-weight vector orthogonal

to the interference eigenvectors effectively cancels the interference, leaving most of the

data untouched. The EC is computed from relatively few stable eigenvectors spanning the

interference subspace. Thus, even with a short data record, it can obtain a high degree

of interference cancellation. In this chapter, the application of the EC is applied to UWB

systems over time dispersive channels.

This chapter is organized as follows. In Section 4.2, the UWB system model

is described. Section 4.3 presents the two approaches, MMSE and EC, for optimum

combining at the UWB Rake receiver. Simulation results are provided in Section 4.4 to

compare the performance of the MMSE and EC according to bit error rate, output power

of the interference-plus-noise, SINR improvement, and normalized weight variance. In

Section 4.5, conclusions are drawn and further investigations are proposed.
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4.2 System Model

A received signal diagram is plotted in Figure 4.1. Consider a binary bit stream {dk} E

{ ±  1 } transmitted over a multipath channel. For an impulse radio UWB, each data bit is

represented by a sequence of Np time-delayed pulses. The basic pulse is chosen to meet the

limits imposed by the FCC emissions mask [11]. An example of such a pulse is proposed

in Chapter 2 and in [53]. Denote p(t) the basic pulse as seen at the receiver. Then the basic

waveform representing a data bit as seen at the receiver is given by

where without loss of generality p(t) is scaled such that ∫+∞ -∞q2 (t)dt = 1. The average

pulse interval is Tf, and TT provides an additional time shift to the jth pulse due to the

time-hopping sequence cj . Polarity reversals can eliminate the spectral lines and reduce

the peak-to-average ratio [38, 39]. Two types of modulation, biphase and binary PPM, are

considered. Hence, the following model is used for the received signal at time epoch k,

where the subscript k represents the bit index, Eb is the energy per bit, Ts = TfNp is the

symbol duration, and τp is a PPM shift that ensures orthogonality between the two symbols

of the modulation. The dispersive channel response, h(t), is modeled by a tapped-delay-

Figure 4.1 A simple UWB received signal model with narrowband interference.
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Figure 4.2 A Rake receiver with optimum combining to cancel narrowband interference
for impulse radio UWB systems.

line

where L is the number of resolvable delay bins in the multipath channel, and of and τr are

the channel path amplitude and delay, respectively. Denote i(t) the narrowband interference

and residual ISI. The noise n(t) is white, Gaussian with zero-mean and two-sided power

spectral density of N0 /2. Consistent with the baseband model assumed, all quantities are

real-valued.

An OC Rake receiver is composed of L correlators followed by a linear combiner

as shown in Figure 4.2. The Rake receiver samples the received signals at the symbol

rate and correlates them with suitably delayed references [64]. The correlator is operated

with perfect knowledge of the channel amplitudes and delays. The reference v(t), is given
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by [62]

The received signal at the output of the correlator corresponding to the t th finger of the

Rake receiver and the reference delayed by τ l , is

where ick and nl,k are the interference and noise at the output of the correlators,

respectively. The signal model in vector notation is

where xk = [x0,k, . . . , xL-1,k]T,h =[α0, . . . ,αL-l]T1 ik = [i0,k, . . . )iL-1,k]Tnk =

[n0 , k , . . . , nL-1,k]T
 
, and the superscript T denotes vector transposition. A bit decision is

made at the output of the combiner, dk = sgn(wTxk), where w = [w0 , ... , WL-1] T is the

combiner weight vector.

4.3 Optimum Combining for Rake Receivers

4.3.1 MMSE Rake Receiver

The MMSE filter parameters are varied such that the mean square error between the desired

and the actual output is minimized. The SINR is maximized when the optimal weight

vector of the MMSE combiner is adopted [65]. The optimal weight vector satisfies

The solution to the MMSE combiner is
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or alternatively is [66, p. 74]

where i t and K2 are scaling constants, R = E [xkx7k] and M = E [i kiT + nk rill are

the correlation matrix of the received signal and the interference-plus-noise, respectively.

The vector rd, is the correlation output of dk and xk . In practice, the matrix M has to be

estimated from a block of training symbols. In this case, MMSE is no longer optimal. It

depends on how good is the estimate of M. The maximum likelihood estimate is given

by the sample covariance matrix M (1/K) Σκ-1 k=0 XkXTk, where K is the block size.

Since training is an overhead function that consumes resources, it is of interest to develop

techniques that can work with short training sets. It is well known that the number of vector

samples required to estimate an L x L correlation matrix within 3 dB of its true value is

2L [67]. For a dispersive channel resulting in a large number of non-zero paths L, the

number of samples required to train MMSE might be prohibitive. In the next subsection, a

reduced-rank optimum combiner is proposed based on an eigenanalysis approach which is

more robust to errors caused by short training sets.

4.3.2 EC Rake Receiver

By eigen-decomposition, the correlation matrix of the interference-plus-noise is expressed

as

where the columns of QI and Q, consist of, respectively, the interference eigenvectors and

the noise eigenvectors. The matrices AI and A, are diagonal and contain the interference

and noise eigenvalues, respectively. For an interference with bandwidth considerably

smaller than the signal bandwidth, the eigenanalysis of the interference-plus-noise matrix

reveals a few large eigenvalues and a large number of small eigenvalues. The eigenvectors

associated with large eigenvalues span the interference subspace. Since the interference
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subspace is orthogonal to the noise subspace, a tap-weight vector residing in the noise

subspace will effectively cancel the interference, leaving most of the information data

untouched. The tap-weight of the EC is designed to minimize the norm of the weight

vector while maintaining linear and eigenvector constraints given by

where g is a constant. The solution then follows [68, 69]

where k2 is a fixed scalar. It shows that the weight vector of the EC is constructed from

the stable eigenvectors of the largest eigenvalues of the received signal. It is unaffected

by fluctuations in the noise eigenvalues. This leads to a high degree of interference

cancellation shown next.

4.4 Performance Evaluation

In this section, the performance of MMSE and EC-Rake receivers is evaluated with

respect to bit error rate, residual interference-plus-noise power, SINR improvement, and

normalized variance of the weight vectors.

The channel is simulated using the IEEE 802.15.3a channel model [21], a modified

model from [25]. This channel is passed through a bandpass filter at the center frequency

of 5 GHz with the bandwidth corresponding to a 1 GHz UWB system. Biphase modulation

is used with the data rate of 40 Mbps over the dispersive 802.15.3a CMI (LOS) channel.

With this data rate, the ISI can be ignored and about 98% of the energy can be collected

within one bit duration.

The transmitted UWB signal power is restricted by the FCC allowing emissions with

a power spectral density of -41.3 dBm/MHz. Due to the very low transmission power,

even the large processing gain of the UWB system is not sufficient to suppress high levels
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Figure 4.3 Eigenvalues of the correlation matrix over the IEEE 802.15.3a LOS channel
in the presence of narrowband interference.

of interference [30]. The narrowband interference is modeled as a bandpass Gaussian

signal representing the IEEE 802.11a interference with bandwidth B = 20 MHz [6I].

The transmitted power of the interference is assumed to be 15 dBm. Assume a scenario

where the UWB receiver is placed 1 meter from the UWB transmitter, and 2 meters from

the interfering transmitter. A simple link budget calculation shows that the average SIR is

approximately —10 dB in free-space. In the simulation, the SIR is assumed to be —10 dB,

and the signal-to-noise ratio per bit (Eb /N0 ) is 10 dB.

Figure 4.3 plots the eigenvalues of the interference-plus-noise correlation matrix for

a 50-tap receiver. It is noted that for a 1 GHz system, and an interference with SIR = -10

dB and bandwidth 20 MHz, the number of dominant eigenvalues is 4 out of a total of 50.

The interference subspace used to determine the tap weights of the EC is constructed from

the 4 eigenvectors associated with these eigenvalues.

Figure 4.4 shows the BER performance of selective-combining (SC) Rake

parameterized by the number of the best branches combined, L, for a biphase system.
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Figure 4.4 BER performance of biphase UWB systems by MRC with SC-Rake over IEEE
802.15.3a LOS channel in the presence of 802.11a interference with SIR=-10 dB.

The combining is carried out utilizing MRC. It is observed that the interference causes a

high error floor. This motivates seeking optimum combining techniques.

The performance of SC-Rake with MMSE and EC receivers is compared in

Figure 4.5. The L = 40 largest energy paths of the channel are selected for processing. At

BER of 10 -4 , the EC with K = 30 bit training has a 2.5 dB advantage over MMSE with

80 bit training, and about a 5 dB gain compared with MMSE with 60 bit training.

Further insight into the effect of the training data set can be gained by measuring the

residual interference power Pj = WTMW. Figure 4.6 plots the interference-plus-noise

power at the output of the EC, MMSE combiners versus the size of the training data.

The L = 50 paths are combined. The figure indicates that with limited data, the output

interference-plus-noise power from the EC is much lower than of the MMSE combiner.

The advantage of the EC can be also gleaned from the SINR improvement defined as

the ratio of SINR's at the combiner output and input. From (4.6), the SINR per bit at the



59

Figure 4.5 BER for biphase UWB systems by MMSE and EC combiner with selected L =
40 largest fingers over the 802.15.3a LOS channel in the presence of 802.1 la interference.

Figure 4.6 Comparison of the output power of the interference-plus-noise as a function
of training data size between the MMSE and EC Rake receiver. The L=50 taps are used.
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Figure 4.7 SINR improvement as a function of input SINR in the presence of the 802.I1a
OFDM interference over the 802.15.3a LOS channel. L=50 taps are employed. SNR per
bit is I0 dB.

input to the combiner is

where 1 is the power spectral density of the interference. The output SINR is given by

The SINR improvement as a function of input SINR is plotted in Figure 4.7 in the presence

of an IEEE 802.11a interference at SNR per bit of I0 dB. The L 50 paths are combined.

With a small data size K, the EC achieves larger SINR improvement than the MMSE. For

example, the SINR improvement of the EC with 30 bit training is 2 dB larger than that of

MMSE with 100 bit training, and I3 dB larger than MMSE with 50 bit training. Even with

very short training of 10 bits, the EC still provides a larger SINR improvement than the

MMSE with a training of 50.
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The normalized variance of the weight vectors is a measure of the robustness of the

combiners of the effects of noise. When the correlation matrix is estimated from a finite

number of samples, the receiver noise causes perturbations in the values of the weight

vectors. The normalized weight variance is defined as [68]

where -W = w+Δw is the estimated weight vector, w is the optimal weight vector

computed with known signal statistics, and Δw is the perturbation of the weight vector.

Table 4.1 lists the normalized weight variances for the MMSE and EC combiners as a

function of the training data size K. It is observed that the EC has a much lower normalized

weight variance than the MMSE.

Table 4.1 Normalized Variance of the Weight Vector for the Combiner

K 50 60 80 100 150 200

MMSE 3.9037 1.4250 1.1237 0.9749 0.8167 0.7485

EC 0.0092 0.0074 0.0055 0.0043 0.0029 0.0023

In this chapter, ideal channel information was assumed. In practice, the channel also

has to be estimated from the training data. Estimation error will lead to performance loss.

This is shown in Figure 4.8. It is assumed that only 10 pilot symbols are allocated for

channel estimation. It is shown that EC is still superior to MMSE with a short data record.

However, more than 4 dB loss occurs due to imperfect channel estimation. In the next two

chapters, the work will assess the effect of Rake combiners when channel estimation is

taken into account.



62

Figure 4.8 Imperfect channel estimation degrades the performance for OC. The number
of selected Rake fingers is L = 40. Pilot symbols are used for channel estimation with 10
number of pilot symbols. It is assumed that SIR is —10 dB.

4.5 Chapter Summary

In this chapter, an eigenanalysis based optimum combining scheme was applied for impulse

radio UWB Rake receivers in the presence of narrowband interference. The performance

was evaluated in WPAN scenarios with respect to BER, residual interference-plus-noise

power, SINR improvement, and normalized variance of the weight vectors. Simulation

results were presented by comparing the performance of eigencanceler and MMSE. It was

demonstrated that the performance of the proposed method is superior to the MMSE when

the correlation matrix is estimated from limited data.

In this chapter, perfect channel information was assumed. In practice, channel state

information is not known a priori and has to be estimated. Estimation errors will lead to

performance loss and affect the criterion of transceiver design. In the next two chapters,
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the impact of imperfect channel estimation will be discussed on performance of the UWB

system and the design of optimum transceiver parameters.



CHAPTER 5

BER OF UWB RAKE RECEIVERS WITH IMPERFECT CSI

In the following two chapters, the impact of imperfect channel estimation is investigated

on performance of the UWB system and the design of optimum transceiver parameters.

This chapter analyzes the effect of non-idea estimates on system performance when path

delays and path amplitudes are jointly estimated. The CRB of the path delay estimates is

derived as a function of the SNR and signal bandwidth. The performance of a UWB system

employing a Rake receiver with MRC is analyzed taking into account estimation errors as

predicted by the CRB. Expressions of the BER are obtained displaying the effect of the

number of pilot symbols and the number of multipath components on the overall system

performance.

Using the derived BER, Chapter 6 will evaluate the impact on information rates.

It will determine the optimal transceiver parameter design, such as the fraction of a

transmitted packet constituted by the pilot symbols, signal bandwidth, and the number of

diversity paths used at the receiver.

5.1 Introduction

The UWB channel can be resolved into a significant number of distinct multipath

components [2I, 22, 24, 70, 71]. A Rake receiver with MRC can be employed in UWB

systems to exploit multipath diversity [57]. However, Rake receivers require knowledge of

multipath delays and amplitudes. In practice, that is obtained through pilot aided channel

estimation [72], producing imperfect CSI which leads to degraded performance.

The effect of errors in the estimation of path amplitudes in diversity combining

systems has been investigated extensively in the literature [73, 74, 75, 76, 77]. In some of

these works, the estimation error of each path amplitude was characterized by a correlation

64
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coefficient between the true path amplitude and its estimate. This correlation coefficient

was assumed independent of the SNR. This model does not reflect the fact that as the

SNR increases, the quality of the estimator improves. The problem of channel estimation

and diversity combining is particularly relevant to UWB communications. Application of

pilot aided channel estimation to UWB systems was discussed in [78]. The performance

of diversity combining as a function of the signal bandwidth was reported in [79] in

the presence of path amplitude estimation errors. In these studies, perfect path delay

information was assumed. In [72], the effects of estimation errors of path delays and

amplitudes on performance were evaluated numerically. No analytical results are available

on the performance of IR-UWB with joint estimation of path delays and amplitudes.

In this chapter, the impact of non-ideal estimates of both path delays and path

amplitudes is analyzed on UWB system performance. An analytical expression of the

BER is derived with imperfect channel estimates. To obtain the CSI, pilot symbols are

transmitted over a multipath channel with a diversity of paths. The maximum likelihood

(ML) estimation is used. In Section 5.3, the CRB of the variance of path parameters'

estimates is derived. Using the errors predicted by the CRB, in Section 5.4, the average

SNR and BER are analyzed for a Rake receiver employing MRC. The SNR and BER are

expressed in terms of the number of pilot symbols and the number of diversity paths. This

BER will be used in the next chapter for the design of transceiver parameters.

5.2 System Model

A single user IR-UWB system model is shown in Figure 5.1. A binary bit stream is

transmitted over a multipath channel. Each data bit is represented by a short duration

pulse, denoted q(t), with energy Ep = ∫∞ -∞  q2(t)dt. Examples of such pulses are the

general Gaussian pulse,
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Figure 5.1 A complete impulse radio UWB transmission model over a dispersive
multipath channel.

and its higher derivatives [57, 53], where c 1 is a constant, and σp controls the pulse width

and pulse bandwidth. By the definition of the duration of the Gaussian pulse in Chapter 2,

the pulse width, Tp ≈10σ-p.

The UWB multipath channel can be modelled by the impulse response h (t)

ΣL-1 l=0 αlδ(t-τ) , where L is the number of multipath components, and α t and τl are

the l-th path amplitude and delay, respectively. The delays τl take values in the continuum

of time. Measurements show that the UWB channel has an inherently sparse structure

[2I, 22, 26, 7I]. This means that not each resolvable delay bin contains significant energy.

Mathematically, this is expressed as L «  L = [τmax I Tp l , where "┌ ┐ " denotes the next

integer larger than the listed value, and τmax = τL -1 — τ0 serves as the maximum delay

spread. A sparse UWB channel is illustrated in Figure 5.2. In the sparse channel model,

the inter-path interference is negligible [80].
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Figure 5.2 Sparse and dense channels: (a) true channel impulse response (b) effective
response for small bandwidth systems (dense) (c) effective response for large bandwidth
systems (sparse). It is assumed that the multipath resolution achieved by the receiver is
equal to the pulse width Tp .

The channel statistics are Nakagami-m fading for the distribution of the paths'

envelopes [24]. The average power over different channel realizations at the output of

the l-th path is expressed Ωl = E [α2l] = Ω exp [— (τl /τL- 1 )δ 0 ], where Ω  is chosen such

that the total average received power is unity, and δ0 is a constant which determines the

power decay factor. In order to reasonably compare channels with different numbers of

paths L, δ0 is determined by the procedure suggested in [8I] and reviewed below for the

convenience of the reader. The constant δ0 is chosen such that channel observations have a

prescribed dynamic range, say x = 30 dB, independent of L. Thus, δ0 can be found from

exp[δ0 (1 — τ -0 /τL-1] = 10 3 . It follows that δ0 = τL-1/τmax(31n 10). Implicitly, this formulatio

n neglects paths outside a prescribed dynamic range.

It is of interest to note the relation between the number of paths L and the signal

bandwidth. In all of these studies, the signal power is assumed constant. The number of
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resolvable delay bins in the channel is L≈[τmax/Tp] ≈ [τmaxW],,where W is the signal

bandwidth (according to an arbitrary definition of bandwidth). Even though the actual

number of paths L << L, increasing the bandwidth will entail an increase in the number of

paths L. Similarly, since the averaged received power is assumed constant, increasing the

bandwidth will lead to a reduction of the path amplitude.

Let the transmitted pulses be biphase modulated with a pulse representing a UWB

symbol. The symbol interval is denoted Ts. The signal received during the interval 0 ≤

t ≤  Ts can be expressed as

where d E {±1} denotes a binary symbol, `*' represents the convolution operation, and

n(t) is additive white Gaussian noise with zero-mean and two-sided power spectral density

N0 /2. The symbol duration is assumed to be much longer than the maximum delay spread,

i.e., Ts » τmax, such that inter-symbol interference can be neglected.

The receiver, shown in Figure 5.1, implements a Rake receiver with L correlators

(fingers), where each finger can extract the signal from one of the multipath components.

The outputs of the correlators are combined using MRC. The combiner requires knowledge

of the paths' delays and amplitudes. In practice, the parameters {α l } and {τe } are not

known a priori and must be estimated. In this work, it is assumed that the estimation is

aided by a preamble of M pilot symbols. The full data packet consists of Q symbols. If

the total energy available for transmitting (Q — M) data symbols is (Q — M) Eb, then the

energy per pulse is E, = (1 — M Q) Eb.

The channel estimates computed from the pilot symbols are used to detect the

subsequent data symbols. Block fading is assumed, where o and 're are invariant over

the duration of one packet and change independently from packet to packet.
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5.3 Estimation Errors of Channel Parameters

In this section, the ML estimate and the CRB of the path delay and amplitude estimation

errors are calculated as functions of the parameters of the pilot symbols. The ML estimate is

used in the numerical simulations discussed in Section 5.4. The closed-form expression of

the CRB of the path is used in the theoretical analysis. The ML path amplitude estimate is

biased by the delay errors. In this case, the conditional estimate and its error are computed.

Throughout, the number of paths L is assumed known.

Without loss of generality, all M pilot symbols in a packet are assumed to be d 1.

Then, the received signal associated with the pilot symbols and the l-th path is

The likelihood function for the l-th path, conditioned on the path parameters αt and τe, is

given by

where c2 is a normalization factor for the distribution. The ML estimates of the path delay

and path amplitude are the values that maximize (5.4). Due to the monotonicity of the

exponential function, the ML changes to maximizing

In deriving (5.5), the assumption is made that the sparse IR-UWB channel is devoid of

inter-path interference. Next, the CRBs of the estimation errors of the path delays and

amplitudes are evaluated.
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5.3.1 Estimation Errors of Path Delays

The ML estimate of the l-th path delay, using (5.5), reduces to maximizing [72]

which amounts to correlating the received signal with a delayed pulse waveform and

adjusting the delay to find the locations of the extrema at the output of the correlator.

The CRB of the variance of i=f is given by [82], var (τl ) ≥  (E[ (δ lnp(yl| αl,τl)/δτl)2})-1.

From (5.4), it follows that

After some algebraic manipulations, it can be shown that

Finally, applying Parseval's theorem with S(f) as the Fourier transform of q(t),

It follows that the variance of the estimate error is bounded by

The last expression can be rewritten in terms of the root-mean-square bandwidth of the

UWB pulse, v,

where
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For example, for the Gaussian pulse in (5.1), it can be shown that

where W is the —10 dB bandwidth of the pulse [53].

Equation (5.11) indicates that the CRB of the path delay estimate is inversely

proportional not only to the path SNR (2Ep /N0 ) ΩlM, but also to the mean-square

bandwidth of the pulse (v 2 ). As the signal bandwidth increases, the estimate of the delays

becomes more accurate for a given path gain. However, as discussed in the previous section,

an increase in bandwidth also reduces the average power per path Ωl. That will increase

the variance of the estimate. In conclusion, the value of the error variance is controlled by

the bandwidth.

Now express the estimate of the l-th path delay as a sum of two terms

where Q is the delay estimate error normalized by the pulse width. From (5.11), the CRB

of the variance of εl is

Figure 5.3 plots the variance (mean square error) of the path delay estimates versus

Ep /N0 parameterized by a different number of pilot symbols. The ML estimate and

variance are found via Monte Carlo simulation. A path gain of = 0.7 is assumed. It is

shown that the variance of the path delay asymptotically approaches the CRB for a large

number of pilot symbols and/or high SNR. For example, see the result for M = 10 and

Ep /N0 = 6 dB.
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Figure 5.3 Variance comparison of path delays between CRB (dash lines) and Monte
Carlo simulation (solid lines) with respect to different number of pilot symbols.

5.3.2 Estimation Errors of Path Amplitudes

The ML estimate of the path amplitude conditioned on the path delay estimate, is the value

of αl that maximizes (5.5) with τQ = It is not difficult to verify that the conditional

estimate of the path amplitudes is given by

where o f is the normalized correlation function for the l-th path, defined as

and et is the estimation error due to noise,
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When the path delays τf are perfectly known, it can be proved that the amplitude

estimates are both unbiased and efficient [82, p. 32]. However, since p, < 1, the estimate

'de becomes biased. From (5.18), note that the estimation errors e e can be modeled as real

Gaussian random variables with mean E [el] = 0 and variance

Figure 5.4, Part (a) depicts the CRB of path delay estimation errors for respectively,

the strongest (.e = 0) and the weakest (l = L — 1) paths, versus the SNR per pulse Ep /N0 .

Results are shown for signal bandwidths of W = 0.5 GHz and W = 7.5 GHz with a

maximum delay spread τmax = 50 ns. The curves are generated using (5.15). Part (b) of

the same figure depicts the amplitude estimation error from (5.19) normalized by the path

power SZe, versus the SNR per pulse for the same signal bandwidths as (a). The number of

pilot symbols M is assumed to be 10. It is seen that the weaker the path power, the larger

the normalized variance of the estimation error for both path amplitudes and path delays.

Similarly, the errors increase with the signal bandwidth due to reduced power per path.

This characterization affects the system performance and the system design as discussed in

the sequel.

5.4 SNR and BER with Imperfect Channel Estimates

In this section, the average SNR and BER for a Rake receiver employing MRC are derived

when the estimate errors for path delays and amplitudes are taken into account. The

expressions are able to directly exhibit the effect of the number of pilot symbols and the

number of multipath components on the overall system performance.

Given the model (5.2), and the estimated channel parameters (delay and amplitude),

the output of the MRC for received signal y(t) is given by
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Figure 5.4 CRB of the variance of (a) the estimate of path delays normalized by the square
of the pulse width, and (b) the estimate of path amplitudes normalized to the power of each
path. The number of pilot symbols M is assumed to be 10. The total power is fixed for
bandwidth W of 0.5 GHz (solid lines) and 7.5 GHz (dash lines).
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Applying the definition of μl in (5.17), the decision statistic D can be expressed,

where

is the noise term in the corresponding branch of the Rake receiver. Its mean is zero, and

variance

The significance of (5.21) is that the channel estimation errors impact the decision statistic

in two ways: 1) an effective loss in the signal gain due to the timing error, as manifested by

μl ≤ 1, and 2) a mismatch of the path gains used with the MRC,αlαl..

5.4.1 SNR Analysis

Without loss of generality, let the data symbol, d = +1, then an error will occur if D < 0.

It is necessary to evaluate the BER, Pe = Pr(D < 0). Substituting the path amplitude

estimate (5.I6) in (5.2I), after some manipulations, the decision statistic becomes

where it is defined as η Δ ΣL-1 l=1 αlμlel, η2Δ ΣL-1 l=1 αlμlwl , and η3Δ ΣL-1 l=1 elwl.

Conditioned on the set of values {αlμl} L-1 l=1, η1 and η 2 are Gaussian with zero means, and

variances E [η21] = N0/2MEp ΣL-1 l=1 α2lμ2el and E [η2 2] =  Σ

L-1 l=1 α2lμ2el respectively.  By the central limit theorem, when L is large, 773, which contains the product of two uncorrelated

Gaussian noise components, is also approximately Gaussian with zero mean and variance
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Expression (5.24) affords the following interpretation. The effect of timing errors on the

decision statistic is a multiplicative noise term, while amplitude errors are manifested as

additive noise. Hence the performance analysis bears similarities to the analysis over fading

channels. For a given channel realization, the communication can be viewed as taking place

over a "fading" channel, where the "fading" is due to the timing errors. In the analysis

below, the effective SNR conditioned on the timing errors is first determined. The average

SNR for a given channel realization is obtained by averaging over the timing errors.

To continue the analysis, note that the noise terms 7)i, 772 , 773 are mutually

uncorrelated. The effective SNR, conditioned on the channel realization and the time delay

estimation errors { αl,μ,e}, is given by

Define

then, (5.26) becomes

The effective SNR for a given channel realization, in (5.26), is a function of the path

delay estimation errors as embodied in the terms μl within γ t . It can be verified that γ eff

is a convex function of γt . Then, averaging over the path delay errors and by Jensen's

inequality, it follows for γeff Δ E[γeff] ,



77

where

and

The fact that -yeff is a monotonically increasing function of γt was used to obtain (5.29).

A few comments are in order with respect to (5.28). Under the assumption stated in

Section 5.2 that the average power gain of the channel is I, γeff is a decreasing function of

the number of paths L. Nevertheless, as an effect of diversity combining, var [γe ff] is also

decreasing with increasing L. For a fixed L, the effect of the number of pilot symbols is

seen through a reduction of the error term in the denominator of (5.28). An opposite effect

is observed recalling that γ t is a function of Ep/N0 (see (5.27)), and that the total energy

for transmitting (Q — M) data symbols is (Q — M)Eb . Then the SNR per pulse is

This relation indicates that for a fixed energy per bit Eb, the SNR per pulse, Ep /N0, is lower

than the SNR per data bit, Eb /N0 . As a consequence, through (5.27), the effective SNR

in (5.28) tends to decrease with M. The effects of these parameters are better captured

through the ensuing BER and capacity analysis.

5.4.2 BER Analysis

From (5.28), the average BER is given by

where erfc (z) Δ 2/√π ∫∞ exp (- t2 ) dt is the complementary error function, and the

expectation is taken with respect to γ t (i.e., average over path delay and amplitude errors).
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Since a closed form of (5.33) is unknown, an alternative method is used in deriving the

BER.

The decision statistic in (5.24) can be alternatively expressed as

Now, denote Xl Δ αlμl +el and Yl Δ αlμl + wl. Substituting back in (5.34),

Conditioned on αl and [il , Xl and Ye are independent and Gaussian since the noise terms el

and we are measured at different times (training and data transmission, respectively). The

L pairs {Xe , Ye } are real-valued, independent Gaussian random variables with respective

means E [X e ] = E [Ye] = αlill, and variances (see (5.19) and (5.23))

Therefore, D is a quadratic form of Gaussian random variables. With the help of [83], the

BER conditioned on {awe} is expressed as

for L > 2, and



79

for L = 1, where Q1  (a, b) is the first-order Marcum function, I n (z) is the n-th order

modified Bessel function of the first kind,

and

In (5.42), (2L-l)/k = (2L-1)!/(2L-1-k)!k!denotes the binomial coefficient.

Now, define ζ Δ a/b = |√M -1/√M +1|, and use the alternative form of Q 1 (a, b) with finite

limits [84, p. 79, (4.28)], to obtain

as well as the alternative form of In (z) [55, p. 376]

After some manipulations, the BER conditioned on γt can be shown to be equal to

where
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and

To obtain the unconditional BER, note that (5.43) consists of exponential functions,

and

where the expectation is taken with respect to γt, and Mγt (s) is the moment generating

function (MGF) of the random variable -γt [84]. It follows that

Using (5.27) in (5.44), one has

where

and the expectation is taken with respect to both α f and μl . Assuming that the path

amplitude αl has a Nakagami-m distribution with parameters Ωl  and ml , where Ωl has

been defined earlier, it follows that α2l has a Gamma distribution. Turning now to the

random variable μl , for the Gaussian pulse in (5.1), it can be shown that
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where εl was defined in (5.I4). Taking the expectation, equation (5.47) becomes

In Figure 5.3, it is shown that the ML estimate of the channel path delay ye has an error εl,

which, asymptotically, has a Gaussian distribution with zero mean and variance equal to

the CRB (5.I5). Using this information in (5.49), and after some algebraic manipulations,

(5.49) can be computed by the Hermite formula [55]

where N is the order of the Hermite polynomial, x i and 1-1, 2 are respectively, the zeros and

weight factors of the i-th order Hermite polynomial tabulated in [55, Table 25.10], and

Upon completing the evaluation of (5.49), the results are substituted in (5.46), and finally

in (5.45).

As a check, when the SNR allocated to the pilot is very large, i.e., M --> ∞ , while

Ep /N0 is constant, then f (θ , ζ ) --> 0, g (θ ,ζ) = 2(1 - cos θ ), and γt = 2Ep/N0 ΣL-1 l=0 α2l . After

some manipulations, it follows that

and the unconditional BER is given by

As expected, this is the BER expression with perfect channel estimation [84, p. 268].

It is noted that if M = 1, then a = 0 and b = √γt  In such a case, (5.38) becomes

indeterminate. Thus the expression (5.45) is suitable only for cases M ≥  2. For M = 1,
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the BER conditioned on γt has been derived in [85] and is given by

It can be verified that the unconditional BER in this case is

Figure 5.5 compares the BER in (5.45) with the Monte Carlo numerical simulation

when path parameters are estimated by ML. The number of multipath components is

assumed as L = 35, and the curves are parameterized by the number of pilot symbols

M out of Q = 800 symbols in a packet. Monte Carlo results are shown for M = 10 and

M = 5, respectively. The Nakagami parameter m l is assumed to be 1. The analytical

expression of the BER closely matches the Monte Carlo simulation for the larger M value.

This result clearly demonstrates that with a large number of pilot symbols, the ML path

delay estimates asymptotically achieve the CRB. By observing the Eb/N0 gap between

delay+amplitude errors and amplitude errors only, it is concluded that path delay estimation

errors are an important factor, particularly at the low SNR.

5.5 Chapter Summary

The effect of imperfect estimates on UWB system performance was investigated when

path delays and path amplitudes were jointly estimated. Pilot symbols were transmitted

over a UWB multipath channel to estimate path parameters. It was shown that due to delay

estimation errors, the estimate of path amplitudes is biased. The CRB's were derived for

the variance of the path delay and amplitude estimates. It was observed from the CRB of

path delay estimates that the value of the error variance is a function of the bandwidth. As

the signal bandwidth increases, the estimate of the delay becomes more accurate for a given

path gain. At the same time, an increase in bandwidth reduces the average power per path,

increasing the variance of the estimate. It is needed to indicate that less fading occurs when
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Figure 5.5 BER as a function of Eb/N0 parameterized by the number of pilot symbols
M.

increasing bandwidth (higher m e). Future work can investigate the evolution of the fading

statistics and the effect of imperfect channel estimation as a function of signal bandwidth.

Furthermore, using the errors obtained from the CRB's, the system performance

was analyzed for a Rake receiver employing MRC when estimation errors of both path

delays and path amplitudes were taken into account. An effective SNR and an exact BER

expression were derived. The SNR and BER were expressed in terms of the number of

pilot symbols and the number of paths.

In the next chapter, the BER is used to characterize a BSC and the achievable

communications rates are evaluated. The impact of imperfect CSI on two transceiver

design parameters, the signal bandwidth and the number of fingers of Rake receivers, will

be exploited.



CHAPTER 6

IMPACT OF CHANNEL ESTIMATION ON UWB SYSTEMS

In this chapter, the BER analysis in Chapter 5 is applied to transceiver design issues such

as the fraction of a transmitted packet constituted by the pilot symbols, signal bandwidth,

and which paths are to be combined at the receiver. Allocations of power resources to pilot

symbols are determined to optimize the channel capacity. Results indicate that the impact

of path delay estimation errors has to be taken into account, particularly at the low SNR.

With a limited number of pilot symbols (< 10), the optimal bandwidth is smaller than 1

GHz. For a given bandwidth of 2 GHz, the optimal number of paths to be processed by

Rake receivers is approximately 20.

6.1 Introduction

The derived BER in the previous chapter is used to characterize a BSC and its capacity

is evaluated. Allocations of power resources to pilot symbols are determined to optimize

the channel capacity. One expects the accuracy of channel estimators to improve as the

fractions of power and number of symbols allocated to the pilot increase. A higher level

of estimator accuracy increases the information rate of the system for both path delays and

path amplitudes. However, when given a total power and a total number of transmitted

symbols, the resources available for data transmission decrease as the fractions devoted to

pilot symbols increase. The objective is to determine the optimum fraction of a transmitted

packet constituted by the pilot symbols. In Section 6.2, the impact of pilot aided channel

estimation on the information rate is analyzed, and the optimum fraction of symbols

allocated to the the pilot signal is determined.

Subsequently, in Section 6.3, the estimation errors are taken into account in order

to optimize the signal bandwidth and the number of fingers used at the Rake receiver.

84
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The goal is to provide insights on signal bandwidth design, and on how many paths one

should combine in a Rake receiver. The selection of the signal bandwidth represents a

significant design choice due to its impact on the multipath resolution achieved by the

receiver. As the signal bandwidth increases, so does the number of resolved multipath

components. Moreover, due to the ability of UWB signals to resolve multipath down to

individual scatterers, effects of fading become less pronounced [86]. At the same time,

an increase in the number of resolved multipaths also means a reduction in the average

power per path for a fixed total signal power [87, 88]. This in turn leads to higher channel

estimation errors. Thus, there is a trade-off leading to an optimal choice of the signal

bandwidth that should be used in the UWB communication link. In principle, given the

signal bandwidth, a Rake receiver can resolve and combine all paths. However, due to both

practical limitations as well as channel estimation error considerations, only a subset of

available diversity branches should be combined at the receiver. In particular, the trade-off

between the number of diversity paths used and performance will be demonstrated.

6.2 Impact of Channel Estimation on Capacity

Assuming that pilot and data symbols have the same energy, and that the total energy for

transmitting a packet is constrained, there is an obvious tension between power allocated

to pilot and data symbols, since the power allocated to the pilot is subtracted from the data

symbols. In this section, the optimal power strategy for optimizing the channel capacity

is determined. The BSC provides a convenient framework for incorporating the channel

estimation effects since the BER is explicitly contained in its characterization.

The overall system in Figure 5.1 can be viewed as a BSC with transition probability

where γeff is given in (5.28). The capacity of the BSC channel is achieved when the input

is symmetrically distributed, Pr (d = +1) = 1/2, independently of the channel transition
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probabilities. Unlike the Shannon capacity, the BSC capacity depends on the transceiver

structure (the channel estimator and Rake combiner). Recall that for each packet, only

(Q — M) out of Q symbols are data conveying. The capacity expressed in bits per channel

use, and conditioned on the channel realization and specific estimation errors, is given by

The effective SNR γeti is for a given channel realization and path delay estimation error.

Averaged over delay errors and over channel realizations, the ergodic capacity in bits per

channel use is expressed as

Given Q, if a larger percentage of symbols is assigned to the pilot, then M is

larger and (1 — M/Q) is smaller. Therefore, on one hand, the effective SNR γ eff in

(5.28) increases, the BER conditioned on channel realizations P0 in (6.I) decreases, and

the capacity increases. On the other hand, the capacity is reduced due to fewer symbols

available for data transmission. This is shown in Figure 6.1 where the capacity C in (6.3)

is plotted versus the percent of symbols allocated to the pilot, M/Q, and parameterized by

values of Eb/N0. It is assumed that an average pedestrian walking speed of 5 km/hour is

taken into account. This corresponds to a coherence time of 7.7 ms [37, (4.40b)] at a center

frequency of 5 GHz. If it is further assumed that the packet size is equal to the coherence

time, then the number of symbols per packet Q, equals the normalized coherence time,

Tc /Ts , where 7', is the coherence time, and 7; is the symbol duration. For comparison,

the capacity without path delay estimation errors is also plotted by substituting the upper

bound (5.29) into (5.28 ), then in (6.1), and finally in (6.3). It is assumed that the number

of multipath components is L = 100. It is observed that the optimal fraction of symbols

allocated to the pilot at high Eb/N0 is smaller than that for low Eb /N0 . This reflects the fact

that the accuracy of the channel estimator is proportional to Eb/N0. It is also observed that
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Figure 6.1 Capacity of the BSC as a function of the fraction of symbols allocated to the
pilot parameterized by Eb /N0 , for Q = 800 symbols in a packet. Solid lines are without
delay estimation errors; dash lines are in the presence of both path delay and amplitude
estimation errors.

the optimal percentage of symbols allocated to the pilot in the presence of both path delay

and amplitude estimation errors is larger than that with only amplitude estimation errors.

This means that extra pilot symbols are required to compensate for the penalty of delay

estimation errors. Further insight into the effect of channel estimation can be obtained

from the gap between the capacity curves with and without path delay estimation errors.

The gap narrows with the increase in Eb/N0 . This further strengthen the conclusion that

the impact of delay estimation errors has to be taken into account, especially at low SNR.

In Figure 6.2, the effect of various Q on C is demonstrated for a given Eb /N0 . For

a large Q, say 800, the optimum percentage of symbols assigned to the pilot is smaller.

Therefore, the transmission efficiency increases, and the information rate improves. For a

small Q, say 80, the gap between the information rates with/without path delay estimation

errors is evident. This is because, here, the number of pilot symbols is not large enough

and the impact of delay errors is large. Also note that the optimal percentage of symbols
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Figure 6.2 Achievable information rates as a function of percentage of symbols allocated
to the pilot with respect to normalized coherence time Q, at Eb /N0 of 5 dB. Solid lines are
the cases without delay estimation errors, and dash lines are in the presence of both path
delay and amplitude estimation errors.

allocated to the pilot in the presence of path delay and amplitude estimation errors is larger

than the percentage that does not consider delay estimation errors. This means more pilot

symbols are required to compensate for the penalty of delay estimation errors. Note that

Q = 80 and 800 are approximately corresponding to symbol rates of Rs = 10 kbps and

100 kbps, respectively. This is based on the assumption that an average pedestrian walking

speed is taken into account.

The optimum percentage of symbols allocated to the pilot as a function of the

normalized coherence time is plotted in Figure 6.3 for various Eb /N0 values. It shows

in a low SNR regime (Eb /N0 = 0 dB), when the normalized coherence time is small

(Q < 100), the optimum fraction of the number of symbols assigned to the pilot is more

than 35% of the total symbols available.

Choosing the number of pilot symbols M to use in the channel estimation is an

important aspect of system design. Clearly, M cannot be arbitrarily large. With limited M,
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Figure 6.3 Optimum percent of the number of symbols allocated to the pilots versus the
normalized coherence time for various Eb/N0. Solid lines are the cases without delay
estimation errors, and dash lines are in the presence of both path delay and amplitude
estimation errors.

it is of interest to investigate the impact on the design of UWB transceivers, in particular,

the signal bandwidth and the number of Rake receiver fingers.

6.3 Impact of Channel Estimation on System Design

The goal in this section is to optimize performance by controlling the signal bandwidth and

the number of Rake receiver fingers.

6.3.1 Signal Bandwidth

The impact of channel estimation errors is first investigated on the performance as a

function of the signal bandwidth. According to FCC regulations, IR-UWB may operate

over a maximum bandwidth of 7.5 GHz. Finding how much bandwidth one should use for

optimum performance is therefore of interest. As pointed out in [86, 88, 89, 90], the number
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of multipath components, L, increases linearly with the signal bandwidth. Within the limit,

when the channel has been resolved into non-fading paths, an increase in bandwidth will

not add any more paths. It is assumed that the latter regime has not been reached yet, and

that the linear relation, number of paths - bandwidth, holds. More specifically,

where the operator is used to ensure that L is the closest larger integer, and IC is a

scalar depending on the scattering in the channel and the pulse waveform. In particular,

for the general Gaussian pulse in (5.I), and L/Z = 0.5, it can be verified that ti 0.7.

Substituting (6.4) into the BER expressions such as (5.45), links the performance to the

signal bandwidth, W.

In the system model, it is assumed that the sum of the channel gains is fixed,

independent of L. Hence, for perfect CSI, and if the Rake receiver uses all available

paths, increasing the signal bandwidth will initially lead to better performance due to higher

diversity. This advantage will quickly level off since diversity has diminishing returns as

the number of paths increases. As the bandwidth increases, the resolution advances towards

single paths with no fading. Based on this scenario, one may be tempted to conclude that

the signal bandwidth should be as large as possible. This conclusion, however, does not

hold when the effects of channel estimation are thrown into the mix. In the latter case, as

W increases, L increases, while the average SNR per path decreases. This, in turn, leads to

higher estimation errors and to degraded performance. Therefore, a tradeoff exists where

there is an optimum selection of the signal bandwidth.

Since no simple analytic expression for the optimum W appears to be available, its

value is determined through numerical computations. In Figure 6.4, the Eb/N0 required to

achieve specified error rates is plotted as a function of the —10 dB signal bandwidth W.

The delay spread is assumed to be 50 ns and the curves are parameterized by the number

of pilot symbols M. The approach used is to substitute (6.4) into (5.45), and compare the
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Figure 6.4 Required Eb /N0 to achieve a specified BER as a function of the signal
bandwidth W for a fixed number of pilot symbols M.

performance of systems using different bandwidths by determining the required Ep/N0 to

achieve a specified BER. The required Eb /N0 is then obtained from (5.32) with the number

of symbols per packet Q = 800. Estimation errors of both path delays and amplitudes

are taken into account. Optimal values of the signal bandwidth can be evaluated from the

curves. Using a very large bandwidth leads to higher error rates due to imperfect CSI. For

the set of parameters used, the optimal bandwidth is less than 1 GHz. As the number of

pilot symbols M increases, the quality of channel estimators improves, hence the optimal

W increases. The case of ideal channel CSI is also plotted for reference. When channel

estimation errors are not a factor, it is apparent that better performance can be achieved by

increasing the signal bandwidth.

In Figure 6.4, it is assumed that the Nakagami fading parameter me = 1. To observe

the effect of me, in Figure 6.5, the BER is shown as a function of the signal bandwidth for

several values of me . Here, Eb/N0 = 10 dB and M = 5. In general, a large m e value is

associated with less fading and a strong LOS path. It is seen that as me increases, the BER
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Figure 6.5 BER versus the signal bandwidth as a function of Nakagami fading parameters
me with Eb /N0 10 dB and the number of pilot symbols M = 5.

decreases and the optimal signal bandwidth is smaller. It is indicated that m e is a function

of delay and bandwidth W. This topic is left for future work.

6.3.2 Design of Rake Receivers

The foregoing analysis of the performance for a given bandwidth assumes the capture of

all available multipath components. In practice, Rake receivers often process only a subset

of the resolved multipath components. Such Rake receivers are referred to as selective.

One possibility is to process the first Lc arriving paths out of the L available multipath

components, and then combine them using MRC. This is usually motivated by a reduction

in the receiver complexity. It is argued here that selective-Rake makes sense also from

the point of view of performance in the presence of imperfect CSI. On one hand, as L c

increases, more signal energy is captured. In reality, however, the weaker paths contribute

less energy to the combiner and are more susceptible to estimation errors. Thus, it is

anticipated that an optimal number of paths exists dependent on the specific delay spread.
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Figure 6.6 BER as a function of the number of Rake fingers for different signal
bandwidths W and Eb/N0. The number of pilot symbols M = 5.

The performance of selective Rake is a function of the number of combined paths Lc .

Replacing L in (5.45) with Le , the BER for the selective-Rake receiver is obtained in the

presence of estimation errors for both path delays and amplitudes. The optimal value of L,

is obtained by minimizing Pe . Since no simple analytic expression is available, numerical

computations are relied upon.

In Figure 6.6, the BER in (5.45) is plotted versus the number of fingers used at the

Rake receiver. Various values of Ep /N0 are obtained from (5.32) where the number of

symbols per packet is Q = 800. It is clear that due to imperfect CSI, the performance does

not improve after collecting approximately 20 paths for W = 2 GHz, while 8 paths are

sufficient for W = 0.5 GHz. When Eb/N0 increases, the BER is reduced and the optimal

number of Rake fingers increases.

Further insight into the optimal number of Rake fingers can be attained by observing

the Eb /N0 required to attain a specified BER. This is shown in Figure 6.7, where the cases

of two values of the signal bandwidth, W = 0.5 GHz and W = 2 GHz, are compared. The
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Figure 6.7 Required Eb/N0 to attain a specified BER as a function of the number of Rake
fingers, M = 5.

optimal Lc is obtained when the required Eb /N0 is minimum. For a required BER of 10 -4 ,

when the signal bandwidth W increases from 0.5 GHz to 2 GHz, the optimal Le increases

from 8 to 20 approximately. As the specified BER is lowered, such as from 10 -3 to 10 -4 ,

the optimal Le increases for any value of W.

As a check, it is of interest to compare the result above with the result over a realistic

UWB channel, IEEE 802.15.3a CM1. Figure 6.8 plots the required Eb /N0 to obtain the

BER 10 -4 as a function of the number of selective Rake fingers. The signal bandwidth

is chosen W = 1.75 GHz, and the number of pilot symbols M = 5 and 10. It is shown

that the optimal L c is approximately 12 when M = 5. This is consistent with the result in

Figure 6.7.
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Figure 6.8 Required Eb/N0 to obtain BER 10 -4 as a function of the number of selective
Rake fingers. The signal bandwidth is chosen W = 1.75 GHz, and the number of pilot
symbols M 5 and 10.

6.4 Chapter Summary

The impact of channel estimation errors has been investigated for the design of UWB

systems employing Rake receivers. The BER was used to characterize a BSC and the

achievable capacity was evaluated. The optimum fraction of symbols allocated to the pilot

signal was then determined analytically to maximize the capacity. The gap between the

capacity curves with and without path delay errors indicated that path delay estimation

errors are an important factor, particularly at the low SNR.

Transceiver parameters were designed with imperfect CSI. The estimation errors

of both path delays and amplitudes were taken into account for determining the optimal

signal bandwidth and the number of paths to be combined. With a small number of pilot

symbols (< 10 in a packet of 800 symbols), the optimal bandwidth was smaller than 1

GHz. For a given bandwidth, the optimum number of paths to be processed by the Rake

receiver was determined to attain minimum error rate in the presence of imperfect CSI. For
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the 2 GHz signal bandwidth, the optimal number of paths processed by Rake receivers was

approximately 20 for a given number of pilot symbols M = 5.



CHAPTER 7

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

7.1 Summary of the Dissertation

This dissertation has been focused on the transceiver design and system optimization for

ultra-wideband communications. Novel contributions are the following.

UWB pulse waveform design:

• Invented UWB pulses satisfying the emission mask imposed by the regulatory
restrictions;

• Designed parameters to possibly implement the proposed UWB pulse meeting the
FCC's spectrum mask;

• Devised the link budget based on an accurate frequency-dependent path loss
calculation to account for variations across the ultra-wide bandwidth of the signal.

Coding, spreading, and rate scaling:

• Quantified the UWB information rates as a function of transmission distance over
AWGN and multipath channels constrained on the regulatory spectral mask and
specific modulations;

• Determined the effect of self and intersymbol interference on UWB channel capacity,
and identified modulation formats that mitigate against this effect;

• Evaluated spreading gains of familiar UWB signaling formats, and proved UWB
signals are spread spectrum;

• Formulated conditions for trading coding gain with spreading gain with only a small
impact on performance;

• Demonstrated that spreading is actually beneficial in reducing the self and
intersymbol interference resulting in higher information rates.

Narrowband interference suppression and optimum combining:

• Applied reduced-rank adaptive filtering techniques to the problem of interference
suppression and optimum combining in UWB Rake receivers;
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• Evaluated the performance of UWB Rake receivers employing MMSE and reduced-
rank eigenanalysis based optimum combining techniques.

Performance of Rake receivers with channel estimation:

• Formulated the Cramér-Rao bound expression for the variance of path delay and
amplitude estimates using maximum likelihood estimation;

• Devised effective SNR for UWB Rake receivers employing MRC in the presence of
channel path delay and amplitude errors;

• Derived an exact expression of the BER for UWB Rake receivers employing MRC
in the presence of channel path delay and amplitude errors.

Optimal transceiver parameter design:

• Explored the optimum power allocation and number of symbols allocated to the pilot
with respect to maximizing the information rate;

• Determined the signal bandwidth to be used for UWB communications in order to
optimize performance in the presence of imperfect channel state information;

• Designed the number of multipath components to be collected by Rake receivers to
optimize performance with non-ideal channel estimation.

It is indicated that the work in this dissertation has been cited by books [91, 92],

journal papers [18, 93], dissertations and theses [94, 95, 96], and conference papers [38, 97,

98,99,I00,10I, 102,103, I04,105].

7.2 Suggestions for Future Work

The promises of UWB communications systems are far from being fully explored.

Anticipated future research topics may contain the following.

• Impact of multiple access interference on transceiver design.

All topics in this dissertation are in the single user case. In multi-user environment, a

link has to deal with multiple access interference (MAI). It might be interesting to explore

the coding-spreading tradeoff, channel estimation, and optimal transceiver parameter

design with MAI.
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• Design of low-rate codes suitable for UWB communications.

The large bandwidth enables the use of low coding rates. Limiting the coding to a low

rate such as 1/4 and applying the rest of the bandwidth expansion to spreading incurs only a

small loss. It was shown that in the low SNR regime, binary codes are optimal [106]. Using

known results from [106], it is interesting to discuss binary codes with low complexity that

might be suitable for UWB.

• Analysis of eigencanceler performance with imperfect channel estimation.

The reduced-rank EC is superior to MMSE when short data records are used.

Analytical results of EC were provided in [107] with perfect CSI. In the presence of

imperfect CSI, simulation results of the EC performance were presented in Chapter 4

for UWB. With non-ideal CSI, the analysis of the EC performance is to be investigated,

particularly with UWB constraints.

• Application of trellis-coded PPM to UWB.

A high-rate UWB system suffers from ISI due to delay spread of the multipath

channel. An M-PPM is one choice for UWB communications. A trellis-coded (TC)

PPM might be an effective way to mitigate the ISI effects in UWB. The TC-PPM has

been proposed for optical/infrared communications [108]. It would be interesting to design

TC-PPM for the UWB ISI channel characterized by much longer delay spread than the

infrared channel. A high-order PPM is a multidimensional modulation which can increase

the distance of the signal point, and offer high average power efficiency. Potential topics

include: analysis of the minimum Euclidean distance as a function of delay spread over the

realistic UWB multipath channels, evaluation of BER on coded TC-PPM in high data rate

over the multipath ISI channel, search for and analysis of the code for TC-PPM codes in

UWB channels, and application of turbo TC-PPM for higher coding gain.
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• Investigation regarding the effect of both multipath fading and channel estimation
errors when increasing a signal bandwidth.

As the signal bandwidth increases, the number of resolvable multipath components

increases while the energy per path decreases. At the same time, the distribution of

the envelope of a resolvable path evolves from approximately a Rayleigh distribution to

perhaps a Rician distribution or Nakagami-m distribution (m > 1). The evolution of the

fading statistics as a function of signal bandwidth has not been fully characterized [79]. It is

important to take into account both the evolution of the fading distribution, as perceived by

a Rake receiver, and the effect of imperfect channel estimation (both delay and amplitude)

for increasing spreading bandwidths. In addition, it might also be interesting to check the

improvement of EC over MMSE when the signal bandwidth increases.

• Performance analysis of Rake receivers with selective maximal-ratio combining
when the multipath delay and amplitude are jointly estimated.

The BER for a Rake receiver employing MRC was analyzed in the presence of

imperfect CSI in Chapter 5. All L multipath components or the first arrival L, out of L

paths are captured. For a selective-Rake receiver, the L, strongest branches of L diversity

branches are selected and then combined coherently by MRC. Performance analysis of the

selective-Rake receiver with imperfect CSI is much more complicated than the classical

diversity schemes [109]. When path delays and path amplitudes are jointly estimated, no

results seem to be available.

• Development of synchronization and channel estimation methods over orthogonal
domains.

All search-based synchronization methods in the time domain waste power in

processing slots when the signal is not present. Detecting a short pulse within a large search

interval is time consuming. Sampling ultra-short pulses that occupy several gigahertz of

bandwidth requires an extremely high sampling rate which cannot be met using the existing
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ADC's. Sampling multipath demands more complicated circuit. By projecting the signal

into an orthogonal domain, the received signal is decomposed into several components

which are quantized at the end of a much longer time window [II0]. This alleviates the

extremely fine time resolution needed in time domain ADC's, and alleviates the bandwidth

requirements of LNA's. It might be interesting to estimate the multipath delays in an

orthogonal domain, particularly by spectral analysis in the frequency domain.



APPENDIX A

CHANNEL CAPACITY FOR VARIOUS MODULATIONS

Channel capacity expressions for various modulations are derived in this Appendix.

A.1 Capacity of Mary PPM

With a restriction of an Mary orthogonal PPM (M-PPM), the channel capacity is given

by [54]

where the random variable um , m = 1, . . . , M, has the following distribution conditioned

on the transmitted signal s1:

with γ(d) defined in (3.9). The PPM time shift is assumed to be such that signals are

orthogonal. Note that due to the symmetry of orthogonal signals, any signal can serve as

the condition, and capacity is achieved with an equiprobable Mary source distribution.

Define um = v 1 — vm , then u1 = 0 and

It follows that

in bits/symbol, as listed in (3.11).
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In the case of M = 2, due to u 2	~ N(√γ, 2), a closed-form expression is obtained

such that

in bits/symbol. Similarly, the capacity in bits/sec is C2-PPM(d) = BC2-PPM(d), as shown

in (3.I3).

A.2 Capacity of Biphase

For a one-dimensional M-PAM signal with an equiprobable source distribution p(sm) =

1/M,

When M = 2, it becomes

where it is assumed that s 1 = \/E3 and 8 2 = — B/Es . For any received symbol y = ym  in

any symbol duration, there is

Define v = y/√γN0/ 2, then

It follows that
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Due to

therefore, the channel capacity for biphase is given by

in bits/symbol. The capacity in bits/sec then is (3.14).

A.3 Capacity of OOK

It is known that OOK is a one-dimensional signaling. It can follow the derivation of

biphase. The capacity of OOK is given by

where S 1 = √ 2Es and s2 = 0, by which the average energy per symbol is the same as that

for 2-PPM and biphase. It can be verified that

Due to

then the channel capacity for 00K is given by

in bits/symbol. The capacity in bits/sec then is (3.15).



APPENDIX B

EXACT BER WITH DELAY ESTIMATION ERRORS

An exact closed form of the BER of a Rake receiver employing MRC is derived in the

presence of path delay estimation errors. Similar work can be found in [111,112,113,114].

Assuming α l = αl, equation (5.20) becomes D = ΣL-1 l=0 α2lμl + ΣL-1 l=0 αlμl. To evaluate

the BER, it is necessary to determine Pe = Pr (D < 0). Using the Inversion Theorem

[115, 116], the BER is given by

where WD (w) is the characteristic function (CF) of the decision statistic. Conditioned on

Tαp}, and assuming up and we are mutually independent, it can be obtained that

when

is the CF of the Gaussian noise, and

is the CF of the signal for the l-th path. After some manipulations, the BER conditioned

on {α l }, can be represented by
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and

(B.6)

An alternative expression of (B.5) can be written as

with

The integral in (B.8) is a Gauss-Hermite format which can be calculated effectively by the

Hermite formula [55]. Thus, the BER conditioned on { αl } becomes a closed form

where N is the order of the Hermite polynomial, x i and Hx, are respectively the zeros and

weight factors of the i-th order Hermite polynomial.

Note that in (B.I0), the first term is the error rate without estimation errors, and the

second one is affected by the path delay estimation errors. It is shown that the channel path

delay error diminishes the capability of the Rake receiver to capture the multipath diversity.

The unconditional BER is obtained by averaging over the channel realization ensembles. It

is worth stressing that this analysis is applicable to arbitrary UWB pulse waveforms.
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