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ABSTRACT

ANALYSIS AND CHARACTERIZATION OF THE INTEGRATED
DIELECTRIC SLAB WAVEGUIDE-WEDGE ANTENNA
USING ITERATIVE MODE-MATCHING TECHNIQUE

by
Chairat Pinthong

A rigorous solution for the TE and TM polarization to the dielectric wedge antenna fed

by a slab waveguide of the same material is presented. The method of solution involves

modeling the wedge as a sequence of step discontinuities and using an iterative procedure

to track forward and backward partial wave fields, expressed as modal expansions,

to obtain the rigorous field solution. Radiation patterns of directive gain are presented.

All patterns smoothly decrease from a maximum in the endfire direction and exhibit very

low side lobes. Longer length wedges are shown to produce higher directivity and

smaller half-power beamwidths (HPBW). For TE polarization, wedges with larger

values of dielectric constant yield smaller directivity and broader HPBW. In contrast, for

TM polarization, wedges with larger values of dielectric constant have essentially same

directivity and HPBW as wedges of smaller dielectric constant material. For TE or TM

polarization, slender, gradually tapered wedges, yield a reflection coefficient of

the guided surface wave on the feed guide at the base of the antenna that is very small.

This indicates that tapered dielectric antennas produce low VSWR values. In addition,

there appears to be no gain limitation with antenna length for these antennas.

Frequency characteristics are examined to show that the dielectric wedge antenna is

a broadband antenna. The method of solution is general and can be applied to a broad

class of dielectric antennas having different geometries.
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CHAPTER 1

INTRODUCTION

Current interest in tapered dielectric radiators stems from their compatibility with

dielectric waveguides and the availability of both lowloss silicon and solid state energy

sources, which permit integration for use in millimeter-wave and integrated optical

devices [ 1 ] - [4] . Such devices usually involve open structures in which

the electromagnetic field is not confined by metal walls on all sides. Hence, energy

leakage occurs. For a structure to be a waveguide, the leakage has to be minimized.

If the structure is an antenna then efficient coupling to the radiation field must be

affected. By tapering the end section of a dielectric guide along its axis, a guided surface

wave field gets transformed into a radiation field which is characterized by maximum

intensity in the forward direction. Tapering the dielectric guide, as opposed to suddenly

truncating it, will significantly reduce the VSWR on the uniform section of the guide and

improve the radiation characteristics of the tapered section (increased directivity and

decreased half-power beamwidth), thus resulting in an antenna of improved performance

over a wide frequency band [5]-[7].

Tapered dielectric rod antennas have been known for many years [4]. It is

surprising, therefore, that a good antenna theory for these antennas has not become

available in the meantime. A possible reason for the absence of an accurate antenna

theory is that the geometry of these tapered dielectric antennas, though strikingly simple,

does not lend itself to convenient representation in a separable coordinate system.

Rigorous theoretical approaches to analyze these antennas, such as, coupled mode theory

1
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or the full wave method [8]-[10] are available. However, they are mathematically very

complex and usually require an iterative procedure to obtain a solution of acceptable

accuracy.

To simplify somewhat the analysis while still yielding physical insights,

the two-dimensional structure of a dielectric wedge antenna fed by a slab waveguide of

the same material is examined. A fundamental even TE or TM surface wave mode is

assumed to be guided by the dielectric slab that terminates into the wedge antenna.

The dielectric wedge is modeled by using the staircase approximation. The field

scattered by each step discontinuity is then rigorously formulated as a mode-matching

problem and solved numerically. The method of solution is an extension of

the step-transition method introduced by Marcuse [11], [12] and improved upon by

Suchoski, Jr. and Ramaswamy [13]. Solution of the step discontinuity problem provides

the basis for the solution of the overall wedge antenna problem. Suchoski, Jr. and

Ramaswamy have applied their method to transitions between uniform optical

waveguides of different cross sections. The antenna problem treated in the dissertation

requires a higher degree of accuracy. This is achieved by devising an iterative approach

to the (overall) problem and by more accurately evaluating certain integrals that resulted

from the mode-matching procedure and extend over infinite ranges. Furthermore, by

an appropriate renormalization of the modal fields, a conspicuous pattern discontinuity

problem occurring in the plane normal to the forward direction is resolved. This problem

appeared in the existing theories on dielectric step transitions [11]-[13] as well as in

[14]-[16]. The need for higher accuracy derives from the objective to demonstrate

the extremely low side lobe capability of tapered dielectric antennas and from the fact
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that in the tip region of the antenna strong mode coupling occurs, an effect obviously not

present in transitions between uniform waveguides of finite cross section.

Many methods have been developed to study taper transitions between different

dielectric guides or fibers. Several approaches, including the coupled mode theory,

the step-transition method and the propagating-beam method, are reviewed in [13],

which also introduces the so called "exact numerical method". This method is based on

Marcuse's step-transition method, but applies orthogonality relations to obtain a sparse,

diagonally dominant matrix that allows for repeatable, efficient and accurate numerical

solution of the linear system of equations which is obtained at each step discontinuity.

The more accurate formulation of this method, which is used here along with the modal

field renormalization and the iteration procedure mentioned above, is developed for

the TE polarization in Chapter 2. Additionally, the TM formulation is described in

Chapter 3, followed by the numerical results in Chapter 4. Since the improved "exact

numerical method" depends on the accuracy that is obtained at a single step discontinuity,

comparisons are made in Chapter 4 with the published results of Suchoski, Jr. and

Ramaswamy, Rozzi, and Hirayama and Koshiba [13]-[16] for the single step

discontinuity problem. In Chapter 4, the radiation patterns of directive gain for

the integrated slab waveguide/wedge antenna and the reflection coefficient of the surface

wave in the slab guide are presented for various wedge lengths and for different dielectric

materials. In addition, different antenna geometries are studied to compare their

characteristics with those of the linearly wedge antenna. Finally, frequency

characteristics of the linearly tapered wedge antenna are examined.
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The graphs and data show that linearly tapered dielectric wedge antennas are

endfire antennas with the following general characteristics that apply, in particular,

to slender wedges of small aperture angle, the practically interesting case:

• A very low reflection coefficient of the surface wave in the slab guide (typically
having amplitude <10 -3 for a wedge length L > 102,0 ) resulting in a low VSWR on

the feed guide; 40 is the free space wavelength;

• A directivity that increases monotonically with wedge length L, at least up to
L =2040 , the maximum length considered here, indicating that wedge antennas with

linear profile do not have a gain limitation;

• A directivity that moderately decreases with E r for the TE polarization.

For wedges with relative lengths of L/20 = 1 ,..., 20, the maximum directive gain is

typically 8-11 dB for E r = 2.56 and 6-10 dB for E r =12;

• A directivity that remains essentially identical with varying 6, for the TM

polarization. For wedges with relative lengths of LA = 1 ,..., 20, the maximum

directive gain is typically 7-13 dB;

• A radiation pattern with very low side lobes, a pattern shape very desirable for
many applications;

• An extremely low VSWR over a wide range of frequency, indicating that
the dielectric wedge antenna is a broadband antenna.

It is assumed here that the antenna is fed by a dielectric slab guide of the same

permittivity. While the small reflection coefficient and the decrease (if any) of directivity

with c, are predictable, the apparent absences of the gain limitation (with antenna length)

and the low side lobes of tapered dielectric antennas are results that, to our knowledge,

have been demonstrated theoretically for the first time.



CHAPTER 2

TE FORMULATION

The physical geometry under consideration is a lossless, semi-infinite, dielectric slab

waveguide of thickness 2D 1 which, beginning at z = 0 , is tapered to a point at z = L .

A model for this tapered dielectric antenna is depicted in Figure 2.1, wherein the smooth

tapered portion is replaced by short slab waveguide segments of equal length Az and

uniform cross-sectional areas of progressively smaller widths 2D, , i = 2, 3, 4,..., M-1,

with D(z) = 0 , for z > = Az(M — 2) , where M = 5 is used in Figure 2.1. In this

figure, only M —1 uniform slab waveguides are shown and the tapered section is

modeled by M — 2 slab waveguides of successfully smaller widths. The regions of space

where the far-zone electromagnetic field is to be found are region M and region 1.

The latter region z 0 is occupied by the semi-infinite slab waveguide. The taper is

segmented into M — 2 regions identified by i = 2, 3, 4,..., M —1, while the semi-infinite

free space region is identified as region i = M . Each region i, i = 1, 2, 3,..., M, is further

separated into 3 sub-regions identified by I, II, and III, where II, is occupied by

the dielectric and sub-regions I, and III, are free space above and below the dielectric,

respectively. In the last region i = M , II M does not exist since the dielectric is taken to

terminate at z = L' .

5



Figure 2.1 Staircase approximation for tapered dielectric antenna with M= 5.

01
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2.1 TE Modal Representation

A fundamental, even TE surface wave mode of the uniform dielectric slab waveguide is

assumed to be incident in the +z direction from z -+ —00 , with unity power. The mode

does not experience cutoff and can propagate along very thin slab waveguides.

Because of this excitation and the geometry in Figure 2.1, the field in each section i is

independent of the y-coordinate and is TE everywhere with field components Ey ,

and Hz ,.

The TE modes of the dielectric slab guide are well known [12], [17], [18].

The complete mode spectrum consists of a finite discrete spectrum of surface wave

modes and an infinite continuous spectrum of radiation modes. Due to the antenna

geometry and the excitation assumed here, only the even modes need to be considered.

Thus, the field in region i can be written as

(2.1a)

(2.1b)

(2.1c)

where the sum on the right side represents the surface wave modes and the integral

identifies the radiation modes. The parameter n is the mode order and N,;;E. is the highest

one of the TE surface wave modes. The parameters q o and Icc, are the free space wave
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impedance and wavenumber, respectively. The longitudinal component Hz , will be

omitted in the following since the transverse components Ey,„ H„, and the boundary

conditions characterize the field completely. Assuming a time dependence of el" ,

the z-dependent expansion coefficients in (2.1) are expressed (with assumed

normalization) by

(2.2a)

(2.2b)

(2.2c)

where A, n , A, (u) are the amplitudes of the +z traveling modes and B,„ , B ; (u) are those

of the -z traveling modes. The TE mode functions 1013, (x) and D, (x, u) in (2.1)

determine the x-dependence of the modes and are given by

and
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The parameter k=ko e,:i is the wavenumber of the slab material. The propagation

constants fl
, , 

of the TE surface wave modes depend on the slab width D, and are

determined by the dispersion relation

For any D, this equation has a finite number of solutions, which are real and lie within

the range /cc, < fi,„ < k . The propagation constants /3(u) of the radiation modes are

independent of D, and given by

(2.6)

Obviously for u<ko , the radiation modes are of the propagating type and for u>ko ,

they are of the evanescent type.
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With the expressions (2.3) and (2.4), the modes satisfy the orthogonality relations

(2.7a)

(2.7b)

(2.7c)

where 8(u — u') is the Dirac delta function and 8 mn is the Kronecker delta symbol.

In the following, it will be assumed that the dielectric guide feeding the antenna

supports only one surface wave mode, the fundamental mode (n= 0 ), which does not

have a cutoff frequency. This assumption requires that the width 2D1 of the guide

satisfies

(2.8)

Equations (2.1)-(2.6) describe the field in the uniform slab guide sections of

the wedge antenna, i.e., in the regions between the step transition planes S 1 , S2 , S3 ,...,

Sm _ i (where M = 5 for the antenna of Figure 2.1). The step transitions in these planes

are characterized by the boundary conditions
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(2.9a)

(2.9b)

where z i is the location of the plane S 1 . By using these boundary conditions and by

subsequently discretizing and truncating the spectrum of radiation modes, a linear system

is obtained such that each transition plane S, links the amplitudes of the modes traveling

away from this plane to the amplitudes of the modes incident upon this plane. In other

words, the method used here for the characterization of the step discontinuities is akin to

a scattering matrix formulation of the problem. However, the matrix coefficients are not

calculated explicitly. Instead, an algorithm is used that solves the linear system at each

step transition directly. 1 This algorithm will be explained in Section 2.2. As pointed out

before, it is a key element of the numerical analysis; its accuracy determines the accuracy

of the overall solution.

1 Calculating the scattering matrix at a given step discontinuity from the corresponding linear system
would require certain additional matrix inversions and matrix multiplications requiring more computer time
and possibly leading to a reduction in accuracy. The reason for solving the linear system directly at each
junction is numerical expediency. Conceptually, there is little difference between this method and
an explicit scattering matrix formulation of the problem.
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2.2 Higher-Order Partial Fields

With the mode-matching algorithm in place, the overall antenna problem is then solved

by an iteration procedure which is outlined here using Figure 2.2. As shown in

Figure 2.2,2 a fundamental surface wave mode is initially guided by a slab waveguide of

thickness 2D 1 . When it strikes discontinuity plane S I , scattering occurs. A forward

progression first-order solution at S I is obtained by calculating the scattering mode

amplitudes R; o', , (u) and Til l (u) established from the amplitude A(0' of

the surface wave mode incident from the left while, for the moment, neglecting the effect

of the modes incident from the right having amplitudes 141:91 and R1 1 (u) .

The determination of scattering mode amplitudes is repeated at each subsequent step

discontinuity S, , i = 2, 3, 4,..., M —1. The forward progression first-order solution for

plane S, is obtained similarly by calculating the outgoing mode amplitudes R,101 , T/01 ,

R if' (u) and T, f1 (u) established from modes incident from the left while again neglecting

the effect of the modes incident from the right having amplitudes R,q 0 and R,1,;(u).

The incidences upon this plane now include both a single surface wave mode with

amplitude 4.10 and the forward traveling radiation modes with amplitudes A,I 1 (u) , which

are the phase delay versions of forward scattering amplitudes at the prior plane S,_1.

2 Note in Figure 2.2 that the forward progression surface wave and radiation modes incident upon a step

transition plane S, have amplitudes denoted by /1/01 and A/1 (u), respectively, while the backward

progression surface wave and radiation modes incident upon S, have amplitudes denoted by B,bio and

B,b1 (u), respectively. This notation differs from that used in (2.2) where the subscript i on the mode

amplitudes A, and B, identifies the region i of half-width Di . In the remainder of this dissertation,

the subscript "1" on the mode amplitudes A, and B, as well as on the mode amplitudes 7', and R,, to be

defined shortly, is used to refer to the transition plane 5, where scattering occurs.



Figure 2.2 First forward and backward partial field wave constituents at each step discontinuity.
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By proceeding from the base of the antenna to its tip (in the forward direction),

the forward progression first-order solution established due to scattering at each

discontinuity plane S. is obtained. Then, the forward progression first-order partial

fields in the region of interest i, i = 1, 2, 3,..., M, can be constructed from the wave

constituents due to forward scattering from the boundary plane to the left ( S,_ 1 ) and

backward scattering from the boundary plane to the right ( S, ), e.g.,

(2.10)

where Eyf, is the forward progression first-order partial field in region i and EY 	is

the electric field of the incidence. Subscripts S,_, and S, identify the discontinuity

planes where scattering fields are generated. In the free space region i = M, the field

(2.10) is calculated only from the forward scattering from the boundary plane to the left.

Meanwhile, in the feed guide region i = 1, it is calculated from backward scattering from

the boundary plane to the right. In each region i, the partial fields H .!' and HZ i are

similarly obtained. The subscripts on terms other than the mode amplitudes define

the regions where the partial fields exist. The superscript "fl" identifies the first forward

progression.

To obtain the radiation fields in the backward range ( 90° < B <180° ), the waves

that progress to the left (in backward direction) that were ignored in the above
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formulation of the first forward progression must be considered. For the backward

progression, by proceeding from the tip to the base, the situation is reversed. A backward

progression first-order solution at plane S, is obtained by calculating the scattering mode

amplitudes R ibol , T boi Rim (u) and ,,, b1 (u) established from the modes incident upon plane

S, from the right having amplitudes B iboi and Bb l (u) while, for the moment, neglecting

the effect of the modes with amplitude R im10 and R ibl1 (u) incident upon the plane S,

from the left. The incident wave fields at plane S, are contributed from two scattering

events. The first event is that of the "fl" wave fields scattered in the backward direction,

i.e., R if+ 11 , 0 and R,f,_(u), which were ignored at S i+, during the first forward progression.

The second event is that of the "b1" wave fields transferred into region i +1 due to

scattering at S i+, , i.e., T,V,. 0 and T bl (u) during this (the first) backward progression

(For i = M — 2 ,

the left and performing mode-matching (described in Section 2.3) at each step

discontinuity S iv , ,14 _4 ,..., S I successively, the backward progression

first-order partial fields in each region i, i = 1, 2, 3,..., M —1, can be obtained, which are

designated as Eym, , H„mi and 11 1; 1, .

The higher-order wave field solutions can be found by repeating the above

process. To find the forward progression second-order solution, one proceeds again from

the base of the antenna to the tip. The forward progression second-order solution at plane

S, , i = 2, 3, 4,..., M —1, now results from two scattering events occurring at plane S,_, .

The first event is that of "b 1" wave fields scattered at S,_, to the right, i.e., R i 110 and

Ti+mis, and T, b+ (u) are not present). By considering wave progression to
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-u ,( ) which were ignored during the first backward progression. The second event is

that of wave fields transferred into region i due to scattering at S,_ 1 , i.e., Ti fi2c, and

T,/ (u) , during the second forward progression (For the second and higher forward

progression, p 2 , Tl ic,'P and Ti j P (u) are not present because scattering at S I now are

established from the backward progression first-order solution, not directly from

the surface wave initially incident in the +z direction on the feed guide). The backward

progression second-order wave solution at plane S, can be found in a similar fashion as

that of the first backward progression. If this process is repeated, the higher-order partial

fields are generated.

The forward progression first-order amplitudes, of course, are preserved, playing

the role of "forcing terms" for the backward progression first-order solution.

The accuracy of the results can be increased by repeating this process. In this way,

the total field in region i is obtained as a superposition of forward and backward traveling

partial fields

(2.11)
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where parameters N and Nb are the total number of forward and backward

progressions, respectively; Eyi ; P and Eyb : 1' are, respectively, the forward and backward

pth-order partial field in region i.

The iteration scheme can be expected to converge well since, in particular for

slender wedges of small aperture angle (the practically interesting case), the forward

traveling mode amplitudes will dominate over the backward traveling mode amplitudes.

A detailed discussion of the mode-matching algorithm and iteration procedure follows.

2.3 Mode-Matching of Partial Wave Fields at a Step Transition Plane

Refer to Figure 2.2. Initially, an incident even TE surface wave mode of order n = 0

(labeled )4(0 1 ) is guided by a slab waveguide of thickness 2D1 in region 1 (z < 0).

When this incident wave strikes the step discontinuity at z = 0 (boundary plane S,),

transmitted (	 ) and reflected ( R 110 1 ) surface waves as well as forward

( T/' (u) , 0 S u < 00 ) and backward ( R 1f 1 (u) ,0	 < ) radiation modes are excited. 3

Ignore, for the moment in region 2, both the backward going surface wave ( R 2fo' ) and

backward going radiation modes (R2' (u) , 0 u < co ) that are established because of

the step discontinuities to the right at is, , i = 2, 3, 4,..., M —1.  Under these conditions,

the unknown parameters are amplitudes of reflected wave (R ifo ' ,R( 1 (u)) and amplitudes

of transmitted wave ( 710' , T,f 1 (u)) for the single step discontinuity at z = 0 . The partial

fields E)1' and 1-11' in region 1 (z < 0) take the forms of

3 The transmission and reflection amplitudes Tfoi,	 (u), Ric! and Ri' (u) as defined here do not have

the meaning of scattering matrix coefficients; they are mode amplitudes.
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(2.12a)

(2.12b)

It is assumed that the wedge antenna at z = 0 is fed by monomode surface wave with

unity power, which yields Aifol =[170131011(0]2 . The partial fields in region 2 ( 0 < z < Az )

established by scattering at step discontinuity S 1 are given by

Other than for the mode amplitudes, the subscripts "1" and "2" define the regions where

the partial fields exist; whereas the superscript "fl" identifies the first forward partial

field contributions to the rigorous field solution. The use of the term "forward" signifies

that the step discontinuities to the right are considered sequentially. "Backward" partial

field contributions are obtained by considering wave progression back from the tip

toward the step discontinuities to the left sequentially. The backward going waves that

were ignored during the forward progression toward the tip are included in

the determination of these "backward" partial fields and hence allow for a rigorous

determination of the field solution.
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The unknown reflection and transmission mode amplitudes at each step

discontinuity are found by following a modified version of the mode-matching procedure

discussed in [13]. However, significant differences in the formulation are introduced.

Firstly, the parameters T, f1 (u = 0) , R,f1 (u = 0) , (u = ko ) and Rif ' (u = k0 ) are not

assumed to be zero as was done in [13]. Secondly, in the numerical evaluation of

the infinite integral, truncation is taken to exclude only higher-order evanescent radiation

modes4 that decrease rapidly with z while those of lower order (1( 0 < u 2ko , typically)

are included in the analysis. Thirdly, certain integrals are evaluated more accurately than

was done in [13]. Fourthly, normalized parameters (2.2) are introduced which insure

pattern continuity at 0 = 90° . Finally, an iteration procedure is implemented which

incorporates the backscattered partial fields that were initially ignored when considering

propagation in the forward (+z) direction; this permits a rigorous determination of

the field since no partial waves are ignored.

The method in [13] as modified above is chosen to solve the problem of scattering

at a single step discontinuity because the system of linear equations obtained involves

a numerically efficient matrix that is sparse and diagonally dominant and because

a similar system of equations is obtained at each subsequent step discontinuity.

The unknown amplitudes R if01 , R 11 ' (u) , Tifo l and TIf i (u) are determined by

requiring that the total tangential components of the electric and magnetic fields, E y 1 and

Hx„, i = 1, 2, are continuous at the step discontinuity plane S 1 ,

4 Evanescent mode coupling was assumed to be a weak effect and was ignored a priori in [13]. This was
not done here because (a) mode-matching planes are closely spaced (which occurs also in [13]) so that
this type of coupling is present, (b) high accuracy is required in analyzing the wedge antenna so as to obtain

the extremely low side lobe levels and (c) evanescent modes are required for pattern continuity at 0 = 90° .
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The parameters (f10 , 16(u)) and ( 1620 , 16(u) ) are propagation constants in regions i =1

and i = 2 , respectively. The propagation constants 1610 and P20 are determined from

the eigenvalue equation (2.5) for D 1 and D2 , respectively, while fi(u) is given by (2.6).

Multiplying both sides of (2.15a) and (2.15b) by I  (x) , integrating over x from

0 to 00 , interchanging the order of integration over u and x and using orthogonality

relations in (2.7a) and (2.7c) lead to the following equations, respectively:

and

where
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(2.16c)

(2.16d)

The explicit form of overlap integrals Q00 (D,DH-1) and Q0 (u;D,,D, +i ) are shown in

Appendix C.

To solve (2.16a) and (2.16b), the integrals over x are first evaluated explicitly.

Next, the remaining integrals over u are truncated at u= u ina„ and discretized into

NT = N/2 intervals (N segments); see Appendix E. The value of u max insures that both

propagating and evanescent radiation modes are included. Simpson's one-third rule is

used to evaluate integrals in intervals devoid of singularities. Integration across

singularities is handled by established method since the singularities encountered are

integrable (see Footnote 5). Because of the discretization process, 2N + 4 unknowns

now need to be determined; they are Rio' , , (um ) and TI-f' (u m )), m= 0, 1, 2, ...,

N, where N is an even integer. However, (2.16) constitutes only two equations.

Additional equations are obtained by multiplying both sides of (2.15a) and (2.15b) by

cD i (x,i1), integrating over x from 0 to co , interchanging the order of integration over u

and x and using orthogonality relations in (2.7b) and (2.7c) to yield the following

equations, respectively:

and
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(2.17b)

(2.17c)

(2.17d)

Q(u' ,u; D 1 , D2 ) can be shown to take the following form (see Appendix C):

By using (2.18), (2.17a) and (2.17b) become

(2.19b)

anu



23

As before, the integrals over u in (2.19a) and (2.19b) are truncated at u =u. > k0 and

discretized. Again care must be used in numerically evaluating these integrals because of

the occurrence of singularities in the integrand. The singularities encountered are of three

types, namely,11P(u) , 11(ur 2 - u ) and 18(u ')/[/3(u)(u'' — u 2 )] . Away from the above

singularities, Simpson's one-third rule is used to evaluate the integrals. Thus, a linear

system of equations is obtained which permits the determination of the 2N + 4

unknowns R1 1, R11(u = u m ) and Tif l (u =um ), m = 0, 1, 2,..., N. As before,

the integration across the first two singularities can be handled by established methods

since both are integrable 5 (the second in the Cauchy Principal Value sense). The third

singularity is more of a problem. It combines the first two singularities but in such a way

that for u, u' —> lc () both the numerator and the denominator vanish. Of special note is

the integral evaluation for u' = /cc, given by

(2.20)

where the integrand consists of the third singularity multiplied by an arbitrary continuous

function F(u',u) that remains finite for u —> Go . The notation PV in front of the integral

sign designates the Cauchy Principal Value integral evaluation. By applying (2.20),

(2.19a) becomes

5 The integral is evaluated by expanding the non-singular portion of the integrand in a Taylor series over
interval(s) of singularity, using finite difference approximation for the first and second derivatives [54],
[55], and evaluating the resulting integrals explicitly.
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The 1/(u' 2 - U 2 ) singularity in (2.19a) is removed by subtracting (2.19a) from (2.19b),

which is used for u' # ko

Subtracting (2.16a) from (2.16b) yields

In summary, the system of equations at S 1 for forward progression given by

(2.16b), (2.23), (2.19b) with (2.21) and (2.22) is



where

Before solving (2.24a)-(2.24e), the following normalized parameters are

introduced:
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Adopting normalized parameters (2.25), (2.24) becomes



NI, 1 1,11

where the normalized overlap integrals in (2.26) are related to unnormalized forms as

follows:
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The procedure is repeated at each subsequent step discontinuity. For example,

the difference in the formulation at S 2 in Figure 2.2 is that the non-zero wave

constituents, assumed to strike the discontinuity at z = Az , include now both a single

surface wave mode, represented by A21 , plus the forward traveling radiation modes,

represented by Al' (u) , 0 u < 00 . These wave amplitudes are related to those at plane

SI by (2.29) for i = 2 . Observe that phase accumulation takes place over a distance Az

from one boundary plane to the next one. As before, both the reflected surface wave

mode (14') and the reflected radiation modes (Rif ' (u) , 0 u < 00) in region 3 are

neglected. The boundary conditions (2.9a) and (2.9b) applied at S, , i = 2, 3,..., M — 2 ,

then yield the following constraint equations:

and

The amplitudes of incident surface wave A,10 and radiation waves .41 ' (u) incident upon

discontinuity plane S, , i = 2, 3, 4,..., M — 2 are related to those of plane S,_, by
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(2.29)

Note the similarity between (2.28) and (2.15). At the last transition plane S, =

which separates the dielectric from free space (where S„,,_, = S4 in Figure 2.1),

the constraint equations remain the same as in (2.28), except that the terms involving T/01

on the right hand sides are not present. Observe that the phase accumulation over

a distance Az from one boundary plane to the next one appears only in the incident mode

amplitudes given in (2.29).

It was noted above that at each step discontinuity S, 2N + 4 unknowns had to be

determined. Further study of the system of equation (2.28) when D,, i # 0 shows that

(u = 0) = T/ 1 (u = 0) = 0 , i = 1, 2, ..., M — 2 , but that when D i+, = 0 ( i +1 = M ),

RV 1 (u = 0) = 0 ,	 i (u = 0) # 0 . Thus, there remains 2N + 2 unknowns to be found at

each step discontinuity; recall that only radiation modes exist in region M, which is

the free space region to the right of the last step (z > L' ), and the system of equations

allows for the determination of R' 10 , 1 (u m) T,1,11 1 1 (u = 0) and T,2 1 (u,n ) ,

m = 1, 2, ..., N, which, as noted, consists of 2N + 2 unknowns.

The first forward partial fields in region 2 were found by applying boundary

conditions at Si . The scatter processes involved are approximated in that certain

reflected fields were ignored. It was pointed out that the process was repeated and

boundary conditions were applied at S 2 , S3 S4 , ..., Sm _ I in a similar fashion to obtain

the remaining first forward partial fields in regions 2, 3, 4,..., M . In all cases,
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the backward surface wave and radiation modes were taken to be zero to the right of S

i = 1, 2, 3,..., M - 1 when the forward partial fields E yfl, , H,cf and I , i = 1, 2, 3,...,

M , were determined. Other than for the mode amplitudes, the subscript "i" identifies

the region where the field is located and the superscript "fl" identifies each constituent as

being the "first forward" partial field contributions to the rigorous field solution.

All the amplitudes defined so far are associated with the first forward progression toward

the tip of the antenna.

To obtain the field in the backward range ( 90° < 0 <1 80° ), the waves that

progress to the left (in backward direction) that were ignored in the above formulation of

the first forward progression must be considered. This is accomplished by initially

considering the backward surface wave mode (R A,Ibl_10 ) and the backward radiation modes

-mbi_(.K 1 (u), 0 S u < 00) scattered by the abrupt termination of the wedge antenna at Sm _ i to

be scattered by the step discontinuity at Sm _ 2 ; the superscript "b 1" in Figure 2.2 denotes

the first backward progression of wave fields. By considering wave progression to

the left and performing mode-matching at each step discontinuity Sm _ 2 5m _ 3 Sm _ 4

S I successively, the "first backward" partial field components are obtained in each

region. They are designated as E ym, , Hxbi, and i = 1, 2, 3,..., M -1. This process

of sequentially considering forward progression and backward progression can be

repeated as often as needed to approximate the total field to the desired order of accuracy.

Using only the first and second forward progressions (identified by the superscripts fl

and f2, respectively) and the first and second backward progression (identified by



in region 2, Ey121 E f21 and similarly for backward progression
s,

+ Elly2

the superscripts bl and b2), the total field constituents in each region i, i = 1, 2, 3,...,

can be formally approximated as follows:

In region 2, 3, 4, ..., M —1 :
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It is understood in the above equations that, for the forward progression, the partial fields

in the region of interest contain constituents that are due to forward scattering from

the left boundary plane and backward scattering from the right boundary plane, e.g.

bl 
=1-i 	

+ Ebl
Y 2 	y2	 y2 s, 

, where the subscripts S1 and S 2 identify step discontinuities where

partial fields are scattered. The accuracy of the total field will depend on how many

forward and backward partial fields are included in the final results. The iteration

process converges well. The numerical evaluations have shown that the inclusion of

the four partial fields, as assumed in (2.30), provides acceptable accuracy in most cases.

To clarify the formulation of the backward partial fields, for example, consider

regions 3 ( Az z 20z) located between boundary plane S2 and S3 as shown in

Figure 2.2. To obtain the incident wave fields at S 2 two contributions from scattering
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events that occurred at S3 are needed. The first event is that of the -fl." wave fields

scattered in the backward direction, i.e., Rifj and Rif ' (u) , which were ignored at 53

during the first forward progression. The second event is that of the "b 1" wave fields

transferred into region 3 due to scattering at S3 i.e., T301 and Tab' (14) , during the first

backward progression. On reaching S 2 , these two contributions experience phase shifts

since they transverse the distance Az in going from S3 to S 2 . Thus, the total incident

backgoing guided mode and radiation modes at S2 have amplitudes BV0 and B2' (u)

given by (2.32a) and (2.32b) for i = 2 . At S2 , reflected waves of amplitudes R20 and

R2' (u)( ) are established in region 3 and transmitted waves of amplitudes T20; and T2bol (u)

enter region 2. The partial fields in region 2 due to scattering at S2 is then seen to be

given by (2.33) for i = 2 and p =1.

For the pth backward progression, the partial fields in region i+1 (z,<z<z,,,),

i= 1, 2, 3,..., M — 2 , take the forms of

(2.31c)



and

where
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where superscript "b,p" identifies the pth backward partial field contributions to

the rigorous field solution. The amplitudes of incident surface wave and radiation waves

for discontinuity plane S, are given, respectively, by

(2.32a)

(2.32b)

(2.32c)

The partial fields in region i, i = 1, 2, 3,..., M — 2 , established by scattering at step

discontinuity S, are

(2.33a)

(2.33b)

By utilizing boundary condition (2.9) at plane S, multiplying (1),, 1 , 0 (x) and

1,+1 (x, u') to both sides of the equations, using orthogonality relations (2.7), arranging

equations in the same fashion as that of forward progression and adopting normalized

parameters (2.25), the system of equations is obtained for backward progression at S,

i= 1, 2, 3,..., M-2,
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(2.34a)

(2.34b)

(2.34c)

(2.34d)

(2.34e)

(2.34f)

(2.34g)

(2.34h)

(2.34i)

(2.34j)

(2.34k)
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Similar to forward progression, there is no occurrence of scattering radiation wave for

= 0 at discontinuity plane S, , i = 1, 2, 3,..., M — 2 . Hence,

(2.35)

Imposing (2.35) to (2.34a)-(2.34d), the discretization process and singular integral

evaluation provide the set of 2N + 2 linear equations with 2N + 2 unknowns, i.e., R,bf ,

Ti bo,p kib,p	 = --m ,

U ) and fi b 'P(ii = um ) , m = 1, 2, 3,..., N.

The question may be asked why the above mode-matching and iteration procedure

were chosen. As pointed out above, the procedure involves formulation of

the mode-matching problem at the step transition planes in terms of a linear system akin

to a scatter matrix representation of the problem. An alternate approach would consist in

formulating the mode-matching problem in terms of voltage-current transmission

matrices which in the overall antenna problem are then interspersed by the (diagonal)

transmission line matrices of the uniform dielectric guide sections of the staircase

model [19]. The advantage of this approach is that it reduces the antenna problem to

the cascading of Ms mode-matching matrices of the relatively moderate size N. x N.,

where Ms = M —1 is the number of step transition planes in the staircase model of

the antenna and N. = 2N + 4 is the number of modes considered at each step. In other

words, the antenna problem in this formulation is reduced to a sequence of matrix

multiplications. An added advantage is that formulation of the boundary conditions (2.9)

in this case provides the coefficients of the voltage-current transmission matrices
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explicitly, i.e., without the need for additional matrix operations of the type required in

calculating the scattering matrix representation of the step discontinuities; see footnote 1.

The method has the advantage of numerical efficiency; but it also has a problem, that of

stability.

Despite these advantages the method was not used here because it is likely to lead

to a stability problem. It will be stable as long as it can be assumed that the coupling

between adjacent transition planes is accomplished solely by the propagating modes

traveling on the interconnecting uniform guide sections, which means that in

the transmission line matrices all evanescent modes can be neglected. However, for

the slab/wedge antenna, the mode-matching planes are in close proximity, coupling by

evanescent modes cannot be disregarded a priori, and as a result the procedure is likely to

become unstable. This has to do with the fact that on the uniform guide sections,

there are two groups of waves, one propagating to the right and the other one to the left.

Hence, as one proceeds from boundary plane S, to plane S, +1 , the evanescent modes of

one of these groups will exponentially increase in amplitude and any error in

the mode-matching procedure in plane 5, is likely to be amplified in plane S,,, , and

become even bigger in plane S i+2 ; hence, the procedure destabilizes.

For this reason, the mode-matching procedure in the step transition planes is

formulated in terms of generalized scattering matrices [20], [21]. This has the advantage

that as one formulates the coupling between planes S, and S, +1 in terms of the two mode

groups traveling on the interconnecting uniform guide sections, one follows either group

in its respective direction of propagation and all evanescent modes will exponentially

decrease in amplitude, thus eliminating the cause for instability.
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In the dissertation, the problem has been resolved by the iteration procedure

discussed above. This, in effect, reduces the determination of the cascading of Ms

matrices of size N,,, x N,,, to solving a single N„, x N,,, matrix equation at each boundary

plane whether progressing in the forward or backward direction. The procedure is stable,

though it needs to be repeated several times.

2.4 Antenna Characteristics

With the mode amplitudes of the antenna field known in the first and the M th regions of

the staircase model, the determination of the antenna characteristics, including its

reflection coefficient, radiation intensity, radiated power and directive gain, is straight

forward.

The reflection coefficient, which determines the VSWR on the feed guide,

is given by

(2.36)

where Ti bo '" are the mode amplitudes of the pth order backward going surface waves at

the discontinuity plane S i in the feed waveguide (region 1). The parameter Nb is

the total number of backward progressions.

The radiation intensity is calculated by asymptotic evaluation of the electric fields

in the free space region i = M off the tip of the antenna (forward-range pattern) and in
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the feed guide region i =1 (backward-range pattern). By using the method of stationary

phase [22], [23], the radiation intensity is obtained as follows (see Appendix F):

(2.37)

while U(-9) = U(0) . Angle 9 is the elevation angle measured with respective to

the +z axis. The amplitudes ff (sin 9) and kb (sin 9) are, respectively, given by

the composition of N f and Nb orders of mode amplitudes

NO

and

where N is total number of forward progressions ( N = Nb = 2 in (2.30)).

The radiated power, which is given by integrating the radiation intensity (2.37)

over 27r radians (from — n- to pr ), can be found from a series approximation

(2.39a)

(2.39b)



where

38

(2.39c)

(2.39d)

(2.39e)

(2.39f)

Directive gain is defined as the ratio of the radiation intensity in a given direction

to the average radiation intensity [24], [25], or

whil(



CHAPTER 3

TM FORMULATION

The model for the tapered dielectric antenna fed by a slab waveguide is depicted in

Figure 2.1, wherein the smooth tapered portion is replaced by short slab segments of

equal length and uniform cross-sectional areas.

3.1 TM Modal Representation

An even TM surface wave mode (of lowest order) of the uniform dielectric slab

waveguide is assumed to be incident in the +z direction from z —00 and to excite

the dielectric wedge antenna. This mode does not experience cutoff and can propagate

along very thin slab waveguides. Due to this excitation and the antenna geometry,

the field in each slab region i is everywhere independent of the y-coordinate and is TM

polarized with field components Hy , Ex , and Er ,.

Using the known even TM mode structure of the dielectric slab waveguide [12],

[17], [18], each field component in each region occupied by a slab is represented by

a finite, discrete spectrum of allowable surface wave modes and an infinite spectrum of

radiation modes

39
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(3.1c)

where e r , (x) is unity in free space, but equals 6r in the dielectric. The numerical index

n is the mode order for the TM surface wave modes, with N mTm being the highest one.

Assuming a time dependence of e , the z-dependent expansion coefficients in (3.1)

with prescribed normalizations are taken to be given by

(3.2a)

(3.2b)

(3.2c)

where A,, A. (u) are the amplitudes of the +z traveling modes and B , B (u) are those

of the -z traveling modes. The TM mode functions	 (x) and P, (x, u) in (3.1)

determine the x-dependence of the modes and are given by

with



(3.4a)
with

(3.4b)

(3.4c)

For the TM surface wave modes, the propagation constants fl,„ depend on the slab width

D, and are determined by the dispersion relation

For any D, this equation has a finite number of real solutions that lie within the range

/cc, < 13,„ < k . The propagation constants fi (u) of the radiation modes are independent

of D, and are given by (2.6).

With the expressions (3.3) and (3.4), the mode functions satisfy the orthogonality

relations

(3.6a)

(3.6b)

41
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(3.6c)

In the following, D I is chosen to satisfy (2.8) to insure that all slabs support only

the lowest order TM surface wave mode, which does not have a cutoff frequency.

Hence, in the discussion to follow, the summations in (3.1) reduce to single terms with

mode index n = 0 . In addition, the longitudinal component E,, is not discussed since

the transverse components E„, and the boundary conditions characterize the field

completely. Thus, (3.1)-(3.5) describe the field in each region filled by a dielectric slab

segment of the slab waveguide/wedge antenna, i.e., in the regions between the step

transition planes S 1 , S2 , S3 ,..., Sm _ i , whereas, the step transitions in these planes are

characterized by the boundary conditions

Following the procedure developed in Chapter 2, the boundary conditions (3.7)

are formulated in terms of the modal representations (3.1) that, after discretizing and

truncating the continuous spectrum of radiation modes, yield a linear system at each

plane S, that relates the amplitudes of the incident modes, be the surface or radiation,

to the modes scattered from the transition plane. The method is computationally efficient

because of a mode-matching algorithm which constructs and solves the linear system at
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each transition plane. In this way, the required matrix calculations needed and the size of

the matrices involved are minimized. The fields in any slab region are then determined to

any order of accuracy by an iterative scheme which involves forward and backward

partial wave fields.

3.2 TM Mode-Matching of Partial Wave Fields at a Step Transition Plane

In general, if the scattering event is considered for the pth forward progression at a step

discontinuity in the transition plane S, located at z = z, the partial transverse field

constituents in region i to the left of S, take the forms

(3.8a)

and

where
0-0z	 = z — z,	 (3.8c)

The amplitudes of the incident surface wave Ard'' and radiation waves A,f '(u) ,

0 u <co , at the discontinuity plane S, are given, respectively, by
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(3.9a)

(3.9b)

It is assumed that the antenna is fed by a single even TM surface wave of unity power;

hence, Aifo' = [77 07010 /k0 ] 2 . For the pth forward progression, the partial transverse field

constituents in the region i +1 to the right of S, , established from scattering at the step

discontinuity S, are given by

(3.10a)
and

The subscript "i" on the mode amplitudes identifies the transition plane S, where

scattering occurs. Other than for the mode amplitudes, the subscripts "i" and "i +1"
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define the regions where the partial fields exist; the superscript "f,p" identifies

the pth forward partial field contributions to the rigorous field solution.

The unknown mode amplitudes Rid" , T,f0"), R iLP (u) and Tr/ 'P (u) at each step

discontinuity are determined by the mode-matching method. This involves requiring that

the total tangential components of the magnetic and electric fields are continuous across

the step discontinuity plane S

The above continuity requirements yield the following equations:

and

Multiplying both sides of (3.12a) and (3.12b), respectively, by [1/6,, (x)]T o (x) and

f1 (x) , integrating over x for 0 to 00 , interchanging the order of integration over u and x
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and using the orthogonality relations in (3.6a) and (3.6c) lead to the following equations,

respectively:

and

wnere

(3.13d)

(3.13e)

(3.13f)

The explicit form of the overlap integrals	 (D1 ,D, 1 ), 111,3+D (D,D,, 1 ),

(u; D1 , 	 and MH-1) (u;D1 ,D, 1 ) are shown in Appendix D. Subtracting (3.13a)

from (3.13b) gives

(3.14)
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Additional equations are obtained by multiplying both sides of (3.12a) and (3.12b),

respectively, by We r , (x)rlf, (x,u') and IP, (x,u'), integrating over x from 0 to 00 and

using the orthogonality relations in (3.6b) and (3.6c) to yield

(3.15a)

and

where

(3.15c)

(3.15d)

(3.15e)

(3.150

M ( ' ) (u', D , D1+1 ) and M" ) (u' ,u; D 4 +1 ) can be shown to take the following forms

(see Appendix D):

(3.16a)
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By using (3.16), (3.15a) and (3.15b) become
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(3.17b)

To solve (3.13b), (3.14), (3.17a) and (3.17b), the integrals over x (overlap integral)

are first evaluated explicitly. The remaining integrals over u are truncated at

u=u. > k0 	and discretized into	 NTI = N/2 	 intervals (N segments).

Simpson's one-third rule is used to evaluate integrals in intervals devoid of singularities.

The singularities encountered are of three types, namely, 1/ /3(u) , 11 (u' 2 — u 2 ) and
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16(u 1)/[ 16(u)(u' 2 —u 2 )]. Similar to the TE case, the integrations across the first two

singularities are handled by established methods. The integration over the third

singularity, which follows the procedure used to derive (2.20), yields from (3.17a) for

u' = ko

(3.18a)

where

(3.18b)

(3.18c)

The 1/(u' 2 - u 2 ) singularity in (3.17a) is removed by subtracting (3.17a) from (3.17b),

which is used for u' # ko to give

(3.19)

In summary, the system of equations at S, for the pt" forward progression is given by

(3.13b), (3.14), (3.17b), (3.18a) and (3.19) that is written in normalized form as
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(3.20i)

(3.20j)

(3.20k)

where the normalized overlap integrals in (3.20a)-(3.20d) are related to unnormalized

forms as follows:

(3.21a)

(3.21b)

(3.21c)

(3.21d)

(3.21e)

(3.210

Note that at each step discontinuity S, 2N+4 unknowns need to be determined.

Further study of (3.15a) and (3.15b) when 	 D,, i # 0 	 shows that

R P (1I = 0) T, f P = 0) = 0 , I = 1, 	 M —2, but that when 4 +1 = 0 (i +1= M ),
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(u = 0) = 0 and T	 = 0) # 0 . Thus, there remains 2N + 2 unknowns to be found

at each step discontinuity.

To obtain the field in the backward range (90° 5_ 0 180° ), the waves that

progress to the left (in the backward direction) that were ignored in the above formulation

of the forward progression must be considered. For the pt" backward progression,

the partial transverse field components in regions i + 1, i = 1, 2, 3,..., M —2 , take

the forms of

(3 .22a)

(3 .22b)

where the amplitudes of incident surface wave and radiation waves at discontinuity

planes S, , i = 1, 2, 3,..., M — 2, are, respectively, given by

(3.23a)

(3.23b)
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where

The partial transverse fields in region i established by scattering at the step discontinuity

S, are

By utilizing boundary condition (3.7a) and (3.7b) at the plane S, multiplying

(x)]T,,,, 0 (x) and	 (x) to both sides of the equations, respectively,

again multiplying [1/S r ,,,, (x)]tY 1 ,_ 1 (x,u') and tP,,, (x,u') to both sides of the same

equations, respectively, utilizing orthogonality relations (3.6), arranging equations in

the same fashion as that of the forward progression and adopting normalized parameters

(2.25) yield the system of equations for backward progression at S, i = 1, 2, 3,...,

M — 2 ,
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(3.25b)

(3.25c)

where

(3.25d)

(3.25e)

(3.250

(3.25g)

(3.25h)

(3.25i)

(3.25j)
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(3.25k)

(3.251)

Similar to forward progression, no scattering radiation occurs for 	 t7 = 0 at

the discontinuity planes S, , i = 1, 2, 3,..., M — 2 ; hence,

-1?ib ' P (17 = 0) = b ' P (F/ = 0) = 0 , for i = 1, 2, 3,..., M — 2	 (3.26)

Applying (3.26) to (3.25a)-(3.25d), the discretization process and the singular integral

evaluations provide the required set of 2N + 2 linear equations for the 2N + 2

unknowns, i.e., R,bf , , p = um)   and f; b P 	= u,,,) , m = 1, 2, 3,..., N.

3.3 Antenna Characteristics

For TM polarization, the reflection coefficient at the input to the wedge antenna is also

given by (2.36). The radiation intensity is determined by asymptotic evaluation of

the magnetic fields in the free space region i = M off the tip of the antenna and in

the feed guide region i =1 and found to be given by

(3.27)
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where U(-6) = U(9) . 	 Amplitudes T1 (sin 0) and Rb (sin 0) are, respectively,

the composition of N 1 and Nb orders of mode amplitudes given by (2.38a) and (2.38b).



CHAPTER 4

NUMERICAL RESULTS

The method presented in Chapter 2 and 3 approximates the dielectric wedge by

a sequence of short slab segments of progressively smaller widths. Hence, a more

accurate determination of the field scattered by the wedge geometry is obtained by

increasing the number of segments used. In theory, the method yields a rigorous solution

when the mode-matching at each single step discontinuity is accurately performed.

To ascertain this accuracy, comparisons are made with published data for scattering from

a single step discontinuity, particularly, in the TE polarization since published data is not

readily available for the TM case.

The first example of scattering at a single step discontinuity is shown in

Figure 4.1. The refractive index of two dielectric slabs is n 1 =1.54 and that of

the surrounding medium is n 2 =1.52. The fundamental TE surface wave mode is

assumed to be incident from the left and to carry unity power.

Figure 4.1 Step discontinuity with n 1 =1.54, n 2 =1.52 and incidence from the left.
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Tables 4.1 and 4.2 show comparison of results for the structure in Figure 4.1

based on the present theory with the data of Suchoski, Jr. and Ramaswamy [13].

Table 4.1 describes scattering at a step discontinuity that is modest, however not small

since D2 /DI = 0.6 , and for dielectric media with indices of refraction that are

numerically close, which is of interest in the design of integrated optical devices.

Observe that, as far as conservation of power is concerned, the corrections made to [13]

that are implemented here yield a significant redistribution of power, although

conservation of power is well satisfied in both cases. Note that the power contained in

the reflected surface wave mode (Prce"f ) is over twice as large, the power carried by

the transmitted radiation mode ( P t. ) is about 10% smaller and the power inIAanDs

the reflected radiation modes (Prmej D ) is approximately two orders of magnitude smaller

than that of [13]. By definition,

wave mode. In Table 4.1(a), reproduced from [13], data is presented for truncation at

u. = ko , which excludes evanescent radiation modes, whereas data in Table 4.1(b)

includes these modes since u. = 2k0 . Note that N is twice as large for the latter to

insure that the discretization step Au is the same in both cases and the same number of

propagating radiation modes is considered. For the same dielectric media, Table 4.2

displays conservation of power at a step discontinuity that is large since D2 /D1 = 0.2 .

In this case, the results show a significant redistribution of power for all wave

constituents, even though conservation of power is again satisfied.

PtrGans is the power carried by the transmitted surface
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Table 4.1 Comparison of Results with Suchoski, Jr. and Ramaswamy at a Small Step
Discontinuity for TE Polarization, n 1 =1.54, n 2 =1.52, 20 = 0.6328 pm , D, = 0.5pm,

D = 0.3pm, (a) Suchoski, Jr. and Ramaswamy and (b) The Present Method Using

uma. = 2k0

N
p

trans
G G p

A ref PtrRAanDs
E RADpp
I ref

pTOTAL 

50 0.99161766 0.0000011 0.0073938 0.0009793 0.9999919
70 0.99161685 0.0000011 0.0073954 0.0009802 0.9999936
100 0.99161620 0.0000011 0.0073963 0.0009808 0.9999944
120 0.99161626 0.0000011 0.0073967 0.0009812 0.9999953
150 0.99161630 0.0000011 0.0073969 0.0009813 0.9999956

(a)

IV trans
D G
i refPG sP RAranD

D RAD
I- ref

pTOTAL 

100 0.99339498 0.00000242 0.00658701 0.00001569 1.00000011
140 0.99339161 0.00000242 0.00659065 0.00001573 1.00000041
200 0.99339014 0.00000242 0.00659202 0.00001576 1.00000034
240 0.99338983 0.00000242 0.00659228 0.00001577 1.00000030
300 0.99338963 0.00000242 0.00659243 0.00001578 1.00000026

(b)
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Table 4.2 Comparison of Results with Suchoski, Jr. and Ramaswamy at a Large Step
Discontinuity for TE Polarization, n i =1.54, n 2 =1.52, Ao = 0.6328,um, D, = 0.5,um,

D = 0.1,um , (a) Suchoski, Jr. and Ramaswamy and (b) The Present Method Using

umax = 2k0

AT PtrGans
AD G
i ref PtrRAanDs

p RAD
i ref

pTOTAL

50 0.73635 0.000081 0.24162 0.02596 1.00401
70 0.73728 0.000093 0.24199 0.02385 1.00321
100 0.73742 0.000099 0.24262 0.02243 1.00257
120 0.73743 0.000102 0.24300 0.02139 1.00192
150 0.73744 0.000103 0.24310 0.01949 1.00013

(a)

N transPtrG 1 ref transPtrRAanD
p G p RAD

A ref
pTOTAL 

100 0.79132345 0.00001433 0.20700815 0.00001382 0.99835976
140 0.79420232 0.00001433 0.20565740 0.00001382 0.99988787
200 0.79494284 0.00001433 0.20504311 0.00001382 1.00001411
240 0.79507175 0.00001433 0.20491034 0.00001383 1.00001024
300 0.79515462 0.00001433 0.20482278 0.00001383 1.00000555

(b)
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Next example of a step discontinuity is shown in Figure 4.2 where the relative

permittivity of two dielectric slabs is L., = 5 , the surrounding media is free space, and

k0 D1 =1. The fundamental TE surface wave mode with unity power is incident from

the right slab waveguide of smaller width 2D 2 .

Figure 4.2 Step discontinuity of two slabs with e r = 5 surrounded by free space.

Table 4.3 shows the comparison of the power distribution at the step discontinuity

obtained from the present theory with data of Hirayama and Koshiba [15], who used

a combination of the finite-element and boundary-element methods (CFBEM).

Truncation for the mode-matching method presented here is taken at u m. = 7k0 using

a total of N = 910 discretized segments, which include Np = 130 segments for the

propagating radiation modes and NE = 780 segments for the evanescent radiation modes

(see Appendix E). In the table, the radiated power is given by P RAD = pirRAanDs
 P

r D

Observe that there is very good agreement for the distribution of power among

the modes.
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Table 4.3 Comparison of Results with Hirayama and Koshiba at a Step Discontinuity
for k0 D1 =1, E r = 5 Surrounded by Free Space, TE Mode Incident from Smaller Slab of

Width 2D2 , Using u max = 7k0 , N = 910 ( NP =130 , NE. = 780 )

D2 /D, Method PtrGanA
 GPref

. 

p RAD pTOTAL

0 2. 
Present method 0.8866 0.0416 0.0718 1.0000

CFBEM* 0.8865 0.0416 0.0715 0.9996

0.04
Present method 0.3614 0.0103 0.6279 0.9996

CFBEM** 0.3620 0.0100 0.6278 0.9998

* : Table I with d,/c/2 = 0.2 , Fig. 3(a) in [15].
** : Table I with d,I cl, = 0.04 , Fig. 3(a) in [15].

Many journal publications have treated the problem of scattering from a single

step discontinuity [13]-[16], [26]-[42]. Several of these publications compare their

results with Rozzi [14], who used a rigorous variational approach to analyze the step

discontinuity problem shown in Figure 4.3, where the relative permittivity of two

dielectric slabs is E r = 5, surrounding media is free space and k o DI =1. Results for

the TE polarization case are shown in Figures 4.4 and 4.5. In Figure 4.4, the radiated

power ( P 'A'D = p
trRAanDs prRAef D) is plotted versus D2 /D 1 and normalized to the incident

power ( ) that is carried by the fundamental TE surface wave mode incident either

from the left in Figure 4.3(a) or from the right in Figure 4.3(b); the larger slab

cross-section (2D 1 ) is taken to the left, which differs from that of Rozzi [14] who placed

the narrower slab on the left. The magnitudes of the reflection and transmission

coefficients for incidence form the left ( , z f ) and from the right (I , b , z-b ) are also

plotted in Figure 4.4. As is evident, excellent agreement is obtained between the results

of the present method and that of Rozzi.
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Figure 4.3 Step discontinuities of two slabs with E r = 5 surrounded by free space,
(a) incidence from the left (b) incidence from the right.

Figure 4.4 Comparison of radiated power and the magnitudes of reflection and
transmission coefficients of a step discontinuity between two slab waveguides versus
relative step width for k o D1 =1, E r = 5 , using u. = 7k 0 and N= 910 (NP =130 ,

NE = 780 ), TE polarization.
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Figure 4.5 Comparison of radiation patterns of normalized power gain GN (8) for single

step discontinuity for E r = 5 , ko D, =1 and D2 / = 0.2 , TE mode incident from

the right, using u. = 7k0 and N = 910 ( NP = 130 , NE = 780 ).

Figure 4.5 is a plot of the normalized power gain GN (0) = U (0) / Pm( versus

elevation angle 0 for TE polarization, where U(0) is the radiation intensity,

0 is the angle measured from the +z-axis in the xz-plane shown in Figure 2.1. Note that

in the curves taken from the literature [14], [16] a discontinuity appears in the region near

8 = 90° . In the present theory, this problem has been eliminated by the appropriate

normalization (2.2), resulting in pattern continuity at 90° . Results in Figure 4.5 show

good agreement between the three methods plotted.

In Figures B.1-B.18 (Appendix B), the radiation patterns of directive gain D(0)

versus elevation angle 0 for different dielectric wedge antennas for TE and TM

polarization are presented. The patterns are endfire, as expected. In Figures B.1-B.12,
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results are shown for increasing number of finite slab segments Ns =M-2 (which

decreases Az) while keeping all other parameters fixed. In this way, the step geometry in

Figure 2.1 approaches that of the wedge. As shown in all the curves, the radiation

patterns converge to limiting smooth shapes over the forward directional range

0° < 9 < 90° and backward directional range 90° < 9 < 180° . Subsequently, results are

presented in Figures B.13-B.18 that characterize the wedge radiator for different

dielectric constants 8, and relative lengths L/20 , where A,0 is the free space wavelength.

A Pentium 4-2.8 GHz PC was used to obtain numerical results. The CPU time

used to obtain the second-order partial fields (N 1 = Nb = 2 in (2.30)) for a typical curve

of directive gain versus elevation angle in the TE case was 185 minutes for 40 slab

segments ( Ns = 40); this assumes N = 300 .

To insure that as E r increases only one surface wave mode is above cutoff for

both TE and TM cases, D1 /A0 is chosen to satisfy the relationship

(4.1)

In the TE case, (4.1) insures that the incident surface waves for different values of 8,

have identical wavenumbers cx xio Di in the free space and k x10 D1 in the dielectric feed

slab region. In the TM case, however, E r appears in the dispersion relation (3.5), then

normalized wavenumbers do not remain constant as 8, varies.

All data depicted in Figures B.1-B.36 is obtained using first and second-order

partial fields. For the wedge antennas in the TE case with E r 8 and L/20 5 ,
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the first-order solution is used; the first-order solution appears more accurate for such

cases since it does not generate any irregularities near 90° that do appear when

the second-order solution is used.

The materials chosen for Figures B.1-B.16 are lucite (Sr = 2.56) and silicon

(er = 12). In Figures B.1 and B.2, the wedge parameters are Er = 2.56, D, /20 = 0.2,

L / 20 =1, u niax = 2k0 and N= 300 with Np = 150 and NE =150 . For this relatively

short wedge, the directive gains are obtained for four different numbers of slab segments

Ns , namely, 10, 20, 40 and 60. Figures B.1 and B.2 show that even a small number of

slab segments (10-20) is sufficient to secure convergence in the forward and backward

angular ranges.

In Figures B.3 and B.4, s r is taken to be 12 and the slab/wedge width D 1 /20 is

adjusted in accordance with (4.1) while the antenna length L/20 remains identical to

the one used in Figures B.1 and B.2. Again it is evident that even a small number of

segments can guarantee the convergence in all angular ranges.

Radiation patterns for wedge antennas with L/2 0 = 5 and 10 are shown in Figures

B.5-B.12. In calculating these patterns, u m.= 2k0 is assumed. It is evident from

the figures that the patterns converge well as the number of slab segments Ns

in the staircase model is increased (so that the staircase more accurately models

the wedge). Clearly, all patterns are endfire. In the TE case, the directivity (D.) is

typically 9-10 dB for s r = 2.56 and 8-9 dB for s r =12 . In the TM, the directivity for

Er = 2.56 and E r =12 for the same lengths is effectively unchanged, i.e., 11-12 dB. It is

seen in both TE and TM cases (also see Tables A.5 and A.6 in Appendix A) that a longer
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taper leads to the (moderately) higher directivity and narrower half-power beamwidth

(HPBW). These trends were expected. Only for the TE case, it appears that larger values

of dielectric constant ( 6 r ) produce smaller directivity and broader beamwidths

(see Table A.5(c)).

An interesting result in the TE case is that the radiation patterns are essentially

free of side lobes for both dielectric constant materials. The patterns do, however, exhibit

undulating characteristics [43], as suggested by Figures B.5 and B.9. As the relative

wedge length L/2,0 increases from L/A.0 = 5 to /1.10 =10 , the pattern undulations

become more numerous. This trend is also valid up to L/2 0 = 20 as shown in Figure

B.13. In the TM case, all the patterns display small side lobes. Their Side Lobe Level

(SLL) and Os , the angle where the maximum side lobe peak occurs, are shown in Table

A.7. An important conclusion from this study is this occurs for dielectric wedge antennas

fed by a uniform dielectric waveguide of the same dielectric constant.

The low side lobe level of dielectric wedge antennas and, by implication, tapered

rod antennas is not obvious. Experimental results for the latter tend to show high side

lobes [44]-[48]. However, the antennas used in these experiments typically were fed by

a dielectric guide extending into a metal waveguide that served as the overall feed.

Based on the patterns shown in Figures B.5-B.12 and extrapolation to tapered rod

antennas, the measured high side lobe level is attributed to radiation from the metal

waveguide-to-dielectric guide transition and is not a feature of the antenna itself.

It is confirmed by measurements in [49] that using a tapered rod antenna whose

metal-to-dielectric waveguide transition was carefully designed can minimize scattering.

Thus, low side lobes resulted.



68

Tables A.1-A.4 show the power radiated by the antennas of Figures B.5-B.12 in

the forward region ( z > L) and backward region ( z < 0 ), as well as the power of

the reflected surface wave on the feed guide P rGef . These powers are normalized by

assuming that the power of the incident surface wave is unity. Note that PrGej in both TE

and TM cases, which is proportional to the magnitude of the reflection coefficient

squared of the antenna, is very small, i.e., <10 -4 for L/20 =10 .

Figures B.13-B.18 provide a more comprehensive examination of the dependence

of pattern shape and directivity on the wedge length and the value of its dielectric

constant. Figures B.13-B.16 examine the length dependence and confirm that a longer

wedge increases the directivity of the antenna and narrows the HPBW.

Tables A.5(a), (b) and A.6(a), (b) specify the directivity and HPBW, also SLL for the TM

case, for the wedge lengths depicted in Figures B.13-B.16. It is seen from Table A.6(a)

and A.6(b) that SLL for the TM case is very small (less than -35 and -31 dB for

Er = 2.56 and 12, respectively).

In Figures B.17 and B.18, the radiation patterns of directive gain for the 5.1 0

wedge length are shown for Er = 2.56, 5, 8 and 12. Again it is observed from Figure

B.17 that, for the TE case, directivity is less and the HPBW is broader when E r is larger.

However, in the TM case, this trend is not observed. Figure B.18 shows for the TM case

that wedges of higher dielectric constant produce essentially the same directivity and

HPBW as identical wedges of smaller dielectric constant material. Tables A.5(c) and

A.6(c) list the values of directivity and HPBW, also SLL for the TM case, for the wedges
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considered in Figures B.17 and B.18. It is seen from Table A.6(c) that SLL for the TM

case is very small.

Figures B.19-B.24 compare directive gain patterns obtained from the present

method and the equivalent current-local mode method 6 [50], [51]. Figures B.19 and B.20

depict TE polarization directive gain patterns for wedge antennas having dielectric

constants E r = 2.56 and 12, respectively, and relative lengths L/A0 =1, 5 and 10.

Figure B.21 compares TE polarization directive gain patterns for L/A, c, = 5 and

E r = 2.56 , 8 and 12. For the worst case in these figures ( E r = 2.56 and L/20 =10 ),

curves with identical parameters show excellent agreement in the physically important

forward angular range 0° < 0 < 90° . Even in the backward angular range

90° < 9 < 160° , where the directive gain is small (less than -35 dB), the two methods

yield results that follow one another. In the range 160° < 9 <180° , the patterns continue

to decrease for both methods. The local mode patterns converge to finite small values in

the backward direction (9 = 180° ) while the patterns from the mode-matching method

decrease to zero rapidly. All patterns have their maxima in the endfire direction and

show extremely low side lobes.

Figures B.22-B.24 depict directive gain patterns for the TM case. Figures B.22

and B.23 show the patterns for wedge antennas of different lengths for E r = 2.56 and

6 The equivalent current-local mode is an alternative and much simpler approach for analyzing
two-dimensional tapered dielectric radiators. This method uses a local mode theory to determine
the polarization current distribution in the dielectric region and applies vector potential functions to
calculate the far-field pattern. The local mode theory assumes that the incident wave in each slab segment
continues to propagate as a surface wave. The reflected surface wave modes generated by the sloped
boundary surfaces of the dielectric wedge do not significantly contribute to the current distribution and can
be neglected. This method results in a simple formula, thereby significantly simplifying the computational
effort time.
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S r =12 , respectively. Figure B.24 shows a comparison of directive gain patterns for

L/Ao = 5 and different dielectric constant materials. In these figures, the patterns show

excellent agreement over the range 0 < 0 < 50° for 8, = 2.56 and over the range

0 < 0 < 30° for s r =12 , occupying the most significant portion of the major lobe.

Over the remaining range, the patterns from both methods diverge from one another more

strongly than those in the TE case. Similar to the TE case, as 0 approaches to 180° ,

the local mode patterns approach to finite values while the patterns from the present

method go to zero.

From the conceptual viewpoint, one may expect a gain limitation for tapered

dielectric rod and wedge antennas [4]; see also the discussion in [52], [53] on rod

antennas shaped for maximum gain. Tapered dielectric antennas are surface wave

antennas and the phase velocity of a guided wave traveling down the antenna is always

smaller than the free space wave velocity so that the contributions of the various antenna

cross-sections (or step discontinuities in the staircase model) to the radiation pattern do

not add in phase in the forward direction (main beam direction) or any other direction.

Hence, if a certain antenna length L is exceeded, destructive interference will occur

which is likely to result in a limitation on the attainable directivity and in increased side

lobes since part of the radiated energy is now directed away from the main beam.

The limitation should be significant, in particular, for antennas made from high-s r

materials. A rough criterion for the useful length of a tapered dielectric antenna would be
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that AO , the difference between the accumulated phase of the surface wave traveling

down the antenna and a forward traveling free space wave, should remain below 7t, 7 i.e.,

M-i

0O= f [ fio ( z) ko 	 = AZ1 	 k0
z=0 	 i=2

where /30 (z) is the (local) propagation constant of the surface wave and the second (sum)

expression for AO applies to the staircase model of the antenna.

However, tables A.5(a), (b) and A.6(a), (b) show that the gain for the linear

tapered wedge antenna does not suffer a limitation. The directivity increases gradually

and continuously with the antenna's length up to 202 0 8 for both Er = 2.56 and 6, =12 .

For /1110 = 20 , the phase difference (4.2) is 8.887r for c, = 2.56 and is as large as

42.517r for E r =12, while in the TM case, it is 4.397r and 5.357r for C r = 2.56 and 12,

respectively. In all cases, 180 slab segments (Ns =180) are used. Furthermore,

the corresponding radiation patterns maintain very low side lobes. This indicates that

antennas with a linear taper profile do not have a gain limitation. Since based on limited

values for the parameters L and s r , this conclusion is not definitive, of course.

A conclusive answer would require an asymptotic theory valid for very large parameter

values and is beyond the scope of the dissertation. It is also not of great interest from

the application viewpoint since tapered dielectric antenna with a length exceeded 202 0

7 The contribution of the base and the tip region of the antenna to the radiation pattern in the endfire

direction (main beam) should not differ in phase by more than 180° .

8 The antenna length of 20.1,, is the largest one used here to calculate the gain.

(4.2)
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would be rather fragile and not very practical in the first place. The use of arrays of

tapered dielectric antennas would be a better approach to raise directivity.

It is a relatively simple task to study different symmetrical geometries to obtain

their radiation patterns. In Figures B.25 and B.26, for both TE and TM cases,

the directive gain patterns of two non-uniform, dielectric antennas are compared to

the pattern of the linearly tapered wedge antenna. The non-uniform antennas have

two-dimensional, geometric profiles of an ellipse and a circle. The circle antenna has

radius D 1 given by (4.2). The ellipse and wedge antennas have the same length

= 10 . All three antennas have relative permittivity 6r = 2.56. Figures B.25 and

B.26 show that all patterns have their maxima in the endfire direction. It is evident that

there is no occurrence of side lobes in the patterns generated from the circle profile in

both TE and TM cases and from elliptic profile in the TE case. Table A.8 lists

the values of directivity, HPBW and 11-1 for the profiles under discussion. It shows that,

for both TE and TM cases, the circle antenna yields the lowest directivity and the highest

values for HPBW and IF , whereas the wedge antenna yields the highest directivity and

the lowest values for HPBW and rI . These trends were expected.

An interesting structure of non-uniform antennas was proposed by Zucker [52],

[53], who introduced a uniform section in a tapered dielectric rod antenna fed by

a circular metal waveguide. The Zucker's profile for rod antennas has been extrapolated

to the two-dimensional structure shown in Figure 4.6. The profile has a total length of L ,

consisting of three parts: a feed taper, a uniform section, and a terminal taper with lengths
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L t, and LT , respectively. In this analysis, the feed and terminal tapers are assumed

to be linear.

Feed taper	 Uniform section	 Terminal taper

2D1 	Er	 D1

L, 	 L„ --1101■11-- LT --10■1

Figure 4.6 Linearly tapered antenna with a uniform section (Zucker's profile).

Figures B.27-B.30 compare the gain patterns of Zucker antennas for different

uniform section lengths to the pattern of a linearly tapered wedge antenna. In these

comparisons, the Zucker and wedge antennas have the same relative length L/1% 0 = 10 .

For the Zucker type, the length of the feed taper is assumed to be equal to that of

the terminal taper ( LF = LT ). In Figures B.27-B.30, all patterns for both TE and TM

cases are endfire. For the TE case, the patterns of the wedge antenna display smooth

curves in all angular ranges for s r =12 but display slightly undulating characteristics for

E r = 2.56. With a uniform section introduced, the patterns exhibit more pronounced

fluctuations. Comparisons show that as the uniform section is made longer,

the fluctuation extrema increase, the directivity diminishes, and the HPBW becomes

broader (see also Table A.9). For the TM case, it is seen that as the length Lu increases,
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fluctuation extrema in the main beam and side lobes increase. Additionally, for E r =12 ,

side lobe levels become significant.

Figures B.31-B.34 show the comparisons when the feed and terminal taper

lengths are held constant by assuming that LT- /'1,o = LT 1/10 = 5 and Lu 1.10 increases.

For the TE case, fluctuation extrema increase (more pronounced for E r = 2.56 than for

E r =12), while the values of the directivity and HPBW remain nearly identical when the

uniform section length varies; see also Table A.11. For the TM case, Figures B.33-B.34

show that as the length L t, increases, the SLL increases. Again, for E r =12 , side lobe

levels increase significantly, particularly in the forward angular range, compared to

the pattern for E r = 2.56. Tables A.9-A.12 list associated parameters suggested in

Figures B.27-B.34. In these tables, Os is the angle where SLL or the level of fluctuation

is determined. It can be concluded that to reduce side lobes, tapers that extend over

a substantial part of the antenna are needed. This conclusion agrees with Zucker in [53]

for designing low side lobe surface-wave antennas.

The frequency characteristics of a linearly tapered wedge antenna was examined

as shown in Figures B.35 and B.36. The antenna examined had a wedge length of 102

1
and a feed guide width of 2D 1 = 0.52 (E r —1) 2 , where A, is the wavelength at

the center angular frequency ( coe ). The VSWR, directivity and HPBW versus relative

frequency ( co/co, ) are plotted in Figure B.35 for the TE case and in Figure B.36 for

the TM case. The relative frequency co/co, is varied from 0.05 to 1.98; co/co, =1.98 is

the maximum used to maintain the single surface wave mode criterion (4.1). The ratio of
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the maximum to minimum frequency is 39.6. For both TE and TM cases,

the VSWR is significantly less than 2.0 over the frequency range (as high as 39.6:1),

thereby indicating that the dielectric wedge antenna can be classified as a broadband

antenna, as expected. In these figures, when co/co varies from slightly below 1 to 1.98,

the directivity and the HPBW are approximately constants.



CHAPTER 5

CONCLUSION

An accurate theory for a dielectric wedge antenna fed by a dielectric slab has been

formulated and evaluated using a staircase model for the wedge geometry. In this model,

the wedge region is approximated by short, uniform slab waveguide segments.

Using the rigorous solution to scattering from a single step discontinuity, the field

scattered by multiple steps is found in terms of partial fields. The partial fields are

determined by first considering waves progressing toward the tip, then back from the tip

toward the semi-infinite slab waveguide region, toward the tip a second time, and so on

until sufficient accuracy is reached. In this way, the total field is found as a superposition

of partial fields. The result is approximate only in that infinite integrals are truncated and

numerically determined.

TE and TM polarization are considered. For both cases, the radiation pattern is

shown to have its maximum in the endfire direction, as expected, with very low side

lobes. Longer wedges are shown to have higher directivity and to possess narrower

HPBW; no gain limitation was encountered, at least not up to a wedge length L/.1, 0 = 20 .

For TE polarization, wedges of higher dielectric constant have smaller directivity and

broader HPBW than identical wedges of smaller dielectric constant material.

For TM polarization, wedges of higher dielectric constant have essentially the same

directivity and HPBW as those of smaller dielectric constant material. The reflection

coefficient of the surface wave on the feed guide was shown to be very small,

in particular, for slender wedges of small aperture angles, indicating a low VSWR for

76
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tapered dielectric antennas. The low VSWR over a wide range of operating frequency

signifies that the dielectric wedge antenna is a broadband antenna. These results have not

been previously proved theoretically [4]. The numerical analysis procedure developed

can be applied to a broad class of different shaped dielectric antennas.



APPENDIX A

TABLES FROM NUMERICAL RESULTS

The tables from numerical results in Chapter 4 are shown as follows.

Table A.1 Power Distribution and Magnitude of Reflection Coefficient of the Slab
Waveguide/Wedge Antenna in the Region z< 0 and z> L for /1.10 = 5 ,

TE Polarization, (a) Sr = 2.56 , D1 /20 = 0.2 and (b) E r =12 , D, /.1.0 = 0.0754

Number of slab segments (Ns )

10 30 60 90
ptrRAamDs 0.986187 1.000863 1.000605 1.000389
prime), D

7.28x10-4 1.02x10-4 9.22x10-5 9.05x10-5

PrCeif 0.015245 7.11x10-6 5.89 x10 -6 5.68x10-6
pTOTAL 1.002160 1.000972 1.000703 1.000485

IF 0.123469 0.002667 0.002426 0.002383

(a)

Number of slab segments (Ns )

10 30 60 90
ptrimanis) 0.955037 0.997234 1.002474 1.003777
prRirlD 0.018666 0.001543 0.001450 0.001430

PrGef 0.026814 4.67x10-4 1.75x10-4 1.63x10-4
pTOTAL 1.000516 0.999245 1.004099 1.005370

Ill 0.163749 0.021615 0.013217 0.012786

(b)

78
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Table A.2 Power Distribution and Magnitude of Reflection Coefficient of the Slab
Waveguide/Wedge Antenna in the Region z < 0 and z > L for L/20 = 5 ,

TM Polarization, (a) C r = 2.56 , D1 //1.,0 = 0.2 and (b) E r =12 , D 1 /.10 = 0.0754

Number of slab segments ( Ns )

10 30 60 90
pirRAanD, 0.989358 0.997031 0.999595 1.002559

PrRAel D 4.44x10-4 1.75x10-5 1.48x10-5 1.44x10-5
DG
i ref 0.001992 8.00 x10 -7 6.66 x10 -7 6.49 x10 -7

pTOTAL 0.991793 0.997049 0.999611 1.002574

Fl 0.044627 8.94 x10 -4 8.16 x10 -4 8.06 x10 -4

(a)

Number of slab segments ( Ns )

10 30 60 90

PtrRAanDs 0.986379 1.001650 1.004729 1.003229
prl:;4D 0.016578 3.27 x10 -4 2.51x 10 -4 2.40 x10 -4

prcei
3.98x10-4 1.34x10-4 5.53x10-5 4.79x10-5

pTOTAL 1.003354 1.002110 1.005036 1.003517

11-1 0.019941 0.011555 0.007436 0.006924

(b)
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Table A.3 Power Distribution and Magnitude of Reflection coefficient of the Slab
Waveguide/Wedge Antenna in the Region z< 0 and z > L for L/20 =10 ,

TE Polarization, (a) E r = 2.56 , D1 /.10 = 0.2 and (b) E r =12 , DI /A0 = 0.0754

Number of slab segments ( NS )

30 60 90 120
prRAanDs 1.000895 1.000707 1.000471 1.000575
prRAef D

2.95x10-5 1.78x10-5 1.63x10-5 1.58x10-5
prGei

4.29x10-5 3.23x10-6 2.48x10-6 2.27x10-6
pTOTAL 1.000967 1.000728 1.000490 1.000593

IF! 0.006549 0.001797 0.001573 0.001505

(a)

Number of slab segments ( Ns )

30 60 90 120

PtrRAanDs 0.990417 0.999043 1.000875 1.001626

PrRAef D 5.65x10-4 1.98x10-4 1.85x10-4 1.80x10-4
prGef 0.013551 4.56 x10 -5 2.09 x10 -5 1.95 x10 -5

pTOTAL 1.004533 0.999287 1.001080 1.001825

F 0.116410 0.006753 0.004575 0.004417

(b)
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Table A.4 Power Distribution and Magnitude of Reflection Coefficient of the Slab
Waveguide/Wedge Antenna in the Region z < 0 and z > L for L/A0 =10 ,

TM Polarization, (a) e r = 2.56 , D1 /.10 = 0.2 and (b) E r = 12 , D l /20 = 0.0754

Number of slab segments ( Ns )

30 60 90 120

PirRAanDs 0.997147 0.999979 1.003537 1.004585
prRAef D

9.90x10-6 4.21x10-6 3.68x10-6 3.52x10-6
prcei

4.36x10-' 1.35x10-' 1.12x10-' 1.06x10-'
pTOTAL 0.997157 0.999983 1.003541 1.004589

ri 6.60x10-4 3.67x10-4 3.35x10-4 3.26x10-4

(a)

Number of slab segments ( NS )

30 60 90 120
prRAcinD5 0.993121 1.006354 1.004325 1.000130

Prer 2.95 x10 -4 7.29 x10 -5 5.84 x10 -5 5.42 x10 -5

-13,-,f 0.008999 3.35 x10 -5 1.59 x10 -5 1.26 x10 -5

pTOTAL 1.002415 1.006460 1.004399 1.000197

Ill 0.094864 0.005785 0.003992 0.003553

(b)
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Table A.5 D., HPBW, Prce,'T and rI of the Slab Waveguide/Wedge Antenna for

TE Polarization, (a) E r = 2.56 , (b) E r = 12 and (c) /12,0 = 5

L/.1,0 D. (dB) HPBW
(degrees)

DG
i ref

F

1 7.5190 56.15 0.001849 0.042999

5 9.3470 39.10 5.68 x10 -6 0.002383

10 10.2542 32.08 2.27 x10 -6 0.001505

15 10.8825 27.99 9.50 x10 -7 9.75 x10 -4

20 11.3382 25.32 1.74 x10 -7 4.18 x10 -4

(a)

LI 20 D. (dB) HPBW
(degrees)

DG
i ref Ill

1 5.6489 88.74 0.020679 0.143803
5 7.7639 56.51 1.63 x10 -4 0.012786

10 8.7451 45.53 1.95 x10 -5 0.004417

15 9.2776 40.32 4.75 x10 -6 0.002179

20 9.7088 36.63 4.35 x10 -6 0.002085

(b)

E r D. (dB) HPBW
(degrees)

pG
i ref IF

2.56 9.3470 39.10 5.68 x10 -6 0.002383

5 8.5237 47.43 2.90 x10 -5 0.005389

8 8.1183 52.16 8.97 x10 -5 0.009473

12 7.7639 56.51 1.63 x10 -4 0.012786

(c)



Table A.6 Dmax HPBW, SLL,	 P. and IF of the Slab Waveguide/Wedge Antenna for TM Polarization, (a) E r = 2.56 ,

(b) E r = 12 and (c) L/20 = 5

LI 20 D. (dB) HPBW
(degrees)

SLL (dB)
Os

(degrees) i
Prof 111

1 8.2496 48.69 - 7.24 x10 -5 0.008511

5 10.7165 29.83 -35.9562 54.52 6.49 x10 -7 8.06x10-4

10 11.6163 24.07 -35.2055 41.76 1.06 x10 -7 3.26x10-4

15 12.3087 20.54 -35.7266 36.52 3.43 x10 -8 1.85 x10 -4

20 12.6140 19.17 -36.4618 33.60 1.42 x10 -8 1.19 x10 -4

(a)

.1,/ 20 D. (dB ) HPBW
(degrees)

SLL or
note below* (dB)

Bs
(degrees)

p G
A ref F1

1 6.5050 71.38 - - 0.007331 0.085619

5 10.6365 31.25 -35.2723 43.01 4.79 x10 -5 0.006924

10 11.6670 24.20 -31.5224 31.44 1.26x10-5 0.003553

15 12.3247 20.58 -31.0956 27.41 7.01x10-6 0.002647

20 12.8259 18.33 -31.9879* 25.09 3.94 x10 -6 0.001985

(b)

*: Shoulder level relative to the main beam maximum.



Table A.6 (Continued) Dmax , HPBW, SLL, Os , PrGef and 11 of the Slab Waveguide/Wedge Antenna for TM Polarization,

(a) E r = 2.56 , (b) Er =12 and (c) LA, = 5

Er D. (dB) HPBW
(degrees)

SLL (dB)
Os

(degrees)
pG
i ref IF1

2.56 10.7165 29.83 -35.9562 54.52 6.49 x10 -7 8.06x10-4

5 10.6670 30.42 -32.9571 52.79 3.43x10-6 0.001851

8 10.6786 30.69 -33.4531 52.79 1.66 x10 -5 0.004076

12 10.6365 31.25 -35.2723 43.01 4.79x10-5 0.006924

(c)
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Table A.7 SLL of the Slab Waveguide/Wedge Antenna for TM Polarization

Liao Er SLL (dB) O 	 (degrees)

5
2.56 -35.96 54.52

12 -35.02 43.01

10
2.56 -35.21 41.76

12 -31.52 31.44

Table A.8 Dmax , HPBW, PrGej. and 11 of Antennas Having Profiles Described by

a Circle, an Ellipse and a Wedge for E r = 2.56 and D 1 /.1,0 = 0.2 , for the Ellipse and

Wedge L/A0 =10 , (a) TE Polarization and (b) TM Polarization

HPBW pGProfile D. (dB)
(degrees) ' ref Ill

Circle 7.1555 58.26 0.061764 0.248524
Ellipse 8.5352 44.64 0.002229 0.047210
Wedge 10.2542 32.08 2.27x10-6 0.001505

(a)

Profile D. (dB) HPBW
(degrees)

pG
4 ref IFI

Circle  7.8353 50.48 0.015161 0.123128
Ellipse 10.2598 31.66 9.17X 10 -$ 0.009575
Wedge 11.6163 24.07 1.06x10-7 3.26x10-4

(b)



86

Table A.9 Dmax , HPBW, PrGef and Fl of Zucker's Profile Antenna for L/A0 =10,

LF Ao = LT 111,o TE Polarization, (a) E r = 2.56 and (b) E r =12

Lu I .1,0 D. (dB) HPBW
(degrees)

pG
-. ref Fl

0 10.2542 32.08 2.27 x10 -6 0.001505

2 9.8853 35.60 3.44x10-6 0.001854

4 9.5348 37.47 1.06x10-5 0.003263

(a)

Lu 1,Z0 Dmax (dB) HPBW
(degrees)

DG
' ref F

0 8.7451 45.53 1.95x10-5 0.004417

2 8.4047 49.27 7.74x10-5 0.008797

4 8.0211 53.26 1.41x10-4 0.011892

(b)



Table A.10 Dmax HPBW, SLL, Os , 1),. /. and 11 of Zucker's Profile Antenna for 42 0 = 10 , LF /20 = LT /20 , TM Polarization,
(a) E r = 2.56 and (b) E r =12

Lu /20 D. ( dB) HPBW
(degrees)

SLL or
note below* (dB) 0 s

pG
ref 111

0 11.6163 24.07 -35.2055 41.76 1.06 x10 -7 3.26)(10
-4

2 11.6851 21.72 -31.9610 43.80 6.82 x10 -7 8.26x10 -4

4 11.3321 20.54 -20.7825* 38.87 1.96 x10 -6 0.001399

(a)

* : Fluctuation relative to the main beam maximum.

L(J /20 Dmax (dB) HPBW
(degrees) SLL (dB) Os

pG
i ref IF

0 11.6670 24.20 -31.5224 31.44 1.26 x10 -5 0.003553
2 12.2341 21.07 -15.7491 29.98 2.07 x10 -5 0.004547
4 12.6090 18.39 -10.8439 26.54 3.38 x10 -5 0.005818

(b)
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Table A.11 Dmax , HPBW, PZ and 111 of Zucker's Profile Antenna for
L F. .10 = LT 1/1, = 5 , TE Polarization, (a) E r = 2.56 and (b) e r = 12

Lu /A.,0 D. (dB) HPBW
(degrees)

pG
i ref 11

0 10.2542 32.08 2.27 x10 -6 0.001505
2.5 10.3285 31.24 5.36 x10 -6 0.002315

5 10.2239 32.83 6.20 x10 -6 0.002490
7.5 10.2966 32.24 3.39 x10 -6 0.001842

(a)

Lu /.1,0 Dmax (dB) HPBW
(degrees)

pc
rei 110

0 8.7451 45.53 1.95 x10 -5 0.004417
2.5 8.7277 45.52 1.98 x10 -5 0.004449

5 8.7288 45.48 2.02 x10 -5 0.004490
7.5 8.7289 45.62 2.07 x10 -5 0.004550

(b)



Table A.12 D., HPBW, SLL, Os , Prcelf and IF of Zucker's Profile Antenna for LF 20 = LT /20 = 5 , TM Polarization,

(a) E r = 2.56 and (b) r =12

Lu /,•10 D. (dB) HPBW
(degrees)

SLL (dB)
Os

(degrees)
Pret 1 11

0 11.6163 24.07 -35.2055 41.76 1.06 x10 -7 3.26x10-4

2.5 11.7531 21.19 -30.6676 41.26 9.58 x10 -7 9.79x10-4

5 11.2601 26.04 -28.2660 41.86 6.30 x10 -7 7.94x10-4

7.5 11.0081 29.27 -27.4508 43.05 3.81x10-7 6.17x10"4

(a)

Lu /20 D. (dB) HPBW
(degrees)

SLL (dB) Os
(degrees)

PG
' ref 1-1

0 11.6670 24.20 -31.5224 31.44 1.26 x10 -5 0.003553

2.5 12.5125 19.32 -14.4575 25.74 1.32 x10 -5 0.003633

5 12.9205 16.15 -9.6744 21.43 1.35 x10 -5 0.003676

7.5 12.9656 14.20 -6.9008 17.86 1.32 x10 -5 0.003628

(b)



APPENDIX B

FIGURES FROM NUMERICAL RESULTS

Figure B.1 Directive gain versus elevation angle (9) of the slab waveguide/wedge
antenna for S r = 2.56 , D,/.1,0 = 0.2 , LA, =1, for different number of slab segments

(Ns ), using umax = 2k0 and N= 300 (NP =150, NE =150 ), TE polarization.

90



Figure B.2 Directive gain versus elevation angle (0) of the slab waveguide/wedge
antenna for S r = 2.56 , D1 /.10 = 0.2 , LI20 =1, for different number of slab segments

(Na ), using u m. = 2k0 and N = 300 (NP =150, NE = 150 ), TM polarization.
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Figure B.3 Directive gain versus elevation angle (9) of the slab waveguide/wedge

antenna for E r =12, Di /.10 = 0.0754 , L/A.,0 =1, for different number of slab segments

(Ns ), using u m. = 2k0 and N = 230 (NP = 80, NE = 150 ), TE polarization.
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Figure B.4 Directive gain versus elevation angle (9) of the slab waveguide/wedge
antenna for 6 r = 12, DA, = 0.0754 , L/ %0 =1, for different number of slab segments

(Ns ), using u niax = 2k0 and N = 300 (NY =150, NE =150 ), TM polarization.
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Figure B.5 Directive gain versus elevation angle (0) of the slab waveguide/wedge
antenna for E r = 2.56 , D1 /.1.,0 = 0.2 , L/A0 = 5 , for different number of slab segments

(Ns ), using /A max = 2k0 and N = 300 (NP =150, NE = 150 ), TE polarization.
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Figure B.6 Directive gain versus elevation angle (9) of the slab waveguide/wedge
antenna for S r = 2.56 , DiA0 = 0.2 , 112,0 = 5 , for different number of slab segments

(Ns ), using u max = 2k0 and N = 300 (NP =150, NE = 150 ), TM polarization.
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Figure B.7 Directive gain versus elevation angle (0) of the slab waveguide/wedge

antenna for E r =12, D 1 /A = 0.0754 , L/)t 0 = 5 , for different number of slab segments

(Ns ), using u. = 2k0 and N = 300 (NP =150, NE =150 ), TE polarization.



Figure B.8 Directive gain versus elevation angle (8) of the slab waveguide/wedge

antenna for Sr =12, D 1 /)..0 = 0.0754 , LA = 5 , for different number of slab segments

(Na ), using u max = 2k0 and N= 300 (NP =150, NE =150 ), TM polarization.
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Figure B.9 Directive gain versus elevation angle (8) of the slab waveguide/wedge
antenna for e r = 2.56 , D 1 /.1.0 = 0.2 , Li.1.0 =10 , for different number of slab segments

(Ns ), using u ma„ = 2k0 and N= 300 (NP =150, NE = 150 ), TE polarization.
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Figure B.10 Directive gain versus elevation angle (9) of the slab waveguide/wedge
antenna for c, = 2.56 , DA= 0.2 , 0,0 =10 , for different number of slab segments

(Na ), using u max = 2k0 and N= 300 (NP =150, NE =150 ), TM polarization.
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Figure B.11 Directive gain versus elevation angle (9) of the slab waveguide/wedge
antenna for Er = 12 , D1 /.1,0 = 0.0754 , 4.1,0 =10 , for different number of slab segments

(Ns ), using u. = 2k0 and N= 300 (NP =150, NE = 150 ), TE polarization.
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Figure B.12 Directive gain versus elevation angle (0) of the slab waveguide/wedge
antenna for E r =12 , D1 /20 = 0.0754 , L/.10 =10 , for different number of slab segments

(Na ), using u max = 2k0 and N = 300 (NP =150, NE = 150 ), TM polarization.
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Figure B.13 Directive gain versus elevation angle (0) of the slab waveguide/wedge
antenna for E r = 2.56 , D1 /A,c, = 0.2 and um. = 21(0 , for different L, for LI 20 =1, 5, 10,

15 and 20 using Ns = 60 , 90, 120, 150 and 180 respectively, TE polarization.



103

Figure B.14 Directive gain versus elevation angle (0) of the slab waveguide/wedge
antenna for E r = 2.56 , DI /,% = 0.2 and u. = 2k0 , for different L, for L/ %0 =1, 5, 10,

15 and 20 using Ns = 60 , 90, 120, 150 and 180 respectively, TM polarization.
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Figure B.15 Directive gain versus elevation angle (6) of the slab waveguide/wedge
antenna for s r =12 , D I /20 = 0.0754 and umax = 2k0 , for different L, for .4/10 =1, 5, 10,
15 and 20 using Ns = 60 , 90, 120, 150 and 180 respectively, TE polarization.
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Figure B.16 Directive gain versus elevation angle (8) of the slab waveguide/wedge
antenna for E r =12 , D i //10 = 0.0754 and u. = 21c0 , for different L, for /1.1.,0 =1, 5, 10,
15 and 20 using Ns = 60 , 90, 120, 150 and 180 respectively, TM polarization.



Figure B.17 Directive gain versus elevation angle (0) of the slab waveguide/wedge
antenna for L/A0 = 5 and E r = 2.56 , 5, 8 and 12 (D, /.10 = 0.2 , 0.125, 0.0945, 0.0754

respectively), using u max = 2k0 and Ns = 90, TE polarization.



Figure B.18 Directive gain versus elevation angle (8) of the slab waveguide/wedge
antenna for 0,0 = 5 and E r = 2.56 , 5, 8 and 12 (D 1 /.1.,0 = 0.2 , 0.125, 0.0945, 0.0754

respectively), using u niax = 2k0 and Ns = 90, TM polarization.



Figure B.19 Directive gain versus elevation angle (0) of the slab waveguide/wedge
antenna for E r = 2.56 , D, /A.0 = 0.2 , LA =1, 5 and 10, using the equivalent

current-local mode and the present method with umax = 2k0 , for L/.1 0 =1, 5 and 10 using

Ns = 60 , 90 and 120 respectively, TE polarization.
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Figure B.20 Directive gain versus elevation angle (8) of the slab waveguide/wedge
antenna for Sr =12, D1 	= 0.0754 , L/20 =1, 5 and 10, using the equivalent
current-local mode and the present method with u. = 21c0 , for 4/10 =1, 5 and 10 using
Ns = 60 , 90 and 120 respectively, TE polarization.
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Figure B.21 Directive gain versus elevation angle (9) of the slab waveguide/wedge
antenna for 1,1.10 = 5 , s r = 2.56 , 8 and 12, using the equivalent current-local mode and

the present method with u max = 2k0 and Ns = 90 , TE polarization.
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Figure B.22 Directive gain versus elevation angle (9) of the slab waveguide/wedge
antenna for E r = 2.56 ,D 1 = 0.2 , /1.10 = 1 , 5 and 10, using the equivalent
current-local mode and the present method with u max = 2k0 , for I1.1,0 =1, 5 and 10 using
Ns = 60 , 90 and 120 respectively, TM polarization.
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Figure B.23 Directive gain versus elevation angle (8) of the slab waveguide/wedge
antenna for E r =12 , D 1 /20 = 0.0754 , L/.1,0 =1, 5 and 10, using the equivalent

current-local mode and the present method with u max = 2k0 , for L/20 =1, 5 and 10 using

Ns = 60 , 90 and 120 respectively, TM polarization.



Figure B.24 Directive gain versus elevation angle (9) of the slab waveguide/wedge
antenna for LI20 = 5 , e r = 2.56 , 8 and 12, using the equivalent current-local mode and

the present method with umax = 2k0 and Ns = 90 , TM polarization.
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Figure B.25 Directive gain versus elevation angle ( 9) for dielectric antennas having
profiles described by a circle, an ellipse and a wedge for E r = 2.56 , D1 /2,0 = 0.2 ,

for the circle using Ns =10, for the ellipse and wedge using L / Ao =10 , Ns = 90 and

120 respectively, in all cases using u max = 2k0 , TE polarization.
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Figure B.26 Directive gain versus elevation angle (9) for dielectric antennas having
profiles described by a circle, an ellipse and a wedge for s r = 2.56 , D1.10 = 0.2 ,

for the circle using Ns = 10 , for the ellipse and wedge using L / .1,0 =10 , N = 90 and

120 respectively, in all cases using u. = 2k0 , TM polarization.



Figure B.27 Directive gain versus elevation angle (6) of the antennas for S r = 2.56 ,

D1 /A = 0.2 , L/A0 =10 having linear profile and Zucker's profile with LF = LT and

Lu 1A0 = 2 and 4, for linear case using Ns =120 , for Zucker case with Lt, /.1,0 = 2

and 4 using Ns =107 and 95 respectively, TE polarization.



Figure B.28 Directive gain versus elevation angle (0) of the antennas for e r =12,

D 1 /.1.0 = 0.0754 , 11.1,0 =10 having linear profile and Zucker's profile with 4. = L 7 and

Lu //1,0 = 2 and 4, for linear case using Ns =120 , for Zucker case with L t, = 2

and 4 using Ns =107 and 95 respectively, TE polarization.



Figure B.29 Directive gain versus elevation angle (0) of the antennas for E r = 2.56,

/20 = 0.2 and LI 20 =10 having linear profile and Zucker's profile with LE = LT and

Lu /,% = 2 and 4, for linear case using NS =120, for Zucker case with LU /A,o = 2
and 4 using NS =107 and 95 respectively, TM polarization.



Figure B.30 Directive gain versus elevation angle (0) of the antennas for Sr =12,
D I /2,0 = 0.0754 , LI 20 =10 having linear profile and Zucker's profile with LF = LT and

L I, 1.10 = 2 and 4, for linear case using NS =120 , for Zucker case with Lu 12 0 = 2
and 4 using N S =107 and 95 respectively, TM polarization.



120

Figure B.31 Directive gain versus elevation angle (6) of the antennas for E r =2.56,

D1 //10 = 0.2 having linear profile and Zucker's profile with LF //1,0 = LT /.1,0 =5 and

L I1 /A0 = 2.5, 5 and 7.5, for linear case using Ns =120, for Zucker case using

Ns =119, TE polarization.



Figure B.32 Directive gain versus elevation angle (0) of the antennas for E r =12,

DI /A..0 = 0.0754 having linear profile and Zucker's profile with L F 120 = LT 1 A0 = 5 and

L (, /2,o  2.5, 5 and 7.5, for linear case using Ns =120, for Zucker case using

Ns =119, TE polarization.
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Figure B.33 Directive gain versus elevation angle (9) of the antennas for E r = 2.56 ,

D, /),o = 0.2 having linear profile and Zucker's profile with LF /2o = LT 1/10 = 5 and

Lu /.1,0 = 2.5 , 5 and 7.5, for linear case using Ns =120 , for Zucker case using

Ns =119 , TM polarization.
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Figure B.34 Directive gain versus elevation angle (0) of the antennas for e r =12 ,

DI A,0 = 0.0754 having linear profile and Zucker's profile with LF /AT, = LT I /1,0 = 5 and

Lu /.1,0 = 2.5 , 5 and 7.5, for linear case using Ns =120 , for Zucker case using

Ns =119, TM polarization.



Figure B.35 Frequency characteristics of the slab waveguide/wedge antenna for
I

L =102, and DI = 0.252 (E r —1) 2 , TE polarization.



Figure B.35 (Continued) Frequency characteristics of the slab waveguide/wedge
1

antenna for L =10.1., and D 1 = 0.25),c (E r —1) 2 , TE polarization.



Figure B.35 (Continued) Frequency characteristics of the slab waveguide/wedge
_1

antenna for L =102 and D1 = 0.252 (E r —1) 2 , TE polarization.



Figure B.36 Frequency characteristics of the slab waveguide/wedge antenna for
_1

L = 10k. and DI = 0.252, (sr —1) 2 , TM polarization.



Figure B.36 (Continued) Frequency characteristics of the slab waveguide/wedge

antenna for L =10/1,, and D I =0.25,c -1) 2 , TM polarization.
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Figure B.36 (Continued) Frequency characteristics of the slab waveguide/wedge
_1

antenna for L =102 and D1 = 0.25X (E r —1) 2 , TM polarization.



APPENDIX C

OVERLAP INTEGRALS FOR TE POLARIZATION

For TE polarization, an overlap integral has as its integrand the product of two mode

functions from each of the adjacent waveguides separated by a step transition plane.

Four overlap integrals are evaluated in closed form as follows.

C.1 Guided Modes on Both Sides of a Step Transition Plane

The overlap integral for guided modes from region i and region i +1, D. D,,,, takes

the form

(C. I a)

(C. 1 b)

(C.1 c)

(C.1 d)

(C. 1 e)
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(C. 1 f)

(C. 1g)

C.2 Guided Mode from Region i and Radiation Mode from Region i + 1

The overlap integral for guided mode from region i and radiation mode from region i +1,

D, > D,,,, is expressed as

C.2a)

C.2b)

C.2c)

C.2d)
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C.3 Radiation Mode from Region i and Guided Mode from Region i + 1

The overlap integral for radiation mode from region i and guided mode from region i +1,

D, > D, +1 , is given by

(C.3a)

(C.3b)

(C.3c)

(C.3d)

(C.3e)
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(C.3f)

(C.3g)

C.4 Radiation Modes from Both Sides of a Step Transition Plane

The overlap integral for radiation modes from region i and region i +1, D1 > D,+1,

is written as

C.4a)

C.4b)

C.4c)

C.4d)



134

(C.4e)



APPENDIX D

OVERLAP INTEGRALS FOR TM POLARIZATION

For TM polarization, an overlap integral has as its integrand the product of two mode

functions as in the case of TE polarization, but also includes division by

the inhomogeneous dielectric constant of either the medium to the left or to the right of

the step transition plane. Four overlap integrals for TM polarization are evaluated in

closed form as follows.

D.1 Guided Modes on Both Sides of a Step Transition Plane

The overlap integral for guided modes from region i and region i +1, Di > D, +1 , takes

the forms

(D. I a)

(D.1 b)

(D. 1 c)
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D.2 Guided Mode from Region i and Radiation Mode from Region i + 1

The overlap integral for guided mode from region i and radiation mode from region i +1,

D i > 4+1 , takes the forms

(D.2a)

(D.2b)

(D.2c)

(D.2e)
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D.3 Radiation Mode from Region i and Guided Mode from Region i + 1

The overlap integral for radiation mode from region i and guided mode from region i +1,

D. > D, +1 , is given by

(D.3c)

(D.3d)

(D.3e)
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D.4 Radiation Modes from Both Sides of a Step Transition Plane

The overlap integral for radiation modes from region i and region i +1, D, > D,+1 ,

is given by

(D.4b)

(D.4d)

(D.4e)

(D.4f)
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(D.4 g)

(D.4h)



APPENDIX E

SIMPSON'S ONE-THIRD RULE

Simpson's one-third rule is used to evaluate integrals over ranges of the transverse

wavenumber u of the radiation modes away from singularities. The possible ranges of u

fall within two parts given by 0 __ u < /cc, and /co < u u,,,a,,. The first part corresponds to

the propagating radiation modes and the second one corresponds to the evanescent

radiation modes.

To apply Simpson's rule over the u-range of the propagating modes, this range is

subdivided into N'/2 intervals, each of which is of length u 2k — u 2k_ 2 as shown in

Figure E.1, where k = 1, 2, 3,..., N'/2 , u N, = k0 and N' is an even integer.

Each interval has two segments 9 of equal width, given by hk in (E.2). The total numbers

of intervals (Ni) and segments (Ne ) in the range of the propagating modes are

Nip' = N'/2 and Np = N' =2Npi , respectively.

Figure E.1 Discretization of the u-range of the propagating radiation modes into N'/2

intervals of length u 2k — 14 2k _ 2 .

9 In Simpson's one-third rule, one interval consists of two segments of equal width [54], [55].
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The integration of F(u) in (E.1) over the range [0, k 0 ] can be approximated by

the composite Simpson's one-third rule [54], [55]

(E.1)

(E.2)

Similarly, the u-range of the evanescent modes is subdivided into (N — N')/2

intervals of length u 2k —14 2k _ 2 as shown in Figure E.2, where k = N72+1, N'/2 + 2 ,

N72 + 3 ,..., N/2 , uN = u max with N an even integer. The total numbers of intervals

(Ni) and segments ( NE ) in this range are NE = (N — N')/2 and NE = N — N' ,

respectively.

Figure E.2 Discretization of the u-range of evanescent radiation modes into (N — N')I2
intervals.
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(E.3)

The integration of F(u) over the range [1c 0 ,u. ] is given by

The total numbers of intervals and segments in both ranges are NT = N/2 and N,

respectively.



APPENDIX F

THE FAR FIELD AND RADIATION INTENSITY

The integral representations for the field in region 1 and M described in Chapter 2 and 3

have in their respective integrands amplitude and phase functions such that the amplitude

is slowly varying function while the phase is a rapidly varying function of the variable of

integration. Hence, the method of stationary phase is used to find the asymptotic

representation of field in far zone, which usually is the region of interest in antenna

problems. For TE polarization, the total electric field has only a y-component whose

asymptotic form is needed for calculating the radiation intensity. The asymptotic forms

(valid in the far field region) of the electric field Ey , to the left of the base of antenna

(in region 1) and to the right of the tip of the antenna (in region Al), are obtained

as follows.

F.1 Far Electric Field to the Left of the Base of the Antenna

The scattered electric field at an arbitrary point P(x, z) in the far field free space region

to the left of the base of the antenna, ir/2 0 7r , is given by

(F. 1 a)

(F.1 b)
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Let

Thus, (F.1) becomes

(F.3b)

(F.3c)

The parameter p in (F.2a) is the cylindrical coordinate radial distance from the origin.

Functions q 1 (w) and q 2 (w) are real. The parameter Q is large value because

p extends to the far zone. The first derivative q;(w) = dq i (w) I dw = sin(9 — w) .

Since 0 w 42 and 42 0 S Ir , there is no point w in the range 0 < w < 71-12 that

allows q; (w) = 0 . The exponential factor e-44(w ) in the integrand oscillates very rapidly

between the values of 1 and -1 for large values of Q . The contribution to the integral of

the highly oscillatory positive and negative values tends to cancel one another [22].

Thus, (F.3b) reduces to
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The point w = w s is found from q; (w)1= — sin(w +0) 	 = 0 , to yield ws = 7C — 9 .
w=w, 	 w=ws

The second derivative of q 2 (w) at w = w, equals — cos(w + 0)1= 1 . The point w, isw.w v

located in the range 0 < w s < Tr/2 and has the properties that (1'2 (ws ) = 0 and

q 2"(w,)# 0 . Consequently, q 2 (w) and are suitable for evaluation of the integral (F.4)

by means of the method of stationary phase. By applying the method to (F.4),

the asymptotic expression for the electric field in the far zone to the left of the base of

the antenna is obtained as follows:

(F.5a)

(F.5b)

(F.5c)

(F.5d)
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(F.7b)

(F.7c)

(F.7d)

(F.7e)
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The radiation intensity U 1 (9) to the left of the base of the antenna (backward pattern) is

calculated from the far zone electric field (F.5) by [24], [25]

F.2 Far Electric Field to the Right of the Tip of the Antenna

The scattered electric field at an arbitrary point P (x , z) in the far zone to the right of

the tip of the antenna, 0 9 5 42 , takes the form

The function q 4 (w) has no stationary points in the range 0 < w < 42 . Thus, (F.7b)

reduces to
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(F.8)

The point w = w, defined to satisfy q3 (w) = 0 , is given by w s = 9 . q3"0/01..., —1.

Thus, the point w, is located in 0 < w s < 42 and has the properties that q; (w s ) = 0 and

q3 1(w, ) # 0 . By applying the method of stationary phase to (F.8), the asymptotic electric

field in the far zone to the right of the tip of antenna is obtained as follows:

(F.9a)

(F.9b)

(F.9c)

(F.9d)

The associated radiation intensity to the right of the tip of the antenna (forward pattern) is

thus given by
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F.3 Far Magnetic Field for TM Polarization

For TM polarization, the y-component of magnetic field is used for calculating

the radiation intensity. The asymptotic representation of Hy is obtained by considering

the scatted fields to the left of the base of antenna and to the right of the tip of

the antenna. By following the same procedure as that for TE polarization, the asymptotic

representation of Hy is obtained as follows:

(F.11a)

(F.11 b)

(F.11 c)
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