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ABSTRACT

SIMULATION OF CREEP IN NICKEL BASED
SINGLE CRYSTAL SUPERALLOYS

by

Yunhong Pang

Nickel based single crystal Superalloys are finding wide spread use in high temperature

gas turbines and other similar applications because of their superior high-temperature

strength and creep properties as compared to the other materials. This is due to two

factors: solid solution and precipitation strengthening of the gamma (y) and gamma prime

(7') phases, and the elimination of grain boundaries. Creep of Nickel based single crystal

Superalloys are caused by two primary mechanisms, dislocation creep and diffusion

creep. Several factors that affect the creep life of Nickel based single crystal Superalloys

are the specific microstructure, stress, temperature and rafting. Also, the creep behavior is

highly anisotropic, with the degree of anisotropy varying with temperature.

This research is focused on developing a continuum model to simulate the creep

response of Nickel based single crystal Superalloys that includes the influence of

microstructure, anisotropy and recognizes the fact that these materials are inelastic and

dissipate energy. A framework, built on the idea of evolving of natural configurations,

utilizing the maximization of the rate of dissipation, has been used to formulate the

model. The specific model is constructed by specifying forms of the stored energy and

the rate of dissipation. The reduced energy-dissipation equation is used to obtain the

constitutive relations for the stress and the maximization of the rate of the dissipation is



used to obtain equations for the evolution of the underlying natural configurations

through a rate equation for the inelastic strain.

The material constants for the model are obtained by comparing predictions of the

model with experimental data. Solving the required boundary value problem is

complicated due to the anisotropic material behavior. Two coordinate systems need to be

introduced to solve the problem, since all the constitutive equations are developed in the

crystal coordinate system while the stress and strain are usually measured in the specimen

coordinate system. Transformation from the crystal coordinate system and specimen

coordinate system is required. This is being done by introducing two 4 th order tensors

The main material parameters required to solve the equations are the components

of the viscosity tensor, k . A parametric study is required to decide the viscosity tensor k ,

for a FCC material k has three independent components. We determine functional forms

for these three components as a function of inelastic strain, temperature and stress. The

specific forms are different for the low and high temperature regimes, because the

underlying creep mechanisms are different. Simulation results, creep curves and strain vs.

strain rate curve, clearly indicate the difference between the low and high temperature

regimes. The parameters chosen fit the experimental data adequately.

This model was implemented into a Finite Element software ABAQUS by using a

User-Defined Material Subroutine, UMAT. The Finite Element simulation results also

showed a reasonable fit with the experimental data.
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CHAPTER 1

INTRODUCTION TO CREEP
AND NICKEL BASED SINGLE CRYSTAL SUPERALLOYS

1.1 Introduction to Creep

Creep is a very common damage phenomenon observed in materials subject to stress at

high temperatures. It can take place in metals and alloys, ceramics, polymers, mantle,

soil, ice, et al. Creep effects under mechanical stress are observed in most solid materials.

They occur in glass which may be considered more or less as liquids with very high

viscosity. In concrete, creep effects had already been observed (Reiner, 1960). In organic

material such as polymers, creep has been studied extensively (Tobolsky, 1960). In all

these cases creep is of a linear visco-elastic nature. For metal, the physical mechanism is

obviously quite different from that in solids, and non-linear behavior is predominant. In

this dissertation the attention is mainly paid to the creep of metals and alloys.

Creep is defined as time-dependent strain occurring under a stress which is lower

than the yield point (Powell, 1986). The effect of creep is a permanent, irreversible

deformation. Excessive temperature is the cause of high creep deformation (Pratt &

Whitney Aircraft, 1974). In metals and ceramics, creep becomes noticeable when the

temperature reaches about one-third to one-half of the melting temperature. In polymers,

creep becomes noticeable when the temperature approaches the glass-transition

temperature (which is near room temperature for many polymers).

1
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The continuous process can be represented by the deformation curve as shown in

Figure 1.1. Three stages observed are, primary creep, steady state creep and tertiary

creep. Primary creep is usually interpreted as an adaptation stage, secondary creep as the

useful life period, while tertiary creep is the precursor to final failure. The part of the

curve which is of interest to designers is the steady state creep since the component will

spend the largest portion of its life in this region. Meanwhile, the deformation rates are

different at three stages. At primary stage strain rate decreases with time; at steady-state

stage the strain rate is almost a constant; and at tertiary stage the creep rate increases fast

with time till the material ruptures.

constant
T ait constant

Figure 1.1 Typical creep curve.
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The knowledge of the creep rate allows estimation of how much time is needed

until a component reaches a certain deformation and becomes incompatible with the

geometry of the system it is part of. A jet engine is a good example. The gap between the

tip of the rotating blades and the engine casing has to be very small in order to maximize

the engine efficiency so that the amount of gas that flows through the engine without

acting on the blades is kept as small as possible. However, if a blade elongates too much

as a result of creep, it ends up scraping against the inner wall of the casing causing

serious damage. If, however, the creep rate of the material is known along with the

lifetime already spent by the blades, they can be replaced before the irreparable damage

happens.

1.2 Nickel Based Single Crystal Superalloys and Its Creep Property

Creep is undesirable in practice because it results in the change of geometry of

components and eventually in their failure. For turbine and blade which work at a

complex condition and creep is one of the most important potential damage, extending

creep life for these components becomes critical.

To increase maximum speed and improve efficiency (lower fuel costs) the

operating temperature should be increased continuously. The temperature at the turbine

entry can exceed its melting point. At such high temperatures, creep and creep rapture

appear to be critical factors which affect the performance of the whole turbine or engine.

The development of Nickel based single crystal Superalloys is to meet the requirement of

the high temperature working condition in the turbines.
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1.2.1 Nickel Based Single Crystal Superalloy

Development of nickel based single crystal Superalloys originated in 1930 in the United

States. The whole process mainly includes specific choices for the alloying components

and a change in the method.

Through these studies, the modern Ni-based Superalloys contain more than 10

alloy additions (plus impurities) for getting solid solution strengthening (Co, Cr, Fe, Mo,

W, Ta, Re), grain boundary strengthening with carbides (W, Ta, Ti, Mo, Nb, Hf, Cr) and

other precipitates (e.g. carbonitrides), y' formers Al, Ti, improving oxidation resistance

(Al, Cr, Y, La, Ce), improving hot corrosion resistance (Cr, Co, Si, La, Th) and gaining

boundary refiners (B, C, Zr, Hf). The following is the nominal composition of CMSX-4;

a third generation nickel based single crystal Superalloy (Table 1.1).

Table 1.1 Nominal Composition of CMSX-4, y and y' Phase

Alloy
Ni Al Ti Cr Co Mo Ta W Re

(Weight-%)

CMSX-4 61.3 5.6 1.0 6.5 10.0 0.6 6.0 6.0 3.0

Figure 1.2 is a typical microstructure of a nickel based single crystal Superalloy.

The main characteristic is that the two phases, gama (y) and gama prime (y') are coherent

with each other.
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Figurer 1.2 Typical microstructure of a nickel based single crystal Superalloy (ONERA,
1996-2004).

Unlike the polycrystalline alloys, which are manufactured by conventional casting

methods, and have microstructures containing multiple grains and grain boundaries that

can coordinate the deformation, single crystal Superalloys are manufactured by a special

installation, which is similar to the directional solidification casting. This method uses an

investment mould located on a water-cooled copper chill. After metal is cast, heat is

removed from the chill, resulting in directional solidification. Since solidification rates

are different for different crystal directions thus resulting in one direction grains that

grow faster than other directions, thus grains with this orientation are favored.

Figure 1.3 is a comparison of the creep life for different casting methods. It is

clear that single crystal has the longest creep life while conventional casting has the

shortest one. Single crystal nickel based Superalloy has three times the creep life of

directional solidification Superalloys.
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Figurer 1.3 Creep behaviors vs. processing techniques.

1.2.2 Creep Property of Nickel Based Single Crystal Superalloys

The most valuable mechanical property of nickel-based Superalloys is their excellent

creep resistance. This property makes Superalloys the choice in high-temperature, high-

fatigue environments where excellent structural integrity is required. This creep

resistance is due to two factors: solid solution and precipitation strengthening of the

gamma and gamma prime phases, and manipulation of grain size and shape.

There are many factors that affect the creep behavior in Nickel based single

crystal Superalloys, such as volume fraction and size of 7' (Fleischer, 1963; Mkamaraj,

2003; Caron et al. 1988), crystal orientation (Kear and Piearcey, 1967; Leverant et al.

1971, 1973; Oblak and Rand, 1974; Mackay and Maier, 1982; Leverant et al. 1970;

Lukas et al. 1996; Caron,1988; Sass et al. 1996, 1998; Lukas, Cadek, et al. 1996),

temperature/stress (J. Svoboda, P. Lukas, 1997; Mkamaraj, 2003; Sass, Glarzel, et al.

1996; Sass, Feller-Kniepmeier, 1998; Kolbe, Dlouhy, et al. 1998; Mayr, Eggeler, et al.

6
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1995) and the effects of interaction among them (Mkamaraj, 2003), including rafting, a

directional y' coarsening. An outline of the effect factors is given in the following.

1.2.2.1 Orientation Dependence. Kear and Piearcy (1967) were the first to study the

creep behavior of single crystals at various orientations. They found that the substantial

improvement in creep life of single crystals over conventional cast or directional

solidified alloys occurs between 750°C and 850°C for crystals with orientation near [001]

and [111]. Conversely, very short lives were exhibited by crystals orientated near [001].

The anisotropic creep behavior has been extensively studied for several nickel

based single crystal Superalloys, such as MAR-M20 (Kear and Piearcey, 1967; Leverant

et al. 1971, 1973; Oblak and Rand, 1974), Mar-M247 (Mackay and Maier, 1982;

Leverant et al. 1970), CMSX-4 (Lukas et al. 1996). In general, the functional dependence

of the creep behavior was found to be the same at their test condition (Figure 1.4 and

1.5), although contradictory results were also obtained by Caron (1988).

The research carried out on CMSX-4 (Sass et al. 1996, 1998) focused on whether

[001] or [111] crystal orientation is stronger in uniaxial tensile creep. But so far there is

no engineering application of Superalloy single crystals which is used in any orientation

other than <001> (Lukas, Cadek, et al. 1996).

Creep behavior anisotropy is mainly restricted to primary creep (Sass, Glarzel, et

al. 1996; Sass, Feller-Kniepmeier, 1998). The pronounced creep anisotropy can be

attributed to the superposition of coherency and external stress, leading to different

microstructure configurations.
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Figurer 1.4 Regimes of stress rupture lives for MAR-M247 and Mar-M200 single
crystals at about 760°C.

1.2.2.2 Temperature and Stress Dependence. Stress level and temperature are two

very important factors that affect the creep properties. Figure 1.6 is a typical curve of

creep changing with temperature for Nickel based single crystal Superalloys. Stress has

the same influence with temperature (Honeycombe, 1984).

8



Figurer 1.5 Change in creep properties with orientation (Chest, 1987).
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Figurer 1.6 Change of creep curve with temperature and stress.

For the convenience of study, the regime selected is a combination of

temperature/stress level, high stress/low temperature creep and low stress/high

temperature creep. For Nickel single crystal Superalloy CMSX-4, the stress/temperature

ranges are defined as (J. Svoboda, P. Lukas, 1997):

Low temperature: 700-850°C, high stress: 600-800MPa

High temperature: 900-1100°C, low stress: 100-300MPa.

Temperature is a critical factor for creep. It not only affects the creep life but also

the anisotropic property. Studies showed (Sass, Glarzel, et al. 1996; Sass, Feller-

Kniepmeier, 1998) that the creep strength of tested samples is highly anisotropic at lower

temperature, while at high temperature (980°C), the creep anisotropy is clearly reduced,

and the misorientation dependence of creep deformation is also less pronounced. The

reason is due to the increase of the active slip systems at high temperature (Kolbe,

Dlouhy, et al. 1998; Mayr, Eggeler, et al. 1995).
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1.2.2.3 Other Factors Dependence. Orientation and stress/temperatures are important

factors which affect the material creep life. These can be regarded as working condition

or external factors. There are still other factors, internal (inherited from the alloy

manufacture) and external, such as y' volume and size, lattice misfit, rafting etc., which

can also control the creep property.

y' volume and size: Two phases are included in the Nickel based single crystal

Superalloys, 7 and y'. y is the matrix and is a soft phase while y' is the precipitate and is a

hard phase. The creep strength of Nickel based Superalloys depends strongly on the

volume fraction of y'. A series of studies on creep property dependence on y' volume

fraction (from 0 to 100%) indicated that the longest creep life occurred at volume fraction

of proximately 60% (Fleischer, 1963). In practice, most of the Nickel based single

crystal Superalloys have the y volume fraction around 60%, for example, Rene N4 65%,

PWA1480 55-60%, SRR99 60% and Mar-M200 60%. For the second or third generation

Nickel based single crystal Superalloys, the peak value can reach 68-70 vol.% (Mkamaraj,

2003). But the reason for the existence of the peak value is not very clear, so far.

Caron's (Caron, et al. 1988) study showed that the size of y' precipitates also

affects the creep life at different degree at different crystal orientations. The creep life of

<111> oriented crystals is highly dependent on the size of the y' precipitates, while the

<001> oriented crystal depends weakly on the size of y' precipitates.

Misfit The 'y phase forms the matrix in which the / precipitates. Since both

phases have a cubic lattice with similar lattice parameters, the y precipitates in a cube-

cube orientation relationship with the 'y. This means that its cell edges are exactly parallel
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to corresponding edges of the 7 phase. Furthermore, because their lattice parameters are

similar, the I/ is coherent with the 7 when the precipitate size is small. However, if the

lattice parameters are not the same, there can be a misfit between them.

The small misfit between the 7 and / lattices is important for two reasons. Firstly,

when combined with the cube-cube orientation relationship, it ensures a low yy

interfacial energy. The ordinary mechanism of precipitate coarsening is driven entirely by

the minimization of total interfacial energy. A coherent or semi-coherent interface

therefore makes the microstructure stable, a property which is useful for elevated

temperature applications.

The magnitude and sign of the misfit also influences the development of

microstructure under the influence of a stress at elevated temperatures. The misfit is said

to be positive when the 
'' 

has a larger lattice parameter than 7. The misfit can be

controlled by altering the chemical composition, particularly the aluminum to titanium

ratio. A negative misfit stimulates the formation of rafts of /, essentially layers of the

phase in a direction normal to the applied stress. Rafting of 7 helps minimize creep since

dislocations find it difficult to traverse the precipitate rafts.

Rafting refers to directional y' coarsening. It usually occurs at high temperature.

Recent research results show that rafting can also affect the creep life (Mkamaraj, 2003).

At 950°C for all stress level specimens SRR99 single crystal exhibits longer creep life

than that of the pre-rafted specimens. However, at elevated temperature, 1050°C, the pre-

rafted specimens tested at high stress level exhibit shorter creep lives but the situation

changes when the stress level is below 150 MPa, a pre-rafting improves the creep

strength under given temperature and stress.
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Many factors affect the creep life of nickel based single crystal Superalloy as

stated above. Some are determined by the microstructure while others are affected by the

creep condition. For a certain alloy the stress, temperature and orientation are significant

factors. Thus in this dissertation attention is mainly paid to stress and orientation at an

isothermal condition.

1.3 Outline of the Dissertation

Some machine components are subject to stresses during lengthy time of use. For

example, rotary components of jet engines, such as blades and disks, experience stresses

due to centrifugal force. In addition, the hot combustion gases that flow through a jet

engine cause the temperature to be very high. In fact, in some cases it may reach levels as

high as 80% of the melting temperature of the material the engine components are made

of. The data from creep tests on many different materials, which are collected in

databases, along with the exact knowledge of the service stress and temperature

conditions help designers in the choice of the suitable materials for a given component

and in the prediction of its lifetime under those conditions.

In order to predict the creep life and guide the practice, a new model is developed

in this dissertation to simulate the creep life of nickel based single crystal Superalloys,

considering both the creep mechanisms and anisotropic material property. Further this

model is implemented into commercial finite element software, ABAQUS, by using a

user defined material subroutine, UMAT, to test the correctness of the model.

This dissertation is composed of eight chapters. Chapter 1 is the introduction of

nickel single crystal and its creep property. Present models of creep in Nickel based
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single crystal Superalloys and motivation of this dissertation is given in the second

Chapter.

Chapter 3 to Chapter 7 focus on the development of the constitutive equations,

including an introduction to the preliminary information in Chapter 3; an introduction of

development of the constitutive equation along with the basic conservation laws in

Chapter 4. Parametric study and numerical results are presented in Chapter 6. The finite

element implementation of UMAT to ABAQUS and finite analysis results are presented

in Chapter7. Chapter 8 is a summary and conclusion of this dissertation.



CHAPTER 2

MODELS OF CREEP FOR NICKEL BASED SINGLE CRYSTAL
SUPERALLOYS

Accurate modeling of deformation occurring under complex working conditions has been

highlighted as a requirement for optimizing the efficiency in design of components with

respect to both preventing failure and avoiding over-design.

In recent years the reduction in cost and increase in computational speed of digital

computers has led to an increasing number of engineers relying more heavily on

numerical analyses. This, in turn, has fueled a steady increase in the level of

sophistication in the mathematical models developed. Consequently, the engineer is not

constrained only to exact or analytical solutions.

The accuracy of creep deformation and simulation of creep deformation in

Nickel based single crystal Superalloy depends not only on the material components, but

also on the choice of the constitutive models and their numerical implementations into

finite element programs. Among these factors, the material constitutive equations play

important roles in describing the mechanical behavior of creep because it is essential to

obtain the accurate stress distribution in a creep part in order to correctly predict the creep

life.

Over the past 30 years, two categories of constitutive model have been

developed for single crystal Nickel based Superalloys (Choi and Krempl, 1989; Jordan

and walker, 1992; Nouaihas, 1990; Stouffer et al. 1990; Li and Smith 1998). These two

15
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categories are usually classified as crystallographic modeling and phenomenological

modeling, and are based on different theories.

2.1 Crystallographic Model

Modeling creep behavior of Nickel based single crystal Superalloys started with

crystallographic (Stouffer et al. 1990; Meric et al. 1991; Jordan and Walker, 1992; Li and

Smith, 1995a) models. These models are based on the micro aspect of the material plastic

deformation, which is determined by slip and a slip plane. This concept came from the

single crystal framework established by Pierce et al. (1982, 1983) and Asaro (1983). It is

used to describe large deformation, rate dependent, and single crystal plasticity. It is

assumed that the overall behavior of single crystal under a given loading condition is

controlled by the deformation characteristics of a certain number of active slip systems.

In the context of a single crystal, plasticity is described by continuum shear

flows f/a , which occur along the various slip systems, a, of the crystal. The kinematics of

single crystal deformation is described by configuration changes. The initial unreformed,

stress free lattice represents the reference configuration. Slip system, a, is defined by the

orthogonal pair of unit vectors ( s a , na ), where sa is parallel to the a slip plane and is the

direction in which slip takes place. n a is normal to the a slip plane in the reference

configuration. Plastic deformation involves shear flows along the various slip systems of

the crystal to reach an intermediate configuration. The spatial velocity gradient of this

plastic shear flow is the sum of the slip taking place on a number of the slip systems and

is given by
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L p = Lam' a sana 	(2.1)
a

where Lp is the velocity gradient, the sum a is over all the slip systems, and f, is the slip

system shear rate.

For Nickel based single crystal Superalloys, 18 slip systems are generally

considered in a full crystallographic model (Figure 2.1).

The yield criteria for the cubic and octahedral slip systems are given by the

Chaboche isotropic mode (Chaboche, 1989) as:

f: =11-: — 41— lc— r: 0, (s=1,2,3, ...,18)

fos =IT:— x .:1—ko —r: __ 0, (s=1,2,3, ...,12)

where r: and r: are the Resolved Shear Stress (RSS) for cubic and octahedral slip

systems. x5 and r 5 are the kinematics hardening and isotropic hardening variables, for

each slip plane respectively, and lc and ko are the initial critical resolved shear stresses

(CRSS) for the cubic and octahedral slip systems respectively.

In a typical crystallographic model the constitutive equations are established at

two levels, macroscopic and microscopic.

At the microscopic level, a unified model is adopted where the total strain rate

decomposes into elastic and inelastic strain rate,

(2.2)

T = e ± i n 	 (2.3)
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Figure 2.1 Slip planes and slip directions for the FCC crystal (Stouffer, 1996) (a). Cubic
slip systems [110] {100}: three slip planes {100}; two directions [110] in each plane;
total six cubic slip system. (b). octahedral slip systems [110] { 111 } : four slip planes
{111}; three directions [110] in each plane; total 12 octahedral slip systems.

The elastic strain rate at the macroscopic level is

e = Sire (2.4)

where S is a 4th order tensor called elastic compliance matrix of the single crystal

Superalloy. For a time-dependent inelastic deformation, the overall inelastic strain is the

sum of the inelastic shear strains on a number of active slip systems.
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At any loading condition, a transformation for stress from global coordinate

system to local coordinate system must be done so that the connection between the

macroscopic stress and microscopic RSS (Resolved Shear Stress) can be built up. The

relationship can be expressed by Schmid's law (Schmid and Siebel, 1931),

with

where Kr and sc; are the slip plane normal and slip plane direction vectors, respectively,

for each a slip system. The matrix ma is related to the 18 slip systems of Nickel single

crystal Superalloys.

By using the Chaboche (1989) model at the microscopic level, the equations

describing the relationship between the inelastic shear strain rate and the resolved shear

stress are given for cubic and octahedral slip systems respectively.

Then summation of the strain rate )2" for each slip system to get the overall

macroscopic viscoplastic strain rate 	 in the local coordinate system is given as:
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The final step is another transformation from local coordinate system to global

coordinate system for strain rate éu .

In constitutive equations development from the crystallographic model, there are

a total of 14 material constants, 7 constants for octahedral slip system and 7 constants for

cubic slip system that need to be determined.

2.2 Phenomenological Model

Unlike the crystallographic model, phenomenological models are based on the modified

isotropic theory that was originally proposed for polycrystalline materials. A number of

studies including those of Choi and Krempl (1989), Nouailhas (1990), and Li (1993) have

been carried out using this approach.

The model considered here is a generalization of a unified model initially

proposed by Chobache (1989) for isotropic materials. In the generalized form, the

anisotropic characteristics of single crystal Superalloys are taken into account, by

introducing a number of anisotropic material parameters.

The phenomenological models also decompose the total strain rate as elastic

strain rate and inelastic strain rate. The elastic strain rate is calculated by using the same

equations as used in the crystallographic models.

The significant difference between phenomenological model and crystallographic

model is that the phenomenological models are based on the basic mathematical

formulation of anisotropic viscoplastic model that is developed in the material principal

axis for a cubic single crystal. Both the yield function and yield criteria in this model, for

example, Chobache's (1989) model, are modified by introducing a 4 th order material
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anisotropy tensor Mijkl, to describe the initial anisotropy and the possibility of

deformation induced material anisotropy. They can be described using the following

equation:

f =— X i )M (o- ' — X') — R— k 02 	jkl	 kl
3	 *,

where a and X:.; are the deviatoric component of stress and back stress tensors,

respectively.

The viscoplastic potential, SI, is the same as is proposed in Chobache's (1989)

model,

=
 K  (f) n+1

n +1 K

where n and K are similar to viscosity and are strongly dependent on temperature. The

bracket < > is defined as: < u >= fuo jiff r<0 .

The inelastic strain rate is then obtained as:

(2.8)

(2.9)

.*, 	 asp= 	
acr*

3 f n+1 x

2 \K
mu,(0-; -4)

2 
(CY mn — X mn)M mnuv (au* — Xu"v )

(2.10)



1.1• *3 t.,-*in A ir-1 ,-*in _ fP = —
2 

ii I" ijklikl — K
(2.12)
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The evolution equations for isotropic and kinematics hardenings are, respectively,

given by:

=b(W — R)fi *

3= 2 Nijkl ek*il n QijklX;113*

with

(2.11)

where b and W are two material constants used to describe deformation induced isotropic

material hardening; Nijki and Qijki are two tensors used to introduce the anisotropic

hardening induced by microstructural anisotropic; p* is the total accumulated inelastic

strain rate.

In this model the transformation of stress from global (specimen) to local

(crystallographic) coordinate system and strain from local (crystallographic) to global

(specimen) coordinate system are required as in the crystallographic model. There are

also at least 11 material constants that need to be determined.

The model which should be mentioned here is that developed by Bertram and his

co-workers' (Bertram. A, et al., 1994). They proposed a viscoelastic model to simulate

the creep property of poly- and single-crystalline nickel based Superalloys. This model is

developed for the monotonous uniaxial creep behavior under tensile loading at [001]

direction and generalized to a 3-D model by directly substituting the scalars to the

matrices in the equation. Then the final constitutive equation includes 17 material

constants, which depends solely on stress.
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This is an alternative approach for modeling the creep behavior of nickel based

single crystal Superalloys. It is simple and in certain degree it can capture the creep

behavior well. On the other hand, like the model mentioned above it also includes many

parameters.

2.4 Objectives of Research

From the above discussion it is clear that there is a significant difference between these

two models. First is the definition of the yield criterion. The crystallographic model uses

a multicriteria approach, for which the resolved shear stress on each slip system r" is

computed from the stress tensor and the orientation tensor m of the slip system. It

assumes that the only mechanism of plastic deformation is crystallographic slip, i.e.,

other mechanisms are ignored. The inelastic strain rate is the result of the contribution of

inelastic shear on each slip system. The fundamental requirement in the application of the

crystallographic model is the identification of active slip systems in the single crystal

under a given loading condition.

The way in which the anisotropic response is handled is also different. The

phenomenological model accounts for the anisotropic characteristic by introducing a 4 th

order tensor M (equation 2.9). For the crystallographic model, since the model was

developed on the crystal coordinate system, anisotropy is considered directly in the

model through the active slip systems.

Third is the hardening equation. The kinematics hardening equation introduced

from isotropic material models is modified by two additional anisotropic tensors N and Q
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(equation 2.10) in the phenomenological model, while in the crystallographic model this

is done by using two scalar variables for each slip systems.

Although major differences between these two models exist there are also many

common features between them. For example, the general procedure used to develop the

constitutive model is very similar; both models are modified from the isotropic plastic

material models thus the yield criteria and yield function are important factors for them.

Also both models consider hardening (kinematics and isotropic) and hence require

complex equations to model the anisotropic behavior. And finally, both models have a

large number of material constants that need to be determined from creep test conducted

on actual specimens under different conditions.

All of the above models do not consider the thermodynamic nature of the creep

behavior.

Objectives for this study enumerated below are motivated by the need to develop a

general model to predict creep life at the primary and secondary creep for Nickel based

single crystal Superalloy components at different temperatures by the use of available

data and finite element modeling. This model was developed on the basis of the multiple-

natural configurations framework and the viscoelastic concept. The simulation work

includes the following tasks:

1. Develop a new creep model for Nickel based single crystal superalloys by using
multiple natural configurations, second law of thermodynamics and related
theories.

2. Since the creep of Nickel based single crystal is highly anisotropic, material
symmetry will be taken into account.

3. Determine the material parameters for this model and validate the model
developed against experimental data available in literature.
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4. Use finite element theory to implement this model into the commercial code of
ABAQUS program by writing the material subroutine UMAT.

2.5 Conclusions

So far two different approaches have been used in modeling the creep deformation of

nickel based single crystal superalloys, which are based either on crystallographic model

or phenomenological model. In the crystallographic model, the creep deformation is

described by continuum shear flow along various slip system. The total creep strain is

then calculated by summing the discrete dislocation slips that take place on specific

lattice planes and along particular crystallographic directions. This method is powerful

because the creep evolution can be accounted for by each slip systems. However, it

requires a huge amount of computation time to simulate any particular creep deformation.

Meanwhile a large number of parameters and constants are needed to be determined in

these models.

The second approach is classical plasticity phenomenological model. Plastic flow

occurs when a yield criterion is satisfied. Creep model for nickel based single crystal

superalloys is introduced by using several 4 th order tensors to account for the anisotropic

material property. Compared with the crystallographic model, this approach has a simpler

mathematic form and thus it is more feasible for finite element programming.

The model developed in this dissertation, though uses continuum theory, is based

on a new framework, multiple natural configuration framework which will simplify the

development of constitutive equations and thus lead to a simplification of the

implementation.



CHAPTER 3

PRELIMINARY

Matter is formed of molecules which in turn consist of atoms and subatomic particles.

Thus matter is not continuous. However, there are many aspects of everyday experience

regarding the behavior of materials, such as the amount of lengthening of a steel bar

under the action of given forces, the rate of discharge of water in a pipe under a given

pressure difference or the drag force experienced by a body moving in air etc., all these

phenomena can be described and predicted with theories that pay no attention to the

molecular structure of materials. The theory which describes relationships between gross

phenomena, neglecting the structure of materials on a smaller scale, is known as the

continuum theory. The continuum theory regards matter as infinitely divisible. Thus,

within the theory, one accepts the idea of an infinitesimal volume of material referred to

as a particle in the continuum, and in every neighborhood of a particle there are always

infinitely many particles present. Thus the concept of a material continuum as a

mathematical idealization of the real world is applicable to problems in which the fine

structure of the matter can be ignored. When the consideration of fine structure is

important, we should use principles of particle physics, statistical mechanics or a theory

of micropolar continuum.

Mechanics studies the motion of matter and the forces required to cause its

motion. Mechanics is based on the concepts of time, space, force, energy and matter.

Knowledge of mechanics is needed for the study of all branches of physics, chemistry,

biology and engineering.

26
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3.1 Kinematics

From the view point of continuum mechanics, a body is a set whose elements can be put

into objective correspondence with the position of a region A of a Euclidean space. As a

continuum body B moves in the three-dimensional Euclidean space from one instant of

time to another it occupies a continuous sequence of geometrical regions. The regions

that are occupied by the continuum body at a given time t are known as the

configurations of B at time t. The continuum body B may have infinitely many

configurations in space, Such as reference configuration, current configuration, etc. A

region at initial time t=0 is referred to as initial configuration. The configuration of body

B at time t is called current (deformed) configuration.

Figure 3.1 Schematic representation of the evolution of natural configurations
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In the schematic plotting (Figure 3.1) xo is the reference configuration, x i, is the

stress free configuration and ic t is the current configuration. Usually the initial

configuration is regarded to be coincident with the reference configuration.

3.1.1 Motion

As stated above, let Ko (initial configuration) be the reference configuration. Pick a

particle at X which belongs to K0 and point x which belongs to Kc (current configuration).

The particle changes its position due to the movement and this can be expressed as

x=x(X, 	 (3.1)

The function x in equation (3.1) assigns to each point belonging to /c 0 at to a

position at time t in configuration/cc . The vector field x, which specifies the place x of X

for all fixed t, is called the motion of body B.

Two descriptions can be used to describe the motion, material (or referential)

description and Eulerian (spatial) description. The material description is a

characterization of the motion (or any other quantity) with respect to the material

coordinates (X1, X2, X3) and time t. At this description the attention is paid to a particle

and its movement. Traditionally the material description is often referred to as the

Lagrangian description (or Lagrangian form). On the other hand, the Eulerian

description is a characterization of the motion (or any other quantity) with respect to the

spatial coordinates (x i , x2, x3) and time t. In the spatial description the attention is paid to



(a)

(b)
(3.5)
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a point in the space and the changes at that point with time. Both of these two

descriptions will be used in this research.

3.1.2 Displacement

In Lagrangian description, the displacement field u (X, t), Velocity field v (X, t), and

Deformation gradient F (X, t), can be written as follows, respectively,

u(X,0=x(X,t)-X 	 (3.2)

v(X,t) = ax(x,t)
at

F(X, t)=  4(x,t) 

The deformation gradient, F, is a positive definite second order tensor and gives

information on how the body is deformed locally. Since the motion is invertible, so is F.

3.1.3 Polar Decomposition

The polar decomposition theorem of Cauchy (Halmos, 1958), states that a non-singular

matrix equals an orthogonal matrix either pre or post multiplied by a positive definite

symmetric matrix. If we apply this theorem to the deformation gradient F, we get

F =RU
F =VR

a

(3.3)

(3.4)
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in which R is a proper orthogonal matrix and U and V are positive definite symmetric

matrices. Note that the decomposition (equation (3.5)) of F is unique in that R, U and V

are uniquely determined by F.

The physical meaning of this equation is that every deformation can be

decomposed locally as a rotation followed by a pure stretch or a pure stretch followed by

a rotation.

To combine deformation gradient with displacement vector, a second-order

tensor, displacement tensor is defined in the material description as follows:

(3.6)

In the spatial description the displacement and its gradient are defined in the

following forms

(3.7)

(3.8)

The relation between these two descriptions of displacement tensors can be

deduced from equation (3.6) and (3.8):

(3.9)



E := C – I
2

(3.11)

The tensors

C := F T F =U2 	(a)

B := FFT = V 2	(b)	 (3.10)

are the right and left Cauchy-Green stretch tensors respectively. The Cauchy-Green

tensors contain information about the deformation of the body and the measures of strain

are usually defined in terms of either C or B. The Green-St.Venant or Lagrangian strain is

defined as:
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and the Almansi-Hamel or Eulerian strain is defined as:

e := 
I – B

2

I denotes the identity tensor.

The velocity gradient is given by:

L = gradv := 
av
— = PF -1
ax

(3.12)

(3.13)

In general L is a non-symmetric second-order tensor. F is the material time

derivative of F.
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Now we are going to define G. Similarly, let icp be the natural configuration

(stress-free state) associated with the current configuration, ic c, of the body. For a

homogeneous deformation, Fe denotes the deformation gradient between these two

configurations. In general, Fe may not be the gradient of a mapping (Rajapopal, 1998).

Thus the evolution of the configuration G, is defined through

G = F	 1F
K0-4•Kp = Fe K0-4Kc 	

(3.14)

and inelastic velocity gradient defined as

Lin = dG -1 	(3.15)

where the dot signifies the usual material time derivative. Each fixed G corresponds to an

elastic regime.

3.2 Stress Measures

In physics, stress is the internal distribution of forces within a body that balances and

reacts with the loads applied to it. When a deformable continuum body, which occupies

an arbitrary region of physical space with surface at a certain time, subjects arbitrary

force acting on parts or the whole of the boundary surface, the continuum body will

deform from its reference configuration to a new configuration. During this period there

is also a stress exerted on the continuum body. For the solid continuum body, it is more

convenient to use the reference configuration or intermediate configuration to define the
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stress tensor so that it can be easily used in the constitutive equations. There is a necessity

to introduce the other expressions of stress.

Two kinds of measures can be used to calculate the stresses based on the different

configurations. The stress defined in the current configuration is called Cauchy stress

tensor and usually expressed as T. The Cauchy stress tensor is symmetric and always can

be resolved into the sum of two symmetric tensors:

• A mean or hydrostatic tensor, involving only pure tension and compression; and

• A shear stress tensor, involving only stress

(3.16)

where 7:7 is the hydrostatic stress tensor, Td is the deviatoric stress tensor, I is the 2nd

order identity tensor and tr(•) the trace of (•) .

The stress defined in the reference configuration is called first Piola-Kirchoff

stress and is expressed by the symbol P. The relationship is usually represented by

equation:

where J is the determinate of deformation gradient F and the subscript (—T) represents the

inverse transpose. If the material is incompressible then J=1.
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It can be shown easily that the first Piola-Kirchoff stress in equation (3.17) is not

a symmetric tensor which usually has 9 independent components. In order to overcome

this drawback of the first Piola-Kirchoff stress another stress measure is introduced,

which is the second Piola-Kirchoff stress, S, and is defined as:

S = JF -1TF -T 	(3. 1 8)

Second Piola-Kirchoff stress S is a symmetric tensor and this makes the

computation and the formulation of the constitutive equation easier.



CHAPTER 4

CONSTITUTIVE LAWS AND MODEL DEVELOPMENT

There are two important types of laws in continuum mechanics: conservation laws and

constitutive laws. The first kind concerns the universal or general principles that govern

the motion of bodies under applied external forces regardless of the material properties of

the body. In other words, any material undergoing elastic and inelastic deformation must

obey these principles whenever it moves and deforms under the applied load. There are

five such universal principles, balance of mass, balance of linear momentum, balance of

angular momentum, balance of energy and Clausium-Duhem inequality.

The second kind of law relates the stress and strain and/or strain rate that

characterize the behavior of a material under an application of load. These are called

constitutive equations and they vary for different materials. They can even differ for the

same material in different regimes of deformation. For example, the response during

elastic deformation and the inelastic deformation will be different.

Constitutive equations serve to describe the material properties of the medium

when it is subject to external forces considering both basic balance laws and the

equations that take into account material characteristics. Constitutive equations are

usually constructed from some basic axioms. The resulting equations have unknown

material parameters which can be determined from experimental investigations.

35
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4.1 Conservation Laws

Since the general balance laws also govern the creep deformation which is the main topic

of this dissertation and since some theories and concepts which were presented and

discussed in this dissertation were developed using thermodynamics, the general balance

laws is briefly discussed in this chapter. Detailed mathematics of the treatment can be

found in advanced continuum mechanics books, such as Truesdell and Noll (1965).

4.1.1 Balance of Mass, Linear Momentum and Angular Momentum

For the convenience of research the balance principles should be mentioned here. The

fundamental balance laws, i.e. conservation of mass, the momentum balance principles

and balance of energy, are valid in all branches of continuum mechanics. They are

applicable to any particular material and must be satisfied for all times.

Conservation of Mass

The balance of mass law states the phenomenon that the mass of a moving body remains

constant regardless of what kind of motion it undergoes. In the current configuration the

conservation of mass is:

d p 
+ div(pv)= 0

For the incompressible material, the density of the material is a constant and thus

equation (4.1) reduces to

dt
(4.1)

div(v)= 0	 (4.2)
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According to the definition of the velocity gradient L, equation (3.13), this can be

written as:

tr(D) = 0 	 (4.3)

where D which is introduced later in equation (5.7), is the symmetric part of L. This kind

of deformation is called an isochoric motion (or a volume preserving motion)

In the reference configuration the conservation of mass can be expressed as:

po = pdet(F) 	 (4.4)

Simplification of the conservation of mass in the Lagrangian form for an

incompressible continuum body is:

det(F) =1 	 (4.5)

Conservation of Momentum

The conservation of momentum law is in fact the generalization of Newton's second law

of motion for continuum mechanics. It provides that the internal action among particles

of a continuum can be represented by internal tractions and that these tractions follow the

same laws as the external forces. It can be expressed as an equation in the current

configuration,



38

d
div(T T )+ pb = p
	

(4.6)
dvt

Where T is the Cauchy stress tensor, p is material density, b is body force per mass, v is

the velocity and t is the time. This is also known as Cauchy's equation of motion.

In terms of the first or second Piola-Kirchoff stress P or S, the conservation of

momentum can be written in the reference configuration as:

Div(PT )+ pob = po —
dv 

or Div(SF T )+ pob = p0 —
dv

dt	 dt
(4.7)

where operator Div refers to the divergence taken with respect to the reference

configuration.

In the case that the body couples and distributed couples over any boundary

surfaces are absent, which is called the nonpolar case, the conservation of angular

momentum can be written as:

T =TT (4.8)

This indicates that Cauchy stress tensor T is symmetric. In this dissertation only

nonpolar case is studied. Thus the Cauchy stress tensor is always symmetric in this work.

The results for the first Piola and second Piola stress tensors reduce to:

PF T = FP and S T = S
	

(4.9)
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4.1.2 Thermodynamics

Conservation of energy states the nature of the fact that the change of the total energy in a

continuum body should be equal to the heat input rate Qheat and the power Pforee exerted

by the external forces, including the body and the surface forces.

Qheat =. — f q • ndS + f prdV	 (4.10)
an 	 .0

Pforce = f t • vdS + f pb • vdV
an 	 II

(4.11)

where q is the heat flux vector, n is the normal direction of the surface, r is the strength of

the distributed internal heat source, t and b are external surface tractions per unit area and

body force per unit mass, respectively; v is the velocity, dS and dV are unit area and unit

volume, respectively.

Using t, = T." , transpose theorem, f rn dS = JdivT dV , and definition of
an 	 n

velocity gradient L, equation (4.11) can be simplified and rearranged as:

Pforce = f T • LdV + —
d f

-
1 

pb • vdV
dt .0 2S2

where T •L=T •D is a scalar and called stress power. The energy equation for a

continuum can be shown to be:

(4.12)



SB — SA = ( .113C11)

A 0 rev
(4.15)
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pa = T - L— divq+ pr	 (4.13)

where c is the specific internal energy.

4.1.3 Entropy and Second Law of Thermodynamics

Second law of thermodynamics: Second law of thermodynamics is proposed by Kelvin.

It states: It is impossible to devise energy which, working in a cycle, shall produce no

effect other than extract of heat from a reservoir and the performance of an equivalent

amount of mechanical work. Clausius-Duhem inequality is the consequence of this

statement.

For a closed-cycle system, during a heat transfer process from heat source q at

temperature 0, the following equation holds

rldq

1 19
<0 (4.14)

If the cycle is reversible then the equality sign will be held.

Now we introduce the entropy S as a state variable directly from equation 4.14:

where the process that leads from A to B is reversible. If the process is irreversible, then

from equation (4.14), we have:

sB -SA =( f6 CA).
A 0 "'rev

(4.16)



> r _dqsB _SA

- A 0 (4.17)

In general,
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Equation (4.17) can be rewritten in the following form:

— Q 0 	 (4.18)

where Q is the heat transfer in the system and can be defined as:

Q = — J q • ndS + JprdV 	 (4.19)
an

where r is the radiant heating and q is the heat flux through the surface of 12.

Next, assuming that

S = JpridV
(4.20)

Now we can obtain a local form for equation (4.18). Substituting equation (4.19)

and equation (4.20) into equation (4.18), using conservation of mass and assuming the

regularity of the integrands, it follows,

0 < pro— q • grad° + divq pr

9
(4.21)



Substituting equation of equation (4.13) into equation (4.21), it yields,
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=T . L — p£.._ mid q • grade
 >- 

0
e (4.22)

which is known as Clausius-Duhem inequality. It is customary to introduce the specific

Helmholtz potential y as

v = e — Or/ 	 (4.23)

then the Clausius-Duhem inequality becomes:

= T • L- p(gY -77d) q • grad0 > 0

0 —

where 4 is a measure of energy dissipation

T and L represent the stress/velocity gradient tensors, respectively

p is material density

c is internal energy

tit/ is the Helmholtz potential

77 is the specific entropy

q is the heat flux vector (positive outwards)

0 is the absolute temperature

The dissipation can be further split into two parts,

(4.24)



T = 2pF,—
ay/ Ferac

(4.29)
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= mech	
(4.25)

where

mech =	 Plfr
q• grad 0	 (4.26)

heat	 a

are the rate of mechanical dissipation and the rate of dissipation due to heat conduction.

For an isothermal process, i.e., 0=constant, thus ,heat = 0 and the mechanical

dissipation reduces to

mech =T • 	 (4.27)

The physical meaning of equation (4.27) is that part of the external power supply

that cannot be covered as work, is dissipated into thermal energy.

The stored energy of material is commonly assumed as

iV = yt(Fe , G)	 (4.28)

And the standard formula for Cauchy-stress, T, is given by:

Using the chain rule for yr , and substituting equation (4.29) into equation (4.27),

the following equation is obtained,
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vi
	mech = (ITe T — 2pFe 

ay/	 )-- + (FeTTF:T 
— P

a
GT ) • Lin 0 	 (4.30)

	ac e 	ac

4.2 Principle of Constitutive Theories

The balance laws introduced in section 4.1 are the fundamental equations common to all

material bodies. However, these laws are insufficient to fully characterize the behavior of

material bodies because physical experience has shown, in general, that two bodies of

exactly the same size and shape will not have the same behavior when they are subject to

exactly the same outside general condition, say, external supplies and boundary

conditions. For example, aluminums and rubber with the same diameter and length will

have different elongation when subject to the same force.

The basic equations describe the physical effects created by external forces acting

upon solids and fluids. In addition to the basic equations that are applicable to all

continua, there are equations which are constructed to take into account material

characteristics. These equations are called constitutive equations. The validation of a

constitutive equation can be verified by experimenting on the results it predicts. On the

other hand, experiments in some degree also depend on the constitutive functions. In

other words, experiments alone can't totally determine the correctness of the constitutive

equation. Therefore, generally, in search of the correct formulation of a constitutive

equation, some universal requirement should be imposed on the proposed constitutive

models. These include material frame invariance which deals with the transformation

properties of constitutive equations; material symmetry which characterizes the specific
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symmetric properties of material particles; and thermodynamic consideration which

governs thermodynamic aspects of material bodies.

For example, in the study of solids the constitutive equations for a linear elastic

material are a set of relations between stress and strain. In the study of fluids, the

constitutive equations consist of a set of relations between stress and rate of strain.

The resulting equations have unknown material parameters which can be

determined by experimental investigations.

4.2.1 Material Frame Invariance

As it is known, the natures laws preserve at any time, any place and do not depend on the

frame or observers. Constitutive theories that reflect the physical phenomenon should

also keep the mathematical presentations independent of the observers. This property is

called material frame-indifference (invariance), a basic axiom for development of the

constitutive equations. The principal of frame-indifference requires constitutive equations

to be invariant under changes of frames that preserve the essential structure of space and

time. If this principle is violated, the constitutive equations are affected and meaningless

results are obtained.

A	 constitutive	 equation	 includes	 several	 parts:	 basic	 fields,

p(X,t), x(X,t), 0(X, t) ; other fields quantities, T(X,t), q(X,t), e(X,t); and external

supplies, b(X,t), r(X,t) , where p, x, 0, T, q, E, b and r are material density, the

motion function, temperature, stress tensor, heat flux, internal energy, body force and the

energy supply respectively. Usually it is assumed that material properties are independent

of external supplies, while the field quantities, stress, heat flux, and the internal energy



— xo—xo l=

It, —to 1=1
(4.31)
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will depend not only on the behavior of the body but also depend on the kind of material

that constitutes the body, which are referred to as constitutive equations.

According to material invariance, the response of a material is the same to any

pair of equivalent observer. In the mathematical terms, material response is described by

constitutive equations and an observer is identical with a frame that signifies a system of

measure position in the Euclidean space together with a means of measuring time.

An observer is characterized mathematically as a frame and is therefore equipped

to measure positions by distance and time. Different observers may obtain different value

of distance and time even by using the same unit for distance and time. But the distance

and time elapse should be the same between any two events under observation. Let it

and it denote two frames which originate at different point 0 and 0 * with different points

x, x* and time t, t * , then the above expression can be mathematically interpreted as:

where xo, to are the initial position and time, x1 and t i are the current position and time.

Plain letters represent the position and time at frame one while the letters with * represent

the position and time for frame two. These two frames satisfy the invariant condition if

and only if position and time satisfy the equation:

x* = c(t) + Q(t)x, t * = t +a 	 (4.32)
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where x* and x are related by the Euclidean transformation, a one to one mapping as

shown in equation (4.31), where Q(t) is an orthogonal tensor, with the property

Q -1
(t)

 = QT ( ..t) To maintain the orientation, Q is assumed to be proper orthogonal,

det Q(t) =1.

More specifically, the fields of scalar 4), vector u and tensor A are said to be frame

invariants relative to any change of frame given by a Euclidean transformation in

equation (4.32), and can be represented by the following equations,

A * (x* , t*) = Q(t)A(x, t)QT (t)

u * (x * , t*) = Q(t)u(x, t) (4.33)

* (x* , t*) = 0(x, t)

For any constitutive quantity , its constitutive relation can be expressed as:

931 7, (X, t : 71") = Zz (p t (X, Z t(X, Ot(X,t), X, 0 (4.34)

where n is a frame of reference, 93 9,(X t :7r) is the value of the constitutive function at

the position of X and time t in the frame it. Generally, the constitutive function depends

on the frame as shown in equation (4.31).

Since any intrinsic property of materials should be independent of frame or

observer, it is required that the constitutive quantity 93-t must be independent of the frame,

that is

9)1,, = 931g.	 (4.35)
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for any frame it and TC * .

The principle of material frame-indifference can restrict the response of elastic

materials. This can be seen from the following derivation. The constitutive equation for

an elastic material can be presented in the Cauchy stress tenors T as

T = g(F)	 (4.36)

where g, the response function, is a symmetric tensor-valued function. When an

alternative reference configuration is picked, the stress then can be written as

T* = g* (F * )	 (4.37)

From the theory of principle of material frame-indifference the stress at these two

configurations should be identical,

T* =QTQ T 	(4.38)

Since F * =QF holds true

g(QF) = Qg(F)Q T 	(4.39)

In other words, the Cauchy stress for elastic material is compatible with the

principle of material invariance if and only if the above condition (equation 4.39) holds.



= F * G
(4.41)
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4.2.2 Material Symmetry and Anisotropy

Suppose an elastic body is subject to a given deformation in relation to a specified

reference configuration, if the elastic body changes to another reference configuration

while still maintaining the same deformation, the stress produced at a fixed point will be

different. However, for most elastic materials, the stress exhibits material symmetry in

the sense that particular changes of reference configuration keep the stress at the fixed

point arising from an arbitrary deformation invariant. The larger the collection of such

transformations the greater the degree of symmetry possessed by the material.

The mathematical representation of the material symmetry arises from the effect

of change of reference configuration on deformation gradient. Two deformation gradients

F and F* relate to an arbitrary pair of configurations 7r, (reference configuration) and 7r*,

(current configuration). In the rectangular Cartesian systems (0, E), (0 *, E*) and (o, e) of

the referential and spatial coordinates, F and F* are given by

ax 	 ax
F = 	 P e 0 E and F* = 	 P* e 0 E *

ax, P 	z	 ax,, P 	'T
(4.40)

Using the chain rule for partial differentiation and the orthonormality of the basis

E* , we have

ax ax* 	 ax 	 * ax* *
F= 	 "e OE =( I: e OE X 	 g E

ax* ax °
	 ir 	 ax P 	g ax„ gg	 Ir	 g

G being the deformation gradient associated with the mapping x r ----> ir*,
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From equation (4.41) we can conclude that the stress response of an elastic

material does not discriminate between the reference configurations 7r, and 7r: .

Since an arbitrary invertible tensor can be expressed as a product of a unimodular

tensor (Mrisky, 1995) (i.e. a tensor whose determinant is ±1) and a spherical tensor (i.e.

scalar multiple of the identity tensor), it suffices to consider changes of reference

configuration for which the associated deformation gradient is a member of the

unimodular group U. The set of all unimodular tensors H satisfying equation

g(AH) = g(A)	 (4.42)

is called the isotropy group.

Further, if the elastic material possessed a reference configuration in relation to

which the isotropic group contains the full orthogonal group 0 (i.e. the set of all

orthogonal tensors) it is called isotropic material. For an isotropic elastic material the

stress response is not affected by the change of the reference configuration and the

material does not exhibit the preferred directions.

On the other hand, if the orthogonal tensor is only part of the orthogonal group 0,

this kind of material is called an anisotropic material. Therefore this kind of material does

have preferred directions. Nickel based single crystal Superalloys are an example of an

anisotropic material.

4.3 The Nature of Anisotropy in Nickel Based Single Crystal Superalloys

Anisotropy is a very common phenomenon in nature. It can be observed in wood,

concrete, metals and alloys, etc. At the macroscopic level, anisotropy is displayed by the
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fact that the material properties are not the same in different directions. From the

microscopic point of view, anisotropy originates from the crystal structure inherent to the

metal and alloy.

It is well known that a crystal is made of atoms in a regular array according to

some rules. For a cubic crystal, for example, the atom numbers along the three axes may

not be the same; the density of atoms along the diagonal of the plane may or may not be

the same. This results in the different crystal structure such as face centered cubic crystal

structure and body centered cubic crystal structure. At the same time, for a certain crystal

structure the different atom density also leads to different material properties at different

crystal orientations. For an anisotropic material, the Young's modulus is greater in the

higher atom density direction and less in the lower atom density orientation. The

difference between maximum and minimum Young's could be as much as 4 times.

It seems that anisotropy should be observed in all the metals and alloys due to the

reasons stated above. This is true for a single crystal. But engineering materials,

generally, are polycrystalline. Because the Young's modulus is determined by bond

strength among the atoms, thus grain size and grain boundary have no significant effect

on the Young's modulus. Since polycrystalline has a large quantity of the atoms at

random orientations, although every grain has different Young's modulus at different

orientations, from the macroscopic point of view the young's modulus is still isotropic.

The exact nature of this anisotropy depends upon both alloy composition and

process history (e.g. casting, rolling, extrusion, annealing, etc). During these procedures,

metals and alloys usually flow along the orientation with higher Young's modulus, thus

resulting in textured structures. With the increase of the plastic deformation, the slip

directions of every grain rotate to the main deformation direction. As a result all the
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grains, which originally had different orientations, now have the same orientation,

resulting in a textured microstructure in the polycrystalline material. When the textured

structure reaches 80-90%, the anisotropic property will be seen in the polycrystalline

material. This anisotropic behavior can be harmful or beneficial. For example, cold

forming anisotropic material can result in ears; but it can also be beneficial, for example,

to obtain a high property along a certain orientation such as in a nickel based single

crystal Superalloy.

Anisotropy of nickel based single crystal Superalloy originates from the casting

methods.

Figure 4.1 Casting methods and their corresponding microstructures (Betteridge, 1982).

Figure 4.1 (Betteridge, 1982) shows the three typical microstructures inherited

from the corresponding casting methods: conventional casting, directional solidification

casting and the single crystal method. The most significant difference among these is:

the equiaxed structure has grain boundaries and the grains are of similar size; it is a
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typical polycrystalline material and the material properties are isotropic; directionally

solidified (DS) casting eliminates the transverse grain boundaries thus it has a texture

structure. This material structure displays anisotropic material properties. Single crystal

(SG) method eliminates all the grain boundaries, i.e. the cast object is totally a single

crystal. The material is significantly anisotropic.



CHAPTER 5

CREEP DEFORMATION AND THE THEORY OF MATERIALS POSSESSING
MULTIPLE NATURAL CONFIGURATIONS

As it is well known, there are basically two kinds of deformation solids usually undergo,

one is the elastic deformation in which upon unloading the material can recover its

original shape; and the other, inelastic deformation, refers to the deformation which upon

unloading the material does not recover its original shape. For an inelastic deformation

there are stresses and strains left in the material body.

Inelastic deformation includes time-independent and time-dependent

deformations. Time-independent inelastic deformation has been widely studied and lots

of successful theories have been developed. However, it is not the topic of this

dissertation, although there are some similarities between plastic deformation and creep.

Here, the main attention will be paid to creep deformation.

Creep usually denotes a slow viscous flow of solid under macroscopically non-

zero stress, via dislocation motion (glide or climb) and atomic diffusion (through lattice

or along grain boundary). The mechanism of creep depends on material composition,

microstructural features, temperature and stress. For Nickel single crystal Superalloy

orientation is also a significant factor.

Multiple natural configurations were first recognized by Eckart (1948), developed

by Rajagopal and Wineman (1980), Rajagopal and Srinivasa (1998, I and II). The central

tenet of the theory is that plastic materials, unlike elastic bodies, possess multiple stress-

free (or natural) configurations and that these configurations, evolving gradually with the

deformation, play a fundamental role in the mechanical behavior of material.

54
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In this chapter an introduction of creep mechanisms and multiple natural

configurations is given. Based on these theories, a constitutive model for creep is

developed by using the framework of multiple natural configurations for nickel based

single crystal Superalloys. The techniques related to the development of the model are

also introduced.

5.1 Mechanisms Underlying Creep Behavior

Creep is the time-dependent elongation for a material under constant load/stress. It is a

common phenomenon for engineering applications where products undergo specific

loadings and the product's service life is a major concern. Therefore, it is critical to

understand the origin of creep deformation and to be able to predict the long time creep

behavior for a given material under consideration.

5.1.1 Polycrystalline Materials

Crystals are solids in which the constituent atoms, molecule, or ions are packed in a

regular order with repeating patterns extending in the three spatial dimensions. This is the

main difference between a crystalline and non-crystalline solid. Due to the different

arrays in space, three typical microstructures of crystals exist in metals: face centered

cubic (F.C.C), body centered cubic (B. C. C) and hexagonal close-packed (H.C.P). In real

crystals, defects, or irregularities exist, including dot defect such as vacancies, interstitials

and impurity atoms (substitutional and interstitial); line defects such as dislocations; and

face defects such as grain boundaries, phase boundaries, and twins. These defects play a

very important role in plastic and creep deformation and also critically determine many

of the electrical and mechanical properties of real materials. In particular, dislocations in
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the crystal allow shear at a much lower stress than what is needed for a perfect crystal

structure. Movement of these defects is the origin of the creep deformation.

There are four different mechanisms that control creep in polycrystalline material,

depending on the applied stress and on the temperature at which the test is performed.

These involve dislocations motion and diffusion of vacancies and interstitials. The

dependent mechanisms of deformations involve the motion through the grains or around

the grain boundaries of lattice defects such as vacancies or dislocations for

polycrystalline materials.

A dislocation is a line discontinuity in the regular crystal structure. There are two

basic types: edge dislocation and skew dislocation. These two types of dislocations have

different shapes and will be activated under different conditions. When dislocations move

along a certain crystal direction, slip/glide takes place. The accumulation of the

dislocations slip/glide will result in the macroscopic inelastic deformation.

Dislocations exist in all the metals and alloys. The only difference is the

dislocation density, dislocation lines per square meter. Even in a well annealed crystalline

metal the dislocation density can still reach 10 8 (m-2). In a single crystal, the dislocation

density is no less than 10 7-108 . Normally in metals and alloys the dislocation density is

about 10 1°-10 12 . It can reach as high as 10 15-10 16 for metals that have been heavily cold

worked. It is clear that dislocation density changes with the material deformation.

Dislocation line has a strain energy associated with it.

The mechanisms involved in the creep deformation include the following:

Dislocation glide, which is determined by dislocations moving conservatively along their

glide planes. It occurs if the stress is high enough for the dislocations to overcome

obstacles in the lattice; Dislocation creep, which is the movement of dislocations outside
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their glide plane and is assisted by diffusion of vacancies. It occurs only at relatively high

temperatures, i.e. when the influence of diffusion becomes significant. Diffusion creep,

which occurs at relatively low stress. The deformation of the material is due to the flow

of atoms and vacancies that cause them to rearrange themselves along the direction of

load. At lower temperatures the diffusion occurs mainly along easier paths, such as grain

boundaries (Coble creep), whereas at high temperatures, atoms and vacancies diffuse

across the bulk of the material (Nabarro-Herring creep); Grain boundary sliding is also

an important mechanism. In order to maintain continuity within the creeping material, the

grains must rearrange themselves and they can do so only by sliding along each other.

Moreover, grain boundary sliding is important as; in the third part of the creep

experiment it determines the onset of fracture.

As stated above, creep deformation is very complicated. It can involve one or

more mechanisms acting simultaneously, and there seems no way to distinguish which

mechanism operates and which does not. From experiments, Ashby and his coworkers

summarized a schematic plot (Figure 5.1) to describe the active mechanism at a given

stress and temperature. For a specific material the plot is different, since every material is

different from others in composition, microstructure, etc.

5.1.2 Single Crystal Materials

Nickel based single crystals have a special microstructure as stated in Chapter 1. The

whole component only has one grain thus there is no grain boundary in it. This will

eliminate grain boundary glide creep mechanism mentioned in subsection 5.1.1 for

polycrystalline materials. In nickel based single crystal Superalloys only dislocation

creep/glide and diffusion creep exist.
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Figure 5.1 Schematic plot of the mechanism of creep deformation (After Ashby
etc.1978).

Diffusion creep is caused by the point defects flow through a crystal or around the

grain boundaries in a polycrystalline and no dislocation movement is involved. Two

different types of diffusion creep are listed here, Nabarro-Herring creep and Coble

creeps. In the former type of creep the diffusion path is through the bulk grains while in

the latter the path goes through the grain boundaries which dominate at low stress and

low temperature. Since the special single crystal manufacturing method results in a large

decrease of the point defects, diffusion creep is less important than dislocation creep

compared with polycrystalline materials.

Dislocation creep, as it is called, is caused by the movement of dislocations. The

movement of dislocations can induce inelastic deformation, such as viscoelastic

deformation, viscoplastic deformation and plastic deformation. The difference between
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plastic deformation and viscoelastic/viscoplastic deformation is that plastic deformation

is time independent.

5.1.3 Description of Creep from a Microscopic and Macroscopic Point of View

As in polycrystalline materials, creep of Nickel based single crystal Superalloys has three

stages, namely, primary creep, secondary creep and tertiary creep. During the primary

creep, the strain is produced when the load is applied at high temperature. With the elapse

of time, the strain increases. When the strain rate achieves a constant value, this stage is

called secondary creep. Under this loading condition, the specimens elongate with time.

As time goes on, at some point necking occurs. Afterwards, the strain rate increases

rapidly and so does the elongation. The specimen fractures and this is known as tertiary

creep.

These macroscopic processes reflect the microstructural changes taking place in

the materials. For a Nickel based single crystal Superalloy, at high temperature regime,

during primary creep, the change focuses mainly on the cubic y' phase evolution which is

the directional coarsening called rafting. Arrell and Valle s (1994) and Buffiere and Ignat

(1995) pointed out that the mechanism of rafting is similar to the flow of matter, and the

driving force of the rafting process is the elastic strain energy. In the meantime, the

diffusion and redistribution of alloying elements in the y' phase take place.

Unlike the creep mechanism in the primary creep in which the restriction of the

dislocation allows motion only along the matrix channel, during steady state creep, the

dislocation can move in both y' phase and y phase. During the tertiary creep, voids

expansion and crack formation are the main changes that take place.
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The strain developed in the process can be divided into elastic and inelastic strain.

Elastic strains are instantaneous and are reversible by the application of a reverse stress

comparable in magnitude to the original forward stress. However, during primary creep,

although the external shape of the specimen has been restored, its internal structure has

been irreversiblely altered. From a metallurgical point of view, the material is made of

atoms which are joined by atomic bonds to their neighbors. Elastic strain distorts the

bonds without breaking them. But inelastic strain is usually produced by the motion of

the dislocation and thus will break bonds and form new bonds.

To activate the movement of dislocations activation energy is required, which is

dissipated as the dislocations cross barriers. The energy is supplied by the thermal motion

of the atoms. The dislocation motion leads to a permanent inelastic deformation.

The occurrence of accelerated creep is due to the development of cavities in the

material. The formation of such cavities is the most common example of what is known

as creep damage. The cavities act as stress concentration sites and also cause a decrease

in the load-bearing cross-section.

No matter how complicated a deformation can be at the microstructural level,

from the macroscopic point of view, the energy can only be stored or dissipated. In other

words, energy can be converted from one form to another.

Dissipation is a key factor in distinguishing an inelastic deformation from an

elastic deformation. The role of dissipation in an inelastic material can be described by

the Clausium-Duhem inequality, also well known as the second law of thermodynamics.

Decomposing equation (4.24) into two parts (see Trusedell and Noll, 1965),

(5.1)
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(a)

(b)
(5.2)

where

:=T • L — p(yi —770)
:= q - gradO

0

The above 6 and 4 represent the local dissipation and the dissipation by conduction.

It can be seen apparently that if both	 and	 equal to zero, there is no

dissipation taking place and the process is regarded as a purely elastic process. If both

and equal nonzero, the process includes local dissipation and thermal dissipation

and this is an inelastic process. In between, if = 0 while > 0 then the process is

thermoelastic.

In this study the process considered is isothermal which leads to 4=0. In order to

calculate & from equation (5.2a), a suitable stored energy y should be defined and this

will be done in the subsection 5.3.1.

5.2 The Role of Multiple Natural Configurations in the Model

A natural configuration of a body is defined as a stress-free configuration that the body

will return to upon unloading at any given time of the loading program. For an elastic

material, there is only one single natural configuration (modulus rotations), which is often

identified as the reference configuration of the material. On the other hand, an inelastic

material can have many such stress-free configurations.
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5.2.1 Theory of Multiple Natural Configurations

Natural configuration was first recognized by Eckart (1948), who did not acknowledge

the importance of this concept in formulating constitutive theories. Rajagopal and his co-

workers have systematically exploited this idea and developed a thermodynamic

framework for the bodies that possess multiple natural configurations. One of the

principle virtues of this framework is that it is a general framework and can be applied to

study many different phenomena, such as: multi-network polymers' response (Rajagopal

and Wineman, 1992; Wineman and Rajagopal, 1990), traditional plastic response

(Rajagopal and Srinivasa, 1998, I and II ), twinning (Rajagopal and Srinivasa, 1995 and

1997 also), solid-to-solid phase transition (Rajagopal and Srinivasa, 1999), viscoelastic

response Rajagopal and Srinivasa (2000), anisotropic response of liquids (Rajagopal and

Srinivasa, 2001), crystallization of polymers (Rao and Rajagopal, 1999, 2001,2002), and

growth and adaptation of biological material (Rao et al. 2003). A brief review of this

theory is presented here.

As stated in Chapter 3, a body can occupy multiple natural configurations. For

metals which have multiple natural configurations, the physical meaning of it can be

expressed clearly as follows.

The deformation of metals and alloys can be distinguished as elastic and inelastic

deformation. During the elastic deformation the crystal lattice can be stretched and

rotated. This kind of deformation can result in the change of the crystal lattice and can be

totally removed after unloading, while for the inelastic deformation, the mechanism is the

sliding of the dislocation along slip system and it does not change the crystal lattice.
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Figure 5.2 Schematic plot of multiple natural configurations.

Figure 5.2 is a Schematic plot of multiple natural configurations. Ko, 1cc and Ki, are

reference, current and natural configuration, respectively (Figure 5.2a). Figure 5.2b is the

corresponding deformation interpretation.

For an elastic deformation, once a configuration ic o is chosen, the stress depends

only on the deformation 4,0 for Ko . For a simple "elastic material" (Noll, 1957), the

Cauchy stress T at x depends upon z, only through the deformation gradient Fo at x and

of the form
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T = to(FK0) 	 (5.3)



where

a(X,,o)F„„ :=  ax

5.2.2 Nature of the Velocity Gradient G in the Model

Now it is time to define G. Let icp( , ) be the natural configuration (stress-free state)

associated with the current natural configuration 
KC(t)

 of the body. For a homogeneous

deformation Fe denotes the deformation gradient between these two configurations. In

general Fe may not be the gradient of a mapping (Rajapopal, 1998), thus the evolution of

the natural configuration G, is defined through:

G = F	 = FFKo ->Kp(i) 	e	 IC0—>Kc(t)

and inelastic velocity gradient is defined as

L,„ = dc- '

where the dot signifies the usual material time derivative

The tensor G captures the evolution of the natural configuration during the

inelastic deformation. Form the microscopic point of view; it describes the actual slipping

process in an averaged manner.
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(5.4)

(5.5)

(5.6)



(5.7)

(5.8)
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Inelastic deformation is characterized by changing natural configurations of

material. These natural configurations can be identified with the stress-free state of a

body but are not limited to these states. The kinematics associated with inelastic material

behavior is strongly linked to the fact that the materials possess multiple natural

configurations. For example, at the level of dislocation movement, each slipped

configuration can be regarded as a natural configuration of the body as shown in Figure

5.3.

(a)	 (b)	 (c)

Figure 5.3 Schematic plot of slip deformation (a) an unslipped lattice; (b) a middle
phase of slip; (c) a slipped lattice.

Decomposing L and L in into a symmetric part yields the following two equations:

D= 1—(L + LT ) and Din = 1— (Lin + 4,)
2	 2

The skew part of L and L i, are also given, respectively, by the following two

equations:

1 	 1W = —(L — LT ) and Win = — (Lin — 4)
2	 2
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5.3 Thermodynamic Sets of Constitutive Equations

In order to complete the development of the constitutive equations, some quantities

should be defined corresponding to the creep deformation of Nickel based single crystal

Superalloys. In the following subsections, these quantities, such as Helmholtz potential,

dissipation functions and driving force are given.

5.3.1 Helmholtz Potential

Helmholtz potential per unit mass tit was defined in Chapter 4. In order to describe the

constitutive equation for a material, a specific form of Helmholtz potential should be

assumed.

It is assumed that Helmholtz potential can be split into the following two parts:

	

V ---- we ± V in	 (5.9)

where

	

Ve = V„ (F„)	 (5.10)

is related to the elastic stored energy and

yin = F:o [G(t —r)]	 (5.11)

is related to the inelastic stored energy. A specific V/ e is given later in this section.
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In the thermodynamic regime incorporating thermal variables, Helmholtz

potential rather than strain energy is used to express the internal energy change. For the

elastic potential, it is usually assumed that the Helmholtz potential is solely a function of

deformation gradient as shown in equation (5.10).

In order to illustrate v a deformation which will store energy is assumed. The

stored energy v (F) generated by the motion x = x(X,t) is assumed to be objective

which means, after a translation and rotation of the material in space, the amount of

energy stored is unchanged. Hence, the strain energy yt (F) must equal to the strain

energy v(P) generated by a second motion x * = z * (X, t * ) . By using the transformation

rule for the deformation gradient of superposed rigid-body motion

F* = ax = Q ax = QF 	 (5.12)ax ax

The strain energy must obey the following restriction which is required by

invariance under superimposed rigid body motion:

V(F) = V(F * )= V(QF) 	 (5.13)

for all tensors F, with det F>0, and for all orthogonal tensors Q.

A special proper orthogonal rotation tensor R T is selected to obtain the equivalent

formulation of equation (5.13). By using right Polar decomposition, equation (3.5a), it is

found that ti/(F)= v(RTF)= vf(RTR —) .RU) That is

iff(F) = tif(U) 	 (5.14)



v = 1—E • CE
e 2p e 	e

(5.16)
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And this holds for arbitrary F. Clearly, tff is independent of rotation part of F.

Equation (5.14) also specifies the necessary and sufficient condition for the strain energy

to be objective during superimposed rigid-body motions.

Using equations (3.10a) and (3.11) further, yi can be represented as a function of

G or Ee , respectively,

V(F) = '(C) = /I(Ee)	 (5.15)

For an elastic deformation it is reasonable to assume that the elastic stored energy

has the following form:

where Ee is the elastic strain, C is a fourth order tensor called elastic tensor and has the

following form as in equation (5.17). For an isotropic material C contains only two

independent components, for example, Young's modulus and Poison's ratio.

a b
-

b 0 0 0

b a b 0 0 0

C_
b b a 0 0 0

(5.17)
0 0 0 c 0 0

0 0 0 0 c 0

_0 0 0 0 0 c _



avin =0
ac

(5.20)
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5.3.2 Driving Force for Time-dependent Inelastic Deformation in Nickel Based
Single Crystal Superalloy

Since one is looking for forms that are sufficient to satisfy equation (4.30) it seems

reasonable to assume that the stress is in the form of equation (4.29). Now the driving

force A can be defined as

A =[Fe T TFe-T —pa GT]
aGY

(5.18)

As stated before, the driving force A comes from both elastic and inelastic parts.

Usually the stored energy can be divided into two parts, elastic stored energy and

inelastic stored energy, which is some function of G. G is related to the inelastic

deformation through equations such as the dislocation density and the inelastic path

length (Mollica, et al 2001). Such kind of consideration makes the model and simulation

more complex. Here we take a simpler approach is taken, and the inelastic stored energy

is assumed to be independent of inelastic deformation gradient, i. e.,

grin = yrin(G)= C 	 (5.19)

Then

This assumption is based on the following thought. This constitutive model is

developed for the primary and secondary creep stage. The creep strain is limited.
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yiThis results in p a —GT =0 . As a result, the driving force equation (5.18) isac

simplified to:

A = FeT TFe T 	(5.21)

5.3.3 Nature of Dissipation

Substituting equation (5.16) into equation (4.30), the mechanical dissipation equation can

be simplified as

mech A • Lin 	(5.22)

A and Liri can be decomposed into symmetric and skew-symmetric parts Asym,

Askew and Dim Win. These are substituted into equation (5.22) and which is then rewritten

as follow,

= Asym	 = Askew *Win
	 (5.23)

The dissipation equation (4.30) can be further decomposed as

	mech — 1 (6) , Din ) + 2 (l9 ,Win )
	

(5.24)

Choosing a specific dissipation form for creep as

Din- kDin (a)

2 = 	 (b)
(5.25)



A 	
tr(

m tr(k_in I
C 1 Asys ) j(

Din = k -1 (a)

(5.26)
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where ,u is an undetermined constant for the model. k is a fourth-order tensor that is a

function of temperature and the driving force, which is called the directional viscosity

tensor, used to describe the anisotropic material property and deformation.

It is noted that the requirement that the rate of dissipation be positive is

automatically satisfied by the rate of dissipation chosen (5.25a).

Maximizing the rate of dissipations 41 and 42 subject to the constraints tr (Di n) =0

and the relationship with Am and Askew, we get the evolution equation for Din and Win:

A kewWi =  s 

n Ii

The value of the viscosity tensor k is based on comparison with experimental

data. k is assumed to be a positive definite tensor, which can be either isotropic or

anisotropic. For a totally anisotropic material k will have 36 material parameters. Due to

the FCC microstructure property of Nickel single crystal Superalloys, the total number of

material parameters reduces to 3. k for the anisotropic material has the following

structure:

(b)

k =

i j j 0 00
j i j 0 0 0
j j i 0 00
0 0 0 k 00
0 0 0 0 k 0

_0 0 0 0 0 k_

(5.27)

The form of these coefficients i, j, k, are functions of stress, inelastic strain and

temperature, and can be expressed as the follows:



x
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k(i, j, k) = k(T ,E in ,0)	 (5.28)

i.e., the viscosity tensor depends on stress (7), inelastic strain (Ein) and temperature 0. In

chapter 6 further details are given to its structure and expression.

5.4 Boundary Value Problems under Consideration

As a starting point, the developed constitutive model is used to study the creep

deformation of a cylindrical bar of CMSX-4 Nickel single crystal Superalloy loaded in

uniaxial tension along an arbitrary orientation <1, m, n> (Figure 5.3)

Figure 5.4 Coordinate system for stress and strain transformation.

Assuming the following deformation for the specimen:

x(t) = a(t)X

y(t) = /3(t)Y	 (5.29)

z(t) = y(t)Z
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The deformation gradient associated with the motion is given by

It is further assumed that the creep deformation takes place at a constant stress,

which, at global coordinate system, is described as:

As stated before, since the constitutive equations were derived in the local

coordinate system, this stress should be transformed into the local coordinate system

using

Then the elastic strain at local coordinate system can be calculated by using

Hooke's law.

Finally transformation the strain to the global coordinate system again by using



11Asys 	 111--1 Y\

tr(k— 'Asys) 
Din = k	 I

■ 	 tr(liCI) j
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where A t and B t are transformation tensors, details of which are presented in Appendix A.

Based on the calculated elastic strain se, the elastic deformation gradient can then

be obtained as

F, = E, +I	 (5.35)

Knowing Fe and stress, the driving force can be calculated by using equation

(5.18). Further Di n is calculated by using equation (5.26a), noting to solve the equation

for Din, the viscosity tensor k is needed to be prescribed. k is the directional viscosity

during the creep deformation of Nickel based single crystal Superalloys.

(5.36)

Since

L = FF -1	(5.37)

and

F = FeG	 (5.38)

an equation for L can be obtained by substituting Fe into L and simplifying to get

L = F,F,-1 + FeLinFe-1 	(5.39)
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For the deformation described in this dissertation, F is a diagonal tensor. As a

result L and Lin are also diagonal tensors. Thus the follow equation (5.40) is obtained

Lin = Din 	(5.40)

5.5 Conclusions

Creep is a complicated process. From the microscopic point of view, it is the diffusion of

the vacancy/impurity and the movement of the dislocations. As there are no grain

boundaries in nickel based single crystal Superalloy, diffusion is harder to take place. The

principal mechanism can be regarded as movement of the dislocations. The theory of

multiple natural configurations has been used successfully to describe a diverse class of

material behavior. This framework uses the thermodynamic quantities, such as stored

energy and dissipation, to describe the creep deformation. The connection between the

macroscopic quantities and microscopic mechanism is developed by using the multiple

natural configurations framework for the creep deformation of Nickel based single crystal

Superalloys.



CHAPTER 6

PARAMETERIC STUDY

6.1 Introduction

An elastic solid and a viscous fluid are two extreme cases for ideal mechanics models.

For an elastic solid, its natural configuration is its stress free state, i.e., (T=O, E=0) and

the relation between stress and strain are one to one. Also, for an elastic material, on

unloading the material recovers its original shape and there is no energy dissipation.

When loaded the material deforms and the external force does work during the

deformation. This work is then stored in the material as the strain energy. When

unloaded, the elastic material releases the stored strain energy by doing work on the

surroundings. The amount of energy stored by the material and the amount released are

identical. On the other hand for a viscous fluid, its current configuration is its natural

configuration. It doesn't have the ability to recover the deformation and it dissipates

energy.

A viscoelastic material is, as the name suggests, one which shows a combination

of viscous and elastic effects, the relationship between stress and strain depends on time.

All materials exhibit some degree of viscoelastic response. In common metals such as

steel or aluminum, as well as in quartz, at room temperature and at small strain, the

behavior does not deviate much from linear elasticity. Synthetic polymers, wood, and

human tissue as well as metals at high temperature display significant viscoelastic effects.

Viscoelasticity in metals is of interest in the context of fundamental understanding of

microscopic processes and in the context of current or potential applications. Substantial
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viscoelastic response in metals is commonly but not exclusively associated with high

homologous temperature, TH=0/t9—-inelting=0.5, with 0 is the absolute temperature.

Viscoelasticity considers in addition a dissipative phenomenon due to "internal friction,"

such as between molecules in polymers or between cells in wood. The viscous term leads

to energy dissipation and the elastic term to energy storage. Rate effects are very

important for these materials.

It is generally agreed that the high-temperature background, which refers to the

rapid increase in the damping of metals when the temperature is above about half of the

homologous temperature is caused by a combination of thermally activated dislocation

mechanisms.

Creep usually denotes a slow viscous flow of a solid under macroscopically non-

zero stress, via atomic diffusion (through lattice or along grain boundary) and dislocation

motion (glide or climb). The mechanism of creep depends on the composition of the

material, its microstructural features, temperature and stress. For anisotropic materials the

influence of material orientation is also significant. In this dissertation only the

macroscopic factors will be considered, which are stress and orientation under isothermal

conditions.

In Chapters 4 and 5 the constitutive equations were derived and the related

techniques were also described. As it was stated, the creep deformation is highly

dependent on the viscosity tensor k , which is a fourth order tensor and can be expressed

as functions of the components i, j and k. But no detailed information was given. In

section 6.2 the explicit expression of i, j and k is derived and thus completing the

formulation of the viscosity tensork. In section 6.3, the focus is on the relation between

directional viscosity and strain strength. The relation between strain strength and strain
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rate is given in the section 6.4. The relation of strain and strain rate is described in

subsection 6.5. Section 6.6 contains the simulation and predication of the creep process.

6.2 The Directional Viscosity Tensor

Viscosity is the resistance a material has to change in form. This property can be thought

of as an internal friction. As stated before, in linear viscoelasticity viscosity is a constant

while in the nonlinear behavior it depends on the mechanism of the deformation and can

be regarded as a function of activation volume, stress, strain, strain rate, time,

temperature, material nature etc., factors that affects the creep life for a specific material

under working condition. In a three dimensional case the viscosity can be expressed as a

tensor.

6.2.1 Relationship between Viscous Stress and Strain/Strain Rate

In the theory of continuum mechanics, Malvern (1964) studied the viscosity of the

isotropic viscous material behavior. The relationship between stress and strain rate is

expressed as

T = kD	 (6.1)

where T is the viscous stress tensor, D is the strain rate tensor, Ik is the 4 th order

viscosity tensor.

For an isotropic material the viscosity tensor can be presented as

k = (k — 2,u / 3)11 + ,u(I 0
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where k and p are bulk and shear viscosity, respectively, and II and I ® I are unit

tensor for 2nd and 4th order tensors, respectively, ® is the dyad of two tensors.

Equation (6.2) is the standard Navier-Stokes equation.

The total stress and strain rate can be decomposed into a spherical stress 1 and

a deviatoric stress e.

T Tm I +TD

D = Dm I + DD

where Tm = (tr(T) / 3) and DM = (tr(D) / 3) .

Substituting equation (6.2) into equation (6.1) and using equation (6.3), the

following equations are obtained,

Tm / = kDmI

TD = 2,uDD	
(6.4)

Alternatively, bulk viscosity is a function of the first stress and strain rate

invariants, shear viscosity is a function of the second invariant of the stress and strain

rate.

Li and his coworkers (1999) further proposed that both bulk and shear

viscosities can be the functions of stress and strain invariant A' and A. It is assumed

that the variables in the viscous parameters can be independent from each other, and

are able to be expressed by the product of two independent functions.

(6.3)
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(6.5)

where fn is the first invariant of stress, JEl and 42 are the first strain invariant and

second deviatoric strain invariant, N is the repetition number of cyclic load, ui (

i=0,...,3) and vi (i=0,...,3) are the power order for different terms, respectively.

Bertram and Olschewski (1996) present a one dimensional nonlinear rheological

model based on a four-parameter Burgers model. In this model, the viscosity was

regarded as a function of the stress. Although the creep behavior is strongly non-

linear, the viscosity was still regarded as a constant during the deformation process.

Based on the one dimensional model the authors further generalized it to a three

dimensional model. Qi and Bertram (2000) developed a viscoplasticity damage model

for single crystal Superalloy SRR99 at temperature of 760°C. In this model 5 material

tensors need to be determined, all of them are dependent on the viscosity, which is a

function of stress invariants, A„ 0 2 ,A 3 and A 4 defined as follows:

(6.6)
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6.2.2 Interpretation of the Directional Viscosity Tensor

6.2.2.1 Directional Viscosity at High Temperatures. As stated in section 6.2.1,

viscosity for creep in different materials can be regarded as a function of stress and/or

strain invariants depending on the material and the nature of deformation. In creep

deformation of single crystal Superalloy CMSX-4, the directional viscosity is defined as

a function depending on both first stress invariant and nominal strain strength T. , which

is defined as,

	

er = 4 e 	 (6.7)

where E is called the shear strain strength and defined as (Kachanov, 1971),

	

= 2\11E/d/ 1 	 (6.8)

The physical meaning of E." is the following: it is a quantity that represents of the

distortion in shape of an element of the medium. Ed is the second invariant of the strain

deviator and is defined as

Ed =-1 ((trace(E)) 2 — trace(E 2 )) — EvI

Ev=—
1

trace(E)3

(6.9)
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With these models as a background in this work, the expression of directional

viscosity of creep in Nickel based single crystal Superalloy is defined as, k = k(Ti ,Eid/ ) .

The specific form chosen for the directional viscosity components is,

4(T)i2(Eidi)

i=ii(T)./2(Eidi) 	 (6.10)

k = kl (TI )k2 (E

where i1—i2, j 1-1 2, k1—k2 are material constants to be determined.

In the study of anisotropic nickel based single crystal Superalloys, the viscous

components i, j and k are independent with each other, and this nature is decided by the

FCC crystal structure. The final expression chosen for i, j, k are as follows:

i = a,(trna2 Er (a3tr(T) + a 4 )

j = fli (trT) 162 Er (Atr(T) + /14) 	(6.11)

k = yi (trT)r2 e r + (y3tr(T)+ y4 )

where al — a4
,
 — 164 and 	 aree material constants and can be obtained by

calibrating with experimental data results. Figure 6.1 shows the curve fitting results at

950°C at different orientations and stress levels.

6.2.2.2 Directional Viscosity at Low Temperature. From above discussion it is clear

that at a temperature of 950°C, the parameters i, j and k depend upon the stress level at

any orientation. At <001> orientation, directional viscosity depends only on i and j, and

i/j changes with both temperature and stress.
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The situation changes significantly when study the creep at low temperature and

high stress level. The curve of strain vs. time is totally different from that at high

temperature. The parameters can no longer be described using equation (6.11), and the

relations between i, j with Er are no longer linear. The new relationship is now expressed

in equation (6.12):

(6.12)

Where 1i-44, ji—j4, kl —k4 are material constants to be determined.

The following are the fitting curves obtained by using equation (6.11) for high

temperature (Figure 6.1 and Figure 6.2) and equation (6.12) for low temperature (Figure

6.3). It can be seen that the simulation results match well with the available experimental

data at 950°C (Duncan et al. 2001), 982°C and 1000°C (Henderson, et al. 1997), and

750°C (Svoboda, et al. 1998).
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Figure 6.2 Simulation results (a) 982°C (b) 1000°C at <001> directions at different load
Conditions (Experimental data from Henderson, et al. 1997).

Figure 6.3 Strain changes with time for CMSX-4 at 750°C (Experimental data from
Svoboda, et al. 1998).
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6.3 Relation of Directional Viscosity on Strain Strength

Relation of directional viscosity with strain strength is discussed in this section and the

discussion is based on different directions and temperatures.

6.3.1 At <001> Orientation at Different Temperatures

Study of the directional viscosity in the <001> orientation at different temperature is

described in this subsection.

6.3.1.1 High Temperature. At the <001> direction and high temperatures, 950°C and

1000°C, it is clear that viscosity components i, j and k increase with strain strength

linearly (Figure 6.4a and Figure 6.5a). At the same time, component i and j seems

insensitive to the stress while component k does show a dependence, with an increase in

the stress, k increases.
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6.3.1.2 At Low Temperature and High Stress. At the low temperature of 750°C, the

relationship of directional viscosity with strain strength is plotted in the following figures

(Figure 6.6).

strain strength

(a)

(b)

Figure 6.6 Directional viscosity versus strain strength at 750°C (a) viscosity
component i and j (b) viscosity component k.
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Figure 6.6 is the plot of directional viscosity change with strain strength at 750°C.

Clearly, relationship between viscosity components and strain strength is much

complicated than at high temperatures. Components i and j are no longer linear (Figure

6.6a), which implies that the mechanism of the deformation is not the same as high

temperature, as described by Svoboda and Lukas (1997). At the same time, the viscosity

components are sensitive to the stress which is different from the high temperature range.

At either 735 MPa or 800 MPa, with an increase in strain strength, the viscosity

decreases, although the extent of decrease is different. It seems at lower stress levels the

viscosity decreases faster than at higher stress levels. Plot (b) depicts the change of the

viscosity component k with strain intensity. At both stress levels, the viscosity component

k increases with strain intensity; however the increase is not linear.

As stated above, viscosity characterizes the resistance of a material to change in

shape and the strain strength represents the distortion of the material. For one

dimensional deformation, it is easy to understand that as the material deforms, it becomes

stiffer. This will lead to an increase in the viscosity. For three-dimensional deformations

with anisotropic material properties, considering the deformation compatibility, the

viscosity dependence on strain strength becomes much more complicated.

At high and low temperatures, the tendency of i, j, k changes with strain strength

very differently. Comparison at high temperatures indicates that, viscosity components i/j

and k have a similar tendency; at low temperatures, viscosity components i/j and k have

significantly different behavior. This difference is a result of material anisotropy and can

be explained by metallurgy theory. At low temperatures dislocation movements are

strictly limited to fixed directions according to the corresponding maximum resolved

shear stress. Diffusion plays no role at these temperatures. While at high temperatures,
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more slip systems can be activated thus leading to more directions along which the

dislocation can move. This reduces anisotropy in the deformation. More importantly, at

high temperature atom vibrations become faster and with larger amplitude, these active

the diffusion mechanism. This random diffusion can also reduce the deformation

anisotropy.

6.3.2 Dependence of Directional Viscosity with Strain Strength in Other Directions
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Figure 6.7 and Figure 6.8 show the dependence of directional viscosity on strain

strength along <011> and <111> directions. It is clear that at any direction and stress

level, the viscosity components increase linearly with strain strength and have the same

tendency.

In the high temperature regime, the viscosity components change linearly with the

nominal strain strength in any directions and stress levels. While at lower temperature

(750°C) the behavior is different. This change reflects two main aspects: viscosity change

with nominal strain is nonlinear; stress has a more significant influence at higher

temperatures.

6.4 Strain Strength and Strain Rate

Strain rate has significant effects on material properties. Generally, very high strain rate

(100s-1 -1000s-I ) will lead to sudden failure of materials and structures, such as in an

impact event. At low strain rate level of 10 -1 s-1-10-3 s-1 , especially for creep, very few

literatures are available.

6.4. 1 The <001> direction

In the <001> orientation, strain rate increases with strain strength in the high temperature

regime. But the tendency is not the same for 950°C and 1000°C. At 950°C (Figure 6.9)

strain rate changes with strain strength linearly; while at 982°C and 1000°C (Figure 6.10

and Figure 6.11), the trend is nonlinearly. One of the important reasons is that at higher

temperature (982°C and 1000°C) the total strain is much bigger than that at lower

temperatures.
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6.4.2 In Other Directions

At 950°C, <011> and <111> directions, the stain strength is linear with strain rate as

shown in Figure 6.12 and 6.13. 
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Figure 6.12 Strain strength with strain rate at 950°C, <011> orientation.
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Figure 6.13 Strain strength with strain rate at 950°C, <111> orientation.

6.5 Nature of the Strain and Strain Rate

As described before, viscosity is a function of stress and strain; this captures the

macroscopic characteristics of the viscosity property, as it varies with creep. In fact, this

relation also reflects the underlying microscopic change that influences creep

deformation.

In the following subsection a detailed description is given on the relationship

between the viscosity and microscopic aspect of creep deformation.

Strain is the accumulation of deformation and includes elastic and inelastic

strains. Elastic strain can be recovered when the load is released while inelastic

deformation can't be recovered even after the load is released. The inelastic strain is

caused by the movement of dislocations, which has a close relationship with inelastic
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strain rate. It is well known that strain rate can be obtained by differentiating strain (as

long as strain is small). In other words strain can be transformed to strain rate easily. The

relationship between strain rate and the movement of dislocations is given by the Orowan

equation (1954)

ñ = pbv (6.13)

where ñ , p, b and v are strain rate, dislocation density, Burger's vector and average

dislocation movement rate. Burger's vector describes the displacement direction or slip

direction characterizing a particular dislocation. For an edge dislocation moving along its

slip direction, the Burger's vector is usually one lattice spacing (Honeycombe, 1984),

although this may change for dislocation climbing. Burger's vector can still be expressed

by a lattice constant. For simplification, a constant Burger's vector is selected and

attention is paid to the dislocation density and velocity.

Strain rate is a critical factor in the inelastic deformation. Usually two competitive

processes take place during the inelastic deformation: hardening and softening. The

hardening is caused by an increase in the internal energy of the metal/alloy due to the

production of dislocation lines, and softening is attributed mainly to the thermally

activated relaxation processes. Since the latter is time dependent, the effect of strain rate

is such that the deformation processes at low strain rates experience more of it and thus

metals/alloys are expected to go through softening. According to the different strain rates,

the deformation mechanism change. For higher strain rates there is almost no softening

taking place. While at lower strain rate process, (such as creep), the hardening is not

significant. The reason behind it is that the deformation mechanisms are different at low
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and high strain rates and the strain rate is related to the dislocation density and dislocation

velocity by Orowan's equation, which describes the deformation from the microscopic

point of view. Furthermore, according to the Orowan's equation, using known values of

the material parameters, the dislocation density can be predicted using the model

provided.

Burger's vector is the unit of the dislocation. Usually it is determined by the

crystal lattice constants. If crystals are oriented in an orderly way, a strong plastic

anisotropy can develop in the material. If crystals are oriented randomly one would

expect the effect of the difference in the Burger's vector to superpose, so that an

effectively constant Burger's vector can be obtained and no anisotropy occurs. Ashby and

Verrall suggest a mean burger's vector of 6 A according to the burger's vectors at

different glide planes, b=5.98 A at [001] plane, b=4.76 A at [100] plane, b=10.2 A at

[010] plane.

While for FCC material, such as Nickel based single crystal Superalloys, the

crystal lattice constants are all the same, a=0.358 A, in the three crystal directions, say,

[001], [010], and [100]. However the Burger's vectors can have different values, either

the lattice constant or half of the lattice constant, depending on which slip system is

active. Similarly with Ashby and Verrall (1978), the burger's vector for CMSX-4 material

can be around 0.179 A.

Another factor that should be considered is the dislocation velocity. It is clear that

during the creep deformation, the velocity of dislocation will change over time. Von

Grossmann and his coworkers (Von Grossmann, et al. 2000) proposed a range of

velocities of the dislocation according to the experimental data, which can be from

10 -9-10-3 m/s.
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The following are some predictions of the dislocation density change with strain

(Figure 6.14 and Figure 6.15). At high temperature along <001> direction, dislocation

density increases with the increase of strain. However at same strain the dislocation

density saturates. This is the expected behavior.
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6.6 Simulation and Predictions

Using the parametric study results to validate the experimental data, strain vs. strain rate

curves are shown in Figures 6.16 to 6.19. It is clear that the simulation results have a

good agreement with the experiment data. Figure 6.20 is the prediction of the creep

curves for different stress/orientation and temperature. It is clear that the simulation

results agree reasonably well with the experimental data. At the same time it shows the

correct behavior, with an increase in stress, the creep life decreases, as described in

Chapter 1.

Agreement between the analytical and experimental results for a wide range of

time tends to support the representation of the model.

Figure 6.16 Strain versus strain rate at 950°C, 250 MPa, at <001>, <111> and <011>
directions (Experimental data from Duncan et al. 2001).
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Figure 6.17 Strain versus strain rate at 950°C, 300MPa, at <111> direction
(Experimental data from Duncan et al. 2001).

Figure 6.18 Strain versus strain rate at 950°C, 320MPa, at <001> and <111> directions
(Experimental data from Duncan et al. 2001).
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Figure 6.19 Strain versus strain rate at 950°C, 350Mpa, at <001> and <111> directions
(Experimental data from Duncan et al. 2001).
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Figure 6.20 Prediction of creep life at different temperatures (a) 980°C at <001>
direction; (b) 1000°C at <001> direction; (c) 950°C at <001> direction; (d) 950°C at
<011> direction; (e) 950°C at <111> direction (Experimental data of 950°C from Duncan
et al. 2001; Experimental data of 980°C and 1000°C from Henderson, et al. 1997). '

Material parameters used in the simulation are listed in Table 6.1 and Table 6.2

Table 6.1 Material Constant for Creep at High Temperature

Material constant for high temperature

a 1
1.1687E+007

a2
-4.012

a3
7.9939E-008

a4
0.8103

Y1
5.5337E-10

Y2
1.8228

73
2.0421e-41

74
13.623



Table 6.2 Material Constant for Creep at Low Temperature of 750°C

Material constant for low temperature

735MPa 800MPa

il 3.0E-2 1.8E-1

i2 -3.23E-2 -3.23E-2

i3 1.6 1.6

i4 5.89E-6 2.4E-2

ji 2.9996E-2 1.7997E-1

j2 -3.23E-2 -3.23E-2

j3 1.6 1.6

j4 2.27E-6 2.16E-5

6.7 Conclusions

Directional viscosity is a key factor which will affect the creep life. In this chapter the

representation of the directional viscosity is given. It is a real-time parameter which

changes with strain strength and stress.

Directional viscosity is a function of the strain and stress invariants in this

dissertation. This is based on the theory of continuum mechanics and modified for the

model purposed here. The expressions of the components for the directional viscosity are

deduced and are given in this chapter for both high and low temperature at different

orientations. Material constants are calibrated from the experiments.
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The relationship among directional viscosity, strain strength, strain rate are

plotted. Prediction of the creep is also plotted. This model can give a good prediction at

different temperature and orientation under consideration.



CHAPTER 7

FINITE-ELEMENT METHOD AND SIMULATION RESULTS

7.1 Introduction

The finite element method is a numerical procedure for analyzing structures and

continua. Usually the problem addressed is too complicated to be solved satisfactorily by

classical analytical methods.

In this chapter, the finite element implementation of the previously developed

anisotropic constitutive model is discussed. The general procedure to integrate the

inelastic rate equation is first reviewed. Two main algorithms, i.e., the forward Euler and

backward Euler integration methods are explained. The procedure to implementation

material constitutive model into a commercial finite element program

ABAQUS/STANDARD is discussed. To verify the constitutive model, strain-time curves

are plotted and compared with experimental for 2-D creep.

A finite element approach based on writing a user subroutine UMAT (Viscous) in

ABAQUS to evaluate the material constitutive model developed in the previous chapters.

This subroutine makes it possible to define any constitutive model of arbitrary

complexity. And the developed model can be used with any ABAQUS structural element

type. The user subroutine is based on a FORTRAN program.

Finite element is not the topic of this dissertation but it is a very important part

relating the implementation of the constitutive equation into ABAQUS. A brief

introduction of the fundamental concepts of the method is described here.
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7.2 Finite Element Formulation

Conservation of linear momentum can be described either in the spatial coordinate

system or a local coordinate system. For the solid material studied here, the local

coordinate system is preferred.

The basis for the development of a displacement-interpolation finite element

model begins with the introduction of some locally based spatial approximation to parts

of the solution.

The exact solution of such a problem requires that both force and moment

equilibrium be maintained at all times over any arbitrary volume of the body. The

displacement finite element method is based on approximating this equilibrium

requirement by replacing it with a weaker requirement, that equilibrium must be

maintained in an average sense over a finite number of divisions of the volume of the

body

To develop such an approximation, we begin by replacing the three equilibrium

equations represented by an equivalent "weak form"—a single scalar equation over the

entire body, which is obtained by multiplying the pointwise differential equations by an

arbitrary, vector-valued "test function," defined, with suitable continuity, over the entire

volume, and integrating.

7.2.1 Weak Form of Linear Momentum

In deriving equation for weak form of linear momentum, a volume occupied by a part of

the body in the current configuration is denoted by V, and S is the surface bounding this

volume. Furthermore, the surface traction at any point on S is assumed to be force t per

unit of current area, and the body force at any point within the volume of material under
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consideration is f per unit of current volume. Letting S -2, denote a known configuration

the constitutive equations is linearized about this known configuration.

The momentum equation cannot be discretized directly by the finite element

method. In order to discretize this equation, a weak form is needed. The weak form is

obtained by taking the product of the momentum equation with the test function and

integrating over the domain. Here the weak form is formulated over the reference

configuration and then transform to the current configuration. This gives

F(U, 60 ) = f (poi, — poB — Div(PT ) • (WI 	 (7.1)
no

The test function 60 has to satisfy the condition 6 0 = 0 on aou . Combing the

boundary conditions,

U = ii, on af2u and t = Tn = to on acli. 	 (7.2)

the weak form can be written as

F (U ,60 ) = f P • Grade50 dV — f poB - 60 dV — f to • (So dA	 (7.3)
no 	 no 	 ono

where U is the displacement, 60 is the weight function at local coordinate system, P is the

first Piola stress, B is the body force and t o is the surface traction at the local coordinate

system.
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Given a nonlinear function F(U ,60 ) and a known configuration x * in the direction

u about a particular configuration the following can be obtained,

F(U,(50 )=	 ,(50)+ Dr (U , (5 „)lul + o(u)	 (7.4)

Where

DF (U , (5 0 )1 ul = 6- L [ F(x* + Ou, 60)1 0 	(7.5)
dO

Neglecting the higher order term (o (u)), and setting F(U, go ) = 0 , the following

equation is obtained,

DF (U , 60 ) = —F(x* ,(50)
	

(7.6)

Using definition of equation (7.8) into each item in equation (7.5) and simplifying

the equation, the following can be obtained:

DF(.y, b0 ) = — f Grad 00 • NGrad v dV — f p0 l3 • 60 dV — .I. 10 • 60 dA	 (7.7)
Q.	 no	 aQ.

where N = 
ap i

s  called stiffness matrix, P is the first Piola stress.
aF

The test function can be imagined to be a "virtual" velocity field, 8 3, , which is

completely arbitrary except that it must obey any prescribed kinematical constraints and
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have sufficient continuity: the dot product of this test function with the equilibrium force

field then represents the "virtual" work rate.

Substituting 60 by (Su , the above equation is the so-called virtual work equation

whose physical meaning can be expressed as following:

8Wext = i po i3 • (Su dV – f 4, • (Su dA
no 	 ono (7.8)

Se' = J Grad Ou • NGrad v dV
no

The above OW' and MT h' are called external virtual work and internal virtual

work, respectively.

The first Piola stress P is replaced by Kirchhoff stress r, which is defined as

r = JF . As usual, F is the deformation gradient and J=detF . Set S t = J P • Grade50 dV ,
no

then

DS, = f P • GradOo dV	 (7.9)
Q.

Using GradO0 = gradOo • F, P = rF and F-T = –LTF -T ,and simplify equation

(1.10) becomes

EDS, = f1—j, (i- – rE) - gradk, dv (7.10)



DS, = f--1 (rf + wr —7-w)- grad(50 dv
Jn

(7.12)
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Further the rate of Kirchhoff stress is replaced by a frame-invariant rate, the

Jauman rate, which is defined as:

Ti =T—WT—TW T (7.11)

Then equation (7.10) can be written as

Thus the constitutive equation can be re-cast in the Jaumann rate as

T = ND	 (7.13)

where N is the stiffness matrix.

7.2.2 Integration Schemes

Based on the discretized rate equation, the next step is integrating the equations. Three

major integration methods can be used, namely the forward, backward and midpoint

Euler integration methods, which is summarized in this section.

Due to the nonlinear nature of the governing differential equations; an

incremental solution procedure is usually required. Letting A(•) = (•)" +1 — (•)n denote an

increment over a time interval [e, e+1, the differential equations can be incrementally

solved to obtain frn+1, 
En+1 9 einn+i 9 r+11 by using different integration schemes, if {T n, En ,
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sn, , V") and the total strain increment As are known. The most popular integration

schemes are forward integration and backward integration.

The rate equations are first discretized in the time domain, and the current

incremental changes in the inelastic strain are approximated as Asin ,'-', S,"„At , with the

current time increment At = tn +1 — t". It should be noticed that the rates at the beginning of

the increment are used.

This numerical scheme is explicit in nature and, in particular, is suitable for very

small time steps. In other words, the Forward Euler solution is conditionally convergent.

In contrast to the Forward integration scheme, backwards Euler method has unconditional

stability and the time steps are limited only by the accuracy. The numerical quantities are

calculated from rates at the end of the current increment. That is As S,"„-"At .

The advantage of the Backward Euler scheme over other midpoint schemes is that

the solution is sought by using the normal at the final stress state. By implicitly assuming

that such a stress state exists, the Backward Euler scheme is guaranteed to provide a

solution, despite the size of the strain step. The Backward Euler algorithm is only

accurate to the first order.

The explicit algorithm (Forward Euler) is based on using the starting point in the

stress and internal variable space for finding all the relevant derivatives and variables.

It should be noted that the explicit algorithm performs only one step of the

computation and does not check on the convergence of the provided solutions. This

usually results in the slow drift of the stress-internal variable point from the yield surface

for monotonic loading. It also results in spurious plastic deformations during elastic

unloading, during cycles of loading-unloading.
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The central difference method is always among the most popular in computational

mechanics and physics. The time of the simulation, t, ( 0 t ._ tE ), is subdivided into time

steps Atn ,n=1,nn , where nrs is the number of time steps and tE is the simulation end.

The superscript indicates the time step: to and d" L-- d(t") over the time and displacement

at time step n respectively.

At n+Y2 = tn+1 — t n , At n+Y2 = 1 (t n+1 + t n ), At" =t n+Y2 — t n-Y2
2

an+Y2 Vn+Y2 = dn+1 — di' = d n+1 —
 do

tn+1 — to	 Atn+Y2

(7.14)

This differential formula can be converted to an integration formula by

rearranging the terms as following:

d n+1 = d" + Atn+Y2 1,n+ Y2 	(7.15)

In the remaining of this section, the central different integration method will be

used to get the rate equation of stress. This begins with a rewriting of the stored energy.

Substituting equation (3.11) into equation (5.16), the stored energy in terms of Ce

is,

v 1= —(Ce —I) • C(Ce — I)
4 

(7.16)

Similarly, by introducing equation (7.16) into equation (4.29), the stress is given

by
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	T = 2 pFeCE,FeT 	(7.17)

For an inelastic deformation, the total strain can be written as the sum of the

elastic strain and inelastic strain. In other words, the elastic strain can be written as

follows,

Ee = E —E in 	(7.18)

Substituting equation (7.18) into equation (7.17), and then using the time

derivative, it yields,

	T = 2pC(t — É in ) 	 (7.19)

Since

tr (IC' Am ) Itin = Din = k-i [Am 	1
tr(e l I)

(7.20)

and using the definition of C , equation (5.17), and k , equation (5.27), the stress rate is

obtained,
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+b(E22 E33) 31 (a MO j)(27;1 T22 T33)

+ E33)-1
3 

(a — b)(i f)(2T22 — -T33)

+ E33 ) 	

\(,),T 	 T
ka 	 f/-'4-33 '22

cEi2 cliT2

CE13 —CkT3

+ b(E22

atii+b(t22 -TH)t = 2p

CE23 — CkT23

Now using the simple, stable central difference integration operator for equation

(7.21), the stress increment for the main stress, AT. , and shear stress, OTC, , are obtained

as in equation (7.22) and equation (7.23). Stress increments of other components can be

obtained, and they have similar forms.

2
AT. = 	 {[(q —1)a + 2qb]Ae,,+[(2q-1)b+ qa]As +[(2q —1)a + qa]Ae„— q(3T —

3q —1

(7.22)

and

AT =
2c 

(AEA, —IcAtTy)
1+ cicAt

(7.23)

where

q =
pAt 	

j(i — )(a — b)
6

(7.24)
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7.2.3 Tangent Stiffness

It appears that Simo and Taylor in (1985) and Runesson and Samuelsson (1985)

were the first to derive the consistent tangent stiffness tensor. Other interesting articles on

the subject can be found in Simo and Taylor (1986), Simo and Govindjee (1988), Koiter,

(1953), Braudel, Abouaf, and Chenot (1986), Crisfield (1987). As a consequence of

consistency, the use of the consistent tangent stiffness tensor significantly improves the

convergence characteristics of the overall equilibrium iterations, if a Newton - Raphson

scheme is used for the latter. Use of the consistent tangent stiffness tensor yields a

quadratic convergence rate of Newton - Raphson equilibrium iterations.

The final goal in deriving the Backward Euler scheme for integration of elasto-

plastic constitutive equations is to use that scheme in finite element computations. If the

Newton - Raphson iterative scheme is used at the global equilibrium level then the use of

. the so called traditional tangent stiffness tensor destroys the quadratic rate of asymptotic

convergence of the iterative scheme. In order to preserve such a quadratic rate, a

consistent, also called algorithmic, tangent stiffness tensor is derived. The consistent

tangent stiffness tensor makes use of derivatives of direction normal to the potential

function, and they are derived at the final of each iteration. This is in contrast to the

traditional forward scheme where a constant derivative is evaluated at the intersection

point.

Thus the Jacobian matrix has the terms:



AT. = 2pc

Aexy 2-ckAt
(7.27)

117

AT. = 	2P 	[(3q + 1)b — q(a + b)] 	 (7.26)
Aeyy 4q2 ± 5q + 1

and

7.3 UMAT Development and Solution Techniques

7.3.1 UMAT Development

The commercial FE software ABAQUS provides a powerful tool by allowing user to

implement their own constitutive models through a user subroutine UMAT. This

subroutine is called at every integration point, hence it needs to be accurate, robust and

yet computationally efficient.

The data passed into a UMAT include the stress, strain and internal variables from

the last converged increment, and the current total strain increment that is computed from

the node displacement after solving the global equilibrium equations. The output of a

UMAT is stress, internal variables and consistent tangent stiffness matrix for implicit

finite element program.

Employing the constitutive equation developed in the preceding chapters, and the

Jacobian derived in this chapter, the equations for a user material (UMAT) subroutine for

implementation in the ABAQUS finite element code is presented in this section.

A finite element approach is based on writing a user subroutine in ABAQUS to

evaluate the constitutive equation under given loads. Two dimensional 4-node solid

elements are used (Figure 7.1). The user subroutine is based on the FORTRAN90
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programming Language and the corresponding flow chart for writing UMAT is listed in

Appendix B.

7.3.2 Boundary and Load Conditions

Due to the uniform distribution of the stress in the specimen for this case, only one

element will be enough to model the problem. A 4-node solid element will be used in the

simulation. The sketches of the finite element model for both <001> and <011>

orientations are shown in Figure 7.1, and loading curve is shown in Figure 7.2.

Figure 7.1 Finite element model for <001> and <011> orientations.
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Figure 7.2 Schematic plot of loading curve.

7.3.3 Element Technology

The objective of element technology is to develop elements with better performance,

particularly for large-scale calculations and for incompressible materials. Low-order

elements when applied to incompressible materials tend to lock volumetrically. Although

incompressible materials are quite rare in linear stress analysis, many materials behave in

a nearly incompressible manner in the nonlinear regime. The ability to treat

incompressible materials effectively is important in nonlinear finite element.

Understanding this shortcoming and picking the right elements are crucial in the selection

of elements for nonlinear analysis.

In selecting elements, the ease of mesh generation for a particular element should

be borne in mind. Triangular and tetrahedral elements are very attractive because they are

the easiest to mesh. Therefore, they are preferable when all other performance

characteristics are comparable for the problem at hand.

The most frequently used low-order elements in two dimensions are the 3-node

triangle and 4-node quadrilateral. The corresponding three dimensional elements are the

4-node tetrahedron and the 8-node hexahedron, respectively.
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In order to avoid the severe volumetric locking, 3-node triangle element in 2-D

and 4-node tetrahedron element in 3-D should not be considered. At the same time, for

the sake of large-scale calculation, the element selected for the simulation is 4-node quad

element in two dimension, and 8-node hexahedron elements are the best choice.

Considering the geometry used here, in this dissertation we pick 4-node rectangular

element.

7.4 Finite Element Results

Finite element results will be given in this chapter which includes creep results,

maximum strain distribution and energy ratio.

7.4.1 Material Parameters and Constants

In table 7.1 a summary of all the material parameters and constants used in this

simulation are provided. The following are the physical interpretation of these parameters

and constants.

Elastic constant C : The elastic constants for CMSX-4 Nickel based single

crystal Superalloy is available in the literature (Li, 1997) and are listed in Table 7.2. This

set of material constants are tested at a temperature of 950°C. The elastic modulus

depended on temperature and this simulation is run at different temperatures, 750°C and

1000°C different from Li (1997). In general, the effect of temperature should be

accounted for. However, in this case it will modify the behavior only in the initial elastic

region. Hence, without any loss in generality, we assume a single set of modulus

independent of temperature for our simulation.



121

Elastic stored energy ve: The elastic stored energy is defined as in equation

(5.1).

Nominal strain strength E r : Nominal strain strength is calculated using equation

(6.7). It is accounted for the inelastic strain accumulation and determines the viscosity at

real-time during the creep deformation.

Stress invariance tr (7): It is the first stress invariance and is a factor which

affects the creep deformation.

Table 7.1 List of material parameters and constants

No. Parameter Depends on Remarks

1
C

constant Elastic constants

2 Vie constant Elastic stored energy

3 Er strain Strain strength

4 tr(T) stress Stress invariant

5 i strain and stress Dynamic viscosity component

6 j strain and stress Dynamic viscosity component

7 k strain and stress Dynamic viscosity component
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Table 7.2 Elastic Material Constants

a= 1.162E-5N/m2, b=-4.51E-6N/m2 , c= 1.162E-5N/m2

Directional viscosity: The anisotropic nature of material properties is captured

through the three-dimensional directional viscosity tensor, which in turn depends on three

components, i, j and k consistent with cubic symmetry. The directional viscosity is

determined by the stress and strain strength in real-time and can be calculated by

equations (6.11 and 6.12).

7.4.2 Simulation Results

Figures 7.3 and 7.4 are the simulation results at different orientations and stresses. The

finite element results are reasonably fit to the experimental results.



Figure 7.3 Simulation curve at <001> 950°C (a) 250MPa, (b) 320MPa (Experimental
data from Duncan et al. 2001).
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Figure 7.4 Simulation results for <011> direction, (a) 250MPa, (b) 350MPa
(Experimental data from Duncan et al. 2001).

7.4.3 Two-dimensional Strain Analysis

In order to test the developed model, 2D multiple elements specimens will be used and

paths are set to further investigate the anisotropic deformation.

A multiple element 2D problem (Figure 7.5) is used to conduct the strain analysis.

Five paths are distinguished to determine the strain distribution. The path on the left is

fixed while the path on the right is the loading side. The load is a uniformly distributed

stress. Path on the top is stress free. The paths middle and middlev are the symmetric

lines running through the center in the horizontal and vertical directions, respectively.

The distance here is the normalized distance and the strain refers to the maximum

principal strain which can be calculated by equation (7.28) for a two-dimensional

problem,
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(7.28)

Figure 7.5 Schematic definition of path.

Four cases are plotted in the Figures 7.6 to 7.7 for the comparison of the strain

distribution for 250 MPa at <001> and <011> orientations along different paths. It is

clear that for all the cases maximum strain at <011> material orientation is larger than

that for the <001> orientation. Another significant difference is the maximum strain

distribution along path middlev and path right for <001> and <011> material orientations.

At the <001> orientation along path middlev, strain distribution is almost a constant

while <011> isn't. These differences resulted from the anisotropic property of material

and its deformation.
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Figure 7.6 Maximum principal strains for the vertical paths (a) path middlev and (b)
path right.



c
'03-i _
U'
Toa..5
c
'L
ci.
E
3
E
7(co
E

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0.35

c
WI
r) 0.25
To
a.
ti 0.2
c
r_

0.15
3

x 0.1
al
E

0.05

0.3

—11-250MPa, <001>
—A-250MPa, <011>

0 	 0.2 	 0.4 	 0.6 	 0.8 	 1 	 1.2

normalized distance

(a)

127

07
0 0.2 	 0.4 	 0.6 	 0.8 	 1 	 1.2

normalized distance

(b)

Figure 7.7 Maximum strains for the horizontal paths (a) path top and (b) path middle.

A direct view of strain distribution can also be seen from the contours in Figure

7.8 to Figure 7.10, which indicate the different strain distribution at <001> and <011>

orientations.

—*--250MPa, <001>

—A— 250MPa, <011>



128

Figure7.10 Contour plot of stress E12 at 250 MPa, along different orientations
(a) <001>, (b) <011>.
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7.5 Conclusions

The aim of this chapter is to incorporate the developed constitutive equations into the

finite element method simulate creep in complex geometries. The tangent stiffness matrix

and integration schemes were introduced. Methods are described to derive the material

tangent stiffness and to integrate the constitutive equation.

Implicit backwards Euler's method was used in integration and for writing the

UMAT . The motivation for this choice as a numerical technique for solving the

nonlinear equilibrium equations is primarily the convergence rate obtained by using

Newton's method compared to the convergence rates exhibited by alternate methods

(usually modified Newton or quasi-Newton methods) for the types of nonlinear problems

most often studied with ABAQUS.

Two dimensional elements were used to test the <001> and <011> directions and

the comparison with the experimental results are given. 2D strain analysis were also

studied which proved that the model developed in this dissertation can capture the

anisotropic behavior.



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

With the increasing of the entry temperature the turbine efficiency also increases which

can reduce the energy consumption. New materials, including nickel based single crystal

Superalloys, are developed continuously to meet this requirement. To validate or test the

creep life for these materials at different working conditions, such as temperature, stress,

orientations, etc, a huge number of creep tests should be performed in order to get the

creep data. Since the creep tests need a specific setup and the tests last a long time, the

whole procedure is time and money consuming. In addition, a change in the working

condition will also affect the creep life. The reasonable way to solve this problem is to

develop a practical model, based on the fundamental creep data from the same material.

This model can then be used to predict the creep life at various working conditions.

So far two kinds of model are available in the literature, crystallographic model

and phenomenological model. Due to the limitations of these models, a new model was

developed here based on the framework of multiple natural configurations. This

framework has been used to develop constitutive models for a variety of materials.

The theory of multiple natural of configuration was used in this dissertation; to

develop a new creep model for Nickel based single crystal Superalloys CMSX-4. The

model was evaluated for several temperatures/stresses and orientations. The parameters

and constants in the model were evaluated according to the procedure introduced in

Chapter7. This model was implemented into a commercial program ABAQUS 6.4 as a

User Define Material subroutine. A finite element simulation of the alloy under constant

130
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stress load was conducted and compared with the experimental results. A 2-D element

type simulation was conducted. The results have fair agreement with the experiments.

The contributions of this dissertation are summarized into the following aspects:

1. A new creep model has been proposed by using the framework of multiple

natural configurations.

2. A directional viscosity tensor was introduced into the model to capture the

anisotropic material and deformation characteristics. The directional viscosity

dependence of stress and strain was mathematically expressed.

3. This was a rather general model which can be used to simulate the creep behavior

at high temperature. The model has been tested for three temperatures ranges,

and its predictions are in agreement with the experimental data.

4. This model was also used to test the creep behavior at different orientations at

isothermal conditions; the predications are in good agreement with the

experimental data.

5. Implementation of the constitutive equation by writing a User Defined Material

subroutine which can capture the anisotropic material property and deformation.

This was the first attempt to simulate creep deformation based on the multiple natural

configurations. Thus there are several ways in which this work could be extended in the

future. Some important and promising directions include:

• Low temperature range, especially at temperature of 750°C and below. At present, the

turbine entry temperature was the main concern and hence the research focused on

the upper end range of the temperature of about 950°C. But in practice, due to the
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efficient cooling system the core of the blade was at the temperature range of 750°C.

Thus the creep behavior at this temperature is also of vital importance in determining

the overall performance of the blade. Thus a detailed model for low temperatures can

be extended from this work.

• This model was developed for primary and secondary creep, which implies that this

creep model does not include the tertiary creep stage, in which voids and cracks begin

to form. Further study is needed to predict the total creep behavior for a single crystal

material including yielding criterion and damage mechanisms.

• This model was developed on the assumption that the creep takes place at an

isothermal condition. In practice creep can occur at either constant temperature or

changing temperature condition, such as the turbine and blades experienced at the

take off of an airplane. There is still a room for extending this model to non-

isothermal condition.

• Application of the model to realistic turbine blade geometries, to predict creep in a

real turbine blade.
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APPENDIX A

COORDINATE SYSTEM TRANSFORMATION

This Appendix contains the matrix A and B which are used to transform the coordinate

systems.

A and B are fourth order tensors for the transformation and can be calculated from

the direction cosine with respect to the two coordinate systems as follow,

A=12 ± m 2 ± n 2

A = rn
2 + n

2

where 1, m, n represent the direction of the coordinates in the crystallographic coordinate

system.
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APPENDIX B

FLOW CHART FOR UMAT

This Appendix describes the flow chart for UMAT
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