

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

SCHEDULING POLICIES FOR DISKS AND DISK ARRAYS

by
Chang Liu

Recent rapid advances of magnetic recording technology have enabled substantial in-

creases in disk capacity. There has been less than 10% improvement annually in the

random access time to small data blocks on the disk. Such accesses are very

common in OLTP applications, which tend to have stringent response time requirements.

Scheduling of disk requests is intended to improve their response time, reduce disk

service time, and increase disk access bandwidth with respect to the default FCFS

scheduling policy.

Shortest Access Time First policy has been shown to outperform other clas-

sical disk scheduling policies in numerous studies. Before verifying this conclusion,

this dissertation develops an empirical analysis of the SAT policy, and produces a

valuable by-product, expressed as x[mj = m, during the study.

Classical scheduling policies and some well-known variations of the SAT pol-

icy are re-evaluated, and three extensions are proposed. The performance evaluation

uses self-developed simulators containing detailed disk information. The simulators,

driven with both synthetic and trace workloads, report the measurements of requests,

such as the mean and the 95 th percentile of the response times, as well as the mea-

surements of the system, such as the maximum throughput.

A comprehensive arrangement of routing and scheduling schemes is presented

for mirrored disk systems, or RAID 1. The performance evaluation is based on a two-

dimensional configuration classification: independent queues (i.e. a router sends the

requests to one of the disks as soon as these requests arrive) versus a shared queue

(i.e. the requests are held in a common queue at the router and are scheduled to be

served); normal data layout versus transposed data layout (i.e. the data stored on the

inner cylinders of one disk is duplicated on the outer cylinders of the mirrored disk).

The availability of a non-volatile storage or DVS, which allows the processing of write

requests to be deferred, is also investigated. Finally, various strategies of mirrored

disk declustering are compared against the basic disk mirroring. Their competence of

load balancing and their reliability are examined in both normal mode and degraded

mode.

SCHEDULING POLICIES FOR DISKS AND DISK ARRAYS

by
Chang Liu

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Sciences

Department of Computer Science

May 2005

Copyright © 2005 by Chang Liu

ALL RIGHTS RESERVED

APPROVAL PAGE

SCHEDULING POLICIES FOR DISKS AND DISK ARRAYS

Chang Liu

D . Josef Y Leung, Dissertation Advisor 	 (Date

Dist inguished Professor of Computer Science, NJIT

Dr. Arthur Czu
r
^naj, Committee Member 	 Date

Associate Professor of Computer Science, DJIT

Dr. Marvin K Nakayama, mmittee Member 	 Date

Associate Professor of Computer Science, NJIT

Dr. David NNassimi, Committee Member	 Date

Αssociate Ρrofssor of Computer Science, NJIT

Dr Jian Yang, Committee Μember 	 Date

Assistant Professor óf Industrial and Manufacturing Engineering, DJIT

BIOGRAPHICAL SKETCH

Author: 	 Chang Liu

Degree: 	 Doctor of Philosophy

Date: 	 May 2005

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

Dew Jersey Institute of Technology, Dewark, DJ, 2005

• Bachelor of Engineering,
Tsinghua University, Beijing, China, 2000

Major:	 Computer Science

Presentations and Publications:

Alexander Thomasian and Chang Liu, "Empirical performance evaluation of the
SATF disk scheduling policy", submitted to The Computer Journal, British Com-
puter Society, Aug. 2004.

Alexander Thomasian and Chang Liu, "Performance evaluation of variations of the
SAT scheduling policy", SPECTS'03., San Jose, CA, pp. 398-401, Aug. 2004.

Chunqi Han, Alexander Thomasian and Chang Liu, "Affinity Based Routing in Mir-
rored Disks with Zoning", SPECTS'04., San Jose, CA, pp. 680-687, Aug. 2004.

Alexander Thomasian, Chunqi Han, Gang Fu, and Chang Liu, "A Performance Eval-
uation Tool for RAID Disk Arrays", Proceedings of the 1st International Confer-
ence on Quantitative Evaluation of Systems 2003., pp. 8-17, Sep. 2004.

Alexander Thomasian, Junilda Spirollari, Chang Liu, Chunqi Han, Gang Fu, "Mir-
rored Disk Scheduling," SPECTS'04., Montreal, Canada, Jul. 2003.

Alexander Thomasian and Chang Liu, "Some new disk scheduling policies and their
performance", SIGMETRICS 2002., pp. 266-267, 2002.

Alexander Thomasian and Chang Liu, "Disk scheduling policies with lookahead" ,
SIGMETRICS Performance Evaluation Review, pp. 31-40, 2002.

iv

Το my beloved mother — you are always by my side.

ν

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my committee of Dr. Joseph

Y Leung, Dr. Arthur Czumaj , Dr. Marvin K Dakayama, Dr. David Nassimi and

Dr. Dian Yang. Their huge support provided me sufficient self-confidence to complete

my dissertation. I am particularly thankful to Dr. Joseph Leung for offering me

great help at my crucial moment. His invaluable guidance and encouragement have

contributed significantly to the work presented in this dissertation.

Deepest thanks to Professor Nina Mardi, who has spent a great deal of time

and energy in making grammar corrections for my dissertation during the last few

months. I cordially thank for her elegant comforts and never-ending patience.

I would like to extend my deepest appreciation to Dr. Maryann McCoul for

assisting me to construct a healthy, sunny life. Her invaluable advice and under-

standing are my lifelong treasure. I am also deeply thankful to Dean Gentul and

Dean Seidman for their persistent support.

I would like to thank my dearest friends: Chunqi Han, Li Zhang, Gang Fu, and

Yule Li for their warm hands through the years of my work and living. Special thanks

go to Congzhe, Chunqi Han and Gang Fu for their cooperation and instructions.

I also acknowledge the support of DSF via Grant 0105485 in Computer Systems

Architecture.

Finally, I would like to appreciate my dearest sister, Kiang, my brother-in-law,

Rick, my nephew, Leo and my close friend, Jimmy, for their infinite love and support.

This dissertation is dedicated to my beloved parents, thanks to their company

and encouragement in the past, at present and in the future.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 IDTRODUCTIOD 	 1

1.1 Overview of Disk Scheduling Problems 	 1

1.2 Organization of this Dissertation 	 6

2 USEFUL IDFORMATIOD FOR RESEARCH 	 7

2.1 Characteristics of Modern Disk Drive 	 7

2.2 Data Layout 	 9

2.3 Request Priority 	 10

3 REVIEW OF RELATED WORK 	 11

3.1 Single Disk Scheduling 	 11

3.2 Mirrored Disk Scheduling 	 14

4 METHODOLOGY 	 18

4.1 Simulation Model 	 18

4.1.1 Seek Time 	 20

4.1.2 Rotational Latency 	 21

4.1.3 Transfer Time 	 22

4.1.4 Service Time and Throughput 	 23

4.2 Workloads 	 23

4.2.1 Synthetic workloads 	 23

4.2.2 Traces 	 24

4.3 Metrics 	 27

5 PRELIMIDARY STUDY OF SIDGLE DISK SCHEDULIDG 	 29

5.1 Traditional Disk Scheduling Policies 	 29

5.2 Simulation Results 	 30

5.3 Empirical Performance Evaluation of the Disk Scheduling Policies . 	 31

5.3.1 Introduction 	 32

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

	5.3.2	 Performance Analysis of the FCFS Scheduling Policy 	 32

	

5.3.3 	 Performance Analysis of the SAT Scheduling Policy 	 33

	

5.3.4 	 Summary of Conclusions 	 38

6 PERFORMANCE EVALUATION FOR VARIATIODS OF SATF POLICY 	 40

6.1 Variations of SATF 	 40

6.2 Simulation Results 	 44

6.2.1 	 Simulation Results Using Synthetic Workload 	 44

6.2.2 	 Simulation Results Using Traced Workload 	 46

6.3 Summary of Conclusions 	 52

7 MIRRORED DISK SCHEDULIDG 	 54

7.1 Mirrored Disk Configurations 	 54

7.1.1 	 Independent versus Shared Queues 	 54

7.1.2 	 Transposed versus Normal Mirroring 	 55

7.2 Routing Schemes for Independent Queue 	 56

7.2.1 	 Static Routing 	 56

7.2.2 	 Dynamic Routing 	 58

7.3 Routing and Scheduling for Shared Queue 	 59

7.4 Processing Write Requests 	 60

7.5 Simulation Results 	 60

7.6 Summary of Conclusions 	 64

8 MIRRORED DISK SCHEDULIDG WITH AN DVS CACHE 	 66

8.1 Schemes to Improve Read Performance 	 67

8.1.1 	 Alternating Deferred Updates (NADU) 	 67

8.1.2 	 Alternating Destines with Conditional Priorities (AD-CP) 	 . . 68

8.2 Simulation Results 	 70

8.2.1 	 HOLD and SPTF-CP(t) Schemes 	 71

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

8.2.2 NADU Scheme 	 72

8.2.3 AD-CP Scheme 	 75

8.2.4 An Overall Comparison 	 79

8.3 Summary of Conclusions 	 80

9 PERFORMANCE AND RELIABILITY OF RAID WITH DECLUSTERING 82

9.1 Model and System Descriptions 	 82

9.1.1 Model Definition 	 82

9.1.2 Various Configurations of RAIDi Declustering 	 83

9.2 Load Distribution Comparison 	 85

9.2.1 Basic Mirroring 	 85

9.2.2 Interleaved Declustering 	 86

9.2.3 Chained Declustering 	 87

9.2.4 Group Rotate Declustering 	 90

9.3 Reliability Comparison 	 92

9.3.1 Basic Mirroring 	 92

9.3.2 Interleaved Declustering 	 92

9.3.3 Chained Declustering 	 93

9.3.4 Group Rotate Declustering 	 94

9.4 Summary of Conclusions 	 95

10 CONCLUSION 	 97

APPEDDIX A RAID ORGANIZATION LEVELS 	 100

APPEDDIX B QUEUEING MODEL FACILITIES 	 102

B.1 Little's Theorem 	 102

B.2 Poisson Process 	 102

B.3 M/G/1 Queuing Formulas 	 103

B.4 Non-Preemptive Priority Queuing 	 104

ix

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

B.5 Some Important Distributions 	 105

APPEDDIX C SCHEDULING SCHEMES FOR BATCH PROCESSIDG . 	 107

APPEDDIX D SCHEDULING SCHEME FLOWCHARTS 	 109

D.1 NADU Flowcharts 	 109

D.2 AD-CP Flowcharts 	 110

REFERENCES 	 113

LIST OF TABLES

Table Page

4.1 Disk Parameters 	 19

4.2 Characteristics of Traces 	 25

5.1 p Value for Four Disks and Curve Fitting Standard Deviation 	 37

6.1 Levels for Waiting Time and Their Thresholds fa 	 44

6.2 WB-SPTF, WB-SPTF and SATF Performance During Cyr and DB of
"WebSearch3" 	 51

6.3 SPTF-CP (t) Performance for Financial for Different t 	 52

8.1 System Condition and Corresponding Disk Status 	 69

8.2 Maximum Throughput with Various Schemes for Different R:W Ratios . 74

8.3 Disk Utilization with ADU for Different R:W Ratios, TWO = 10 	 74

8.4 Time Spans for One Disk, R:W = 3:1, TWO = 10 	 75

8.5 Averine Time Span Between Processing Write Batches 	 76

8.6 Disk Utilization with AD-CP Scheme for Different R:W Ratios, TW=10,
T R=10 	 78

9.1 Capability of Load Balancing and Reliability Comparison 	 96

C.1 Mean Service Time for Write Batches with SAT Scheduling and An
Optimal Ordering 	 107

D.1 Specification for ADU Scheme Flow Charts 	 109

D.2 Specification for AD-CP Scheme Flow Charts. 	 110

xi

LIST OF FIGURES

Figure 	 Page

2.1 Disk drive structure 	 7

4.1 Arrival patterns of traces 	 25

4.2 Locality patterns of traces. 	 27

5.1 Classical scheduling policy performance 	 31

5.2 Performance of OSCAN and its variations 	 31

5.3 The mean response times for various disks versus arrival rate. 	 33

5.4 Dominance of seek time and rotational latency with SATF 	 33

5.5 Dormalized mean service time for different disk drives. 	 36

5.6 Dormalized mean response time for different disk drives. 	 36

5.7 Mean response time and mean number in system for different arrival pro-
cesses with ISM 18 ES disk drive. 	 38

6.1 SPTF-LA2 performance for different values of α. 	 45

6.2 WSTF performance for various W 	 47

6.3 SPTF performance for various W. 	 47

6.4 WB-SPTF and SW-SPTF performance for various window sizes. . . . 	 47

6.5 SPTF-LA2 and SAPTF performance. 	 48

6.6 WSTF performance for various W for "WebSearch2" . 	 48

6.7 WB-SPTF, SW-SPTF performance compared to SAPTF during C BE of
"WebSearch3" 	 50

6.8 Effect of window size on SW-SPTF during CBE of "WebSearch3" 	 50

6.9 Effect of window size on WB-SPTF during CBE of "WebSearch3" 	 50

6.10 Effect of window size on WB-SPTF during Dye, of "WebSearch3" 	 50

6.11 SPTF-LA2 and SAPTF performance for "WebSearch2" . 	 50

7.1 Overview of transposed mirroring system. 	 55

7.2 Mirrored disks with static routing based on pivot point. 	 57

7.3 Routing performance with independent queues. 	 61

xli

LIST OF FIGURES
(Continued)

Figure Page

7.4 SQ performance with FCFS and SAT as local scheduling policies for
different fractions of Reads 	 62

7.5 Performance comparison between SQ and IQ with CR, with SATF as local
scheduling method for different fractions of Reads. 	 63

7.6 Performance comparison between SQ and IQ with CR, with SATF-CP (t)
as local scheduling method, R:W=31 63

7.7 SAT performance with transposed data layout and SQ 	 64

8.1 No overlapping Writes. 	 68

8.2 Overlapping Writes. 	 68

8.3 SPTF-CP(t) performance with SQ, R:W = 3.1 71

8.4 ADU performance for different TWO, R:W = 1:1. 	 73

8.5 Mean number of Writes in system with ADU, R:W = 1:1. 	 73

8.6 AD-CP performance for different TRH, TW=1O, R:W = 3:1. 	 77

8.7 AD-CP performance for different TWO, TR=4, R:W = 3 . 1 77

8.8 Performance comparison, TWO = 6 with ADU and AD-CP, R:W=3:1. . . 8O

8.9 Performance comparison, TWO = 6 with ADU and AD-CP, R:W=1:1. . . 8O

9.1 Basic mirroring. 	 83

9.2 Interleaved declustering, n = 4 	 84

9.3 Interleaved declustering, n = 8. 	 84

9.4 Chained declustering. 	 84

9.5 Group rotate declustering. X = Primary data, X'= Duplicated data. 	 . . 85

A.1 Data layout in RAID levels O through 5 	 1O1

C.1 Mean service time with SATF scheduling policy 	 1O8

D.1 Flowcharts for ADU scheme (a) Arrivals (b) Departures (O denotes greater
than O) 	 111

D.2 Flowchart for AD-CP scheme (Arrivals (Departures (O denotes greater
than O) 	 112

CHAPTER 1

INTRODUCTION

This chapter presents an overview of this dissertation, followed by a description of

the organization.

1.1 Overview of Disk Scheduling Problems

There has been a rapid advance in the speed of central processing units (CPU) of com-

puter systems, such that multi-gigabyte microprocessors are inexpensive commodity

items. This change has been due to advances in semiconductor technology, which al-

lows millions of transistors, implementing sophisticated computer organizations, to

be placed on a single chip.

There has been a rapid increase in the speed of the main memory access. Core

memories whose access time was measured in microseconds were replaced with faster

semiconductor memories. Since the fastest SRAM (static RAM) memories are quite

expensive, a memory hierarchy with caches is used with cheap multi-gigabyte DRAM

(dynamic RAM) memories at the lowest level of the hierarchy.

The magnetic drum, also referred to as drum, was once used as the primary

storine device in early ines. Drum was permanently mounted in the device and had

small storine capacity. It was an expensive device because of a dedicated read-write

head per track.

Half a century ino, minnetic drums were replaced with the more cost-efficient

minnetic disks, in which the read-write heads are movable and shared among many

tracks. The number of tracks on a disk surface is in the tens of thousands, while

the number of disk platters tends to be small, sometimes only one. Major advances

in minnetic disk technology have resulted in a rapid increase in disk capacity. This

1

2

increase is due to the growth in areal density1, i.e., higher track density and higher

recording density.

Zoning, a technique which has been applied to increase disk capacity, makes

the recording densities of the inner tracks and the outer tracks roughly equal, so that

the outer tracks hold more sectors than the inner ones. This, combined with the

lowered latency resulting from improvements in rotation speed (RPM), results in a

higher increase in data transfer rate for outer cylinders than for inner ones.

However, while the disk industry publicizes its ever-falling cost per gigabyte,

they less often advertise storage performance per disk drive. Customers buying stor-

ine systems to support today's high-end online applications must consider not only

the areal density, but also the efficiency of accessing data.

The access time to a target data block on a magnetic drum was quite fast: half

a rotation time (of a typical 24OO RPM) plus the transfer time. For disk drives, in

addition to a delay at the local controller, the access time comprises seek time, rota-

tional latency, and transfer time. OLTP (Online Transaction Processing) applications

typically access small data blocks [1j. In this case, the time to bring the read/write

head to the data is much higher than the time to read or write the data. For this rea-

son, performance of such a system is usually measured in access rate rather than in

megabytes per second. The access rate must match to that supported by the storine

system.

However, given that each OLTP transaction makes ten disk accesses and each

disk access takes ten milliseconds with a First Come Fist Served (FCFS) processing

order, more than a hundred disk drives are required to sustain a 1Κ TAPS (transactions

per second) OLTP system.

l Areal density is a measure of the number of bits that can be stored in a unit of area. It
is usually expressed in bits per square inch (BPI) and computed as the product of track
density and recording/linear density, expressed in tracks per inch (TPA) and bits per inch
(BPI) respectively.

3

Disk access rate, which is the inverse of the access time, is not increasing in

proportion to disk capacity. This is attributable to larger file and database buffers

in main memories, whose size has increased rapidly due to inexpensive high capacity

RAM chips. The access rate becomes the disk performance bottleneck and hence

results in longer access times for customers.

Modern disk drives are equipped with an onboard disk cache, which is usually

used to prefects the remainder of a track where sequentially of access is detected.

The onboard cache is of little benefit to disk accesses requiring random accesses. The

cache at the disk (array) controller can be used to satisfy read requests (Reads for

short) and even write requests (Writes for short) by overwriting a previously modified

block. This process of updating data or parity on the disks from the write cache is

referred to as restaging. Most operating systems provide a buffer for files and database

maninement systems (DBMS) provide their own buffer.

The cache effect is not considered in this dissertation due to the following

reasons: first, the onboard cache obviates disk accesses when there is a hit, and it is

not effective for random accesses; second, cache effect depends heavily on workload

characteristics and varies from case to case; third, this study emphasizes improving

performance at disk level.

Utilizing the knowledge of the system and the information of individual re-

quests to schedule the disk arm is an important and effective way to reduce the

average mean disk access time, hence increasing disk access bandwidth. Many disk

scheduling policies to improve disk performance have been proposed over the years,

and even more sophisticated algorithms can be implemented with the availability of

the more powerful microprocessors associated with disks [2, 3, 4, 5, 6j. The onboard

disk cache also presents opportunities, which have been taken into account in only

a few studies. Chapter 3 presents a review of some well-known scheduling policies,

and their performance comparison is given in Chapter 5. Three new scheduling al-

4

gorithms are specified and evaluated in Chapter 6. These are joint work with A.

Thomasian, and have been published in [7, 8, 9j .

A major revolution in secondary storine has been the introduction of Redun-

dant Arrays of Independent Disks - RAID [1Oj, whose organizations were initially

classified into five levels 'see Appendix A). The plan is to ingregate multiple disks

and conceptually present the abstraction of a logical disk. RAIDl and RAID are

the most popular levels and are widely implemented in commercial products. RAID

has higher reliability and improved performance, which are achieved by utilizing two

architectural techniques: data redundancy and data striping.

According to the RAID level, a disk array can tolerate one or more disk failures,

so that the storage subsystem can continue operating with disk failure's). This is

called system in degraded mode as opposite to normal mode, in which all the disks

are operational.

Striping is a technique addressed to balance disk loads, or eliminate data access

skew. The linear address space of a large file is broken into smaller blocks which are

distributed over multiple disks. The size of these blocks is called the "striping unit"

[11j, defined as the maximum amount of contiguous data assigned to a single disk.

Striping has the advantines of automatic load balancing and high bandwidth for

large sequential transfers. However, these two benefits present tradeoff in selecting

an appropriate striping unit: a larger striping unit may result in a file distributed in

partial disks 'possible one); while a small striping unit may increase the bandwidth

for a single logical request by involving more disks, hence reducing the number of

concurrent requests that the disk array can handle.

RAIDi or disk mirroring replicates data on two disks, and these two data

copies are called a parity pair or a mirrored pair, read requests can be processed at

either of the two disks. So that the disk bottleneck problem can be solved by providing

this high availability of data, which is achieved via some form of data redundancy.

5

Some optimizations are also possible to be implemented in processing Reads.

For example, requests to outer disk cylinders can be sent to one disk and requests to

inner disk cylinders to the other [12j. Note that such a scheme minimizes the disk

service time by reducing the seek distance and hence the seek time. Another more

dynamic policy sends a request to the disk which offers the shorter seek distance.

The controller in RAID disk arrays may be tightly coupled with the two

disks, so that it is directly involved in scheduling requests on individual disks. The

Shortest Access Time First - SAT policy applied to two disks rather than one disk

can more than double the performance of a disk. A tightly coupled controller is

not applicable to modern disk drives, which carry out their own scheduling. In this

case the controller sends read requests to one of two disk drives with an appropriate

routing policy. Several routing policies have been considered in [13j and are discussed

in Chapter 7 of this dissertation.

When part of the disk array controller cache is nonvolatile storage, i.e. NVS,

there are additional opportunities to improve performance. Firstly, the requests writ-

ten into the NVS cache are considered completed from the application viewpoint.

This operation is also known as a fast write, which allows the processing of Writes to

be deferred, so that Reads can be processed at a higher priority than Writes. Second-

ly, Writes are processed in batches, so that the scheduler can take advantine of disk

geometry to minimize the completion time of a set of requests. A two-phase method

to process Reads and Writes, i.e., a mirrored disk scheduler that utilizes one disk for

processing Reads, while the other disk is processing Writes is proposed and evaluat-

ed in [14j. An improved method will be discussed in Chapter 8. This is joint work

with A. Thomasian and appears in [15j.

Improved performance is achieved in RAID system via high concurrence. How-

ever, large disk arrays are highly vulnerable to disk failures, because the reliability of

a system is a function of the reliability of its components. For example, a disk array

6

with 1OO disks is 1OO times more likely to fail than a single-disk array. Thus, data

redundancy is included to tolerate disk failures and allow continuous operation with-

out data loss. This is how redundant disk array provides protection and hence its

popularity.

1.2 Organization of this Dissertation

This dissertation is organized as follows. Chapter 2 provides a series of hard disk in-

formation useful to the disk scheduler. Chapter 3 reviews representative disk schedul-

ing studies for single disk and mirrored disks. Chapter 4 describes the methodology

employed in this work, including a discussion of disk model and different types of

workloads. Chapter 5 compares the traditional scheduling policies for single disk,

and presents analytic methods to calculate the mean response time for basic schedul-

ing policies. Chapter 6 compares the performance of some extensions to the reviewed

policies. These extensions include both existing policies and newly proposed ones.

Chapter 7 demonstrates a hierarchy of the scheduling methods in mirrored disks,

and compares their performance with a synthetic workload. Chapter 8 provides a

study of mirrored disk scheduling with a non-volatile shared 'DVS) cache. Chapter

9 compares various RAID]. configurations in perspectives of load and system relia-

bility. Chapter 1O concludes the dissertation. Appendix A gives a full description of

RAID levels. Appendix B provides the fundamental knowledge of queueing theory.

Appendix C illustrates the efficiency of the SAT scheduling policy when implement-

ed over a batch of requests. Appendix D demonstrates the routing and scheduling

schemes which are compared in Chapter 8 by flowcharts.

Appears in [16].

CHAPTER 2

USEFUL INFORMATION FOR RESEARCH

This chapter provides two categories of information that are useful to disk scheduling

study. The information relating to the hardware includes disk structure and data

layout; the information regarding requests includes their type and priority issues.

2.1 Characteristics of Modern Disk Drive

This study considers widely available magnetic disk drives with embedded SCSI

'Small Computer Systems Interface) controllers.

Figure 2.1 Disk drive structure.

As shown in Figure 2.1, a magnetic hard disk is usually made up of a set of

platters in a stack. The platters rotate at a fixed speed, which is typically measured as

revolutions per minute 'RPM). For each platter, a pair of electromagnetic read-write

heads are mounted at the end of a disk arm and positioned above and below each

platter. The disk arms move in toward the center surface or out toward the edge,

driven by a common shaft called the head actuator. Therefore the read/write heads

move inbound and outbound. This movement, combined with the platter spin, enables

the drive heads reach the entire surface of each platter.

7

8

Basically, tracks, sectors, and cylinders are the divisions of the hard drive

platters where the data is stored. Tracks are concentric circles placed on the surface

of each platter. Each track is divided into smaller units called sectors. Tracks with

the same radius constitute a cylinder.

The tracks are numbered starting with zero at the outside of the platter, and

increasing toward the platter center. Each sector holds 512 bytes of user data, plus a

few dozen additional bytes used for internal drive control: a header which identifies

the sector by address information, and a trailer for error detection and correction.

All the sectors are numbered sequentially as block addresses and appear as a linear

address space to the user.

When a user request arrives, the block address contained in the request is

translated into cylinder and track numbers by the firmware of the disk. The actuator

then moves the disk arms toward the target cylinder and the corresponding read/write

head is activated. The time incurred in this movement is called the seek time. After

the read-write head is put on the right track, the disk waits for the first requested

sector passes under the read/write head. This waiting time is called rotational latency

or sometimes latency for short. The sum of the seek time and rotational latency is

called the positioning time, since it is the time required to search for the target sector.

After positioning, the constant rotation of the platters conduces data sectors to pass

the read/write head consecutively. The time elapsed for all the requested data sectors

passing under the read-write head is called the transfer time.

The disk controller includes an embedded microprocessor, some buffer memory,

and an interface to the SCSI bus [17, 18j. The controller has full knowledge of the

data layout and performs mappings between logical block numbers 'LAN) on the

disk and the physical sectors that store the information. It services disk requests,

maintains pending requests residing at the onboard cache and schedules the queues.

9

2.2 Data Layout

A logical hard disk appears to users as a linear vector of logical block numbers [16j.

These numbers must be mapped to the non-faulty physical sectors. The mapping is

complicated by zoning, cylinder/track skew and sparing, etc.

zoning

As the disk capacity increases, the gap of recording density between inner and

outer tracks becomes even larger. To more efficiently use disk space, more data is

stored at outer cylinders. To simplify the bookkeeping problems, zoning technique is

introduced to maintain approximately the same bit recording density. The adjacent

disk cylinders are grouped into several zones, each of which has a fixed number of

sectors, or data bits, per track. This number grows with the radius of the tracks

in the zone. Since the data transfer rate is proportional to the rate at which the

media passes under the read/write head, the outer zones have higher data transfer

rates. Thus zoning increases not only the capacity per unit volume, but also the disk

transfer rate.

track and cylinder skew

In the cases when a transfer spans two adjacent tracks, two read/write heads

need to be activated one after the other to fulfill the access. The head switching takes

a short time ' 1 millisecond) and is called the head switching time.

Consequently, to ensure that the data of the next track can be read right after

the head switching, the first sector of the next track is positioned at the aligned

position to the last sector of the previous track with an angle, which is equal to the

rotation speed times head switching time. A track skew is then defined as the number

of sectors that takes up this angle. Similarly, when a transfer spans two consecutive

cylinders, a cylinder switch time 'which is the seek time of one cylinder plus none-

overleaped head switch time) occurs and corresponding cylinder skew is defined.

spare area

10

Disks invariably have some flawed sectors that cannot be used. The references

to those flawed sectors are recapped to other portions of the disk. This process,

known as sparing, is done at the granularity of single sectors or whole tracks.

2.3 Request Priority

At a more macroscopic level, improving the performance of OLTP applications, as

exemplified by Transaction Processing Performance Council's 'TPC) benchmark, sub-

jects disk drives to a challenging workload: random accesses to small data blocks. The

maximum transaction throughput is a critical performance measure in TPC, while

the mean or a percentile of response time is below a certain limit. This implies that

the mean response times of read requests 'Read response times for short) directly con-

tribute to response time are of interest. The response time of write requests ' Write

response time for short) is not important not only because the application response

time is usually only affected by Read response time, but, more importantly, because

the write requests can be cached in a fast non-volatile storage 'NVS), which allows

write requests to be deferred and processed in a batch mode more efficiently. In this

dissertation, only the Reads generated by the controller cache misses and the Writes

due to destaging from the NVS portion of the cache are under consideration; Reads

are given higher priority than Writes.

CHAPTER 3

REVIEW OF RELATED WORK

There have been a very large number of simulation and analytic studies of disk sub-

systems, in general, and disk scheduling, in particular. Studies in the latter category

consider a single disk in isolation, while studies in the former category consider mul-

tiple disks and take into account the knowledge of particular elements along the I/O

path. Such models have been utilized to analyze a rotational position sensing (RAPS)

miss, but it is not a problem anymore because of onboard caches. The delay in initi-

ating I/O due to a busy bus has also been discussed in some early analytic studies,

but this is not a problem provided that the bus system allows higher priority pack-

ets 'to initiate I/O) to be interspersed with low priority packets, as is in the case of

IBM's serial storine architecture 'SSA).

Numerous studies on improving disk performance via implementing more effi-

cient disk scheduling policies 'with respect to FCFS), have been proposed in the last

few decades. Although these studies provided certain insight into the performance of

disk scheduling policies, many deficiencies still exist, which will also be included in

the following discussions about the previous work.

3.1 Single Disk Scheduling

Disk arm scheduling methods are an effective way to reduce the disk access time and

hence increase disk access bandwidth with respect to the default FCFS policy. Most

early disk scheduling policies concentrated on minimizing seek time; the Shortest Seek

Time First'SSTF) and SCAN policies [2j belong to this category.

SSTF processes requests based on the proximity of cylinders, but the overall

service time may remain high because of rotational latency. As a greedy policy, SST

11

12

may result in high variability in response time. SCAN processes the outstanding

requests on the path of the disk arm when it is sweeping the disk surface in alternate

directions, thus reducing the seek distance as well as providing fairness.

Since SCAD tends to favor inner disk cylinders, Cyclical SCAN 'CSCAN),

which processes requests while the disk arm moves in one direction, was introduced

to ensure fairness. LOOK and CLOOKcorrespond to SCAN and CSCAN respectively,

but the scan is stopped when there are no requests waiting at the position beyond

the current read-write head.

OSCAN with lookahead 'CSCAN-LAi), a variation of CSCAN, reorders the

next i requests in the direction of the scan, such that the sum 'or average) of the

predicted service times of these i requests is minimized, when the current request is

completed. For example, when i = 2, the scheduler considers any pair of the pending

requests after the current one is completed. The pair which can minimize the sum

of predicted service times is selected. The pair selection is resumed in the direction

of CSCAD after each current request is completed, i.e., an incoming request may

be selected to be processed instead of the request which belongs to the previously

selected pair.

SCAN, a continuum of scheduling methods, is introduced in [19j. SSTF and

SCAN are two endpoints of the continuum, and the bias is tuned by the parameter R:

V'O) = SST and V'1) = SCAN. R = O.2 is a good choice for higher arrival rates.

SCAN combines SCAN with SST, in order to minimize the sum of the mean and

the multiple of standard deviation of the response time, which is also known as the

percentiles of response time.

Another variation of SCAN, Window SCAN 'OSCAN) maintains a current

direction, but serves all requests inside a window of f = 1O% of disk cylinders 'this

value of f was observed to be the best) [2Oj .

13

Shortest Access Time First 'SAT) or Shortest Positioning Time First 'SPTF)

serves the enqueued request with the smallest predicted service 'or positioning) time

[3, 4j. Positioning time is the time to move the read-write head to the beginning

of the block being accessed, while access time includes the transfer time. Access

time is the better measure when the requested data blocks are highly variable in size

and/or traverse track boundaries. Ohen the requests access data blocks with highly

variable sizes, SATF policy is susceptible to starvation, since accesses to larger chunks

can be postponed indefinitely. SAT or SPTF has been shown to outperform other

methods [21, 7j with the assumption that the disk scheduler has an exact knowledge

of future disk timing. But this assumption is not valid in actual practice. Deviations

in predicted seek time with SATF are discussed in [22j, which proceeds to evaluate

methods under a real-time condition.

An SAT with lookahead 'SATF-LAi) policy [7j combines SCAN with SATF,

and will be discussed in detail in Section 6.1.

Analytic studies of secondary storage devices are reviewed in [23j, and with

a few exceptions tend to be quite involved. A major deficiency of most of these

studies is that they use unrealistic modeling assumptions for the sake of mathematical

tractability, e.g., in analyzing the SCAN policy, the disk arm visits successive cylinders

even though there are no pending requests on those cylinders.

One instance when the analysis is quite accurate is the M/G/1 queueing model

with the First Come First Served 'FCFS) discipline. A matrix geometric solution

method is given in [24j, which takes into account the dependency of successive service

times 'due to seek distance dependence). A comparison of FCFS results obtained via

this analysis and SSTF results obtained via simulation shows that SST outperforms

FCFS.

Some notable simulation studies of disk scheduling methods are [25j, [3j and

[21j. The simulation study in [25j considers all the basic scheduling policies except

14

SATF. The mean service time, mean response time and the squared coefficient of

variation are reported.

A closed system with a fixed queue length of Q is considered in [3j. The

number of requests is varied according to '1 < Q < 1OOO). The "arrival time" of each

request is set to the departure time of the request it replaces in the closed system.

The "useful" device utilization is equal to the product of the system throughput T(Q)

and transfer time, which constitutes useful work: U(Q) = T 'Q)Xtrans fear • Scheduling

methods which can take better advantage of opportunities provided by more requests

in the queue result in a higher system throughput and a lower maximum response time

of requests. These policies include OSCAN, Weighted (Access) Time First 'OUST),

which modifies the I/O time based on the waiting time of a request, and Grouped

Shortest (Access) Time First 'GIST), which services requests in a group of cylinders

in SAT mode before switching to another group of cylinders. These policies will be

described in detail in Section 6.1.

A comprehensive and authoritative study of disk scheduling methods, which

combines random number-driven and trace-driven simulations '"to allow compari-

son with previous work") is reported in [21j. Similar to [17j, this study takes into

account detailed disk characteristics. Simulation results are verified inainst disk mea-

surements in both studies. However, detailed logical-to-physical mapping information

provides only a 2% improvement in accuracy compared to the case in which the map-

ping information is ignored. This is a valuable insight into carrying out performance

analysis studies of disk scheduling methods.

3.2 Mirrored Disk Scheduling

A brief survey of previous studies of mirrored disk system is given in this section.

These studies can be classified according to whether the study deals with estimating

a global performance measure, such as the response time, or with a local performance

15

measure, such as the seek distance. There are more studies in the latter category

than the former category, to which this study belongs.

The expected seek distance in (non-zoned) mirrored disks with uniform access-

es over C cylinders for read (resp. write) requests is S,. ~ C/5 (resp. Su, ti 7C/15)

[26j (uniform accesses in the range (O,1) yield Sr = 5/24 and Su, = 11/24). Since

Reads are more frequent than Orites, there is a significant improvement in perfor-

mance with respect to single disks in which Sr = 5,,, C/3. There have been more

refined analyses which take into account the fact that disk arms converge to the same

cylinder after processing a write request, ice., the advantage of having two disks is

lost.

A greedy policy to minimize the averine seek time in mirrored disks is to

choose the arm nearer to the target cylinder t (O < t < 1) and place the other arm

at t/3 if t > 1/2 and at 1 — (1 — t)/3 in the other case. Oith independent uniformly

distributed requests, the new mean seek distance is 5/36 versus 5/24. One of the

two arms may be dedicated to serving the inner cylinders and the other arm to the

outer cylinders, but even better performance is attainable without this restriction

[23j. Even shorter seek times can be achieved if both arms are propositioned at 1/4

and 3/4, which yield a mean seek distance of O.125 [27j. Ohen the fraction of Orites

is w, based on a symmetry argument, the arms are placed at 1/2+s, and the optimum

value for s is 3ορtimυm = O.25(1 — 2w)/(1 — w) (note that s = O for w > 1/2).

Minimizing seek distance by cylinder recapping via simulated annealing algo-

rithm shows that different permutations of disk cylinders substantially reduced the

expected seek distance [28j .

Latency is a matter of concern especially if the disk arms are synchronized.

The latency for completing Orites on k replicated disks increases from the usual 1/2

to k / (k + 1) of disk rotation time (Tart) . The latency for reading from k replicated

16

disks is reduced to 1/(k + 1) of Tarot if all arms locate the target cylinder and the data

is read by the arm with the lowest latency [29j.

Disk access bandwidth can be increased by providing multiple arms, but in one

method n arms are placed 18O°/n apart to reduce latency [29j. Another option is to

have n synchronized disks with the disk arms spaced 18O°/n apart [29j. Replicating

data blocks on the same track to reduce latency is another approach to reduce latency

[29j, [3Oj.

A non-volatile storage (NVS) or non-volatile random-access memory (NVRAM)

can be used to defer the destaging of modified disk blocks. An advantage of this ap-

proach is that a "dirty" block in DVS may be updated several times during its res-

idency in DVS, thus obviating multiple disk Orites. These blocks can be restaged

opportunistically as part of disk arm movement to satisfy read requests, or can be

scheduled in batches, or at least can combine several neighboring requests into one,

so that the positioning time for writing is minimized.

Oith distorted mirrors, a write anywhere policy is used on the secondary disk

to minimize positioning time, while the data on the primary disk is written in place,

so that efficient sequential accesses are possible [31j. In doubly distorted mirrors,

each disk has master and slave partitions, while in improved traditional mirrors the

location of backup data blocks is determined via a mathematical formula.

One method to improve RAID performance is to alternatively use one disk for

reading and the other disk for efficiently destaging blocks from DVS [14j. The analysis

is based on the assumption that a perfect overlap of these operations is achievable.

Analytic and simulation models of several routing and scheduling policies in

mirrored disk systems are provided in [32j . A weakness of this study is that some

of the policies are difficult to be realized, for example, preempt the processing of

a request when the same request is complete at the other disk. Furthermore, disk

service times are assumed to be exponential for the sake of mathematical tractability,

17

so that the effect of disk arm scheduling on reducing disk service time cannot be

modelled.

CHAPTER 4

METHODOLOGY

Simulation method is an essential complement to the disk performance evaluation

besides analytical method, because analytical solutions are not readily available for

realistic models of most disk scheduling policies [23j. The analysis and simulation are

based on four components: a detailed disk model for hard drive, which is an essential

element of the discrete event-driven simulator; synthetic and trace workloads used as

input to the simulator; various system configurations and disk scheduling methods

being implemented; and the metrics used to evaluate disk performance under various

scheduling methods. This chapter specifies each of the four components.

4.1 Simulation Model

The models that have been used in this study range from simple statistical queueing

systems for analysis purpose, to highly-specified and validated disk drive models for

simulation purpose. The disk is considered in isolation in this dissertation, due to its

emphasis on disk scheduling policies.

In analysis, a disk can be modeled as a single server with Poisson arrivals and

general service times. Although analysis cannot be efficiently carried out because

disk service times are correlated (discussion will follow), the disk can be modeled as

an M/G/1 queueing system (with independent disk service times) when FCFS or a

priority queueing discipline is in effect. A detailed description of Poisson process and

useful queueing formulas are provided in Appendix B.

To validate analytical results and to evaluate disk performance under analysis-

unsolvable conditions, detailed event-driven simulators for single disk and mirrored

disks have been developed in C++. These simulators undertake both synthetic works-

18

19

loads (generated by a random number generator in this study) and traced workloads,

which are designated as random nunmber-driven and trace-driven simulation respec-

tively.

The disk model, which is available in both zoned and non-zoned, is the core

part of each simulator. The detailed data layout on disk, including zoning, spare

cylinders, the seek characteristic, track and cylinder skews, etc., are taken into ac-

count. The effect of the track buffer is not simulated, since it will not benefit random

accesses. The basic specifications are listed in Table 4.1.

The simulator for zoned disks initializes itself by reading the detailed charac-

teristics of appropriate disks from [33j. The simulator for non-zoned IBM lightning

disk (faster one) is manually constructed by the following characteristics:

i The number of cylinders are 1898 in total, with 14 tracks per cylinder.

20

iv The track skew is 16 sectors.

Disk service time is the sum of seek time, rotational latency and transfer time,

given as Seek , Latency , Trans f Br • The service time for a write request is a little longer

than the service time of a read request due to the head settling time, which is not

considered in this dissertation because of the high rotation speed. Transfer delays in

path elements, parity calculation time, and disk controller overhead are also ignored,

because they are small and overlap with each other, and such hardware details are not

available. Dext, the methods to obtain related values of the aforementioned parameters

will be described for zoned and non-zoned disks, respectively. 1

4.1.1 Seek Time

The itchmoment of seek time(Seek)requires the seek time characteristic and seek

distance distribution PD (d) .

For non-zoned disks, every cylinder stores the same amount of data, therefore,

PD (O) = 1 /cal and PD (d) = c ^̂ccy A
l ail)' 1 <d < calf —1, wherecalis the number ofy

cylinders [34j. The mean seek distance is 1/3 of total cylinder number. For zoned

disks, all cylinders do not contain the same amount of data. Therefore, this equation

does not hold. The seek distance distribution for zoned disk is calculated as follows.

Given uniform access assumption, the probability that the read-write head

is at cylinder k, denoted as Ρ (1k), is proportional to the volume of data on that

cylinder:

1 Section 4.1.1 has appeared previously in [16] and is repeated here with the approval of the
original author.

21

The probability of a seek with distance d when the read/write head is currently

at cylinder k is as follows

The analysis above takes into account spare cylinders but assumes that there

are no bad sectors or tracks.

The seek time characteristic is

and it follows that the average seek time is Υsεεk = 12.69 ms.

For zoned disks, the seek time characteristic as well as detailed zoning infor-

mation can be obtained by using the DixTrac tool developed at AMU .

4.1.2 Rotational Latency

Under the assumption of zero-latency or roll-mode read/write capability, i.e., transfers

start on sector boundaries, and can also start with the sectors in the middle of a block,

22

the mean rotational latency with zero latency Reads 1 Latenc y for non-zoned disk is

computed as follows:

denote the probability that the read-write head is

in the middle of a block when the seek is completed. Then Latency = Trotate —

half of the disk rotation time T Rotated = 3.47 ms. This difference is significant for

accesses to larger blocks on a track, e.g., approximately half a track rotation if the

full track is being accessed.

For the zoned disks, since request sizes are small with respect to track size,

the rotational latency is uniformly distributed over (O, Trotted) regardless of whether

zero-latency accesses are possible or not. The first three moments of latency are

4.1.3 Transfer Time

The transfer time for a 4 KB block at non-zoned lightning disk has shown to be

approximately 2.3 ms. For zoned disks, the transfer time is calculated as follows.

Let Usk denote the number of sectors on a track at cylinder k. The transfer

time of a block consisting of j sectors on cylinder k is

The probability that the block is on cylinder k is Ρ(k) as (4.1), so that the

itch moment of transfer time is:

23

Given the composition of request sizes, it is possible to obtain the moments

over different transfer sizes. Ohen all the transfer sizes are small, the average transfer

time can be treated as a constant.

4.1.4 Service Time and Throughput

The mean disk service time is service = Seek + XLatency + Xrrans fear

The three random variables Xseek Latency, Xrrans fear are independent for small

requests, which implies the expectation of the product of two variable is the product

of their individual expectations (e.g. seek . Latency = Seek ' Latency) • Therefore, the

itchmoment for the service time of SR requests, for example, is obtained by taking

the expectation of both sides:

The maximum arrival rate sustainable by FAFS policy is ΛFCFS = 1 I service

Note that in mirrored disk experiments, Reads and Orites are distinguished. The

mean response time of a logical write request is the expected value of the maximum

of the two physical Orites.

4.2 Workloads

4.2.1 Synthetic workloads

Synthetic workloads are mainly used to compare previously proposed work and to

obtain a starting point for further experiments. The worst case workload, i.e. random

accesses to small data blocks, will be mostly utilized. The workload generated by an

OLTP application in an airline reservation system is utilized throughout this study

24

[1j. The analysis of this airline system traces shows that 96% of accesses are to 4 KB

blocks and the remaining 4% are to 24 KB blocks. A case in which all accesses are

to KB blocks is assumed for simplification.

The service time of "modern" disks is dominated by the positioning time for

random requests due to the high rotation speed, so that exact sizes of smaller requests

have very little effect on performance. Ohen the stripe unit is much larger than the

maximum block size being accessed, the possibility that a request will cross stripe

unit boundaries and access two disks is quite small. Based on these facts, the requests

are assumed to be randomly distributed over all disk blocks in this dissertation.

Transactions, which are generating I/O requests, are assumed to run at a high

degree of concurrence. Although individual transactions do not generate requests

according to exponential interarrival times, the superposition of these I/O request

arrivals from a large number of sources can be approximated by the Poisson process.

4.2.2 Traces

Simulations driven by random number generator offer more flexibility and control of

workloads, but results from simulations with trace workloads are more meaningful and

have more credibility, since they create a more accurate emulation of real workloads.

The trace-driven simulation, with the workloads provided at [35j, is used for

studying the policies that are of interest. In trace files, each record consists of five

fields: application ID, request type (Read or Orite), logic block address (ALBA, in

sectors), size (in bytes) and arrival time (in seconds). The trace files were converted

into binary format in experiments for faster loading.

Three traces: Finαnciα12 ("F2" for short), WebSearch2, and WebSearch3 ("W2"

and "O3") are selected for experiments. The basic characteristics are shown in Table

4.2, followed by the details of the arrival and locality patterns. The arrival pattern

is shown by plotting the number of arrivals per time-interval versus evolving time,

Table 4.2 Aharacteristics of Traces

25

and the locality pattern is shown by plotting the access frequency within each

intervals versus disk space. The principle for selecting a suitable trace to study a

scheduling policy is specified next.

Arrival pattern

Figure 4.1 demonstrates the arrival patterns for Financial and WebSearch3,

both of which show that the arrival rates vary significantly over time. To better

compare the performance of the queueing policies, the time intervals with heavy

loads rather than a whole time range are considered in some traces for experiment.

Figure 4.1 Arrival patterns of traces.

Financial is used for evaluating priority queueing policies, since it has a signif-

icant mixture of Reads and Writes. Two intervals IF (108OO,13OOO) and IF (2OOOO, 3OOOO)

26

are selected, since they provide rather steady high arrival rates as shown in Figure

4.1 (a). The average arrival rates over the considered range are 149.37 and 1O6.77

requests/second for AF and BF , respectively.

To evaluate the policies designed for the burst of high load, two periods C BE and

Dw in WebSearch3 were experimented with. They both demonstrate short periods

of overload as shown in Figure 4.1 (b).

The arrival pattern of WebSearch2 is similar to Financial but shows less

variability in its arrival rate. Its average arrival rate is 297.5/second, which is much

higher than the maximum access rate sustainable by a single disk. Instead of using

multiple disks, a preprocess, increasing the interarrival time of successive requests,

was carried out to enable an affordable workload for one disk. The time stamp of

each trace record is scaled up by multiplying a predefined factor. For example, when

the scale factor is 2, the arrival rate is halved. By tuning this factor, the arrival rate

can be varied to obtain response time properties.

It should be noted that it is usually safer to decrease, rather than increase

the interarrival time, since increasing the arrival rate may create problems such as

a request is generated before the completion of the previous request, which violates

the original trace. This is especially so when requests are processed in a non-FAFS

order, which introduces a high variability in the response time of requests.

Locality pattern

The locality of the data being accessed is another critical factor in disk perfor-

mance. To obtain the favorable locality information, the disk space is evenly divided

into 1,OOO subareas, proportional to the maximum ALBA of the data block accessed,

and then the frequency of accesses is measured for each subarea. Figure 4.2 displays

the locality patterns of three traces.

The locality distribution of WebSearch2 and WebSearch3 are quite similar:

the most frequently accessed data (over 99%) is located in just four main areas for

27

Figure 4.2 Locality patterns of traces.

both traces. Ohile for Financial, whose pattern is shown in Figure 4.2(c), the data

accesses distribute across the entire disk but are skewed.

The locality information is especially meaningful for data reallocation, which

is another technique used to improve disk performance.

4.3 Metrics

Mean response time of disk request R is the primary metric used for measuring the

disk performance in this dissertation. 895th, i.e., the 95 th percentile of response time

is also reported, when reducing variance of response time is of interest. For the

28

experiments with Reads and Orites, the disk performance is measured by the mean

and the 95 th percentile of Read response time: R,. and R95th), because the application

response time usually is only affected by Read response time.

In the following graphs, the performance is presented by R(R,.) or 95th (R95th))

versus a normalized arrival rate a n , which indicates the arrival rate normalized by

The adz is incremented up to a certain point where R(R) exceeds 5OO ms,

or the number of enqueued (read or write) requests exceeds 1OOO. This point is the

"maximum throughput" max, which is another important performance metric used

in this dissertation.

CHAPTER 5

PRELIMINARY STUDY OF SINGLE DISK SCHEDULING

This chapter briefly reviews the traditional scheduling policies as discussed in the

following section, and re-evaluates their performance using simulation 1. An empirical

study of FIFS and SAT using mathematical analysis follows. This is joint work

with A. Thomasian, which has been published in [36j, and the a new result has been

included in [37j.

5.1 Traditional Disk Scheduling Policies

Ahapter 1 has shown that the improvement in disk access time (to random disk blocks)

has been less significant due to the mechanical nature of the access mechanism. The

transfer time is a less significant part compared to seek time and rotational latency,

due to the rapid increase in disk rotation speed. Disk arm scheduling methods can

be used to reduce disk access time and hence increase disk access bandwidth with

respect to FCFS, by reducing seek time, rotational latency, or both. The methods

under consideration are reviewed as follows.

- Shortest Seek Time First (SST) always selects the pending request which will

incur the shortest seek time given the current read/write head position.

- SIAN moves the disk arm back and forth across the entire range of disk cylin-

ders and serves the requests along the path.

- Ayclical SIAN (ASIAN), or one-directional scan, processes all disk requests

from the outermost to the innermost cylinders (or vice versa), intending to

process requests in a more uniform way.

This contains joint work with A. Thomasian, which has been published in [7] and [8j.

29

30

- OSCAN with lookahead (CSCAN-LAi) considers the next i requests at a time

after processing the current request. These i requests are reordered to be pro-

cessed so that the sum of their predicted service time is minimized.

- Shortest Access/Postioning Time First (SATF/SPTF) selects the request which

minimizes the access or positioning time to process. Since this dissertation con-

siders only requests with a fixed size, SAT and SATF will be used interchange-

ably unless otherwise noted.

FCFS is the baseline policy against which all other disk scheduling policies are

compared.

5.2 Simulation Results

The random number-driven simulation with synthetic workloads (see Section 4.2.1)

was used to evaluate the aforementioned policies. IBM Lightning disk model (see

Section 4.1 for characteristic details) is used for experiment. Faster disks, such as

IBM Utrastar 18 ES are also experimented with, and they yield the same results

unless otherwise noted.

The calculation of the mean service time is based on the assumptions of a roll-

mode capability (see Section 4.1.2) and a Poisson arrival. For random accesses to 4

KB blocks the mean access time is access = 16.72 msec., such that the maximum disk

access rate for FCFS is Λ 'S = 1 X requestsmax ^ access 6Oper second.q P

As presented in Figure 5.1, the results of the performance of the compared

policies are consistent with the results in [21j. SAT is the best performer and FAFS

performs worst. CSCAN is outperformed by SCAN and SST, but an investigation

with a "faster and higher capacity" Lightning disk shows that the SCAN policy

slightly outperforms the ASCAN policy. This is attributable to the fact that requests

at extreme disk cylinders encounter longer delays when there are more cylinders. The

31

analytically result obtained by R = W + success for the FCFS policy is also displayed

in graph. The mean waiting time W was calculated using the Pollaczek-Khinchine

formula for the M/G/1 queueing model. Figure 5.1 demonstrates that this formula

predicts R accurately.

The SAT policy provides a significant improvement in performance with re-

spect to SST and CSCAN [21j, which can be ascribed to the fact that SAT is a

greedy policy, that minimizes service time, hence increasing the maximum feasible

arrival rate to disk.

Figure 5.2 displays the performance of CSCAN-LA2 and CSCAN-LA2. CSCAN

and its variants attain a throughput twice as high as Amax 8. The mean response time

is improved noticeably as i is increased.

5.3 Empirical Performance Evaluation of the Disk Scheduling Policies

The previous section compares the disk performance of various scheduling policies by

simulation; this section will calculate the disk request response time using analytical

methods.

32

The analysis assumptions are introduced first, followed by a specification of

the method for analyzing FCFS policy, which is the only policy that can be validated

with few favorable assumptions. Finally two methods to compute the mean response

time with SAT policy are proposed.

5.3.1 Introduction

A review of analytic methods to analyze the effect of scheduling methods in drums

and disks and a survey of outstanding studies in this area is given in [23j. It follows

that there has been more success in analyzing drums than disks, which is of course

due to the simplicity of the former. Analytic studies of disks tend to make unrealistic

assumptions for the sake of mathematical tractability, e.g., the read/write heads visit

all tracks as part of the SCAN policy.

The following sections study the single disk in processing requests to small,

randomly placed blocks of data, which are common in VOLTA transactions. Requests,

which have originated from a large number of concurrent transactions, are approxi-

mated by a Poisson arrival process.

5.3.2 Performance Analysis of the FCFS Scheduling Policy

A FCFS policy is one method that can be exactly analyzed by using the Pollaczek-

Khinchine (P-K) formula for the M/G/l queueing model (see Appendix B.3) [38, 39 j:

The analysis is based on the assumption that the arrivals are Poisson (with rate a)

and the requests access disk space uniformly.

The mean and second moments of service time, denoted by 2aisk and 2 aisk,

are independent from the number of enqueued requests. The disk utilization is p =

33

a-aisk • Disk service time is the sum of seek, latency, and transfer time, so that the

means/variances of service time is the sum of the means/variances of its components.

The analysis of a modern disk with zoning is more complicated (see Section

2.2). More data resides at outer cylinders, so that the uniform accesses to disk blocks

do not result in uniform access to disk cylinders. The reduction in mean seek time is

relatively small with FCFS policy.

The accuracy of this formula was verified via the self-developed disk simulator

[4Oj, and the validation results for four disk drives are given in Figure 5.2.

5.3.3 Performance Analysis of the RSATF Scheduling Policy

The RSATF scheduling policy has been verified to outperform other policies and is

implemented in some disk controllers. This section presents two methods to compute

the mean request response time SATF at a given arrival rate a, when applying RSATF

policy.

In order to gain an insight into the behavior of RSATF, a simulation for RSATF

scheduling was carried out to determine whether the seek time or rotational latency

dominates the selection of the next request to be processed. Simulation results for

two drives with very different characteristics (see Table 4.1) are shown in Figure

34

5.4, which demonstrates that high fraction of cases when the seek time, rotational

latency, or both, determine the best RSATF request sustains up to D an = a l.O

(aisk is the service time according to FAFS scheduling) . These fractions drop rapidly

beyond this point, and neither seek time nor latency time has a dominating effect on

determining the best RSATF request. This is because both seek time and rotational

latency have less effect on positioning time at the higher arrival rates, so the scheduler

is less likely to select requests with minimum seek time or rotational latency for faster

disks (Aheetah 9LΡ in this case). The percentine values of the considered cases follow

the relation:

Thus it is important to determine the minimum of the sum of two random

variables: seek time and rotational latency. This determination is complicated by the

fact that, the minimum is a function of both the number of outstanding disk requests

and the current position of the read-write head. A simulation with RSATF to estimate

the mean request waiting time at a given D an, was also fulfilled. The ΡΙΚ formula does

not hold for RSATF, since in view of the whole disk system, the waiting time is not

independent of service time.

First method calculates the mean response time by applying Little's result R =

C/a, in which Ν is obtained by using a steady-state equation. The computation of

RSATF is specified below.

35

The four disks are of very different characteristics, which are summarized in

Table 4.l. The parameters required to analyze the disk performance with SATF policy

are obtained by simulation. The results for SAT and FAFS policies are presented

in Figure 5.3, which shows that SAT outperforms FCFS by a wide margin, since

FCFS saturates when a approaches xdisk or a 1. The SATF policy can attain a

much higher throughput than FCFS, since starting with Xdisk, the mean service time

decreases as the arrival rate increases for SAT policy.

As a step in developing an analytical model for SATF, the mean service time

XsATF [m] with m enqueued requests was obtained by using simulation for each disk.

This service time is normalized with xdisk in Figure 5.5, which exhibits the normalized

SAT service time x [mj = xsATF [mj /disk versus m. As expected X[mj is a decreasing

function of m and it does not reach a limiting value even at m = 1OO.

Given the normalized service times, a birth-death model was built up, where

the state is the number of requests m. The forward transition in all states is the arrival

rate a, and the departure rate is μ[mj = l/xsΑTF[mj. The steady-state equations are

given as follows:

A steady-state solution exists and the system will not be saturated when μ[Mο j > a for

a sufficiently finite Μ0 . In practice the number of requests considered for scheduling

is limited to the maximum number of requests that can be held on the disk M', say

Μ' = 128. The μ[mj was steadied at μ[Μ'j (m > M') when m > M', since the

additional requests do not contribute to the mean service time.

Instead of computing P[mjj = P[mj —lj/μ[mj, m > 1 (with P[O] = l), P[mjj _

P[mj — 1]x[mjj was employed, but the results were compensated through multiplying

by X disk at the end. The "probabilities" are summed in a variable S, which is then

used for normalization.

The above experiment was implemented for the four drives in Table 4.l. The

mean response times, obtained by analysis alongside simulation results, are displayed

in Figure 5.2, which shows a good match in the mean response time obtained by

analysis and by simulation. However the analysis is approximate, since the disk

service times are not exponential.

Given z[mjj, 1 < m < M, for one disk, RSATF for another disk for a given a

can be easily calculated using the procedure outlined above, which requires the mean

service time of the new drive.

37

A by-product, which will be useful for successive study, is obtained in the above

experiment. Curve fitting to the normalized mean disk access time X[mjj (l < m < Μ)

yields:

which is a good match for all four disks as shown in Table 5.l.

Table 5.1 p Value for Four Disks and Aurve Fitting Standard Deviation

The standard error is given according to Σ 1 (Υ — Υ) 2 / (n — 1), where n =

number of points (n = Μ = 1OO in experiment) .

Second method utilizes the fact that the normalized RsATF characteristics of

various disks (versus the normalized arrival rate) are almost indistinguishable up to

very high arrival rates, so that RsATF for another disk drive can be obtained by

denormalizing with respect to the disk of the new disk.

Figure 5.6 presents the normalized mean response time characteristic (R n)

versus the normalized arrival rate (Dan) for the four disk drives. The normalization for

each disk was with respect to its own mean service time disk, which is listed in Table

4.l. The normalized response times of various disks are almost indistinguishable up

to Dan = l.5, i.e., l.5 times the arrival rate sustainable by FAFS. This leads to yet

another method to estimate the mean response time characteristic of a new disk,

which is based on denormalizing both the mean response time and the arrival rate

with the mean service time disk (of another disk).

38

To study the robustness of the method, a series of experimental results as

various interarrival distributions: upstage Erring distribution(with D=l/4) and a

two-branch hyperexponential distribution (with p = O.l, μ2 = 9μ 1 and coefficient of

variation squared Dv = 5O/9), are reported. The mean response times with different

arrival patterns for SATF are plotted in Figure 5.7, which demonstrates that the

response time is higher for larger values of Dv as would be expected, but the response

times remain close. This is especially so for higher arrival rates with already long

queue length. It is also shown that mean queue lengths are affected little by the D.

Figure 5.7 Mean response time and mean number in system for different arrival
processes with IBM 18 ES disk drive.

5.3.4 Summary of Conclusions

It has been verified that SAT outperforms other well-known disk scheduling methods

by simulation, but FCFS is the only policy that can be analyzed by using mathemat-

ical model based on certain favorable assumptions. A detailed analysis of the FCFS

policy by using Aollaczek-Khinchin (P-K) formula for an M/G/1 queueing model is

presented, followed by two methods to evaluate SAT performance when requests

randomly access small data blocks on the disk. The first method builds up a birth-

death model with disk access rate and the number of requests for scheduling. A

by-product was produced in the experiments: the normalized mean disk access time

is inversely proportional to the fifth root of the number of requests at the disk. The

39

second method is based on the observation that normalized response time character-

istics with SAT scheduling for various disks are indistinguishable.

CHAPTER 6

PERFORMANCE EVALUATION FOR VARIATIONS OF SATF

POLICY

Many studies have shown that SAT is a hard-to-beat scheduling policy [21, 8j, but

some improvements are possible, especially in reducing the percentiles of response

time. Some variations based on SAT are developed with the intention to improve

performance under certain circumstances. This chapter reviews some representative

variations and proposes three new variations: SATF-AP(t), SATF-LAi and SAPTF 1 ;

the performance evaluation follows. The comparison results are obtained by using

simulation with both synthetic and trace workloads. This chapter contains the joint

work with A. Thomasian, which has been published in [9j .

6.1 Variations of SAT

Various variations are specified in roughly chronological order; the introduction of

three new variations follows.

Existing Scheduling Methods

Weighted Shortest Time First (WSTF)[3jj multiplies the positioning time by a weigh-

ing factor F = max(0,1 — w/o) to prioritize the processing of long delayed requests

and minimize the standard deviation of waiting (and response) time. w denotes the

then-current waiting time of a request and Μ is a "maximum" response time allowed.

Note that as Μ —+ ooh, OUST becomes the same as SAT. Small values of

Μ may result in F = O for several requests, which is equivalent to a random service

policy.

This is joint work with A. Thomasian and appears in [9].

40

41

Grouped Shortest Time First (GSTF)[3jj is a combination of SCAN and SATF,

which attempts to attain equitable response times for individual requests with respect

to SATF. The disk is divided into groups with the size of Ν cylinders, and ASATF is

applied within each group. The requests are serviced in successive groups of cylinders

cyclically, i.e., using a SAAN policy.

Batched Shortest Access Time First (BSATF)[4jj dedicates serving requests in

one queue at a time. There are two queues, and requests are served from one queue

while the other is being filled by new arrivals. The SATF policy is applied to two

queues alternatively.

The experimental results showed that the above two policies (BSTF and

BST) yield poor performance with respect to ASATF using both random and traced

workloads. GSTF exhibits early saturation due to the fact that following the SAAN

policy results in a significant deviation from ASATF policy in selecting the request to

be serviced, and thus an increase in service time. BSTF yields poor performance due

to the fact that there are much fewer requests to be considered in minimizing the ser-

vice time with respect to SATF. The results for these two policies are not presented

in this dissertation.

Aged Shortest Positioning Time First (ISPTF)[21jj modifies the predicted po-

sitioning time of each request (Typos) by subtracting a weighted value proportional to

its waiting time (Await): Τε f f = TTpos — W TTwajt • The resulting value Τ ε is used for

selecting the next request to serve. W is varied within range [0, 30j and W = 0 cor-

responds to pure SATF. This algorithm is equivalent to the algorithm SATF (Aged

Shortest Access Time First) proposed in [4j, in which a suggested weight translated

approximately to ASΡΤF(6.3) is provided.

Sliding Window - Optimal ADcess time (SW-OAT)[4j considers all possible

permutations of processing a fixed number of requests, defined as a window, and

determines the optimal schedule. The scheduling step is repeated when the serviced

42

request is dispatched, and the oldest of the outstanding requests is pulled into the

window. SW-OAT is not pursued further, since SATF applied over the requests

within the window outperforms it. The latter policy is referred to as Sliding Window

- SATF (SW-OAT) in [5j.

Window-Based SAT (WB-SATF)[6j, similar to OB-SPTF, applies SATF over

only a portion of requests, i.e., a window scaled by time instead of the number of re-

quests. The window consists of the requests whose arrival times fall within a prede-

fined interval from the oldest arrival in the current queue. The dynamic WB-SPTF

algorithm handles overload situations by adjusting the window size according to the

load conditions of the system.

Newly Proposed Scheduling Methods

SATF with conditional priorities (SATF-CA(t)) [7j is introduced based on the ob-

servation that in head-of-the-line (HOLD) priority queueing, an unconditional process

of high priority requests may result in a significant degradation in performance with

respect to SAT, due to the deviation from the SAT paradigm. SATF-CP (t) mini-

mizes degradation by multiplying the positioning time of high priority requests with

a factor 0 < t < 1 to prioritize their processing with respect to ποω priority requests.

Designate a winner to be the request with the shortest positioning time in the

queue from the SATF viewpoint. SATF-CP (t) processes high priority winner uncon-

ditionally, but a ποω priority winner is processed only when its service time (Al)

is less than that of the best high priority request (xhigh
)
 multiplied by a threshold

value t(0 < t < 1), i.e., 2 jo,„ < high * t. Appropriate values for t is determined by

experimentation.

SAT with lookahead (SATF-LAij or SATF with lookahead of i requests

(SATF-LAij), considers i, rather than just one request at a time. In the case of i = 2,

after the completion of request X the scheduler selects a pair of successive requests,

A followed by B, such that the sum of their predicted service times is minimized.

43

Denote tχ ,γ to be the service time processing requests X and Y consecutively.

This algorithm chooses requests A and B such that t X ,A + αtΑ , B is smaller than all

other request pairs (0(n2) when there are n requests in the queue). The second

request B is given less weight by using a discount factor α(0 < α < 1), since request

B may not be processed after request A due to new arrivals.

The case α = 0 corresponds to "pure" SAATF while α = 1 is more appropriate

for a "strict" lookahead policy, in which request B is processed unconditionally after

request A before any other (perhaps more favorable recent) requests. Experiments

show that lookahead with discount factor α(0 < α < 1) (named "flexible" lookahead

correspondingly), provides better performance than "strict" lookahead, where two

requests are scheduled and processed in each round.

This algorithm can be generalized to consider i (2 < i < n) requests at a time,

i.e., tX,A + αtλ , B + α2tΒ ,C + ... + αitγ,Z . The intuition behind this method is that after

serving request A, the read-write head is in a favorable position to process other i —1

requests. Biven the computational cost of 0(n) and the fact that more new requests

come in during unit time at higher arrival rates, the cases i > 3 are not pursued in

this dissertation.

Shortest Adjusted AroDessing Time First (SAPTF) attempts to reduce the

variance of response time based on waiting time. This is accomplished by increasing

the priorities of requests according to Table 6.1 and applying SATF-CP paradigm. For

each request, its adjusted positioning time - APT is calculated based on the level its

waiting time belongs to, and multiplied by a discount factor fib=tiat level i. The level

of a request is determined by comparing its waiting time w against a function of the

mean and standard deviation of the current waiting times: W + (i —1)σB ,1 < i < 4,

as shown in the table. By carefully choosing t, it is possible to reduce the variance

and the maximum response time significantly. The statistic values of W and σω are

updated every few time units, taking into account the variability in the workload.

44

Table 6.1 Levels for Waiting Time and Their Thresholds f^

6.2 Simulation Results

A popular zoned disk drive, the 7200 RAM IBM Ultrastar 18ES (see Table 4.1 for

characteristic details), was used for experiment. The disk drive is available in two

capacities: 9.1 GB and 18.2 BB [33j . The disk with the capacity of 9 GB was used

for random-number driven simulation, and the one with 18 BB was used for trace

driven simulation.

This disk drive can process a maximum of 87 requests per second to small,

randomly placed data blocks. But for some traces, the measured arrival rate has

far exceeded Λ,Fnax S. For such cases, the rate of the arrivals was scaled down by

enlarging their arrival time so as to fit the single disk model (see Section 4.2.2 for

detailed scaling method).

This section presents the results produced by using different simulation tech-

niques and using different workloads. The policies covered in Section 6.1 are evaluat-

ed. FAFS and SAT are the two baseline policies against which all SATF variations

are compared.

6.2.1 Simulation Results Using Synthetic Workload

SATF-LA2 outperforms SATF to a small degree where the requests are randomly

distributed across the disk [7j. When the effect of locality of accesses is under exam-

45

inaction, another extreme case is assumed: requests are sent to two small regions on

the disk, τ and r2 , each covering 1% of the entire disk space.

The results are shown in Figure 6.1, where r 1 is located at the outermost disk,

while r2 is placed at the center in one experiment and on the tracks in the other.

Experiments showed that the degree of improvement in performance grows as the

distance between the two regions increases. In other words, the SATF-LA2 policy

has become more effective as the regions become more clustered but lie farther apart

from each other. This enables the scheduler to more accurately predict the next

request to be processed, after the current request is completed.

To show the sensitivity of W, Figure 6.2 plots the performance for WEST by

varying W according to 1, 2, 2 and 20 seconds. With W = is, WEST outperforms

SATF by 21.2% at a,,, = 2.1, but the disk saturates quickly after that. With W = 2s

and 2s, WEST outperforms ASATF by about 17% at D an = 2.5 with an acceptable

throughput. WEST with W = 20s yields almost the same performance as ASATF,

because the maximum response time of SATF was approximate 20s measured by

experiment.

Figure 6.2 shows the results generated by repeating the experiments for SATF

with various W. Results show that small W (2 in this case) generates comparable R

46

to SATF but the improvement in R95% is limited. ASATF(6) improves R95% most

significantly but only up to the point when a = 2.0. ASATF(6) and ASATF(6)

gain significant improvement over SAPTF in R 95% while maintaining a rather high

throughput, which is consistent with the conclusion drawn in [21j.

The similarity between WB-SATF and OB-SATF is that they both apply

SATF/SATF over only a portion of outstanding requests, with the intention to sched-

ule the requests more fairly so as to avoid possible request starvation. Figure 6.4 dis-

plays the performance data for these two methods against SAPTF. It is not surprising

that both WB-SATF and WB-SATF have little effect at low arrival rates, and their

performance deteriorates quickly as the arrival rate increases, because the degree of

deviation from SATF increases as the number of outstanding requests grows up for

both algorithms.

Figure 6.5 presents the performance of SAPTF policy, which is designed to

moderate the variation of response time. SAPTF does not degrade R much with

respect to SAPTF, while maintaining a high throughput. Compared to SAPTF and

SATF-LA2, SAPTF improves R95% by 18% at Dan = 2.5. The improvement would be

more significant if the parameter t is further optimized.

6.2.2 Simulation Results Using Traced Workload

The performance of selected variations of SATF is evaluated using the traced work-

loads described in Section 4.2.2.

OSTF with trace "WebSearch2"

The performance of OSTF were re-examined with the "WebSearch2" trace, and the

results are shown in Figure 6.6. WSTF with W = 1 s provides good response time

for Reads but a limited throughput; OUST with W = 3 s not only exhibits an

improvement over SATF in R95%, but yields a comparable R to SATF as shown in

47

Figure 6.4 WB-SATF and WB-SATF performance for νarίous window sizes.

Figure 6.6 WEST performance for various W for "WebSearch2" .

WB-SATF and SW-SATF with trace "WebSearch2"

The goal of implementing WB-SATF and SW-SATF is to assist the system to

sustain short periods of overload. Their performance is compared against SAT, and

the results are shown in Table 6.2, in which R and R95% are both listed.

49

Performance data shows that, WB-SATF and SW-SATF generate more signif-

icant improvements over SATF during more intensive I/O bursts (period C C in the

table): WB-SATF slightly outperforms SATF when the first 1O enqueued requests

are scheduled each time (the effect is proved to be more significant at heavier loads);

SW-SATF improves R95% about 21.7% over SATF when the window size is 50 ms.

The degree of "burstiness" during Cw is higher than that during DB in that, the "ef-

fective" arrival rate, i.e., the arrival rate only over bursts, is 151.3 requests per second

for CBE, which is higher than 142.9 requests per second for Dw .

The argument is verified by the following experiment. For the same trace

records at Cyr and DB of "WebSearch3" , the arrivals are changed to be Poisson

while keeping the overall arrival rates of that interval unchanged. The arrival time

stamp of each trace record is substituted by a new value generated according to

Poisson process, whose arrival rate achieves the same number of arrivals in the given

interval.

The comparison results are presented in Table 6.2, which indicates that Aoisson

arrivals yields a much lower R and even lower R95% than burst periods, as would

have been expected. The disk performance with the policies under consideration is

indistinguishable at C, because of its low arrival rate over examined time period

(270700, 271000). The improvements obtained at DWG are also trivial: compared

to SATF, only WB-SATF with window size of 4 improves R 95% by 6%; WB-SATF

improves R over SAT by 3% when the window size is 60 ms, and improves R95% by

5% when the window size is 40 ms.

A conclusion can be drawn that the assumption of Poisson arrivals in separate

intervals is not appropriate for this trace [41j.

To further examine the effect of window size on SW-SATF and SW-SATF, R

and R95% during the burst period Cc are examined for two policies respectively. The

results are plotted in Figures 6.8 to 6.10.

Figure 6.11 SATF-LA2 and SAPTF performance for "WebSearch2" .

51

Table 6.2 WB-SATF, OB-SATF and SATF Performance During C w and DB of
"WebSearch3"

It is interesting to see that in Figure 6.9, the mean response time for WB-SATF

does not decrease monotonically as the window size increases, which differs from the

conclusion drawn in [6j . This can be attributed to the fact that they experimented

with a closed system, which holds a fixed number of requests. In an open system,

however, when the arrival stream is not affected by the number of requests in the

system, the best performance are obtained when the window size is 6 at the interval

CW (outperforms SATF), and 16 at the interval DWG (the same as SAPTF), which are

shown in Figures 6.9 and 6.1O respectively.

For WB-SATF, as shown in Figure 6.8, only when the window size is set within

a certain region (N 50 ms in this case) could it outperform SATF.

SATF and SATF-LA2 with trace "WebSearch2"

SAPTF is compared inainst SPTF and SATF-LA2 by using traced workload "Oeb-

Search2" . As shown in Figure 6.11, ASPTF produces a comparable R to SPTF, and

shows remarkable improvement over it as far as R95% is concerned, which inrees with

the results obtained from random simulation.

Figures 6.11 (a) also indicates that SATF-LA2 presents a more significant

improvement over SPTF with traced workload, because in real circumstances, the

52

data is distributed over the disk space in a more "cluster" way, which favors the

performance of SPTF-LA according to the analysis achieved in Section 6.2.1.

SPTF-AP with trace "Financial"

The efficiency of SPTF-AP (t) in real circumstances was verified via experimenting

with trace "Financial" at two heavy load periods: 2 F (10800, 13000) and CIF (20000,

30000). The results generated by varying threshold t are listed in Table 6.3. The best

performance is obtained at around t = 0.6, which matches the conclusion drawn by

random number generated workload [7j.

Table 6.3 SATF-AP(t) Performance for Financial2 for Different t

6.3 Summary of Conclusions

This chapter reviews recently proposed variations to the SATF policy, which is known

to outperform other more traditional policies. New variations to the SAPTF policy:

SPTF-AP, SPTF-CP and SPTF are proposed. The last one dynamically varies the

(conditional) priority of a request by considering its waiting time (w).

Grouping and bathing do not improve performance of SAPTF. Dynamic Windows-

Bashed SAPTF improves performance within its effective range, but it cannot sustain

overload because of a very limited maximum throughput. WEST can provide good

performance with a certain maximum allowed waiting time (W), but the performance

is quite sensitive to W. SATF performs as well as SATF with respect to the mean

53

response time, but outperforms it as far as R95% is concerned. The advantage of

SAPTF policy is that it seems to be robust to variations in the workload, in that

the priority is varied by comparing w with the mean and standard deviation of more

recently processed requests.

The proposed scheduling policies are more effective at I/O bursts. However,

approximating the arrival process with Poisson requests, as proposed in [41j, leads to

an underestimation for the mean response time of requests.

CHAPTER 7

MIRRORED DISK SCHEDULING

Disk mirroring (or RAID) tolerates single disk failures at the high cost of doubling

the number of disks. However it also provides twice the access bandwidth of a single

disk in processing read requests. Improving the performance of Reads is important

because: (i) transaction response times are affected by the processing time of read

requests, and the processing of write requests can be deferred; (ii) improvements in

disk access time are hindered by its mechanical nature.

To evaluate the performance of mirrored disks, various routing schemes, com-

bined with queue scheduling for dispatching and processing requests, have been stud-

ied. The routing policies are carried out based on mirrored disk system configurations.

The mirrored disk system can be categorized into independent queue (IQ) and shared

queue (SQL) configurations in the queue point of view, or normal mode(NL) and trans-

posed mode(TRH) in the view of data allocation. The routing policies applicable to

mirrored disks are partitioned into static and dynamic ones.

This chapter, which contains the joint work with A. Thomasian and C.Han in

[13, 6j, provides a configuration assortment of mirrored disk system, and presents

a comprehensive classification of routing and scheduling policies, including a further

discussion on affinity-based (ΑΒ) routing. The performance evaluation follows.

7.1 Mirrored Disk Configurations

7.1.1 Independent versus Shared Queues

Two basic queue configurations, which are also regarded as the routing principles for

the dispatched requests, are considered in this study.

54

55

Independent Queues (IQ) or Server-initiated routing. The disk array con-

troller acts as a router, which determines the disk to process a read request, while

write requests are sent to both disks. There is no queue at the router.

Shared Queue (SQ) or Server-initiated routing. Requests are held in a shared

queue at the router and are processed by one of the disks according to some scheduling

policy. Aonceptually, there are two copies of write requests, each of which has to be

processed at a designated disk. The Writes need not be synchronized, so that there

is no need to introduce forced idleness.

7.1.2 Transposed versus Normal Mirroring

In addition to the normal data allocation scheme (AL), a transposed (TRH) data

allocation scheme is also considered. In TRH mirroring, the data on the outer cylinders

of one disk is on the inner cylinders of the other disk, and the outer cylinders of

both disks are used as the primary storage (marked as shadowed area) to serve read

requests, as shown in Figure 7.1.

Figure 7.1 Overview of transposed mirroring system.

The intuition behind the TRH data allocation is that, for a zoned disk drive,

the outer cylinders contain the tracks with higher sector-per-track (SALT) than the

inner cylinders. This property provides two benefits to the outer disk area. First,

fewer cylinders are required to store equal amount of data, which results in less seek

56

time for reading the primary copy of data. Second, the transfer time for a block is

reduced.

The point that separates inner and outer disks is referred to as the pivot point

hereinafter. The loads for two disks can be balanced by appropriately selecting the

pivot point.

7.2 Routing Schemes for Independent Queue

Routing policies are grouped into static and dynamic. Dynamic policies utilize knowl-

edge of the current system state, such as queue length, to improve performance, while

static policies do not. But both of them can use some attributes, such as logic block

address (ALBA) of the request. Examples of both types of policies for processing read

requests are given below.

7.2.1 Static Routing

Requests Not Interpreted: The router checks only the type of requests in some

routing schemes, such as Uniform routing - UR or random routing and Cyclic routing

- CR or round-robin routing.

The conclusion that CR outperforms UR when applied to equivalent mirrored

disk systems can be proved as follows.

As shown in appendix B.5, the interarrival times to each disk have an expo-

nential distribution with UR and Erlang-2 distribution with CR, given that FCFS

is implemented as the local scheduling policy. Assuming that the arrival process is

Poisson (with rate 2a) and service times on two disks are exponentially distributed

(with rate c), both UR and CR result in an arrival rate a to each disk, so that the

utilization factor is ρ = a/c in both cases. The mean number of requests at each

disk for UR is: C = ρ/(1 — ρ), and the mean response time is: RM/M/l = C/a =

(1/c)/(1 — ρ). The mean waiting time for CR is: WΕ2 /Μ/ ι = (σ/c)/(1 — σ), where

Requests Interpreted: The addresses of requests are extracted. This information

can be utilized for α ^nity-based - ΑΒ routing.

Static Affinity Based Routing - ΑΒ Routing

AB routing has been investigated based on the fact that each disk serves read

requests to a disjoint subset of all disk files. The "affinity" has multiple implications:

timewise and addressees. This section describes a simple scheme belonging to the

latter category. The timewise AB routing is discussed in dynamic routing (see Section

7.2.2).

With static address-based AB routing scheme, the router sends Reads access-

ing outer cylinders to one disk, and Reads accessing inner cylinders to the other.

In Figure 7.2, these two disks are referred to as the outer disk and the inner disk

respectively.

Figure 7.2 Mirrored disks with static routing based on pivot point.

As used in transposed (TRH) mirroring, the point of partition of the outer

and inner disks is referred to as pivot point P, which also determines the fraction

of requests to each disk. Different criteria are used to determine P when requests

uniformly access disk space.

i Equal number of cylinders — EqCyl. P = Cd, where C is the number

of cylinders. For zoned disks, this criteria may cause unequal capacities and

58

request rates, when the accesses to the data blocks are uniformly distributed

on the disk.

ii Equal capacities — EqCap. The capacities of outer and inner disks are equal,

so that uniform requests will result in equal access rates for a given workload.

iii Equal capacities with TRH mirroring -EqCapT. Referring to Figure 7.1,

more general blocks on two disks are stored in "opposite" directions, but this

should be done at a sufficiently coarse granularity to ensure efficient sequential

accesses.

iv Equal utilizations — EqU. Denote the fraction of requests to the outer (resp.

inner) disk as fo (resp. fib = 1 — B0), such that Ρσ = Ai, and hence Bobo = fibi .
Note that Bo and P are independent of a, but this is not the case for the two

methods that follow.

v Minimum overall mean response time — MOR. Select fo so that R =
B ova + (1— B σ) via is minimized. The disadvantine of this method is that f0 and

P vary with a.

Even when the disk space is accessed uniformly, AB routing can be a possible

cause of unnecessary idleness. A "relaxed" ΑΒ (AB-R) based on a threshold for the

queue-length difference is one solution to this problem. In strict AB routing (AB-R),

or just AB routing, each disk serves only the read requests destined by the router;

while in AB-R, when one disk is idle, it starts serving the requests assigned to the

other disk.

7.2.2 Dynamic Routing

Requests Not Interpreted: Join the Shortest Queue(JSQ): Read requests are

sent to the disk with the shorter queue and ties are broken by tossing a fair coin.

Requests Interpreted: Shortest Response Time (SORT): The router sends an in-

coming request to a disk which will provide it with the smaller response time when

59

the request is served in FAFS order. SRT is applicable only when the disk schedul-

ing policy is FCFS (or any other policy where the processing order of requests does

not vary with new arrivals) .

Optimize with respect to Last Request (OAR): The router sends the incoming

request to disk which will minimize its service time (according to SATF) with respect

to the last requests in the two FAFS queues. Note that a busy disk may provide a

lower response time than an idle disk.

Integrated Routing and Local Scheduling (GIRLS): The scheduler predicts and

compares the overall mean response (service) times Rovεrali (Ro„εrall), including the

incoming request and currently pending requests, between the two ways the new

request will be sent. The incoming request is routed to a disk such that Rovera'l

(Soverait) is minimized. This routing scheme is denoted as Min (or Min), and

considered only in the context of SAT, because of its superior performance compared

to FAFS.

The former two policies: SORT and OAR are the dynamic address-based ΑΒ

routing instances, while IRLS is not.

7.3 Routing and Scheduling for Shared Queue

SQ should provide a lower response time than IQ according to the resource-sharing

argument [38j, i.e., the requests are served more efficiently by reducing disk idling

time. The brief proof is shown as follows.

IQ configuration (with UR scheme) corresponds to two independent Μ/Μ/l

queues, and the SQ configuration corresponds to an Μ/Μd system. Assuming the

system has Aoisson arrivals with rate 2a and the service rate of each disk is o, so the

arrival rate to each disk is a, and the disk utilization for both disks are p = a/o. The

mean response times are RΜ/Μ/2 = (Ι/o)/(Ι — A 2) with an SQ configuration, and

RM/M/l = (1 /o)/(1 — p) with an IQ configuration. It follows that RΜ/Μ/2 < RM/M/l

60

for 0 < p < 1. It can also be shown that RM/M/2 < RΕ 2 /M/1, in other words the

shared resource system outperforms independent queues with AR.

7.4 Processing Write Requests

The response time of Reads can be improved by using a straightforward head-of-the-

line (HOLD) nonpreemptive priority policy, given that Reads have a higher priority

than Writes. There is no improvement in throughput, since the inherent policy for

each queue is FCFS.

The aforementioned policy for single disk scheduling, SATF with conditional

priorities (SATRAP (t)) (see Section 6.1), can be utilized in mirrored disks. Similarly,

t (O < t < 1) is a threshold according to which read requests are prioritized over

write requests. Read winners are processed unconditionally, while a write winner

is processed only if its predicted service time is much less than that of the current

read winner: write < bread * t. Thus, SATF(O) is a read priority policy, where the

processing of all the read requests (according to SAT) completes before the start of

processing write requests (if any). SATF(O) is a "pure" SATF policy with no priorities

for Reads.

There is a trade-off between the mean response time Br , and the throughput.

The "optimal" values for t are determined by experiment.

7.5 Simulation Results

A random number-driven simulation (see Section 4.1) is used in this study to evaluate

the performance of mirrored disks. In experiments, the IBM Ultrastar 18ΕS disk drive

(see Table 4.1 for characteristic details) is subjected to synthetic workloads comprising

Reads and Writes. The ratio of Reads to Writes is varied according to 1:O, 3:1 and

1:1.

61

A conclusion has been drawn in Section 5.2 that, SAT outperforms other clas-

sical scheduling policies, so that FCFS and SAT were implemented as two extreme

policies in disk mirroring study.

Figure 7.3 Routing performance with independent queues.

Figure 7.2 displays the mean response times of Reads for various routing

schemes with IQ configuration. As shown in 7.2(a), using an FCFS local schedul-

ing method, UR is outperformed by CR since its arrival process is less "random"

than Poisson. JSQ improves the performance by balancing the queue-lengths; SORT

reduces R, by dispatching the request to the disk which will minimize the response

time of the incoming request. Both of these schemes yield indistinguishable perfor-

mance with CR, and all of these policies tend to ad ax = 2, i.e., twice the maximum

throughput of a single disk with FCFS. The OARS scheme achieves the best perfor-

mance and throughput, which is 10% higher than other policies. OARS is a simple-to-

implement dynamic policy which requires the router to remember the block number

of the last request routed to a disk.

To compare the routing policies with the SAT local scheduling in IQ, Min

is examined instead of SORT and OARS, because the latter two schemes are designed for

FCFS queueing model. Figure 7.2(b) shows little difference between these policies,

62

which indicates that the effect of implementing routing schemes is diminished by

applying SAT scheduling at local disk.

Figure 7.4 SQ performance with FCFS and SATF as local scheduling policies for
different fractions of Reads.

Figure 7.4 presents the performance data for routing policies in SQ configu-

ration. Different ratios of Reads to Writes are experimented with. The performance

disparities between SAT and FCFS with fractions of Reads are consistent with the

results obtained for a single disk, except that each mirrored disk processes 50% of the

Reads of a single disk. Increasing the fraction of write requests significantly reduces

the maximum throughput for FCFS local scheduling, but this effect is less significant

for SAT, which provides a much better performance than FCFS.

The performance of SQ and IQ were then examined by varying the ratio of

Reads to Writes. Figure 7.5 shows the results obtained when SATF was implemented

as the local scheduling policy for both configurations, and CR was used as a typical

routing scheme in IQ. From a ratio viewpoint, the response time of Reads is dominated

by the fraction of Reads; from a configuration point of view, SQ configuration shows

much better performance than IQ, for example, when Read-write = 2:1, the RTQ Q

159 ms at Dan, = 4.O, while RTQ 291 ms.

63

The performance of SQ and IQ was also compared when SATF(O) was imple-

mented as the local scheduling policy. A CR scheme was used for IQ as before, and

the ratio of Reads to Writes was 2:1. In Figure 7.6, the performance of SATF(O) with

SQ in mirrored disks shows consistency with that of SATRCP(t) with single disk, i.e.,

there is a trade-off between throughput and the mean response time of Reads. How-

ever when the "pure SAT", i.e. SATF(0), is implemented in both configurations,

SQ presents a significant improvement over IQ in R.

Based on SQ configuration, a study of AB routing is carried out and an elab-

orate report is provided at [6j. This study presents different criteria used to select

the pivot point. Results show that under the assumption of uniform distribution of

accesses, time-wise selection methods outperform the methods that equalize capacity

or number of cylinders.

The effect of transposed data allocation is also investigated in [12j, which con-

cludes that the mirrored disk system with TRH (transposed) data allocation provides

much better performance than that of the system with AL (normal) data allocation

when all proposed pivot point methods are implemented. In this dissertation, the

64

TRH data allocation with relaxed (R), strict (5), and "pure" (P) SAT policies are

further examined. Figure 7.7 displays the results for different fractions of Reads. Lit-

tle difference exists between relaxed and strict policies (graphs overlap), while the

"pure" SAT policy outperforms both. The gap between the "pure" SAT, which

selects request without location limit, and the TR-based SAT policies decreases as

the fraction of Reads becomes higher. This is because processing Writes impairs the

effect of TRH data allocation which aims for reducing the arm movement. However,

when all requests are Reads, the inferior performance of TR-based SAT policies to

"pure" SAT is incurred by forced idleness and deviation from SAT in selecting the

optimal request.

Figure 7.7 SAT performance with transposed data layout and SQ.

7.6 Summary of Conclusions

The local disk scheduling policy dominates the performance of a mirrored disk system,

i.e., a much more significant performance improvement is attained with SAT com-

pared to FCFS. The SQ configuration outperforms the IQ configuration in the form

of improved response time for FCFS and improved response time and also throughput

for SAT. A superliner increase in throughout is achieved with SATF, because with

increasing number of disks there are more opportunities to select requests minimizing

disk service time from the shared queue.

65

In SQ configuration, the performance of AR, JSQ, and SORT are indistinguish-

able, but all outperform UR due to load balancing. OARS has a limited SATRlike

effect in reducing service times, so that a noticeable improvement in throughput is

attained.

Affinity based routing can also be used for improving performance when FCFS

local scheduling, and transposed data allocation demonstrates further advances. How-

ever, the performance of "pure" SAT policy is superior to the aforementioned

schemes due to its highest disk utilization.

CHAPTER 8

MIRRORED DISK SCHEDULING WITH AN NVS CACHE

Disk mirroring, also known as RAIDi, is a popular paradigm used to attain high

data availability and hence improved system performance. Caching the data, which

will be finally written on the disks, in non-volatile storine (NVS) at first can be

used to further improve the performance, because (i) Writes can now be deemed

complete after writing the new data to the cache (fast writes); (ii) the destines, i.e.,

updating data and parity on the disk from the cache, are performed asynchronously

in the background, so that the Reads can be processed in the foreground at a higher

priority; (iii) Writes can be restaged in batches and reordered by applying scheduling

algorithms, so that the averine time for a dentine is reduced.

The first study to exploit the caching of Writes in NVS to improve Read

performance in mirrored disks was proposed by Polyzois et al. [14j. An Alternating

Deferred Updates (referred to as ADU in this chapter) scheme was presented, which

delays Writes and alternatively destines them to the two disks in batches.

This chapter compares three schemes to improve performance of Reads: SAT

with conditional priority (SATRAP), NADU scheme, and an improved Alternating

Destines with Aonditional Priorities (AD-CP) scheme. Full descriptions of ADU and

AD-CP are presented first, followed by performance evaluation. The study is based

on an SQ configuration and the assumption that Reads are given higher priority

than Writes. Only the Reads (to disk) which result from misses in the caches, and

the destaging of dirty blocks or Writes are under examination. The effect of another

advantage: reducing the number of writing in the disk via overwriting the dirty blocks

cached in NVS, is ignored. This is joint work with A. Thomasian and appears in [15j.

66

67

8.1 Schemes to Improve Read Performance

The significance of improving the performance of Reads has been addressed in previ-

ous chapters. The schemes of utilizing head-of-the-line (HOLD) and SATRAA(t have

been described in Section 7.4, and compared to each other with an SQ configuration

(results shown in Section 7.5). This section specifies two more schemes, both of which

utilize processing Writes in batches.

8.1.1 Alternating Deferred Updates (NADU)

A scheme to improve the performance of Reads in a mirrored disk system by deferring

the processing of Writes, because they are held in an DVS cache, is presented in [14j.

Writes are not processed individually but are only destine to disks in fixed size

batches. The Writes in a batch are reordered according to the physical layout of

the disk, more specifically in increasing cylinder number, which is equivalent to the

CSCAN method.

Each disk in the mirrored pair alternates between two time periods, during

which it is processing Reads or Writes. In an ideal situation, while one disk is pro-

cessing Writes, the other disk services Reads. In other words, these two time periods

sum up to the exact cycle time T, as shown in Figure 8.i, which depicts such an al-

ternation by a disk timing diagram. W represents the processing of a write batch,

and W represents the time between processing write batches, during which the disk

is processing Reads or is idle, and receiving Writes. There is no guarantee that the

processing of a batch of write requests, referred to as a Write batch, can be started

every A time unit, since the number of Writes in a batch, referred to as batch size,

may not attain the threshold (A W) .

If the time periods of processing Write batches do not overlap, there is always

at least one disk available to service Reads, as shown in Figure 8.i. However, if the

workload is write-intensive, both disks can be involved in processing Write batches

68

simultaneously as shown in Figure 8.2. The processing of the second batch is started

when there are no outstanding read requests. The processing of a Write batch is not

interrupted once started.

The key points of ADU scheme can be summarized as follows:

1. Each disk alternates in processing Reads and Writes. There is always at least
one disk available to service Reads.

2. Writes are processed in batches only when the prerequisite batch size is attained,
even if both disks are idle, and thus forced idleness is introduced. The processing
of a Write batch cannot be interrupted.

3. Disks alternate in processing Write batches.

A detailed description of implementing ADU scheme in mirrored disk system

is given in Appendix D.

8.1.2 Alternating Destines with Conditional Priorities (AD-CP)

Motivated by NADU, a new scheme is developed, tending to improve performance in

three aspects: (i) eliminating the forced idleness by processing write requests individ-

ually; (ii) using an SATRbased scheduling method or even an exhaustive search for

smaller batch sizes; (iii) introducing a threshold (TRH) for the number of read requests

to further improve performance. Each aspect is specified as follows.

Eliminating forced idleness: The new method ensures that at least one disk is

always available to process Reads, but it differs from ADU method in that Writes are

69

not necessarily processed simply in batch mode, since this introduces forced idleness

when the batch threshold for Writes (AWE) is not attained. Processing of Writes one

at a time in individual mode has the added advantage that the processing of Reads

is only delayed by the residual lifetime of a single disk access, rather than a Write

batch.

Implementing SATF policy: Reads are processed according to SAT; Writes can

be processed according to SATF or FCFS, since FCFS reduces the number of dirty

blocks in the cache, so that cache space can be released.

Applying thresholds: Reads and Writes are processed individually, unless the

threshold for Writes (AWE) is attained. At low arrival rates, it is possible that all

Writes are processed individually since AWE is never attained. A threshold T R for

Reads is also introduced to ensure that Reads truly get higher priority, when there

is a backlog of Reads. Theoretically, a smaller AAR will improve the mean response

time for Reads, since more chance is given by disk pair to process read requests. A

Write batch will be processed at a disk provided: (i) the other disk is not processing

a Write batch, (ii) the threshold for Reads (A R) has not been attained.

The status of disks and the corresponding conditions are listed in Table 8.i.

Table 8.1 System Condition and Corresponding Disk Status

Similar to the NADU scheme, the processing of a Write batch cannot be inter-

rupted; incoming Writes are disallowed to join into a Write batch which is in progress.

70

These operations are to ensure that the Writes at both disks are synchronized, so that

the number of dirty blocks held in the NVS cache is reduced.

To optimize the mean service time for processing Writes in a batch, instead

of OSCAN used in the original, a more flexible scheduling method, which applies

exhaustive enumeration when AWE is small and SATF otherwise, was used. Experi-

ments show that SAT is efficient and the mean service time is close to that obtained

by optimal scheduling (see Appendix C).

The key points of the AD-CP are:

1. At least one disk is always available to service Reads.

2. When the number of Reads exceeds a certain threshold (AAR), both disks are
dedicated to service Reads, even though AWE may have been attained.

3. Writes are processed at both disks when there are no Reads, even though the
AWE is not attained. Thus, there is no forced idleness.

A detailed description of implementing AD-CP scheme in mirrored disk system

is given in Appendix D.

8.2 Simulation Results

Simulation is the major method used in this study; a simplified mathematical analysis

utilizing queueing theorem is also carried out for HOLD scheme, due to its scheduling

policy of FCFS.

The simulator used in this chapter remains unchanged from Chapter 7, includ-

ing disk model and the setting of parameters. FCFS is the baseline policy inainst

which the above discussed schemes are compared. R,. and its 95 percentile, R95%,

are the primary metrics used for comparing various schemes; the maximum through-

put, disk utilization, and the time span are also reported for selecting appropriate

thresholds.

71

This section presents the results for HOLD, SATF-CP(t), NADU and AD-CP in

two dimensions: first, examining each scheme by varying its own parameters; second,

comparing the schemes against each other in an identical context, to draw an overall

conclusion.

8.2.1 HOLD and SATF-CP(t) Schemes

HOLD is not desirable due to its low throughput. It is easy to prove that the maximum

throughput of HOLD is equivalent to that of FCFS in both single disk and mirrored

disk systems.

Under the assumption of an SQ configuration or an IQ configuration with

uniform routing, the maximum throughput for a mirrored disk system, a,,αχ 7 can

In the cases when f,.=i.0, O.75, O.5, O.25, the results are 2.O,i.6, i.22, i.14 respectively,

which exactly match the simulation results listed in Table 8.2.

72

Performance of SPTF-CP(t) is displayed in Figure 8.3, where the effect of

threshold t is examined. Bra improves as t decreases; the best performance of Reads is

achieved when t = 0, but the system throughput is very limited because of the quick

saturation of Write queues.

8.2.2 ADU Scheme

This section first investigates the effects of Write batch size AWE and the read-write

ratio on the performance, and then discusses the requirements of implementing none-

overleaped processing for Write batches.

Experiments were repeated for the scheme proposed in [14j by using an IBM

Ultrastar 18ES disk model. Reads were routed to the disk whose current read/write

head is closer to their location where the process would be performed.

The experiments evaluated the effect of AWE by using O.5 as the default fraction

of Reads, which is consistent to the original. Figure 8.4 shows that as far as R,. is

concerned, increasing AWE results in performance degradation of ADU scheme; it

is even outperformed by FCFS at low arrival rates. However, regarding maximum

throughput, ADU improves performance with respect to FCFS but not significantly,

and both are considerably outperformed by SAT. A quantitative comparison can be

drawn from Table 8.2, which shows that the improvement of ADU on FCFS is less

than 1O percent.

The degradation in Bra results from the combination of forced idleness and

processing Writes in batch. Writes can not be processed individually unless AWE is

attained, even when the disk is idle; moreover, processing Writes in a batch without

interruption may block incoming read requests, and thus hurt the response time of

Reads.

The disparity in maximum throughput can be attributed to the number of

Writes in buffer. The system is saturated because of the overflow of Writes. Figure

73

8.5 plots the mean number of Writes in buffer, write, for NADU scheme with different

AWE. write grows along the increasing arrival rates as would be expected, but in a

small degree, and remains below AWE before system saturates. SAT achieves a much

higher throughput by keeping write at a low level.

Table 8.2 lists the maximum throughputs obtained through experiment for

the examined schemes. The accurate amαχ is between the two values in some cells

due to the displayed unit of 0.i. The table also indicates that amαχ degrades as the

fraction of Writes increases, which is more specifically shown in Table 8.2. The system

saturates faster when disk is more intensively utilized for processing Writes.

The analysis carried out in [14j focuses on "non-overlapping write periods",

and two conditions for "non-overlapping write-batch-processing periods" were briefly

discussed. This section examines these conditions by using the results obtained via

simulation.

The first condition is that there should be enough time to service Reads be-

tween processing Write batches. Referring to Figure 8.i, the number of Reads which

arrive during a period y is fray, and the service time of these Reads is fray Rεαά.

Thus, for each disk, f r ayxReυd / 2 < W. The average time of W, W, the sum W + W ,

74

Table 8.2 Maximum Throughput with Various Schemes for Different R-w Ratios

which is also the cycle T, and fr aΤxρad for one disk, are listed in Table 8.4. Ac-

cording to experimental data, the first condition is fully satisfied up to the system

saturation point.

The second condition is that each disk should be able to process a batch of

Table 8.4 Time Spans for One Disk, R-w = 3:i, TWO = 1O

75

i.e., the time between processing Write batches, for one of the mirrored disks with

different TWO. In experiments, the averages of the time for processing a Write batch

are 61.4 ms, 95.5 ms, and 173.8 ms for TWO = 6, 1O and 20 respectively. The data

exhibited in Table 8.5 indicates that, W shortens as the arrival rate increases, and

finally becomes much shorter than W, and thus Write queue saturates.

8.2.3 AD-AP Scheme

Two parameters, TRH and TWO, are introduced by AD-CP, and their effects on per-

formance will be discussed in this section.

Threshold for Reads T R

AD-CP attempts to improve the response time of Reads by introducing a threshold

for the number of Reads (TRH) . When this threshold is reached or exceeded, both disks

engage in processing Reads. Figure 8.6 is the performance data for AD-AP scheme,

when T R is varied and TWO is fixed at 10. R,. can be improved for smaller T R without

Table 8.5 Average Time Span Between Processing Write Batches

76

sacrificing the maximum throughput, which validates the theory proposed in Section

8.i.2. This experiment was repeated with R-w=i:i and R:W=i:3, and the results

were consistent with the case when Read-write = 3:i, but the discrepancy in Rr was

even less significant than would have been expected.

The AD-AP scheme allows Writes to be individually processed, which consid-

erably enhances flexibility and efficiency, and thus system maximum throughput is

also increased. The impact of bringing in individually processing Writes can be per-

ceived from Table 8.6, which lists the utilization up to m ax for one disk in three cases

in terms of Read-write ratio; TWO is fixed at 10. Write requests are divided accord-

ing to their current mode when they are processed, i.e., individually or in batch. The

time fractions consumed in these two modes are denoted by Write() and Write),

respectively, in Table 8.6.

Two observations can be obtained through comparing Table 8.6 to Table 8.3.

First, the disk is more efficiently utilized with AD-CP than with NADU at the same

77

arrival rate. For example, when a„ = 1.O, the disk utilization with implementing

AD-CP and ADU is O.622 versus O.572 when Reads-writes = 2:i, and O.782 versus O.662

when Read: Write = i:i. AD-CP scheme also improves the maximum throughput in

all cases, and the utilization at amαχ are all close to 100 percent.

Second, under equal conditions, including Reads-writes ratio and arrival rate,

the time fraction consumed by individually processed Writes for AD-CP, is greater

than the time fraction consumed by Writes processed in batch mode for ADU. For

example, when R-w=2:1 and a„=i.6, the time for processing Writes individually is

O.246 in the AD-CP case, but O.229 in the ADU case. The reason is that most of the

write requests can be processed individually at low arrival rates. Hence few Writes

are left to assemble batches. In other word, the chance that the number of pending

Writes attains batch size TWO is very small.

78

79

Threshold for Writes TWO

Figure 8.7 presents the performance data for AD-CP with different TW, when the

ratio of Reads to Writes is 3:1. For small Write batch sizes (TWO = 4, 6, 8 in graph),

Br is improved as TWO increases, because more Writes are processed in batch mode,

which is optimized in terms of the mean service time. Writes are processed more

efficiently, and in turn, the better disk utilization is gained for processing Reads.

However, for large TWO (TWO > 1O in graph), most Writes are processed

individually due to the limited chance of forming a big size batch. Since it takes a

long time to process a Write batch, there is only one disk available to process Reads,

which results in the degradation in R,..

The maximum throughput is favored by increasing TWO. The decrease on amαχ

from TWO = 8 to TWO = 1O is due to the method used for scheduling Writes in a batch,

since the exhaustive enumeration was used only when TWO < 10, while SAT was

used when TWO ? 10.

8.2.4 An Overall Aomparison

Finally, the overall performance evaluation for the aforementioned schemes is dis-

played in Figures 8.8 and 8.9, with the FCFS policy used as a baseline. SATRAPS (t)

performance is not reported and is discussed in Section 7.5.

As far as R4 is concerned, the performance of ADU is comparable or even

worse than FCFS; both produce poor performance at the higher arrival rates. AD-

CP is comparable to HOLD, and slightly outperforms HOLD when Reads constitute a

larger fraction.

As far as the maximum throughput is concerned, ADU is comparable to FCFS

and HOLD, with unnoticeable improvement. The maximum throughput of AD-CP is

much higher than that of ADU, but still inferior to SPTF.

80

8.3 Summary of Aonclusions

The undertaking of this study was influenced by the marketplace popularity of mir-

rored disks or RAID1, as opposed to more modern RAID disk arrays, which has

lower redundancy but poorer performance for OLTP applications. Non-volatile stor-

age allows fast writes, so that the restaging of dirty blocks to disk can be deferred

and be carried asynchronously through efficient batch processing. This study is based

on the assumption that Reads are held in a shared queue and can be processed on

any disk.

The starting point was a scheduling scheme described in [14j, which is referred

to as ADU scheme in this dissertation. An extension to this method, AD-CP, is

then proposed to improve its performance and the improvement has been shown via

simulation results. These schemes are compared against FCFS, HOLD and SATF.

ADU shows improvement on FCFS, and HOLD to a small degree, in the maxi-

mum attained throughput. However, ADU is outperformed by AD-CP and SATRAP.

It is interesting to note that SATF attains the highest throughput due to its abili-

ty to reduce the mean service time as the queue-length increases. SATRAP provides

a tuning parameter to prioritize the processing of Reads, so that there is a trade-

81

off between the response time and the maximum attained throughput. This method,

unlike others, has a shortcoming in that it does not pay attention to reducing the

space for caching dirty blocks, while this issue is handled automatically by defining a

parameter for processing Writes in batch (in NADU and AD-CP).

AHAPTER 9

PERFORMANAE AND RELIABILITY OF RAID 1 WΙΤΗDECLUSTERING

RAIDi, also known as disk mirroring, provides high performance and reliability by

making data highly available, hence introducing various forms of data redundancy.

Traditional RAID Ι configuration typically fills each disk with consecutive data before

switching to the next pair. As a result, the failure of one disk will cause the Read

workload to double on the surviving disk. Therefore, several variations based on the

basic configuration have been designed to balance the workload in both normal and

degraded modes. Striping is a technique which not only provides better performance,

but also enables workload balancing. Combining striping with RAID]. is a common

scheme utilized in the variations that are under examination.

This chapter specifies three variations along with the basic RAID]. configu-

ration, and compares their load distribution and reliability in both the normal and

the degraded modest. The discussion is based on the assumptions that, the local

scheduling policy is FCFS, and each data pair shares a common queue.

9.1 Model and System Descriptions

This section presents the model of the disk mirroring system, specifies the parameters

used in analysis, and describes various RAIDl configurations with a fixed disk array

framework.

9.1.1 Model Definition

RAIDl system maintains two physical copies of data: primary data copy and sec-

ondary data copy, denoted as X and X', respectively. The secondary data also stands

This is an extension of the joint work with A. Thomasian.

82

83

for a "backup copy" in this study. A RAID1 system with C disks (N = 8 in the

following analysis) is under consideration; for the configurations concerning clusters,

the cluster size, i.e., the number of disks that constitutes a cluster, is defined as A.

Specific system parameters are as follows:

- Total number of disks: C.

- Number of disks in a cluster: A.

- Number of clusters: D = N/A.

- Fraction of read requests: f R .

- Fraction of write requests: fa = 1 — fa .

- Fraction of read requests processed at disk holding primary data: ιι.

- Arrival rate of read requests to eaeh disk pair. ad.

- Arrival rate of write requests to eaeh disk pair: λ^.

- Total load of read requests at eaeh disk: Ad.

- Total load of write requests at eaeh disk: A.

- Total load of each disk: disk(= AR + Αω).

- Total load of itch disk: Ai(= (AR)i + (AR)i).

- Mean service time for single read request: xR.

- Mean service time for single write request.

9.l.2 Various Configurations of RAIDl Declustering

Basie mirroring: Disk 2i mirrors disk 2i — 1, 1 < i < A, and vice versa, as shown in

Figure 9.1. The disks are identical to each other within a mirrored pair, so the Read

load is assumed to be evenly distributed to either disk, i.e., a = 1/2.

Figure 9.l Basic mirroring.

Interleaved deelustering[42, 42j: The primary and secondary copies of data are

stored within an A-disk (A > 2) cluster. The secondary data copy is evenly striped

84

across all the remaining disks in the cluster. Figure 9.2 illustrates the case for A = 4,

and Figure 9.2 for A = 8.

α of Reads are processed at the disk which maintains the primary data copy,

and (1 — α) of Reads are evenly routed to the other disks in the cluster.

Figure 9.3 Interleaved declustering, A = 8.

Chained declustering [44j: As shown in Figure 9.4, the data on each disk is

replicated on the next disk (modulo the number of disks). In normal mode, Reads

are routed to the primary data copy and write operations update both copies.

Figure 9.4 Chained declustering.

Group rotate deDlustering [45j: Group rotate declustering maintains the pri-

mary and secondary data copies in separated clusters of disks, as shown in Figure

85

9.5. The primary data copy is striped across A disk in a cluster, and these striped

data are duplicated as the secondary data copy and stored in another A-disk cluster

in a rotated manner.

9.2 Load Distribution Comparison

Examining the load distribution can effectively deduce both the maximum throughput

and the capability of load balancing of the system. The load distribution comparison

is performed based on a RAIDi system with the following assumptions: (i) there are

N = 8 disks under consideration; (ii) each disk maintains both primary and secondary

data copies, unless otherwise noted; (iii) the cluster size A = 4.

9.2.l Basic Mirroring

Normal Mode

Referring to Figure 9.1, the load of each disk comprises half of the Read load

and the complete Write load:

Note that each disk maintains both the primary data and the secondary (back-

up) data of the counterpart disk.

Degraded Mode

86

The failure of one disk in a mirrored pair does not affect other pairs. For the

surviving disk corresponding to the failed one, the Read load is doubled and Write

load remains:

The load of the disks in other mirrored pairs remains unchanged, and hence

results in unbalanced workloads across all of the remaining N — 1 disks.

9.2.2 Interleaved Declustering

Normal mode

On the assumption that α of Reads access primary data copy (see Figure 9.2),

the Read load of each disk comprises two parts: the accesses to the primary data;

and the accesses to the secondary data that corresponds to the primary data stored

on the other disks within the same cluster:

Degraded mode

Interleaved declustering allows only one disk failure within each cluster. For

each of the surviving disks, the Read load comes from four sources:

i accesses to the secondary data corresponding to the failed disk:

ii accesses to the primary data: αλά

9.2.3 Chained Declustering

Normal mode

In normal mode, Reads are routed to the disk that holds primary data, and

Writes are required to update both data copies. The load of each disk is:

Degraded mode

As shown in Figure 9.4, chained declustering simply backups the data and

stores it on the disk next to which the primary data is stored, rather than having the

secondary data spread over multiple disks. Reads access only the primary data copy

in the normal mode. Therefore, in the degraded mode, a disk failure does not cause

the change in Write load of surviving disks. For simplification, a read-only workload

is assumed in the analysis. Denote A 1 to be the load of disk1 in normal mode, and Ai in

degraded mode. Assume the load of each disk is identical: A M = A 1 = A2 =·« = An_1.

88

Chained declustering does not tolerate contiguous disk failures, and the maxi-

mum number of failed disks, which will not cause data loss, is ιAdj . Load balancing

is not achievable in all the cases when system sustains in degraded mode. The case-

by-case discussions are as follows:

Single disk Bailure: Load balancing is easily achieved across all the surviving

disks. Each of the disks serves N/(N — 1)(C = n in this case) of the total load.

For example, if disk () fails, the load distribution over all the surviving disks is: AA =

Double disk Bailures:

Due to the fact that two consecutive disk failures will cause data loss, the

analysis assumes disko and diskk fail, where k Ο 1 and n — 1.

However, load balancing cannot be achieved in all the cases without data loss.

For example, if disko and disk fail, the load of disk]. will be doubled while not

necessary for other surviving disks. This is because disk s maintains the data copies

B and A', both of whose counterparts are on failed disks.

Load balancing with two disk failures occurs only when each of the remaining

because diskk fails and consequently can not take over the load of diskk , diskk

services all the requests accessing its primary data

other words, load balancing is achieved only when the surviving disks between disk ()

and diskk can accomplish the load of k disks:

In such a load-balancing case, the load of each surviving disk is disk = Aά =

89

Multiple disk Bailures:

For multiple k disk failures, k > 2, a conclusion can be easily derived from the

above analysis that, load balancing is achieved only when k = 2m, (m > 1). For the

example shown in Figure 9.4, the extreme load-balancing case is four disk failures, in

which the load of each surviving disk doubled.

90

9.2.4 Group Rotate Declustering

Normal mode

Assume α of the read requests are routed to the primary disks. Similar to

interleaved declustering, the Read load of each disk consists of the accesses to the

primary data and the accesses to the secondary data corresponding to its counterpart

stored in the other cluster (of disks):

Degraded mode

Group rotate declustering sustains multiple disk failures only when the failed

disks are in one cluster, i.e., either primary disks or secondary disks, but not both.

In the analysis, disk failure is assumed to occur at the primary disks.

In order to achieve load balancing across the surviving disks, the load propor-

tion between primary disks and secondary disks, α, is varied along with the number of

failed disks. To simplify the calculation, assume each cluster maintains only one type

of data copy, i.e., either primary data copy or secondary data copy. A cluster of disks

that maintain the primary-secondary data copy are denoted as primary/secondary

disks, as shown in Figure 9.5. The correctness of the assumption is accomplished by

the fact that the two clusters are symmetric to each other.

91

The analyses, based on the system with N = 8 disks and cluster size n = 4,

are as follows:

Single disk failure

The load of failed disk is evenly distributed to all the secondary disks. For each

secondary disk, the Read load includes the accesses corresponding to the surviving

n — 1 primary disks, and 1/n of the accesses from failed disk:

Multiple disk failures

Similarly, to balance the load between the surviving primary disks and sec-

ondary disks, α is adjusted according to

In an extreme case in which k = A, the Read load of each secondary disk

doubled.

92

9.3 Reliability Comparison

This section estimates the reliability of various RAID configurations by using the

probability oB data loss for each level in degraded mode.The estimates will be given

based on the system described in Section 9.2. Let Pk denote the probability that k

disk failures will not cause data loss.

9.3.l Basic Mirroring

Basic mirroring can tolerate up to Cd disk failures, as long as the failed disks are

in different mirrored pairs. Denote m to be the number of pairs in an disk basic

mirroring system, so that m = Cd.

In general, there are (k) ways for k disk failures; the number of ways that k

disk failures do not cause data loss is (7)2k. Thus the reliability of basic mirroring

9.3.2 Interleaved Declustering

Interleaved declustering distributes the load of a failed disk evenly to the remaining

disks within a cluster. So the probability that one disk failure does not incur data

loss Ρ1 = 1.

Next, consider the case of two disk failures, given that there are A disks per

cluster, so that the number of clusters c = N/A.

There are (2) ways for two disks to fail. After the first disk failure, which has

N possibilities, the number of ways that the second disk can fail in other clusters is

N — A. So the total number of ways that two disk failures are in different clusters is

93

More generally, when k < c disks fail, data loss does not occur as long as

the failed disks are in different clusters. There are (Νιέ.) ways for k disk failures; the

number of possibilities of no data loss is (

the probability of system survival after k disk failures is:

Dote that this is smaller than basic disk mirroring.

9.3.3 Chained Declustering

As described in Section 9.2.3, chained declustering can still tolerate one disk failure,

so the probability of no data loss Ρί = 1; chained declustering system can sustain up

to 12/n] (n = C in this case) failures.

The probability of k disk failures without data loss will be calculated for each

case.

Single disk failure:

Double disk failures:

There are (2) ways for two disk failures; the number of ways that two con-

tiguous disks can fail is A. Thus

94

Three disk failures:

There are (3) possible ways for three disk failures, Any two contiguous disk

failures would result in data loss, which includes two possible cases: three failed disks

are consecutive; two failed disks are consecutive, but the third one is one or more

surviving disks apart.

The number of ways that three contiguous disks fail is n; the number of ways

that two contiguous disks fail excluding three consecutive failures is AAA — 2 — 2),

which is elaborated as follows: the number of two contiguous disk failures is A; the

third failed disk is not possible adjacent to those two, so that the third failure is only

possible to occur on the remaining A — 2 — 2 disks. Thus

Four disk failures:

Similar to the above analysis, there are (714) ways for four disks to fail; the

number of ways that four failed disks are consecutive is A; the number of ways that

three consecutive disks fail excluding four consecutive failures is AAA — 3 — 2); the

number of ways that two consecutive disks fail excluding three or four consecutive

failures is A (n-2-2) — non 2 —1) (two pairs of consecutive failed disks are counted twice).

9.3.4 Group Rotate Declustering

As explained in Section 9.2.4, group rotate declustering tolerates multiple disk fail-

ures, as long as the failed disks are within one cluster, i.e. either primary disks or

secondary disks. Biven the assumption of disk failure's) occurring on primary disks),

the reliability analysis is performed as follows.

95

The probability that single disk failure does not incur data loss Ρ 1 = 1. When

k(k > 2) disks fail, there are (ί;,ϊ) ways for this to happen; while there are only (Ζ)

out of them that k disks fail within one cluster, which does not incur data loss. There

are c(D = N/ri) clusters in total, so the number of ways that k disks can fail within a

cluster and hence without data loss is c (k) . Thus

9.4 Summary of Conclusions

Two architectural techniques are applied in redundant disk arrays: data striping,

for improved performance, and redundancy, for improved reliability. Between the

two most popular RAID organizations, trends in disk technology has made RAIDi,

also known as disk mirroring, more preferable than RAID, because the high data

availability in RAID enables an improved performance of randomly accessing small

data blocks, which is typical in OLTP applications.

A drawback of basic disk mirroring is the possibility of a data access skew

in both normal and degraded modes. This can be solved by including data striping.

Several variations with data striping have been proposed in the past years; this chapter

has reviewed three of them: interleaved declustering, chained declustering and group

rotate declustering, and compares their capability of load balancing and reliability to

the basic RAID configuration. The results are summarized as in Table 9.1.

Table 9.1 Capability of Load Balancing and Reliability Comparison

96

CHAPTER 10

CONCLUSION

This dissertation presents the impact of disk scheduling on the secondary storage

systems. Heavy workloads create long queues of pending requests on the disk side;

the disk arm is a valuable resource for improving disk or system performance, by

reordering the processing of the pending requests according to certain criteria.

A detailed description of the disk structure was demonstrated, together with

increasingly complex data layouts resulting from updated technologies. A rather

sophisticated disk simulator, which has taken into account the above information,

was developed for both analytic and simulation studies. Experiments in this study

utilized both synthetic and traced workloads. When priority becomes one of the

considerations, the requests are simply classified into two levels: read requests, which

have a higher priority than write requests.

A survey of existing scheduling algorithms for single disk and mirrored disks

was conducted. Extensions of single disk scheduling were proposed after a close study

of the existing algorithms.

A mathematical queueing model, based on some favorable assumptions, was

established for the disk system, in order to theoretically verify the previous work and

obtain a starting point for later studies. Two analytic methods, used to evaluate

SAT performance by calculating the mean request response time, were specified.

A valuable by-product was produced in the experiments: the normalized mean disk

access time is inversely proportional to the fifth root of the number of requests on the

disk.

SAT has been proved to outperform other classical scheduling policies in

many studies; this dissertation validates the conclusion by simulation. Several vain-

97

98

actions of SATF were reviewed and re-evaluated by experiments with both synthetic

and traced workloads. Results have shown that these variations tend to outperform

SATF in certain aspects, e.g. throughput, under particular circumstances, such as

intensive workload bursts. Three new variations were then defined: SATRLAi de-

signed to reduce the variance of the request response times, also shows significant

improvement in mean request response time when the workload accesses data in a

more clustered manner; SATF adjusts the priority of each request by considering its

waiting time, and shows remarkable improvement in the 95 th percentile of response

times; SATRAP prioritizes the low-priority requests with long waiting time by multi-

plying a reducing factor tAO < t < 1), and the results exhibit an exact match between

synthetic and real workloads in selecting the optimum value for t.

The study in mirrored disk system was started with a discussion on the system

configuration. A comprehensive classification of routing schemes and disk scheduling

policies was then presented, in order to facilitate performance evaluation. A sim-

ulation with synthetic workloads was conducted to assess various combinations of

scheduling and routing. SQ configuration displays advantage over IQ in both re-

quest response time and system throughput, which is consistent to the theoretical

queueing analysis. Under the same configuration, the routing schemes which exploit

the information of current system state, demonstrates better performance than the

schemes that route requests in a mechanical way. Affinity-based routing improves

performance only when the FCFS is applied as local scheduling policy.

The study of a mirrored disk system with DVS cache was driven by the paper

by Polyzois et al. [14j. Write requests are restaged and processed in batch, while

there is always at least one disk available to process read requests. Their scheme

is improved by refining the scheduling policy for processing Writes in a batch, and

setting a threshold for prioritizing the processing of Reads.

99

Traditional disk mirroring enables the improvements in both performance and

system reliability via high data redundancy. However, load balancing is hard to

achieve in basic mirroring, so that many variations were developed to address this

problem. This dissertation describes three representative variations, and compares

their capability of load balancing and reliability. Analysis has shown that "group

rotate declustering" demonstrates an ease of implementation, a good behavior of

balancing load and robustness to tolerate multiple disk failures.

APPENDIX A

RAID ORGANIZATION LEVELS

RAID level 0 is often used to indicate a non-redundant disk array with striping.

Briefly, RAID is block interleaved dedicated mirroring. RAID is bit or byte-

interleaved and uses Hamming error correcting code [46j . RAID is block-interleave

parity with one disk dedicated to parity. RAID is block-interleaved parity with one

disk dedicated to parity. RAID is rotated block-interleave parity with the parity

blocks distributed over all disks. In Figure A.1, the data and redundancy information

organizations for RAID levels 0 through 5 are illustrated. The RAID design shown

uses leBt-symmetric organization [47j, which is first placing the parity stripe units on

the diagonal and then placing consecutive data stripe units on consecutive disks.

Among those RAID levels, RAID 2 and 4 are of less interest. RAID uses

Hamming code, which introduces higher redundancy than necessary. RAID differs

from RAID only in that it is block-interleave. There is a load imbalance problem

for RAID, since the disk that is dedicated to parity can be overloaded if a large

fraction of requests are Writes. RAID offers a better solution by distributing the

parity stripe units over all disks, such that the load is balanced and all disks can

contribute to the read throughput. RAID is suitable for the special scenario when

the disk array is dedicated to a single application and the process demands large

amount of data at high bandwidth.

The concept of disk array offers a solution for highly reliable parallel data

storage. For single disk tolerant disk arrays, the reliability can be measured in the

form of mean time to data loss(MTTDL). A simple expression for the MTTDL for a

redundant disk array that can tolerate one disk failure is given in [10j:

101

Figure A.l Data layout in RAID levels 0 through 5. The shaded blocks are pari-
ties. di means data are bit or byte interleaved over disks. D i means data are block
interleaved. ρi_j means the parity is computed over di through di , Ρi-j is defined
similarly.

where N is the total number of disks in the array, G is the number of disks in a RAID

group (i.e. a set of disks over which a parity is computed), MTTFdisk is the mean

time to failure of a component disk, typically 200,000 to 200,000 hours. MTTRdisk

is the mean time to repair of a component disk, typically a few hours.

APPENDIX B

QUEUEING MODEL FACILITIES

B.1 Little's Theorem

Little's Theorem is one of the most important theorems in Queuing Theory. The

statement of Little's Theorem is:

where N is the average number of customers in the system, A is the average

arrival rate into the system, and T is the averine amount of time a customer spends

in the system.

Little's theorem can be applied in almost any system or part of it.

B.2 Poisson Process

One of the most frequently used model for the arrival processes is the Poisson process.

It has been mathematically shown that the merging of a large number of statistically

independent arrival processes gives a Poisson process asymptotically. Poisson process

is used to study the most basic queueing system: Μ/Μ/1 queues.

The probability density distribution for a Poisson process is shown as Equation

B.2, which describes the probability of seeing A arrivals in a period from 0 to t.

where t is used to define the interval 0 to t; A is the total number of arrivals in the

interval 0 to t; A is the averine arrival rate.

102

103

Therefore, the distribution of the interarrival times follows exponential distri-

here X is the time interval between two consecutive arrivals.

B.3 MPG/ 1 Queuing Formulas

o: Poisson arrival process, intensity A

G: general holding time distribution, mean 1 /c

1 : single server, load p = A/c

An M/G/1 queueing system can be used to derived the Pollaczek-Khinchin

(P-K) formula, which determines the averine time a customer spends in the system.

Most of the equations in this section can be found in [48j. First define bibto be the

ith moment of service time, A to be the arrival rate, and p = /|Al to be the utilization

factor. The P-K formula is:

where W is the mean waiting time of a customer in a queue.

The second moment of the waiting time is:

The moments of response time:

Biven the waiting time and service time are independent, the first two moments

are as follows:

104

B.4 Non-Preemptive Priority Queuing

The Head-of-the-line (HOLD) priority queueing system can be described with the fol-

lowing parameters:

Jobs has P priority levels (with Highest, 1 lowest),

P queues for each priority level,

Jobs at each level are served in FCFS order,

Jobs in class p have an arrival rate λρ ,

mean and second moment of service time is by and bP2) ,

The total arrival rate is 1, =

Fraction of arrivals in class

The mean overall service tin

The utilization factor for clad

The overall utilization factor

The mean waiting time and response time for class p requests is denoted by

The overall waiting time and response time are

105

B.5 Some Important Distributions

Erring Distribution

A random variable X has an Erring-k distribution if X is the sum of k inde-

pendent random variables having a common exponential distribution with mean 1 /a.

The probability density function is:

When the CR (cyclical routing) scheme is implemented in a mirrored disk

system with independent queues, the request interarrival times to each disk have an

Erring-k distribution.

hyperexponentially Distribution

A random variable X is hyperexponentially distributed if X is chosen with

probability Ai , i = 1... k from a mixture of k exponential random variables. The

probability density function is:

The mean is equal to

and the coefficient of variation cc is always greater than or equal to 1.

When the UR (uniform routing) scheme is implemented in a mirrored disk

system with independent queues, each disk has an equal probability to be sent the re-

quests whose interarrival times have an exponential distribution. In other words, each

106

disk chooses requests from two exponentially distributed queues with equal probabil-

ities, and the arrival rate to each disk is half of the total arrival rate to the system.

APPENDIX C

SCHEDULING SCHEMES FOR BATCH PROCESSING

An exhaustive enumeration is desirable to determine an optimal schedule for the

processing of Writes. This is computationally feasible for smaller values of TWO,

where the minimum schedule (makespan) among all possible is selected.

For rirger values of TWO a heuristic algorithm should be used to obtain a near

optimal schedule. Rather than CCAIN utilized in [14j, the SATF algorithm was

employed in the AD-CP scheme to minimize the schedule. There have been several

investigations on this topic such as [49], [50j, but this study aims to find a quick

and easy approach to be implemented. Of course if the best heuristic provides a

poor performance compared to the optimum, which is unfortunately only known for

smaller values of TWO, then smaller values of TWO should be selected. On the other

hand it is intuitively clear that more efficient scheduling is possible for rirger values

of TWO.

Table C.l Mean Service Time for Write Batches with SAT Scheduling and An
Optimal Ordering

An experiment for a preliminary investigation was initialized by generating

n requests randomly priced on the disk. Assuming that the disk arm is initially at

block number zero, makespan is determined for all A! permutations; the optimal one

and the ordering generated according to SATF were reported. The experiment was

107

108

repeated for 100 times and the averines are listed in Table C.1. The averines of

with two scheduling methods are also

ch size increases in both cases. The

ratio Tbatch ,SATF/Tbatch,Optimal demonstrates that SATF provides schedules quite close

to the optimal ordering.

Figure C.1 dispriys the effect of TWO on Xservice with the SATF policy in an

extended range. The drop in service slows down beyond TWO = 50 and approximates

to one half of its value.

iο,

Figure C.1 Mean service time with SATF scheduling policy

APPENDIX D

SCHEDULING SCHEME FLOWCHARTS

D.l ADU Flowcharts

The flowcharts in Figure D.1 depict the logical steps to perform the Alternating

Deferred Updates (ADU) [14j scheme in a mirrored disk system with an NVS cache

(see Section 8.1.1). The specifications for the flowcharts are listed in Table D.1.

Table D.l Specification for ADU Scheme Flow Charts

109

110

D.2 AD-CP Flowcharts

The flowcharts in Figure D.k depict the logical steps to perform the Alternating

Destines with Conditional Priorities (AD-CP) scheme in a mirrored disk system with

an NVS cache (see Section 8.1.k). The specifications for the flowcharts are listed in

Table D.k.

Table D.2 Specification for AD-CP Scheme Flow Charts.

111

Yes

Sw1=Off

- WW1—

On

η

Yes
• 393

Sr=Off
3.9.6 Yes

Sr-Off

112

3.0

	Arrival

3.i

Departure from Diski

Write Departure from DiskA-
Symmetric to

"Departure from Disk1"

32.1
Si=R, (Di is the
disk closer to

Request
according to

SATF)

(IT) or (T, Ι)

3.2.2

1 3.2.3
R0++

3.3.i

(Si,S2)=(W,W)

(1,1) or (i,1)
13.3.2

Si=1=>Si=W;
W0j++(Dj is the

non-idle disk)

(TIC)

1 3.3.3

W0 i ++;
W02++;

ν3.4
See

"Pa rib"

—Departure from Distil 	 NC ++

Νο
3.i0

(
 Print statistics)3.5

Yes

St =1

On

• 3.7.
DI process

Writes according
optimized order;
BWl-; Si=W

Di process a
Write according
to FCFS; Si=W

Νο

• ,73
BW1=TW,

Swt=On, Tum=2,
optimize WQ1

ordering

3.7.5
Di process a

Write according
optimized order;

BW1-;

I
 Si=W

WQt-- Ι

Ο83.7 •4

3.9.

V3.8.1
Process a Read from 	 [W
RO according to 	 3.9.2 4
SAT RO--; Si = R

Sr=Off
	

Νο

3.9

9 . i
3.9.8

Dl process Writes
according optimized
order WW1-; Si=W

Yes
	

3.9.5
Process a Read

from RD according
to SATF; RO- -;

Si= R

	Ι

Off

R
Process a Read

from RO according
to SATF; RW- -;

Si =R

Off
3.9.7.i

5W1=1 W,
Sw1=On,
Tum=2,
optimize

WQi ordering

3.9.7.2 1
Di process Writes

according optimized
order; ΒWi-; Si=W

Ones YesSwi=Off

Νο

Νο

• •
►^ 	Loop)t

(b)

Figure D.2 Flowchart for AD-CP scheme (Arrival
(Departure (0 denotes greater than O),

REFERENCES

[1] K. K. Ramakrishnan, P. Bissau, and R. Karedla, "Analysis of file I/O traces in com-
mercial computing environments," in ProceediAgs of the 1992 ACM
SIGMETRICS joint internatioAal conference on Measurement and modeling of computer

systems, pp. 78-90, ACM Press, 199k.

[2] P. J. Denning, "Effects of scheduling in file memory operations," in Proc. AFIPS
Spring Joint Computer Coif. - SPCC, viol. 30, pp. 9-k1, 1967.

[3] M. Seltzer, P. Chen, and J. Ousterhout, "Disk scheduling revisited," in Proceedings
of the USENIX Winter 1990 Technical ConfereAce, (Berkeley, CA), pp. 313-3k4,
USENET Association, 1990.

[4] D. M. Jacobson and J. Wilkes, "Disk scheduling algorithms based on rotational po-
sition," Tech. Rep. HPL-CSP-91-7rev1, HP Laboratories, 1991.

[5] A. Risks and E. Riedel, "It's not fair - evaluating efficient disk scheduling.," in MAS-
COTS, pp. k88-k95, Oct kOO3.

[6] A. Risks, E. Riedel, and S. Iran, "Manining overload via adaptive scheduling," in
Proceedings of the 1st Workshop on Algorithms aAd Architecture for Self-Managing

Systems, pp. k3-k4, June kOO3.

[7] A. Thomasian and C. Liu, "Some new disk scheduling policies and their performance,"
in Proceedings of the 2002 ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems, pp. k66-k67, ACM Press, kOOk.

[8] A. Thomasian and C. Liu, "Disk scheduling policies with lookahead," SIGMETRICS
Performance Evaluation Rev., viol. 30, no. k, pp. 31-40, kOOk.

[9] A. Thomasian and C. Liu, "Performance evaluation of variations of the SAT schedul-
ing policy," in Proceedings of the 2004 International Symposium on Performance
Evaluation of Computer and Telecommunication System, kOO4.

[10] D. A. Patterson, B. A. Bibson, and R. H. Katz, "A case for redundant arrays of inex-
pensive disks (RAID)," in Proceedings of the 1988 ACM SIGHED International
Conference on MaAagement of Data, Chicago, Illinois, June 1-4, 1988 (H. Boreal
and P.-A. Larson, eds.), pp. 109-116, ACM Press, 1988.

[11] P. M. Chen and D. A. Patterson, "Maximizing performance in a striped disk array,"
in Proc. 17th Annual Intel Sump. on Computer Architecture, ACM OLIGARCH
Computer Architecture News, pp. 3kk-331, 1990.

[12] C. Han, A. Thomasian, and C. Liu, "Affinity based routing in zoned mirrored disks."
Submitted to The Computer Journal, August kOO4.

113

114

[13]A. Thomasian, J. Spirollari, C. Liu, C. Han, and G. Fu, "Mirrored disk scheduling,"
in Proceedings of the international symposium on Performance Evaluation of
Computer and Telecommunication Systems, kOO3.

[14] C. A. Polyzois, A. Bide, and D. Dias, "Disk mirroring with alternating deferred
updates... (prize paper)," in Very large data bases, VLDB e93: proceedings of
the 19d International Conference on Very Large Data Bases, August 24-27,
1993, Dublin, Ireland (R. Agrawal, S. Baker, and D. Bell, eds.), (Los Altos, CA
940kk, USA), pp. 604-617, Morgan Kaufmann Publishers, 1993.

[15] A. Thomasian and C. Liu, "Mirrored disk scheduling methods with a non-volatile
shared cache," technical memo, Integrated Systems Laboratory, Department of
Computer Science, NJIT, kOO3.

[16] C. Han, Studies of disk arrays tolerating two disk failures and a proposal for a het-
erogeneous disk array. PhD thesis, NJIT, Newark, NJ, May kOO4.

[17] C. Ruemmler and J. Wilkes, "An introduction to disk drive modeling," IEEE Com-
puter, viol. k7, no. 3, pp. 17-k8, 1994.

[18] B. L. Worthington, Aggressive centralized aAd distributed scheduling of disk requests.
PhD thesis, The University of Michigan, Michigan, June 1995.

[19] R. Geist and S. Daniel, "A continuum of disk scheduling algorithms," ACM Trans-
actions on Computer Systems (ROCS), vol. 5, no. 1, pp. 77-9k, 1987.

[20] R. Beist and R. B. Ross, "Disk scheduling revisited: Can 0(A2) algorithms compete,"
in Proceedings of the 35d Annual ACM Soundest CoAference, (Murfreesboro,
TN), pp. 51 - 56, April 1997.

[21] B. L. Worthington, B. R. Banger, and Y. N. Patty, "Scheduling algorithms for mod-
ern disk drives," in Proceedings of the 1994 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pp. k41-k5k, 1994.

[22] S. W. Ng, "Handling seek time variabilities in shortest access time first disk schedul-
ing," Tech. Rep. RJ-10kO6, IBM Research, Almaden, CA, kOO1.

[23] E. G. Coffman and M. Hofri, "Queueing models of secondary storine devices.," Queue-
ing Systems, vol. 1, no. k, pp. 69-168, 1986.

[24] M. Hofri, "Disk scheduling: FCFS vs. SST revisited," Communications of de ACM,
vol. k3, no. 11, pp. 645-653, 1980.

[25] T. J. Teorey and T. B. Pinkerton, "A comparative analysis of disk scheduling poli-
cies.," Commune. ACM, viol. 15, no. 3, pp. 177-184, 197k.

[26] D. Britton and J. Gray, "Disk shadowing," in Fourteenth International Conference oA
Very Large Data Bases, August 29 - September 1, 1988, Los Angeles, California,
USA, Proceedings (F. Bancilhon and D. J. DeWitt, eds.), pp. 331-338, Morgan
Kaufmann, 1988.

115

[27] R. P. King, "Disk arm movement in anticipation of future requests," ACM Transac-
tions on Computer Systems (ROCS), vol. 8, August 1990.

[28] R. Beist, R. B. Reynolds, and D. Suggs, "Minimizing mean seek distance in mirrored
disk systems by cylinder recapping," Performance Evaluation, viol. kO, no. 1-3,
pp. 97-114, 1994.

[29] S. W. Ng, "Improving disk performance via latency reduction," IEEE Transaction
on Computers, viol. 40, no. 1, pp. kk-30, 1991.

[30] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishnamurthy, and T. E. Ander-
son, "Trading capacity for performance in a disk array," in Proceedings of de
Fourth Symposium on Operating Systems Design and Implementation (SDI),
(San Diego), pp. k43-k58, USENIX Association, Oct kOOO.

[31] J. A. Woolworth and C. U. Orji, "Distorted mirrors," in Proceedings of the first inter-
national conference on Parallel and distributed information systems, pp. 10-17,
IEEE Computer Society Press, 1991.

[32] D. F. Knowsley, S. Chen, and S.-P. Yu, "Performance analysis of a fault tolerant mir-
rored disk system," in Performance e90, Proceedings of de 14d IFIP WG 7.3 In-
ternational Symposium on Computer Performance Modelling, Measurement and
Evaluation, Edinburgh, Scotland, 12-14 September 1990 (P. J. B. King, I. Mi-
trani, and R. Cooley, eds.), pp. k39-k53, North-Holland, 1990.

[33] "Validated disk parameters." http : //ωωω . pal . Amu . eau/DiskSim/aiskspeAs . html
(Retrieved on April kOO4).

[34] A. Thomasian and J. Melon, "RAID performance with distributed sparing," IEEE
Trans. Parallel District. Cyst., viol. 8, no. 6, pp. 640-657, 1997.

[35] "Storine performance council." http : //wow. storageperformanAe . Borg, (Retrieved
on August kOO3).

[36] A. Thomasian and C. Liu, "Empirical performance analysis of the SAT policy," in
Proceedings of the 2004 InterAational Symposium on Performance Evaluation of
Computer and Telecommunication System, kOO4.

[37] A. Thomasian and C. Liu, "Empirical performance evaluation of the SAT disk
scheduling policy." submitted to The Computer Journal, August kOO4.

[38] L. Kleinrock, Queueing Systems Volume 1: Theory. Wiley Interscience, 1975.

[39] S. S. Lavenberg, Computer Performance Modeling Handbook. Academic Press, Inc.,
1983.

[40] A. Thomasian, C. Han, G. Fu, and C. Liu, "A performance evaluation tool for RAID
disk arrays," in Proceedings of de 1st International ConfereAce on Quantitative
Evaluation of Systems, pp. 8-17, September kOO4.

116

[41] P. Zabback, J. Melon, and J. Riegel, "The RAID configuration tool," in Proceedings
of de Third International Conference on High-Performance Computing (HiPC
e96), p. 55, IEEE Computer Society, 1996.

[42] DBC/1012 Database Computer System Manual. Release k, Teradata Corporation,
Nov 1985.

[43] G. P. Copeland and Τ. Keller, "A comparison of high-availability media recovery
techniques," in Proceedings of de 1989 ACM SIGHTED International Conference
on Management of Data, Portland, Oregon, May 41 - June 2, 1989 (J. Clifford,
B. B. Lindsay, and D. Maier, eds.), pp. 98-109, ACM Press, 1989.

[44] H.-'. Hsiao and D. J. DeWitt, "Chained Declustering: A new availability strategy
for multiprocessor database machines," in Proceedings of 6d International Data
Engineering Conference, pp. 456-465, 1990.

[45] S. Chen and D. Knowsley, "A performance evaluation of RAID architectures," IEEE
TransactioAs on Computers, viol. 45, no. 10, pp. 1116-1130, 1996.

[46] W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes. Cambridge, MA,
USA: The M.I.5. Press, knd ed., 197k.

[47] E. K. Lee and R. Η. Katz, "Performance consequences of parity placement in disk
arrays," in Proceedings of the Fourth International Conference on Irchitectural
Support for Programming Languages and Operating Systems, pp. 190-199, 1991.

[48] H. Takagi, Queueing Analysis - A Foundation of Performance Evaluation. Borth-
Hovland, 1991.

[49] G. Ballo, F. Malucelli, and M. Marred, "Hamiltonian paths algorithms for disk schedul-
ing," Tech. Rep. HPL-95-71, Hewlett Packard Laboratories, July 19 1995.

[50] M. Andrews, Μ. A. Bender, and L. Zhang, "New algorithms for the disk scheduling
problem," in 37d Annual Symposium on Foundations of Computer Science -
FLOCS : October 14-16, 1996, Burlington, Vermont (IEEE, ed.), (1109 Spring
Street, Suite 300, Silver Spring, MD kO910, USA), pp. 550-559, IEEE Computer
Society Press, 1996.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Useful Information for Research
	Chapter 3: Review of Related Work
	Chapter 4: Methodology
	Chapter 5: Preliminary Study of Single Disk Scheduling
	Chapter 6: Performance Evaluation for Variations of SATF Policy
	Chapter 7: Mirrored Disk Scheduling
	Chapter 8: Mirrored Disk Scheduling with an NVS Cache
	Chapter 9: Perfomance and Reliability of RAID1 with Declustering
	Chapter 10: Conclusion
	Appendix A: RAID Organization Levels
	Appendix B: Queueing Model Facilities
	Appendix C: Scheduling Schemes for Batch Processing
	Appendix D: Scheduling Scheme Flowcharts
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

