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ABSTRACT

DIRECT NUMERICAL SIMULATIONS AND EXPERIMENTAL
INVESTIGATION OF DIELECTROPHORESIS

by

Arun Thankamony John-Kadaksham

This dissertation deals with the numerical and experimental studies of the phenomenon of

dielectrophoresis, i.e., the motion of neutral particles in nonuniform electric fields.

Dielectrophoresis is the translatory motion of neutral particles suspended in a dielectric

medium when they are subjected to an external nonuniform electric field. The translatory

motion occurs because a force called the dielectrophoretic force, which depends on the

spatial variation of the electric field, acts on the particles. As the generation of force

involves no moving parts and the particles can be moved without touching them,

dielectrophoresis can be used in many applications, including manipulation and

separation of biological particles, manipulation of nanoparticles, etc.

In the present study, the numerical simulations of the fluid-particle system are

performed using a direct numerical simulation scheme based on the distributed Lagrange

multiplier method. In this scheme, the fluid flow equations are solved both inside and

outside the particle boundaries and flow inside the particle boundary is forced to be a

rigid body motion by using the distributed Lagrange multiplier. The electrostatic force

acting on the particles is computed using the point dipole method. The scheme is used to

study the behavior of particles in the suspension under the influence of a nonuniform

electric field.



The numerical scheme is used to study the influence of a dimensionless

parameter, which is the ratio of electrostatic particle-particle interactions and

dielectrophoretic force, in the dynamics of particle structure formation and the eventual

particle collection. When this parameter is of order one or greater, which corresponds to

the regime where particle-particle interactions are comparable in magnitude to the

dielectrophoretic force, simulations reveal that the particles form interparticle chains and

the chains then move to the electrode edges in the case of positive dielectrophoresis.

When this parameter is of order ten the particles collect in the form of chains extending

from one electrode to the opposite one clogging the entire domain. On the other hand,

when this parameter is less than order one, particles move to the electrode edges

individually and agglomerate at the edges of the electrodes.

The results of numerical simulations are verified experimentally using a

suspension of viable yeast cells subjected to dielectrophoresis using microelectrodes. The

experiments show that at frequencies much smaller than the crossover frequency where

the value of the above parameter is greater than order one, the yeast particles form chains

and then move and collect at the electrode edges. Where as, at frequencies closer to the

crossover frequency where the value of the parameter is less than order one, particles

move individually without forming chains and agglomerate at the electrode edges.

The numerical simulation scheme is also used to study the dielectrophoresis of

nanoparticles. Simulations show that in a uniform electric field the Brownian force is

dominant and results in the random scattering of the particles. In the case of nonuniform

electric field, it is possible to overcome the Brownian force and collect the particles at



pre-determined locations, even though the trajectories of the particles are influenced by

Brownian motion.

Finally, the method of images is used to improve the electric field solution when

the particles are close to the domain walls. Simulations performed for uniform electric

fields with the method of images shows that when the distance between the particle and

domain boundary is of the order of particle diameter the influence of the particles on the

electric field boundary conditions is significant.
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CHAPTER 1

INTRODUCTION

The aim of this research is to study the motion of electrically neutral particles suspended

in a liquid in uniform and spatially varying electric fields. The suspended particles

become polarized and interact with each other electrostatically, and also with the applied

electric field when the electric field is spatially varying. The electrostatic interaction with

the spatially varying electric field results in a force to act on the suspended particles. This

force is called the dielectrophoretic (DEP) force and the phenomenon is called

dielectrophoresis. The dielectrophoretic force results in a translational motion of the

particle. The magnitude and direction of the force experienced by the particle depends on

the strength and spatial variation of the applied electric field.

The study of dielectrophoresis is important, as it can be used for a variety of

practical applications. Some of the applications include filtration of fluids, separation of

particles with different polarizabilities, manipulation of nanoparticles, and lab-on-a-chip

type applications. One of the features that make dielectrophoresis a good particle

manipulation force is the fact that there are no moving parts involved and the particles

can be moved without touching them. This makes the force a suitable one for

manipulating biological particles in various applications such as cell sorting, cell lysing,

cell fusion etc.

Before moving into the details of the numerical simulations and the results of

simulations and experiments, let us get familiarized with the basics of the theory of

1
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dielectrophoresis and see how the force can be efficiently used for particle manipulation

in practical devices.

1.1 Theory of Dielectrophoresis

As discussed before, a polarizable particle suspended in a nonuniform electric field

experiences a force called the dielectrophoretic force due to the interaction between the

electric field and the induced dipole moment. The resulting translational motion of the

particle is referred to as dielectrophoresis. The direction of motion is either towards the

region of maximum electric field in the case where the particle is more polarizable than

the suspending medium or towards the region of minimum electric field in the case where

the particle is less polarizable than the medium. The direction of the force remains the

same even if the polarity of the external field is reversed as the direction depends only on

the magnitude of the electric field (see Figure 1.1). Consequently, the DEP force also acts

in an AC electric field. But, as discussed later, the magnitude of the force depends on the

rms value of the electric field.

The above behavior of a neutral particle in a spatially varying electric field has to

be distinguished from that of a charged particle in an electric field. In the case of a

charged particle, the particle will always move to the electrodes having the opposite

polarity. Therefore, if the polarity of the external electric field is reversed, the direction of

motion of a charged particle will also be reversed. This motion of a charged particle is

termed "electrophoresis."

Electrorheological (ER) suspensions are suspensions whose properties can be

altered by the application of an electric field. It is well known that when an ER liquid is
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subjected to a spatially uniform electric field the particles form chains and columns that

align parallel to the electric field direction [1]. The effective viscosity of the ER

suspension increases dramatically because the length of these chains and columns can be

of the same order as the gap between the electrodes, and their distribution on the planes

perpendicular to the electric field direction is approximately uniform.

Figure 1.1 A schematic of the dielectrophoretic force acting on a neutral particle in
the case of positive dielectrophoresis. The particle being neutral gets polarized with
equal amount of charge at both ends. However, the dielectrophoretic force depends on
the spatial variation of the electric field, and therefore a net force acts in the direction
of more intense electric field. The direction of force remains the same even if the field
is reversed.
The above picture is taken from "Dielectrophoresis," Pohl, H.A., Cambridge
University Press.

In spatially varying electric fields, on the other hand, the particles collect either

near the local maxima or local minima of the electric field magnitude because of an

electrostatic force, which depends on the gradient of the electric field that acts on the

particles [2, 3]. Since, in a nonuniform electric field no domain sized structures are
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formed, the change in the effective viscosity of the ER suspension is relatively small. The

electrostatic forces exerted by a nonuniform electric field on the particles of the

suspension can be effectively utilized in various applications such as filtration of dirty

fluids, manipulation of biological cells in micro total analysis systems, and separation of

different kinds of cells, etc.

The polarized particle can be approximated by a dipole placed at the centre of the

particle when the length scale of the spatial variation of the external electric field is much

greater than the particle size. Then the dielectrophoretic force experienced by the dipole

of dipole moment m, in a nonuniform electric field is given by:

FDEP = M • VE (1.1)

where m is the dipole moment of the particle and E is the electric field. In arriving at

Equation (1.1), only the dipole contribution is taken into account without considering the

quadrupole and the other higher-order terms.

If the dipole is replaced by a dielectric sphere of radius a and permittivity s,, at the

same position as the dipole, then the dielectrophoretic force on the dielectric sphere in a

dielectric medium is given by:

F DEP = 4703 eosfiE • VE (1.2)

where a is the particle radius, sc is the permittivity of the fluid, so = 8.8542x10 -12 F/m is

the permittivity of free space and E is the electric field, fi is the real part of the complex

*	 *	 *
	E - E	 E -E

frequency dependent Clausius-Mossotti factor	
p c
 *	 , i.e., /3(f) = Re 

p

E	 28
p	 c

+ 2E * 
c
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*c and sc being the complex permittivity of the particles and the fluid, and e =s—j—a ,

where a is the conductivity, c is the permittivity and f is the angular frequency of the

applied electric field.

The value of fi is limited in the range -0.5 to 1.0 and it takes negative values when

the dielectric constant of the suspending fluid is greater than that of the particles and

takes positive values when the dielectric constant of the suspending fluid is less than that

of the particles. Since fl is frequency dependent, it is possible in theory for every fluid

particle system that is not a perfect dielectric system, to have a frequency at which /3 goes

to zero. This frequency at which the Clausius-Mossotti factor, /3, is zero is called the

crossover frequency (see Figure 1.2). At frequencies above and below the crossover

Figure 1.2 A typical curve for Clausius-Mossotti factor, showing the crossover
frequency.
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From the expression for the dielectrophoretic force we also notice that when 13 is

positive the direction of the dielectrophoretic force is along the gradient of the electric

field magnitude and when 13 is negative, the force acts in the opposite direction. In the

simulations, it is assumed that both fluid and suspended particles are nonconductive or

ideal dielectrics. Notice that in this case the Clausius-Mossotti factor is real as the

conductivities of both mediums are zero. The equations used in such a case are however

applicable even for lossy dielectrics, provided the frequency of the applied AC electric

field is sufficiently large such that e >> fa .

It follows that the direction of the dielectrophoretic force determines the regions

in which the particles collect. For example, when fi is positive, the dielectrophoretic

force moves the particles into the regions where the electric field strength is locally

maximum which is normally on the electrode surfaces, while when fi is negative, it

moves the particles into the regions where the electric field strength is locally minimum.

The dielectrophoretic force, therefore, makes the particle distribution less uniform and

thus, as mentioned above, can have a dramatic impact on the particle scale suspension

structure. Such a force can also be used for removing particles from a suspending liquid,

as well as for separating particles for which the sign of /3 is different. For a given particle,

the sign of /3 depends on the dielectric constant of the fluid, as well as the frequency of

the applied AC field. Therefore, at least in principle, any two sets of particles with

different dielectric constants can be separated, provided a suitable fluid is used, such that

the sign of /3 for them is different.
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The polarized particles of a suspension are not only subjected to the applied

external electric field, but also interact with each other electrostatically. These

electrostatic interparticle interactions appear in the form of bunching effect holding the

particles in the form of long chains. These interparticle attractions are sometimes referred

to as 'mutual dielectrophoresis' in the literature. The mutual dielectrophoresis arises

because the particles which have a different polarizability than the medium distort the

electric field around them. Each particle therefore experiences a nonuniform electric field

near the other and is attracted to the regions of high electric field intensity near each

other, resulting in particle bunches or chains.

This interaction among particles can be of the same order as the dielectrophoretic

force when particles are close to each other, as is the case when they collect in the high or

in the low electric field regions.

Thus, the total electrostatic force acting on the ith particle FE,i, is given by the sum

of these two forces,

FED =F DEp , i +F D J	(1.3)

where FDEp = 47-1-a 3 s0613E i VE i is the DEP force acting on the ith particle and FAi is the

net electrostatic particle interaction force acting on the ith particle, given by

FD,i = I FD,u . Here, within the framework of the point dipole approximation

where p i denotes the dipole moment of particle i. Notice that FAij varies inversely as the

fourth power of the distance between the particles.
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As already noted, the direction of the dielectrophoretic force is independent of the

sign of the applied electric field, making it a versatile force in the manipulation of

particles. The force would be most prominent in low viscous suspensions having large

difference in the dielectric constants of the fluid and the particle.

However, dielectrophoresis as a deterministic force has a few drawbacks. The

dielectrophoretic force is proportional to the volume of the particle and therefore as the

size of the particle decreases, the effect also decreases, making it difficult to manipulate

smaller sized particles. Also, as the size of the particles decreases, the intensity of

Brownian motion increases, making it difficult to manipulate particles through pre

determined trajectories. The effect of Brownian motion was first thought to overcome

any deterministic motion due to the dielectrophoretic force on sub micrometer particles

[3] and the minimum particle size required for dielectrophoretic motion was estimated to

0
be around 4000-6000 A under reasonable physical conditions.

Also, for the dielectrophoretic force to be effective, it requires a quite divergent

electric field. The electric field strength required for the effective manipulation of

particles is also quite high usually in the range of 10 4 V/m.

Until recently, the above constraints limited the minimum radius of the particles

that could be manipulated by dielectrophoresis to l ium [4]. With the advent of MEMS

manufacturing processes, it is now possible to manufacture microelectrodes capable of

generating high divergent electric fields capable of manipulating sub micrometer

particles. Recent experimental observations in such devices, that have been possible due

to advances in microfabrication and optical techniques, have demonstrated that the force

required to produce a deterministic motion of the particles capable of overcoming the
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Brownian force is much lower than that previously estimated based on rough diffusion

arguments [3]. For example, it has been demonstrated that the force required to

manipulate Herpes simplex virus in a microelectrode array is in the range 1 — 2 x 10-14 N

[5]. Such results have led to a renewed interest in the dielectrophoretic manipulation of

small particles such as viruses, DNA, latex spheres, etc. [5-8]. The renewed interest in

dielectrophoresis is mainly due to the ability to manipulate biological particles and other

biotechnology related applications.

Dielectrophoresis is now widely used for cell manipulation, cell lysing, cell

sorting and cell fusion applications. One of the dielectrophoretic devices used for the

manipulation of cells is a dielectrophoretic trap or "cage" [9]. The DEP traps are used to

capture and position single cells for further manipulation. They can be either positive

DEP traps attracting cells towards the electrodes, or negative DEP traps pushing cells

away from the electrodes towards regions of low magnitude of electric field. Negative

DEP traps are more desirable as they involve no touching of the cells during the

manipulation process. Two of the popular negative DEP cages are the quadrupole cage

and the octupole cage.

Even though, there had been a lot of experimental research in the past on the

phenomena of dielectrophoresis, and a number of dielectrophoretic devices and

applications have been developed, there exist no thorough numerical simulation studies

of the phenomena in the past. Some of the major problems encountered in experiments

are the visualization of the movement of particles in the microdevices and the isolation of

particle movements due to dielectrophoresis. It is well established now that the particles

undergoing dielectrophoresis in microdevices are also subjected to a number of other
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forces that results in observable and deterministic particle motion [10]. Numerical

simulations are important especially in the case of manipulation of micro and nanoscale

particles because it helps to study the particle dynamics and to isolate the effects of

dielectrophoresis from that of other forces that may be present in the dielectrophoretic

devices. Numerical simulations also help to predict the behavior of particles under

various physical conditions, which in turn help to better understand the phenomena and

also in better design of the devices. Keeping this in mind, a direct numerical simulation

method has been developed to study the phenomena of dielectrophoresis, which involves

solving an initial value problem of a fluid-particle system. In the next section, the reasons

for choosing a direct simulation scheme and the basics of the simulation technique are

discussed in detail.

In order to investigate the problem numerically, a direct numerical simulation

(DNS) scheme based on the distributed Lagrange multiplier (DLM) method is used [11].

The numerical simulation scheme is mainly used to study the motion of particles under

the action of a nonuniform applied electric field. However, it is also applied to study the

behavior of particles under pressure driven flows, uniform electric fields and also

Brownian force.

Experimental studies are also performed to verify the results obtained from

numerical simulations. The experimental studies are performed in microelectrodes

fabricated using MEMS manufacturing processes and using live yeast cells suspended in

deionized water. Comparisons are drawn between the results of the numerical simulations

and the experiments, and different regimes are identified for the effective manipulation of

the particles for various applications.
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The rest of the manuscript is organized as follows. In the next section, a review of

the literature that talks about the immense research, that has been done and also ongoing,

in the area of dielectrophoresis is presented. In the second chapter the governing

equations for the system and the nondimensional analysis and the dimensionless

parameters of importance that arise out of the analysis are described. In the third chapter

the finite element method used is described, and the time-discretization using the

Marchuk-Yanenko operator splitting technique is explained. In the fourth chapter some of

the interesting results of the numerical simulations are presented. Fifth chapter compares

the results of experiments performed using yeast suspension to that of the numerical

simulations. The sixth chapter deals entirely about the numerical simulation of

dielectrophoresis of nanoparticles. The conclusions derived from the numerical and

experimental research is presented in the last chapter.

1.2 Literature Review

The study of nonuniform electric field deserves special interest because of the unique

effects it can produce, and the variety of applications it can be used for. Applications

such as pumping of fluids, classification and separation of minerals, removal of

particulate matter from liquid suspensions, classification of microorganisms, self-

assembly of nanoparticles etc. are just to name a few.

The first experimental recordings of the effect of nonuniform electric field on

neutral matter can be dated back to 600 B.0 when Thales of Miletus in Turkey noted that

amber when rubbed attracted small light particles. We now know that this attractive force

arises because amber when rubbed gets electrically charged, and when this electrically
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charged amber is brought near small neutral particles, they in turn get polarized and gets

attracted by the nonuniform electric field existing around amber. This is indeed,

"dielectrophoresis."

More serious experimental studies on dielectrophoresis and its applications were

performed only during the second half of the last century. This was mainly done by

Herbert A. Pohl [3], whose book "Dielectrophoresis," published by Cambridge

University Press is one of the pioneering works and serves as a guide to all the research

on dielectrophoresis conducted today. His book deals with the theory of dielectrophoresis

based on the polarization of matter. The book also explains in detail the various

mechanisms of polarization in neutral matter and also the dielectrophoresis in real

dielectrics where the conductivity of matter has to be taken into account along with the

permittivity. He performed extensive experiments with colloidal suspensions and

biological particles and enumerated the various factors that affect the particle separation

or "yield" during dielectrophoresis

If we examine the research that has been conducted before 1980's, it can be

observed that the bulk of the research was on the manipulation of biological cells. For

example, Chen, C.S. and Pohl, H.A examined the behavior of single cells under

dielectrophoresis [12]. Gvozdiak, PI, and Chekhovckaia, T.P., studied the separation of

microorganisms from water with the help of dielectrophoresis [13]. From their

experiments they came to the conclusion that separation efficiency increases with

increase in the applied voltage and decrease in the flow rate of the suspending fluid.

Again, dielectrophoresis of cell suspensions was studied by Fomcenko et al. [14].

Fomchenkov et al. studied the dielectrophoresis of cells using optical measurements [15].
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The principle of dielectrophoresis was used as a cell separation technique in [16]. Here

the cells were collected on a coaxial wire electrode, which was moved at a constant rate

so that the attached cells were continuously removed to a filtration chamber. In addition

to the above studies on the biological cells, the dielectrophoresis of bubbles, spheres and

shells were examined by Jones et al. [17, 18]

In the early half of the 1980's also, bulk of the research being conducted was on

the use of dielectrophoresis for biological applications. However, now the focus was on

more sophisticated applications such as cell sorting, cell lysing, cell fusion etc. [19 - 27].

Also to be mentioned is the research by Zimmermann et al. [28]. It deals with electro

rotation of particles, which depends on the imaginary part of the Clausius-Mossotti

factor. He used the method of electro rotation to extract the dielectric properties of

particles.

A treatment of dielectrophoresis considering the particles to be lossy ones was

given by Gherardi et al. and Mognaschi et al. in their papers [29] and [30] respectively. In

this approach, instead of considering the particles to be pure dielectrics, their conductivity

is also taken into account (which is true for a real particle) before analyzing the

experimental results.

A few computational studies were also reported during this period, like the

"Computer aided analysis of dielectrophoretic force calculations" by Goossens et al. [31]

and "Numerical calculation of particle collection in electrically enhanced fibrous filters"

by Henry et al. [32]. In the latter one, numerical investigations were performed on the

particle collection efficiency of a fibrous filter. Their model took into account the effect

of various forces like dielectrophoresis, electrophoresis, Brownian motion and particle
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inertia and predicts the collection efficiency of the filter under the influence of these

forces.

Till this period dielectrophoresis was performed using electrodes made using

conventional manufacturing processes. For example, the pin-plate or the wire-wire

arrangement used by Pohl in his experiments or the more sophisticated "isomotive"

electrode geometry manufactured by numerically controlled milling machines, as used in

[33]. The technology of manufacturing dielectrophoretic devices and therefore the

research in dielectrophoresis was revolutionized by Washizu et al. [34, 35, and 36] who

introduced a novel device called the "fluid integrated circuit, (FIC)." In this device all the

components were integrated into a single substrate using photolithography techniques.

These were the first dielectrophoretic devices manufactured using MEMS manufacturing

processes. Using FIC, they were able to accurately control the electrostatic and

hydrodynamic forces and therefore the manipulation of single cells. The flow channels in

the device were as narrow as a little more than the diameter of the cells, so that only

single cells were able to pass through it.

As already mentioned, Pohl led the way in experimental research of

dielectrophoresis in the modern era. However, the devices he was using in his

experiments limited his ability to explore into the manipulation of submicro and

nanoscale particles; as such manipulations require strongly divergent high electric fields,

which he was unable to create in his devices. This fact and the dielectric force

calculations using the electric fields that existed in his devices led him to believe that

dielectrophoresis will not lead to any deterministic motion in submicro and nanoscale

particles, and the motion of such particles will be random governed by Brownian force.
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In fact, he calculated the minimum size of the particles that could be manipulated by

dielectrophoresis to be 400 — 600 gm. This belief led to a deceleration in the research and

limited the applications of dielectrophoresis.

However, the development of microfabrication techniques and microelectro

mechanical devices resulted in a renewed interest in dielectrophoretic manipulation of

particles, as it became possible using these devices to produce accurate high gradient

electric fields of large magnitude capable of manipulating submicron and nanoscale

particles by applying voltages of the order lvolt.

Pethig, who was involved in biological dielectrophoresis [37, 38] was quick to

cash on this new development of using microelectrodes for dielectrophoresis and

designed a new microelectrode structure for biological dielectrophoresis [39, 40]. His

device had interdigitated castellated microelectrode design and he used the device for the

dielectrophoresis of live yeast suspension [41, 42]. Using his device he observed positive

dielectrophoresis for the yeast cells above 10 kHz and negative dielectrophoresis below

500 Hz. Another important contribution by Pethig, R., and his research group was the

unified studies of dielectrophoresis and electrorotation [43, 44, and 45]. Even though

these two phenomena are closely related by the fact that they depend on the real and

imaginary parts of the induced dipole moment respectively, the two phenomenons were

investigated separately till then. He derived new theoretical relationships linking the

dielectric properties of a colloidal suspension to both dielectrophoresis and

electrorotation. Again, the experiments conducted for substantiating the theory were done

using the interdigitated castellated microelectrode arrays newly developed.
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While Pethig et al. were concentrating on the unified theory for dielectrophoresis

and electro rotation; Fuhr et al. at the Department of Biology, Humboldt-University of

Berlin, in Germany were investigating the phenomena of traveling wave

dielectrophoresis, which is the linear analog of dielectrophoresis [46, 47, and 48]. This

phenomenon was originally observed by Batchelder in 1983 [49]. In order to obtain

traveling wave dielectrophoresis microelectrodes were arranged linearly with each

electrode 90° phase advanced than the last. This produces and electric field that travels

with the electrodes and the polarized particle will also move along with this field. One

has to keep in mind that this phenomenon like the electrorotation, also depends on the

imaginary part of induced dipole moment. Fuhr et al. developed practical applications

like micropumps using traveling wave dielectrophoresis.

Pehig et al. added their own contributions to the field of traveling wave

dielectrophoresis [50, 51, 52, 53]. They used yeast particles [50] to study the

phenomenon and conducted experiments in the range of frequency 1 kHz - 10 MHz and

explained the dependence of the phenomenon on the dielectric properties of the particles

and the suspending medium, the size of the particles, and the magnitude and frequency of

the applied electric field. They found from their experiments, that the phenomenon was

dependent on the imaginary component of the induced dipole moment.

The developments in the area of electro rotation and traveling wave

dielectrophoresis are mentioned in this manuscript, as these forces together with

dielectrophoresis and other electrokinetic forces are used for the manipulation of particles

in modern dielectrophoretic devices such as micro total analysis systems and lab-on-a-

chip type applications.
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Another researcher who has contributed to the development of theoretical and

experimental aspects of dielectrophoresis is Jones, T. B. His book "Electromagnetics of

particles," [2] gives insight into the various theoretical aspects of dielectrophoresis. The

conventional dielectrophoretic theory based on the dipole approximation is insufficient to

explain the observed dielectrophoretic phenomena in regions of highly divergent electric

field and in microchannels where the domain dimensions are comparable to that of the

particle dimensions. Jones along with Washizu developed an easily interpretable

dielectrophoretic theory which includes multipole terms for the dielectrophoretic force

calculations [54, 55, 56]. He later on concentrated on the study of microfluidic systems

like micro total analysis systems and lab-on-a-chip. These systems rely on various

electrostatic forces to move small volumes of fluid samples around. His study was

focused on the use of dielectrophoresis for controlling the movement of water in such

devices [57]. In the past, dielectrophoretic manipulation of water was considered

impossible because of the high conductivity of water and the corresponding Joule heating

associated. However, in microelectrode structures the governing equations scale in such a

way that the dielectrophoretic manipulation of water is possible. The scaling laws for the

various electrostatic forces in a lab-on-a-chip, which is a microdevice is given in [58, 59].

He demonstrated high speed dielectrophoretic actuators including "wall-less" flow

structures, siphons and nanodroplet dispensers that operate with water [60, 61].

When it comes to the contemporary research in dielectrophoresis and its

applications, there are two groups that are prominent. The first one is the

dielectrophoresis group at the M.D. Anderson Cancer Center at the University of Texas,

Houston. The main focus of this group is to develop molecular diagnostic methods in
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small clinical and research laboratory environments, primarily for cancer research, and

other medical applications. One of the ongoing research interests of this group is the

separation and characterization of cells. The results of dielectrophoretic characterization

studies conducted in friend murine erythroleukaemic cells can be seen in reference [62].

One of the major contributions of the group was the separation of cancer cells from good

cells in the blood [63, 64, 65].

They combined conventional dielectrophoresis and traveling wave

dielectrophoresis in their microdevices [66], which were used for applications such as

cell separation, levitation etc. A discussion of the importance of the particle-particle

interactions on the pearl chain formation of particles can be seen in [67]. They also

employed the Maxwell stress tensor method for the rigorous calculation of

dielectrophoretic force and electrorotational torque on a homogeneous spherical dielectric

particle and compared their results with that obtained from the effective moment method

[68].

Traditionally, the dielectrophoretic separation of particles was done using two

approaches. The first one is the DEP migration technique, which relies on the opposing

polarities of the particles, by which they are separated into two regions; the high field

regions in the case of particles experiencing positive dielectrophoresis, and the low field

regions in the case of particles experiencing negative dielectrophoresis. The second

method is the DEP retention technique in which the competition between the

dielectrophoretic force and fluid flow forces is utilized to separate the particles. Here, the

particles experiencing strong dielectrophoretic force will be retained at the electrode

edges, where as the particles experiencing weak dielectrophoretic force will be carried
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away with the flowing fluid. Both these methods require that the dielectric property

difference between the different species of particles to be separated be large, and

therefore it is difficult to separate particles with small dielectric differences. Huang et al.

of the above group combined field flow fractionation (FFF) technique with

dielectrophoretic levitation to develop a robust method for the particle separation of the

latter kind [69]. FFF relies on the velocity gradient of a parabolic flow established in a

thin chamber. In DEP-FFF method, dielectrophoretic levitation force is in competition

with gravitational force and results in particles being positioned at different levels in the

chamber, which will then be carried away at different velocities by the parabolic flow.

This research, later on culminated in the development of DEP-FFF microelectrode

devices for the separation of cells and particles [70, 71, 72], which was later on improved

by introducing magnetophoretic force along with the other forces [73]. Presently, the

group is focused in applying the various techniques developed for particle manipulation

in micro total analysis systems [74] and developing programmable general-purpose

sample analysis processors [75].

The second group is the Bioelectronics Research Center at the Department of

Electronics and Electrical Engineering situated in the University of Glasgow. This group

is mostly involved in the experimental and theoretical research of dielectrophoresis in

microelectrode structures. They explore the dielectrophoresis of submicron and nanosized

particles in microdevices and analyze the various forces experienced by the particles in

such devices. They demonstrated the separation of submicron bioparticles and latex

spheres by dielectrophoresis in microelectrodes [76], and the trapping of a single

submicron bioparticle by negative dielectrophoresis against the action of Brownian force
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[5]. They noted that the submicron particles undergoing dielectrophoresis in micro

electrodes are not only subjected to dielectrophoretic force, but also to various other

forces like Brownian force, Joule heating, electro-osmosis and electrothermal forces.

These findings and the theoretical development for the AC electro-osmotic force and the

relative importance of the various forces at different frequency regimes are published in

various papers [77-83]. Hughes, M. P., later on studied the application of AC

electrokinetics for the manipulation of nanoparticles [84].

Recently, the focus of the dielctrophoresis research is on the dielectrophoresis of

nanoparticles as it can be used for the self-assembly and other manipulation of nano

particles without any touching of the particles involved and also on the development of

sophisticated particle handling devices such as micro total analysis systems and lab-on-a-

chip.

There had been three main analytical approaches in calculating the

dielectrophoretic force experienced by particles in a suspension. The first one is the

energy variation principle in which the particles and the suspending medium are treated

as loss free dielectrics [85, 86]. The second approach is the effective dipole method [87].

The third approach is based on the Maxwell stress tensor method, which involves the

integration of the stress tensor on the entire particle surface [88, 89]. Of the above three

methods, the one based on effective dipole moment of the particles is the most widely

used one for practical applications, as it is easy to use and approximates the physical

situation with reasonable accuracy.

When it comes to the numerical simulations of dielectrophoresis, there had been

relatively few studies compared to the experimental and analytical studies. Most of these
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studies are limited to the prediction of the electric field developed in the dielectrophoretic

devices and the trajectories of the particle motion, without simulating the actual fluid-

particle system and the particle motion [90-93]. There had been some multi particle

simulation studies of dielectrophoresis in the past. However, the electrostatic particle-

particle interactions were ignored and fluid particle interactions were modeled in those

studies, and the simulations were conducted for negligibly small Reynold's numbers [94].

Recently, Morgan et al. conducted Brownian dynamic simulations of nanoparticle

manipulation in experimental devices using 250 particles [95]. Here also, the electrostatic

particle-particle interactions were ignored and the Langevin equation is used for the

modeling.

Finally, the details of the numerical simulation method followed in this work can

be obtained from references [11, 96] and also from the e-book "Interrogations of Direct

Numerical Simulation of Solid-Liquid Flow," by Joseph, D. D. The results of the

numerical simulations of dielectric suspensions under the influence of nonuniform

electric field using this method can be obtained from references [97, 98, and 99].

As can be noticed from the literature review, even though there had been a lot of

experimental and theoretical studies of dielectrophoresis, there had been no attempts in

the past to accurately simulate the phenomena using numerical simulation techniques. A

numerical study is important, especially in the case of micro and nanoparticles, as it will

help visualize the particle motion under the action of dielectrophoresis and isolate the

effects of dielectrophoresis from that of the other forces that may be present. This study is

one such attempt to accurately track the motion of particles under the action of

dielectrophoretic force.



CHAPTER 2

GOVERNING EQUATIONS AND DIMENSIONLESS PARAMETERS

In this chapter, the electrostatic forces that arise in a nonuniform electric field due to the

polarization of particles are described and the governing, dimensional and dimensionless,

equations for both the particles and the fluid are stated.

Let us denote the domain containing a Newtonian fluid and N solid particles by

.0, the interior of the ith particle by Pi(t), and the domain boundary by F. The governing

equations for the fluid-particle system are:

Here u is the fluid velocity, p is the pressure, 77 is the dynamic viscosity of the fluid, pL is

the density of the fluid, D is the symmetric part of the velocity gradient tensor, U; and coo

are the linear and angular velocities of the ith particle, and g is the acceleration due to

gravity. The above equations are solved using the following initial conditions u I t=o = u o

where u0 is the known initial value of the velocity.

The linear velocity Ui and angular velocity co ; of the ith particle are governed by
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(2.4)

where m i and I are the mass and moment of inertia of the ith particle, Fi and Ti are the

hydrodynamic force and torque acting on the ith particle and FE,; = FDEP,i + FD,; is the net

electrostatic force acting on the ith particle. The dielectrophoretic force FDEP,i acting on

the ith particle is given by (1.2) and FD,; is the particle-particle interaction force on the ith

particle. In this study it is assumed that the particle density is equal to that of the fluid and

thus the gravity term is dropped from the equations.

In a nonuniform electric field, the particle interaction force on the ith particle due

to the ith particle is given by equation (1.4) and is:

where pi and pi are the dipole moments of the it" and the jth particles given by

p i = 47rso cc f3a 3 E i and p i = 47rso se fla 3E . The net electrostatic interaction force acting on

the ith particle is the sum of the interaction forces with all other particles of the

suspension:

As mentioned above, the particles are considered to be spherical, and therefore we

do not need to keep track of the particle orientation. The particle positions are obtained

from

(2.6)

(2.7)
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where Xo is the position of the ith particle at time t = 0. In this work, it is assumed that all

particles have the same density pp, and since they have the same radius, they also have

the same mass, m.

Equations (2.1) and (2.3) are nondimensionalized by assuming that the

characteristic length, velocity, time, stress, angular velocity and electric field scales are a,

U, a/U, qU/a, U/a and E0, respectively. The gradient of the electric field is assumed to

scale as Eo/L, where L is the distance between the electrodes which is of the same order

as the domain width. The nondimensional equations, after using the same symbols for the

dimensionless variables, are:

Notice that in the first term on the right hand side of (2.9) a factor of 67c is

introduced to ensure that for an isolated particle the quantity inside the integral in the

Stokes flow limit is equal to one.

The above equations contain the following dimensionless parameters:

and h' =—
L

.
a

(2.11)
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Here Re is the Reynolds number, which determines the relative importance of the

fluid inertia and viscous forces, P1 is the ratio of the viscous and inertia forces, P2 is the

ratio of the electrostatic particle-particle interaction and inertia forces and P3 is the ratio

of the dielectrophoretic and inertia forces. Another important parameter, which does not

appear directly in the above equations, is the solids fraction of the particles; the

rheological properties of ER suspensions depend strongly on the solids fraction. We

define another Reynolds number ReL =
p,LU 

based on the channel width L.
77

In order to investigate the relative importance of the electrostatic particle-particle

and dielectrophoretic forces, we define the parameter

(2.12)

In most applications of dielectrophoresis L>>a because L is comparable to the

domain size and the particle radius a is smaller than the domain size. However, there are

applications in which L is only a few times larger than a. Expression (2.12) implies that if

fl= 0(1) and L>>a, the particle-particle interaction forces will dominate, which is the

case in most applications of dielectrophoresis. On the other hand, if fi << 1 and 
318L 

<<1,
16a

the dielectrophoretic force dominates. In this limit, the particles move to the regions of

local maxima or minima of the electric field without forming chains even when they are

close to each other.

If the particle and fluid inertia can be set to zero, i.e., Re = 0, the number of

dimensionless parameters reduce to three. The dimensionless parameters in this case are

the Mason number Ma, P5, and h'.
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(2.13)

and h' = —

L
. The Mason number determines the relative importance of the viscous force

a

and the electrostatic particle-particle interaction force, and P5 determines the relative

importance of the electrostatic dielectrophoretic and viscous forces.

If there is no imposed bulk flow and the particle motion is caused by the

dielectrophoretic force, an obvious choice of the characteristic velocity in this case is

obtained by equating the dielectrophoretic force and viscous drag terms, which gives

(2.14)

If (2.14) is taken to be the characteristic velocity, the dimensionless parameters P1

297rri Land P3 are the same: P, = P3= 	
2 , 

and P5 = 1. The other parameters are thus:
insosde E01

Assuming that the electric field E0 = 
V
— , where V is the voltage applied to the

electrodes, expression (2.14) for the characteristic velocity can be written as

(2.15)

The above expression implies that if a/L, V and the material parameters are held

constant, U increases with decreasing L. The ratio a/L is considered constant because the

device size is decided by the size of the particles that need to be manipulated. Let us
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consider the case where ri = 0.01 Poise, # = 1.0, c = 80, pi, = 103 kg/m3 , a/L = 0.1 and V

= 10 volts. Substituting these values into (2.15) for a device with L = 10 pm, we obtain U

= 4.72 x 104 pm/s. On the other hand, for a device with L = 1 mm, U = 472 pm/s.

Therefore, the velocity is hundred times larger in the smaller device. Since the particles

must be moved over a larger distance in the larger device, we may conclude that the

larger sized devices are less effective! This is the case because with increasing particle

size the magnitude of the dielectrophoretic force becomes small compared to that of the

viscous drag. In order to overcome this problem, a higher voltage is usually applied in a

larger sized device. For example, for the device with L = 20 mm, the applied voltage is as

large as V = 10,000 volts. The applied voltage, however, must be less than the critical

voltage at which the electric discharge occurs.



CHAPTER 3

FINITE ELEMENT METHOD

3.1 Fluid and Particle Equations of Motion

Before proceeding to the governing equations for the liquid-particle system and the

details of the numerical scheme and experiments, it is worthwhile to spend time here to

discuss the basics of the direct numerical simulation scheme.

Denote the entire computational domain including the interior of the particles by

0, and denote the domain boundary by F. Let P(t) denote the interior of a particle (Figure

3.1).

Figure 3.1 Figure showing the entire computational domain, including the particle.

The governing equations for the case of a Newtonian fluid are:



The particle equations of motion, for the case of spherical particles are as follows:

Here F[u] and T[u] are the hydrodynamic force and torque on the particle. The fluid and

particle velocities on the surface of the particle are the same and is given by:

The hydrodynamic force acting on the particle is given by the integral over the particle

surface of the traction,

where

3.2 Direct Numerical Simulation Scheme

A direct numerical simulation scheme is one in which the governing equations of motion

are solved exactly without using any models. For a fluid-particle system, such as an

electrorheological fluid, the hydrodynamic forces are calculated from the numerical

solution of the fluid equations which is in turn used to find the force acting on the
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particles. In the present study of the electrorheological system, the fluid is considered to

be Newtonian and the particles are treated as rigid bodies. Therefore, to perform the

DNS, the governing equations for the fluid (Navier-Stokes equations in this case) and the

governing equations for the particles (rigid-body motion) have to be simultaneously

integrated. The governing equations are coupled through the no slip boundary condition

on the particle surface and also through the hydrodynamic forces and torques that acts on

the particle surface.

To perform the numerical simulation of the dielectrophoresis of electrorheological

suspensions, the simulation scheme used is a DNS scheme utilizing the fictitious-domain

method based on the distributed Lagrange multiplier (DLM), as developed by Glowinski

et al. [11]. One of the core features of the method is that the fluid and particle equations

of motion are combined into a combined weak equation of motion, which helps eliminate

the hydrodynamic forces and torques acting on the particle surface. This is achieved by

using a DLM, which helps ensure rigid-body motion inside and on each particle

boundary. In this sense, the DLM represents an additional body force per unit volume

required to maintain the rigid-body motion inside the particle boundary, and is analogous

to pressure in incompressible fluid flow, whose gradient is the force required to maintain

the constraint of incompressibility.

For efficient solution of the equations, the current method uses a finite element

discretization in space using a regular tetrahedral mesh and time is discretized using an

operator-splitting method using the Marchuk-Yanenko operator splitting technique.
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3.2.1 Total Momentum Equation and Weak Formulation

In the present method, the hydrodynamic forces and torques acting on the particles are

completely eliminated by combining the fluid and particle equations of motion into a

single weak equation of motion for the combined fluid-particle system. This combined

equation is called the combined equation of motion or the total momentum equation.

Define the combined velocity space

The combined fluid-particle velocity (u, U, 0) must lie in the combined velocity

space, V. , (t) . The combined equation of motion is derived by taking a combined

variation (v, V, from the combined variation space

(3.13)

The single weak equation can then be stated as follows:

Find u, p, U, co satisfying

(3.14)

Here u and v are both required to satisfy the no slip condition at the particle

boundaries. That is:
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Once the combined weak form is obtained, the next step is to extend the problem

from the domain excluding the particles, i.e. from 0 \ P(t) to the whole of the domain,

C2 . This is achieved by making use of the fictitious-domain method. The basic idea

behind the fictitious domain method is to imagine that the fluid fills the space inside as

well as outside the particle boundaries. The domain obtained as a result of this is simpler,

which enables the use of a more simple regular mesh. Moreover, the extended domain

being time-independent allows the use of the same mesh for the entire simulation.

In making use of the fictitious domain method, it is still taken care that the

constraint of rigid-body motion is satisfied on the particle boundaries, aP(t). In order to

eliminate the hydrodynamic forces and torques the constraint of rigid-body motion has to

be satisfied inside the particle boundaries. This is achieved by the use of a distributed

Lagrange multiplier.

The extension of the problem to the entire domain is done in two steps. In the

first step an equivalent combined equation is obtained for P(t) and is added to the

equation (3.14) to obtain a combined equation of motion for the whole of C2. In the

second step, the constraint of rigid-body motion is relaxed by removing it from the

combined velocity spaces, and enforcing it as a side constraint using the Lagrange

multiplier.

In order to achieve the first step, the constraint of rigid-body motion has to be

satisfied for both u and v in the whole of P(t), and not just on the boundary of the

particle, aP(t). That is we require:

(3.17)
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This will yield for P(t) the following:

JP(t)

In order to obtain the combined weak equation of motion for the entire domain Q,

extend the combined velocity and combined variation spaces to P(t), using the extended

rigid-body motion constraint (3.17).

(3.19)

(3.20)

The extended fluid-particle velocity (u, U, co) must lie in V., (t) . The combined

weak equation of motion for the entire domain Q is obtained by adding equation (3.14) to

equation (3.18), which takes the following form:

(3.21)

The constraint of rigid body motion that the solution function u and the variation

v are required to satisfy throughout P(t) in equation (3.21) is relaxed by removing it from

the combined velocity spaces and enforcing it as a side constraint in the weak sense and

adding an appropriate distributed Lagrange multiplier term to the right hand side of

equation (3.21). This results in the following weak formulation of the problem in the

extended domain:
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(3.22)

(3.23)

(3.24)

(3.25)

In addition to the above, the kinematic equation (3.8) and the initial conditions

(3.7) and (3.9) are to be satisfied.

Here, u0 satisfies the compatibility conditions,

Here,

and A(t) is 1-1 i (P(t)) 2 ,with (.,.) p( , ) denoting an appropriate inner product.
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3.2.2 Collision Strategy

In order to prevent the particles from penetrating each other and the boundary of the

domain, an additional short-range repulsive force is introduced. When this additional

force is included the particle equation of motion for the ith particle will take the form:

where

is the short-range repulsive force acting on the ith particle

;#i

which is due to the presence of the other particles and due to the four boundary walls.

The particle-particle repulsive force is given by:

where di 1 =J X 1 —X 1 1 is the distance between thei`h and the jth particle, R i is the radius of

the ith particle, p is the force range, and ep is a small positive stiffness parameter.

The particle-wall repulsive force is given by:

where d,' 	 is the distance between the ith particle and an imaginary particle

located on the other side of the boundary (refer Figure 3.2), F. and ew is a small

stiffness parameter.
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Figure 3.2 Figure showing particle-wall repulsion introduced through the imaginary
particle.

The above DLM scheme uses operator-splitting for time discretization. More

details on the time discretization and the finite element method used are given in the

following section. The above method as developed by Glowinski et al. has been applied

to a variety of problems involving particulate flows. How ever, this is the first time the

direct simulation method is applied to study the particle structure formation in

electrorheological suspensions under the action of dielectrophoretic force.

3.3 Computational Scheme

The computational scheme used in this work is a generalization of the DLM finite-

element scheme described in [11, 96]. In this scheme, the fluid flow equations are solved

on the combined fluid-solid domain, and the motion inside the particle boundaries is

forced to be rigid-body motion using a distributed Lagrange multiplier. The fluid and

particle equations of motion are combined into a single combined weak equation of

motion, eliminating the hydrodynamic forces and torques, which helps ensure the
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stability of the time integration. For the sake of simplicity, in this section, we assume that

there is only one particle. The extension to the multi-particle case is straightforward.

The solution and variation are required to satisfy the strong form of the constraint

of rigid body motion throughout P(t). In the distributed Lagrange multiplier method, this

constraint is removed from the velocity space and enforced weakly as a side constraint

using a distributed Lagrange multiplier term. It was shown in [11, 96] that the following

weak formulation of the problem holds in the extended domain:

as well as the kinematic equations and the initial conditions for the particle linear and

angular velocities. Here F' is the additional body force applied to the particles to limit

the extent of overlap (see equation (19) in Glowinski, et al. (1999)) and X is the

distributed Lagrange multiplier,



38

and A(t) is L2 (P(t)) 3 , with (.")P(t) denoting the L2 inner product over the particle, where

F is the upstream part of F . In our simulations, since the velocity and ii, are in L 2 , we

will use the following inner product

In order to solve the above problem numerically, we will discretize the domain

using a regular tetrahedral mesh Th for the velocity, where h is the mesh size, and a

regular tetrahedral mesh T2h for the pressure. The following finite dimensional spaces are

defined for approximating War , Wo , L2 (CI) and L20 (0) :

The particle inner product terms in (3.26) and (3.28) are obtained using the discrete L2

inner product defined in Glowinski, et al. (1999). Specifically, we choose M points,

x 1 ,...,xm that uniformly cover P(t) , and define

Using these finite dimensional spaces, it is straightforward to discretize equations (3.26-

3.29).
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3.4 Time Discretization Using the Marchuk-Yanenko Operator Splitting Scheme

The initial value problem (3.26-3.29) is solved by using the Marchuk-Yanenko operator-

splitting scheme, which allows us to decouple its three primary difficulties:

1. The incompressibility condition, and the related unknown pressure ph,

2. The nonlinear advection term,

3. The constraint of rigid-body motion in Ph(t), and the related distributed Lagrange

multiplier X,h .

The Marchuk-Yanenko operator-splitting scheme can be applied to an initial value

problem of the form

where the operators A1, A2 and A3 can be multi-valued. Let At be the time step. We use

the following version of the Marchuk-Yanenko operator splitting scheme to simulate the

motion of particles in an ER fluid:

Set u° = uo,h, U° = Uo, X° = Xo and co° = e 0, and calculate E by solving V 2 (1) =0,

subjected to the electric potential boundary conditions, and then calculate E =

For n = 0, 1, 2,... assuming u n, Un, Xn , and con are known, we find the values for the

(n+l) th time step using the following steps:

STEP 1: 



3 irAr 3: 

Compute Un+214 and Xn+24 using the prediction procedure
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(3.36)
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The next step consists of finding un+1 E wunr÷ ih , xn+ 1 E Ah ((n + 2/ 4)At) , Un+1 E

R3 , and on+1 E R3 , satisfying

where the center of the particle P((n+2/4)At) is at the location Xn+ 214

Then set Xn+1,o = xn .

For k = 1, K, follow the do-loop

end do

(3.38)

Then set pn+1 = pn+1/4, and go back to the first step.

Remarks:

1. The problems arising in the first and second steps are solved using the conjugate

gradient algorithm described in [11].

2. al and a2 are assumed to be the same and its value is 0.5.

3. The third step is used to obtain the distributed Lagrange multiplier that enforces rigid

body motion inside the particles. This problem is solved by using the conjugate



42

gradient method described in [11, 96]. In this step, we account for the electrostatic

forces that arise due to the dielectrophoretic effect and the particle-particle interactions.



CHAPTER 4

RESULTS OF NUMERICAL SIMULATIONS

4.1 Typical Domain for the Simulations

Figure 4.1 shows a typical domain, the initial arrangement of the particles and the coordinate

system used in the simulations. The dimensions of the box shaped domain are 1.6 mm x 0.8 mm x

2.4 mm in the x-, y- and z-directions. The fluid velocity is assumed to be zero on the sidewalls of

the domain and periodic along the z-direction. The electric field is also assumed to be periodic in

the z-direction. The electrostatic and hydrodynamic forces include contributions from the periodic

images in the z-direction. The imposed fluid velocity and the pressure gradient in the z-direction

are assumed to be zero.

Figure 4.1 An oblique view of a typical domain used for simulations.

The nonuniform electric field is generated by placing one or two pairs of

electrodes on the domain side walls parallel to the yz-coordinate plane. In order to

generate a nonuniform electric field the electrodes are made shorter than the side walls so

that they do not cover the side walls entirely. The electrodes are placed so that they do

not affect the fluid boundary conditions, by embedding them into the side walls. The

43
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generated nonuniform electric fields vary at scales comparable to the domain size since

the electrodes are separated by distances which are comparable to the length of the

electrodes. The width of the electrodes in the y-direction is equal to the domain width and

hence the electric field does not vary in the y-direction. The fluid and particle velocities,

and particle-particle interaction forces, however, vary in the y-direction.

For the simulations discussed in this chapter, we assume that the dynamic fluid

viscosity is ri = 1.0 Poise, the particle diameter and density are 0.2 mm and 1.01 g/cm 3 ,

respectively and the fluid density is PL = 1.0 g/cm3 . Gravity is ignored, because the

density of particles is quite close to that of the fluid and the particle diameter is small.

The initial fluid and particle velocities are set to zero. The domain is discretized using a

regular pseudo P2-P 1 tetrahedral mesh, as described in the previous chapter.

4.2 Convergence Study

To show that the results converge with mesh and time step refinements, let us consider

the transient motion of two particles subjected to the nonuniform electric field shown in

Figures 4.3 and 4.4. The applied pressure gradient is assumed to be zero. Notice that even

though the pressure gradient is zero, the fluid velocity and the electric field are assumed

to be periodic in the z-direction, and the electrostatic particle-particle interaction force is

computed by accounting for the periodicity.

The domain used in this study is 1.6 mm x 0.4 mm x 1.6 mm. At t = 0, two

particles with /3 = 0.297 are placed at the initial positions (0.4 mm, 0.2 mm, 1.4 mm) and

(1.2 mm, 0.2 mm, 1.4 mm) respectively, as shown in Figure 4.2. The electric field is

generated by placing two 0.4 mm long electrodes in the domain walls parallel to the yz-
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coordinate plane, as shown in Figure 4.2. The left side electrode is grounded and the

electric potential for the right side electrode is assumed to be 1.0. Isovalues of the electric

field magnitude and the magnitude of E.VE are shown in Figures 4.3 and 4.4. The values

of dimensionless parameters are: Re = 40.03, Pi = 0.111, P2 = 0.0992 and P3 = 0.111. The

Mason number is 1.12, P4 is 0.892 and P5 is 1.0. Since the parameters P2 and P3 are

approximately equal, the electrostatic particle-particle interaction and dielectrophoretic

forces acting on the particles are of the same order of magnitude.

Figure 4.2 The domain midsection normal to the y-axis is shown. Illustrated are the
electrode locations and the initial positions of the two particles. The potential is
prescribed on the electrode surfaces and the normal derivative of the potential is
assumed to be zero on the rest of the boundary. The velocity is assumed to be periodic
in the z-direction and zero on the other domain surfaces.

The initial positions of the two particles in this case were selected such that the

magnitudes of the electrostatic particle-particle interaction force and the dielectrophoretic

force are comparable. Thus, once the simulation is started, the particles move toward



Figure 4.3 Isovalues of log (ED and the direction of E at the domain midsection are
shown. The electric field is maximum on the electrode tips and does not vary with y.
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Figure 4.4 Isovalues of log (E.VEI) and the lines of dielectrophoretic force are shown.

E.VE does not vary with y.

each other, and at the same time, each one moves towards the electrode closer to it due to

the dielectrophoretic force. The particle on the left side moves towards the left electrode

and the right side particle moves towards the right electrode. As the distance between the

particles and the electrodes decreases, the dielectrophoretic force becomes greater than

the electrostatic particle-particle interaction force. This causes the particles to move away
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from each other and toward the edges of the electrodes where they are collected

approximately at t = 0.5 s.

Figure 4.5 The z-coordinate of the second particle is plotted as a function of time for
four different time steps.

To show that the results converge when the time step size is reduced, the z-

coordinate of the second particle is plotted as a function of time for four different values

of the time step: 5x10 4 s, 2.5x104 s, 1.25x104 s and 0.625x104 s (see Figure 4.5). The

number of velocity nodes for all four cases is 71,825. Since the trajectories for the

smallest two time steps are approximately the same, we conclude that the results

converge as the time step is reduced.

In order to show that the results also converge with mesh refinement, simulations

were performed for three different mesh sizes. The number of velocity nodes for the three

cases are 71,825, 137,781 and 549,153. The time step used for these calculations was

5x104 s. For the three mesh refinements, the z-coordinate of the second particle is plotted

as a function of time in Figure 4.6. As the trajectories of the particles for the two finer
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meshes are approximately the same, it may be concluded that the results are also

independent of mesh resolution.

Figure 4.6 The z-coordinate of the second particle plotted as a function of time for
three different mesh sizes.

4.3 Influence of parameter P4

As discussed in chapter 2, parameter p4 = -132 = 3/3L determines the relative importance of
P3 16a

the electrostatic particle-particle and dielectrophoretic forces. As the dielectrophoretic

force dominates when P4 < 0(1), the particles are easily separated from neighbors and

move individually to the maxima or minima of the electric field. On the other hand, when

P4 > 0(1), the particle-particle interactions dominate which results in the formation of the

particle chains which then move relatively slowly towards the minima or maxima of the

electric field. In fact, when P4> 0(1) and the particle concentration is sufficiently large,

the particles form chains extending from one electrode to the opposite one, preventing the

removal of particles.
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The numerical simulations were performed in a domain as shown in Figure 4.1,

the electric field and the log of (1E.VED are shown in Figures 4.7 and 4.8 respectively. In

the numerical simulations discussed, the value of P4 is varied using two different

approaches. In both approaches, only those dimensionless parameters that depend on the

electrostatic forces are varied and the remaining parameters are held fixed. In the first

approach, P4 is varied by changing /3 and in the second by changing P2 and P3. Even

though P2 and P3 cannot be varied independently for a real ER fluid, the approach is

useful for analyzing the mathematical nature of equations.

First, two cases where the value of /3 = 0.5 and 0.01 are discusssed. The particle-

particle interaction force is expected to dominate in the first case and the

dielectrophoretic force is expected to dominate in the second. For /3 = 0.5, the dielectric

constants of the particles and fluid are 10 and 2.5, respectively. The left electrodes are

grounded whereas the right ones are at 2000 Volts. Eighty particles are arranged in the

box shaped domain in a periodic manner as shown in Figure 4.1.

Figure 4.7 Isovalues of log (1E1) and the direction of E on the domain midsection are
shown. Notice that the electric field is maximum at the electrode tips. The electric
field does not vary with y.



Figure 4.8 Isovalues of log (E.VEI) and the lines of dielectrophoretic force are
shown. E.VE does not vary with y.

The solids fraction is 0.118. The values of dimensionless parameters in this case are Re =

7.2, P1= 0.618, P2= 0.927, P3= 0.618, Ma = 0.67, and P4 = 1.5. Simulations show that at

t — 0.9 s the particle chains are formed (see Figure 4.9) and then these chains move

toward the electrode edges at a smaller speed than of individual particles. The positions

of the particles at t = 3.0 s is shown in Figure 4.10.

For p = 0.01, the dielectric constants of the particles and fluid are 2.576 and 2.5.

In order to ensure that the magnitude of the dielectrophoretic force, which depends on p,

is the same as for the case described above, i.e., P3 remains 0.618, the electric field

strength is increased. The values of dimensionless parameters are Re = 7.2, P1 = 0.618, P2

= 0.0185, P3 = 0.618, Ma = 33.3, and P4 = 0.03. Figure 4.11 shows the positions of the

particles at t = 0.9 s from which it can be seen that the particles in the middle have

already started moving to the electrodes, without forming chains. The position of the

particles at time, t = 3.0 s is shown in Figure 4.12. Notice that most particles, except

those in the middle, are attached to the edges of the electrodes by this time. The vertical
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chains of particles seen at the middle of the domain are formed due to the presence of the

saddle points at (x = 0.8, z = 0.6), (x = 0.8, z = 1.2) and (x = 0.8, z = 1.8). As can be

observed from Figures 4.7 and 4.8, at these points the dielectrophoretic force is zero, but

the magnitude of the electric field is not locally minimum.

Figure 4.9 The front view of the particle distribution at t = 0.9 s for P4 = 1.5. The
particles come together as chains in the middle of the domain, and then move toward
the electrode edges.

Figure 4.10 The front view of the particle distribution at time t = 3.0 s for P4 = 1.5.
Notice that the chains fill the gap between the electrodes.



Figure 4.11 The front view of the particle distribution at t = 0.9 s for P4 = 0.03. In
this case the particles in the middle are seen to move to the electrodes edges without
forming chains. The particles in the middle are not collected at this time.
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Figure 4.12 The front view of the particle distribution at t = 3.0 s for P4 = 0.03

Next, two cases where the values of parameters P2 and P3 are changed

independently are considered. First, the case for which P2 is 99.26 is described. The other

dimensionless parameters in this case are Re = 0.40, P i = 11.12, P3 = 11.12, Ma = 0.112,

and P4 = 8.92, respectively. As P4 is greater than one, the particle-particle interactions

dominate and the particles form chains, as can be seen in Figure 4.13 at t = 3.0 s. The
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chains of particles rearrange and some chains even merge to form longer chains. Notice

that some chains extend from one electrode to the other, and after they are formed remain

almost stationary, and the particles do not collect at the electrode edges.

Figure 4.13 The front view of particles at t = 3.0 s. The parameters are P2 = 99.26
and P4 = 8.92. The chains extend from one electrode to the other on the opposite side.

Figure 4.14 The side view of particles collected near the electrode edges at t = 3.0 s.
The parameters are P2 = 0.99 and P4 = 0.089.

Next, the magnitude of the parameter P2 is decreased to 0.99. The other

dimensionless parameters for this case are Re = 0.40, P 1 = 11.12, P3 = 11.12, Ma = 11.2,

and P4 = 0.089. The particles move relatively quickly toward the edges of the electrodes
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without forming chains, as can be seen in Figure 4.14 at t = 3.0 s. Here also, as in Figure

4.12, the particles in the middle of the domain are not collected.

We may therefore conclude that for P4 > 0(1) it may not be possible to remove

particles because of the formation of particle chains. Of course, these results are for

modestly concentrated suspensions and the particle-particle interaction force decreases

with decreasing solids fraction. Therefore this effect may not be present in very dilute

systems.



CHAPTER 5

EXPERIMENTS: DIELECTROPHORETIC CLUSTERING REGIMES OF
VIABLE YEAST CELLS — PARTICLE CHAINS AND AGGLOMERATES

In this chapter, the results of the experimental study that shows the transient clustering

behavior of viable yeast cells in a dilute suspension suddenly subjected to a nonuniform

AC electric field of a microelectrode device are presented. The aim of the experiment is

to identify the two regimes, as discussed in the previous chapter, where particle chaining

will and will not occur. The frequency of the applied electric field is varied to identify the

two distinct regimes of positive dielectrophoresis. In both regimes, the yeast cells

eventually cluster at the electrodes' edges, but their transient behavior as well their final

arrangement is quite different. Specifically, when the frequency is much smaller than the

cross-over frequency, the nearby yeast cells quickly rearrange in well defined chains

which then move toward the electrodes' edges and remain aligned as elongated chains at

their final location. However, when the frequency is close to the cross-over frequency,

cells move individually towards the regions of collection and simply agglomerate along

the electrodes' edges. Analysis of the experiments show that in the first regime both the

dielectrophoretic force and the mutual dielectrophoretic force, which arises due to the

electrostatic particle-particle interactions, are important. In the second regime, on the

other hand, the dielectrophoretic force dominates.

55
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5.1 Experimental Setup and Materials

5.1.1 Microfluidic Device

The device used for the experiments is a microfluidic platform for manipulating micro

and nanoscale particles. The device is an integrated dual-microelectrode array chamber

which was designed and fabricated using standard micro-fabrication processing

techniques. Starting with a silicon wafer, 50 nm of dry thermal oxide was grown onto the

wafer followed by 150 nm of stoichiometric nitride for insulation purposes. Planar gold

electrodes were then realized by evaporating a 20 nm chromium layer followed by a 250

nm gold thin film layer onto the insulating oxide layer of the wafer. Photo-resist was spun

on the wafer and then lithographic patterning of the electrode geometry definition was

performed using a photo mask plate (Compugraphics, CA). An acetone lift-off process

was used to define the microelectrodes and remove excess gold and photoresist from the

field area. Electrical connection pads were provided on the wafer in order to make

external electrical connections while electrical connections to the pads were made by

hand soldering 0.25 mm diameter wire to the 1 mm electrical connection busses on the

chip. The device contains a total of sixteen different sets of microelectrodes, including

four different geometrical designs with four different sizes of electrodes and spacing. The

chip device can be enclosed in a chamber with inlet and outlet tubing to provide a fluid

flow condition, or it can be operated in the static flow condition. The open static-flow

condition was used for the study carried out in this paper.

The experiments reported below were performed using the periodic staggered

microelectrode bar shown in Figure 5.1, with electrode width of 50 microns and an inter-

electrode gap of also 50 microns. This microelectrode arrangement has well defined



57

Figure 5.1 Schematic representation of the bottom surface of the device containing
the microelectrode. The black geometry represents the electrode while the grey area
corresponds to the silicon substrate. The yeast suspension is pipetted onto this surface.

Figure 5.2 Contour plot of the log of the magnitude of the electric field on the bottom
surface containing the electrode
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electric field maxima at the edge of the electrodes and electric field minima in the bay

regions between the edges, on top of the electrodes, as can be observed from the electric

field contour plot displayed in Figure 5.2 (where only half of an electrode has been used

for the computation). The electric field was computed using the numerical code presented

in Chapter 3. The contour plot for log ( E.VEI) and the lines of dielectrophoretic force for

the device are shown in Figure 5.3.

Figure 5.3 Contour plot of the electric field times the gradient of the electric field,
also showing the dielectrophoretic force lines on the plane of the electrodes in the
microdevice

5.1.2 Preparation of Viable Yeast Cell Suspension

The dielectric suspension to be used for the experimental study is a suspension of live

yeast cells, as in references [3, 5, 41] and concentrate the analysis on the phenomenon of

dielectrophoresis only, although other physical phenomena may be present as well [5].

Yeast cells, or Saccharomyces cerevisiae, were grown overnight at 32 °C in a dextrose
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solution made with deionized water. The yeast cells were then harvested from the

growing solution using a sterile pipette and resuspended in Millipore water. The

suspension was then centrifuged and the supernatant liquid decanted. The cells were

again resuspended in fresh Millipore water and centrifuged to isolate the cells. The

process was repeated until the suspension conductivity was of the desired value of about

0.1 mS/m. The suspended live yeast cells had an average size of 2.5 micrometers.

5.1.3 Dependence of Dielectrophoretic Velocity on the Frequency of the Electric

Field

In this section, the approach used for measuring the DEP force induced velocity of viable

yeast cells from the video recordings made at a fixed location of the microdevice is

decribed. The velocity was obtained for a set of frequencies between 500 Hz and 10

MHz. The time taken by an isolated cell to move over a fixed distance (between two

fixed points) was measured and the average velocity was deduced by dividing the

distance by the time taken. Cells close to others were excluded from this calculation so

that electrostatic particle-particle interactions were negligible for the cells selected for the

velocity calculation. For all frequencies investigated here particles move toward the

electrode edges and therefore experience positive dielectrophoresis. Figure 5.4 reports

velocity measurements averaged over a few cells, showing that the velocity of individual

cells is about 6 tim/s at 1 kHz, and approximately zero at 10 MHz.

If we assume that the particle acceleration is negligible, equating the Stokes drag

with the dielectrophoretic force gives
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where U is the cell velocity. When the velocity of isolated cells is zero, the above

equation implies that /3 is also zero, which, in our system, occurs at about 10 MHz. The

latter frequency is then identified as being the cross-over frequency for the suspension.

At low frequencies, the velocity of the cells is the highest, indicating strong 16 values as

well, which then implies a dielectrophoresis force of large magnitude as well as strong

electrostatic particle-particle interactions (mutual dielectrophoresis).

0 	 II mom
1.00E+02 	 1.00E+03 	 1.00E+04 	 1.00E+05 	 1.00E+06 	 1.00E+07

Frequency, Hz

Figure 5.4 Measured averaged velocity of yeast cells as a function of the frequency
of the applied electric field, showing high velocities at low frequencies and nearly zero
velocities at about 10 MHz.

5.2 Results

A small volume of the yeast suspension prepared in the manner described above was

pipetted and placed on the microelectrode structure. The suspension was then sealed with

a cover slip and allowed to settle for a few seconds, and then the electrodes were

energized. A variable frequency AC signal generator (BK Precision Model 4010A) was
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used to apply a voltage to the electrodes over a frequency range of 200 Hz to 10 MHz.

The applied voltage was 4 volt P/P (peak-to-peak). The applied voltage, frequency, and

resulting current were monitored with an oscilloscope and digital voltmeter connected in

parallel with the electrodes. Observations of the dielectrophoretic motion for the

electrode at the edge of the device were made and recorded using a Digital Color CCD

camera connected to a Nikon Metallurgical MEC600 microscope.

Figure 5.5 Visualization of the suspension after applying an electric field of
frequency 500 Hz, at time t = 5 s,

First the results obtained for an applied frequency of 500 Hz are reported. In this

case, the cells in the vicinity of the electrode start to collect at the electrode's edges

immediately after the electric field is applied (Figure 5.5). The cells originally positioned

away from the electrode also move towards the electrode, but in their transient motion,
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Figure 5.6 Chains at time, t = 10s. The figure shows that the chains have elongated in
length and more chains are coming to join the chains at the electrodes

Figure 5.7 Particle chains at time t = 90 s

they come closer together and form chains parallel to the local electric field direction.

Once the chains are formed, they move towards the edges of the electrode and are

eventually collected. The chains at the edges of the electrode grow with time (clearly
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seen in Figure 5.6 after 10s), as the smaller chains formed away from the edges merge

with them. Some of the chains rearrange to form columns. After a certain time (see

Figure 5.7 taken at t = 90 s), the chains and columns are very elongated. The average

length of the chains at the electrode's edges at t = 90 s is about 175 vim, indicating that

the chains contain approximately 35 cells at that time, while chains consisted of about 10

cells at t = 10 s.

Figure 5.8. Particle chains at time, t = 5 s for frequency 1 kHz

Next, the results at the frequency of 1 kHz are described. Once the electric field is

switched on, as expected, the cells near the electrode are immediately collected at the

electrode's edges (Figures 5.8 - 5.10). The cells away from the electrode start moving

towards the electrode while simultaneously forming chains by joining with neighboring

cells as in the previous case. Although the cells and chains move more slowly than

previously, they continue to move towards the electrodes' edges and eventually collect

there. Some of the chains are also seen to realign as columns. The average length of the
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chains at the electrode's edges at time t = 90 s is observed to about 150 lam (Figure 5.10),

which is less than in the previous case at 1 kHz.

Figure 5.9 Particle chains at time, t = 10 s for frequency 1 kHz

Figure 5.10 Particle chains at time, t = 90 s for frequency 1 kHz. The average chains
length, however, is smaller than at 500 Hz at the same times.
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Next, the results obtained at the frequency of 1 MHz are presented. Notice that the

tendency of nearby cells to form chains is considerably diminished and the chains formed

away from the electrode contain only 2-3 particles (Figure 5.11). The particles collected

at the edges of the electrode at t = 90 s is shown in Figure 5.12. The average length of the

chains at the edges of the electrode is approximately 40 pm.

Figure 5.11 Particle chains formed at a frequency of 1 MHz at time t = 60 s, Clearly,
the tendency for the cells to form chains is diminished considerably.
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Figure 5.11 Particle chains formed at a frequency of 1 MHz at time t = 90 s, The
average length of the chains formed at the edges of the electrodes is approximately 40

Next, let us consider the case where the applied electric field frequency is 2 MHz.

Once the electric field is switched on, the cells close to the electrode get collected at the

electrode's edges, but their velocities are much smaller than in the previous cases. The

cells located far away from the electrode also move progressively towards the electrode,

but they do not join together to form chains. Instead, they move individually, even when

they are quite close to each other. The cells collected at the edges of the electrode at time

t = 90 s are shown in Figure 5.13. From this figure it is clear that the cells collected at the

electrode's edges do not regroup into chains. Instead, they are observed to agglomerate at

the edges of the electrode with no clear structure, which demonstrates that the

electrostatic particle-particle interactions are negligible.
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Figure 5.13 Particle collection for frequency 2 MHz at t = 90 s. While collection of
particles is observed, particle chaining has mainly vanished, indicating that the
electrostatic particle-particle interactions (mutual dielectrophoresis) are negligible.

As the frequency of the electric field is increased further, the dielectrophoretic

force acting on the cells becomes very small and thus only a few cells are collected at the

electrode's edges at t = 90 s. This can be observed in Figures 5.14 and 5.15 for the



Figure 5.14 Particle collection for frequency 4 MHz at time, t = 90 s. The collection
of particles is now weaker than in Figure 5.13, while no formation of chains is
observed.

Figure 5.15 Particle collection for frequency 4 MHz at time, t = 90 s. Fewer particles
are collected with no particle chains
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frequencies of 4 MHz and 8 MHz, respectively. Finally, since the dielectrophoretic force

becomes approximately zero at 10 MHz, no particle motion could be identified (see
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Figure 5.16) as both the DEP and particle-particle interaction forces become

approximately zero.

Figure 5.16 Particle collection at 10 MHz. Particles are hardly moving, and therefore
not being collected on the electrodes' edges and not regrouping, indicating that both
the dielectrophoretic force and the electrostatic particle-particle interactions are
approximately zero in this case.

5.3 Discussion

The experiments show that when the frequency of the applied AC electric field is smaller

than approximately 10 MHz the yeast cells are subjected to positive dielectrophoresis,

and hence they cluster at the edges of the electrode. The nature of clusters, however,

depends on the frequency of the electric field. When the frequency is around 1 kHz, the

cells close to each other, including those away from the electrode, first organize in chains

aligned parallel to the direction of the local electric field. Then these chains move

towards the edges of the electrode and join with the chains already located at the edges of

the electrode to form longer chains, which may contain as many as 35 cells.
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On the other hand, when the frequency is around 4 MHz, which is close to the

cross-over frequency of 10 MHz, cells move towards the edges of the electrodes

individually; the tendency to form chains is not as noticeable. This shows that

electrostatic particle-particle interactions do become negligible when the frequency is

close to the cross-over frequency and /3 is much smaller than one.

These results are in agreement with the model presented in the Chapter 2 which

predicts that the particle-particle interaction force depends on the second power of /3, and

therefore becomes negligible compared to the DEP force, which itself depends linearly

on /3, when /3 is small. We may therefore conclude that for frequencies close to the cross-

over frequency it is possible to remove the particle-particle interaction force, and

manipulate particles individually entirely by means of the dielectrophoresis force.



CHAPTER 6

DIELECTROPHORESIS OF NANOPARTICLES

6.1 Introduction

Dielectrophoresis as a means of manipulating nanoparticles is gaining popularity, as is

evident from the increasing number of research papers published on the subject. The

advantages of using dielectrophoresis for the purpose have already been explained in

Chapter 1. Owing to this increasing interest in the subject, this entire chapter is dedicated

to the numerical simulation of the dielectrophoresis of nanoparticles.

Here, the particles are subjected to electrostatic, hydrodynamic forces, and

Brownian motion. Dielectric suspensions of nanoparticles subjected to both uniform and

nonuniform electric fields are studied. The results of the simulations presented here show

that in the case of uniform electric fields the evolution of the particle structures depends

on the ratio of the electrostatic particle-particle interactions and Brownian forces. When

this ratio is of the order of a hundred or more, particles form stable chains and columns

whereas, when it is of the order of ten, the particle distribution is random. For the

nonuniform electric field cases considered, the relative magnitude of Brownian forces is

in the range such that it does not influence the eventual collection of particles by

dielectrophoresis and the particular locations where the particles are collected. However,

Brownian motion is observed to influence the transient particle trajectories. The

deviation of the particle trajectories compared to those determined by the electrostatic

and hydrodynamic forces alone is characterized by the ratio of Brownian and

dielectrophoretic forces.
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6.2 Brownian Force

One limitation of dielectrophoresis is that it requires an increase of the electric field

intensity as the size of the particles decreases. This is due to the fact that the

dielectrophoretic force acting on a particle is directly proportional to the volume of the

particle. Therefore, as the particle size decreases, the dielectrophoretic force experienced

by the particle also decreases. Meanwhile, it is well established that the intensity of the

Brownian motion increases as particles become smaller. The effect of Brownian motion

thus was first thought to overcome any deterministic motion due to the dielectrophoretic

force on sub micrometer particles [3] and the minimum particle size required for

.
dielectrophoretic motion was estimated to be around 4000-6000A under reasonable

physical conditions.

Recent experimental observations, that have been possible due to advances in

microfabrication and optical techniques, have demonstrated that the force required to

produce a deterministic motion of the particles capable of overcoming the Brownian

force is much lower than that previously estimated based on rough diffusion arguments

[3]. For example, it has been demonstrated that the force required to manipulate Herpes

simplex virus in a microelectrode array is in the range 1 — 2 x 10 14 N [5]. Such results

have led to a renewed interest in the dielectrophoretic manipulation of small particles

such as viruses, DNA, latex spheres, etc. [5, 6]. More over, it is easy to generate the

highly divergent strong electric fields required to manipulate the small particles in

microdevices.
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In addition to the dielectrophoretic force, there are other forces which need to be

accounted for in determining the trajectory of particles suspended in a liquid medium and

subjected to an electric field, as well as their time of collection. A detailed review of the

various forces involved can be found in references [2, 5]. In this work, only Brownian,

dielectrophoretic and hydrodynamic forces are considered.

As previously noted, the effect of dielectrophoresis is a translatory motion of the

particles due to the nonuniformity in the applied electric field. However, if the externally

applied electric field is uniform, it results in the formation of pearl-chains due to the

mutual dielectrophoresis or interaction among the particles. The corresponding

interaction force decays as r -4 , where r is the distance between the particles. Hence, when

the distance between the particles is large, this force is negligible.

6.3 Governing Equations

In this section, the electrostatic forces that arise in uniform and nonuniform electric fields

due to the polarization of particles are described, and the governing dimensional and

dimensionless equations for both the particles and the fluid are stated. Also the approach

used for modeling the Brownian force is discussed. Other than the Brownian force part,

the governing equations are the same as in chapter 2 and Chapter 4 on numerical

simulations. Nevertheless the complete governing equations and dimensionless equations

are described, for the sake of completeness of this chapter.

Let us denote the domain containing a Newtonian fluid and N solid particles by

12, the interior of the ith particle by Pi(t), and the domain boundary by F. The governing

equations for the fluid-particle system are:
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(6.1)

(6.2)

(

pL — + u •Vu = pL g – Vp + V • (277D) 	 in 121 P(t)
g at

V • u = 0 	 in 121 PO

ou=u L	n T

u + on api , = N

Here u is the fluid velocity, p is the pressure, ri is the dynamic viscosity of the fluid, pL is

the density of the fluid, D is the symmetric part of the velocity gradient tensor, U i and w i

are the linear and angular velocities of the ith particle, and g is the acceleration due to

gravity. The above equations are solved using the following initial conditions u I t,, = u, ,

where u0 is the known initial value of the velocity.

The linear velocity U i and angular velocity o i of the ith particle are governed by

dU.
-m	 '

dt 
Fi +FEi

d

I` co
	=Ti

dt

Ui I t=o = Ui,o

wi I t=o =

(6.3)

(6.4)

where m i and Ii are the mass and moment of inertia of the ith particle, Fi and T are the

hydrodynamic force and torque acting on the ith particle, respectively, F E,i = FDEP,i F D,i

is the net electrostatic force acting on the ith particle and F 13,i is the Brownian force acting

on the ith particle. The dielectrophoretic force F DEP,i acting on the ith particle is given by

(1.2) and F ai is the particle-particle interaction force on the i th particle.
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As noted above, Brownian motion becomes important as the size of the particle

decreases to the submicrometer scale. This is due to thermal fluctuations at molecular-

scales in the liquid medium which, in turn, induce random forces on the particles of a

suspension. The standard approach for describing the Brownian motion is that derived

from the Langevin equations (see, e.g., Ermak and McCammon [101]).

The motion of the ith particle is described by the following Langevin equation

dU
m	 '

dt 
=FEi +FHi +FBi (t)

where F zi is the electrostatic force acting on the particle, F 14i is the hydrodynamic force

and FB,i(t) represents the Brownian force on the particle. The Brownian force FB, i(t)

satisfies (FB , a (0)FB ,,, fl (t))=127makB Tgafig(t) and (F,,,,a ) =0, where kB is the Boltzmann's

constant and T is the temperature.

In our numerical simulations, the time step dt is chosen so that it is greater than

the momentum relaxation time, i.e., dt » mD where m is the mass of the particle and
kB T

D =  kB
T is the diffusivity. The momentum relaxation time for our system is of the order

621-qa

of 10-9 s.

In the simulations the Brownian force on the ith particle is given by (see [102])

FBI 	(1271-77akB T 14 /2 	(6.6)

where i = dt is the time step used in the numerical integration scheme and 	 is a

Gaussian random vector.

(6.5)



(6.7)

(6.8)

V • u = 0 in a P(t) (6.9)
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As mentioned above, this work is restricted to the case where the particles are

spherical, and therefore it is not required to keep track of the particle orientation. The

particle positions are obtained from

d"i –U
dt

X i LO = X i.°

where X •  is the position of the ith particle at time t = 0. Furthermore, it is assumed that

all particles have the same density pp , and since they have the same radius, they also have

the same mass, m.

The above equations can be nondimensionalized by assuming that the

characteristic length, velocity, time, stress, angular velocity and electric field scales are a,

U, a/U, riU/a, U/a and E0, respectively. The gradient of the electric field is assumed to

scale as Eo/L, where L is the distance between the electrodes which is the same as the

domain width. The Brownian force is assumed to scale as (127-cliakBT / r)112 . The

nondimensional equations, after using the same symbols for the dimensionless variables,

are:

au
Re —+u•Vu =–Vp+V•aat in a P(t)

dU 62177a 2 i–pI + a\ 471-a4soed8 1 E0 1 2 	32re° E
c

C13)62 IE
° 

1 2
dt mU -' 67c	 j

VE)nds +	 (E	 +
mU L	 4mU2 I ru 14	

(F
D

)

(122rriakBT I 7)12 a

mU2

(6.10)

dco 577a 2

dt 
= 

2mU 
j r(x – X) x[(–pI + a) • n] ds (6.11)
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The above equations contain the following dimensionless parameters:
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P6= (127z-riakBT I r) 1/2 	 and h' = _
L

mU 	 a

In Chapter 4, the evolution of particle scale structures for different relative

magnitudes of the parameters P j, P2 and P3 were discussed. Specifically, the influence of

the parameter P4 (that is the ratio of P2 and P3) on the particle structure was studied. In

this chapter, the influence of Brownian forces on the particle structure formation is

analyzed numerically. Hence, the parameter that is of primary interest to us is P6. Also,

three additional parameters P7 = P2/P6, P8 = P3/P6, and P9 = PI/P6, are also defined. The

parameters P7 and P9 are related to the parameters A and Peclet number Pe defined for

uniform electric fields in [103, 104], and the parameter P7 is the inverse of the parameter

B defined in [105].

6.4 Results

In this section, the results obtained from the numerical simulations for electrorheological

suspensions of nanoparticles are discussed. Results are presented for both uniform

electric field and nonuniform electric field cases. The results obtained are used to study

the importance of the Brownian force in determining the particle scale structure

formation and to study the conditions under which the Brownian force can be ignored.

The results discussed in this chapter are for cases with no bulk fluid flow and therefore

the primary interest is in studying the particle structure evolution upon variation of the

parameters P7 and Pg.
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The domain used for the simulations is the same as used for the simulations to

study the importance of parameter P4 in chapter 4. The fluid velocity is assumed to be

zero on the sidewalls of the domain and periodic along the z-direction. The electric field

is also assumed to be periodic in the z-direction. The electrostatic and hydrodynamic

forces include contributions from the periodic images in the z-direction.

The dynamic fluid viscosity 17 is assumed to be 0.01 Poise and the particle

diameter and density are 200 nm and 1.01 g/cm3 , respectively. The fluid density is PL =

1.0 g/cm3 . Gravity is ignored, as the density of particles is close to that of the fluid and

the particle diameter is small. The initial fluid and particle velocities are set to zero. The

domain is discretized using a regular pseudo P2-P 1 tetrahedral mesh and the number of

nodes used is 208,065. The time step used is 5x10 -4 s, which is greater than the

momentum relaxation time.

6.4.1 Uniform Electric Field

It is well known that when electrorheological fluids are subjected to a uniform electric

field, the particles align in the direction of the electric field forming first chains and then

columns as two or more chains merge together. This rearrangement of the particles into

chains and columns results in a dramatic increase in the viscosity of the fluid. Brownian

forces can however hinder the formation of the particle chains. This is more prominent

for small particles, particularly nanometer-sized particles, as the relative magnitude of the

Brownian force increases with decreasing particle size. In order to study this

phenomenon, simulations were performed by varying the parameter P7, which is the ratio

of electrostatic particle-particle interactions and Brownian force.
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First, case where the value of the parameter P7 is 95.2 is discussed. The values of

the other parameters for this case are Re = 1.78 x 10 -3 , Pi = 2.53, P2 = 12.8, P6 = 0.135,

Figure 6.1 Initial arrangement of the particles in the uniform electric field

Figure 6.2 Chain formation for P7 = 95.2 shown at t = 0.5 s
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and P9 = 18.8. Five particles are arranged in a staggered manner in a domain of size 1.6

Jim x 0.4 [tm x 2.4 11M as shown in the Figure 6.1. The uniform electric field is applied in

the x direction. During the simulation, the particles are observed to exhibit a random

motion due to the Brownian force. However, in this case the Brownian force is not

sufficiently strong to overcome the particle-particle interaction force and the particles

come together to form a chain parallel to the electric field at time t = 0.25 s. The chain

formed does not break as time further increases and the particles stay together for the rest

of the simulation. The position of the particles at time t = 0.5 s is shown in Figure 6.2.

Figure 6.3 Random position of the particles for the case with P7 = 12 at t = 0.5 s

Next, simulations were performed with the same number of particles in the

domain, but this time the value of the parameter P7 is decreased by a factor ten so that it

is now 9.52. The values of the other parameters are Re = 1.78 x 10 -3 , Pi= 2.53, P2 = 12.8,

P6 = 1.35, and P9 = 1.88. In this case, although the particles tend to come together as

chains as in the previous case, the Brownian force overcomes this tendency and the



Figure 6.4 Initial periodic arrangement of the particles in the domain for the study of
importance of parameter P7
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Figure 6.5 Straight chains of particles formed at time t = 0.7 s, in the direction of
electric field in the case of no Brownian force



Figure 6.6 Random arrangement of the particles where P7 = 9.52 and t = 0.7 s

Figure 6.7 Random arrangement of the particles in the case where P7 = 95.2 and t =
0.7 s. As can be noticed from the figure, the randomness of the particles has increased
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particles are thrown randomly in the domain. The position of the particles at time t = 0.5 s

is displayed in Figure 6.3, which shows the random arrangement of the particles in the

domain.

Additional simulations were performed with more particles in the domain, of

which results for cases with 80 particles for which the ratio P7 is 9.52 and 95.2 are

presented here. In this study, comparisons of the results of a simulation taking into

account only particle-particle interactions and no Brownian force are performed with

those obtained where both the particle-particle interactions and Brownian force are

present. As before, the electric field is applied in the x direction. In a domain of size 1.6

x 0.8 tim x 2.4 pm, the particles are initially arranged in a periodic manner as shown

in Figure 6.4. As time increases, we observe that in the first case the particles come

together and arrange themselves as chains in the x- direction, as shown in Figure 6.5 for

time, t = 0.7 s. On the other hand, in the other cases with P7 = 9.52 and P7 = 95.2 we

obtain a random arrangement of the particles. The particle structure for both cases at time

t = 0.7 s is shown in Figure 6.6 and Figure 6.7, respectively.

The above simulations show that P7 determines the distribution of particles in the

domain and the particle-particle interaction force and Brownian force are competing with

each other. Depending on the relative strength of the two forces, the particles will either

form chains or will be randomly distributed in the domain.

6.4.2 Nonuniform Electric Field

The analysis in the case of a nonuniform electric field is more difficult than in the case of

a uniform field as two parameters (P7 and P8) are involved, instead of one. Upon the
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action of the dielectrophoretic force the particles will either move to the regions of high

electric field, in the case of positive dielectrophoresis, or move to the regions of low

electric field, in the case of negative dielectrophoresis. In the previous simulations

described in Chapter 4 it was shown that at sufficient strengths of particle-particle

interactions, this behavior can be altered with particles forming chains spanning from one

electrode to the opposite one, thus possibly clogging the entire domain. In this study, the

simulations are restricted to a regime where the particle-particle interactions are relatively

smaller than the dielectrophoretic force and hence the particles can be easily collected in

the regions of high or low electric fields depending on their relative polarities.

Specifically, the simulations are concentrated on varying the parameter P8 only.

First, a case where the value of the parameter P8 is 4.27x103 is presented. The

values of P7 and P9 for this case are 3.81 x 10 3 and 5.57, respectively, while the Reynolds

number is 5.27 x 10 -2 . The values of other parameters are Pi = 85.4, P2 = 5.84 x 104 , P3 =

6.55 x 104 and P6 = 15.3. Fourty particles are arranged in the domain in a periodic

manner similar to the eighty particle case. The particles have a /3 value of -0.297 and the

volume fraction is 0.16. There are two pairs of electrodes in the domain, each 0.6 vim

long, located at z = 0.3 'um and z = 1.5 pm. The electrodes span the entire depth of the

domain in the y- direction and thus the electric field does not vary in the y- direction. The

dielectrophoretic force and the lines of force generated by this arrangement of the

electrodes are shown in Figure 4.8, while the electric field generated for this arrangement

of the electrodes is shown in Figure 4.7.



Figure 6.8 Particle positions at time t = 0.2 s for the case with Pg = 4.27x10 3 showing
the organized motion of the particles along the lines of force

Figure 6.9 Particle positions at time t = 0.75 s for the case with P8 = 4.27 x 103



Figure 6.10 Particle positions at time t = 1.75 s for the case with P8 = 4.27 x 103

Upon simulation, it can be observed that the particles gather into chains under the

influence of particle-particle interactions as well as follow the dielectrophoretic force

lines, thus moving to the regions of minimum magnitude of the electric field located on

the walls of the domain and defined by (x = 0, z = 1.2), (x = 1.6, z = 1.2), (x = 0, z = 0)

and (x = 1.6, z = 0). The particle positions at time t = 0.2 s is displayed in Figure 6.8

which shows the organized motion of the particles along the lines of force as well as the

particle chains. Even though the particles are able to come together as chains, they show

small vibrations throughout their motion due to the random Brownian force. The latter,

however, is not sufficiently strong to fully overcome the particle-particle interactions and

therefore the particles stay together. The particles continue their motion towards the

electric field minima in an organized manner as can be seen from Figures 6.9 and 6.10,

and finally they all get collected at the electric field minima.
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Figure 6. 11 The uncontrolled motion of the particles and the particle positions at t =
0.2s for P8 = 42.7

Next, the previous case is repeated again, but this time with an increased

Brownian force. The value of the parameter P8 is now 42.7 while the values of P7 and P9

are 38.1 and 0.355, respectively. The Reynolds number is 0.336. The values of other

parameters are P 1 = 13.4, P2 = 1.43 x 10 3 , P3 = 1.61 x 10 3 and P6 = 37.7. Once the

simulations begin, the particles start moving towards the electric field minima in a

random manner, without forming any particle chain. The particle positions at time t =

0.2 s is shown in Figure 6.11. For the parameter values considered, even though the final

aggregation of particles in the regions of electric field minima is not altered by the

increased Brownian force, their motion has a strong random component.

6.5 Discussion

In this chapter the numerical scheme based on the Distributed Lagrange multiplier

method was used to study the dynamical behavior of dielectric suspensions of nano
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particles subjected to both uniform and nonuniform electric fields. The simulation results

are used to study the dependence of the particle scale structure evolution on the Brownian

force. Comparisons are made based on the parameters P7 and P8 corresponding to the

ratio of Brownian and electrostatic particle-particle interaction forces, and the ratio of the

Brownian and dielectrophoretic forces, respectively. The results presented here show that

in the case of a uniform electric field when P7 is of order a hundred or more, the particles

form chains parallel to the uniform electric field and when P7 is of order ten, the particles

are randomly distributed in the domain. In the case of a nonuniform electric field, the

simulations show that the particles move either to the regions of maximum magnitude of

the electric field or to the regions of minimum magnitude of the electric field depending

on their polarities. However, for large values of the parameter P8, the motion of the

particles is nearly deterministic and strongly controllable, whereas for smaller values of

this parameter a random motion of the particles is clearly superimposed on their

deterministic trajectory, which render their guidance more difficult.



CHAPTER 7

IMPROVEMENT OF ELECTRIC FIELD SOLUTION BY METHOD OF
IMAGES

7.1 Overview

In this chapter the method of images is used to correct the electric field distribution when

the particles are close to the domain walls. This correction is needed because, when a

particle, modeled as a dipole, comes close to the wall the electric field at the wall is

modified, and is no longer the same as prescribed by the boundary conditions. The results

of this numerical scheme are compared with those for the scheme described earlier,

which does not account for the images. Simulations show that, as expected, more than a

few diameters away from the sidewalls the effect of the images is negligible. Simulations

also reveals that for suspensions of low concentrations, straight chains parallel to the

applied electric field are formed when images are not accounted for and branched chains

are formed when images are included. For suspensions of higher concentrations the

particle chains and columns are seen to be broken in the former case, whereas in the latter

case the chains and columns are seen to be stronger spanning the entire width of the

domain.

7.2 Governing Equations

In this section, the electrostatic forces including the image forces that arise in uniform

electric field due to the polarization of particles are discussed. The governing equations

for the particles and fluid are the same as before.
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As already mentioned, in this dissertation the method of images is used to ensure

that the electric field at the domain boundaries do not deviate from the prescribed value

when a polarized particle is placed close to the boundary.

Figure 7.1 Figure showing the domain used for the simulation and the particle and
the two images. The potential boundary condition on the left wall is 0 = 0, and on the
right wall is 0 = 1.

Consider a dielectric particle of radius a, inside a box shaped domain as shown in

figure 7.1. The particle situated inside the domain is considered to be a point dipole. The

uniform electric field is applied in the x direction and the domain is considered to be

periodic in the z- direction. The fluid velocity is assumed to be zero on the sidewalls of

the domain and periodic along the z-direction. The electric field is also assumed to be

periodic in the z-direction. The electrostatic and hydrodynamic forces include
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contributions from the periodic images in the z-direction. The left wall is grounded

whereas the right wall is at a potential of 1 volt. The particle inside the domain alters the

potential boundary conditions on the left and right side walls. The boundary conditions

on the left and right walls are restored by introducing images of the dipole on the other

side of the boundaries as shown in figure 7.1. Only one image per side of the boundary is

introduced for the present study.

Then, the net electrostatic force acting on a particle will be the force due to the

presence of the other particles and also their images. Typically, the electric field at

position x of particle i is given by

where E0(xi) is the applied electric field at xi when no particles are present and E p(xi) is

the electric field due to the other particles and images in the domain. Then the dipole

moment of the particle at x i can be written as:

(7.2)

Here f(x,,x,) is a known function of the particle positions. Similarly, f(x iini l ,x,) and

f (4.12 , x,) are known functions of the positions of the images of the particle at xi and the

particle at xi .

Equation (7.2) represents a system of 3N equations with 3N unknowns, p i, which

are the modified dipole moments of the particles. The above system is solved using

Gauss elimination and the modified electrostatic interaction between the particles is
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obtained from equation (1.4). The net electrostatic interaction is then obtained from

equation (2.5).

7.3 Results

In this section the results obtained using the method of images for uniform electric field

are discussed and they are compared with the results obtained from the point dipole

approximation. The simulations are performed in a 3D box shaped domain similar to the

one shown in figure 7.1. The domain is discretized using a regular pseudo P2-P 1

tetrahedral mesh. The time step used for iterations is 5x104 s. Throughout this paper, we

assume that the dynamic fluid viscosity ri = 0.01 Poise and the particle diameter and

density are 0.2 mm and 1.01 g/cm 3 , respectively. The fluid density is PL = 1.0 g/cm3 .

Gravity is ignored, as the density of particles is close to that of the fluid and the particle

diameter is small. The initial fluid and particle velocities are set to zero.

7.3.1 Two Particle Case

First, a case where two particles are kept in a domain of size 2.4 mm x 0.4 mm x 1.0 mm

in the x, y and z directions respectively is discussed. Three cases are considered in which

the particles are moved closer and closer to the right side wall.



Figure 7.2 Figure showing the initial position of the particles where the right particle
is at a distance of 1.0 mm from the right side wall.

In the first case, the initial positions of the particles are (x = 1.0 mm, y = 0.2 mm, z = 0.3

mm) and (x = 1.4 mm, y = 0.2 mm, z = 0.7 mm) respectively as shown in figure 7.2. The

x distance of the second particle (right particle) from the right side wall is 1.0 mm. Once

the simulation is started the two particles come together in a line parallel to the applied

electric field, at z = 0.5 mm and remain stationary as shown in figure 7.3. In moving to

their final positions, the particles exhibit both translational and rotational motion, which

is due to the force and torque acting on the particles because of the electrostatic

interaction. The time required for the particles to come to the final positions is 1.0375 s.

The above case is compared to a similar one with only the dipole force acting on the
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Figure 7.3 Final positions of the particles for the case with particle images. The
particles are seen to come together as a chain at z = 0.5 mm in the direction of the
applied electric field. The chain formation is completed in t = 1.075 s.

particles and no images of the particles. In this case also the particles are seen to come

together as a chain at z = 0.5 mm, however, the time required by the particles to come

together is seen to be 1.055 s, which is 0.0175 s more than that of the case with the

images. It can be seen that the difference in time between the case with the images and

that without the images is 1.68% of the total time taken by the particles to reach their

final positions in the case with images.

Next, the particles are kept at positions (x = 1.4 mm, y = 0.2 mm, z = 0.3 mm) and

(x = 1.8 mm, y = 0.2 mm, z = 0.7 mm) respectively as shown in figure 7.4. The right

particle is at a distance of 0.6 mm from the right side wall in this case. Here also, once the

simulation is started the particles come together in a line parallel to the applied electric

field at z = 0.5 mm and then remain stationary. The time required for the particles to

reach the final positions is 1.02 s, which is smaller than the first case.

Once again, the above case is compared to a case with just the particles and no

images in the domain and the time required for the particles to reach their final positions
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is seen to be 1.0625 s, which is more than the time required for the case with the images.

Another important factor to be noticed is that the time difference between the case with

the images and the case with only the particles, which is 0.0425 s, is more than the

previous simulation where the particles were farther away from the right side wall. The

difference in time between the case with the images and that without the images is 4.2 %

of the total time taken by the particles to reach their final positions in the case with

images.

Figure 7.4 Figure showing the initial position of the particles where the right particle
is at a distance of 0.6 mm from the right side wall.

Next, simulations are performed with the particles situated at (x = 1.85 mm, y =

0.2 mm, z = 0.3 mm) and (x = 2.25 mm, y = 0.2 mm, z = 0.7 mm) respectively as shown

in figure 7.5. This time the right particle is situated only half a radius away from the right

wall. In this case we find that the time required by the particles to come together is 0.925

s in the case with images and it is 1.15 s without the images. Again, upon comparison

with the previous two cases we find that the time difference between the case with

images and without images to arrive at their final positions is 0.225 s, which is more than



Figure 7.5 Figure showing the initial position of the particles where the right particle
is at a distance of 0.05 mm from the right side wall.
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Figure 7.6 Plot showing the difference between the case with the images of the
particles included and the case , with no images. The dimensionless distance
(nondimensionalized using half width of the domain) of a particle from the side wall is
plotted on the x axis and the difference between the two methods as a percentage of
the total time taken in the case with particle images is plotted in the y axis.

the previous two cases. The difference in time between the case with the images and that

without the images can be seen to be 24.3 % of the total time taken by the particles in the
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former case to reach their final positions. This shows that the influence of the images

become more as the particles move closer to the walls.

A plot of the difference between the two cases, that is the case with the images of

the particles included and the case with no images, for decreasing distance from the side

wall where the potential boundary condition is applied is shown in figure 7.6.

7.3.2 Thirty Five Particle Case

Next, a case where 35 particles are arranged in a domain of size (1.6 mm x 0.7 mm x 2.1

mm) in a periodic manner is studied. The particles are arranged in the domain as shown

in figure 7.7. The solids fraction is 0.062. Here also we compare a case having both

Figure 7.7 Initial periodic arrangement of 35 particles in the domain.

particles and images with a case having only particles and no images. In both the cases

the particles are seen to arrange in chains and columns parallel to the external electric

field. However, in the first case with images the particles are seen to be forming chains



Figure 7.8 Final position of the particles in the case with images at time, t = 3.75 s.

Figure 7.9 Final position of the particles in the case with no images at time, t = 3.75 s.
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that have two branches which are held by a single particle from the side walls, as seen in

figure 7.8, which shows the position of the particles at time t = 3.75 s, indicating that the

inter particle interactions are enhanced near the walls due to the images. In the second

case without the images the particles are seen to be aligned parallel to the direction of the

electric field with out the formation of branches near the wall, as can be seen from figure

7.9, at time t = 3.75 s. In both the cases the chains are seen to form columns with the

adjacent chains.

Figure 7.10 The initial periodic arrangement of the particles in the domain of size
(1.6 mm x 0.7 mm x 2.2 mm)

7.3.3 Seventy Particle Case

In this section, the results of a case where 70 particles are arranged in a domain of

dimensions (1.6 mm x 0.7 mm x 2.2 mm) are discussed.

The particles are arranged in the domain in a periodic manner as shown in figure

7.10. The solids fraction is 0.12. Like in the previous cases, comparison of a case with
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particles and images to that of a case with no images is performed here also. It is seen

that in the case with images, the particles form chains parallel to the applied electric field

faster than the case with no images. The particle positions for both the cases at time, t =

2.0 s are shown in figures 7.11 and 7.12 respectively. From the figures it is clear that in

the first case the chains are more organized as straight chains, where as in the second case

the particles are organized more as broken chains. With the passage of time, the chains

rearrange to form columns in both the cases. However, even the columns formed in the

case with only the particles is seen to be less organized and broken than the other case

with images. The particle positions at time, t = 4.0 s for the two cases is shown in figure

7.13 and 7.14.

Figure 7.11 The position of the particles in the domain of size (1.6 mm x 0.7 mm x
2.2 mm), for the case with images at time, t = 2.0 s.



Figure 7. 12 The position of the particles in the domain of size (1.6 mm x 0.7 mm x
2.2 mm), for the case with no images at time, t = 2.0 s.
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Figure 7.13 The position of the particles in the case with images at time, t = 4.0 s.



Figure 7.14 The position of the particles in the case with no images at time, t = 4.0 s.

7.4 Discussion

In this chapter the method of images was used to study the time dependent motion of

particles when they are placed close to the electrodes. Simulations show that, as expected,

the correction due to the method of images increases as the particles move closer to the

boundaries where the electric potential boundary conditions are applied. It was seen that

when the distance between the particles and wall is less than 10% of the size of the

domain, the difference introduced by the images was 24.3%. Also it was seen that for

suspensions of low solids fraction of 0.062, the simulation with the images of particles

resulted in branched chains and columns with multiple chains of particles being held by

single particles from the walls, where as in simulations with no images the particles were

seen to form straight chains and columns without any branches. However, for higher
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solid fractions this effect was not seen, but the chains and columns formed with the

method using images were seen to be more organized and straighter spanning the entire

length of the domain than the case with no images where the chains and columns were

seen to be broken.



CHAPTER 8

CONCLUSIONS

The main objective of this work was to study the phenomenon of dielectrophoresis and

investigate its effectiveness for separating and manipulating particles in applications such

as particle separation and collection. The phenomenon has been investigated using both

direct numerical simulations and experiments. The DNS approach provides a predictable

capability which has been used to understand dynamics at particle scales, as well as to

quantify the role of various dimensionless parameters. Experiments are used to

qualitatively test the validity of simulations and to investigate the role of AC

electroosmotic flow and other effects not included in the DNS approach. The experiments

were carried out in microdevices that were manufactured by photolithography processes.

The DNS scheme used for studying the present fluid-particle system is based on

the distributed Lagrange multiplier method. In this approach the fluid equations are

solved both inside and outside the particle boundaries and rigid body motion is enforced

inside the particle boundaries by using the distributed Lagrange multiplier. In the direct

numerical scheme used the governing equations for the fluid and particles are solved

exactly without using any models, and thus the physics contained in the equations of

motion can be extended.

The numerical scheme was tested to ensure that the results converge in both time

and space.

The numerical scheme was then used to study the importance of P4, which is the

ratio of the electrostatic particle-particle interactions and the dielectrophoretic force. The
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numerical simulations revealed that when this parameter was less than 0(1) the particles

did not form interparticle chains, instead they moved individually to the regions of high

electric field in the case of positive dielectrophoresis and collected there. Where as when

this parameter was 0(1) the particles formed inter particle chains extending from one

electrode to the opposite one, thus entirely clogging the domain. It was not possible to

collect or agglomerate the particles at the high electric field regions in this case. The

above behavior in the two different regimes is due to the fact that when P4 is less than

0(1), the particle-particle interactions are negligible and the dielectrophoretic force

dominates, where as when P4 is 0(1) both the dielectrophoretic force and particle-particle

interaction force are comparable in magnitude.

In order to verify that the above results are indeed true and can be reproduced

under physical conditions, experiments were conducted using viable yeast cells in MEMS

devices. The experiments were conducted in a frequency range where the yeast cells

exhibits positive dielectrophoresis. Experiments also showed that at frequencies away

from the cross over frequency where the value of Clausius-Mossotti factor is large and

thus the value of parameter P4 is large, yeast cells came together as chains and these

chains got collected at the edges of the electrodes, showing strong particle-particle

interactions. On the other hand, at frequencies close to the cross over frequency where the

value of Clausius-Mossotti factor is small and thus the value of parameter P4 is small,

yeast particles moved to the edges of the electrodes and got collected there without the

formation of inter particle chains. These experimental results are in quantitative

agreement with the results of numerical simulations.
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Another interesting phenomenon studied using the simulation approach was the

dielectrophoresis of nanoparticles. The importance of using dielectrophoresis for the

manipulation of nanoparticles is increasing as the process involves no touching of the

particles and the particles can be guided to any place we desire by adjusting the boundary

conditions. The numerical simulation scheme was used to study the behavior of dielectric

suspensions of nanoparticles in both uniform and nonuniform electric fields. In the case

of uniform electric field it was found that Brownian force is dominant and it will result in

the random arrangement of particles in the domain, where as when the Brownian force is

absent particles will align themselves in long chains parallel to the electric field. In a

nonuniform electric field it was found that the dielectrophoretic force will result in the

deterministic motion of particles toward the regions of low or high electric field

depending upon their polarities, even though the particle trajectories will be influenced

by the Brownian motion. Brownian motion would prevent the particles following the

force lines, however; it cannot hinder the particles from being eventually collected.

Simulations performed using the method of images correction to the applied

electric field boundary conditions show that in uniform electric fields the influence of the

particles on the boundary conditions is significant when the distance between the particle

and the domain boundary is of the order of particle size.

In conclusion, an approach based on direct numerical simulation and experiments

used here to study the motion and collection of particles in dielectrophoretic devices is

optimal in the sense that the simulations allow us to efficiently explore the parameter

space and experiments allow us to test the validity of the mathematical equations used for

modeling the actual physical system.
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