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ABSTRACT

MODELING OF FLEXIBLE DRUG-LIKE MOLECULES:
QSAR OF GBR 12909 ANALOG DAT/SERT SELECTIVITY

by
Kathleen Mary Gilbert

The dopamine reuptake inhibitor GBR 12909 and related dialkyl piperazine and

piperidine analogs have been studied as agonist substitution therapies acting on the

dopamine transporter (DAT) to treat cocaine addiction. Undesirable binding to the

serotonin transporter (SERT) can vary greatly depending on the specific substituents on

the molecule. This study uses Comparative Molecular Field Analysis (CoMFA) and

Comparative Molecular Similarity Indices (CoMSIA) techniques to determine a stable

and predictive model for DAT/SERT selectivity for a set of flexible GBR 12909 analogs.

Families of analogs were constructed from six pairs of naphthyl-substituted

piperazine and piperidine templates identified by hierarchical clustering as representative

conformers. Three-dimensional quantitative structure-activity relationship (3D-QSAR)

studies led to focused models that were stable to y-value scrambling. Test set correlation

validation led to one acceptable model (q 2 = 0.508, two components, r2 = 0.685, average

residual = 0.00 for the training set, 0.22 for the extended test set). DAT/SERT

selectivities higher than that of the most active compound in the QSAR series were

predicted for nine novel compounds.

This is the first CoMFA/CoMSIA study of the highly flexible GBR 12909 class of

dopamine reuptake inhibitors. Previously, molecular modeling was based on more rigid

dopamine reuptake inhibitors, and often only on global energy minimum (GEM)

structures. Flexible molecules like GBR 12909 have multiple possible binding



conformations, distributed across the potential energy surface in key torsional angle

space, which can vary from the GEM by as much as 20 kcal/mol or more. The

significance of this study lies in the combining of a clustering technique for identifying

representative conformers from a set of low-energy (less than 20 kcal/mol from the

GEM) conformers with an extensive 3D-QSAR analysis based on each representative

conformer and analogs in a similar potential bioactive conformation.
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CHAPTER 1

INTRODUCTION

Cocaine addiction remains a significant problem around the world.' As with many

addictive drugs, the exact mechanism of the addiction has not been identified, although

focus has been on the interaction of cocaine with various neurotransmitter systems. 2 The

"dopamine hypothesis"3 '4 implicates the dopamine transporter (DAT) in cocaine abuse

and addiction. Structure-activity relationship (SAR) studies for several classes of

dopamine (DA) reuptake inhibitors (shown in Figure 1.1) have been reviewed 2'58 and

document the search for a selective DA reuptake inhibitor that could be used in an

agonist-substitution therapy treatment for cocaine addiction.

GBR 12909 (1) is a promising drug

candidate, having demonstrated a decrease

in cocaine-maintained responding without

affecting food-maintained responding in

behavioral studies of rhesus monkeys 9 and

having passed Phase I clinical trials.1 In addition, prior use of cocaine caused cross-

sensitization for several DA reuptake inhibitors, but not for 1. 11 Compound 1, also

known as vanoxerine (CAS No. 67469-78-7), and related dialkyl piperazines and

piperidines have also been shown to bind selectively to the DAT cocaine binding site and

cause minimal DA reuptake inhibition, without causing other of cocaine's deleterious

side effects. SAR studies of hundreds of analogs of 1, based on the scaffold shown in

Figure 1.2, have been summarized in a recent review. 12 Most DA reuptake inhibitors

1



Figure 1.1 Cocaine and representatives of four classes of dopamine reuptake inhibitors.

2



Figure 1.2 Template for GBR 12909 analogs. X can be either H or F, Y is a nitrogen for
piperazine analogs, and a carbon for piperidine analogs. The R group is a naphthalene
for analog 2 and analog 3, and can be a variety of aromatic or non-aromatic substituents.
n and m are usually equal to 1; however, n=1 and m=0 for five-membered rings and n=1
and m=2 for seven-membered rings.

have common structural features, such as an aromatic ring located near a quaternary

nitrogen (as seen for example in the relationship between the center ring nitrogen and A-

side in Figure 1.2) that appear to be necessary for DAT binding. However, photoaffinity

labeling studies indicate that 1-like and tropane-like compounds (such as cocaine) may

bind to different regions in the DAT 13 or bind in a somewhat different manner. 14 ' 15

Compared to a 2-benzhydryloxyethyl substituent, presence of a 2-[bis-(4-

fluorophenyOmethoxy]ethyl- substituent (identified as the B-side in Figure 1.2) usually

results in better DAT binding affinity, but in some cases decreased DAT/serotonin

transporter (SERT) selectivity, although neither effect was significant compared to

modifications of the A-side. 16-2° Most SAR studies have focused on either the piperazine

or piperidine analogs of 1, although the trend has been towards piperidines because 1

analog piperazines could bind to the "piperazine acceptor site" found in the brain and

liver, identified as a cytochrome P450. 21 In order to focus on the activity of piperazine

and piperidines, the present three-dimensional quantitative structure-activity relationship
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In the absence of knowledge of the three-dimensional structure of the DAT,

ligand-based 3D-QSAR techniques such as Comparative Molecular Field Analysis

(C0MFA)22 and Comparative Molecular Similarity Indices (CoMSIA) 23 may be useful in

identifying molecular features that improve activity. However, these techniques require

the use of a template conformer, i.e., a putative bioactive conformer, upon which each

3D-QSAR model is based. For rigid molecules that can adopt only a limited number of

conformers, selection of the template conformer is relatively straightforward. To date,

molecular modeling studies have focused on fairly rigid classes of DA reuptake

inhibitors, such as tropanes,2436 piperidine-based cocaine analogs, 37 benztropine, 36 ' 38 ' 39

BTCP,40° bupropion,41 mazindol,42 methylphenidate, 43 '44 novel piperadinols,45 and more

rigid bicyclic 1 analogs,46 some examples of which are shown in Figure 1.1.

Although there is considerable evidence that many ligands do not bind to proteins

in their vacuum phase global energy minimum (GEM) conformation,4752 many

pharmacophore models of DA reuptake inhibitors have been based on the GEM structure
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of the ligand, or on a few structures very close in energy to the GEM. 28 '42 '53 Other work

has shown the necessity of considering conformations other than the GEM in

pharmacophore modeling, especially when modeling very flexible molecules.5459  For

example, the Venanzi group's conformational analysis of the DA reuptake inhibitor

methylphenidate60° identified several conformations within a few kcal/mol of the GEM

structure that are potential bioactive conformers. Subsequent CoMFA analysis and

comparison to a rigid methylphenidate analog with the same DAT binding affinity as

methyiphenidate supported the idea that the bioactive conformation need not be the GEM

conformer. 44

Since large, flexible molecules such as the 1 analogs can take on a continuum of

closely-related conformations, they present a challenge to the application of 3D-QSAR

techniques. The significance of this study lies in the combining of a clustering technique

for identifying representative conformers from a set of low-energy (less than 20 kcal/mol

from the GEM) conformers with an extensive 3D-QSAR analysis based on each

representative conformer and analogs in a similar potential bioactive conformation.

Conformational analysis of 2 and 3 was carried out,6 with hierarchical clustering used to

select representative conformers to use as templates in 3D-QSAR studies. 62 These

templates were chosen to be representative of the regions of three-dimensional space

occupied by the analogs. In this research, CoMFA and CoMSIA techniques were used to

analyze conformational families of forty-five 1 analogs (23 analogs of 2 and 22 analogs

of 3) which differ only in their A-side substituents. Six conformational families were

constructed from six pairs of template conformers identified by hierarchical clustering as

representative molecular conformations of 2 and 3.
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CoMFA and CoMSIA studies were performed on the selected molecules.

CoMFA studies encompassed a range of electrostatic and steric cutoffs for each

conformational family. CoMSIA studies were done for each of the basic field options:

hydrogen donor and acceptor, hydrophobic, and steric and electrostatic. The CoMSIA

studies were included to give a higher potential for computing significant models because

different field types are available as compared to CoMFA. 23 '63 Six sets of

CoMFA/CoMSIA studies were carried out, one for each conformational family. Partial

least squares (PLS) analysis was performed on the CoMFA and CoMSIA results, with the

q2 (predictivity) and r2 (goodness-of-fit) values and associated statistics being calculated.

PLS Region Focusing was applied to the best CoMFA or CoMSIA results for each

preliminary study. Internal validation (y-value scrambling) and external validation (test

set correlation validation) methods were used to determine the most predictive and stable

model. The present work is the first CoMFA and CoMSIA study of multiple potential

bioactive conformations of highly flexible analogs of 1.



CHAPTER 2

BACKGROUND

2.1 Overview and Objectives

Currently, there are no medications that can be prescribed in the U.S. to treat cocaine

addiction, although cocaine addiction remains a significant problem. As for many

addictive drugs, the exact mechanism of cocaine addiction has not been identified. This

work is based on one significant hypothesis of addiction, the "dopamine hypothesis", 3 '4

which applies to cocaine along with other addictive drugs and certain addictive

behaviors. According to this hypothesis, cocaine's effect on the DAT is implicated in the

addictive effects of cocaine. The DAT releases DA into the synaptic junction of certain

nerve cells and reuptakes DA from the synaptic junction. Among its modes of action,

cocaine binds to the DAT, inhibiting the reuptake of DA (Figure 2.1). A compound that

binds to the cocaine binding site on the DAT, causing some DA reuptake inhibition, but

having a minimal effect other neurotransmitter systems, could block the negative actions

of cocaine on the body. These selective DA reuptake inhibitors are being explored as a

potential treatment for cocaine addiction.

Mutagenesis studies have been performed on the DAT to elucidate the effects of

cocaine at the DAT, 64 '65 but the three-dimensional structure of the DAT is not known. 5

Therefore, ligand-based 3D-QSAR techniques such as CoMFA22 and CoMSIA23 may be

useful to help identify molecular features that improve DAT binding or DAT/SERT

selectivity. The DAT is a Na+Cl- ion-dependent transporter, and the effect of Nay +

concentration on DAT ligand binding has been studied. 66 Key residues involved in

7



Figure 2.1 DAT at the synaptic junction. The influence of cocaine binding is shown.
From National Institutes of Health (NIH) Publication Number 99-4342 Cocaine Abuse
and Addiction, May 1999.

cocaine analog binding have been identified, including tryptophans and aspartates,

although it appears that different residues affect cocaine-like and dissimilar DA reuptake

inhibitors. 65 Selectivity of DA reuptake inhibitors is also an issue, especially relative to

other Na+Cl - ion-dependent transporters like the SERI, binding to the SERT and other

transporters may cause undesirable side effects and diminish the relative effect of a dose

of a DA reuptake inhibitor, part of the dose binding other transporters instead of only the

DAT. The majority of the compounds have an acceptable low nanomolar DAT binding

Kid, with a wider range of SERT binding Kid's; therefore, the DAT/SERT selectivity of the

compounds was modeled.
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Although CoMFA studies have been carried out on other classes of DA reuptake

inhibitors, such as tropanes, 24 '26 mazindols,42 and benztropines, 36 '38 no CoMFA or

CoMSIA studies have been done on 1 analogs. A chemometric QSAR study was done on

1 analogs, but used only a single minimized structure for each analog. 53 The study used

GRID67 independent descriptors (GRIND), 68 a method that takes the molecular

interaction fields (for example, hydrophobic or hydrogen-bond donor) calculated by

GRID to create several variables that represent regions where energetically favorable

interactions can occur, to model DAT/SERT selectivity and found predictive models. In

contrast, the present study looks at multiple low energy conformations, and no

assumption is made that the GEM is the conformation a molecule must achieve (the

bioactive conformation) in order to bind to a target. This project is the first detailed

CoMFA and CoMSIA study on multiple potential bioactive conformers of 1 analogs.

The objectives of this study are:

• To use conformational analysis and clustering methods to identify low-energy
conformations that represent the wide range of conformations attainable by
the piperazine 2 and the piperidine 3

• To use CoMFA and CoMSIA 3D-QSAR techniques to identify a model for
DAT/SERT selectivity

• To provide the modeling results as a contribution to the iterative cycle of
synthesis, pharmacological testing, and modeling with a goal of development
of a treatment for cocaine abuse

2.2	 Cocaine Addiction and the Dopamine Hypothesis

DA reuptake inhibitors target the "cocaine binding site" on the DAT. Cocaine's

addictive properties are thought to be at least in part due to an increase in synaptic DA

achieved by reuptake inhibition of DA at the DAT. The "dopamine hypothesis"3'4
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implicates cocaine's inhibition of DA reuptake as the reason for cocaine addiction.

However, it is noted that cocaine and methyiphenidate (the active ingredient in the

common attention-deficit/hyperactivity disorder medication Ritalin ®) both bind to the

DAT and cause DA reuptake inhibition, yet methyiphenidate is not addictive like cocaine

and does not cause the same level of negative side effects. 69 Using methyiphenidate or 1

analogs to treat cocaine abuse is dependent upon the complex nature of cocaine's effect

on the body; the methyiphenidate and 1 analogs are dissimilar enough from cocaine to

not have the multi-target binding profile of cocaine. The "reward response" to cocaine

use mediated by the DAT is mimicked by methyiphenidate analogs and 1 analogs,

without some of the negative side effects such as addiction." Use of 1 for agonist

substitution therapy has been proposed, because 1 binds to the DAT, but does not

substantially increase extracellular DA. 7

Chief attributes of the best candidates for treating cocaine addiction via agonist

substitution are expected to be:

• high binding affinity at the "cocaine binding site" on the DAT,

• partial (i.e., minimal) DA reuptake inhibition,

• high selectivity for the DAT versus the SERT, and

• desirable kinetics of slow on-rate and slow off-rate when binding to the DAT.

The first three attributes can be predicted from models using the following activities:

• DAT binding affinity, measured by the displacement of radiolabeled cocaine
analog [125I]RTI-55 5 from the DAT,

• DA reuptake inhibition, measured by the decrease of synaptic DA in response
to binding, and
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• SERT binding affinity, measured by the displacement of radiolabeled cocaine
analog [125I]RTI-55 from the SERT.

Binding affinities are equal to Kid, calculated from: 72

where the Kid is the inhibition constant (the dissociation constant of the test compound),

1C50 is the concentration of the radiolabeled cocaine analog [ 1251]RTI-55 that is displaced

from the DAT or SERT, S is the concentration of free [ 1251]RTI-55, and Kid is the binding

affinity constant of [1251]RTI-55, calculated from saturation binding experiments. It can

be seen that if the amount of free radioligand is small compared to the binding affinity of

the radioligand, the Kid is nearly identical to the 1C50 value. This is the case for all of the

experimental data provided for this study by Richard Rothman of the National Institutes

of Health (N1H).

DAT/SERT selectivity is calculated from the following equation:

DAT/SERT selectivity = log[ (DAT binding activity) / (SERT binding activity) ] (2.2)

where:

DAT binding activity = 1 / (DAT binding affinity Kid)	 (2.3)

SERT binding activity = 1 / (SERT binding affinity IQ 	 (2.4)

therefore:

DAT/SERT selectivity = log[ (SERT binding affinity IQ / (DAT binding affinity Kid)

(2.5)

DAT/SERT selectivity is modeled in this study because selectivity for the DAT over the

SERT increases specificity for the DAT and decreases potential side effects from SERT

binding. Most of the DAT binding affinities of the analogs studied are in an acceptable
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low nanomolar range of DAT binding affinity. The direct DAT/SERT selectivity was

used instead of scaling against cocaine's DAT/SERT selectivity because experimental

values for cocaine's DAT/SERT selectivity are near 1. 7 DAT/SERT selectivity has been

a target for the N1H and other researchers as well. 14
'

20
'

46
'

53
'

73
'

74

2.3 Classes of Dopamine Reuptake Inhibitors

There are five major classes of DA reuptake inhibitors being studied for their cocaine-

blocking properties: tropanes, benztropines, mazindols, methylphenidates, and 1 analogs.

The structure of cocaine and typical structures of the first four classes are shown in

Figure 1.1. A recent review of DAT binding compounds has been published and a

slightly older, but extremely comprehensive review of DAT binding compounds oriented

towards treatment of cocaine abuse is available

2.3.1 Tropanes and Other Cocaine-Like Dopamine Reuptake Inhibitors

Tropanes were developed based on the bicyclic cocaine backbone. Like cocaine, they

have the bicyclic backbone with a quaternary nitrogen and acetyl side chain, but in

position 3, various substituents replace the benzoyl moiety. 75 Three tropanes are

commonly used for binding studies; each has a phenyl substituent instead of the benzoyl

substituent. WIN35065-2 (C1T) 78  has a phenyl substituent, W1N35428 (CFT) 76 '77 has a

4-fluorophenyl substituent, and RTI-55 (C1T) 78 has a 4-iodophenyl substituent. 79

Cocaine and related tropanes bind to other proteins, especially the SERT and the

norepinephrine transporters, and thus may cause side effects or dilution of activity. The

tropanes CPT, CFT, and C1T have been used extensively for radiolabeling DAT and

SERT; this QSAR study is based on [ 1251]RTI-55-labeled DAT and SERT, using
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techniques to isolate one transporter or the other. 80° Many other tropane compounds that

act on the DAT have been synthesized and analyzed. 24-2729"3077"79 
,

81-123

Piperidine-based cocaine analogs have also been developed, with a piperidine ring

in place of the tropane ring. These compounds have shown varying levels of

activity.79,124 A recent QSAR study of piperidine-based cocaine analogs identified two

potential binding modes with different 3a- substituent binding characteristics. 37

2.3.2 Benztropine Dopamine Reuptake Inhibitors

Benztropines are similar to cocaine and other tropanes, but lack the acetyl side chain and

have a diphenyl methoxy or similar substituent in position 3, which makes them more

similar to 1 analogs than any other DAT binding ClaSS.36 ,38 ,39 ' 125-133 Benztropine is

currently used to treat Parkinson's disease, as well as drug-induced Parkinsonian

symptoms.

2.3.3 Mazindol Dopamine Reuptake Inhibitors

Mazindol has been used as an appetite-suppressant with actions similar to amphetamine.

Although mazindol analogs contain a quaternary nitrogen and aromatic moieties, the

resemblance to cocaine, tropanes, and benztropines ends there. Mazindol itself consists

of three fused rings, with a phenyl ring attached to the center ring. There has been

considerable SAR work on the series, including accompanying 3D-QSAR studies in

some cases. 42,134-142
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2.3.4 Methyiphenidate Dopamine Reuptake Inhibitors

Methylphenidate also has a different structure than cocaine, but includes the quaternary

nitrogen and aromatic substituent present in the other DAT binding families. 43

Methylphenidate is familiar as the active ingredient in Ritaline®, although that

prescription drug is a mixture of the active 2R, 2'R (D-threo) and the much less active 2S,

2'S (L-threo) enantiomers. 143,144 SAR studies and analyses have been completed on

methyiphenidate analogs,l45-153 including pyran analogs that are among the first DAT

binders developed to have high affinity for the DAT without containing a nitrogen

atom. 154 The Venanzi group has completed detailed conformational analysis of

methylphenidate60° and CoMFA studies on phenyl-substituted methylphenidates. 155,156

These CoMFA studies will be published along with comparisons to novel rigid

methylphenidate60 The conformational analysis and CoMFA work on methyiphenidate

is summarized below.

2.3.4.1 Conformational Analysis of Methylphenidate. To identify possible bioactive

conformers, the Venanzi group performed detailed conformational analysis of

methylphenidate and related rigid methylphenidates using multiple molecular modeling

methods.60° Hartree-Fock 6-31G* 158 basis set calculations as well as density functional

theory (B3 LYP/6-3 1 G*),159 Am1ism5.4,160-162 and Tripos force field l63 calculations

were performed using the Gaussian 98 164 (available from Gaussian, Inc., Wallingford,

CT), Spartan (available from Wavefunction, Inc., Irvine, CA), and SYBYL ® (available

from Tripos, Inc., St. Louis, MO) software. These techniques were used to explore the

potential energy surface (PES) of neutral and protonated methyiphenidate, as well as that

of several rigid methylphenidate invertamers. In addition, methods were compared to
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determine whether the less computationally-intensive force field molecular mechanics

method gave similar results to molecular orbital methods. All methods gave local

minima in approximately the same regions of torsional angle space. The Tripos force

field molecular mechanics random search found at least one conformation in each local

minimum area of the methyiphenidate PES, thus validating the utility of this technique

compared to more computationally-intensive ab initio methods.

2.3.4.2 Methyiphenidate CoMFA Studies. CoMFA studies were performed on

representative templates of neutral 155 and protonated156  phenyl-substituted

methylphenidate analogs The DAT binding affinities for methyiphenidate and 29

analogs were modeled using CoMFA at a comprehensive set of steric cutoff/electrostatic

cutoff/column filtering (a) combinations. Template conformers of the conformational

families with the best CoMFA results were compared to the conformations of rigid

methyiphenidate analogs that have the same binding affinity for the DAT, leading to

three potential bioactive conformations whose results matched well for both neutral and

protonated studies.

2.3.5 GBR 12909 Dopamine Reuptake Inhibitors

2.3.5.1 Discovery of GBR 12909 and Applications. Compound 1 is a 1,4-disubstituted

piperazine that was first synthesized in the 1970's at Gist-Brocades N.V., a Netherlands-

based food product and biotechnology company. It was initially investigated in Europe

as an antidepressant, but was targeted as a potential treatment for cocaine abuse in the

late 1980's. 165 Researchers at the N1H have studied 1 and related compounds for their

potential use to modulate cocaine addiction.
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Towards this end, over 300 related compounds were synthesized and their DAT

and SERT binding affinities tested by the Rice and Rothman groups at N1H, 12,l4,16-

18,20,166,167 exploring many aspects of the complex structure of 1. The data has been

provided to the Venanzi group for QSAR and pharmacophore modeling. The present

study is the first step in the computational analysis of these compounds. Forty-five

analogs of 1 that are based on the structures of 2 and 3 were selected for this study

because they have fewer rotatable bonds than 1 and thus are easier to model. Three

additional compounds, including 1 and two similarly flexible 1 analogs, were added as

additional test set compounds. The range of DAT/SERT selectivities (equal to the

logarithm of the ratio of DAT binding affinity to SERT binding affinity) covers more

than three log units, a recommended range for QSAR studies. 168

2.3.5.2 Structure-Activity Relationships of GBR 12909 Analogs. The three major

areas of 1, noted above in Figure 1.2, have been subjected to many changes. 12

Elimination of the B-side resulted in extremely poor DAT binding (K = 30,000 nM for

both DA uptake and DAT binding). Addition of single atom para substituents to both B-

side phenyl rings has been well tolerated. Adding substituents to only one phenyl ring

has been studied, with position 3' substitutions being better tolerated than 4'-

substitutions. 169 Selectivity studies have generally not been performed for B-side

structures other than those with para hydrogen and para fluorine phenyl ring

substituents.

The center ring has been modified in various ways, including conversion to a

tropane-like bicyclic ring, 17° and addition or removal of a carbon atom. Changing the

piperazine to a seven-membered diazepane ring resulted in no detectable DAT binding by



17

measuring [125I]RTI-55 displacement: Other variations on the center ring include a five-

membered 1,2-substituted azolidine ring with a nitrogen in the second position from the

center ring: This compound showed approximately one-fifth the DAT binding affinity of

1: DAT binding affinity was also poor when the center ring was changed to an acyclic

N,N-dimethyl-1,2-diamine ethane; no displacement of [125I]RTI-55 from the DAT was

detected at all: Removal of the A-side resulted in no detectable DAT binding for

[125I]RTI-55 studies, and poor DA uptake (Kid = 71 nM): Methyl substituents at the 2- and

5- positions have been added, improving DAT activity but these compounds performed

poorly in studies on laboratory animals: A similar trend was seen when adding a two-

carbon bridge to compound 1 across the A-side nitrogen: Other researchers have

explored center rings with oxygen instead of nitrogen 171 and constrained bicyclics as

well:46 The modification from a piperazine ring to a piperidine ring has resulted in better

DAT binding affinity and DAT/SERT selectivity; 74 ' 172 for this reason, both piperazine

and piperidine 1 analogs are included in this study:

A-side substitutions have been numerous: The original 3-phenylpropyl

substituent has been modified to include a double bond (slightly improved DAT binding)

or a bisphenyl substituent (better DAT binding in bench experiments but performs poorly

in animal models): Removal of flexible bonds from the A-side has been a focus of

studies; substituents include methylnaphthyl substituents and other double ring systems

(for example, thiophene, benzofuran, and quinoline): Different attachments of the double

ring systems have been explored: Adamantyl and ethynylbenzyl substituents have also

been used as A-side substituents: Work on piperidine analogs has resulted in many para-

substituted phenyl rings with high DAT binding affinities, with the cyan and
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trifluoromethyl substituents showing especially good DAT binding: These multiple

studies have shown that the SAR characteristics of 1 are complex indeed, with hundreds

of data points available on as many permutations of the structure: This study focuses on

a sample (forty-five 1 analogs) of the hundreds of compounds studied, to highlight the

effect of A-side substitution on the DAT/SERT selectivity of 1 analogs:

2.3.6 Shared Pharmacophore Elements of Dopamine Reuptake Inhibitors

As noted, all of the above classes of DA reuptake inhibitors share at least two

pharmacophore elements: a quaternary nitrogen and an aromatic ring. Figure 1:1 shows

that the torsional angles T 1 and T2 in methyiphenidate determine the relative orientation

of these two pharmacophore elements: Figure 1:2 shows that Al and A2 provide a

similar relationship for 2 and 3:	 The Venanzi group has performed conformational

analysis of methyiphenidate, 2, and 3 in order to investigate whether these two classes of

DA reuptake inhibitors might share a common pharmacophore: Figure 2.2 shows

conformational energy minima for methyiphenidate, plotted in (Ti, T2) torsional angle

space, and 2 and 3, plotted in their counterpart (Al, A2) conformational space:

Comparison of the local minima of methyiphenidate to those of 2 and 3 indicates that

these two very different classes of DA reuptake inhibitor appear to attain a similar

orientation of their quaternary nitrogen and aromatic substituents. The similarity of the

T1 and T2 torsional angles in methyiphenidate to the Al and A2 torsional angles in 2 and

3, and the fact that these compounds all displace [1251]RTI-55 bound to the DAT supports

the hypothesis that the pharmacophores for the two classes of partial DA reuptake

inhibitors are similar:
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Figure 2.2 Local conformational minima for protonated methyiphenidate and GBR
12909 analogs. Ti and T2 values for protonated methylphenidate (black circles), and Al
and A2 values for analog 2 (red triangles), and analog 3 (blue diamonds): Results for
protonated methylphenidate are shown with both positive and negative T2 values because
of the symmetry of the phenyl ring: Local minima are SYBYL random search
conformations found within 20 kcal/mol of the GEM for each molecule:

2.4 Synthesis and Pharmacology

Synthetic work was carried out by Dr: Kenner C. Rice's group at the National Institute

for Diabetes and Disorders of the Kidneys, part of N1H: Binding and uptake experiments

were conducted by Dr: Richard B: Rothman's laboratory at the National Institute on Drug

Abuse at Nat l2,l4,16-20,71,73,80,166,167,170,173-193 Four experimental results are of interest to

this project: DAT binding, DA uptake, SERT binding, and serotonin (SER) uptake:

DAT binding was measured by loading synaptosomes with radiolabeled [ 125I]RTI-55 and

measuring the amount of radiolabel remaining after incubation with a test compound.

DA uptake inhibition was measured by determining the decrease in the amount of DA in

the synaptosomes after incubation with a test compound: SERT binding and SER uptake
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inhibition were measured in a similar way, using blocking techniques to isolate SERT

binding from DAT binding.80

2.5 Molecular Modeling and Conformational Analysis

With the advent of the computer in the 1980's, computerized molecular modeling began

to progress rapidly as well, being previously relegated to large institutions with extensive

computing resources and costing inordinate amounts of computational time:

Computerized molecular modeling is based on a set of approximations of the interactions

of atoms and how they form molecules: Molecular mechanics uses empirical force field

parameters to define the shape, potentials, and interactions of atoms in a given molecule.

The molecular modeling package SYBYL uses the Tripos force field 163 to calculate the

attributes of molecules, including atom locations and relationships: Classical mechanical

forms, such as springs with differing elasticity constants, are used to represent different

atoms: Force field parameters are derived by fitting equations to experimental results:

Molecular mechanics methods use a series of equations to derive the locations of

atoms in a molecular structure. All molecular mechanics methods use a total energy

equation calculated as a result of different intra- and inter-atomic forces in the molecule:

The Tripos force field uses the following equation to calculate the total energy of a

molecule:

where: Est is the energy of a bond stretched or compressed from its natural bond length,

Abend is the energy of bending bond angles from their natural values,

E001, is the energy of bending planar atoms out of the plane,
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Etors is the energy due to twisting (torsion) about bonds, and

Evdwis the energy due to van der Waals forces between non-bonded atoms.

Eel, is the energy due to electrostatic interactions, and is optional depending on the user's

selection. Absolute values of the energies found when using empirical molecular

mechanics calculations are meaningless. Relative energies for different conformations of

the same molecule, and conformational energy differences between different molecules

(that is, relative to their own GEM) do have meaning. These techniques lend themselves

to mathematical comparison of molecules in order to predict relative activities of the

compounds.

Conformational analysis of molecules with many rotatable bonds is

computationally intensive. A full grid search, by systematically changing all eight key

torsional angles and subsequent minimization of each resulting structure, would produce

over 400 million conformations for 30° increments of the torsional angles. A wider grid

spacing of 60° for each torsional angle would produce almost 1.7 million conformations.

For this reason, the random search method l94 was selected as an appropriate way to

sample the energy minima on the PES of these flexible molecules. SYBYL's

implementation of random search uses random variation of selected torsional angles and

minimization of the randomized structures with the Tripos force field. An

interconformational root mean square deviation (RMSD) cutoff is used to remove

duplicate conformers. The RMSD is calculated from the atom locations of the new

conformer and each existing conformer; a new conformer that is within the RMSD cutoff
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of any existing conformer is discarded. The exhaustiveness of a random search can be

estimated by the following equation: 194

Probability of finding all conformers = 1 - (0.5) n	(2.7)

where n = the minimum number of times any conformer is found. Finding almost all

low-energy conformations is probable with small and less flexible molecules, within a

reasonable search time. However, for molecules like 1, 2, and 3, it is probable that not all

energy minima will be found, or that conformations must be limited by a high RMSD

between atoms in similar conformations (equivalent to a wider grid spacing for a grid

search). Random search combined with clustering of the conformations can be a

computationally efficient method to facilitate representation of all potential low-energy

binding conformations, instead of using a high interconformational RMSD cutoff value

which may arbitrarily remove important conformations based on search order.

2.6 Clustering

CoMFA results are notoriously dependent upon the conformer used as the template

structure. Highly flexible molecules have a continuum of conformers covering the many

changes in their torsional angles. In the present work, a series of CoMFA and CoMS1A

calculations are carried out on different template structures, which are representative

conformers identified using hierarchical clustering. Clustering is a method that takes

many data points (or sets of data points) and finds groupings based on the similarities of

one or more features of the data set. Items that share a cluster are assumed to be similar;

items that are not in the same cluster are assumed to be dissimilar. Clustering can be
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applied to many systems, but chemists have found it especially useful to reduce large sets

of conformations to a few representative conformers. 195

2.6.1 Types of Clustering

Clustering techniques can range from visual inspection to complex computational

techniques. All clustering techniques involve a feature set selected either manually by

the user, or automatically by the computer program. For molecules, a feature set might

consist of atom locations, distances between atoms, angles, or torsional angles. Visual

inspection can be performed on graphs created by selection of two features, one for each

axis. Automatic and exhaustive searching of possible feature sets (realizing that a feature

set can have any combination of features, from one to the maximum in the set) is not

available for general chemical systems. However, clustering based on root-mean-square

deviations (RMSDs) of all key atoms in a data set, such as carbon backbones in proteins,

has been used for very large data sets, such as those in the Protein Data Bank. 196

Two basic types of clustering methods exist: hierarchical and non-hierarchical. 197

Hierarchical methods can be perceived as "joining" clusters if proceeding from individual

data points to agglomerated clusters, or "splitting", if clusters are separated from one

cluster comprising the entire data set. Many hierarchical clustering algorithms join

clusters, where data points are joined into clusters by the highest similarity (for example,

the lowest RMSD), going from N clusters, where N = number of data points, to one

cluster. Identification of the optimal clustering level can be performed automatically or

manually to meet the specifications of the user, such as number of clusters desired or size

of average cluster. A further division of hierarchical clustering methods is between

"single-chain" linking and "multiple-chain" linking. Single-chain linking hierarchical
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clustering programs, such as XCluster, 198 successively look for pairs of data points which

have the highest similarity in terms of the feature set. The relationship between a single

data point and the other members of the cluster it is joining, other than its nearest

neighbor in the cluster, is immaterial, although this nearest neighbor was obviously found

earlier to link to another member of the cluster. Multiple-link clustering can drastically

increase computational time, as each member in a cluster needs to be compared to a

potential new member. A compromise is to compare the feature set of a potential new

member to the centroid of the feature set of the existing cluster, the centroid being made

up of the average value of each feature.

Non-hierarchical clustering methods generally require selection of the desired

number of clusters as an input, in addition to identifying a feature set where necessary.

Although the computational time is decreased compared to hierarchical clustering

because the number of clusters is usually set low (less than 10), the possibility of partial

membership in a cluster (e.g., fuzzy clustering) increases computational time. k-means

clustering is non-hierarchica1, 199  finding the n most dissimilar data points, where n equals

the target number of clusters, then adding data points to each cluster by similarity to this

initial set.

Clustering data points is not usually an end in itself in conformational analysis of

a single molecule; rather, finding the centroid or data point nearest the centroid in each

cluster is the goal. Versatile clustering programs allow identification of data points

representing clusters that are inside (a member of) or outside (not an actual member) of

the data set, based on average values of features or other criteria.
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2.6.2 Hierarchical Clustering as Implemented in XCluster

As noted above, XCluster is a single-link hierarchical clustering method which was

designed specifically for clustering of molecular conformations. As such, issues such as

circularity of torsional angle data and molecular symmetry are handled automatically

with some user options available. Circularity of torsional angle data addresses the fact

that torsional angles are polar coordinates, and need to be treated differently than scalar

values. For scalar values, the shortest distance between two points is the simple

difference of their values. The scalar distance between torsional angles may or may not

be the correct shortest distance, because 0° = 360° = 720° etc. all represent the same

torsional angle. For example, the shortest distance between 350° and 5° torsional angles

is 15° degrees, not the simple difference 345°. Symmetry issues include not considering

equivalent carbons, such as those in the ortho positions on symmetrical phenyl rings, as

different atoms.

Based on the selected feature set/alignment option, XCluster performs clustering

by first calculating an intermolecular distance matrix of a set of superimposed molecules.

For feature sets consisting of atoms only, XCluster allows the user to select a new

superposition, or to use the molecular database's existing superposition. In the case of

atom superpositions, each interconformational distance is a RMSD average between

locations of the atoms in the feature set. Superpositions are not applicable to torsional

angle-based clusterings, since in that case, the distances are calculated based on torsional

angle values, as opposed to atom locations. For torsional angles, the distance is the

average of the differences between the torsional angle values, and is independent of atom

locations.
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Each distance value du in the distance matrix represents the similarity between

conformers i and j by comparison of the items in the feature set. The critical distance d*

is incremented from 0 at clustering level 1 (where the number of clusters equals N, the

number of conformers) to the minimum distance du that is more than zero, to create

clustering level 2 with N-1 clusters. As the d* value increases (in accordance with the

increases in the actual du in the intermolecular distance matrix), additional clusters are

formed by combining two clusters found at the previous clustering level. Eventually, all

of the conformers would be in the same cluster; the d* value would reach the highest du

value (representing the two most dissimilar conformers by the feature set criteria) in the

intermolecular distance matrix, and the conformers would become one data set. XCluster

is hierarchical; each cluster is an agglomeration of clusters formed on the previous level,

and no cluster is disassembled at any succeeding level. Figure 2.3 shows an example

data set, along with its distance matrix and the input-ordered and generic-ordered

distance maps. The color-coding of the distance maps is discussed in the next section.

Conformational space coverage and population of clusters can be compared. The

radius of gyration (rg) of the conformational point cloud is used to measure the

occupation of conformational space. Large values indicate more coverage or "sweep"

through conformational space, and small values indicate less coverage.

Representatives from each cluster can be cluster members, or calculated

conformations that derive from the centroids of the members of each cluster. This study

uses representative conformers that are the members of each cluster that most closely

resembles the calculated "center" (average feature set atom locations) of each cluster, to



Figure 2.3 Example of a simple clustering study. (a) Five conformers, with feature set
of x-y coordinates. (b) Distance matrix. (c) Input-ordered distance map. (d) Generic-
ordered distance map.

ensure that the representative conformer used in the CoMFA and CoMSIA studies is a

local energy minimum.

2.6.2.1 Distance Maps. A first step in the analysis of an XCluster study is review of its

distance map. Distance maps are a color-coded display of the RMSD values for pairs of

molecules in each analog's set of conformers. The distance map therefore summarizes

the many different RMSD values into a small number of RMSD ranges indicated by color
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on a grid. Distance maps for different combinations of feature set/alignment options can

be compared, or distance maps can be evaluated based on their appearance. In this study,

the input order of the conformations was not meaningful, so a generic ordering was used

to display the distance maps. This procedure orders the conformers such that clusters

form from adjoining conformers; multiple generic orderings are possible, depending on

the first conformer selected. The generic ordering displayed in the distance map is not

the only one possible; it is the one generic ordering that starts with conformer 1 of each

analog's data set on the left side.

2.6.2.2 XCluster Basic Statistics. The XCluster run produces simple statistics by

default; there are additional statistics which may be requested when the run is completed.

The seven basic statistics are: 198

• Clustering level, L : corresponding to N-1-L clusters, where N is the number of
conformers.

• Critical distance, d*L: the critical threshold distance between the clustering level L
and the previous clustering level, L-1. The critical distances are derived directly from
the distance matrix, and match the exact distance matrix entries. Thus, a sorted list of
all distance matrix values would match a sorted list of critical distances for a
particular clustering study.

• STe: the reordering entropy. At clustering levels 1 and N, there are N! reorderings.
Each clustering level between 1 and N has a smaller number of reorderings, limited
by forbidden reorderings that break up existing clusters. The reordering entropy is
high when there is a small number of large clusters and low when there is a large
number of small clusters.

• Number of clusters, k, equals N-1-L, as noted above. This can also be called the
actual number of clusters, to differentiate it from the effective number of clusters.
The actual number of clusters is the sum of all clusters, large and small.

• Effective number of clusters, k*, corresponds to the "number of large clusters",
calculated as k* = exp (Sep), where:

Set = 	 x i In x i	(2.8)

28
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and xi = fraction of the data set in the cluster and k = the actual number of clusters at
the clustering level.

• Minimum separation ratio and maximum separation ratio. The separation ratio is the
ratio between the critical threshold distance of the current level, and the critical
threshold distance of the next highest clustering level (the level with one less cluster):

The effective number of clusters is a measure of how many large clusters exist at

a particular clustering level. The effective number of clusters reaches its maximum when

all clusters are of equal size. The maximum effective number of clusters for a given level

is the actual number of clusters, which can be achieved at individual levels, but not

maintained across the entire range of clusters.

For example, if at clustering level N-1, the actual number of clusters equals the

effective number of clusters, which equals two, it can be seen that at clustering level N-2,

the effective number of clusters could not reach its theoretical maximum of three

(because one of the clusters with 50% of the conformers remains, with the other cluster

splitting, at the most evenly distributed, into two clusters containing 25% of the

conformers). This concept is illustrated in Figure 2.4. Qualitatively, the effective

number of clusters measures how many "large clusters" are present at a particular

clustering level for a clustering study, but the more uneven the sizes of the clusters are,

the lower the effective number of clusters. The minimum separation ratio shows how far

apart the most similar clusters are in a set of clusters; this value is important when it rises

above 2, 198 indicating a clear separation between the most similar clusters. The

maximum separation ratio shows how far apart the most dissimilar clusters are in a set of

clusters. These basic statistics are provided as part of the standard XCluster output file.
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Figure 2.4 Diagram of successive clustering levels. Actual (k) versus effective (k*)
number of clusters is demonstrated. Hierarchical clustering prevents splitting of more
than one cluster at a step, thus k = k* cannot be maintained.

2.6.2.3 Cluster Derived Statistics. Although the minimum separation ratio is noted

by Shenkin and McDonald to be a figure of merit, 198 it may not be sufficient to select the

best clustering study or clustering level for all data sets. 198,200,201 Large data sets can have

a continuum of conformations, such that the minimum separation ratio never rises much

above 1. For this reason, the present work defines the novel derived statistic, percentage

change in the effective number of clusters (%DEff), which may be a more useful statistic

for large data sets. The %DEff at level L is calculated as:

where:

%DEff = percentage change in the effective number of clusters

EffL = effective number of clusters at clustering level L

EffL_i = effective number of clusters at clustering level L-1

Act = actual number of clusters at clustering level L

Consecutive application of the distance map and clustering statistics criteria

outlined above leads to determination of the best feature set/alignment option and the
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optimal number of clusters. Identification of the representative conformer for each

cluster is discussed below.

2.6.2.4 Determining Representative Conformers. Once the optimal feature

set/alignment option and clustering level are chosen, the representative conformer for

each cluster is determined as the conformer with feature set atom locations closest to the

average feature set atom locations within the cluster.

2.7 QSAR studies

2.7.1 Review of CoMFA and CoMSIA Methods

This study uses ligand-based QSAR methods because there are no available three-

dimensional structures of the DAT. 5 The ligand-based QSAR technique CoMFA was

first used to predict the binding of steroid molecules to carrier proteins. 22 Since then,

CoMFA has been used in many applications to determine the relationship between the

structures and electrostatics of a set of compounds and one or more properties of the

compounds. The steric bulk and electrostatic potential fields at various grid points, as

seen by a probe atom, are used to develop a model to predict the biological activity of

each compound. Figure 2.5 shows a representation of the CoMFA procedure, with a

sample grid identified. Each SYBYL CoMFA column shown in the molecular

spreadsheet (i.e., QSAR table) contains a volume estimate of each molecule based on the

number of lattice points contained in the molecule. The columns shown represent the



Figure 2.5 Representation of CoMFA procedure. 22 Three-dimensional grid of points is
shown around a sample compound. Steric and electrostatic potentials are calculated at
each grid point. Partial least squares analysis relates the legend's molecular properties
(S001, ...S998, E001,...E998) to its biological activity ("Biro"), creating a predictive
model. (Reprinted from SYBYL QSAR Manual, Tripos, Inc.)



33

thousands of steric or electrostatic potential values that make up the CoMFA field. The

individual values for steric bulk and electrostatic potential fields at grid points are

calculated using Lennard-Jones and Coulombic potentials. Columns are produced in a

SYBYL molecular spreadsheet that represent a specific CoMFA run. Cutoffs are used to

ensure that large values for steric and electrostatic potentials are not weighted too

heavily. The cutoff tells the program that any value above the cutoff is set to the cutoff

value. There is a steric potential cutoff, an electrostatic potential cutoff, and a column

filtering value (o) to even out variations within a CoMFA column.

CoMS1A columns are calculated in a similar manner, with field values calculated

at each grid point; however, Gaussian functions are used to approximate the shape of

each molecule, and properties derived from atom-based descriptors are associated with

the Gaussian functions. 202 CoMS1A is based on the molecular alignment program,

SEAL,203 which uses rigid bodies to find the maximum overlap of electrostatic and steric

fields. The effect of using the Gaussian function is that the distance-dependence response

of field variables is smoother and singularities possible with Lennard-Jones and

Coulombic potentials used in CoMFA can be avoided. CoMS1A also has the advantage

of a selection of different field types: hydrogen bond donor/hydrogen bond acceptor,

hydrophobic/hydrophilic, and steric/electrostatic.

CoMS1A studies were performed to supplement the CoMFA studies. Since

CoMS1A addresses hydrophobicity and hydrogen donor and acceptors, as well as

electrostatic and steric effects, in addition to the different calculation methods noted

above, the CoMS1A results might provide a different insight into the molecular

requirements of the higher activity 1 analogs. CoMS1A studies can also produce more
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meaningful contour maps because molecular similarity is used to align ligands, allowing

easier identification of areas which can be substituted to improve activity.

Both CoMFA and CoMS1A columns are converted to models through use of PLS.

PLS, also known as projection to latent structures, is used because traditional least-

squares methods cannot be used for the large number of data points created in a CoMFA

or CoMSIA study. The use of the PLS method, developed by Wold et al., 204 allows

manipulation of thousands of x-values, using a modified least squares algorithm to create

a model. An iterative process is used where new variables t o are formed from the x

variables, and used to predict y variables. Each step produces a component, consisting of

a set of to variables known as "scores" or "latent variables". As the number of

components increases, so does the complexity of the model. The limit for the number of

components is one less than the number of objects (molecules) in the study, essentially

modeling the variability in response due to each molecule. Components are therefore

limited to either the SYBYL default of six components, or the rule-of-thumb of one-third

of the number of molecules in the training set (compounds used to form the model).

PLS requires the use of a cross-validation method to determine where the optimal

number of components occurs. Various cross-validation methods exist, all consisting of

leaving out a group of compounds for each run within the cross-validation analysis. The

leave-one-out (LOO) approach has as many groups as molecules; each molecule is left

out once, for a total number of runs equal to the number of compounds in the training set

for each cross-validation run. A correlation coefficients is calculated for the LOO cross-

validation (LOO/CV) run:
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where q2 equals predictivity and is dimensionless, generally between 0 and 1, but can be

less than zero; PRESS equals predictive residual sums of squares formed from all of the

sums of squares of residuals for each cross-validation run (residual = predicted y-value -

experimental y-value); and SS(Y) equals sum of the squares of the y variables. The

optimal number of components is identified as the number of components where the q 2

still increases, and the standard error of prediction (based on the residuals found) does not

increase significantly.

The optimal number of components is used for a non-cross-validated (NCV) PLS

study, also known as a "full model" because all molecules in the training set are used to

create it. A second correlation coefficient is created from the NCV PLS analysis, known

as the "goodness-of-fit", r2 , calculated by:

where r2 equals the goodness of fit and is dimensionless, generally between 0 and 1;

SS(F) equals the sum of the squares of the y residuals, and SS(Y) equals the sum of the

squares of the y variables. Many CoMFA studies show r 2 values in the range of 0.9 or

above,205 although Wold et al. 204 indicate that q2 and r2 should be within 0.15 of each

other.

Two standard errors are also calculated; one for LOO/CV PLS analyses

(standard error of prediction, SEP) and the other for NCV PLS analyses (standard error of

estimation, SEE). SYBYL also performs a statistical F-test on the NCV PLS results. The

F value has a general definition of the normalized results of a model divided by one

minus the normalized results of the model. F values for NCV PLS analyses with the
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same optimal number of components can be compared directly, but models with different

numbers of components cannot.

CoMFA and CoMS1A studies using PLS have recently been augmented by the

use of PLS Region Focusing. 206 Region Focusing allows refinement of a CoMFA or

CoMS1A model through increasing the weighting of more important lattice points and

decreasing the weighting of less important points, as indicated by a NCV PLS model.

Use of the PLS method avoids the necessity of x variable selection or x variable

reduction in CoMFA or CoMS1A studies. Although other methods of statistical

treatment of CoMFA x values have been developed, including genetic algorithms, 207 K

nearest neighbor, 208 and neural networks,209 the application of PLS to CoMFA has

allowed it to become a widely used method.

2.7.2 QSAR Studies on Training Set

Dividing data into a training set and test set allows external validation of a QSAR model.

The QSAR model is based on part of the total data set (the training set), and the

remaining compounds are left out of the model for external validation (the test set). In

the present study, preliminary 3D-QSAR studies were performed on the training set, the

best results focused, and then supported by internal validation using y-value scrambling.

One hundred y-value scramblings using SYBYL's Progressive Scrambling 21  function

were performed on each focused model to estimate their stabilities. This method bins the

activities and scrambles them successively within each bin, thus grouping similar

activities to check the sensitivity of the model to randomness. Ten times the default

number of scramblings were used to minimize the effects of the random seed. Three key

results are produced:
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• Q2 = 1 - (sSDEP)2 : the predictivity of the model, using the scaled standard
deviation of the error of prediction.

• cSDEP: cross-validated standard deviation of error of prediction

• dq'2/dryj2: the instantaneous slope calculated where the correlation between the
original data set and the randomized data set is equal to the critical point.

Q2 is limited by the selected critical point (0.85), and is more conservative than

the cross-validated q2 calculated in the LOO/CV CoMFA PLS runs. cSDEP can be

compared to the SDEP and the actual error in the experimental samples. Like the q2 and

SEP results above, Q 2 should be high, preferably above 0.5, but certainly above 0.3, and

cSDEP should be low and similar to SEP. These results were compared to the

recommended cutoffs for stable models, of which the most important is a slope

(dqi2/dryy'2) under 1.2. 211

2.7.3 Prediction of Test Set DAT/SERT Selectivities

Experimental and predicted test set DAT/SERT selectivities were used to calculate

correlation coefficients for each of the selected CoMFA models as an external validation

method.212 The Predicted DAT/SERT selectivity (y) vs. Experimental DAT/SERT

selectivity (x) was plotted to calculate:

• R2 , the coefficient of determination, of the best-fit line,

• R, the correlation coefficient, R, of the best-fit line,

• R02 , the coefficient of determination, of the zero-intercept line, and

• k, the slope of the zero-intercept line.

The reverse relationship, Experimental DAT/SERT selectivity (y) vs. Predicted

DAT/SERT selectivity (x), was also plotted to find:
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• R'02 , the coefficient of determination, of the zero-intercept line of Experimental
vs. Predicted, and

• k', the slope of the zero-intercept line for Experimental vs. Predicted.

All of the six statistics should be near one, but a model is still considered valid if

either Roe or R'02 is near 1, and its respective slope, k or k', is near 1. Models that better

predict the test set have all of these statistics near 1. Barring that, the value for R 2 should

be near either the value for R02 or R'02 . These results were used to compare the predicted

validity of the selected QSAR models.

2.8 Prediction of Novel Compounds

A pharmacophore is a set of required, but not necessarily sufficient, molecular

characteristics that represent a binding (or bioactive) conformation of a set of compounds

at a binding site. The geometry of a molecule determines its conformational elements.

Qualitative pharmacophore mapping was performed using SYBYL's Map CoMFA

function. This feature uses the CoMFA model to highlight areas of the molecules that

would lead to higher activity; areas where varying electrostatic and steric effects by

chemical group substitution leads to more active compounds are identified. This

information was used to predict the DAT/SERT selectivities of novel compounds.

This project resulted in identification of a predictive and stable QSAR model that

was used to identify novel compounds with predicted high DAT/SERT selectivities.

Molecular modeling of synthesized compounds is part of the iterative process of finding

the best compounds to meet the needs of the research. These results will be provided to

the Rice and Rothman groups at N1H as a contribution to ongoing GBR 12909 research.



CHAPTER 3

METHODS

The 3D-QSAR methodology is summarized in Figure 3.1, which reviews the major steps

in a manner applicable to more general QSAR studies. Validation methods can be

applied comparatively or individually, depending upon whether multiple conformations

and/or alignments are chosen for parallel analysis. This project compares six different

QSAR studies which go through the validation steps in parallel; results which do not

meet validation criteria are set aside or reassessed.

3.1 Assumptions

All modeling projects have some level of approximation. In QSAR work, the primary

goal is to develop a model based on the structure and/or conformation of molecules that

yields accurate activity estimates. Assumptions are of three main types: limitations in

scope, accuracy of source data, and software/algorithm approximations.

3.1.1 Limitations in Scope

Thousands of compounds from different classes of DA reuptake inhibitors have been

assessed for activity at the DAT. This project focuses on one subset of the GBR 12909

class of DA reuptake inhibitors, due to Drs. Rice and Rothman's research on the use of 1

and its analogs for agonist substitution therapies for cocaine addiction. Initially, forty-

five compounds based on 1 were selected from over three hundred 1 analogs, and three

compounds, including 1, were added as additional test set compounds. Piperazine and

39
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piperidine compounds were selected based on varying A-side structures, and activities

were reviewed to ensure an acceptable range of activities (more than three log units). 168

Conformational analysis is expected to yield a subset of conformations of all of

the possible low energy conformations of the 1 analogs. This subset is assumed to have

one or more conformations that adequately represent the bioactive conformation of these

compounds in a QSAR model. Detailed conformational analyses were performed only

on 2 and 3; it is assumed that the local minima found for these analogs are significant for

the other 43 analogs. Selection of random search and clustering parameters was done

with this goal in mind. Further approximations are that a static binding conformation can

adequately represent the dynamic changes in a ligand that occur during binding, and that

the bioactive conformation is one of the local minima on the conformational PES of each

molecule.

3.1.2 Accuracy of Source Data

The Venanzi group has access to several different sets of data on DA reuptake inhibitors.

To minimize propagation of errors and allow comparison of data, this research project is
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based on activity data provided by the Rice group from their colleagues in the Rothman

group, both at N1H. The pharmacological tests were performed on the same species of

rat using the same methodology for each type of test. 184 By using binding data from the

same laboratory, the relative accuracy of the calculations is assured.

3.1.3 Software/Algorithm ApproDimations

All calculations were performed on a SG1 Origin 2000 with twenty 300 MHz processors,

20 GB of memory, using the 1R1X ® 6.5.18m UN1X®-based operating system. Molecular

modeling was carried out with SYBYL Version 6.9 (available from Tripos, Inc., St,

Louis, MO) and Macromodel 8 (available from Schrödinger, Inc., Portland, OR).

Appendix A lists additional software specifications.

A discussion of the basis of the modeling software and algorithms is found in the

Background section of this work. Molecular mechanics methods model atoms and bonds

using macroscopic-scale relationships. Modeling results for molecules not found in the

set of molecules that validated the Tripos force field, such as the 1 analogs, are

approximated from values for individual atom types.

The CoMFA and CoMS1A methods are further approximations, both in the sense

of being based on the Tripos force field, and that the methods both are based on

responses to probe atoms. Default probe atoms were used for all calculations. Grid

spacing and cutoff values for CoMFA further approximate the results. Although studies

have been performed on these factors, no definitive protocols other than use of the default

values have been recommended.

Recording and presentation of CoMFA and CoMS1A results is subject to the

limitations of the modeling software as well. Estimated activities are reported to four or
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more significant figures, yet the expected accuracy of "good" models can be as poor as

one full log unit off or as good as less than 0.1 log unit off from the experimental value.

The CoMFA convention of three digits past the decimal point was used for q 2 , SEP, r2 ,

and SEE.

3.2 Selection of Analogs

A subset of structurally-related compounds was selected from over 300 analogs in the

Rice/Rothman series. The selection criteria included each analog having as few rotatable

bonds and chiral centers as possible, while maintaining either a piperazine or piperidine

ring; having the same 2-[bis-(4-fluorophenyl)methoxy]ethyl- B-side structure; and

pharmacological data covering a wide range of DAT/SERT selectivities. Analog 2 was

selected because it has fewer rotatable bonds than 1 (two on the A-side for 2 versus four

on the A-side for 1), an identical center ring and B-side as compared to 1, but no chiral

centers. An additional 22 piperazine compounds were selected based on 2's scaffold,

differing from 2 only in the A-side substituent. Analog 3 is the piperidine analog of 2,

and 21 additional piperidines were selected, differing from 3 only in the A-side

substituent. DAT and SERT binding affinity and DAT/SERT selectivity are shown in

Table 3.1 for the 45 analogs of 1 in the study. Binding experiments were performed in

the Rothman laboratory using identical protocols. 12,l4,17 DAT binding Kid's range from 0.7

nM for 7 to 100 nM for 12. SERT binding Kid's range from 2.96 nM for 17 to 2090 nM

for 24, with 74% of the compounds with SERT binding K's above 100 nM.
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Figure 3.2 shows the scaffold of the set of analogs of 2 and 3 that were used in

this study. To keep the variations to a minimum, the compounds are either piperazine- or

piperidine-based, have fluorine atoms in the para positions of the B-side phenyl

substituents, and have only one carbon atom between the A-side nitrogen and the A-side

substituent. This QSAR study therefore focuses primarily on the effect of A-side

substitutions. A-side moieties include naphthalene, thiophene, furan, and various phenyl

substituents. There are a few compounds, such as the naphthyl compounds, that have

piperazine and piperidine counterparts. This may be because the piperidine compounds

were developed later than most of the piperazine compounds, so lessons learned from

earlier SAR work on the piperazines were applied. Many of the aromatic substituents are

symmetrical about the A2 torsional angle (e.g. 11, 24, 26, etc.). In cases where the

substituents were not symmetrical, the orientation of the substituent was created to follow

the orientation of the naphthalene substituent in the respective template compound. The

analogs were divided into a test set and training set for 3D-QSAR studies. The test set

was selected to be well-distributed over the range of DAT/SERT selectivities and to be

split between piperazine and piperidine analogs.
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3.3 Conformational Analysis and Clustering

Since it is computationally impractical to carry out conformational analysis of all the

analogs in Table 3.1, 2 and 3 were selected for detailed conformational study. Two

random searches were performed, one on the piperazine 2 and one on the piperidine 3.

Comprehensive hierarchical clustering using XCluster was performed on several hundred

conformations of each analog. A representative conformer in each conformational cluster

was used as a template for building the other 1 analogs by changing the substituents as

necessary, and minimizing each resulting structure. This approximation resulted in a

significant decrease in computational time by not requiring a random search and

clustering study for each of the 48 compounds.

3.3.1 State of Protonation

Studies on DA binding have shown that it most likely binds to the DAT in the protonated

state. 213 Cocaine is thought to exist as a 90/10 mixture of protonation states, favoring the

protonated form, but having similar conformations in the neutral and protonated forms. 27

HF/6-31 G* molecular orbital calculations performed on 1 showed that protonation of the

A-side nitrogen is favored over the B-side nitrogen. 214 This agrees with binding studies

of piperidine analogs of 1 that show that the binding affinity for the DAT is substantially

higher when the A-side nitrogen rather than the B-side nitrogen is present. 172 The A-side

nitrogens in 2 and 3 were therefore modeled with an associated proton.



Figure 3.3 Diagram of 3 and its features. Identified are potential pharmacophore
elements, key torsional angles and key atoms.

3.3.2 Random Search Conformational Analysis

Two random search conformational analyses were performed on the minimized structures

of 2 and 3 by Milind Misra and Deepangi Pandit from the Venanzi group, using the eight

torsional angles (Al, A2, B1, B2, B3, B4, B5, and B6) noted in Figure 3.3. Each search

was performed for 10,000 cycles over an energy range of 20 kcal/mol from the GEM;

additional parameters are found in Appendix A — Software Specifications and Input

Parameters. SYBYL Version 6.9 with the Tripos force field was used to calculate

conformations and energies. The detailed protocol for the random search conformational

analysis of 2 has been published elsewhere. 215 The same protocol was repeated for 3. A

full analysis of the conformational profiles of 2 and 3 will be given in a future

publication. 61 The conformers were converted from SYBYL mol2 to Macromodel mae

multiple molecule file format for analysis by XCluster.
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3.3.3 Clustering

Hierarchical clustering using XCluster198 (Schrodinger, L.L.C., Portland, OR) was

performed to determine representative conformers of 2 and 3 from the large data sets

produced by the random searches. Various feature sets were examined and the resulting

clustering statistics and distance maps were analyzed to determine the most appropriate

clustering feature set and clustering level. A representative conformer was selected from

each of the major clusters found at the selected clustering levels. These representative

conformers were then used as templates from which the other analogs in Table 3.1 were

constructed, creating conformational families. The clustering techniques used are

summarized in three flowcharts, found in Figures 3.4, 3.5, and 3.6, and described below.

3.3.3.1 Initial Clustering Studies. Clustering studies were performed on the sets of

conformers produced by random search as noted above. The multiple feature

set/alignment options explored are shown in Table 3.2 and their use is described in Figure

3.4. Distance matrices were constructed separately for analogs 2 and 3 based on these

options. Each entry in the distance matrix consists of the RMSD of the atoms or torsional

angles in the feature set calculated for pairs of conformers superimposed according to the

chosen alignment option. Table 3.2 shows the combinations of atoms or torsional angles

used in the clustering studies and the superpositions where applicable. Atoms and angles

used in the feature set/alignment options are identified in Figure 3.3. The feature sets

range from all heavy atoms (options a and b) to key atoms that contain the DAT

pharmacophore elements (quaternary nitrogen and aromatic ring on the A-side) (options

c — e) to key atoms that contain the bisphenyl substituent required for 1 analog binding

(options f — j). These are coupled with alignment options which superimpose the
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molecules by the center ring atoms or all heavy atoms (options a, b, c, and)) or focus on

the A-side DAT pharmacophore elements (options d and e) or on the B-side atoms

(options g — j). XCluster216 was used to calculate intermolecular atomic or torsional

RMSD values. Symmetry options were set to the default, which handles basic symmetry

issues, such as symmetry of some aromatic groups around torsional angle A2.
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3.3.3.2 Selection of the Optimal Number of Clusters. Two levels of review were

necessary to select the optimal number of clusters. First, the distance maps for each

feature set/alignment option were reviewed for both analogs, and those that showed small

numbers of well-defined large clusters were selected for further analysis, as shown in

Figure 3.5. Review of distance maps focused on the number of large squares present on

the diagonal, and the relationship between these squares. For the goal of finding a

manageable number of clusters in order to identify representative conformations for a

future CoMFA study, maps with 10 or fewer large squares on the diagonal (with few or

no small squares) were deemed to be most appropriate. In other words, the best distance

maps would show relatively few large boxes centered on the black diagonal line that

represents each conformer being compared to itself. This type of distance map identified

the feature/set alignment option that was selected for detailed analysis (calculation of

clustering statistics). Maps with many small squares along the diagonal, indicating many

small clusters, were not analyzed further. For individual clustering studies, this initiated

the selection of a new set of features and rerunning XCluster (see Figure 3.5).

In the second phase, the percentage of conformers included in the large clusters

was calculated and the maps which had the largest percentages were selected for

calculation of clustering statistics (minimum separation ratio, actual and effective number

of clusters, percentage change in the effective number of clusters). These statistics were

used to determine the optimal clustering level and associated optimal number of clusters,

as shown in Figures 3.5 and 3.6. For example, clustering statistics were calculated for the

20 highest clustering levels for each selected feature set/alignment option. If the

minimum separation ration was above two for a particular clustering level compared to
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neighboring levels with values around one, that level was identified as the optimal level,

as shown in Figure 3.5. If all the clustering levels had about the same minimum

separation ratio (around one), then the percentage change in the effective number of

clusters, along with a comparison of the effective versus actual number of clusters, was

used to identify the optimal clustering level and the optimal number of large clusters, as

shown in Figure 3.6. In addition, the radius of gyration was calculated to determine the

coverage of conformational space by the selected clusters.

3.3.4 Representative Conformers

Once the optimal feature set/alignment option and clustering level were chosen, the

representative conformer for each cluster was determined as the conformer with feature

set atom locations closest to the average feature set atom locations within the cluster.

The representative conformers of analogs 2 and 3 in each cluster were compared by

calculating the RMSD values for the fit of the feature set atoms as well as all heavy

atoms. This was accomplished by converting each conformer of 3 into a pseudo 2

structure by replacing the carbon atom with a nitrogen and removing the "extra"

hydrogen. This allowed Database RMSD Fit calculations using SYBYL, which can only

be done on a database of identical molecules. A visual comparison of the pairs of closest

related analog 2 and 3 representative conformers was also made, using superimposed

structures.

Templates for the conformational families to be used in the QSAR studies were

selected by determining which conformers of the piperazine and piperidine 1 analogs had

the lowest RMSD among pairs of conformers. Conformational families were numbered
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by succeeding feature set values (in this study, by ascending A1 and A2 torsional angle

values) of their template conformers.

3.4 Creation of Conformational Families

Each piperazine (or piperidine) representative conformer was used as a template from

which to build the remaining 22 (or 21) analogs shown in Table 3.1. Each of the

conformational families identified had one template for piperazine 1 analogs, and another

template for piperidine 1 analogs. These templates were used as a basis for creation of

the sets of 1 analogs to use in the CoMFA and CoMSIA studies. A SYBYL

Programming Language (SPL) script was used to modify each pair of template structures

to create the other analogs. SYBYL's Log Session command was used to record the

creation of a set of 1 analogs. The recorded commands were saved as a SPL file and

modified to make a script that created the other forty-three 1 analogs from the 2 and 3

templates. A sample script is given in Appendix B. The sets of 1 analogs were placed in

separate databases, one for each cluster. The script was also used to reset the torsional

angles A1 and A2 to the values found in the cluster's template, minimize each structure,

and fit the atoms to align the analogs.

Twenty-two additional piperazines were created based on each 2 template, and

twenty-one additional piperidines were created based on each 3 template. For each

analog, the A-side naphthalene moiety was removed, and replaced with the appropriate

new substituent from Table 3.1. In cases where the aromatic substituents were not

symmetrical, the orientation of the substituent was made to match that of the 2-naphthyl

substituent in the respective template compound. Thus, the second ring in fused ring

substituents would overlap that of the naphthalene substituent in 2 or 3 as much as
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possible. The new substituent was added with the average A1 and A2 torsional angle

values for the piperazine 2 and piperidine 3. Each molecule was minimized for 1,000

iterations using the Tripos force field l63 with Gasteiger-Htickel charges.2I7 The

additional test set compounds (all piperazines) were constructed individually from analog

2, minimized, and aligned in the same manner as the other compounds.

3.5 Molecular Alignment

Each analog in the series was aligned to analog 24 (R = H), the analog with the smallest

substituent, using the four atoms comprising the A1 torsional angle. An atom-based

alignment had been used in the Venanzi group's previous methyiphenidate study and

other28 studies of the DAT's cocaine binding site. This alignment is based on the atoms

that are proposed to be included in the DAT cocaine binding site pharmacophore.

Alignments reviewed included all heavy atoms and the five atoms comprising the A1 and

A2 torsional angles. The selected alignment is based on the four atoms in the torsional

angle Al. This aligns the key part of the nitrogen-based pharmacophore. Carbon atom

25, the final atom in torsional angle A2, could not be included because the smallest 1

analog has only a methyl substituent and no atom 25, and therefore could not be aligned

on the A1 and A2 atoms.
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3.6 CoMFA and CoMSIA Studies

3.6.1 CoMFA and CoMSIA Study-Specific Concerns

Many published articles on CoMFA22 use SYBYL's default settings. Work by the

Venanzi group has indicated that improved models can be found by varying the CoMFA

parameters." Although the column filtering value (a) was also changed, the most

significant effect was in response to changing the electrostatic and steric energy cutoffs

from the default settings of 30 kcal/mol each. The research conducted on modifying

electrostatic and steric energy cutoffs used a grid of electrostatic cutoffs from 10 to 60

kcal/mol and steric cutoffs from 10 to 250 kcal/mol. The CoMFA studies were

performed at nine different sets of electrostatic and steric cutoffs to decrease the

computation time but still cover a range of settings.

3.6.2 CoMFA and CoMSIA Preliminary and Focused Studies

Preliminary QSAR studies were performed on each of the six conformational families,

consisting of 45 analogs apiece. The procedure followed for the QSAR studies is

outlined in Figure 3.1. A molecular spreadsheet was created from the SYBYL molecular

database of each conformational family of analogs. Energies and activities were added as

columns, with DAT binding affinity and SERT binding affinity being entered directly

and the DAT/SERT selectivity being calculated from the two binding affinities. CoMFA

and CoMSIA columns were added to the molecular spreadsheet.

CoMFA runs were performed using electrostatic values of 10, 30, and 50

kcal/mol, in conjunction with steric cutoffs of 10, 30, and 50 kcal/mol, for a total of nine

steric/electrostatic cutoff parameter combinations, the 30 kcal/mol steric and 30 kcal/mol
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electrostatic combination being the SYBYL default setting. CoMSIA runs were

performed for hydrogen bond donor/acceptor, hydrophobic, and steric/electrostatic fields.

Default settings were used for the remaining CoMFA or CoMSIA parameters in each run.

After the columns were added, the six rows for the test set compounds were "hidden" in

the molecular spreadsheet to perform QSAR on the remaining 39 training set compounds.

Sample-distance Partial Least Squares (SAMPLS) 218 was used to calculate q2 values for

the preliminary QSAR studies. LOO/CV calculations were carried out for each of the

twelve studies (nine CoMFA and three CoMSIA) for each family. For each family, the

most predictive model was identified as that with the highest value of q 2 . The parameter

combination (CoMFA) or field choice (CoMSIA) and optimal number of components of

the most predictive model were used to calculate a NCV PLS model for each family in

this preliminary series of calculations.

To refine the models, Region Focusing was performed on the most predictive

model for each family identified through the preliminary studies above using the

parameter combination for CoMFA or field choice for CoMSIA that gave the most

predictive NCV PLS model. The SYBYL default Region Focusing parameters were

used. The focused CoMFA or CoMSIA column was analyzed with both a = 0 and a = 2

kcal/mol cutoffs, after initial SAMPLS screening, to ensure the highest q2 values were

obtained.

The q2 (predictivity), standard error of prediction (SEP), r2 (goodness-of-fit), and

standard error of estimate (SEE) results of the focused models were compared, and the

results validated using two different methods. Activities of the training set compounds

were predicted using the optimal number of components from the NCV PLS region-
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focused models. The CoMFA and CoMSIA results were analyzed, and the models

derived were subjected to training set (internal) validation and test set (external)

validation methods. After CoMFA and CoMSIA columns were added to the molecular

spreadsheets, PLS analyses were performed to determine the best models. LOO/CV

SAMPLS 218 calculations were run on the DAT/SERT selectivity/QSAR column

combinations. For each cluster, the highest q 2 was selected for further analysis.

LOO/CV full calculations with the default a (column filtering value) of 2 kcal/mol was

used to calculate q2 again. The full NCV PLS calculation was carried out with the default

of no a applied (a=0 kcal/mol, column filtering off). The q 2 values, standard errors of

estimate, r2 values, and standard errors of predictions were recorded. The best molecular

field combination was then rerun using SYBYL's Focus CoMFA function, which can be

applied to any field type. LOO/CV PLS and NCV PLS calculations were performed for

the focused model, and the model statistics recorded. The models with the highest q2 and

lowest standard error of prediction were selected as the most predictive models. Both the

initial best models and focused models were used to determine the overall best models of

the cluster set. Models with q 2 values above 0.5 were checked for stability to random

noise.

3.7 Interpretation of Modeling Results

To avoid depending on q2 and r2 values alone for identification of a predictive model, 212

the compounds selected were divided into a training set and a test set to determine the

accuracy of predicting the activities of known compounds. The test set consisted of six

compounds selected to span the range of activities and the two types of 1 analogs
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included in this study. In addition, y-value scrambling210'211 (in this study, the y-values

are the DAT/SERT selectivities) was used to estimate the stability (the effect of

randomization of the y-values, or the resistance to "noise") of the best models using the

training set.

The selected region-focused QSAR model for each family was then used to

predict the test set DAT/SERT selectivities. The test set compounds were displayed and

the Predict Activity command used to find the DAT/SERT selectivity of each compound.

The predicted DAT/SERT selectivities for each region-focused model were used to

calculate residuals and to validate the model using test set correlation validation.

3.8 Prediction of Novel Compounds

SYBYL's Map CoMFA function was used to produce a three-dimensional steric and

electrostatic contour map. The map was analyzed to determine where the greatest impact

of changing steric or electrostatic characteristics of a 1 analog would be. Interpretation,

in terms of locating important areas, was based on the template molecules 2 and 3. The

SYBYL Optimize QSAR procedure was used to replace hydrogen atoms in key locations

identified on the CoMFA contour map with different substituents, and predict the

DAT/SERT selectivities of the new molecules.



CHAPTER 4

RESULTS

4.1 Random Search Conformational Analysis

Seven hundred and twenty-eight conformations were found for the piperazine 2, and 739

conformations were found for the piperidine 3. These conformations were used as the

input data to the clustering studies. Figure 4.1 shows the conformer sets for 2 and 3. The

large number of conformers required use of clustering to identify a small number of

representative conformers from the larger data sets.

4.2 Clustering of Conformers

Clustering was carried out using the Macromodel module XCluster. The optimal number

of clusters was selected by application of the distance map and clustering statistics

criteria described in the Methods section.

4.2.1 Clustering Distance Maps

Distance maps created from the 10 clustering feature set/alignment combinations are

shown in Figures 4.2 and 4.3. Small RMSDs, representing high similarity, are shown by

the color black (where the RMSD = 0) or blue. The colors graduate through green,

yellow, orange and finally red for the highest RMSDs, representing the least similar

conformations. The scale varies based on the RMSD range of the study; blue might

represent a range from 0 to 0.5 A in one clustering study, and 0 to 2 A in another
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Figure 4.1 Random search results for 1 analogs. (a) The piperazine 2 and (b) the
piperidine 3. Conformers are superimposed on center piperazine (2) or piperidine (3)
ring.



Figure 4.2 Distance maps for analog 2 clustering studies. Black borders on left and
bottom sides represent generic-ordered conformers. Distance maps are color-coded by
interconformational distances, from black through blue to red. Blue boxes along the
diagonal represent clusters of conformers; large boxes contain many conformers, and
small boxes contain only a few conformers. Distance maps are lettered by the feature
set/alignment options identified in Table 3.2.



Figure 4.2 Distance maps for analog 2 clustering studies. Black borders on left and
bottom sides represent generic-ordered conformers. Distance maps are color-coded by
interconformational distances, from black through blue to red. Blue boxes along the
diagonal represent clusters of conformers; large boxes contain many conformers, and
small boxes contain only a few conformers. Distance maps are lettered by the feature
set/alignment options identified in Table 3.2. (Continued)

clustering study. The distance maps were reviewed to select those with a small number

of large clusters for further analysis. The results of the review of the distance maps are

shown in Figure 4.4.

4.2.1.1 All Heavy Atoms Feature Sets. The all heavy atom feature set distance maps

are shown in Figures 4.2(a), 4.2(b), 4.3(a), and 4.3(b) and correspond to feature

set/alignment options a and b, as noted previously in Table 3.2. All four distance maps



Figure 4.3 Distance maps for analog 3 clustering studies. Black borders on left and
bottom sides represent generic-ordered conformers. Distance maps are color-coded by
interconformational distances, from black through blue to red. Blue boxes along the
diagonal represent clusters of conformers; large boxes contain many conformers, and
small boxes contain only a few conformers. Distance maps are lettered by the feature
set/alignment options identified in Table 3.2.



Figure 4.3 Distance maps for analog 3 clustering studies. Black borders on left and
bottom sides represent generic-ordered conformers. Distance maps are color-coded by
interconformational distances, from black through blue to red. Blue boxes along the
diagonal represent clusters of conformers; large boxes contain many conformers, and
small boxes contain only a few conformers. Distance maps are lettered by the feature
set/alignment options identified in Table 3.2. (Continued)

show numerous small squares on the diagonal, indicating that major clusters were not

found. The large amount of small squares on the diagonal is indicative of the diversity of

the conformations when the analogs are viewed as a whole. These maps and their

associated clustering studies were not analyzed further. Instead, attention was focused on

clusters defined by A-side and B-side feature set/alignment options.
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4.2.1.2 A-Side Feature Sets. The distance maps for the A-side analyses are shown in

Figures 4.2(c), 4.2(d), 4.2(e) and 4.3(c), 4.3(d), 4.3(e), and correspond to feature

set/alignment options c, d, and e in Table 3.2. Five of the six distance maps show

relatively well-defined major clusters on the diagonal, and therefore require further

analysis to select the most promising feature set/alignment option. Only the distance map

in Figure 4.3(c) shows many small clusters on the diagonal, as well as off-diagonal blue

areas representing similarity between large clusters, and was not used for further analysis.

Comparison of the other two A-side feature set distance maps (options d and e) for both

analogs shows a strikingly similar clustering pattern for the A-side clustering analyses.

The distance maps selected for analogs 2 (Figures 4.2(c), 4.2(d), and 4.2(e)) and 3

(Figures 4.3(d) and 4.3(e)) show six large clusters on the diagonal. For each map, the

clustering level which gave an effective number of clusters closest to six was selected to

calculate the percentage of conformers in each major cluster. These results are reported

in Table 4.1. The table shows that for analog 2 feature set/alignment options c and e and

analog 3 feature set/alignment option d, more than 99% of the conformers are included in

the six major clusters. For analog 2 feature set/alignment option d and analog 3 feature

set/alignment option e, these values are 95% and 97%, respectively. The A-side

clustering studies result in evenly-populated clusters; the smallest of the major clusters

for each feature set/alignment option contains 10% or more of the conformers in each

data set. The largest minor clusters (selected from the clusters not included in the six

major clusters) contain one-third or fewer conformers compared to the smallest major

clusters.
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Plots of the effective number of clusters, k*, versus the actual number of clusters,

k, for the selected feature set/alignment options are given in Figures 4.5 (analog 2) and

4.6 (analog 3) for the 20 highest clustering levels. The straight line where k = k* is also

plotted for comparison. Again, the results are similar for each of the five feature

set/aligmnent options, although it is interesting to note where the large jumps in the
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effective number of clusters occur. Options 2(c), 2(e) and 3(d) are the only clustering

studies that separate into six effective large clusters (k* = 6) in the 10 highest clustering

levels, with the effective number of clusters closer to the actual number of clusters than

the other two A-side studies listed in the table.

These analyses led to the identification of options 2(c), 2(e) and 3(d) as the most

promising clustering studies for analogs 2 and 3. However, because the goal is to use the

clustering studies to select representative conformers of 2 and 3, which are included in

the same QSAR studies, selection of the same clustering feature set/alignment option is

preferred. As noted above, option 3(c) does not cluster well according to its distance

map, so option c was not selected. Options 2(e) and 3(e) were selected for further

analysis because the percentage of conformers in the six major clusters in option 2(e) is

slightly better than that in option 3(d). Similarly, the percentage of conformers in the

major clusters for option 3(e) is better than option 2(d) (3.0% not covered versus 4.7%

not covered, respectively). Option e was used to confirm the optimal number of clusters

for A-side clustering, as detailed in the section Review of Clustering Statistics.
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4.2.1.3 B-Side Feature Sets. The distance maps for the B-side analyses are shown in

Figures 4.2(f) — 4.2(j) and 4.3(f) — 4.3(j), and correspond to feature set/alignment options

f —j in Table 3.2. For both analogs, options f and j result in many small clusters along the

diagonal. Distance maps in Figures 4.2(f), 4.2(g) and 4.2(j) show many small clusters on

the diagonal, and wide distribution of blue and green points, indicating distances between

separate clusters are about the same as distances within clusters. Distance map 4.2(i)

shows well-defined squares on the diagonal, but there are 15 or more squares present, not

meeting the criteria of 10 or fewer major clusters. For analog 2, only the distance map in

Figure 4.2(h) shows less than 10 large clusters on the diagonal and was selected for

further analysis. For analog 3, Figures 4.3(h) and 4.3(i) show large clusters on the

diagonal, although those in Figure 4.3(h) are less clearly defined. The distance maps for

options f, g, and j for analog 3 show many small clusters on the diagonal.

The B-side distance maps show different sizes of large clusters along the diagonal

as compared to the A-side distance maps. Nine large clusters can be qualitatively

identified when looking for trends in the three distance maps shown in Figures 4.2(h),

4.3(h), and 4.3(i).

In contrast to the A-side distance maps that were comparable for analogs 2 and 3,

the B-side clustering studies for 2 and 3 do not match well for several feature

set/alignment options. Of note is the comparison of Figure 4.2(i) and 4.3(i), where a

distinctly different pattern is seen. Comparison of this same clustering option for the two

analogs indicates that analog 2 may be able to access many more different types of B-side

conformations than analog 3.



The selected analog 2 (Figure 4.2(h)) and 3 (Figures 4.3(h) and 4.3(i)) distance

maps all show approximately nine large clusters on the diagonal. The percentage of

conformers left out of the nine major clusters is shown for the three B-side clusterings in

Table 4.2 and indicates that the major clusters represent less of the entire data set than

those of the selected A-side analyses. The selected B-side analysis option 2(h) has a

wider distribution of cluster sizes, as indicated by the lowest effective number of clusters

(5.88) compared to the number of major clusters (nine) and by the small size of the

smallest major cluster (1.1% of total set of conformations). Both of these attributes are

due to a significant size range of the major clusters as seen in Figure 4.2(h). The B-side

clustering studies produced a mixture of differently-sized major clusters for both 2 and 3,

although the analog 2 studies produced more variation in B-side cluster size. The

smallest of the major clusters for each feature set/alignment option contains 3% or less of

the conformers in each data set. The largest minor clusters (clusters not included in the

nine major clusters) are not of significant size and follow a trend similar to the A-side

studies.

The B-side effective number of clusters versus the actual number of clusters is
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the three clustering studies. It can be seen that option 3(g) has a minimal increase in

effective number of clusters as the actual number of clusters increases, indicating

splintering as opposed to formation of large clusters. The patterns for the other B-side

clustering studies (option h for both analogs) are similar, and are not revealing in terms of

where to determine the optimal number of major clusters. Although the review of the

distance maps led to an estimate of nine major clusters, Figures 4.7 and 4.8 show that

nine major clusters do not occur until k, the actual number of clusters, is more than 20.

Based on these results, further analysis was not performed on the B-side clustering

studies; only clustering option e, using A-side features, was selected for analysis of

additional clustering statistics for each analog.
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Figure 4.7 B-side effective vs. actual number of clusters for analog 2. Feature
set/alignment option 2(h) and theoretical maximum. Clustering level is noted on top x-
axis for reference. Open triangle - Option 2(h). Solid line - Theoretical maximum (k =
k*).
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Figure 4.8 B-side effective vs. actual number of clusters for analog 3. Feature
set/alignment options 3(g) and 3(h), and theoretical maximum. Clustering level is noted
on top x-axis for reference. Open square - Option 3(g). Open triangle - Option 3(h).
Solid line - Theoretical maximum (k = k*).
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4.2.2 Review of Clustering Statistics

An analysis of the minimum separation ratio and the percentage change in the effective

number of clusters based on Figures 3.5 and 3.6 was used to confirm the optimal number

of clusters for options 2(e) and 3(e). Table 4.3 lists the 20 highest clustering levels in

descending order, and their associated data: minimum separation ratio, critical distance,

actual and effective number of clusters, and %AEff for the clustering levels of option

2(e). The highest minimum separation ratio is 1.23. Table 4.4 lists the same set of data

for the 20 highest clustering levels of option 3(e). The analog 3 data shows an even

smaller range of minimum separation ratio for high clustering levels, the highest value

being 1.17. Both values of minimum separation ratio fall significantly below the

recommended value of 2.0 197 for identification of the optimal clustering level. Therefore,

it appears that the minimum separation ratio is not a useful criterion for these clustering

studies.

The %AEff values were compared for the 20 highest clustering levels as well.

This value is a numerical representation of the trends seen in Figures 4.5 (analog 2) and

4.6 (analog 3), scaled by the number of actual clusters at the clustering level, as noted in

equation 2.10. The %AEff is large for clustering levels where a large jump in the

effective number of clusters occurs, as long as the actual number of clusters is low.

Following the procedure for selecting the optimal clustering level in Figure 3.6,

review of Table 4.3 identified clustering level 719 (approximately six effective clusters,

10 actual clusters, 13% change, minimum separation ratio 1.12) for option 2(e).

Similarly, review of Table 4.4 identified clustering level 729 (approximately six effective

clusters, 11 actual clusters, 11% change, minimum separation ratio 1.06) for option 3(e).
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4.2.3 Visualization of Clusters and Representative Conformers

Clustering levels representing six major clusters were chosen based on the selected A-

side analyses (both option e, A1/A2 torsional angle feature set). For the purposes of the

proposed QSAR work, the agreement of the A-side results for both analogs and the small

number of similarly-sized A-side clusters led to a focus on the A-side for more detailed

analysis. The representative conformers for each cluster were used to develop

conformational families of analogs.

Two views of the conformers of 2 in the six major clusters at clustering level 719

of option e are shown in Figure 4.9. Structures in the figure are superimposed on the

piperazine ring, with only the A-sides shown. The relative orientation of the naphthalene

ring in the conformers is defined by torsional angles A1 and A2. The physical

significance of torsional angles A1 and A2 is that they determine how the conformers

form natural groups on the A-side of the molecule. The A1 torsional angle describes

rotation about a N(sp 3)-C(sp3) bond and the A2 torsional angle describes rotation about a

C(sp3)-C(sp2) bond. Therefore, the A1 and A2 torsional angles of the conformers output

by the random search technique should be close to the values of torsional angles found in

the staggered low-energy conformations of compounds such as aminomethane and

methylbenzene, which can be considered to be models for the A1 and A2 torsional angle

rotational barriers, respectively. Figures 4.9(a) and 4.9(b) show that the six clusters form

regularly around the A1 torsional angle, resulting in three pairs of clusters. The six

clusters correspond to conformational energy minima for rotation around the A1 and A2

torsional angles. These patterns can be seen in Figure 4.10 which shows the potential

energy surface in (Al, A2) space with conformers color-coded by cluster. The figure
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shows the clusters are located about 120° apart on the A1 axis (at approximately -60°,

+60°, and ±180°. The location of these clusters corresponds to rotational minima around

the N(sp 3)-C(sp3) bond in Al, and is typical of the rotational energy minima in

aminomethane. The figure also shows that most of the conformers are found clustered

along the A2 axis at approximately A2 = -90° and +90°, while the remaining conformers

are spread along the axis at intermediate values of A2. The location of the clusters

corresponds to rotational minima around the C(sp 3)-C(sp2) bond in A2. This complex

pattern of rotational minima is due to the effect of the large substituent groups on the

carbons in the C(sp3)-C(sp2) bond in A2. Similar results were obtained for option 3(e).

Figure 4.11 shows the six pairs of representative conformers (representing six

family templates) found in the clustering study that span the three-dimensional space

occupied by analogs 2 and 3. The attributes of the 12 representative conformers, six each

for 2 and 3, from the cluster studies with feature set/alignment option e are shown in

Table 4.5. Clusters in Table 4.5 were ordered by increasing A1 and A2 values of the

representative conformers, on a scale of -180° to +180°. The energy of each conformer is

given relative to the global energy minimum (GEM) structure for each analog. The table

shows that the A-sides of the representative conformers for the six clusters are very

similar for the two analogs. The table also shows little difference between the relative

energies of the representative conformers for analog 2 (7.54 to 9.50 kcal/mol) and analog

3 (3.53 to 5.45 kcal/mol). Neither analog has its GEM as a representative conformer.
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(a) (b)

Figure 4.9 Two views of six major A-side clusters for analog 2. Clusters are color-
coded as per Table 4.5. Center ring and B-side are not shown for clarity. (a) Front view.
(b) Side view.
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Figure 4.10 Cluster membership A1/A2 plot of the 728 conformers of analog 2.
Conformers are color-coded by their cluster, as noted in Table 4.5, with conformers not
in a major cluster colored black.
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Figure 4.11 Two views of analog 2 and analog 3 representative conformers.
Representative conformers are color-coded by their cluster, as noted in Table 4.5. Center
ring and B-side are not shown for clarity. (a) Front view. (b) Side view.

Table 4.5 Representative Conformers for Analogs 2 and 3 a

Cluster
Analog_

Conformer
Numberb

A1
(degrees)

A2
(degrees)

Real.
Energy

(kcal/mol)

Cluster
Color in
Figuresd

1 2_256 -179.2 -133.0 9.50 red
1 3_578 -174.6 -114.7 3.76 red
2 2_453 -176.2 72.4 8.16 magenta
2 3_653 -171.3 50.2 5.11 magenta
3 2 593 -60.7 -55.6 8.19 blue
3 3 246 -59.7 -64.8 3.53 blue
4 2_546 -62.5 114.8 9.50 cyan
4 3_258 -63.5 122.8 5.10 cyan
5 2_101 60.1 -96.0 7.54 green
5 3_489 65.2 -90.0 5.45 green
6 2_573 57.9 84.6 8.34 yellow
6 3_254 62.5 85.5 4.04 yellow

a Feature set/alignment option e.
b Conformer number in random search output.

Relative energy is given compared to the global energy minimum of the entire set of conformers for
each analog.
d Color of cluster, in Figure 4.9; cluster member, in Figure 4.10; and representative conformer pair, in
Figure 4.11.



79

For each cluster, the feature set torsional angles A1 and A2 are similar for analogs

2 and 3. These two angles control the relationship between the nitrogen atom in the

center ring and the aromatic moiety (in these analogs, naphthalene) on the A-side, key

characteristics of the majority of DA reuptake inhibitors. The template conformers can

be broken down into three groups of two conformers each, based on their A1 values.

Each group has A1 values offset by approximately 120°, indicating that they are truly

representative of the three pairs of clusters shown in Figure 4.9. In each cluster, the A1

values are within 5° for each pair of representative conformers.

Analysis of the A2 values shows a difference of approximately 180° between the

pairs of clusters with similar A1 values (clusters 1 and 2; clusters 3 and 4; clusters 5 and

6), having differences of A2 ranging from 165° to 205°. This indicates "flipping" of the

naphthalene ring, by rotation around the C(sp 3)-C(sp 2) bond in A2, by approximately

180°. This degree of variability from a perfect flip is attributed to the fact that the

adjacent N(sp 3)-C(sp 3) bond of the A1 torsional angle has only one large substituent,

allowing a range of A2 angles around the C(sp 3)-C(sp2) bond.

The six representative conformers for the A-side clustering option 2(e) were

reviewed to determine the diversity of their B-side structures. The B-side option 2(h),

noted above as most suitable for further analysis, was used to determine the population of

nine major clusters, and the locations of each of the six A-side representative conformers

were identified. Three of the six representative conformers were found in one B-side

cluster, and the other three were found in three different clusters. The three A-side

representative conformers that were found in the same B-side cluster are clusters 1, 3, and

5, which all have negative A2 torsional angles.
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4.2.4 Comparison of the RMSD of Representative Conformer Pairs

Figure 4.12 shows the 12 representative conformers for the selected clustering levels of

the A-side option e superimposed on the center rings. Table 4.6 lists the clusters and the

RMSD between the conformers of analogs 2 and 3 in each of the six major A-side

clusters. The first RMSD column was calculated based on the same atoms used for

feature set/alignment option e. The second RMSD column was calculated based on

superposition of all heavy atoms in the molecules. The first RMSD values indicate that

the five heavy atoms defining A1 and A2 have very similar locations in space for the

representative conformer pairs. This can be seen in Figure 4.11. The increase in the

RMSD for all heavy atoms is due to differences in the B-side atoms.

4.2.5 Comparison of the Conformational Space Coverage

Tables 4.7 and 4.8 show the radii of gyration of the conformational point cloud for each

data set, along with the six major clusters selected. The minor clusters are included for

comparison; their results are shown in italics. Torsional angle A1 and A2 values are only

reported for the six major clusters.
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Figure 4.12 	 Six pairs of representative conformers from clustering study.
Representative conformers for Cluster 1 (a) through Cluster 6 (f). Each pair contains a
conformer of 2 and a conformer of 3.

Table 4.6 Comparison of Representative Conformers of
Analogs 2 and 3

Cluster

RMSD of Atoms in
Feature Set/Alignment

Option e (A)
RMSD of All

Heavy Atoms (A)
1 0.22 2.37
2 0.31 2.24
3 0.12 1.77
4 0.10 1.95
5 0.13 2.00
6 0.08 1.79
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The radii of gyration for all conformers are nearly identical (less than 3%

difference) for each analog, indicating that the piperazine and piperidine analogs cover a

similar amount of conformational space. The amount of coverage for each cluster is not

directly related to the number of conformers in each cluster. For example, analog 2

Cluster 3 has 82 conformers and reaches 33.7 A, whereas analog 2 Cluster 4 has 151

conformers and reaches only 20.2 A. This equates to almost twice as many conformers

in Cluster 4 covering two-thirds of the conformational space covered by Cluster 3.

In addition to the absolute conformational space coverage, the relative

conformational space coverage determined by review of the distance maps and related

data is of interest. The A-side distance maps show clusters of approximately the same

size, as viewed in the distance maps and by the effective number of clusters being near

six when the number of major clusters is six.

4.3 Construction of Conformational Families

The representative conformers in Table 4.5 were used as templates to construct

conformational families of analogs. For example, Family 1 consists of 2, in conformation

256 (of the 2 random search results) and the other 22 piperazines in a minimized

conformation that was derived from conformation 256, as well as 3, in conformation

number 578 (of the 3 random search results) and the other 20 piperidines in a minimized

conformation that was derived from conformation 578. Members of each conformational

family other than 2 and 3 themselves were minimized from the template conformations to

avoid singularities and reach their local energy minima. Conformational families are

therefore distinguished from clusters as being developed from the representative
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conformer of each cluster; clusters contain only conformations of 2 or 3, and the

conformational families each contain all 45 analogs in the 3D-QSAR study.

4.4 QSAR Studies

Six analogs were selected as a test set, three piperazines (5, 8, and 13), and three

piperidines (29, 32, and 35), the remaining 39 analogs forming the training set. The

substituents varied; three substituted phenyl substituents, a benzothiophenyl substituent, a

cyclopentanonyl substituent, and a quinolinyl substituent. These substituents are similar

to those of the analogs in the training set. Figure 4.13 shows the 45 analogs, including

both the training set and test set, created from the templates for Families 1 through 6.

4.4.1 QSAR on Training Set

The results of the preliminary set of QSAR studies are summarized in Table 4.9. Under

"Best Results" for the LOO/CV models, the table reports the pair of steric and

electrostatic cutoffs (of the nine combinations tested for each family) that gave the

highest q2 . For comparison purposes, the "CoMFA Default" column shows that generally

similar, but lower in all cases, values of q 2 were obtained by using SYBYL's

steric/electrostatic default values of 30/30. The default results for Family 4 were most

different from the highest q2 results, with the CoMS1A steric/electrostatic field option

yielding a q2 value 0.078 higher than the q 2 value for the CoMFA 30/30 setting.

Although all the "best" and "default" models found in the preliminary QSAR studies have

values of q2 below the generally-accepted criterion of 0.5 for a predictive CoMFA or

CoMS1A mode1,219  all are above the statistical 95% confidence limit of q2 = 0.3.220 SEP
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e) 	 f)

a) 	 b)

c) 	 d)

Figure 4.13 Conformational families, showing alignment of all analogs. (a) Family 1.
(b) Family 2. (c) Family 3. (d) Family 4. (e) Family 5. (f) Family 6.
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(55.5% electrostatic contribution versus 44.5% steric contribution). The hydrophobic

field, which gave the best model for Family 2, does not provide a similar

steric/electrostatic distribution.

The results of refining the best preliminary model for each family by Region

Focusing are given in Table 4.10. For most conformational families, setting the column

filtering (a) value to 2 kcal/mol gave similar values of q 2 compared to the SAMPLS

results (6=0), with almost no difference (0.002) for Family 2 and 0.113 difference for

Family 3, the filtered result having a lower q 2 value. Compared to the preliminary NCV

PLS models of Table 4.9, all families (except Family 2) show a decrease in the steric

contribution and increase in the electrostatic contribution. Family 1 has the largest

decrease, 22%. Families 5 and 6 show 16% and 14% decreases in the steric

contributions, respectively. All SAMPLS q 2 values increase in the focused models, with

substantial increases seen for Families 1, 5 and 6. These three families meet the criteria of

q2 values more than 0.5. Acceptable r2 values are seen for most families; however, the r 2

values for the Family 1 and Family 6 two-component models are just below 0.7. The r 2

values are approximately the same for the focused versus the preliminary models for all

families. However, the r 2 values for the six-component models of Family 1 and Family 6

are significantly higher than those for the two-component models identified in the

preliminary studies (two models are listed for Family 1 and Family 6 due to the

instability of the six-component models as detailed below).
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The stabilities of the QSAR models were estimated using SYBYL's Progressive

Scrambling y-value scrambling procedure. Table 4.11 shows the results of 100 y-value

scramblings on the eight different QSAR models listed in Table 4.10. The scrambling

results for the six-component Family 1 and Family 6 models are poor because the values

of dq2Vdryy2 are greater than 1.2. 210 The maximum number of components was reduced

to five (instead of the default six) and the QSAR studies were rerun. The LOO/CV

SAMPLS runs for both families indicated that two components are optimal at this

setting. The two-component Family 1 and Family 6 CoMFA models have q 2 values of

0.511 and 0.508, respectively (Table 4.10), and both have dq2 Vdryy'2 values indicating

stability.

Q2 values were lower than the q2 values in all cases, ranging from -1.454 to 0.405,

but these are known to be more conservative than LOO/CV PLS q 2 values.21 The results

for Family 4 indicate a significant amount of instability. Calculated cross-validated

standard deviation of error of prediction (cSDEP) values were similar to SEP values for
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all but the six-component Family 1 model and the Family 4 model. Once again these

values are lower than their LOO/CV counterparts. These results indicate that four of the

eight listed models are expected to be stable and acceptably resistant to perturbation by

random noise. The dual criteria of q 2 of 0.5 (or above) and stability to random noise were

used to select three of these models (the two-component models for Families 1, 5, and 6)

for detailed review, the fourth stable model (Family 2) having a q 2 value less than 0.5.

Training set DAT/SERT selectivities from the stable focused NCV PLS model

results for Families 1, 5 and 6 are shown in Figure 4.14. The r 2 values of approximately

0.7 appear as deviations of data points from the ideal diagonal line in all three plots.

Average residuals for the training sets are 0.00 for all three models; the averages of the

absolute value of the errors are 0.35, 0.33, and 0.34 for the Family 1, 5, and 6 models,

respectively. A list of the training set predictions for these models is included in

Appendix C. Analog 21, the cyclohexenophenyl piperazine analog, was predicted the

poorest by Family 1 (residual = -1.13), and analog 20 was also predicted poorly (residual

= 1.06). Analog 20 was predicted the poorest by both Family 5 and Family 6, with

similar residuals (1.10 and 1.20, respectively). Both analogs 20 and 21 have fused rings,

with a nonaromatic ring proximal to the A-side nitrogen, and an aromatic ring distal to

the A-side nitrogen. Predictions for the similar piperazine analogs 16, 17, 18, 19, and 22,

and the similar piperidine analogs 43 and 44, were reviewed to determine if these

compounds were predicted poorly as well. The range of experimental DAT/SERT

selectivities for the seven piperazines is -0.87 to 1.61, or 2.48 log units. Analogs 19

(residuals = -0.76, -0.69, and -0.75, for Families 1, 5, and 6, respectively) and 22

(residuals = 0.11, 0.83, 1.02, for Families 1, 5, and 6, respectively) are also predicted



91

poorly for most families. However, analogs 16 and 18 are predicted well (residuals =

-0.27, -0.45; -0.24, 0.08; and 0.40, and 0.11, for Families 1, 5, and 6, respectively),

although one is a ketone and the other is an alcohol. Analog 17, which is the same as

analog 16 with a distal methoxy group, is predicted somewhat poorly (residuals = 0.61,

0.37, and 0.61, for Families 1, 5, and 6, respectively). The piperidine analog 43 is

predicted somewhat poorly (residuals = 0.94, 0.45, and 0.56, for Families 1, 5, and 6,

respectively), but its stereoisomer analog 44 is predicted well for two families (residuals

= 0.56, 0.20, and 0.14, for Families 1, 5, and 6, respectively). Overall, these three

CoMFA models appear to predict the nonaromatic/aromatic fused ring analogs relatively

poorly. The trend of piperazines being more poorly predicted than the piperidines seems

to be due to the higher percentage of these nonaromatic/aromatic fused ring substituents

in the piperazine analog set.
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Figure 4.14 GBR 12909 analog QSAR study - training set predictions. (a) Family 1,
two components. (b) Family 5, two components, (c) Family 6, two components.
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4.4.2 Prediction of Test Set DAT/SERT Selectivities

The three selected QSAR models were used to predict the DAT/SERT selectivities of six

test set compounds (the piperazines 5, 8, and 13, and the piperidines 29, 32, and 35).

Table 4.12 lists the predicted DAT/SERT selectivities and the associated residuals for

these test set compounds. The average residuals are 0.31 for Family 1, 0.32 for Family 5,

and 0.25 for Family 6. These numbers are noticeably higher than the average residuals

found for the training set. However, the piperazine 8 is a significant outlier for all three

families, predicted to have a much higher DAT/SERT selectivity than the experimental

DAT/SERT selectivity for all three models. When this single compound is removed,

reducing the test set from six to five compounds, for Family 1, the average residual drops
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to 0.07; for Family 5, the average residual is reduced to 0.00; and for Family 6, the

residual become -0.02. The reduction in error of prediction is less noticeable when

considering the absolute values of the errors, with Family l's average decreasing from

0.61 to 0.41; Family 5's average decreasing from 0.69 to 0.46; and Family 6's average

decreasing from 0.63 to 0.45. Except for the one outlier, the piperazines were under-

predicted by all three models. Two of the piperidines, analogs 32 and 35, were predicted

well for all three families. The third piperidine, analog 29, was predicted poorly possibly

because it is the only 2-substituted phenyl analog in the series, and is therefore somewhat

dissimilar from the training set.

Interestingly, analog 8 was mentioned in a previous paper on 1 analogs because

its experimental DAT/SERT selectivity (-0.04) was inconsistent with the DAT/SERT

selectivities of similar compounds.'' Analogs 9 and 10, also piperazines, have quinolinyl

A-side substituents with different connectivities. Experimental results show 9 has a

better than average DAT/SERT selectivity (1.48) and 10 a somewhat lower but

acceptable value (0.95). The DAT/SERT selectivity of 9, the 3-quinolinyl analog, was

predicted well, with residuals of 0.12, 0.15, and 0.09 for Families 1, 5, and 6,

respectively. Analog 10's DAT/SERT selectivity had higher residuals of 0.66 for Family

1, 0.77 for Family 5 and 0.71 for Family 6.

The test set predictions were also used to validate the models, according the

methods outlined by Golbraikh and Tropsha. 212 The outlying data for 8 was removed
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from the original test set for these calculations, since its residual is much larger than the

residuals for the other compounds. Table 4.13 includes the test set correlation validation

results for the reduced original test set of five compounds, and Figure 4.15 shows the

plots of the predicted DAT/SERT selectivities versus the experimental DAT/SERT

selectivities for the reduced original test set of five compounds.
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The reduced original test set coefficient of determination values for the best-fit

lines (R2) are similar. The R 2 values for the reduced original test set predictions are less

than half the goodness-of-fit found for the training set (r2), chiefly because of large

residuals for analog 29. The Golbraikh and Tropsha paper recommends having a test set

of at least five compounds, so an extended test set of seven compounds was developed

using three additional compounds (1, 47, and 48), leaving out analog 29 as an additional

outlier. The structures and the predicted DAT/SERT selectivities for these three

additional compounds, which are more flexible (have more rotatable bonds on the A-

side) than the other compounds in the QSAR study, are shown in Table 4.14. The test set

validation
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correlation values for the extended test set (n=7), listed in Table 4.13 and plotted in

Figure 4.16, are higher than those for the reduced original test set (n=5). All three

coefficients of determination for the Family 6 model are above 0.7 (0.746, 0.735, and

0.722), slightly more than the goodness-of-fit (r2) for prediction of the training set

compounds (0.685). The improved correlation of the extended test set results compared

to the reduced original test set results can also be seen by comparing Figures 4.15 and

4.16. Details of the test set predictions are found in Appendix D. This method of

CoMFA model validation indicates that the Family 6 model can predict test set

compounds satisfactorily, although the presence of two outliers among nine candidates

for the test set raises questions about the general applicability of the Family 6 model.

The results of this study show that models with acceptable q 2 values of 0.5 or above do

not necessarily predict activities well for all related compounds.

4.4.3 Prediction of Novel Compounds

Figure 4.17 shows the CoMFA steric/electrostatic contour maps for Family 6, with

analog 3 shown as a reference molecule. Green areas indicate where an increase in bulk

would lead to a higher DAT/SERT selectivity; yellow areas indicate where a decrease in

bulk would lead to a higher DAT/SERT selectivity. Blue areas indicate where an

increase in positive charge would lead to a higher DAT/SERT selectivity; red areas

indicate where an increase in negative charge would lead to a higher DAT/SERT

selectivity.
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Figure 4.17 CoMFA steric/electrostatic contour map for Family 6 model.

There are several key features of the CoMFA contour map that are predicted to

increase DAT/SERT selectivity:

• Less bulk near positions 3 and 4 of the 2-naphthyl substituent

• More bulk near positions 5, 6, and 7 of the naphthyl substituent

• A more positive environment above the naphthyl plane, away from the center

ring, extending axially from position 3

• A more negative environment near position 6

Of most interest is the area near positions 5, 6, and 7, where more bulk is predicted to

increase DAT/SERT selectivity. However, the multiple small areas where less bulk leads

to a higher DAT/SERT selectivity restrict opportunities for increasing DAT/SERT

selectivity by adding bulky substituents. The red areas near positions 6 and 7 correspond

to a para substituent on a phenyl analog of 3, which is supported by the high DAT/SERT

selectivities of analogs 30 and 36.
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The scaffold used for the novel compounds was the phenyl piperidine analog 26,

since the phenyl-substituted compounds 30 and 36 are the most active compounds in the

QSAR series. An exhaustive search of replacing the position 3 and position 4 phenyl

hydrogens (corresponding to positions 5, 6, and 7 of the 2-naphthyl analog) of analog 26

with one of 17 substituents similar to those found in the QSAR training set compounds

was run and the DAT/SERT selectivities of the compounds (without minimization) were

predicted. The complete list of substituents is included in Appendix E. Table 4.15 shows

nine compounds that have predicted DAT/SERT selectivities higher than the most active

analog, 36 (DAT/SERT selectivity of 2.70), for the Optimize QSAR run that did not

perform minimization of each structure. The predicted DAT/SERT selectivities found in
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additional runs, where minimization was performed, used only the two most active

position 4 substituents and substituted each of the 17 groups at position 3.

Both the -CF3 and -CN groups impart some bulk and negative electrostatics to

position 4 of the phenyl ring. In addition, both position 4 substituents, -OCN and

-CH2CN are moderate electron withdrawing groups, causing the phenyl ring to be more

positive. The -NH2 group and -OH group are both strong electron donating groups,

which lead to an increase in electron density at the ortho and para positions, and a

decrease in electron density (a positive environment) near the N and 0 atoms of the

substituents. Therefore, five of the substitutions at position 3 may address the blue area

identified on the CoMFA contour map where a more positive environment is expected to

yield a higher activity. Although these compounds do not show significant predicted

DAT/SERT selectivity increases, their high activities indicate the potential for

exploration of 3,4-disubstituted phenyls.



CHAPTER 5

DISCUSSION

5.1 Comparison of Piperazine and Piperidine Clustering Results

The results of the clustering study indicate that there is no major difference in the rotation

of the A-side substituent when comparing the piperazine analog 2 to its piperidine

counterpart 3. Minor differences in the orientation of the A-side exist when comparing 2

and 3. The results of the B-side analysis show less agreement between the two analogs;

the presence of the methyne substituent instead of the nitrogen appears to lead to a wider

distribution of cluster sizes. However, this could be an artefact of the calculation due to

incomplete searching of conformational space or characteristics of the Tripos force field.

These results show that when independent clustering studies are performed on

these piperazine and piperidine analogs of 1, the results are strikingly similar for the A-

side analysis. This clustering study found consistent results for the A-side of the

piperazine analog, 2, and the piperidine analog, 3. The highly flexible B-side was more

difficult to analyze, and may require additional analysis to accurately represent the

possible conformations. The size of the clusters seen in the B-side clusterings varies to a

greater extent, which may indicate that the random search did not fully populate each

cluster or the smaller clusters represent a smaller range of low-energy conformers.
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5.2 CoMFA and CoMSIA Studies

5.2.1 Using Multiple Fields and Field Settings for QSAR Development

A range of electrostatic and steric cutoffs for CoMFA columns and different CoMSIA

columns were used in this study. A review of Table 4.9 shows that for this data set and

alignment method, the q2 values found for the best settings were from 0.020 to 0.078

higher than those found for the default CoMFA setting of 30 kcal/mol for steric and

electrostatic cutoffs. The Venanzi group's previous work on methylphenidate showed

from 0 to 30% increase in q2 values between CoMFA runs at the default steric and

electrostatic cutoffs of 30 kcal/mol each, with average q 2 increases of approximately 10%

predictivity of data; however, a larger range of steric and electrostatic cutoffs was used."

The amount of time to perform eight extra CoMFA calculations, and three CoMSIA

calculations is minimal compared to the time to perform conformational analysis and

alignment, so it is believed that routinely including these extra field columns and

requisite PLS runs may be worth the time spent.

In this study, CoMSIA fields gave the best q 2 values for two of the six families,

Family 2 and Family 4. These two families had the third and fourth highest q 2 values of

the six families in the preliminary QSAR studies. After focusing the models, Family 4

(static/electrostatic field CoMSIA model) had only a small increase in q 2 after focusing,

making it by far the lowest q 2 value of the six (eight with the reduced models included)

focused models. Family 2 (hydrophobic field CoMSIA model) dropped from third to

fourth when ranking q2 values. Increase in q2 values for the CoMSIA families was found

to be minimal (+0.020) for Family 4, and low (+0.107) for Family2. This contrasts the

other four families; the four CoMFA models were improved to a greater extent by
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focusing (+0.189/0.188, +0.120, + 0.128, +0.140/0.120 for Families 1, 3, 5, and 6,

respectively). It is unclear whether this small improvement when applying Region

Focusing to CoMS1A models is somehow related to CoMS1A models themselves, or an

artefact of these particular models. Larger studies of CoMS1A models would be

necessary to determine if this is a general effect.

5.2.2 Use of Same Template for Piperazine and Piperidine Analogs.

Separate random searches were performed on the piperazine 2 and the piperidine 3.

QSAR studies using analog 2 as the only template (building the piperidine analogs of 1

by substituting a methyne substituent for the B-side nitrogen) were initially tested

because the representative conformers clustered well for both analogs 2 and 3.

Predictivities were poor, therefore the present study was done using both 2 and 3 as

templates. This brought the different B-side conformations as an alignment issue; most

of the B-sides for the 2 templates did not match their 3 counterparts' B-sides. It is noted

that the CoMFA map (Figure 4.17) has no areas of interest near the B-side. It was found

that the positions for the B-sides appeared not to vary enough between each pair of

templates to affect the CoMFA contour map significantly.

5.2.3 "Near-minimization" and Minimization

The Venanzi group's previous methyiphenidate CoMFA study used a methylphenidate

template with atom or group substitution for phenyl hydrogens, and no minimization for

single atom substituent." This method allows perfect alignment, which may be

expected for single and few atom substituents. This series of 1 analogs is more diverse

than the methyiphenidate analogs, therefore minimization of each analog after changing a
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substituent is much more important. Casual molecular modelers are cautioned to ensure

complete minimization of their molecules; for a molecule of this size, the iterations were

increased from the default of 100 iterations to 1,000 iterations. Any molecule that still

had a high energy (more than 10 kcal/mol from other analogs in the series) was further

checked by applying extra minimization steps manually to confirm the final value. In

this study, 1,000 iterations were sufficient for proper minimization of each analog.

Proper minimization of substituents was supported by the use of SYBYL library

fragments for the A-side substituents.

For screening of novel potentially active compounds using Optimize QSAR, the

initial exhaustive runs were performed on unminimized structures. The best results of

this preliminary exhaustive run were used to develop a smaller Optimize QSAR run that

only had two possible substituents in position 4, since these two substituents appeared in

every compound predicted to be more active than analog 36. The second run allowed the

full set of the original 17 substituents for position 3, and the structures were minimized

before activities were predicted. This combination of unminimized and minimized

structures is an efficient way to target the most likely beneficial substituents, without the

significant time effort of an exhaustive and fully minimized structure run.

5.2.4 Inclusion of Racemic Compounds in the QSAR Studies

Forty-three of the forty-eight compounds studied either have no chiral centers or were

isolated as a specific stereoisomer. The inclusion of five compounds synthesized as

racemic mixtures in this 3D-QSAR study was based on the data available at the time of

the research. All five compounds (13, 14, 15, 16, and 17) are published in one paper,20°

and are cyclic ketones with one chiral center; three are single ring and two have two
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fused rings. These compounds were modeled with the chirality that best aligned with the

naphthyl substituent in analog 2, with the ketone group extending into the same area

covered by the naphthol substituent. Research into the use of racemic compounds in

QSAR studies from the Journal of Medicinal Chemistry indicates that multiple QSAR

studies based on data from racemic mixtures have been published in the first eight issues

of 2005. For example, Budriesi et al.'s paper on selective myocardial calcium channel

modulators221 uses racemic data for all but one of their compounds, and makes chirality

assumptions for both one and two chiral center compounds; this data is used as an input

for a 3D-QSAR study. Other QSAR studies, such as Gallardo-Godoy et al.'s work, 222 do

not explicitly mention racemic mixtures, but the structures of certain compounds (e.g., 29

and 30 in the referenced paper) implicitly indicate chiral centers.

A QSAR study on Family 6 performed with a training set of 35 compounds,

excluding the four racemic compounds in the present study's training set (one racemic

compound, 13, being in the present study's test set), resulted in decreased q 2 values for all

CoMFA and CoMS1A parameter/field combinations. The results are listed in Appendix

F. The results of the present QSAR studies with and without the five racemic compounds

indicates that the data based on racemic mixtures provides valuable information for this

QSAR series. Colleagues at the NUT are presently working on expanding the GBR

12909 series of compounds, including additional stereoisomerically pure compounds.

5.2.5 LOO/CV with Column Filtering versus SAMPLS

Screening was performed using the SAMPLS method. 218 This method consistently gives

the same results as a PLS run with a, the column filtering cutoff value, set to zero.

However, a "full" PLS run using a a equal to 2 kcal/mol has been in the past
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recommended to calculate q 2 , to expedite calculations and to remove values that may not

be as predictive as values that vary more widely. In this study, there were sometimes

differences between the a = 0 (SAMPLS) and a = 2 results, from 0 to 11% explanation of

activities in either direction. Performing SAMPLS calculations is expeditious for

multiple studies, allowing performance of many field and parameter settings in a short

amount of time. Performing at least both SAMPLS and a = 2 cross-validated PLS runs

for the best models from preliminary studies would be recommended to find the best a

setting for a particular data set and methodology, although discussions with Tripos

personnel indicate that column filtering is becoming obsolete. Here the SAMPLS results

are presented for the Preliminary CoMFA results, and both the a = 0 and a = 2 kcal/mol

results for the Focused CoMFA runs because the models' q 2 values varied depending on

the a setting. For consistency, the SAMPLS results were used to determine the optimal

number of components for the NCV runs.



CHAPTER 6

CONCLUSIONS

This work illustrates a QSAR study of a highly flexible family of drug-like molecules.

Representative low-energy conformers were gleaned from large sets of random search

conformers using hierarchical clustering. QSAR runs were performed on six

conformational families, which were developed by modifying representative low-energy

conformers of two template molecules. The process of developing a QSAR becomes

parallel; considering different steric and electrostatic cutoffs for CoMFA and different

fields for CoMSIA yields models of varying predictivity. Comparison of the q 2 values

after focusing the QSAR models is a first way to determine potentially acceptable

models. An acceptable q2 must be backed up by internal validation, such as y-value

scrambling,210,211 and external validation, such as test set correlation validation, 212 to

further ensure the validity and applicability of high-q2 models. Validity of the QSAR

model can be supported by predicting the activities of novel compounds. The results of

this work will be provided to Drs. Rice and Rothman at the NUT to support their ongoing

SAR work on the GBR 12909 family of analogs. Future collaborations are planned to

continue 3D-QSAR model and pharmacophore development.
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APPENDIX A

SOFTWARE SPECIFICATIONS AND INPUT PARAMETERS

This appendix contains the software specifications and parameter settings for the

SYBYL® molecular modeling program used to complete the QSAR studies of GBR

12909 analogs.

Software:	 SYBYL/Base Version 6.9.1

Manufacturer: Tripos, Inc., St. Louis, Missouri, USA

Platform:	 SGI Irix 6.5

SYBYL CoMFA Parameters:

All settings left as default (below), except for changes in electrostatic and steric cutoffs.

CoMFA Field Class: Tripos Standard

Field Values: Type(s): Both

Dielectric: Distance

Smoothing: None

Drop Electrostatics: Within Steric Cutoff for Each Row

Transition: Smooth

Region: Create Automatically

SYBYL CoMSIA Parameters:

All settings left as default (below), except for changes in selected field.

CoMSIA Field Parameters: Attenuation Factor: 0.3

Region: Create Automatically
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SYBYL PLS Parameters:

PLS: For all runs:

Scaling: CoMFA Standard

For cross-validated (leave-one-out) runs: 

"Leave-One-Out" box checked

"Use SAMPLS" box: checked for Leave-One-Out SAMPLS runs

(Maximum Number of) Components: 	 6*

* Except when number of components needed to be limited in response to poor stability

of higher component model.

For full PLS runs: 

"No Validation" box checked

Components: (as found in best cross-validated run)



APPENDIX B

SYBYL PROGRAMMING LANGUAGE SCRIPT EXAMPLE

In this appendix, a portion of a SPL script is included as an example of the scripts used to

create and minimize the GBR 12909 analogs.

buildA111.spl

# Build base structures - one for C.3 atoms and one for C.ar atoms.

# First, load in Analog 2 template for conformational family.

MOL MULT IN M1

/afs/cad.njitedu/researchichem/venanzi/4/Project/analog_creation/new_reps.mdb/c11REP

pDM324_00256.mol2

ORIENT BEST VIEW M1

# Remove the centroids, and the naphthalene aggregate (for future minimization

simplification).

REMOVE CENTROID (*) *

REMOVE AGGREGATE NAPHTHALENE AGGREGATE

# Add it to the conformational family database.

DATABASE OPEN

/afs/cad.njit.eduiresearch/chem/venanzi/4/Project/QSARII/lpALL.mdb UPDATE

MODIFY MOLECULE NAME M1 "lpDM-DM324-2-naphthylTEMPLATE"

DATABASE ADD "Ml"

# Remove some atoms, and save as Carbase (C.ar base structure)

REMOVE ATOM

M1((((((((((((((33)+66)+32)+31)+65)+30)+64)+29)+63)+62)+28)+27)+26)+61)
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MODIFY MOLECULE NAME M1 "lpDM-Carbase"

# Put in conformational family database, will delete at end.

DATABASE ADD "Ml"

# Change atoms 24 and 25 to C.3 atoms, then rename and put in database.

MODIFY ATOM TYPE M1((25)+24) C.3 C.3

MODIFY MOLECULE NAME M1 "1pDM-C3base"

DATABASE ADD "Ml"

# Make C.3 C.2 base.

MODIFY ATOM TYPE M1(25) C.2

MODIFY MOLECULE NAME M1 "1pDM-C32base"

DATABASE ADD "Ml"

ZAP M1

# PART II - Create 22 analogs from the base structures for the conformational family,

either using

# a database of side groups or directly using atom modification and adding hydrogens.

##### Build DM-325 (l-naphthyl)

# Put C.ar base for conformational family in M1 area, works for first set of Analog 2

analogs. This will be repeated as analogs are built.

DATABASE GET "lpDM-Carbase" M1
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# Open database of A-side groups. Because it is last opened, it becomes default.



DATABASE OPEN

/afs/cad.njit.edu/research/chem/venanzi/4/Project/analog_creation/DMAsides.mdb

UPDATE

# Get the A-side group from the DMAsides database.

DATABASE GET "naphthalene" M2

FUSE M1(23) M2(14) M1(24) M2(4) M1(25) M2 ( 10)1

# Put it in conformational family database by switching it to the default database.

DATABASE DEFAULT

/afs/cad.njit.edu/research/chem/venanzi/4/Project/QSAR_II/lpALL.mdb

MOD1FY MOLECULE NAME Ml "lpDM-DM325-1-naphthyl"

DATABASE ADD "M1"

# Get rid of molecules.

ZAP M1

ZAP M2
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(program continues in a similar manner for each analog)



APPENDIX C

CoMFA AND CoMSIA STUDY RESULTS

Detailed CoMFA and CoMS1A preliminary study results are contained herein.
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APPENDIX D

PREDICTIONS FOR TEST SET COMPOUNDS

The SYBYL output for the predictions of all of the test set compounds are contained in

this appendix.

D.1	 Original Test Set Predictions
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AAAAAAA Ignored 52 of 3009 terms (missing data, used column mean)

Predicting 6PTP-TP1134-2-METHOXYPHENYL ( M4 )

Row 46 6PTP-TP1134-2-METHOXYPHENYLX Column #13 (FOCUSS3OE1O) :

COMFA

... prediction of LSDR for 6PTP-TP1134-2-METHOXYPHENYLX : 1.57328

AAAAAAA Extrapolated 212 of 3009 terms (data outside range); sum is 7.01147e-05

AAAAAAA Ignored 49 of 3009 terms (missing data, used column mean)

Predicting 6PTP-TP227-4-TOLYL ( M5 )

Row 46 6PTP-TP227-4-TOLYLX Column #13 (FOCUSS3OE1O) : COMFA

... prediction of LSDR for 6PTP-TP227-4-TOLYLX : 1.73129

AAAAAAA Extrapolated 5 of 3009 terms (data outside range); sum is -0.0447089

AAAAAAA Ignored 46 of 3009 terms (missing data, used column mean)

Predicting 6PTP-TP231-4-CHLOROPHENYL ( M6 )

Row 46 6PTP-TP231-4-CHLOROPHENYLX Column #13 (FOCUSS3OE1O) :

COMFA

... prediction of LSDR for 6PTP-TP231-4-CHLOROPHENYLX : 2.04843

AAAAAAA Ignored 46 of 3009 terms (missing data, used column mean)
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APPENDIX E

LIST OF SUBSTITUENTS FOR NOVEL COMPOUNDS

This appendix contains a table showing the 16 sub stituents, excluding the default of a

hydrogen atom, that were used in the Optimize QSAR studies to predict novel

compounds.
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APPENDIX F

CoMFA AND CoMSIA STUDY RESULTS FOR FAMILY 6 WITH

NON-RACEMIC TRAINING SET

This appendix contains the results of a QSAR study on Family 6 using a reduced training

set created by removing the four racemic compounds (14, 15, 16, and 17) from the

training set that was used in the bulk of the study.
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