

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

QUALITY-OF-SERVICE PROVISIONING IN HIGH SPEED NETWORKS:
ROUTING PERSPECTIVE

by
Gang Cheng

The continuous growth in both commercial and public network traffic with various quality-

of-service (QoS) requirements is calling for better service than the current Internet's best

effort mechanism. One of the challenging issues is to select feasible paths that satisfy the

different requirements of various applications. This problem is known as QoS routing.

In general, two issues are related to QoS routing: state distribution and routing strategy.

Routing strategy is used to find a feasible path that meets the QoS requirements. State

distribution addresses the issue of exchanging the state information throughout the network,

and can be further divided into two sub-problems: when to update and how to disseminate

the state information.

In this dissertation, the issue of when to update link state information from the

perspective of information theory is addressed. Based on the rate-distortion analysis, an

efficient scheme, which outperforms the state of the art in terms of both protocol overhead

and accuracy of link state information, is presented. Second, a reliable scheme is proposed

so that, when a link is broken, link state information is still reachable to all network nodes

as long as the network is connected. Meanwhile, the protocol overhead is low enough to

be implemented in real networks. Third, QoS routing is NP-complete. Hence, tackling

this problem requires heuristics. A common approach is to convert this problem into a

shortest path or k-shortest path problem and solve it by using existing algorithms such as

Bellman-Ford and Dijkstra algorithms. However, this approach suffers from either high

computational complexity or low success ratio in finding the feasible paths. Hence, a

new problem, All Hops k-shortest Path (AHKP), is introduced and investigated. Based

on the solution to AHKP, an efficient self-adaptive routing algorithm is presented, which

can guarantee in finding feasible paths with fairly low average computational complexity.

One of its most distinguished properties is its progressive property, which is very useful

in practice: it can self-adaptively minimize its computational complexity without sacri-

ficing its performance. In addition, routing without considering the staleness of link

state information may generate a significant percentage of false routing. Our proposed

routing algorithm is capable of minimizing the impact of stale link state information

without stochastic link state knowledge. Fourth, the computational complexities of existing

s-approximation algorithms are linearly proportional to the adopted linear scaling factors.

Therefore, two efficient algorithms are proposed for finding the optimal (the smallest) linear

scaling factor such that the computational complexities are reduced. Finally, an efficient

algorithm is proposed for finding the least hop(s) multiple additive constrained path for the

purpose of saving network resources.

QUALITY-OF-SERVICE PROVISIONING IN HIGH SPEED NETWORKS:
ROUTING PERSPECTIVE

by
Gang Cheng

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Department of Electrical Engineering

May 2005

Copyright © 2005 by Gang Cheng

ALL RIGHTS RESERVED

APPROVAL PAGE

QUALITY-OF-SERVICE PROVISIONING IN HIGH SPEED •
NETWORKS: ROUTING PERSPECTIVE

Gang Cheng

Dr. Nirwan Ansari, Dissertation Advisor	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Dionissios Karvelas, Committee Member	 Date
Special Lecturer of Computer Science, NJIT

Dr. Symeon Papavassiliou, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Indra Widjaja, Committee Member 	 Date
MTS, Lucent ell Laboratories

Dr. Mengchu Zhou, Committee Member	 Date
Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Gang Cheng

Degree:	 Doctor of Philosophy

Date:	 May 2005

Undergraduate and Graduate Education:

• Master of Science in Signal and Information Processing,
Beijing University of Posts and Telecommunications, 2000

• Bachelor of Science in Information Engineering,
Beijing University of Posts and Telecommunications, 1997

Major:	 Electrical and Computer Engineering

Presentations and Publications:

G. Cheng and N. Ansari, "Adaptive QoS provisioning by Pricing Incentive QoS Routing
for Next Generation Networks," submitted to Computer Networks.

G. Cheng and N. Ansari, "Finding A Least Hop(s) Path Subject to Multiple Additive
Constraints," submitted to Computer Communication.

L. Zhu, G. Cheng, K. Xu, and N. Ansari, "Edge-based Adaptive Queue Management
(EAQM)," submitted to IEEE Proc. Communications.

G. Cheng and N. Ansari, "An Information Theory Based Framework for Optimal Link State
Update," IEEE Communications Letters, vol. 8, pp. 692-694, 2005

G. Cheng, L. Zhu, and N. Ansari, "A New Deterministic Traffic Model for Core-stateless
Scheduling," submitted to IEEE Transactions on Communications.

G. Cheng, L. Zhu, and N. Ansari, "Lower the Computational Complexities of 6-
approximations Algorithms With the Optimal Linear Scaling Factor," submitted to
IEEE Transactions on Communications.

N. Ansari, G. Cheng and, R.N. Krishnan, "Efficient and Reliable Link State Information
Dissemination," IEEE Communications Letters, vol. 8, pp. 317 - 319, 2004.

iv

G. Cheng and N. Ansari, "Finding All Hops Shortest Paths," IEEE Communications
Letters, vol. 8, pp. 122-124, 2004.

L. Zhu, G. Cheng and N. Ansari, "Local stable condition for random exponential marking,"
IEEE Proc. Communications, vol. 150, pp. 367-370, 2003.

G. Cheng, Y. Tian and N. Ansari, "A New QoS Routing Framework for Solving MCP,"
Special Issue on Internet Technology, JEICE Trans. on Communications, Vol. E86-
B, No. 2, pp. 534-541, 2003.

L. Zhu, G. Cheng and N. Ansari, "Delay Bound of Youngest Serve First Aggregated Packet
Scheduling," IEEE Proc. Communications, Vol. 150, No. 1, pp. 6-10, 2003.

G. Cheng and N. Ansari, "On Multiple Additively Constrained Path Selection," IEEE Proc.
Communications, Vol. 149, No. 5, pp.237-24l, 2002.

G. Cheng and N. Ansari, "Minimizing the Impact of Stale Link State Information on QoS
Routing," submitted to IEEE GlobeCorn'05.

G. Cheng and N. Ansari, "A Framework for Finding the Optimal Linear Scaling Factor of
E-approximation Solutions," to be presented at IEEE ICC'05.

G. Cheng and N. Ansari, "ROSE: A Novel Link State Information Update Scheme for QoS
Routing," to be presented at IEEE HPSRO5.

G. Cheng and N. Ansari, "Achieving 100% Success Ratio In Finding The Delay
Constrained Least Cost Path," IEEE GlobeCom'04, vol. 3, pp. 1505-1509, 2004.

G. Cheng, Y. Tian, K. Xu, and N. Ansari, "Core-stateless Proportionally Fair Queuing for
Assured Forwarding," IEEE GlobeCom '04, vol. 2, pp. 732-736, 2004.

G. Cheng and N. Ansari, "A New Heuristics for Finding the Delay Constrained Least Cost
Path," Proc. IEEE GLOBECOM '03, vol. 7, pp. 3711-3715, 2003.

G. Cheng, L. Zhu, and N. Ansari, "A New Traffic Model for Core-stateless Scheduling,"
Proc. IEEE GLOBECOM '03, vol. 6, pp. 3206-3210, 2003.

G. Cheng and N. Ansari, "Finding All Hops k-Shortest Paths," Proc. 2003 IEEE PACRIM
'03, vol. 1, pp. 474-477, 2003.

G. Cheng and N. Ansari, "A Theoretical Framework for Selecting the Cost Function for
Source Routing," Proc. IEEE ICC'03, vol. 1, pp. 631-635, 2003.

G. Cheng, Y. Tian and N. Ansari, "An Efficient Iterative Source Routing Algorithm," Proc.
2003 37th Conference on Information Sciences and Systems, 2003.

L. Zhu, G. Cheng, N. Ansari, Z. Sahinoglu, A. Vetro, and H. Sun, "Proxy Caching for
Video on Demand Systems in Multicasting Networks," Proc. 2003 37th Conference
on Information Sciences and Systems, 2003.

N. Ansari, G. Cheng, S. Israel, Y. Luo, et. al., "QoS Provision with Path Protection for
Next-Generation SONET,"Proc. 2002 IEEE ICC'02, vol. 1, pp. 2152 -2156, 2002.

vi

to my wife Fenghua.

vii

ACKNOWLEDGMENT

This dissertation could not have been completed without the support and inspiration of

many people. First of all, I have been fortunate to have Dr. Nirwan Ansari as my

advisor. Dr. Ansari simultaneously provided me the freedom to work on what I wanted

and the guidance that enabled me to succeed in my work. He not only taught me how to

become a better researcher, but also helped me to become a better person. His engaging

arguments and strong feedback have contributed greatly to this dissertation. I hope and

look forward to continued collaboration with him in the future. Next, I would like to thank

my wife, Fenghua, for her patience and persistent encouragement. For behind-the-scenes

support, I am forever indebted to my parents for their endless love. I am grateful to all the

friends and colleagues with whom I spent my time at New Jersey Institute of Technology.

Thanks to my friends, Li Zhu, Kai Xu, and Yie Tian, with whom I spent many hours

discussing various exciting topics. Finally, I would like to thank my dissertation committee

members (Dr. Dionissios Karvelas, Dr. Symeon Papavassiliou, Dr. Indra Widjaja, and

Dr. Mengchu Zhou) for spending their valuable time in my Ph.D exams and making

constructive comments.

viii

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Overview 	 1

1.2 Contributions and Organization 	 3

2 A RATE-DISTORTION ANALYSIS BASED LINK STATE INFORMATION
UPDATE SCHEME 	 5

2.1 Introduction 	 5

2.2 Problem Formulation 	 6

2.3 An Insight from Information Theory 	 12

2.4 The Proposed Link State Update Policy 	 14

2.5 Simulations 	 22

2.6 Summary 	 27

3 A RELIABLE LINK STATE INFORMATION DISSEMINATION SCHEME . 	 28

3.1 Introduction 	 28

3.2 Proposed Scheme 	 29

3.3 Summary 	 35

4 FINDING ALL HOPS SHORTEST PATHS 	 36

4.1 Introduction 	 36

4.2 A Lower Bound on the Worst-case Computational Complexities of the
Comparison-based Solutions 	 38

4.3 Summary 	 42

5 AN OPTIMAL COMPARISON BASED SOLUTION TO AHSP AND ITS
APPLICATIONS TO QOS ROUTING 	 43

5.1 Introduction 	 43

5.2 An Optimal Comparison Based Solution to AHSP 	 46

5.3 Proposed Routing Algorithm for Finding a Path Subject to Multiple
Additive Constraints 	 48

ix

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.4 Proposed Routing Algorithm for Delay Constrained Least Cost Path Selection 52

5.5 Simulations 	 53

5.5.1 Simulation 1 	 54

5.5.2 Simulation 2 	 58

5.6 Summary 	 58

6 FINDING THE OPTIMAL LINEAR SCALING FACTOR FOR EPSILON-
APPROXIMATION ALGORITHMS 	 60

6.1 Introduction 	 60

6.2 A Framework of E-Approximation Approaches for DCLC 	 61

6.3 Optimal Linear Scaling Feasible E-approximation Functions 	 63

6.4 Proposed Algorithms for Searching the Optimal Linear Scaling Factor . 	 72

6.5 Summary 	 78

7 MINIMIZING THE IMPACT OF STALE LINK STATE INFORMATION ON
QOS ROUTING 	 80

7.1 Introduction 	 80

7.2 Proposed Routing Algorithm 	 81

7.2.1 Iterative All Hops K-shortest Path Selection 	 88

7.2.2 Multiple Additively Constrained Path Selection 	 95

7.2.3 Finding the Most Probable Feasible Path Without Stochastic Link
State Knowledge 	 99

7.2.4 Remarks 	 103

7.3 Simulations 	 105

7.3.1 Simulation 1 	 106

7.4 Simulation 2 	 109

7.5 Conclusions 	 113

8 FINDING A LEAST HOP(S) PATH SUBJECT TO MULTIPLE ADDITIVE
CONSTRAINTS 	 115

TABLE OF CONTENTS
(Continued)

Chapter	 Page

8.1 Introduction 	 115

8.2 Problem Formulation 	 115

8.3 Proposed Algorithm 	 116

8.4 Simulations 	 123

8.5 Conclusions 	 125

9 CONCLUSIONS AND FUTURE WORKS 	 126

9.1 Conclusions 	 126

9.2 Future Works 	 129

9.2.1 Congestion Control 	 129

9.2.2 Overlay Network 	 129

9.2.3 Reliability and Security 	 130

9.2.4 Information Theory for Network Issues 	 130

REFERENCES 	 131

xi

LIST OF FIGURES

Figure Page

2.1 A 3-node network consists of nodes 1, 2, and 3. The available bandwidth of
link e l is 10Mbps. A new connection arrives at node 1, whose requested
bandwidth and desitination are 8Mbps and node 3, respectively 	 7

2.2 The probability density function of the requested bandwidth of connections. . 10

2.3 A demonstration of z 1 , z2, ...	 and yid, y2,....	 The solide arrows represent
the corresponding samples that are used for updates while the dash arrows
represent the samples that are not used. 	 12

2.4 The bursty traffic of the Internet. 	 14

2.5 n example of the link state update with only two classes 	 19

2.6 Solid arrows represent the samples that are used for link state update and dash
arrows are not. 	 21

2.7 The distributions of the available bandwidth. 	 22

2.8 Update rates of policies when B is 0.05C 	 25

2.9 False blocking probabilities of policies when B is 0.05C 	 26

2.10 Update rates of policies when B is 0.1C. 	 26

2.11 False blocking probability of connections when B is 0.1C 	 27

3.1 An illustration of the construction procedure of a DST 	 31

3.2 A minimum edge cut of G (N, E) that includes link e, which divides network
into two parts, G1(N1i , E1) and G2 (N2, E2). 	 32

3.3 A network and the spanning trees of its DST 	 33

4.1 A 4-nodes network 	 37

4.2 The definition of an (s , i) 	 39

5.1 The pseudo-code of the relaxation procedure of EB. 	 47

5.2 The pseudo-code of the relaxation procedure of the EB in BEB. 	 51

5.3 The pseudo-code of BEB 	 52

5.4 The pseudo-code of DEB 	 54

5.5 SR of the algorithms in the 32-node network 	 55

xii

Figure Page

5.6 SR of the algorithms in the 50-node network 	 55

5.7 SR of the algorithms in the 100-node network. 	 56

5.8 CRs of the algorithms in the 32-node network. 	 57

5.9 SRs of the algorithms in the 32-node network. 	 57

6.1 The illustration of the region of feasible linear scaling factor for a given link. 65

6.2 The shaded regions are the regions for A to be feasible to the corresponding
links. 	 67

7.1 A 4-node network. 	 84

7.2 An illustration of iteratively computing the all hops k-shortest path. 	 91

7.3 The pseudo code of IAHKP. 	 93

7.4 The relaxation procedure of IAHKP. 	 93

7.5 An illustration of the definition of cost. 	 100

7.6 The pseudo code of DAEB 	 100

7.7 The average number of iterations of IMACP in the 32-node network and the
50-node network 	 106

7.8 The success ratios of the algorithms in the 32-node network 	 107

7.9 The success ratios of the algorithms in the 50-node network 	 108

7.10 The probability for a path to satisfy a concave constraint decrease exponen-
tially with the number of unsured feasible links on it. 	 109

7.11 The false routing probabilities of SDA 111

7.12 The false routing probabilities of SDA and HMPR 	 111

8.1 The demonstration of the FA algorithm. 	 117

8.2 The pseudo-code of the FAHKP algorithm 	 119

8.3 The pseudo-code of the BFAHKP algorithm 	 122

8.4 A network consisting of 5 nodes. 	 123

8.5 AHRs of algorithms in the 100-node network. 	 125

CHAPTER 1

INTRODUCTION

1.1 Overview

As the Internet evolves into a globe commercial infrastructure, it is expected to accom-

modate a variety of applications that require quality-of-service (QoS) such as video

conferencing, interact TV, Internet telephony. However, today's internet only provides

one simple service: best-effort datagram delivery, in which data packets may experience

unpredictable delay and packet loss rate [1], and arrive at the destination out of order.

Hence, the best effort service architecture is not enough to meet the demands of the

emerging applications, and more sophisticated mechanisms, e.g., the integrated service

architectures [2]- [5] and the differentiated service architecture [6], are urgent to provide

less oscillatory and more predictable services to applications. Over the past two decades,

the subject of providing QoS guarantees in packet-switched networks has been a major

research focus in the Internet research community. In this dissertation, we focus on the QoS

routing problem, and propose high performance solutions to both link state information

update and routing strategies.

The basic function of QoS routing is to find paths [7]- [8] (for unicast application)

or trees [9]- [12] (for multicast applications) that satisfy the given sets of performance

requirements according to link state information in a network. There are many reasons

that make QoS routing difficult. First of all, different applications such as Interactive TV

and video conferencing have different QoS requirements. In the meantime, it has been

proved that multiple constrained path selection is NP-complete [13], i.e., it is intractable to

select a path subject to multiple constraints in a network. Therefore, tackling this problem

needs heuristics. Many solutions have already been proposed in the literature. However,

they suffer either the high computational complexity or low success ratio in finding the

1

2

feasible paths. Second, due to the highly dynamic nature of link QoS metrics [14]- [16], it

is hard, if not impossible, to maintain accurate link state information of the whole network.

Otherwise, intolerable amount of network resources is consumed on distributing link state

information which, in turn, increases the difficulty of designing high performance routing

schemes. Therefore, for the purpose of minimizing protocol overhead, current link-state

routing protocols such as OSPF [17] recommend that the link state is updated periodically

with large intervals. For instance, a link updates its state information every 30 minutes and

disseminates it simply by flooding in OSPF. However, from the perspective of QoS routing,

there are two major drawbacks of adopting OSPF as the link state update scheme [17] in

the Internet. First, the link state information is often outdated, which may greatly degrade

the effectiveness of the QoS routing algorithms. Second, since link state information is

distributed by flooding, it is not scalable, i.e., the protocol overhead increases with the

number of links. Hence, in order to implement QoS routing in high speed networks,

we need to investigate the issue of how to update link state information efficiently and

effectively.

As mentioned above, there are two critical issues to QoS routing: state distribution

and routing strategy. Routing strategy is used to find a feasible paths (trees) meeting the

QoS requirements. According to how the state information is maintained and how the

search of paths is carried out, routing strategies can be classified into three categories [18]:

source routing [19], distributed routing [20]- [25], and hierarchical routing [26]. We mainly

focus on source routing in this dissertation and assume that accurate link state information

is available. State distribution addresses the issue of exchanging the state information

throughout the network and can be further decomposed into two subproblems: when to

update and how to disseminate the link state information.

3

1.2 Contributions and Organization

Among the contributions of this dissertation are a highly efficient rate-distortion analysis

based link state update scheme, and two routing strategies respectively for the Multiple

Additive Constrained Path (MACP) selection and Delay Constrained Least Cost (DCLC)

path selection. In addition, along with an optimal comparison based solution, we introduce

and investigate a new problem: All Hops Shortest Path (AHSP) selection, and provide a

tight lower bound on the worst-case computational complexity on its comparison based

solutions. Through extensive simulations and theoretical analysis, we show that our

proposed link state update scheme greatly outperforms the state-of-the-art solutions both in

terms of the update rate and accuracy of the link state information, where the update rate is

defined as the average number of link updates in an unit time, and the accuracy of link state

information as the probability of routing failures introduced by the staleness of link state

information. We also present a simple but efficient and reliable scheme for disseminating

link state information to all nodes over a Tree-based Reliable Topology (TRT), that

guarantees that in the case of a single link failure, link state information is still reachable

to all nodes as long as the link is not an edge cut of the network. We experimentally

show that our proposed routing strategies greatly outperform their contenders in terms

of the worst-case computational complexity and the success ratio in finding the feasible

paths or the optimal feasible paths. Having observed that the computational complexities

of the E-approximation algorithms using the linear scaling technique are linearly propor-

tional to the linear scaling factors, we investigate the issue of finding the optimal (the

smallest) linear scaling factor to reduce the computational complexities, Two algorithms,

Optimal Linear Scaling Algorithm (OLSA) and Transformed Optimal Linear Scaling

Algorithm (T-OLSA), are proposed. We theoretically show that OLSA and T-OLSA are

both highly efficient in reducing the computational complexities of linear scaling based

E-approximation algorithms. QoS routing is NP-complete. Hence, tackling this problem

requires heuristics. A common approach is to convert this problem into a shortest path

4

or a k-shortest path problem and solve it with existing algorithms, e.g., Bellman-Ford and

Dijkstra algorithms. However, this approach suffers either high computational complexity

or low success ratio in finding the feasible paths. Hence, we introduce and investigate a new

problem, All Hops k-shortest Path (AHKP). Based on the solution to AHKP, we propose

an efficient self-adaptive routing algorithm, which can guarantee in finding feasible paths

with fairly low average computational complexity. One of its most distinguished properties

is its progressive property, which is very useful in practice: it can self-adaptively minimize

its computational complexity without sacrificing its performance. In addition, we show that

routing without considering the staleness of link state information may generate significant

percentage of false routing. Our proposed routing algorithm is capable of minimizing the

impact of stale link state information without stochastic link state knowledge. Finally, we

propose an efficient algorithm for finding the least hop(s) multiple additive constrained path

for the purpose of saving network resources.

The rest of the dissertation is organized as follows. In Chapter 2, we address

the issue of when to update link state information and propose a rate-distortion analysis

based update scheme. A simple but reliable link state information dissemination scheme

is presented in Chapter 3. The problem of AHSP is introduced and investigated in

Chapter 4. Based on an optimal comparison-based solution to AHSP, we develop two

high performance routing algorithms for MACP and DCLC, respectively, in Chapter 5.

Aiming at reducing the computational complexities of f-approximation algorithms that use

linear scaling techniques, we introduce OLSA and OLSA in Chapter 6. We address the

issue of minimizing the impact of stale link state information in Chapter 7. In Chapter

8, we introduce and investigate the issue of finding the Least Hop(s) Multiple Additive

Constrained Path (LHMACP). Finally, the concluding remarks are given in Chapter 9.

CHAPTER 2

A RATE-DISTORTION ANALYSIS BASED LINK STATE INFORMATION

UPDATE SCHEME

2.1 Introduction

Many proposed QoS routing solutions assume that accurate link state information is

available to each node. However, this is impossible in real networks. Moreover, to

facilitate accurate enough link state information would impose a significant bandwidth and

processing overhead on the network resource, i.e., the network resource will be greatly

consumed if an update of the link state information is triggered whenever a minor change

to the QoS parameters occurs. Current link-state routing protocols such as OSPF [17]

recommend that the link state is updated periodically with large intervals. For instance, a

link disseminates its state information every 30 minutes in OSPF. Consequently, because

of the highly dynamic nature of link state parameters, the link state information known

to a node is often outdated. As a result, the effectiveness of the QoS routing algorithms

may be degraded significantly. To overcome this problem, several link state update policies

(threshold, equal class, and exponential class based update policies) have been proposed

in [27]. Given a predefined threshold value ('r), an update is triggered in the threshold

based update policy if be — > 7- , where boa is the last advertised value of the

available bandwidth, and I), is the current available bandwidth. However, in equal class

and exponential class based update policies, the bandwidth is partitioned into classes and

an update is triggered whenever the available bandwidth crosses a class boundary. The

only difference between them is that the bandwidth is partitioned into classes of equal

size ((0, B), (B, 2B),...) in equal class based update policy, while it is partitioned into

unequal classes, whose sizes ((0, B), (B, (f + 1)B), ((f + 1)B, + f + 1)B),...)

grow geometrically by a factor f , in the exponential class based update policy, where

5

6

B is a predefined constant. Recently, many works considering the effects of the stale or

coarse-grained information on the performance of QoS routing algorithms were reported

in the literature. In [28], extensive simulations were made to uncover the effects of the

stale link state information and random fluctuations in the traffic load on the routing and

setup overheads. In [29]- [30], the effects of the stale link state information on QoS routing

algorithms were demonstrated through simulations by varying the link state update interval.

A combination of the periodic and triggered link state update is considered in [31]. Instead

of using the link capacities or instantaneous available bandwidth values, Li et al. [32] used

a stochastic metric, Available Bandwidth Index (ABI), and extended BGP to perform the

bandwidth advertising.

As reviewed above, although many link state update policies have been proposed,

there is still a lack of a rigorous theoretical foundation. As a result, they may not be efficient

enough and may waste the network resource. In this paper, we will provide a theoretical

framework for the link state update, from which we will propose a high performance link

state update mechanism. We theoretically demonstrate that from the perspective of QoS

routing, our proposed link state policy outperforms its contenders in terms of the update rate

and false blocking probability of incoming connections. The rest of the paper is organized

as follows. The problem is formulated in Section II. In Section III, we provide an insight on

the link state update based on information theory. We propose an efficient link state update

policy in Section IV, and present the simulation results in Section V. Finally, concluding

remarks are given in Section VI.

2.2 Problem Formulation

A key challenge for a network simulation is the selection of the network topology and

the traffic patterns. Owing to the constantly changing and decentralized nature of current

networks, it is rather difficult to define a typical network topology applicable for exploring

any protocols [15]. Moreover, the results of a simulation over different network topologies

7

with different traffic patterns may vary dramatically. In this paper, the problem of designing

an efficient link state update policy in a network is translated into that of finding an update

policy for a single link. We further discover that the performance of a link state update

policy in a network can be evaluated over a single link. As a result, we successfully avoid

the above problems. Moreover, our proposed link state policy is designed without any

assumption on the traffic pattern of the network.

Without loss of generality, we only focus on one link state metric (here, we adopt

bandwidth) and assume there exists an optimal QoS routing algorithm that is, if the exact

link state information is available to each node, always capable of locating a feasible path

(a path that meets QoS requirements) as long as it exists. If a route is successfully found

for a connection, the corresponding portion of the bandwidth (the requested bandwidth of

the connection) on each link it traverses is reserved. In this paper, we ignore the delay of

disseminating the link state information, i.e., we assume that all nodes can instantly receive

the link state information when an update occurs.

Figure 2.1 A 3-node network consists of nodes 1, 2, and 3. The
available bandwidth of link e l is 10Mbps. A new connection arrives
at node 1, whose requested bandwidth and desitination are 8Mbps
and node 3, respectively.

Define a routing failure as the case that the optimal routing algorithm fails to find a

feasible path (due to the staleness of the link state information) when, in fact, a feasible path

exists, and a setup failure as the case that the algorithm finds a false feasible path (a path

8

computed by the algorithm as a feasible path but is not feasible in reality). Collectively,

both failures are referred to as the false blockings of connections since both failures result

from the stale link state information. Note that setup failures cause network resources

unnecessarily consumed for reserving the bandwidth over the links (along the false routes),

and routing failures cause unnecessary rejections of the connection requests. Ideally, both

failures should be minimized. As shown in Fig. 2.1, assume a connection going to node

3 with the requested bandwidth of 8Mbps arrives at node 1, a setup failure occurs if, from

the perspective of node 1, the available bandwidth of link e 2 is 10Mbps while the actual

one is only 5Mbps (because node 1 thinks that enough network resource is available to

accommodate the connection, and accepts the connection), i.e., due to the staleness of the

link state information, a setup failure occurs when the available bandwidth of link e 2 known

by node 1 (10Mbps) is larger than the actual one (5Mbps), and the amount of the required

bandwidth (8Mbps) is just between them (less than the available bandwidth known to a

node but larger than the actual one); on the other hand, if the actual available bandwidth

of link e2 is 10Mbps and the one known by node 1 is 5Mbps, a routing failure occurs.

Hence, it is impossible to minimize both the number of setup and routing failures at the

same time, i.e., there is a trade off. In this case, define c 1 as the cost of a routing failure and

c2 as the cost of a setup failure; our objective is to minimize the total cost of routing and

setup failures under a given upper bound (network) on the average bandwidth used for the

link state dissemination, which in turn yields an upper bound on the average bandwidth (r)

consumed by every link for the link state update. Assume the link state metric of a link is a

time independent random process (with memory). Therefore, each link can be viewed as a

signal source and all nodes that do not directly connect to this link are receivers. From the

perspective of information theory, our task is to minimize the source distortion (the sum

of the routing and setup failure costs) for a given transmission rate r (or to minimize the

transmission rate r for a given source distortion).

9

Given a link, assume its available bandwidth known to each node is b 0 , and the actual

one is b. Further assume the amount of the requested bandwidth of a connection is a

random variable x with probability density function a(x). Therefore, define the cost (source

distortion) as:

For simplicity, we only consider the case that c 1	= c in this paper, which follows that

provide two interchangeable definitions for the optimal link state update policy.

Definition 1 For a given source distortion to be less than or equal to D, the optimal link

state update policy is the one that minimizes the transmission rate r of each link.

Definition 2 For a given transmission rate to be less than or equal to r, the optimal link

state update policy is the one that minimizes the source distortion.

Based on the above definitions of the optimal link state update policy, current

proposed update policies are not efficient enough. Consider the ones proposed in [27] as an

example. Assume a(x) is shown in Fig. 2.2, where Amin and Amax are the lower bound and

Figure 2.2 The probability density function of the requested
bandwidth of connections.

upper bound on the requested bandwidth of connections, respectively (IBBi". " a(x)dx = 1),

and C is the link capacity. Therefore, it can be observed that, when the current (exact)

available bandwidth of the link is between 0 and Amin or Bmax and C, except for the first

time that the available bandwidth falls into these regions, it is not necessary to update

the link state information because, no matter how the available bandwidth changes in

these two regions, it does not affect the setups of the connections in the network, i.e., the

probabilities of setup failures and routing failures are both zero. Moreover, the probability

density function of the requested bandwidth attains the maximum value at A; it is intuitive

that more accurate link state information is necessary when the available bandwidth is

around A so that the source distortion (cost) is minimized than that when the available

fmmax b
bandwidth is around 0 or C, i.e., since the source distortion is defined as c

in{{bbo,
 a(x)dx

which is related to the probability density function (pdf) of x, the requested bandwidth of

connections, it is intuitive that, when a(x) is high, small lb, — b is preferred (accurate link

11

state information is preferred), and when a(x) is low, b 0 — b can be relatively large (coarse

link state information is allowed). However, since the three proposed link state update

policies are designed without considering the requested QoS parameters of connections,

bandwidth is inevitably wasted on updating the link state information because of some

unnecessary updates. For example, using the threshold based update policy with a given

threshold T, when the available bandwidth changes from 2B(in_i+'':1 to B'2 111 , an update is

triggered. However, since it is impossible that a connection requests a bandwidth less than

Amin , it is unnecessary to make such update, i.e., such update is useless with the respect to

the requested bandwidth of connections. As a result, the network resource is wasted. By

the above example, a link state update policy cannot be universally optimal if it only relies

on the information of the available bandwidth, i.e., the knowledge of both the available

bandwidth and connection requests is needed for designing an optimal link state update

policy. On the other hand, since only the available bandwidth information is considered in

most existing works such as [32] and [27], they cannot be optimal and efficient enough.

Note that, in [28], a conclusion was made by simulations that the threshold based

update policy does not significantly affect the overall blocking probability of connections.

We need to point out that this may be only applicable to the special simulation environment

(the inefficient threshold based update policy, large average available bandwidth, and small

average bandwidth requested by connections) deployed in [28]: the traffic loads (occupied

bandwidth) of links are around 0.75C, and the bandwidths requested by new connections

are all less than 0.1C (the average bandwidth requested by connections are no larger than

0.05C). Note that updating the link state information is necessary only when the available

bandwidth is less than 0.1C. Moreover, in some simulations, the upper bound on the

requested bandwidth of connections is only 0.04C, which further decreases the threshold to

update the link state information. Consequently, the threshold based update policy defined

in [27] (set T around 0.5) is rather inefficient with respect to the simulation environment

and has little effect on the blocking probability of connections.

In this paper, we will propose an efficient link state update policy that takes into

account of the requested QoS parameters of connections.

2.3 An Insight from Information Theory

Many studies have been done to characterize the Internet traffic, revealing interesting facts

such as Long-Range Dependence or multi-fractal behaviors [33]4351 Therefore, we cannot

assume that the source signal (available bandwidth) is memoryless. Hence, each QoS

parameter of a link is viewed as a random process with memory that is independent of

time in this paper. By applying the sampling theorem, each continuous random process can

be converted into an equivalent discrete-time sequence of samples. Therefore, each QoS

parameter on a link can be treated as a time independent continuous random sequence with

memory. As shown in Fig. 2.3, denote z 1 , z2,..., and yid, y2,... as the exact sequence of the

available bandwidth and the sequence of the available bandwidth known to a node that is

13

not directly connected to the link, respectively, where C, Amax, B, and Bniir are the same

as those in Fig. 2.2.

Note that the definition of an optimal link state update policy is the one that minimizes

the transmission rate r of each link while limiting the source distortion to be less than or

equal to a given constant D. Hence, we can apply the rate-distortion function in information

theory to the problem of link state update. Denote the entropy of sequence yid, as

H&1771), and H&}" An) as the conditional entropy between the sequences of a1, a2,..., an

and hi, Therefore,

where R&D) is the bandwidth (a single link) used by the optimal link state update policy,

I&., .) is the mutual information, and D is the set of transition probabilities from An to Yr

subject to the distortion D, i.e., D satisfies the following condition

By equations 2.5 and 2.6, a lower bound on the transmission rate of the link state update

under the constraint of a given source distortion can be computed. In this paper, since no

assumption on the distribution of a(An) and a&x) is made, we cannot compute R&D) (in

14

reality, we can assume a&An) and a&x) are known. For instance, we can assume Ana is

self-similar distributed such as Pareto distribution).

2.4 The Proposed Link State Update Policy

Figure 2.4 The bursty traffic of the Internet.

The key difference between our proposed link state policy and those in [27] is

that instead of partitioning the bandwidth into classes of equal sizes or exponentially

growing sizes, we divide the bandwidth into classes by taking into account of the requested

bandwidth of the connections and the available bandwidth, for the purpose of minimizing

the source distortion under a bandwidth constraint for disseminating the link state infor-

mation. As a result, our proposed link state update policy can avoid the unnecessary updates

from the QoS routing perspective, and therefore, performs better than those in [27] in terms

of the average bandwidth for disseminating the link state information and the average costs

due to routing and setup failures. Our proposed link state update policy consists of the

following three steps:

15

1. Sample the available bandwidth. Different sampling strategies can be adopted. For

instance, we can sample the available bandwidth every T s , where Ts is the sampling

interval. We can also compute the available bandwidth upon the acceptance and

the end of a connection (only after a route with enough bandwidth is found for a

connection, it is accepted).

2. Quantize the samples.

3. If the current quantized value is different from the previous updated one, use the

current one for update.

Since data traffic in the current Internet is inherently bursty, a QoS parameter may

fluctuate dramatically in a very short time. As a result, some unnecessary updates may

occur. For example, as shown in Fig. 2.4, the available bandwidth has been changed

substantially in a very short time T, and many updates are triggered. Therefore, for the

purpose of saving the bandwidth used for link state update, similar to [27], we can set a

clamp down timer (the minimum interval between two consecutive updates) to make a link

state update policy less sensitive to the fluctuation of the available bandwidth. However, it

should be noted that setting a clamp down timer also has negative impacts on the accuracy

of the link state information. As shown in Fig. 2.4, assume the average available bandwidth

is B, and in most of the time, the available bandwidth is less than B 1 and larger than Bo .

At to , an update of link state information is triggered, and at the end of the corresponding

timer, another link state information update is triggered because the available bandwidth is

very large at that time. Observe that in most of the time of the second timer duration, the

available bandwidth is between B 1 and Ao . However, because of the clamp down timer, no

link state information update is allowed. Hence, the link state information during this timer

period is rather inaccurate. Therefore, the clamp down timer is not recommended here.

Next, we propose how to partition the bandwidth with a given number of classes in

order to minimize the source distortion. Assume the number of classes is n, and classes

16

are quantized values (we update the link state information with Bib if the current available

bandwidth is in [bib, b+1)). Therefore, we need to minimize the distortion

Therefore, we can form a Lagrangian Relaxation by incorporating the constraints, Eqs. 2.9

and 2.10, into Eq. 2.8:

17

18

Therefore, when both the requested bandwidth and the available bandwidth of connections

are uniformly distributed from 0 to C, the partition of the bandwidth of the equal class

based update policy proposed in [27] is optimal. With Eq. (2.8), we can further derive the

minimized source distortion when the number of classes of bandwidth is given. Assume

the available bandwidth is uniformly distributed, i.e., f &x) = . Therefore, by Eq. (2.18),

Bib—bib= bi+1—Bib, for all 0 < i < n,.Hence, by Cauchy Mean-value Theorem and Eq.

b, — b,_ 1 , i.e., the size of the ith class is less than that of the (i — 1)th class, which conforms

to our claim that relatively accurate link state information is preferred at the point (available

bandwidth) where the value of the probability density function of the requested bandwidth

of connections is large.

Figure 2.5 n example of the link state update with only two classes.

Intuitively, the larger the number of classes, the more sensitive our link state update

policy is to the fluctuation of the available bandwidth is. As a result, the bandwidth required

for updating the link state information is larger. Therefore, given an upper bound on the

bandwidth for link state update, there accordingly exists an upper bound on the number of

classes. In this paper, we approximately compute the bandwidth used for link state update

under the condition that the number of classes is n. Denote a&B,) as the probability that the

quantized value of a sample is A2 ; q(B2) as the probability that the link state information is

updated with A2, 1, 2, ..., n-1; a&B2113 as the transition probability of two consecutive

(quantized value of) samples from B, to Bib, and T, as the average interval between two

consecutive samples. Note that q(B,) is different from a&B) because B, is used for an

update only when the previous update (not the previous sample) B3 is different from B2.

20

For example, as shown in Fig. 2.5, assume there are only two classes and two quantized

values B 0 and B1, p(B0) = 0.2, P(Bi) = 0.8, and p(B01B0) = 0 (the transition probability

that the current quantized value is A 0 under the condition that the previous one is also

B0). Observe that before and after each A 0 , there must be a sample with value B 1 (because

p(B0 A0) = 0). Since an update can occur only when two consecutive samples are different

from each other, q(B0) = 0.5, and q(B1) = 0.5. As mentioned before, the sample sequence

is a random sequence with memory. Note that a sample is used for update only when it

differs from the latest update, i.e., whether a sample is used for update only depends on

the previous update. Therefore, for simplicity, we approximately assume that the sample

sequence has the Markov memory structure, i.e., p(A i l.Bi_ 1 , Bi_2, /30) P(Bi Ai-1),

where p(Ai lAi_ i , Bi_2,	 A0) is the conditional probability that, under the condition that

the previous samples are Ai_1, Ai_2 7 	Ao, the ith sample is Bi . Therefore, we have

21

Figure 2.6 Solid arrows represent the samples that are used for link
state update and dash arrows are not.

As shown in Fig. 2.6, assume that the average number of samples between any two

consecutive updates is m. Accordingly, the average interval between any two consecutive

updates is (m, + 1)T3 , and the average number of updates in a unit time, or the update rate,

is (m+11)Ts • Assume that the size of the packets used for link state update is Lug , then the

bandwidth used for link state update (a single link) is (m+LI)7 , and the number of link state

information packets received by each node of a network in a unit time is (m+Ei)T , where

E is the number of links in the network. Next, we compute m under the assumption that

p(Bi lBi) and q(B) (0 < i , j < n) are known. Note that an update occurs if the current

sample is in a different class from the last update. Therefore, if the current update value is

Bi, the average number of samples till the next update is

Hence, the average number of samples between any two consecutive updates is

and thus the average bandwidth used for link state update can be computed.

22

Figure 2.7 The distributions of the available bandwidth.

Note that given a blocking probability p of a connection on every single link and

without considering the relation among links, its overall blocking probability to traverse

through an h—hop path is: 1 — (1 — p)h. Moreover, the number of link state updates of

a network is simply the sum of the updates of all the links in the network because each

link updates its own link state information independently. Therefore, the performance of a

link state update policy in a network can be reflected by its performance on a single link.

Hence, instead of conducting simulations in a network, we choose an easier alternative:

evaluating the performance of our proposed link state update by comparing it with those

in [27] (except the threshold based update policy because, as mentioned earlier, it is rather

23

ineffective) on a single link. For completeness, we briefly review the equal class based and

exponential class based update policies.

Definition 3 Equal class based update policy [27] is characterized by a constant B which

is used to partition the available bandwidth operating region of a link into multiple equal

size classes: (0, B), (B, 2B),..., etc. An update is triggered when the available bandwidth

on an interface changes to a class that is different from the one at the time of the previous

update.

Definition 4 Exponential class based update policy [27J is characterized by two constants

B and f (f > 1) which are used to define unequal size classes: (0, B), (B, (f + 1)B),

((f +1)B, (f 2 f +1)B),..., etc. An update is triggered when a class boundary is crossed.

Note that when the available bandwidth fluctuates around a class boundary, many

meaningless updates may be triggered. In order to dampen such oscillatory behavior, the

two class based policies are augmented by a hysteresis mechanism in [27]: the generation of

an update is suppressed until the available bandwidth reduces sufficiently to cross beyond

the middle value of the new classes. Such rule is not applied when the available bandwidth

increases and crosses a class boundary.

We adopt two performance indices for the purpose of comparison: the update

rate (average number of updates in a unit time) and the false blocking probability of

connections, which are respectively defined below:

24

and the duration of each connection is of a standard Pareto distribution with a = 2.5

(cumulative distribution of the standard Pareto distribution is FT (x) = 1 — (P-)a, where

a is the shape parameter and /3 is the scale parameter). Hence, the average duration of a

connection is 1 = '13—1 (the mean of the standard Pareto distribution). By [28], the averagea

traffic load of the link is p = lb/R, where b is the average requested bandwidth of a

connection. For the purpose of comparison, we do not set the clamp down timer in our

simulations. Upon the acceptance and the end of a connection, the available bandwidth

is re-computed. The bandwidth requested by each connection is uniformly distributed in

[0, Bmaxl]. Note that for a single class based link state update policy, the larger number of

the classes the bandwidth is partitioned into, the more accurate the link state information is,

implying the lower false blocking probability of connections, while the more sensitive it is

to the fluctuation of the available bandwidth, thus resulting in a larger update rate. Hence,

we can claim that policy 1 outperforms policy 2 if and only if, for any given number of

classes to policy 2, an appropriate number of classes can always be found for policy 1 such

that it achieves better performance on both the update rate and false blocking probability

of connections. By extensive simulations, we found that our proposed link state update

policy outperforms the equal and exponential class based link state update policies for any

given number of classes. In this paper, due to the page limit, we only selectively present the

simulation results of the cases that the numbers of classes of the equal class based update

policy are 5 and 10 (B = 0.1C and 0.2C), and B = 0.05C and f = 2 for the exponential

class based update policy (the number of classes is 4). The number of classes we used for

comparison in our proposed link state update policy are 2 and 3.

As the first step of our proposed link state update policy, we compute the probability

density function of the available bandwidth as shown in Fig. 2.7, where the traffic loads

are 37.5% and 75%, and Bmax = 0.05C and 0.1C, respectively (we denote 0.1C/75%

as the case that Bmax = 0.1C and the traffic load is 75%). Note that the probability that

the available bandwidth is less than B max is very small (the integration of the probability

25

density function of the available bandwidth from 0 to Bmax, i.e., the probability that the

available bandwidth is no larger than Bmax , is less than 5%). Hence, the update rate of our

proposed link state update policy is low.

Figure 2.8 Update rates of policies when B is 0.05C.

Figs. 2.8-2.11 illustrate our simulation results, in which n denotes the number of

classes and Beta denotes the parameter /3. In both simulations, our proposed link state

update policy can achieve much better performance than others, i.e., our proposed link

state update policy achieves lower blocking probabilities with lower update rates than

others, implying that our proposed link state update is more practical than the equal and

exponential class based link state update policies in terms of the update rate and false

blocking probability of connections.

Finally, it should be noted again that although our simulations are conducted on a

single link, as long as no cooperation between links is used for updating the link state

26

Figure 2.10 Update rates of policies when B is 0.1C.

information, we can equally claim that our proposed link state information update scheme

outperforms others from the perspective of a whole network.

2.6 Summary

In this chapter, we have proposed an efficient link state update policy. Through

theoretical analysis and extensive simulations, we have shown that it greatly outperforms its

contenders, i.e., it achieves a much lower false blocking probability with a very low update

rate. As a result, we can increase the performance of QoS routing using the proposed link

state update policy.

CHAPTER 3

A RELIABLE LINK STATE INFORMATION DISSEMINATION SCHEME

3.1 Introduction

Distributing link state information may introduce a significant protocol overhead on the

network resource. Many existing link-state routing protocols recommend that link state

information is disseminated by simply flooding or flooding-like approaches [36], [17].

These kinds of approaches ensure that all routers within a link state domain converge on the

same link state information within a finite period of time; they are also robust, i.e., in the

case of link failures and node failures, link state information is still reachable to all nodes

as long as the network is connected. On the other hand, because of the poor scalability

of flooding, a large update interval has to be adopted in order to reduce the protocol

overhead on the network resource. For instance, a link disseminates its state information

every 30 minutes in OSPF. Consequently, because of the highly dynamic nature of link

state parameters, the link state information known to a node is often outdated. Hence, the

effectiveness of the QoS routing algorithms may be degraded significantly.

To overcome the problems of disseminating link state information by flooding or

flooding-like approaches, many tree based link state dissemination schemes have been

proposed. Moy [37] has proposed to distribute link state information over a subset of

the network topology. Specifically, link state information is distributed over a spanning

tree, instead of flooding over the whole network. In order to reduce the communication

cost for maintaining the trees, a protocol [38], called Topology Broadcast based on

Reverse Path Forwarding (TBRPF), uses the concept of Reverse Path Forwarding (RPF)

to broadcast link-state updates in the reverse direction along the spanning tree formed by

the minimum-hop paths from all nodes to the source of the update. As reviewed above,

it can be observed that the protocol overhead of the tree based approaches is far less than

28

29

that of flooding. However, they suffer the reliability problem, i.e., in the case of a single

link failure, the tree (subnet) is splitted into two parts and link state information is not

reachable to some nodes anymore, even though the network is still connected. Hence,

existing proposals have one or more of the drawbacks of poor scalability, poor reliability,

and slow convergence.

In this chapter, we propose a new scheme for distributing link state information that

possesses the advantages of fast convergence, reliability, and scalability.

3.2 Proposed Scheme

In this section, a reliable, fast convergent, and scalable link state information dissemination

scheme is proposed. We first define the reliable link state information dissemination below:

Definition 5 Given a network topology C(N, E), where N is the set of nodes and E is the

set of links, a link state information dissemination scheme is reliable if for any link e, as

long as {e} is not a minimum edge cut of C(N, E), link state information is still reachable

to all nodes in the case that e is broken.

By the above definition, it can be observed that the scheme of simply flooding

link state information over the whole network is reliable, while distributing link state

information over a spanning tree is not when the network is not a tree. However, flooding

link state information over a network introduces heavy burden on the network resource

and is rather inefficient. Hence, one of the key issues of designing a reliable and efficient

link state information dissemination scheme is to find an appropriate subnet such that the

scheme is reliable and the protocol overhead is minimized. In this chapter, we introduce

a new term, Reliable Topology (RT), over which the scheme of simply flooding link state

information is reliable.

30

Definition 6 Given a network topology G(N, E), a subnet, C/N, E), is a Reliable

Topology (RT) if for any link e E E, {e} is not a minimum edge cut of C(N, E) as long as

{e} is not a minimum edge of C/N, E).

Note that a RT must exist for any network topology by Definition 6. It can also

be observed that a link state information dissemination scheme is reliable if the minimum

edge cut of the subnet topology over which it floods link state information has at least

two members (edges). However, such topology (the RT without a one-link minimum edge

cut) does not exist if there exists a one-member minimum edge cut of G. On the other

hand, if the network does not have a one-link minimum edge cut, any of its RTs does not

have a one-link minimum edge cut either, i.e., any link in a RT has at least one protection.

Hence, the key point to provide reliable link state information dissemination is to find

an appropriate subnet topology or a RT. An intuitive solution is the Hamiltonian Cycle

[39], especially the least cost Hamiltonian Cycle. However, the major disadvantage of this

approach is that finding a Hamiltonian Cycle in a given graph is NP-complete and would

not be practical to use for fast convergence in real time networks. Therefore, alternatively,

we provide an effective and efficient solution in this chapter, Tree-based Reliable Topology

(TRT), which is proposed based on Theorem 1 (below) and built upon the combination of

multiple spanning trees.

Figure 3.1 An illustration of the construction procedure of a DST.

The construction procedure of TRT is illustrated by an example shown in Fig. 3.1.

Given a network C(N, E) as shown in Fig. 3.1, we can construct one of its TRTs, D(N, E),

by combining T(N, P),Ti(N1, E1), and T2 (N2, E2), where T (N, E) is one of the spanning

trees of C(N, E), and T1 (N1, E 1), and T2 (N2, E2) are the spanning trees of G 1 (N1 , E1)

and G2(N2, E2), respectively, which are the remaining networks after removing the links in

T(N,P) from G(N, E). By Definition 7, it can be observed that if n = 1, i.e., C(N, E

is still a connected network; TRT is actually constructed by combining the three spanning

trees of C(N, E).

Theorem 1 Any TART, D(N, E), is also a RT of the corresponding topology G(N, E).

Proof By contradiction. Assume 3e E E such that {e} is a minimum edge cut

of D(N, E) while {e} is not a minimum edge cut of C(N, E). Since {e} is a minimum

edge cut of D(N, E), further assume D(N, E) is divided into two parts, d i (N1 , E 1) and

G-2 (N-2, E2), by removing e from D(N, E). Moreover, since {e} is not an edge cut of

Figure 3.2 A minimum edge cut of C(N, E) that includes link e,
which divides network into two parts, G1(N1 , E1) and C2 (N27 E2).

C/NS, E), assume a minimum edge cut of C(N, E) that includes link e and divides nodes

N1 from N2 is {e, e l , e2 , em }, as shown in Fig. 3.2. Note that e l , e2, en, are not

links of DAN, E). Otherwise, {e} cannot be a minimum edge cut of DAN, E) because

after removing {e} from DAN, E), 1, E1) and C2(/\72, E2) are both connected and

there still exists at least a link connecting them, i.e., after removing link e from D(N, E),

it is still connected, thus contradicting the assumption. By the definition of TRT, assume

DAN, E) consists of T(N, E), E1), T2 (N2 , E2), •-, Tr, (N., En), where T(N, E)

is a spanning tree of C(N, E), and T1(N1i E1), T2 (N21 E2), ••-, Tn(Nn, En) are spanning

trees of G1(N1i E 1), GG2(N2, E2), •.., (Nn, En), respectively, which are the remaining

connected networks by removing E from GIN, E). Assume e l is the link connecting node

u and v. Since e l E and E C E, u and v are directly connected by e l after removing

T(N, E) from C(N, E), and thus belong to a single connected network Ck(Nk, Ek), 1 <

k < n. Hence, u is still reachable to v after removing T (N , E) from D (N , E). Since {e}

is a a minimum edge cut of DAN, E) and T(N, E) is a spanning tree of DAN, E), e E

33

Hence, by removing link e from DAN, E), node u (u E N1) is still reachable to v (v E

N2), which contradicts to the assumption that 6 1 (N1 , E l) and 62 (N2, E2) are separated

by removing link e from DAN, E). Hence, any TRT is also a RT of the corresponding

network. ■

Figure 3.3 A network and the spanning trees of its DST.

By Theorem 1, we know that link state information can be reliably disseminated

over a TRT, i.e., we can design a reliable link state information scheme by constructing a

TRT over which link state information is distributed. Note that a TRT is the combination of

several spanning trees. Hence, the remaining problem is to select appropriate spanning trees

in order to minimize the protocol overhead and convergence time. Here, we simply deploy

Minimum Spanning Tree (MST) to construct TRT, i.e., in the process of constructing the

TRT, all the spanning trees are the minimum spanning trees of the corresponding networks.

As the result, we can guarantee that the convergence time of our proposed scheme is

low. Furthermore, in order to evaluate the protocol overhead of link state information

dissemination schemes, we define the number of Link State Advertisements (LSAs) upon

34

each link state update as a performance index. Note that a TRT consists of several spanning

trees. Instead of treating a TRT as a single subnet but many independent trees with joint

nodes, and LSAs are independently flooded over each of them, it can be proved that

the number of LSAs is only twice that of the Moy's scheme [37], in which link state

information is flooded over a spanning tree of the network. For instance, given a network

(Fig. 3.3a) and one of its TRTs, which consists of two spanning trees (Fig. 3.3b&3.3c,

respectively). In the case of a link state update, LSAs are flooded independently over

two spanning trees (in this example, it can be viewed as the combination of two parallel

tree-based link state dissemination schemes), instead of over the whole TRT. It can be

observed that the number of LSAs is twice that of LSAs over a single spanning trees.

Computational Complexity: Note that by Prim's algorithm [40], the computational

complexity of computing the minimum spanning tree in a network is 0(1Ellog AND, where

IN is the number of nodes and 1A1 the number of links. From the definition of TRT,

the computational complexity is the sum of the computational complexities of computing

the spanning trees of C (N , A), and G1(N1 , A1), C2 (N2, E2), An (N n , An). Since

Ein_l 1Ni = IN and E in_ l Ai 1 < 1A , the computational complexity of computing the

TRT that consists of minimum spanning trees is

where Ai and INZ are the numbers of links and nodes of G i (Ni , Ei), i = 1, 2, ...,

respectively. Hence, we can claim that the computational complexity of computing the TRT

for our proposed link state update scheme is fairly low, and it can be deployed practically

for real networks.

35

Note that although TRT is proposed for distributing link state information in this

chapter, it can be deployed for other purposes. For example, it can be used in WDM

networks for providing link protection: in the case of any single link failure, TRT can

guarantee an alternate route between the two corresponding nodes connected by the

link as long as the network is still connected. Compared to the approach of using the

Hamiltonian Cycle [41], the one using TRT has obviously the advantage of low computa-

tional complexity.

3.3 Summary

In this chapter, based on the Tree-based Reliable Topology (TRT), we have proposed an

efficient link state dissemination scheme. We show that our proposed scheme possesses

the advantages of reliability, low protocol overhead, and fast convergence. By proving that

the computational complexity of computing the TRT over which link state information is

disseminated is compatible to that of computing the minimum spanning tree, we show

that our proposed scheme is practical for a real network from the perspective of the

computational complexity.

CHAPTER 4

FINDING ALL HOPS SHORTEST PATHS

4.1 Introduction

Many proposed source routing algorithms tackle QoS routing problem by transforming it

into the shortest path selection problem or the k-shortest paths selection problem, which

are P-complete, with an integrated cost function that maps the multi-constraints of each

link into a single cost. However, since the solutions are computed by finding the shortest

path, one of their common problems is that they cannot minimize the number of hops of

their solutions. As a result, the network resource is wasted. Given a set of constraints

(a l , a2 , ..., c m) and a network that is modeled as a directed graph C/NS, A), where N

is the set of all nodes and E is the set of all links, assume each link connected from

node u to v, denoted by eu,„ (u, v) E A, is associated with randomly distributed

additive parameters: w(u, v) > 0, i = 1, 2, ..., M, and define Pr {Wi (p) < c l , W2 (p) <

(12 Wm (P) < am IC(P) = u, H(p) = n} as the probability that a path p is a feasible path

with C(p) = u, and its hop count, H(p) = n, where C(p) is the cost of p, which is a

function of the weights of the links on p, and W2(p) =Eau v EP wi(u, v). The probability

of the shortest path to be a feasible path may not be the largest in all paths. Therefore,

computing a feasible path among all hops shortest paths, instead of only the shortest path,

can increase the success ratio of finding a feasible path. In this chapter, we introduce and

investigate a new problem referred to as all hops Shortest paths (AHSP) problem, defined

below.

Definition 8 All Hops Shortest Paths (AHSP) Problem: Assume a network is modeled as

a directed graph C/N, A), where N is the set of all nodes and A is the set of all links.

Each link connected from node u to v, denoted by e„,„ = (u, v) E A, is associated with an

additive weight c(u, v). Given a source node s E N and maximal hop count H, H < n,

36

37

find, for each hop count value h, 1 < h < H, and any other destination node u E N,

the shortest, i.e., the least weight, h-hop paths from s to u if an h-hop path exists. In this

chapter, we will refer to the length, i.e., cost, of a path as the sum of its link weights.

Figure 4.1 A 4-nodes network.

Note that AHSP is different from add-AHOP [42]. For each hop count value h,

1 < h < H, add-AHOP is to select the shortest path from a given source to a destination

that has a hop count no larger than h; while AHSP is to select the shortest path from the

source to the destination that has a hop count equal to h if such a path physically exists (it

might be more appropriate to call AHOP as All-Hops-Constrained Optimal Path problem

instead of All Hops Optimal Path problem). For example, as shown in Fig. 4.1, the cost of

each link in the 4-node network is 0.1. Let (ctr l , c2,	 Leh) represents an h-hop path from

node a l to node ch sequentially traversing nodes Nei, cc2, 	 chi , respectively. Given H = 3,

since (1, 4) is the shortest path from node 1 to node 4 with a hop count of 1, for each hop

38

count n E {1, 2, 3}, the shortest path selected by add-AHOP with a hop count no larger

than h from node 1 to node 4 would always be (1, 4); while the h-hop shortest paths selected

by AHSP from node 1 to node 4 are (1, 4), (1, 2, 4), and (1, 2, 3, 4), respectively, when n

equals to 1, 2, and 3. Hence, solving add-AHOP does not need to solve AHSP. On the

other hand, if AHSP is solved, add-AHOP is also solved. AHSP seems to be more difficult

than add-AHOP because in addition to the paths selected by add-AHOP, AHSP involves

selecting paths that are not selected by add-AHOP, i.e., since the shortest path from the

source to the destination that has a hop count no larger than n must be a n-hop shortest path

from the source to the destination, where n is its hop count and h < h; the paths selected by

AHSP must include the paths selected by add-AHOP. However, in this chapter, we prove

that the comparison-based optimal solutions for both add-AHOP and AHSP have the same

order of worst-case computational complexities, where the optimal solutions are referred

to as the solutions possessing the minimum worst-case computational complexity.

4.2 A Lower Bound on the Worst-case Computational Complexities of the

Comparison-based Solutions

Before we proceed to further analysis, we first present the following definition [43].

Definition 9 A path-comparison-based shortest-path algorithm r, which accepts as input

a graph G and a weight function, can perform all standard operations, but the only way it

can access the edge weights is to compare the weights of two different paths [431

Denote d i as the degree of node i and i 1 , i2, , Midi as its neighboring nodes. If there

does not exist a physical link from the source node s to any other node i, assume there

exists a virtual link e(s, i) from s to i with a cost of infinity. Denote p(s, i) as an n-hop

path from the source s to i (see Fig. 4.2). Then,

39

Figure 4.2 The definition of an (s , i).

2. ph (S , i) represents the shortest h-hop path among the paths ph-1 (, id) + e(id , i) , 1 <

d < di . If, in reality, no h-hop path from s to i exists, we assume that there exists a

virtual h-hop path whose weight is infinity.

Denote 14 as the weight of ph (s, i); 7rh (i) represents the predecessor node of i along

the path.

Proof Proof: When h = 1, from the definition of the initial value of Di (i	 s),

Al (s, i) is the one hop shortest path from s to i, i E {1, 2, ..., N}.

We assume that the proposition is correct for h = k. We want to prove by deduction

that it is true for h = k + 1. Assume when h = k + 1, 3j s such that pk+1 (8 , j) is not

the shortest path in all (k + 1)-hop paths from s to j (D 114-1 is larger than the cost of the

(k + 1)-hop shortest path from s to j). Further assume path h-k -1-1-(s, j) is the shortest path

40

in all (k + 1)-hop paths from s to j, the predecessor node of node j in pk+1(s, j) is d, the

path from s to d in Pc+1 (s, j) is Pik (s, d) (note that Pc (s, d) may not be the shortest k-hop

path from s to d, and by the earlier assumption, since a k-hop path exists, pk (s, d) is the

shortest path from s to d), the cost of i-3-k-Fi(s 7 j) is c, and the cost of Bak (s, d) is c'. Thus,

which contradicts Eq. 4.1, implying that pk+1(s, j) is not the (k + 1)-hop shortest path from

s to j, contradicting to assumption. So, when n = k + 1, pk+1 (S, 1), i E {1, 2, ..., N}, is the

shortest path among all (k + 1)-hop path from s to i. Thus, for any node i E {1, 2, ..., N},

if at least one n-hop path from s to i physically exists, the path ph (s, i) must be the shortest

path among all n-hop paths from s to i, i.e., ph (s, i), 1 < n < H, are the solutions to

AHSP. ■

By Theorem 1, we know that the n-hop shortest path from s to i is the shortest path of

the paths that are constructed by concatenating the (h — 1)-hop shortest paths from s to the

41

neighboring nodes of i with the corresponding links. Next, we provide a tight lower bound

on the worst-case computational complexity of the optimal comparison-based solution to

AHSP based on Theorem 1.

Theorem 3 The optimal comparison-based solution to AHSP has the worst-case compu-

tational complexity of O (H El).

Proof Proof: First of all, we prove that the upper bound on the worst-case computa-

tional complexities of the optimal comparison-based solutions to AHSP is 0 (HIE 1) . Note

that the (n + 1)-hop least weight path from s to i is the least weight path among the paths

constructed by concatenating the n-hop least weight paths from s to the neighboring nodes

of i with the corresponding links. Hence, in order to compute the (n + 1)-hop shortest path

from s to i, the n-hop least weight paths from s to the neighboring nodes of i should

be computed first. Moreover, given a node i, the (n + 1)-hop least weight path from

s to i can be achieved with the computational complexity of 0(d2) by the definition of

the comparison-based algorithm and Theorem 4.1. Hence, given the h-hop shortest paths

from s to all other nodes, the (n + 1)-hop shortest paths from s to all other nodes can be

computed with the computational complexity of 0(E d 2) = o(iE1). Define f x as the
2EN,i0s

computational complexity bound on the optimal solutions (i.e., the ones with the minimum

worst-case computational complexity) to AHSP, where H is the maximum hop. Therefore,

implying that the optimal comparison-based solution to AHSP has a computational

complexity no larger than 0 (H I El) .

On the other hand, since AHSP computes all the paths AHOP computes, the compu-

tational complexity of the optimal comparison-based solution to AHSP must be no less than

that of the optimal comparison-based solution to add-AHOP. It has been proved in [42] that

the tight lower bound on the computational complexity of the optimal comparison-based

solution to add-AHOP is 0(1V 3), where 1V is the number of nodes. Therefore,

42

However, only when A = RE V 2) and H = 0 (VI) , 0 (V 1 3) = REVILE I) . Hence, the

optimal comparison-based solution to AHSP has the worst-case computational complexity

of OCHE). ■

By Theorem 3, we know that the worst-case computational complexity of an optimal

comparison-based solution to AHSP is the same as that of an optimal comparison-based

solution to add-AHOP. Note that link weights are assumed to be additive in AHSP in this

chapter. Hence, Theorem 3 may not be applicable to the case that they are not additive,

e.g., concave and multiplicative (it may not be appropriate to call the problem as AHSP

anymore). However, for the case when the link weights are concave, it can be proved

that the n-hop path with the largest weight from the source to node i can be computed

by letting ph (s, i) represent the n-hop path with the largest weight among the paths

ph_1(s, id) + e(id, i), 1 < d < d 2 (when the link weights are concave, it has become the

problem of finding all hops paths with the largest weights). Moreover, multiplicative link

weights can be converted to additive weights by using the logarithm function. Therefore,

similar to Theorem 3, we still can prove that 0 (H I A) is an upper bound on the worst-case

computational complexity of the optimal comparison-based solutions.

4.3 Summary

In this chapter, we have introduced and investigated a new problem referred to as the All

Hops Shortest Paths (AHSP) problem. A tight lower bound on the worst-case compu-

tational complexity of the optimal comparison-based solution to AHSP has also been

derived.

CHAPTER 5

AN OPTIMAL COMPARISON BASED SOLUTION TO AHSP AND ITS

APPLICATIONS TO QOS ROUTING

5.1 Introduction

In this chapter, based on an optimal comparison based solution to AHSP, we focus on

designing the routing strategies, especially finding the delay constrained least cost paths and

multiple additively constrained paths, and assume that accurate network state information

is available to each node. A number of research works have also addressed inaccurate

information [44]- [47], which is, however, beyond the scope of this proposal.

It has been proved that multiple constrained path selectton is NP-complete [13].

Hence, tackling this problem requires heuristics. The limited path heuristic [8] proposed

by Yuan maintains a limited number of candidate paths, say x, at each hop. The

computational complexity is 0(x2nm) for the Extended Bellman-Ford algorithm for two

constraints, where n and m are the number of links and nodes, respectively. For the

purpose of improving the response time and reducing the computation load on the network,

precomputation-based methods [48] have been proposed. Korkmaz and Krunz [7] provided

a heuristic with the computational complexity compatible to that of the Dijkstra algorithm

to find the least cost path subject to multiple constraints. An algorithm [49], called

A*Prune, is capable of locating multiple shortest feasible paths from the maintained heap in

which all candidate paths are stored. For the case that only inaccurate link state information

is available to nodes, approximate solutions [50] have been proposed for the Most Probable

Bandwidth Delay Constrained Path (MP-BDCP) selection problem by decomposing it

into two sub-problems: the Most Probable Delay Constrained Path (MP-DCP) and the

Most Probable Bandwidth Constrained Path (MP-BCP). A LAgrange Relaxation based

Aggregated Cost (LARAC) was proposed in [51] for the Delay Constrained Least Cost

43

44

path problem (DCLC). This algorithm is based on a linear cost function c), = c + Ad,

where c denotes the cost, d the delay, and A an adjustable parameter. It was shown that

the computational complexity of this algorithm is 0 (m2 log4 m). Many researchers have

posed the QoS routing problem as the k-shortest path problem [52]. The authors in [53]

proposed an algorithm, called TAMCRA, for Multiple Constrained Path selection (MCP)

by using a non-linear cost function and a k-shortest path algorithm. The computational

complexity of TAMCRA is REknlog(kn) + k 3 mM), where k is the number of shortest

paths and M is the number of constraints. To solve the delay-cost-constrained routing

problem, Chen and Nahrstedt [54] proposed an algorithm, which maps each constraint

from a positive real number to a positive integer. By doing so, the mapping offers a

"coarser resolution" of the original problem, and the positive integer is used as an index

in the algorithm. The computational complexity is reduced to pseudo-polynomial time,

and the performance of the algorithm can be improved by adjusting a parameter, but with a

larger overhead. In [55], a heuristic algorithm was proposed based on a linear cost function

for two additive constraints; this is a MCP (Multiple Constrained Path Selection) problem

with two additive constraints. A binary search strategy for finding the appropriate value of

in the linear cost function wi(p) + /3w2 (poor Owl (p) + w2(p), where wig (p) (i = 1, 2)

are the two respective weights of the path p, was proposed, and a hierarchical Dijkstra

algorithm was introduced to find the path. It was shown that the worst-case complexity of

the algorithm is 0 (log B (m+n log n)), where B is the upper bound of the parameter fib. The

authors in [56] simplified the multiple constrained QoS routing problem into the shortest

path selection problem, in which the Weighted Fair Queuing (WFQ) service discipline is

assumed. Hence, this routing algorithm cannot be applied to networks where other service

disciplines are employed. Widyono [57] introduced a Constrained Bellman-Ford (CBF)

algorithm, which deploys a breadth-first-search to locate paths of monotonically increasing

delay while recording and updating the lowest cost path to the visited nodes. This approach

yields the optimal path — being the least cost path among all the paths satisfying the delay

45

constraint. However, its worst-case computational complexity is exponentially increasing

with the network size.

Many E-approximation algorithms (the solution has a cost within a factor of

(1 + c) of the optimal one) subject to DCLC have been proposed in the literature.

Lorenz et al. [59] presented several E-approximation solutions for both the DCLC and

the multicast tree. Among them, the algorithm subject to DCLC possesses the best-

known computational complexity of 0 (nmlog 71 log (log n) + . Hassin [60] presented

two E-approximations algorithms for the Restricted Shortest Path problem (RSP) with

complexities of 0) log log U) and 0 (m5 loge()), where U is the upper bound of

the cost of the path computed. Raz and Shavitt [61] proposed an efficient dynamic

programming solution for the case in which the QoS parameters are integers, and a

sub-linear algorithm for the case in which all link costs use the (same) function of their

corresponding delays. Different from [59]- [61], Goel et al. [62] proposed a lower

computational complexity solution that can guarantee to find a path having the delay less

than a factor of of the delay constraint, while the cost of the path is no larger than that of

the optimal one. However, since the path computed by [62] may have a cost larger than the

delay constraint, it cannot guarantee 100% success ratio.

Existing algorithms reviewed above may have the following drawbacks.

1. Although the algorithms such as the s-approximation approaches [59], [60] can

achieve 100% or near 100% success ratio, their worst-case computational complexities

are too high to be practical (assume E is very small in E-approximation algorithms so

that their success ratios are close to 1).

2. The algorithms such as [53] have the advantage of having low computational

complexities. However, they suffer low success ratio in finding a feasible path

when it exists. Moreover, their success ratios in finding a feasible path may

decrease sharply with the network size. In order to increase the success ratio,

many proposed algorithms deploy k-shortest paths selection solutions (the number

46

of shortest paths are generally fixed in these algorithms), instead of the shortest

path selection solutions. However, the computational complexities of the algorithms

increase unnecessarily in the case in which a feasible path can be found with only

one shortest path searching algorithm.

In this chapter, we shall first present an optimal comparions based solution to

AHSP, based on which two algorithms are proposed respectively for solving the Multiple

Additvely Constrained Path (MACP) selection and the delay constrained least cost path

selection problems. The two algorithms can overcome the above drawbacks. We denote

pi + p2 as the concatenation of two paths p i and p2, and min{pl, p2} as the shortest path

between p i and p2 . The least weight path is also referred to as the shortest path in this

chapter.

5.2 An Optimal Comparison Based Solution to AHSP

In the previous chapter, we have shown that we can compute the solutions of AHSP as

follows:

Therefore,we develop a solution to ASP, Extended Bellman-Ford (EB) algorithm, based

on the standard Bellman-Ford algorithm. We show the pseudo-code of the relaxation

procedure of EB as Fig. 5.1, where 7T h+1 (i) represents the predecessor node of node i

along the path h+1 (<5 i). Note that there is no difference between the relaxation procedure

of EB and that of the standard Bellman-Ford algorithm, implying that the computational

47

Figure 5.1 The pseudo-code of the relaxation procedure of EB.

complexity is the same as that of the standard Bellman-Ford algorithm. However, there are

two distinguished differences between our algorithm and the Bellman-Ford algorithm, that

are not showed in Fig. 5.1:

1. Dot's' is defined as min[c(i,j)+D11], n =1, 2, ..., in our algorithm, while Dish+'

is defined as minfmin[c(i, j) + D lil,D ih} in the Bellman-Ford algorithm. Here,

AZ= c(s, i). A2+1can be obtained iteratively through the relaxation procedure by

simply setting the initial value of D ih+1 as infinity, instead of Dh in the Bellman-Ford

algorithm.

2. In our algorithm, D': oo, n = 1, 2, ..., while DS 0, n = 1, 2, ..., in the Bellman-

Ford algorithm.

By the above two modifications, we can compute ph (S , i), n 1, 2, ... which is a least cost

path among all n-hop paths from s to i. From Fig. 5.1, it can be observed that in order

to reconstruct all the paths after the execution of EB, for any node i and hop count n, we

keep the predecessor node of i in ph (s, i), which contributes the memory complexity of

48

EB as REn2) (n < n and the number of nodes is n). For the purpose of avoiding loops,

we adopt a simple method: associating paths with indicators. For example, we associate a

path traversing nodes s, 1, 5, and 7 with an integer array of size n, in which 1st, 5th, and

7th array elements are set to 1, and the rest to 0. Hence, we can easily find out if a node

is in the path by only checking the corresponding array element's value. By this method,

we can prevent loops without increasing the worst-case computational complexity. Further

notice that we can erase the indicator arrays associated with the shortest h-hop paths when

all the shortest (n + 1)-hop paths are computed. Therefore, the memory cost introduced by

indicator arrays is limited by 0(n2) (n nodes and the size of each indicatory array is n):

the introduction of indicator arrays does not increase the worst-case memory complexity

of EB.

5.3 Proposed Routing Algorithm for Finding a Path Subject to Multiple Additive

Constraints

Most works reported in the literature approach the QoS routing problem as a special case

of the multi-constrained QoS routing problem, i.e., mostly considering two constraints

only. We will propose an algorithm in which there is no limitation on the number of QoS

constraints. QoS constraints can be categorized into three types: concave, additive, and

multiplicative. Since concave parameters set the upper limits of all the links along a path

such as bandwidth, we can simply prune all the links and nodes that do not satisfy the

QoS constraints. We can also convert multiplicative parameters into additive parameters

by using the logarithm function. For instance, we can take — log(1 — c) as the replacement

for loss rate c. Thus, without loss of generality, we only consider additive constraints and

formulate the problem as follows:

In this proposal, any path that meets the give set of QoS constraints is referred to as

a feasible path.

Note that EB is a optimal solution to AHSP, in which there is only one weight

associated with each link. Hence, similar to [51]- [55], we adopt a cost function, with

which we map the multiple additive constraints of each link into a single weight. Then, we

use EB to find a feasible path that meets the given constraints. We introduce next theorem

that is used for designing our proposed routing algorithm.

Proof By contradiction. Assume path "p' satisfies the constraint (c 1 , c2 , _cm) and the

least cost among all paths is larger than or equal to e(c i , c2 , ...CM); that is,

Also, since	 is linear,

Thus,

50

which contradicts 5.3, and thus theorem is proved. ■

Lemma 5 Ifpath p is a feasible path,

Proof. The proof is similar to that of above theorem.	 ■

Lemma 6 Given a path p, only if

it can be a feasible path,

Proof. The proof is similar to that of above theorem.	 ■

We divide our routing algorithm into two parts: forward EB and backward EB. We

search for a feasible path from the source to the destination using the forward EB, and

reverse the search by the backward EB. Therefore, the computational complexity of our

proposed routing algorithm is just twice that of EB. The cost functions used in both searches

are different. We adopt the following simple but effective cost function for the forward EB:

Assume the shortest path found by the forward EB is not a feasible path and ail E

{1, 2, ..., MI such that wi(p) > c2 . By Theorem 1, the second search (backward EB) is

executed only when the cost of p is less than f (cif, c2 , ...CAI). Since we already know that

the least cost path of the first search (forward EB) is not a feasible path, the cost function

should be adjusted for the second search such that

• If a feasible path does exist, p should not be the least cost path computed by the

second search;

51

Figure 5.2 The pseudo-code of the relaxation procedure of the EB
in BEB.

Based on Eq. 5.7, the cost function for the backward EB is defined as:

In order to increase the success ratio in finding a feasible path, by Lemma 5 and 6,

we modified the relaxation procedure of EB as shown in Fig. 5.2. It can be observed that

with a cost function f (.), whenever we compute a path from the sourece to the destination

having a cost less than f (e l , c2 , ...CM), we will check if it is a feasible path. As as a

result, the success ratio in finding a feasible path can be increased, while the computational

52

Figure 5.3 The pseudo-code of BEB.

complexity remains the same. Fig. 5.3 shows the pseudo-code of our proposed QoS routing

algorithm, referred to as B-EB (Bi-directional Extended Bellman-Ford).

5.4 Proposed Routing Algorithm for Delay Constrained Least Cost Path Selection

Based on EB, we propose a simple but efficient algorithm for selecting the delay

constrained least cost path in this section. For completeness, we present the definition

of DCLC below:

Definition 11 Delay Constrained Least Cost Path Selection (DCLC): Assume a network is

modeled as a directed graph C(N, A), where N is the set of all nodes and A is the set of

all links. Each link connected from node u to v, denoted by e n ,„ = (u, v) E A, is associated

with a cost c(u, v) and a delay d(u, v) > 0. Given a delay constraint d > 0, and a pair of

nodes s and t, the objective of DCLC is to find the path p that has the least cost among the

Similar to BEB, our proposed routing algorithm for Delay Constrained Least Cost

Path Selection (DCLC) also consists of two parts: forward EB and backward. Hence,

53

in order to differentiate it for BEB, we call it as Dual Extended Bellman-Ford algorithm

(DEB). The only difference between the DBE and BEB lies in the fact that the adopted cost

functions are different. Therefore, the computational complexity of our proposed routing

algorithm is just twice that of EB. The weight functions used in both searches are different.

Since we try to find the delay constrained least cost path, we first need to find out if there

exists a path satisfying the delay constraint. Hence, the cost function used in the forward

EB is

Since EB is capable of computing all hops least weight path(s) between a source and a

destination, no feasible path exists if a feasible path is not found by the forward EB,

implying that even the least delay (weight) path has a delay larger than the delay constraint.

Therefore, we terminate the search if we fail to find a feasible path in the forward EB. If

a feasible path is found in the forward EB, we will try to minimize the cost in the second

search. Therefore, the weight function adopted in the backward EB is

If the least weight path in the backward EB is a feasible path, it is definitely the least cost

feasible path because the least weight path in the backward EB is actually the least cost

path. The pseudo code of our proposed algorithm is shown in Fig. 5.4, which is called the

Dual Extended Bellman-Ford (DEB) algorithm.

5.5 Simulations

We divide our simulations into two parts. We evaluate the performance of BEB and DEB

by comparing BEB with Binary Search (BR) [55] and TAMCRA [53] in the first part,

and comparing DEB with LARAC [51] and H-MCOP [7] in the second part, respectively.

54

Figure 5.4 The pseudo-code of DEB.

In addition to the 32-node network [55], [54], two larger networks with 50 and 100

nodes, respectively, generated by using the Doar's model [63] are used to conduct the

simulations for comparison purposes. In all simulations, the link weights are independent

and uniformly distributed from 0 to 1, and all data are obtained by running 1,000,000

requests.

5.5.1 Simulation 1

To evaluate the performance, we do not adopt the success ratio defined in [55] and [54] that

is defined as:

Intuitively, when the QoS constraints are tight, the success ratio defined by Eq. 5.11 is low;

while when the constraints are loose, the sucess ratio 5.11 must be high. Therefore, Eq.

5.11 cannot truly reflect algorithms' capability in finding a feasible path. Therefore, we

propose the following more appropriate success ratio definition as our performance index

55

Figure 5.6 SR of the algorithms in the 50-node network.

Figure 5.7 SR of the algorithms in the 100-node network.

The algorithm that can always locate a feasible path as long as it exists is refereed to as the

optimal algorithm. Here, it is achieved simply by flooding which is rather exhaustive. Note

that the success ratios of [55] and [53] in finding a feasible path increases with B and the

number of shortest paths k (as mentioned before, [53] is based on k shortest paths search

algorithm). Hence, for comparison purpose, we set B = 1000 for [55] in the simulations so

that the success ratio of [55] is close to its upper bound, which can be achieved by setting

B as a larger enough number; while the number of shortest paths k is set to 2 for [53].

Figs. 5.5-5.7 illustrate the success ratios of algorithms. It can be observed that the

success ratio of BEB is very close to 100% in all the simulations. Moreover, as network

size increases, the success ratios of [55] and [53] decrease much sharper than that of BEB.

Hence, BEB is more scalable than [55] and [53].

57

Figure 5.9 SRs of the algorithms in the 32-node network.

58

5.5.2 Simulation 2

Many proposed DCLC solutions can find a feasible path if a feasible path exists, but cannot

guarantee that it is the optimal feasible path. Hence, beside adopting the success ratio in

finding the optimal feasible path (the least cost path subject to the delay constraint) as a

performance index for the DCLC solutions, here, we propose another performance index,

Cost Ratio(CR), defined as follow:

It can be observed that, when the delay constraint is either very tight or very loose, DEB

and LARAC have similar performance; they both can locate the optimal path with success

ratios close to 1. This is attributed to the fact that when the delay constraint is tight, there

are only a small number of feasible paths, and the optimal path can be easily found; when

the delay constraint is loose, the possibility that the least cost path is a feasible path is

high. Meantime, it can be observed that the performance of H_MCOP decreases with the

increment of delay constraint (the least cost path from the source to the destination is not

computed in HMCOP). On the other hand, when the delay constraint is neither tight nor

loose, our proposed algorithm, DEB, achieves better performance than both LARAC and

HMCOP in terms of CR and SR in all simulations; the CR of DEB is lower than those of

LARAC and HJVICOP, while the SR of DEB is higher than those of LARAC and H.MCOP.

Note that the worst-case computational complexity of LARAC is 0 (m2 log2 m), while it is

REm,n) for DEB. Hence, DEB outperforms LARAC in terms of SR, CR, and the worst-case

computational complexity.

5.6 Summary

In this section, based on an optimal comparison-based solution to AHSP, Extended

Bellman-Ford algorithm (EB), we have proposed two simple but efficient algorithms for

59

respectively MACP and DCLC. By extensive simulations, we have shown that both BEB

and DEB are high performance algorithms.

CHAPTER 6

FINDING THE OPTIMAL LINEAR SCALING FACTOR FOR

EPSILON-APPROXIMATION ALGORITHMS

6.1 Introduction

Many E-approximation algorithms (the solution has a cost within a factor of (1 + E) of

the optimal one) subject to DCLC have been proposed in the literature. However, except

those proposed for the case in which link costs are already integers or discrete, most

i-approximation algorithms, if not all, use the linear scaling technique. Moreover, we

find that their computational complexities are linearly proportional to the linear scaling

factor (note that since the linear scaling factor of all E-approximation algorithms reported

in the literature is linearly proportional to 	 their computational complexities are linearly

proportional to	 For instance, many c-approximation algorithms use Bellman-Ford-like

algorithms (e.g., RSP [59] and DAD [62]) to find an optimal solution (the least cost path

satisfying the delay constraint) in the network where link costs are integers. Since the

computational complexities of these Bellman-Ford-like algorithms are linearly propor-

tional to the cost of the optimal feasible path (if it exists), which is, in turn, also linearly

proportional to the linear scaling factor, the computational complexities of these algorithms

are consequently linearly proportional to the linear scaling factor. Hence, our task in this

chapter is to minimize the linear scaling factor so that the computational complexity of c-

approximations algorithms can be reduced. It should be noted that although our algorithms

presented in this chapter are tailored for the DCLC c-approximation algorithms, they can

be readily applied to all the cases where linear E-approximation techniques are deployed,

except those in which H is used for scaling (not r _ 1) . Furthermore, we analytically show

that the computational complexities of our proposed algorithms are very low with respect

to those of E-approximation algorithms. Therefore, incorporating the two algorithms into

60

61

&-approximation algorithms does not increase their computational complexities, but can in

fact effectively reduce their computational complexities because the optimal linear scaling

factor can always be computed by our proposed algorithms.

It should be noted that this chapter presents, to our best knowledge, the first attempt

at minimizing the linear scaling factor of the E-approximation algorithms. Accordingly,

the algorithms, OLSA and OLSA, are the first two algorithms proposed specifically to

computing the optimal linear scaling factor.

6.2 A Framework of approximation Approaches for DCLC

In this section, a framework for optimizing linear scaling 6-approximation algorithms is

presented. Here, a linear scaling E-approximation algorithm refers to an algorithm that can

provide an approximation solution by first linearly increasing or decreasing the link costs

and then quantizing them into integers. In particular, given a non-decreasing quantization

function h (-) : R+ -+ Z+, where R+ is the set of positive real numbers and Z+ is the

set of positive integers, and a network C/N, A), in which each link e„,,„ is associated

with a cost c(u, v) E R and a delay d(u, v) E R+ , and a delay constraint d > 0,

an algorithm, which yields the optimal solution in C' (N, A) that is an 6-approximation

solution in C/N, A), where C' (N, A) is constructed from C/N, A) by mapping the link

cost c(u, v) to c' (u, v) = f6 (\c(u, v)) and A is the linear scaling factor, is referred to as a

linear scaling E-approximation approach. Observe that in an E-approximation approach, the

non-decreasing quantization function plays the key role. Hence, next definition is provided

below to formulae the set of functions that can be used to design an approximation

algorithm.

Definition 12 Given an instance of DCLC and a non-decreasing function f e (.),Vx E R+,

fE (x) E Z+, a delay constraint d > 0, and a network C(N/E), in which each link en ,,, is

associated with a cost c(u, v) E IR+ and a delay d(u, v) E C' (N, A) is constructed

62

from G(N, A) by mapping the cost of link e„,„ to c' (u,v) = fE (c(u, v)). If the optimal

feasible path in C'(N, A) from the source to the destination has a cost no greater than a

factor of 1 + e from that of the optimal feasible path between the corresponding pair of

nodes in C/N, A), f,(-) is called a feasible E-approximation function.

Based on Definition 12, we present the next Proposition, from which feasible E-

approximations functions may be derived. Note that as long as a function satisfies the next

Proposition, it satisfies Definition 12 (for any GAIN, A)), i.e., the functions satisfying the

next Proposition are universally feasible.

then, the function, h(-), is a feasible E-approximation function.

Proof Given an instance of DCLC, assume an optimal feasible path between nodes

s and t is path p, and the optimal feasible path is j3 after the costs of links have been scaled

to integers via the function, h(.). Therefore,

By the definition of fE (.),

Hence, fee (.) is a feasible E-approximation function. ■

Finding such universally feasible E-approximation functions for any instance of

DCLC solely based on Proposition 7 is difficult. Instead, we focus on deriving a solution for

an easier case: find a feasible linear scaling 6-approximation function for a given instance

of DCLC. Since the computational complexities of E-approximation algorithms subject to

DCLC are linearly proportional to the linear scaling factor (A), the smaller the linear scaling

factor, the better. Therefore, for the purpose of reducing the computational complexities of

E-approximation algorithms, our objective is to find the smallest linear scaling factor.

Definition 13 Given a network G(N , A), the feasible linear scaling E-approximation

function h (.) that has the least scaling factor among all feasible functions is called the

optimal linear scaling E-approximation function.

6.3 Optimal Linear Scaling Feasible E-approximation Functions

In this section, we will analytically demonstrate how to find the optimal linear scaling

E-approximation function. We first provide the next Proposition to simplify the search of a

feasible E-approximation function.

Proposition 8 Given an instance of DCLC and f E (x), j'E (c(u, v)) E Z+ is a feasible E.

-approximationapproximation function if there exists a A such that Veu ,„ E A,

63

64

By Proposition 7, f E (-) is a feasible E-approximation function. ■

Different from the functions satisfying Proposition 7, the ones satisfying Proposition

8 may be only feasible to a given instance of DCLC, in which link costs are already

given, i.e., they may not be universally feasible. Since Ve n,„ E A, f,(c(u, v)) E Z+

and fE (c(u, v)) E [Ac(u, v) , (1 + Ac(u, v)], a straightforward solution is Ac(u, v)) =

[Ac(u, v)]. It should also be noted that for a given A, f e (c(u, v)) = c(u, v)1 may not be

feasible since there may exist eu,v E A such that

Hence, we will try to compute A such that Veu,z E A, Eq. 6.7 is satisfied. As shown in

Fig. 6.1, given a link e„,„, because of the discrete nature of [)Ac(u, v)1, there are many

intersections between (1 + Ac(u, v) and [c(u, v)1, and accordingly, the region for A

Figure 6.1 The illustration of the region of feasible linear scaling
factor for a given link.

satisfying Eq. 6.7 is split into many intervals, which are highlighted with bold lines. We

refer to the union of these intervals (of e„,,) as the feasible region of e u , v , and these intervals

as the feasible intervals of cnm . Therefore, our objective is to find a point which exists in

all feasible regions of links, i.e., to find A such that h (x) = [Axl is a feasible function. In

other words, we need to find the A that is located in the intersection of the feasible regions

of all links. From Definition 13, the smaller the A, the better. Hence, the optimal feasible

linear scaling factor is the lower bound of the intersection of the feasible regions of all

links. We numerically present the feasible intervals of a link by the next theorem.

Therefore, fE (x) = Pal is a feasible E-approximation function by Proposition 8.	 ■

Definition 14 A is feasible if f, (x) =- Pal is a feasible E-approximation function, and A

is optimal if f, (x) = IAxl is the optimal feasible linear scaling E-approximation function.

A is said to be feasible to a link env if]k„,, E Z such that

Theorem 9 defines the constraints for fa (x) = [Axle to be a feasible a-approximation

function. Since our final objective is to minimize the computational complexity of

E-approximation algorithms by finding the least feasible linear scaling factor, it is preferable

that the computational complexity introduced by computing the optimal A is trivial,

or negligible with respect to the overall computational complexity of E-approximation

algorithms.

67

68

69

k 2L V 	 1 — E kV V 	 alb v + 1± 	 } < A < 	 '	 .	 (6.25)
c(u, v)	 (1 + E)c(u, v) — c(u, v)

If an,v < Lakc(u, v)]
,

au ,„ + 1	 [Lakc(u, v) _I 	 Lakc(u, v)
	 = dc(u, v) 	 c(u, v) 	 kc(u, v)

(6.26)

The equation is held only when an,v = [ad c(u, v) —1 and ad c(u, v) E Z+ (it is impossible

that akc(u, v) = 0 because Bak > 0 and c(u, v) > 0). If an,v >	 d c(u, vs],

kn,v	 1 — Elan' v 	L,8 akc(u, v)] + 1 	3kc(u , v)
	 + max-CO,	 } >	 = (3d .	 (6.27)
c(u, v)	 (1 + E)COL, v)	 kc(u, v)	 kc(u, v)

Since aka < a < (3d , if Lakc(u, v) AL+,

ku,v = [akc(u, v)] < ku,v < [0 dc(u, v)] = kn±,v	 (6.28)

Therefore,

an" —	 E {0, 1} 	 E [ck,fik n
rcee,„„) ,a(u,v)i U a(u,v) iqa(n,v).1 U [aka,]) (6.29)L d - 	j 	 +	 d+	 COL, V)

So, if a feasible E-approximation function f ,(x) = [Axis, aka < < d, exists, n
eu,VEE

(I), where

,	 a(u,v), e(n,v)1 U [_ e(t,v) ,e(u ,v)]	 [a;7,
= [Lk Lk] n Bak

- 	

R)

Ctk+	 P d+	 U a, kc(u, v) 	
. 	 (6.30)

Note that 7u,, = [aka, d] if c(u, v) = max {c(w, x)}. We can simplify C1- n, 21 as
ew,xEE EE

Crum = Bake(fu,v) p e (u v) 1 n BBake(fu,v fike(+u,v)]
U aka , 	d 	 COI, V)

(6.31)

If n 721,v	 1, by Theorem 9, a feasible E-approximation function f ,(x) = Ax 	 <

eu,veE
A < Id , exists.	 ■

70

Next, we will try to find the smallest feasible A based on Theorem 10. Since

k,,
	i[c k , co, , „)] s a point only when akc(u, v) E Z+, the point can be eliminated by checking if

akais the solution (optimal A). Ifakis feasible, the smallest feasible A in[ak, /k]must be

aka.Otherwise, we set

The remaining problem is thereby to compute

71

72

6.4 Proposed Algorithms for Searching the Optimal Linear Scaling Factor

In this section, we will propose two efficient algorithms for searching the optimal linear

scaling factor, which can be incorporated into 6-approximation algorithms to reduce their

computational complexities. We first introduce the next theorem, based on which an upper

bound on the optimal linear scaling factor can be derived.

Theorem 12 Given an instance of DCLC, the linear scaling approximation solution

computed with a linear scaling factor A has a cost less than

where c* and n are the cost and the number of hops of the optimal feasible path of DCLC,

respectively.

73

Proof Assume the optimal path of DCLC is p, and the path computed by using a

linear scaling factor A is p. Therefore,

Hence, the feasible path computed with linear scaling factor A has a cost less than A* +

■

Based on Theorem 12, the next lemma provides an upper bound on the optimal

feasible linear scaling factor of a given instance of DCLC.

Lemma 13 Given an instance of DCLC, the linear scaling E-approximation solution

computed by using a linear scaling factor A = —1 an s-approximation solution, where

L is a lower bound on c*.

Proof By Theorem 12, the path computed with linear scaling factor A = 1-V has a

cost less than

Hence, the path computed with a linear scaling factor A = ni-a1 is an E-approximation

solution.	 ■

How to compute L is beyond the scope of this chapter. Readers can refer to [58]

and [59] for related information. We adopt /1 = 7a1 as an upper bound on the optimal

linear scaling factor by Lemma 13.

The first algorithm, called Optimal Linear Scaling E-approximation Algorithm

(ELSA), is recommended for cases where V e(u, v) E A, either A(u, v) = Amax or

A(u, v) < c,"La:, so that Theorem 11 can be applied to reduce the computational complexity

74

for searching the optimal linear scaling factor. As mentioned before, we use p, as a loose

upper bound for the optimal linear scaling factor. The basic idea behind OLSA is that the

optimal linear scaling factor A can be found by Theorems 10 and 11 by gradually increasing

the integer a until A reaches implying that k is limited by

in OLSA. Without loss of generality, we assume cmax= 1 for the rest of the chapter, which

can be achieved simply by dividing all the link costs by C cmax .

Step 1. Initialize k = 0.

Step 4. By Lemma 13, let A = ,a.

Since the computational complexity of computing a feasible linear scaling factor in

ckis, by Theorems 10 and 11,0(m),and there are totally ACmaxliterations in OLSA, the

computational complexity of OLSA is

It can be observed that the worst case computational complexity of OLSA is very low. On

the other hand, since OLSA always locates the optimal A, the computational complexities

of t-approximation algorithms deploying OLSA can be reduced, especially in some special

cases. For example, for a given network C/NS, A), and V e(u, v) E A, e(u, v) E 13, k =

75

1, 2, ...}, A = 3 is a feasible linear scaling factor, which is independent of E. As a result,

the computational complexities of E-approximation algorithms are greatly reduced when E

is small. Moreover, in this case, the computational complexities become polynomial, no

longer pseudo polynomial anymore.

Remark 1 As mentioned earlier, most c-approximation approaches adopt Bellman-Ford-

like algorithms, e.g., RSP [59] and DAD [62]. Therefore, their worst-case computational

complexities are linearly proportional to the upper bound of the path costs (the compu-

tational complexity of DAD is linearly proportional to the delay bound). For example,

given a delay bound d and an upper bound U on the cost of the optimal feasible path, the

computational complexities of RSP [59] is 0 (mU) (it should be noted that link costs must

be integers to deploy RSP). Given a linear scaling factor A and an upper bound U on path

costs, in order to achieve 100% success ratio in finding the optimal feasible path with a

cost less than U, the upper bound is adjusted to BEAU) after all link costs are linearly

scaled by A. Accordingly, the computational complexities of c-approximation

algorithm is proportional to REm [AU). Note that U must be larger than cmax •

Otherwise, we can prune the links whose costs are larger than U. Therefore,

which implies that adopting OLSA will not increase the computational complexities of

c-approximation algorithms. Note that the upper bound of A is ,u = 11 , and in [58], an

efficient method has been introduced to find U and L such that LL- < a, where a is a

constant. Therefore, the worst-case computational complexity of OLSA is

which is, to our best knowledge, no larger than the computational complexity of any

DCLC E-approximation solution, implying that OLSA can be adopted by c-approximation

76

algorithms to minimize their linear scaling factors without increasing their computational

complexities. On the other hand, since the computational complexities of 6-approximation

algorithms are linearly proportional to the linear scaling factor, by adopting OLSA, their

computational computational complexities can be reduced. Finally, we need to point out

that since OLSA is proposed under the assumption that [•1 is used for scaling, it may not

be directly applicable to algorithms, e.g., DSA [62] and S-OPQR [59], in which [.j is

deployed.

Note that OLSA is not applicable to the cases where e(u, v) E A such that A(u, v)

Amax and A(u, v) > 	 . Thus, we propose our second algorithm, Transformed Optimal

Linear Scaling e-approximation Approach (OLSA), by first setting the costs of the links

with costs no less than 1+e Amax to em, and then applying OLSA.

Theorem 14 Given an instance of DCLC, construct G' (V, A) by setting the costs of the

links in G(V, A) whose costs are not less than cm" to Amax, and then construct C (V, A)
1.-Fa

from C'(V, A) by linearly scaling the link costs by A, where A is the optimal linear scaling

factor computed by OLSA in C'(V, A). Assume the least cost feasible path in C (V, E) is

15. p has a cost in C(V, E) no larger than (1 + c) 2 e*, where A* is the cost of the optimal

feasible path in C(V, E).

Proof Assume p is the optimal feasible path of A(V, A), p' the optimal feasible

path in C'(V, A), and e' (p') the cost of p i in GG'(V, E). Since (V, E) is constructed

from A' (V, E) by linearly scaling the link costs by A, and 13 is the optimal feasible path

of (A) (or /5 is the solution of an z-approximation algorithm computed in A)),

77

78

Proof Assume the path computed by the E-approximation algorithm with parameter

where A* is the cost of the optimal feasible path. ■

Observe that OLSA does not totally rely on OLSA. Since c' < E, by Lemma 1, the

computational complexity may unnecessarily increase if A is larger than y. In this case, we

can directly solve the original problem (link costs are not modified) by setting

Therefore, the worst-case computational complexity of OLSA is the same as that of

OLSA.

6.5 Summary

In this chapter, having observed that the computational complexity of many E-approximation

algorithms is linearly proportional to the linear scaling factor, we have investigated

the issue of finding the optimal linear scaling factor in order to reduce their computa-

tional complexities. Two algorithms, Optimal Linear Scaling Algorithm (OLSA) and

Transformed Optimal Linear Scaling Algorithm (OLSA), have been proposed. We

have analytically shown that incorporating the two algorithms into DCLC i-approximation

solutions not only does not increase but in fact reduce their computational complexities

because the optimal linear scaling factor can always be found. We have also shown

that in some special cases, with our proposed algorithms, the worst-case computational

complexities of i-approximation solutions are no longer pseudo-polynomial, i.e., they

become strictly polynomial and independent of c. Besides the DCLC s-approximation

solutions, our proposed algorithms can be applied to all linear E-approximation solutions

79

in which [-1 is used for scaling. Similarly, algorithms can also be developed for cases in

which [-] is deployed for scaling.

CHAPTER 7

MINIMIZING THE IMPACT OF STALE LINK STATE INFORMATION ON QOS

ROUTING

7.1 Introduction

Designing a Q0S routing algorithm based on a specific update policy has been rarely

considered. In this chapter, we show that general QoS routing algorithms without

considering the staleness of the link state information may introduce unignorable percentage

of false routing. Hence, under the assumption that trigger-based link state update policies

are deployed for updating link state information in the networks, we introduce and inves-

tigate the problem of finding the most probable feasible path without stochastic link state

knowledge, and propose a novel QoS routing algorithm, which is capable of minimizing

the impact of stale link state information. As a result, the probability of false routing

is minimized. Our proposed routing algorithm, Heuristic Most Probable Path (HMPR)

algorithm, is based on Iterative Multiple Additive Constrained Path (IMACP) selection

and DynAmic Extended Bellman-ford (DAEB) algorithm. IMACP is a high performance

and progressive solution capable of finding a path in meeting multiple additive constraints

with a fairly low computational complexity. DAEB is a dynamic programming solution for

the special case of Least Cost Multiple Additively Constrained Path (LCMACP) selection

where the link costs are non-negative integers. We show by theoretical analysis and

extensive simulations that HMPR not only minimizes the undesirable effect of the staleness

of link state information but also achieves high success ratio in finding the feasible path

with very low average computational complexity.

80

81

7.2 Proposed Routing Algorithm

We first lay out the assumptions made in this chapter. Practically, protocol overhead will

be intolerably high if link state is updated whenever a minor change occurs. Hence, for the

sake of reducing the protocol overhead, the staleness of link state information is inevitably

introduced. In this chapter, we focus on minimizing the impact of the staleness of link state

information (introduced by the link state update policy) on QoS routing. Hence, we ignore

the effect of the dissemination delay on the link state update and simply assume that the

dissemination delay is zero, i.e., all nodes can instantly receive the link state information

upon an update. In this section, for simplicity, we only consider the class based link state

update policies. We will show that our proposed routing algorithm can be easily extended

to cases where other trigger-based update policies are adopted. We will not focus only on

a single QoS metric (e.g., bandwidth) as in [27] because the routing algorithm proposed

in this chapter should be able to compute feasible paths subject to multiple constraints.

Assume that c (t), c(t), cam (t) are M QoS metrics associated with link j at moment t,

and we partition the ith metric of link j into k classes

Many studies have been done to characterize the Internet traffic, revealing interesting facts

such as Long-Range Dependence or multi-fractal behaviors [33]-[35]. Therefore, we cannot

assume that the link state is memoryless. Hence, each QoS metric of a link (Ai ls (t), 6-12 (0,

..., and cam. (t)) is viewed as a random process with memory. Without loss of generality,

we assume that for any i and j, ki = Haiand./3!3i=B',i.e.,Vi E{I, 2, ..., M}, the ith

link metrics of all links are partitioned into the same set of classes, where kid represents the

number of classes for the ith metric and B the lower bound of the (fib + 1)th class of the

ith metric. As mentioned above, an update is triggered only when the available bandwidth

crosses a class boundary. Denote C".' u(t), CiAlt(t) as the latest updated link state

of link j of node u at moment t, i.e., from the perspective of node u, the M QoS metrics

state information introduced by the dissemination delay, for any two nodes u and v,

o'1

Since we assume that the partitions (classes) for the metrics of all links are the same, as long

as CZ (t) is available to a node, Biaii
(t) - 1
 and Bic'32 (t) are also known. In fact, if the assumption

does not hold for some networks, we can encode Bib
(t) - 1

and Bib
(t) in the update packets

by which link state information is distributed. At any moment, when a connection request

arrives at a node, we assume that the node tries to compute a path meeting the QoS

requirement of the connection according to its available link state information (source

routing). If, from the perspective of the node, there is enough network resource (bandwidth)

to accommodate this connection, it starts a setup process for the connection. Otherwise, it

rejects the connection request immediately. Ideally, the connection is accepted if there is

actually enough network resource, and rejected otherwise. However, due to inaccurate link

state information (CI (t) (t)) and the adopted routing algorithm, there are two possible

undesirable cases:

• False positive: There is actually not enough network resource to accommodate a

connection, but is indicate otherwise by its link state information. Since a setup

process will be initialized by the node, network resource is wasted.

• False negative: A connection can actually be accepted by the network, but is rejected

by the node because of inaccurate link state information or failure of the adopted

routing algorithm in finding a feasible path.

83

Collectively, both cases are referred to as the false routing in this paper. Designing

a link state update policy to improve the accuracy of updated link state information is

beyond the scope of this paper. Hence, our objective here is to design a highly efficient and

effective QoS routing algorithms, which is capable of minimizing the occurrences of above

two cases, while achieving high success ratio in finding a real feasible path. We formulate

our problem as following:

Generally, QoS constraints can be classified into three categories: concave, additive,

and multiplicative. Since multiplicative constraints can be converted to additive constraints

by using the logarithm function, we only consider concave and additive constraints in this

paper.

Ideally, we hope that our routing algorithm can achieve 100% success ratio in finding

a real feasible path and no false negative and positive. However, since from the perspective

of a node, it cannot know the real link metrics from the updated ones, i.e., it is impossible

to know from CZ, no false negative and positive is impossible.

On the other hand, we can reduce the probability of false negative and positive by

taking the advantage of the relationship between the current link status and the updated state

information. For instance, given a network shown as Fig. 7.1, in which we denote Ba d

Cc, and Bcq of link j in the form of (13' , Al , Bade) (since there is only one constraint,

we ignore the sub index i in this example). Assume the metric is concave and a connection

request from node a to node c with constraint of p = 0.45 arrives. Both paths (a, b, c)

and (a, d, c) seem to be feasible paths according to updated link state information because

84

We call tightening the ith metric of link j as setting the ith metric of link j as Bias
 -1

when
adj.

ith metric is concave, and setting the ith metric of link j as Bib when ith metric is additive.

i.e., the sum of ith metrics of p is less than the constraint. Therefore, p is a feasible path of

G(N, A).	 ■

Denote G G(N , A) as the network constructed from G(N, A) by tightening all metrics

of links. We can eliminate false positive by above theorem because the feasible path

computed in Gt(N, A) must also be a feasible path of G(N, A), i.e., without knowing the

exact link state information, no false positive may be achieved by Theorem 16. However, a

feasible path of G(N, A) may not be a feasible path of t(N, A). Hence, it is possible that

we fail to find a feasible path in G G(N , E) although a real one exists in G (N, A). Therefore,

the false negative may be increased if we only compute a path in G GG(N , A).

If no feasible path can be found in Gt(N, A), we hope find a path with largest

probability to be a real feasible path. However, in this paper, we only assume that a node

86

knows the updated link state information, i.e., no stochastic knowledge of link metrics is

available to the nodes. Hence, we cannot adopt a probablistic approach as [50]. Instead,

we propose an alternative way to minimize the probability of false routing. Assume p is a

The probability for p to be a real feasible path becomes 8h , i.e., the probability for p to be

real feasible path decrease exponentially with the number of unsured feasible links. Hence,

for a concave metrics, to find a path with the largest probability to be a real feasible path

is to minimize the number of its unsured feasible links. Theoretically, if we fail to find a

feasible path consisting only of ensure feasible links and unsured feasible link, it is still

possible to find a real feasible path that includes some unsured infeasible links. However,

since probability for the path to be a real feasible path is relative small and false positive

routing wastes network resources, we do not prefer such path in this paper.

Next, we show how to compute the path with largest probability to be a feasible path

for the case of an additive metric. For an additive constraint, the probability for p to be a

real feasible path is

As mentioned before, for a class based link state update policy, an update is triggered when

the current QoS metric crosses a class boundary. In addition, Cj is a fixed value (not a

random variable). Hence, assume the probability density function (pdf) of A3 is f (x), the

87

pdf of of under the condition of Ci is

where /3') and B'i are the lower bound and upper bound of the current class of link j,

respectively. Therefore,

where xi is the random variable whose probability density function is Eq. 7.9. Therefore,

similar to [50], let e = E =1 x 3•
,
 we can approximately assume e as a random variable with

1

normal distribution by Central Limit Theorem (CRL). Assume the mean and variance of e

are u and a2 , respectively. Hence,

where Hui and ail are the mean and variance of xi , respectively. The approximate probability

for path p to be a real feasible path is

Many works [50] have been reported in the literature to address the problem of finding

the Most Probable Delay Constraint Path (MP-DCP). However, since no statistic link

state information is available to the nodes, we cannot directly adopt the approach as [50].

Instead, we propose a heuristic solution. By Eq. 7.13, It can be observed that the probability

for p to be real feasible path is only related to p — (3 and a. Note that we cannot compute

88

a in this paper. Since p is the given constraint, we can simply maximize the probability by

minimizing /3.

With above analysis, we divide our proposed routing algorithm into two parts:

• In the first part, we try to find a real feasible path in G(N, A). By Theorems 16, the

path computed in the first part must be a feasible path.

• In the second part, we compute the heuristic most probable feasible path.

In the first part, since the links not satisfying the concave constraints can be pruned,

our problem is converted to find a path satisfying additive constraint(s). If there is only one

additive constraint, it can be easily solved by the shortest path search algorithms such as

Bellman-Ford and Dijkstra algorithm. Note that finding a path subject to multiple additive

constraints is NP-complete. Hence, we propose a high performance progressive routing

algorithm, Iterative Multiple Additively Constrained path (IMACP) selection, which can

progressively achieve 100% success ratio in finding a feasible path with fairly low average

computational complexity. IMACP uses a subroutine, Iterative All Hops K-shortest Path

selection (AHKP), a solution to All Hops K-shorest Path selection (AHKP) problem.

The progressive property of IMACP is very useful in practice: the number of iterations

of IMACP is adaptively minimized such that its computational complexity is minimized

while we guarantee to find a feasible path with 100% success ratio.

In the second part of our proposed routing algorithm, for the purpose of minimizing

the impact of inaccurate link state information on the routing performance, we propose

a novel solution based on a dynamic programming subroutine, DAEB to compute the

heuristic most probable feasible path.

7.2.1 Iterative All Hops K -shortest Path Selection

As mentioned above, our proposed algorithm to MACP, IMACP, is based on a solution of

AHKP. For completeness, we first present the definition of AHKP.

89

Definition 17 All Hops a-shortest Paths (AHKP) Selection Problem: Given a network

C/NS, A) in which each link e(u, v) is associated with an additive costw(u, v). For a given

source node s E N and maximal hop count H, H < n, find, for each hop count value n,

1 < n < H, and a destination node u E N, the k shortest n-hop constrained paths from s

to u.

It can be observed that AHSP is a special case (s to i, di as the degree of node i, and

i2, , id, as its neighboring nodes. Assume there exists a virtual link F(s, i) between

the source node s and any other node i, whose cost is infinity. Similar to AHSP, we can

compute the least cost n-hop paths from s to i, pl (s, i) , p121 (s, i) , . . . , (s, i), as follows:

We can apply the above two steps to the previous example to verify its correctness.

Denote DI.' 9 	 gas the cost of ph (S i) .
1

Proof When n = 1, from the definition of the initial values of DLL (i s), p .91 (s , i),

g = 1, 2, ..., a, are the one hop k-shortest paths from s to i. We assume that the proposition

is correct for h = m. We shall prove by deduction that it is true for n = m + 1. Assume

when n = m + 1, if ai s such that p9+ 1 (s, i), 1 < g < k, is not one of the k-shortest

paths in all (m + 1)-hop paths from s to i (IYil is larger than the cost of any (m + 1)-hop

90

k-shortest path from s to i). Further assume that path r -f-1 (s, i) is not one of p9+ 1 (s, i),

g = 1, 2, ..., k, and has a length smaller than that of p9+ 1 (s, i). The predecessor node of

node i in iärn-fl (s, i) is j, the path from s to j in rd-i (s, i) is r(s, j) (note that fin (s, j)

may not be one of the k-shortest m-hop paths from s to j, and by the earlier assumption,

pgm(s, j), g = 1, 2, ..., a, are the k-shortest m-hop paths from s to j), the cost of ri"+ 1 (s, i)

is A, and the cost of r (s, j) is A'. Thus,

91

For the purpose of avoiding loops, we adopt a simple method: associating paths with

indicators. For example, we associate a path traversing nodes s, 1, 5, and 7 with an integer

array of size n, in which 1st, 5th, and 7th array elements are set to 1, and the rest to 0.

Hence, we can easily find out if a node is in the path by only checking the corresponding

array element's value. By this method, we can prevent loops without increasing the worst-

case computational complexity.

Figure 7.2 An illustration of iteratively computing the all hops k-
shortest path.

Namely, IAHKP is capable of iteratively computing the all hops k-shortest path, i.e.,

it computes the all hops shortest paths from the source to all other nodes in the first iteration,

the all hops second shortest paths in the second iteration, and so on. We first intuitively

introduce how IAHKP works, i.e., how IAHKP computes the all hops lath shortest paths

when the all hops (a — 1) shortest path have been computed. As shown in Fig. ??, assume

the three paths on any node are in the increasing order of their costs, and p iii(s, d) =

pr. s a) + e(d, a), p2 (s, d) (s, a) + e(d, a), and p(s, d) = (s, A) + e(d, A).

Hence, since piii(s, d) is selected as the 4th shortest path of -{pr (s, v,) e(d, u), u a, b, A

and g = 1, 2, 3, 4}, and on any node, the paths are in the increasing order of their costs,

0(s, d) = minfp3 -1 (s, a) + e(d, a), piii(s, b) + e(d, b), p2 -1 (A) + e(d, A)}, i.e., p(s, d)

Denote pre(i, n, g) as the predecessor node of node i on p9 (s, i) and count(i, n, g) as the

number such that

i.e., Nil (s, i) is the path constructed by concatenating the Aount(i, n, g)th shortest (n — 1)-

hop path from s to pre(i, n, g) and the link e(i, pre(i, n, g)). For example, since p ig (s, d) =

purl (s, A) + end, c), pr end,, n, 3) = c and count(d, n, 3) = 1. Denote v(i, n, k, a) as the

maximum number among all the count(i, n, g), g = 1, 2, ..., k, that satisfy pre(i, n, g) = a

(for the neighboring node a of i satisfying that for all g = 1, 2, ..., k, pre(i, n, g) 0 a,

v(i, n, k, a) = 0). For instance, in the previous example, v (d, n, 3, a) = 2, v(d, n, 3, b) = 0,

and v (d, n, 3, c) = 1. Hence, it can be observed that

We illustrate the procedure of computing p l,i4 (s, d) in Fig. 7.2. Therefore, if all hops k-

shirtiest paths have been computed, IAHKP computes the all hops (k + 1)th shortest paths

as follows:

Note that since IAHKP iteratively computes the all hops k-shortest paths, for any

node and hop count n, the paths computed sequentially are in increasing order of their

costs.

The relaxation procedure and pseudo codes of IAHKP are shown in Figs. 7.4 and

7.3, respectively, where w(p) denotes the weight of path p and Cr(i) the predecessor node

of node i.

Figure 7.4 The relaxation procedure of IAHKP.

93

94

Computational Complexity: As mentioned above, pgh (s, i) is computed by selecting

the shortest path among the set of paths fp, (d 1h,L,a)+1 (s, a) + e(i, a), a = i i , i2, • • ,

whose computational complexity is 0(d). Hence, the computational complexity of

computing the gth shortest n-hop paths for all nodes is EON 0 (di) = 0(m). Since there

are H hops and k shortest paths, the computational complexity of IAHKP is

0(kHm).	 (7.20)

Memory Complexity: We can divide memory complexity into two parts: the memory

used to record the paths and the memory used in the process of computing. For any given

node i, hop count n, and 1 < g < k, define

Hence, it can be observed that ugh (s, i) = (s, nh-2, nh-2, •••, ni, 0, i.e., ugh (s, i)

sequentially traverses nodes s, nh 1, nh_2 , n i , and i. Therefore, all paths can be

backward reconstructed as long as for any node i, hop count n, and 1 < g < k, pre(i, n, g)

and count(i, n, g) are available. Hence, for a single node, the memory cost to record all

k shortest n-hop paths is 0(k). Since there are H hops and n nodes, the first part of the

memory cost is 0 (k H n,). As mentioned before, we use indicator arrays (of size n) to avoid

loops, which contributes to the memory cost of the second part. The total memory cost

used by indicator arrays is 0 (Hn2) for all nodes and the all hops gth shortest paths. Since

there are k shortest path, the second part of the memory cost resulting from the indicators

is 0 (k Hn2) . Combining memory costs mentioned above together, the memory complexity

of our proposed algorithm is 0 (kHn2) .

95

7.2.2 Multiple Additively Constrained Path Selection

Without causing confusion, we simply assume all AI constraints are additive in this section.

MACP is defined as following.

Definition 18 Multiple Additively Constrained Path Selection (IMACP): Assume a network

is modeled as a directed graph G(1V, A), where N is the set of all nodes and A is the

set of all links. Each link connected from node u to v, denoted by eu,i = (u, v) E A,

is associated with M additive parameters: wi(u) > 0, i = 1, 2, ..., M. Given a set of

constraints pi > 0, i = 1, 2, ..., M, and a pair of nodes s and d, the objective of IMACP is

to find a path p from s to t subject to wi(p) = Eau v Ep w(u v) < pi, i = 1, 2, ..., M.

Our solution, IMACP, is based on IAHKP. However, IAHKP is only adapted to the

case where there is one additive cost associated with each link. Hence, we need to pick

a cost function which maps multiple additive metrics of a link (path) into a single cost.

Generally, there are two kinds of cost functions: link-based and path-based cost function.

The link-based cost functions map multiple metrics into a cost, and the cost of a path is

defined as the sum of its link costs. The path cost is not sum of its link costs for the case of

path-based cost functions; it is the function of the path metrics. Specifically, given a path p

and a function f (.), the cost of p is

if f -) is defined as a link-based cost function. And the cost of v is

if f (-) is defined as a path-based cost function. Assume p is constructed by concatenating

two sub-paths p i and p2 , whose costs are respectively x and y, with computational

complexity of 0(1), we can simply compute the cost of p as x + y if the cost function

is link-based. However, if the cost function is path-based, the computational complexity

96

to compute the cost of p, f (wimp), w2 (p), w2(p)), is 0(M). Hence, we adopt the

link-based cost function for IMACP for the sake of computational complexity. With

extensive simulations, we show that even with link-based cost function, IMACP still

achieves 100% success ratio in finding a feasible path with fairly low average computational

complexity because of IAHKP, i.e., because of the progressive properties of IMACP,

IMACP can guarantee to find a feasible path with low computational complexity. We divide

IMACP into two parts: forward IAHKP and backward IAHKP. We search for a feasible

path from the source to the destination in the forward IAHKP with the cost function of

If we fail to find a feasible path in the first iteration of forward IAHKP, we reverse the search

(from the destination to the source) with backward IAHKP. In IMACP, the kth iteration of

forward IAHKP start after the (k — 1)th iteration of backward IAHKP and the kth iteration

of backward IAHKP follows the ath iteration of forward IAHKP until a feasible path is

found or we can ensure that no feasible path exists. The cost function of backward IAHKP

is different from that of forward IAHKP. Assume the least cost path, print, found in forward

IAHKP is not feasible, we modify Eq. 7.23 as the cost function of backward IAHKP such

that

• If a feasible path, nfaas2bla, exists, with a new cost function 	 •), print cannot be the

least cost path of the backward IAHKP.

• If Amin is still the least cost path in the backward IAHKP, we ensure that no feasible

path exists, and IMACP is terminated.

We first introduce next theorem with which the cost function for backward IAHKP

is selected.

A MI

98

By above theorem, if f (prnir) is larger than f (p i , p2 , ..., mu), Theorem 18 is invoked

and no feasible path exists. Hence, we terminate the search. In other words, we run the

backward IAHKP only when

If we select a function such that

it satisfies the requirements for the cost functions of the backward IAHKP because

• If there exists a feasible path feasible, implying that f(‘13 feasibla) < f (P11 P2, •-•) PM) =

f (prnir). Hence, Amin cannot be the least cost path again in the backward IAHKP.

• If prnir still is the least cost path of the backward IAHKP, by theorem 18, no feasible

path exists because the least cost path has a cost equal to Bpi , p2 , ..., pm).

99

By Lemma 19, p is not a feasible path, and thus the theorem is proved. 	 ■

Similarly, we have following Theorem.

Theorem 21 Denote x,backward as the n-hops lath shortest paths from the source to the

destination in the backward lAHICP. If for all g < k, 0 < n < ic,bacdward is not a feasible

path, and f (10 1,'ic,bacdward) f (P1, P27 • • • 7 PM), no feasible path exists.

Proof proof is similar to that of Theorem 20. ■

With above two theorems, we can ensure that no feasible path exists and terminate

the search when they are invoked.

7.2.3 Finding the Most Probable Feasible Path Without Stochastic Link State

Knowledge

As mentioned above, for a given concave constraint, we try to minimize the number of

unsured feasible links on the computed path such that the probability for it to be real

feasible path is maximized. Hence, we define a cost which represents the number of

unsured feasible links in path.

Definition 19 Given a link, which is either ensured feasible link or unsured feasible link

for all concave metrics. The cost of the link is defined as the number of metrics by which

the link is unsured feasible link, and the cost of a path is the sum of its link costs.

For example, as shown in Fig. 7.5, two concave metrics, (1, 2, 3) and (1.2, 2.1,

3.5), (1, 2, 3) and (0.5, 0.8, 1.2), and (0.6, 0.8, 1) and (0.5, 0.8, 1.2), are respectively

associated with links e(a ,b) , e(b, c) , and e(c, d) . Assume the concave constraints are

both 0.7. By above definition, the costs of e(a, b), e(b, c), and e(c, d) are 0, 1, and 2,

Figure 7.6 The pseudo code of DAEB.

100

101

respectively, and the cost of path consisting of the three links is sum of link costs, 3. As a

result, we convert the problem of finding the most probable concave constrained path into

finding the least cost path with above definition. Combining with the additive constraints,

our problem becomes finding the least cost path subject to multiple additive constraints.

In [7], a efficient algorithm for the Multiple Constrained Optimal Path (MCOP) selection

has been proposed. Note that the cost in our problem represents the number of unsured

feasible links in a path, which are no-negative integers. Meanwhile, if there is only one

additive metric, our problem becomes the Delay Constrained Least Cost path selection

(DCLC), which can be polynomially solved when link costs are integers. Hence, instead of

adopting the solution of [7], we propose a new efficient algorithm in this paper, which use

a dynamic programming algorithm, DAEB, as a subroutine, whose pseudo code is shown

in Fig. 7.6. Similar to [62], we ignore the fact that some link costs are zero for the initial

description. Fig. 7.6 illustrates the peeudo code of DAEB, in which s is the source node,

f (•) a weight function that maps the additive QoS metrics of a path into a single weight,

p(v, i) the least weight path from s to v with cost of i, w(v, i) the weight of p(v, i) , and U

the upper bound on the cost of a path. Since the probability for a path to be a feasible path

decreases exponentially with its cost, we only select very small U and U << n such that

false positive is minimized. Assume the first r metrics are the all additive metrics, and they

are indexed from 1 to r. In order to maximize the probability of finding a real feasible path,

we adopt the weight function as following:

where w i (p) = Eiep C, which has been heuristically shown to be a high performance cost

function in [7]. As stated in [62], we can handle zero-delay links by running an invocation

of Dijkstra algorithm to update weight of paths due to zero cost. Hence, the overall compu-

tational complexity of the second part of our proposed algorithm is 0 (mrU + m + n log n) ,

in which 0 (mrU) results from running the DAEB, and 0 (m + n log n) from the Dijkstra

102

algorithm. Notice that the weight of the computed paths p(v, , a) non-increases with its cost

k. Therefore, there exits conflict between selecting the least cost path and the least weight

path. We set up a strategy to pick a path from p(d, k), k = 1, 2, ..., U. A path p is eligible

for being selected only when Vi = 1, 2, ..., r,

where E is a selected constant. If there are multiple paths satisfying both Eqs. 7.35 and

7.38, we select the path having the least cost. If no path satisfies both Eqs. 7.35 and 7.38,

we select the least cost path satisfying Eq. 7.35. Otherwise, we just assume that no feasible

path exists. Note that 6 should be selected according the adopted link state update policy.

The more accurate the link state information (the larger number of classes), the smaller E.

For instance, given a update policy with which Vi and j,

103

Intuitively, the more accurate link state information, the smaller Therefore, for the path

satisfying Eq. 7.35,

Hence, Eq. 7.38 has an effect on the path selection only when

Since the path computed by our proposed routing algorithm is the heuristic most

probable path, we call our algorithm as Heuristic Most Probable Routing algorithm

(HMPR).

7.2.4 Remarks

Above we have proposed a routing algorithm that can be applied to the cases where the

classb-based link state update policy are adopted for updating link state information. Note

that we can also apply the algorithm for the cases of other trigger-based link state update

policies. For example, assume threshold update policy is adopted for updating link state

information. Given a link j whose current link state metric is Cif (assume one metric). By

the definition of threshold update policy, an update will be triggered at the moment of t if

Hence, we can simply set Ba3-1 = (1 — '00 and B'2 = (1 + C-)0, and our proposed

routing algorithm can be applied. Specifically, for any given trigger based update policy,

assume the current link state metrics of link j are Cif , C2 , ..., C2 , and an update will be

triggered when

104

Hence, it can be observed that our proposed routing algorithm can be applied.

Note that our proposed routing algorithm is a generic one for trigger-based update

policies. More efficient ones may be proposed for a specific update policy. For instance,

assume equal class based link state update policy is adopted, and all link metrics are

partitioned into the same number of classes ((0, B), (B, 2B) ,...((k — 1)B , kB)). Therefore,

for any link j,

It can be observed that we can convert all link metrics and the lower and upper bounds

of classes into integers by dividing them with g . It has been proved that MCP can be

polynomial solved if all link metrics are integers [69]. Therefore, more efficient solutions

may be proposed in this case.

For the purpose of minimizing the probability of false positive, we exclude the paths

with unsured infeasible links in this paper. However, this approach may increase probability

of false negative. Therefore, we may extend our proposed routing algorithm such that the

paths with unsured infeasible links are considered as candidate feasible paths. Moreover,

instead of setting the cost of a link as the number of metrics by which the link is unsured

feasible link, it may be necessary to have different treatment for different metrics. For

105

example, given a link j and two constraints, p i and p2 , the cost of link j may be set as

0 1 if it is a unsured feasible link for p i , and 02 if it is a unsured feasible link for p 2 .

This approach may reduce the probability of false routing for the case that the updated

metrics have different level of accuracy. For instance, assume the numbers of classes for

two metrics, say A and B, are k 1 and a2 (k1 > a2), respectively, and as a result, every

node has more accurate link state information on A than B. Assume the costs of paths p i

and /32 by Definition 19 are both 1. But the unsured feasible link on path pi is from the

perspective of A, and the one on path p2 is from the perspective of B. Since the nodes have

more accurate state information on A than B, we prefer p i because it has larger probability

to be a real feasible path. Hence, instead of adopting the Definition 19, we present next

more general cost definition.

where A i and C1- i are the weights, from the perspective of ith constraint, set for the unsured

feasible and unsured infeasible link, respectively.

We may even balance traffic load in the network by assigning different links with

different cost functions, which is, however, beyond the scope of this paper.

7.3 Simulations

We divide our simulations into two parts, in which the performances of IMACP and HMPR

are evaluated, respectively.

106

7.3.1 Simulation 1

In this section, our main objective is to evaluate the average computational complexity

of IMACP when it achieves 100% success ratio in finding the path meeting the multiple

additive constraints. Moreover, by giving a small upper bound on the number of iteration

of IMACP, we show that it still achieves very satisfactory performance.

The adopted network topologies. are the 32 nodes network [54] and a 50 nodes

generated by using the Doar's model [63]. The number of constraints are two, which are

set equal to each other in the simulation and increased from 0.5 to 5.9 with step of 0.2.

Each data is gotten by running 10,000,000 requests. The source and destination nodes are

uniformly random picked in the network. Each additive QoS metrics of a link is a uniformly

distributed random variable from 0 to 1.

Figure 7.7 The average number of iterations of IMACP in the 32-
node network and the 50-node network.

We illustrate the average computational complexity of IMACP in Fig. 7.7. It can be

observed that the average computational complexity of JMACP is fairly low: with average

107

computational complexity of twice that of standard Bellman-Ford algorithm, IMACP

achieves 100% success ratio in finding a path meeting the constraints.

Figure 7.8 The success ratios of the algorithms in the 32-node
network.

In real networks, it is necessary to set an upper bound on the worst-case compu-

tational complexity on IMACP in order to promptly response to the connection requests.

Here, giving a small upper bound on the number of iterations of IMACP (k = 1 and 2), we

evaluate its performance with the performance index, Success Ratio (SR), which is defined

as below:

The algorithm that can always locate the optimal feasible path as long as a feasible path

exists is referred to as the optimal algorithm. Here, it is achieved simply by flooding

which is very exhaustive. In addition, we also show SRs of the state-of-the-art algorithms,

TAMCRA [53] and BSA [55], for the comparison purpose. By Figs. 7.8 and 7.9, IMACP

outperforms TAMCAR (a = 2) and BSA (B = 1000) in terms of the success ratio.

Actually, due to the progressive property of IMACP, providing the average computational

complexity of IMACP, we can provide a lower bound on its success ratio for the case that

a upper bound on the number of iterations is given. Denote SR(k) as the success ratio of

IMACP when the number of iterations is upper bounded by k (S R(0) = 0), and ave as the

average iteration of IMACP when it can guarantee 100% success ratio. Denote

109

Figure 7.10 The probability for a path to satisfy a concave
constraint decrease exponentially with the number of uncured
feasible links on it.

In the previous section, we have shown that IMACP can achieve 100% success ratio

in finding the path meeting the additive constraints with fairly low average computational

complexity. Since the worst case computational complexity of DAEB is 0(mrU + m +

110

n log n), the average computational complexity of our proposed routing algorithm, HMPR,

is also fairly low. In all the simulation of this section, we assume the link state update

policy is the equal-class based update policy, and all link metrics are partitioned into the

same number of classes (k 1 = a2 = = a11 = n,c). Before evaluating the performance of

HMPR, we show that the generic QoS routing algorithm without considering the staleness

of link state information may introduce significant portion of false routing. We adopt only

two constraints in this simulation: bandwidth and delay. Similar to most source routing

algorithms, in which the links do not have enough bandwidth are pruned, we simply

prune all the unsured infeasible and ensured infeasible links, and treat the other links as

the ones satisfying the concave constraints. Specifically, assume the first QoS metric is

bandwidth, link j is pruned from the network if Ci < Al . Then, we run the shortest path

search algorithm, Dijkstra algorithm, to find the least delay path. For convenience, we call

this algorithm as Simple Dijkstra Algorithm (SDA) for the rest of section. The network

topology is the 32-node network. We assume the traffic load of the network is 0.8 and the

available bandwidth is uniformly distributed from 0 to 0.4 (average available bandwidth

is 0.2). Note that by the definition of equal-class based link state update policy, for any

i = 1, 2 and j,

imn1vin AY that from the perspective of a network node, the bandwidth and delay of link j are

nc, respectively. In the simulation, the delay constraint

is increased from 0.5 to 5.5 by the step of 0.2, and Inc = 10.

We first demonstrate the relationship between the probability for a path to satisfy

a concave constraint and the number of its unsured feasible links in Fig. 7.10. The

probability roughly exponentially decreases with the number of unsured feasible links,

which is consistent with our analysis. Observe that when the number of unsured feasible

links is larger than 3, the probability for a path to satisfy the bandwidth constraint is less

111

Figure 7.12 The false routing probabilities of SDA and HMPR.

112

than 0.5. Hence, we set U = 3 in our simulation. For the purpose of minizing the false

In Fig. 7.11, we illustrate the variation of falle routing probability of SDA with dealy and

bandwidth constraints. It can be observed that the impact of the state link state information

on the performance of routing algorithm is very serious, i.e., without consider the staleness

of link state information, SDA introduces significant percentage of false routing, which can

be upto 35% in the 32-node network. It should be noted that when the bandwidth constraint

A i is larger than 0.05, the fals routing probability becomes very small in our simulation. The

bandwidth are partioned into 10 classes in the simulation (Tic = 10), and by the defintion

of equal-class based update policy, the updated values are " 2 1 B, 79 1, 2, Hence, for

any link j, either

, implying that link j is an unsured infeasible link, or

implying that link j is an ensured feasible link, i.e., when the bandwidth constraint is

between 0.05 and 0.1, there is no unsured feasible link. As the result, the probability of

false routing become small. For the purpose of evaluating the effect of our propsed routing

algorithm on minimizing the false routing probability, we thus only focus on the case that

bandwidth constraint is less than 0.05, and assume it is uniformly distributed from 0 to 0.05.

The simulation results is illustrated in Fig. 7.12, in which the performance of SDA and

HMPR is compared. By Fig. 7.12, we can find that HMPR has much lower false routing

probability than SDA, i..e, the impact of the stale link state information is minimized

by HMPR. The probability of false routing of SDA increases with the network size.

113

Meanwhile, HMPR is more scalable than SDA in terms of the false routing probability,

i.e., the false routing probability of HMPR has only a small variation with the network

size. Note that the false routing probability can be reduced by increasing the accuracy of

link state information. In our simulation, it can be achieved by increasing the number of

classes (nc). However, this approach increases the protocol overhand and the burden on

the network resource, and thus is not preferable. On ther other hand, since we can achieve

much lower false routing probability with HMPR, given a upper bound on the false routing

probability, we can save network resource from distributing the link state information by

deploying HMPR. Note that in our simulations, HMPR has relative higher probability of

false routing in the 32-node network than in the 50-node network when the delay constraint

is larger than 2.5. This result comes from the fact that the 32-node network is a sparse

network and it is divided into two networks when all links expcet insured feasible links are

removed (in this case, the step 1 of HMPR does not work), while the 50-node network is

more dense than the 30-node network.

7.5 Conclusions

In this section, we introduce and investigate the issume of minimizing the impact of stale

link state information on the performance of routing algorithm without any link state

stochastic knowledge, and have proposed a Heuristic Most Probable Routing (HMPR)

algorithm under the assumption that trigger-based link state update policies are adopted.

With extensive simulations, we show that HMPR can effectively minize the effect of the

staleness of link state information. As a result, the false routing probability is greatly

reduced. In addition, we have proposed a high performance routing algorithm, IMACP,

to locate the path meeting multiple additive constraints. IMACP is based on a progressive

solution to AHKP. We show that without setting an upper bound on the number of iterations

of IMACP, its average computational complexity is still fairly low. The most distinguished

property of IMACP is its progressive property, which is very useful in practical: it can

114

adaptively minimize its computational complexity without sacrificing its performance.

Furthermore, a dynamic programming algorithm, DAEB, has been presented to solve the

special case of LCMACP that the link costs are no-negative integers.

CHAPTER 8

FINDING A LEAST HOP(S) PATH SUBJECT TO MULTIPLE ADDITIVE

CONSTRAINTS

8.1 Introduction

In this chapter, for the purpose of saving network resources, we introduce and inves-

tigate a new problem referred to as the least hop(s) multiple additively constrained path

(LHMACP) selection, which is NP-complete. We propose the Fast All Hop(s) k-shortest

Path (FAHKP) algorithm, which is an efficient solution to AHKP. Through extensive

analysis and simulations, we show that our proposed heuristic algorithm, based on FAHKP,

is highly effective in finding a least hop path subject to multiple additive constraints

with very low computational complexity; it achieves near 100% success ratio in finding

a feasible path while minimizing its average hop count.

8.2 Problem Formulation

As discussed before, we only consider additive constraints. Without loss of generality, the

problem is formulated as follows:

Definition 21 Least Hop(s)Multiple Additively Constrained Path Selection (LHMACP):

Assume a network is modeled as a directed graph G(N, A), where N is the set of all

nodes and A is the set of all links. Each link connected from node u to v, denoted by

e„,,„ = (u, v) E A, is associated with M additive parameters: w i (u, v) > 0, i = 1, 2, ..., M.

Given a set of constraints A i > 0, i 1, 2, ..., M, and a pair of nodes s and d, the

objective of LHMACP is to find the least hop(s) path p from s to t subject to wi(p) =

Ep,...,„ w(u, v) < Ai , i = 1, 2, ..., M.

115

116

Definition 22 Any path p from s to t that meets the requirement, W 2 (p)=^ e w 2 (u, v) <Bp

K2, for all i = 1, 2, ..., M, is a feasible path.

We denote p i +p2 as the concatenation of two paths p i and p2 , and K(p) as the cost of

path p. Note that, given two paths, pi and p2, and their costs, if the cost of a path p is defined

as c(p) = f (Wi(p2) , W2(p) , • - • , W m (p)) where f 0 is a cost function, the computational

complexity of computing the cost of pi + p2,

K(p i + p2) = f (Wig (pi) + WM(p2), W2(p) + 1/1742), • • W2 (pi.) + Wi(p2)),	 (8.1)

is REM), while it is RE1) (c(pl + p2) = c(Pi) + K(p2)) if the cost of a path is defined as the

sum of its link costs. Hence, we adopt the latter definition of the cost of a path for the sake

of the computational complexity. The least cost path is also referred to as the shortest path

in this chapter.

8.3 Proposed Algorithm

Similar to HMPR, we propsed our algorithm of LHMACP based on a novel solution,

Bidirectional k-shortest Extended Bellman-Ford (BFAHKP) algorithm, to AHKP. As

mentioned in the previous chapter, the least cost n-hop paths from s to i, pl (s, i), p2 (s, i),

. . . , pigs, i), can be computed as follows:

1. Vi E N, plus, i) = e(s , i) and phi (s, i) = e(s , i), g = 2, 3, ..., k, (if, in reality, no link

between the source s and node i exists, pi (s, i) = e(s , i)).

2. p?(s, i), p2 (s, i), . . . , 	 i) are computed by selecting the k least weight n-hop

paths from the paths p9 -1 (s, id) + e(id, i), d = 1, 2, ..., d i , g = 1, 2, ..., k.

In order to reduce the computational complexity, we introduce an algorithm Fast

Algorithm (FA), to select p iii(s, i), p2 (s, i), . . . , p ihjs, i) from the paths p gbh- (s, Mid)

e(nid, i), 1 < d < d i , 1 < g < k. We first illustrate how FA works by a simple example.

117

Figure 8.1 The demonstration of the FA algorithm.

= {al, '31}; (8.3)

the least cost path in the two sets is the least cost path in 4 1 . In this example, it is)3 1 .

Furthermore, since the two path sets are sorted by their costs and /3 1 is the least cost path,

the second least cost path in the two sets must be the least cost path between a l and /32,

i.e., let 0 2 = (01 n U {fi2 }, and the second least cost path in the two sets is the least

cost path in 02. Similarly, the jth least cost path in the two sets is the least cost path in

Oki, which can be proved by deduction, where cf)i= (cki_1n fri_11) U {vi}, Cr_1 is the

least cost path in cl)j _ 1 , and vi is the next path to Cr_ 1 in the corresponding set. Moreover,

118

119

Figure 8.2 The pseudo-code of the FAHKP algorithm.

Hops k-shortest Path (FAHKP) algorithm, can be illustrated by the pseudo code shown in

Fig. 8.2.

Computational Complexity: Note that Step 5 is executed k — 1 times in FA. Hence,

the computational complexity of using FA to compute the k shortest (n + 1)-hop (1 < n <

H — 1) paths from the source node s to node i is 0 (d 2 log d2 + (k — 1) log(di —1) + k —1+ d2)

= 0(di log d2 + (k — 1) log (K2— 1)). Accordingly, the computational complexity of using

FA to compute the k shortest (n + 1)-hop paths from the source node s to all other nodes

is the sum of those of computing the k shortest (n + 1)-hop paths from the source node

s to every single node, which is 0(E2 i (d2 log d 2 + (k — 1) log(d2 — 1)). Moreover, it

can be observed from the pseudo code of our proposed algorithm that there are H loops

to compute all hops k shortest paths from the source node s to all other nodes, i.e., the

computational complexity is

120

If there exists a bound D on the maximum node degree, i.e., Vi E N, d 2 < D, the worst-

case computational complexity of FAHKP is bounded by

Note that this computational complexity bound is very loose, but it is rather low already

and almost does not increase with a when k < rn it could be much less in reality.

Memory Complexity: The memory complexity of our proposed algorithm can

be divided into two parts: the memory used to record the computed paths (for the

purpose of reconstructing them after computing) and the one consumed during the

computing procedure (FA). Denote pre(i, n, g) as the predecessor node of i on pgh (S, i),

and count(i, n, g) as the number satisfying that

i.e., count(i, h, g) is the number such that pgh(s, i) is constructed by concatenating the

KouMt(i, n, g)th shortest (n-1)-hop path from s to pre(i, n, g) and the link e(i,pre(i,n, g)).

Hence, for any given node i, hop count n, and 1 < g < k, define

• n0 = i and g0 = g.

• ni = pre(i _ 1 , n — j + 1, gi_ i) and gib = count(n_i, n — j + 1, j < n.

It can be observed that pgh (s, i) = (s, nh_2, Mh_2, •••, ni, i), i.e., all paths can be

backward reconstructed as long as for any node i, hop count n, and 1 < g < k,

pre(i, n, g) and Kount(i, n, g) are available, where (s, p,h _ i , nh_2 , ..., n 1 , i) represents a

path sequentially consisting of nodes s, nh_1 , nh_ 2 , ..., n 1 , i. Hence, for a single node, the

memory cost to record all k shortest n-hop paths is REa). Since there are H hops and

n nodes, the first part of the memory cost is REkn2) < REkn 2). As mentioned before,

121

we use indicator arrays (of size M) to avoid loops, which contribute to the memory cost

of the second part. The total memory cost used for indicator arrays is 0 (krt 2) for all n

nodes and the a shortest n-hop paths. Observe that the indicators for the n-hop paths are

only used when we compute the (n + 1)-hop paths. We can erase the indicators associated

with the n-hop paths when all the (n + 1)-hop paths are computed. Hence, the part of the

memory cost resulting from the indicators is O(kn2). Combining memory costs mentioned

above together, the memory complexity of our proposed algorithm as 0 (kn, 2) . It can

be observed that the introduction of the indicators to avoid loops does not increase the

worst-case memory complexity of our proposed algorithm.

Similar to BEB, our proposed algorithm for LHMACP consists of two parts: forward

FAHKP and backward FAHKP. The cost functions used in two parts are different. We adopt

the same cost functions here as BEB, i.e.,

• We search for a feasible path from the source to the destination in the forward FAHKP

with the cost function of

• Assume no feasible path is found with forward FAHKP and the least cost path is

Amin, the cost function f(-) adopted in the backward FAHKP is

Fig. 8.3 shows the pseudo-code of our proposed QoS routing algorithm, referred to

as BFAHKP (Bi-directional FAHKP). The key properties that distinguish BFAHKP from

previously proposed algorithms are:

• Intuitively, the more links (hops) on a path, the more network resources are

consumed. Hence, minimizing the length or hops of a feasible path is preferred.

122

Figure 8.3 The pseudo-code of the BFAHKP algorithm.

Based on BFAHKP, our algorithm can essentially minimize the hops of the feasible

path.

• Assume the link weights are randomly distributed, and define Pr {W i (p) < cif, W2 (13) <

C2 , . .. , W m (p) < c 2 I cap) = a, H(p) = n} as the probability that a path p is a feasible

path with cap) = a, and its hop count, H(p) = M. The probability of the shortest path

to be a feasible path may not be the largest in all possible paths. Note that, instead

of computing only the shortest path, BFAHKP finds all hops k shortest paths from a

source to a destination that increases the probability of finding a feasible path.

In order to reduce the runtime, we stop the search whenever a feasible path is found.

123

Figure 8.4 A network consisting of 5 nodes.

8.4 Simulations

We evaluate the performance of our proposed routing algorithm by comparing it with

the Binary Search Algorithm (BSA) [55], H_MCOP [7],and TAMCRA [53]. Note that

HMCOP was originally designed to solve the multiple constrained optimal path selection

problem. It can also be used to solve the LHMACP problem by setting the cost of each link

to 1. On the other hand, it should be noted that BFAHKP and IMACP are both based on

the solutions to AHKP and use same cost functions. They have the same success ratio in

finding the path subject to multiple additive constraints when the same number of shortest

paths (k) are chosen for them. Hence, in the chapter, we only evaluate the effectiveness

of BFAHKP in minimizing the number of hops of feasible paths (people can refer to the

previous chapter for the ability of BFAHKP in finding the feasible paths). We do not simply

adopt the average hop of computed feasible paths as one performance index because it may

introduce unfairness in comparison. For example, given a network shown as Fig. 8.4 and

a set of constraints, we conduct two searches (from node 1 to node 5) with two routing

algorithms, a and ,3 (the link QoS metrics are different in the two searches). In the first

124

search, both algorithms locate a 2-hop feasible path (1-2-5), while in the second search, the

algorithm a fails to find a feasible path, but algorithm fib does (path 1-3-4-5). Obviously,

algorithm 3 performs better than a in the simulation. However, if the average hop of the

computed feasible path is adopted as the only performance index (the average hop of the

feasible path computed by algorithm a in the two searches is 2, while it is 2.5 for algorithm

fib), it turns out that algorithm a outperforms fib. Note that the optimal algorithm is achieved

by hop-by-hop flooding, and it can always locate the least hop feasible path as long as a

feasible path exists. Therefore, its average hop is the lower bound of all feasible paths.

Furthermore, given any feasible path p, there must exist a corresponding optimal one (the

least hop feasible path, which could be p) that has the same source and destination as

p. Hence, instead of using the average hop of computed feasible paths as a performance

index, we adopt the Average Hop Ratio (AHR), where AHR is defined as the ratio between

the average number of hops of the computed feasible paths and that of the corresponding

optimal ones, i.e.,

We adopt the same 100-node network topologie as the one in Chapter 5. in our simulations,

we set k = 1, 2 because BFAHKP already achieves near optimal performance when for

k = 2. In all simulations, the link weights are independent and uniformly distributed from

0 to 1, and all data are obtained by running 100,000 requests. We adopt two constraints in

the simulations, and set them equal to each other. The constraints are increased from 0.5 to

6 with a step size of 0.2.

Fig. 8.5 demonstrates the AHRs of different algorithms in the 100-node network. It

can be observed that our proposed algorithm, BFAHKP, achieves near optimal average hop,

i.e., our algorithm can minimize the hops of the feasible path found. Note that although

HJVICOP achieves relatively low AHR (compared to TAMCRA and BSA), its success ratio

in finding a feasible path is not satisfactory.

Figure 8.5 AHRs of algorithms in the 100-node network.

8.5 Conclusions

We have proposed an efficient algorithm (BFAHKP), which can achieve a very high success

ratio in finding a feasible path for the least hop(s) multiple additively constrained routing.

Extensive simulations show that BFAHKP is a high performance routing algorithm in terms

of both the success ratio in finding a feasible path and the average hop of solutions. With a

slight modification, our algorithm can also be employed for solving many other problems,

such as the DCLC problem. Moreover, the success ratio of our proposed algorithm may be

further improved by, similar to [10], using a non-linear cost function, i.e., the cost of a path

is the function of its weights, which, however, will increase the computational complexity.

CHAPTER 9

CONCLUSIONS AND FUTURE WORKS

9.1 Conclusions

In this dissertation, we have addressed the issue of QoS provisioning in high speed

networks, especially the QoS routing perspective. The main contributions are:

1. Observing that most proposed link state update schemes are not efficient enough

because they update link state information without considering the QoS requirements

of connections, we have investigated the issue of when to update link state infor-

mation based on rate-distortion analysis, and proposed an efficient link state update

scheme. Through extensive simulations, we have shown that our proposed scheme

outperforms the state-of-art ones in terms of both the average update rate and false

routing probability.

2. For the purpose of reliably distributing link state information throughout the

networks, we have proposed an efficent reliable link state information dissemination

scheme. The basic idea behind the scheme is that instead of distributing link state

information on a tree, we disseminate link state information on a Reliable Topology

(RT), which guarantees that in the case of a single link failure, as long as the network

is still connnected, all nodes are also connected in RT. At the same time, since the

RT adopted in our dissertation is a Tree-based Reliable Topology (TRT), in which

the total number of links is only twice that of nodes, the protocol overhead of our

proposed scheme is fairly low.

3. Many routing algorithms reported in the literature tackle the QoS routing problems

by converting it into a shorest path searching problem with a cost function which

maps multiple QoS metrics associated with a link into a single cost. However, the

126

127

performance of these algorithms are not satisfactory, i.e., they suffer either high

computational complexities or low success ratio in finding a feasible path. Therefore,

we have introduced and investigated the issue of finding All Hops Shortest Path

(AHSP), and presented a tight lower bound on the optimal comparison-based solution

of AHSP, which is the same as that of the standard Bellman-Ford algorithm. Since

an optimal comparison-based solution of AHSP yields more paths than the standard

Bellman-Ford (BF) algorithm, while their worst-case computational complexity

remains the same, the performance of routing algorithms based on BF can be

improved.

4. Based on an optimal comparison based solution to AHSP, Extended Bellman-Ford

algorithm (EB), we have proposed two efficient routing algorithms, BEB and DEB,

respectively, for MACP and DCLC. By extensive simulations, we have shown that

they outperform their contenders.

5. Many works reported in literature tackle delay constrained least cost path selection

by using approximation schemes and scaling techniques, i.e., by mapping link

costs into integers or, at least, discrete numbers, a solution that satisfies the delay

constraint and has a cost within a factor of the optimal one can be computed

with pseudo polynomial computational complexity. In this paper, having observed

that the computational complexities of the a pproximation algorithms using the

linear scaling technique are linearly proportional to the linear scaling factors, we

have investigated the issue of finding the optimal (the smallest) linear scaling

factor to reduce the computational complexities, and have proposed two algorithms,

Optimal Linear Scaling Algorithm (OLSA) and Transformed Optimal Linear Scaling

Algorithm (OLSA). We have analytically shown that both algorithms are always

able to locate the optimal linear scaling factor with the computational complexities

negligible to those of the E-approximation solutions. As a result, the computational

128

complexities of s-approximation solutions can be effectively reduced. We have also

shown that in some special cases, with our proposed algorithms, the worst-case

computational complexities of s-approximation solutions are not pseudo-polynomial

any more, i.e., they are strictly polynomial and independent of s.

6. Although the algorithms such as the s-approximation approaches can achieve 100%

or near 100% success ratio, their worst-case computational complexities are too high

to be practical (assume s is very small in E-approximation algorithms so that their

success ratios are close to 1). The algorithms such as [55] have the advantage of

having low computational complexities. However, they cannot guarantee in finding a

feasible path when it exists. Moreover, their success ratios in finding a feasible path

may decrease sharply with the network size. In order to increase the success ratio,

many proposed algorithms deploy k-shortest paths selection solutions (the number

of shortest paths are generally fixed in these algorithms), instead of the shortest

path selection solutions. However, the computational complexities of the algorithms

increase unnecessarily in the case in which a feasible path can be found with only

one shortest path searching algorithm. Since the computational complexities of the

routing algorithms based on k-shortest paths selection solutions increase with the

number of shortest path, k, we can minimize their computational complexities if we

can adaptively minimize k, i.e., we can always locate the (optimal) feasible path with

the minimized k. Hence, we proposed routing algorithms that can iteratively compute

the All Hops k-shortest paths (AHKP), i.e., the algorithms are capable of computing

the all hops shortest path in the first iteration, then the all hops second shortest path

in the second iteration, and so on. Based on the algorithms, we proposed a solution

to achieve the objective of minimizing the number of shortest paths such that the

computational complexities of routing algorithms can be minimized.

129

7. Intuitively, the more links (hops) on a path, the more network resources are

consumed. Hence, minimizing the length or hops of a feasible path is preferred.

Accordingly, we introduced and investigated the issue of computing the least hops

path subject to multiple additive constraints.

9.2 Future Works

I will continue my ongoing work on QoS routing in high speed networks. Based on

the route-based link state update model, I will focus on designing, implementing, and

evaluating a fundamentally new route-based update policy and corresponding routing

strategy. In addition, I would like to extend my past research to wireless networks, e.g.,

Ad Hoc and Sensor networks.

9.2.1 Congestion Control

I have devoted my endeavor to fair bandwidth allocation for AF traffic. Collaborating

with my colleagues, I also have worked on traffic scheduling for Expedite Forwarding

(EF) traffic and queue management for Best Effort (BE) traffic. Having obtained a good

understanding of the congestion control in the context of Differential Service (DiffServ), I

would like to investigate more QoS issues in both wired and wireless domain. For example,

since there is no definition on how the bandwidth should be distributed between the AF out-

of-profile (OUT) and BE traffic during times of congestion, I may deal with this problem by

a new core-stateless queue management similar to CSPFQ. Furthermore, it is also possible

for me to propose new traffic scheduling algorithms based on our proposed traffic model.

9.2.2 Overlay Network

Overlay networks have emerged as a powerful and highly flexible method for delivering

content without modifications of the underlying network. Today's overlay solutions

are developed independently under the implicit assumption that they will run isolated.

13 0

However, as more and more overlay networks are put into use, this assumption no longer

holds, and the performance of these networks may be greatly undermined. Hence, I would

like to address the problem of how to share the resources among competing overlays in an

economical and computationally practical fashion. In addition, I also like to address the

fault recovery and security issues in overlay networks.

9.2.3 Reliability and Security

As the Internet evolves to an infrastructure carrying critical applications, Internet faces

increasing challenges in providing dependable packet delivery. Today's Internet is a loose

interconnection of networks and accessed by users with diverse interests. Due to its sheer

scale, faults, including the failures of hardware and software, human operational errors,

and malicious attacks, have become very common. I expect to research on, but not limited

to i) robust routing in the presence of failures, ii) increasing the life time and reliability of

sensor networks, and iii) maintaining connectivity in ad-hoc network. In a long run, I aim

to provide the resilient routing in both wired and wireless networks.

9.2.4 Information Theory for Network Issues

Classic information theory has been widely deployed in the developments of communi-

cations. However, there is no unified, basic theory yet that extends information theory

to networks, and information theory is also rarely used or considered in network design.

Motivated by my research in information theory based link state information update

schemes, I am particularly interested in applying information theory to optimize network

designs and protocols. As wireless networks have experienced a phenomenal growth in

the last decade, it is imperative to develop a network information theory to understand the

fundamental throughput and delay performance limits of wireless networks, which is also

my another interest.

REFERENCES

[1] S.V. Raghavan and S.K. Tripathi, Network Multimedia System: Concepts, Architecture,
and Design, Prientice Hall, Inc., 1998.

[2] A. Parekh and R. Gallager, "A generalized processor sharing approach to flow control - the
single node case," Proceedings of the INFOCOM'92, pp. 915 -924, May, 1992.

[3] L. Zhang, "Virtual clock: A new traffic control algorithm for packet switching networks,"
Proceedings of ACM SIGCOMM'90, pp. 19-29, September 1990.

[4] J.C.R. Bennett and H. Zhang, "WF2Q: Worst-case fair weighted fair queueing,"
Proceedings of IEEE INFOCOM'96, pp. 120-128, March 1996.

[5] S. Golestani, "A self-clocked fair queueing scheme for broadband applications,"
Proceedings of IEEE INFOCOM'94, pp. 636-646, June 1994.

[6] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, "An Architecture for
Differentiated Service," IETF RFC 2475, 1998.

[7] T. Korkmaz and M. Krunz, "Routing multimedia traffic with QoS guarantees," IEEE
Transactions on Multimedia, 2003, 5, (3), pp. 429-443.

[8] X. Yuan, "Heuristic algorithm for multiconstrained quality-of-service routing, "IEEE/ACM
Transactions on Networking, 2002, 10, (2), pp. 244-256.

[9] S. Deering, D.L. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei; "The PIM
architecture for wide-area multicast routing," IEEE/ACM Transactions on Networking,
vol. 4, pp. 153-162, 1996.

[10] S. Yan, M. Faloutsos, and A. Banerjea, "QoS-aware multicast routing for the Internet: the
design and evaluation of QoSMIC," IEEE/ACM Transactions on Networking, vol. 10,
pp. 54-166, 2002.

[11] B. Wang and J.C. Hou, "Multicast routing and its QoS extension: problems, algorithms,
and protocols," IEEE Network, vol. 14, pp. 22-36, 2000.

[12] S. Chen, K. Nahsted, and Y. Shavitt, "A QoS-aware multicast routing protocol," IEEE
Journal on Selected Areas in Communications, vol. 18, pp. 2580-2592, 2000.

[13] Z. Wang and J. Crowcroft, "Quality of Service routing for supporting multimedia appli-
cations," IEEE Journal on Selected Areas on Communications, 1996, 14, (7), vol. 14,
pp. 1228-1234, 1996.

[14] Y. Joo, V. Ribeiro, A. Feldmann, A. C. Gilbert, and W. Willinger, "TCP/IP traffic dynamics
and network performance: a lesson in workload modeling, flow control, and trace-
driven simulations," Proceedings of ACM SIGCOMM'90, vol. 21, pp. 25-37, 2001.

131

132

[15] S. Floyd and V. Paxson, "Difficulties in simulating the Internet," IEEE/ACM Transactions
on Networking, vol. 9, pp. 392-403, 2001.

[16] W.E. Leland, W. Willinger, M.S. Taqqu and D. V. Willson, "On the self-similar nature of
Ethernet traffic," IEEE/ACM Transactions on Networking, vol. 2, pp. 1-15, 1994.

[17] J. Moy, "OSPF version 2," RFC2328, IETF, 1998.

[18] S. Chen and K. Nahsted, "An overview of quality of service routing for next-generation
high-speed network: problems and solutions," IEEE Network, 1998, 12, (6), pp. 64-79.

[19] R. Guerin and A. Orda, "QoS based routing in networks with inaccurate information:
theory and algorithms," Proceedings of the INFOCOM'97, pp. 75-83, 1997.

[20] A. Kolarov and J. Hui, "Least Cost Routing in Multiple-Service Networks," Proceeding of
the INFOCOM'94, pp. 1482-1489,1994

[21] B. Zhang, M. Krunz, H. T. Mouftah, and C. Chen, "Stateless QoS Routing in IP Networks,"
Proceedings of IEEE GLOBECOM'O1, pp. 1600 - 1604, 2001.

[22] C. Hon, "Routing Virtual Circuit with Timing Requirement in Virtual Path Based ATM
Networks," Proccedings of IEEE INFORCOM'06, pp. 320 -328, 1996.

[23] R.K. Boel and J.H. van Schuppen, "Distributed routing for load balancing," Proceedings of
IEEE, vol. 77, pp. 210-221, 1989.

[24] G. Manimaran, H. S. Rahul, and C. S. R. Murthy, "A New Distributed Route
Selection Approach forChannel Establishment in Real-Time Networks," IEEE/ACM
Transactions on Networking, vol.7, pp. 318 -335, 1999.

[25] D. Ghosh, V. Sarangan, and R. Acharya,"Quality -of-Service Routing in IP Networks,"
IEEE Transactions on Multimedia, pp. 200 -208, vol. 3, 2001.

[26] ATM Forum, Private Network Interface (PNNI) v1.0 Specifications, 1996.

[27] G. Apostolopoulos, R. Guerin, S. Kamat, and S. Tripathi, "Quality-of-service based
routing: A performance perspective," Proceedings of ACM SIGCOMM 1998, vol. 28,
pp. 17-28, 1998.

[28] A. Shaikh, J. Rexford, and K. G. Shin, "Evaluating the impact of stale link state on quality-
of-service routing," IEEE/ACM Transactions on Networking, 2001, 9, (2), pp. 162-
176.

[29] Q. Ma and P. Steenkiste, "Quality-of-service routing for traffic with performance
guarantees," Proceedings of IFIP Int. Workshop Quality of Service 1997, pp. 115-126,
1997.

[30] L. Breslau, D. Estrin, and L. Zhang, "A simulation study of adaptive source routing in
integrated services networks," Computer Science Department, University of Southern
California, Tech. Rep. 93-551, 1993.

133

[31] M. Peyravian and R. Onvural, "Algorithm for efficient generation of link-state updates in
ATM networks," Computer Networks and ISDN System, vol. 29, pp. 237-247, 1997.

[32] X. Li, L. K. Shan, W. Jun, and N. Kiara, "QoS Extension to BGP," Proceedings of IEEE
ICNP '02, pp. 100- 109, 2002.S.

[33] W.E. Leland, W. Willinger, M.S. Taqqu and D. V. Willson, "On the self-similar nature of
Ethernet traffic," IEEE/ACM Transactions on Networking, vol. 2, pp. 1-15, 1994.

[34] B.A. Mah, "An empirical model of HTTP network traffic," Proceedings of the IEEE
INFOCOM'97, vol. 2, pp. 592-600, 1997.

[35] M. E. Crovella and A. Bestavros, "Self-similarity in World Wide Web traffic: evidence and
possible causes," Proceedings of ACM SIGMETRICS'96, pp. 160-169, 1996.

[36] A. Zinin and M. Shand, "Flooding optimizations in link-state routing protocols," IETF,
draft-ietf-ospf-isis-flood-opt-01.txt, 2001.

[37] J. Moy, "Flooding over a subset topology," IETF, draft-ietf-ospf-subset-flood-00.txt, 2001.

[38] B. G. Ogier, "A reliable, efficient topology broadcast protocol for dynamic networks,"
Proceedings of 1999 IEEE Eighteenth Annual Joint Conference of the IEEE Computer
and Communications Societies, vol. 1, pp. 178-186, 1999.

[39] K. Thulasiraman and M. N. S. Swamy, Graphs: Thoery and Algorithms, Wiley-
Interscience, U.S.A, 1992.

[40] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, Cambridge,
MA: MIT Press, 1990.

[41] H. Huang and J. Copeland, "Hamiltonian cycle protection: a novel approach to mesh
WDM optical network protection," Proceedings of 2001 IEEE Workshop on High
Performance Switching and Routing, pp. 31-35, May, 2001.

[42] R. Guerin and A. Orda, "Computing shortest paths for any number of hops," IEEE/ACM
Transactions on Networking, 2002, 10, (5), pp. 613-620.

[43] D.R. Karger, D. Koller, and S. J. Phillips, "Finding the hidden path: Time bounds for
all-pairs shortest paths," SIAM J. Computing, 1993, vol. 22, pp. 1199-1217.

[44] R. Guerin and A. Orda, "QoS based routing in networks with inaccurate information:
theory and algorithms," Proceedings of the INFOCOM'97, pp. 75-83, 1997.

[45] J. Wang, W. Wang, J. Chen, and S. Chen, "A randomized QoS routing algorithm on
networks with inaccurate link-state information," Proceedings of WCC-ICCT 2000,
vol. 2, pp. 1617-1622, 2000.

[46] D. H. Lorenz and A. Orda, "QoS routing in networks with uncertain parameters,"
IEEE/ACM Transactions on Networking, 1998, 6, (6), pp. 768-778.

134

[47] S. Chen and K. Nahrstedt, "Distributed Q0S routing with imprecise state information,"
Proceedings of 7th International Conference on Computer Communications and
Networks, pp. 614-621, 1998.

[48] A. Orda and A. Sprintson, "Precomputation schemes for QoS routing," IEEE/ACM
Transactions on Networking, 2003, 11, (4), pp. 578-591.

[49] G. Liu and K. G. Ramakrishnan, "A*Prune: an algorithm for finding K shortest paths
subject to multiple constraints," Proceedings of IEEE INFOCOM 2001, vol. 2, pp.
743-749, 2001.

[50] T. Korkmaz and M. Krunz, "Bandwidth-delay constrained path selection under inaccurate
state information," IEEE/ACM Transactions on Networking, 2003, 11, (3), pp. 384-
398.

[51] A. Juttner, B. Szyiatovszki, I. Mecs, and Rajko, "LaGrange relaxation based method for the
QoS routing problem," Proceedings of IEEE INFOCOM 2001, vol. 2, pp. 859-868,
2001.

[52] D. Eppstein, "Finding the k shortest path," Proceedings of 35th Annual Symposium on
Foundations of Computer Science, pp. 154-165, 1994.

[53] H. De Neve and P. Van Mieghem, "A multiple quality of service routing algorithm for
PNNI," Proceedings of 1998 IEEE ATM workshop, pp. 324-328, 1998.

[54] S. Chen and K. Nahrsted, "On finding multi-constrained path," Proceedings of IEEE
ICC'98, vol. 2, pp. 874-899, 1998.

[55] T. Korkmaz., M. Krunz, and S. Tragoudas, "An efficient algorithm for finding a path subject
to two additive constraints," Proceedings of the ACM SIGMETRICS '2000, pp. 318-
327, 2000.

[56] C. Pomavaizi, G. Chakraborty, and N. Shiratori, "QoS based routing algorithm in integrated
services packet networks," Proceedings of IEEE 1997 Conference on Network
Protocols, pp. 167-174, 1997.

[57] R. Widyono, "The design and evaluation of routing algorithms for real-time channels,"
Technical Report TR-94-024, University of California at Berekey, 1994.

[58] D. H. Lorenz and D. Raz, "A simple efficient approximation scheme for the restricted
shortest path problem," Operations Research Letters, 2001, vol. 28, pp. 213-219.

[59] D. H. Lorenz and A. Orda, "Efficient QoS partition and routing of unicast and multicast,"
Proceedings of 8th International Workshop on Quality of Service, pp. 75-83, 2001.

[60] R. Hassin, "Approximation schemes for the restricted shortest path problem," Mathematics
of Operations Research, 1992, 2, (2), pp. 36-42.

135

[61] D. Raz, and Y. Shavitt, "Optimal partition of QoS requirements with discrete cost
functions," IEEE Journal on Selected Areas in Communications, 2000, vol. 12, (18),
pp. 2593-2602.

[62] A. Goel, K.G. Ramalcrishnan, D. Kataria, and D. Logothetis, "Efficient Computation of
Delay-sensitive Routes from One Source to All Destinations," Proceedings IEEE
Infocom 2001, pp. 854-858, 2001.

[63] M.B. Doar, "A better model for generating test networks," Proceedings of IEEE
GLOBECOM'96, pp. 86-93, 1996.

[64] G. Cheng and N. Ansari, "An Information Theory Based Framework for Optimal Link State
Update," IEEE Communications Letters, vol. 8, pp. 692-694, 2004.

[65] N. Ansari, G. Cheng, and R.N. Krishnan, "Efficient and reliable link state information
dissemination," IEEE Communications Letters, vol. 8, pp. 317 - 319, 2004.

[66] Y. Jia, I. Nikolaidis, and P. Gburzynski, "Multiple path routing in networks with inaccurate
link state information," Proceedings of the IEEE ICC '01, vol. 8, pp. 2583-2587, 2001.

[67] G. Cheng and N. Ansari, "Finding all hops k-shortest paths," Proceedings of IEEE
PACRIM'03, vol. 1, pp. 474 - 477, 2003.

[68] G. Cheng and N. Ansari, "Achieving 100% success ratio in finding the delay constrained
least cost path," to appear in IEEE GLOBECOM'04, 2004.

[69] S. Chen, "Routing Support for Providing Guaranteed End-to-End Quality-of-Service,"
Ph.D. dissertation, Department of Computer Science, University of Illinois at Urbana-
Champaign, May 1999.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright
	Approval Page
	Biographical Sketch (1 of 3)
	Biographical Sketch (2 of 3)
	Biographical Sketch (3 of 3)

	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: A Rate-Distortion Analysis Based Link State Information Update Scheme
	Chapter 3: A Reliable Link State Information Dissemination Scheme
	Chapter 4: Finding All Hops Shortest Paths
	Chapter 5: An Optimal Comparison Based Solution to AHSP and its Applications to QoS Routing
	Chapter 6: Finding the Optimal Linear Scaling Factor for Epsilon-Approximation Algorithms
	Chapter 7: Minimizing the Impact of Stale Link State Information on QoS Routing
	Chapter 8: Finding a Least Hop(s) Path Subject to Multiple Additive Constraints
	Chapter 9: Conclusions and Future Works
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

