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ABSTRACT

DIFFERENCE-EXPANSION BASED REVERSIBLE
DATA HIDING AND ITS STEGANALYSIS

by
Guangsen Tian

A novel reversible data embedding method was reported in a recent IEEE journal article.

The method was based on difference expansion (DE) technique. It used redundancy in

digital images to achieve a high embedding capacity, while keeping visual distortion of

the stego-image low. In this thesis, this technique was studied and experimentally

evaluated. An effective steganalysis scheme for this DE-based reversible data embedding

method was proposed, which used 12-dimensional feature vectors and a Bayes Classifier.

The proposed steganalysis scheme steadily achieved a correct classification rate of 99%.
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CHAPTER 1

INTRODUCTION

1.1 Objectives

The objective of this thesis is to analyze a new advantaged reversible data embedding

method and propose a new blind steganalysis scheme, which can be used in detecting

whether a given medium has hidden message in it.

Recently, digital watermarking has emerged as an increasingly active research

area. An invisible watermark is embedded into digital content for purposes of copyright

communication and protection, content authentication, counterfeit deterrence or broadcast

monitoring, etc. But at the same time it also provides vast opportunities for converting

communications. This task is especially urgent for law enforcement to deter the

distribution of children pornography images/videos hidden inside normal images/videos,

and for intelligence agencies to intercept communications of enemies. Steganalysis is a

scientific technology to decide if a medium carries some hidden message. In counter-

terrorists activities, steganalysis can serve as an effective way to judge the security

performance of steganographic techniques.

1.2 Background Information

In this thesis, a high capacity, high visual quality, reversible data-embedding method is

introduced, which is based on a technique called the difference expansion (DE) [1]. And

then according to this kind of data embedding method, an effective steganalysis scheme

is presented, which is based on a 12-dimensional feature vector and a Bayes classifier.

1



2

1.2.1 Reversible Data Embedding Algorithm

Most digital watermarking methods can be categorized as either robust watermarking or

fragile watermarking. A robust watermarking should be very resistant to various signal

processing operations, while a fragile watermark will be destroyed or degraded in

predictable fashion when the digital content is modified. Thus fragile watermarking is a

very valuable tool in content authentication. As a special subset of fragile watermarking,

reversible data embedding, which is also called lossless, invertible, or erasable data

embedding (or watermarking, data hiding), enables the recovery of the original content.

With reversible data embedding, one can authenticate the content and restore the original

content after it is authenticated. In recent years, a reversible data-embedding method

based on difference expansion technique (DE) was put forward. This kind of method

calculates the difference values of neighboring two pixel values, and selects some

difference values for difference expansion. The original content restoration information,

an authentication hash, and additional data (which could be any data, such as date/time

information, auxiliary data, etc.) will all be embedded into the difference values [1]. In

this thesis, only 8 bits per pixel (bpp) grayscale images are considered.

Reversible data embedding has been a very active research subject in the last few

years. In particular, Hongisinger, et al. [2], used a robust watermark via spread spectrum

and modulo arithmetic to achieve reversible data embedding. Fridrich, et al. [3],

developed a high capacity reversible data-embedding technique based on embedding

information on bits in the status of groups of pixels. Dittmann, et al. [4], introduced a

media independent protocol designed for reversible data-embedding applications, which

required high data integrity. Celik, et al. [5], presented a high capacity, low distortion



3

reversible data-embedding algorithm by compression quantization residues. They

employed the lossless image compression algorithm CALIC [6], with quantized values as

side-information, to efficiently compress quantization residues to obtain high embedding

capacity. Xuan, et al. [7], losslessly compressed one (or more) middle bit plane(s) in the

wavelet decomposition domain for reversible data embedding. Van Leest, et al. [8],

presented a reversible data-embedding technique based on a transformation function that

introduces "gaps" in the image histogram. Those reversible data embedding algorithms

(including the one introduced in this thesis) are fragile: when the embedding image is

manipulated and /or lossy compressed, the decoder will find out that it has been tampered

and thus there will be no original content restoration.

1.2.2 Steganalysis

An original cover medium and its embedded medium (stego-image) (with hidden

message inside) always differ from each other in some aspects since the cover medium is

changed during the data embedding. For example, in [9], Fridrich et al. discovered that

the number of zeros in the block DCT domain of a stego-image will increase if the F5

embedding method is applied to generate the stego-image. There are also some other

findings regarding the steganalysis of a particular data hiding method [10] and [11].

Recently, several general steganalysis methods were proposed. In [12], Farid

proposed a general steganalysis method based on image high order statistics. These

statistics are based on decomposition of images with separable quadrature mirror filters.

The subbands high order statistics are obtained from cover images with a certain success

rate. In [13], a steganalysis method based on the mass center (the first order moment) of

histogram characteristic function is proposed. The second and third order moments are
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also considered for steganalysis. Compared with [12], its performance has been

improved. However, the performance achieved by [13] is still not high enough since it

adopts very limited number of features extracted from the test image. In this thesis, we

focus on reversible data embedding methods based on the DE technique and try to get an

insight from this to set up a new general steganalysis system with a high correction rate.

By applying this data embedding method, when a difference expansion happens in

an image, there will be obvious change in the difference values between original images

and stego-images. Compared with the original image, the differences of the stego-image

will be enlarged. So a 12-dimensional feature vector is set up for steganalysis by

calculating the difference values and separating them into 12 different groups. Finally, a

Bayes classifier is built up for classification. All of the 1096 images were used from the

coreldraw image database for our extensive experimental work.

The thesis is organized as follows. An introduction about reversible data

embedding method based on the DE technique is given in chapter 2. In chapter 3, some

discussions and simulation results on this method are presented. A 12-dimensional

feature vector and a Bayes classifier are presented in chapter 4. Then the experimental

process and results for our steganalysis method are provided in chapter 5. The conclusion

is drawn in chapter 6.



CHAPTER 2

REVERSIBLE DATA EMBEDDING METHOD

The reversible data embedding is also called lossless data embedding. Through it data can

be embedded into digital images. When needed or authenticated, the original images and

embedding data can be restored exactly.

Traditional data embedding is a lossy process. That means that you cannot

recover the original image exactly after data embedding. Compared with lossy

embedding methods, reversible data embedding embeds a payload into a digital content

in a reversible fashion. After embedding, the image should change very little or look no

different. That means that the quality degradation on the digital content after data

embedding should be low. Another obvious feature of reversible data embedding is the

reversibility, that is, when the digital content has been authenticated, one can remove the

embedded data to restore the original content (before data embedding). The process can

be explained in Figure 2.1 [1]. Here a payload is embedded in a digital image I, and the

stego-image (embedded image) I' is obtained. The quality degradation of I' from I should

be low. Before sending it to the content authenticator, the image I' might or might not

have been tampered by some intentional (for example, changing the content) or

unintentional (for example, JPEG compression) manipulations. If the authenticator finds

that no tampering happened in I', i.e., I' is authentic, then the authenticator can remove

the payload from I' and restore the original image, which results in a new image I". By

definition of reversible data embedding, the restored image I" will be exactly the same as

the original image I, pixel by pixel, bit by bit.

5
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Fig 2.1 Reversible data embedding diagram [1]

A technique called difference expansion (DE) will be introduced in following

section. Compared with other reversible data embedding methods, this method can

achieve high data embedding capacity and at the same time keep the distortion very low.

2.1 The Difference Expansion Technique

The DE technique [10] reversibly embeds one bit data into two integers, which can be

explained as follows. There are lots of redundancies in a digital image. If we change

some pixel values to some extent, the appearance of the picture is almost same as the

original one. So data embedding can be obtained by changing some pixel values in an

image. The DE technique uses the difference between two pixel values to embed one bit.

This process can be explained by a simple example shown as Fig. 2.2 [1].

Fig 2.2 A simple example [1]
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Assuming there are two grayscale values x = 206, y = 201, we would like to

reversibly embed one bit b = 1. First the integer average and difference of x and y are

computed,

where the symbol L.J is the floor function meaning "the greatest integer less than or

equal to". Next the difference value h is represented as its binary representation:

Then embedded bit b is appended into the binary representation of h after the least

significant bit (LSB), the new difference value h' will be:

Mathematically, this is equivalent to:

This operation is also called the difference expansion (DE).

Finally the new grayscale values are computed, based on the new difference value

h' and the original integer average value 1,

and new two pixel values x = 209, y = 198 are gotten. After finishing this process, one bit

is embedded into the two pixel values.
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2.2 Data Embedding Process Based on The DE Technique

In brief, the data-embedding algorithm based on the DE technique consists of six steps:

1.Calculating the average and difference values between two pixel values. 2.Partitioning

the difference values into four sets. 3.Creating a location map. 4.Collecting the original

LSB values. 5.Data embedding by replacement. 6.An inverse integer transforms.

2.2.1 Calculating Average and Difference Value

In this method data is embedded in the difference values of pairs of pixel values.

Therefore, the original image is grouped into pairs of pixel values. A pair consists of two

neighboring pixel values. For example, two continuous pixel values in horizontal

direction (i, 2j-1) and (i, 2j) can be selected as a pair. There are 4 different pairs:

horizontal, vertical and two diagonal directions. Reversible integer transforms can be

used to get the average and difference matrix.

Here, starting with a simple reversible integer transform. For a grayscale-valued

pair (x, y) Where 0 x, y 255, their integer average and difference are defined as

The inverse transform of the function above is

The reversible integer transforms (2.5) and (2.6) are also called integer Haar wavelet

transforms. So for any image a matrix of difference and a matrix of average can be

acquired by using equation (2.5). For example, for a 512*512 image, if vertical pair is
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selected to calculate average and difference value, a 512*256 difference matrix and a

512*256 average matrix will be found.

2.2.2 Partitioning Difference Values into Four Sets

To prevent overflow and underflow problems, (i.e., to restrict x, y in the range of [0,

255]), before partitioning the difference values two definitions [1] about difference value

h are given.

Definition 1: A difference value h is expandable under the integer average value 1

if

for both b = 0 and 1. For an expandable difference value h, a bit is embedded by the DE

technique. That means one bit 0 or 1 can be embedded into the LSB of difference value h,

and at the same time guarantee all pixel values in the stego-image will be in the range of

[0, 255].

Definition 2: A difference value h is changeable under the integer average value 1

if

for both b = 0 and 1. Here changeable means data can be embedded by changing the LSB

of difference value, meanwhile guarantee all pixel values in the stego-image will be in

the range of [0, 255].

Next four disjoint sets of difference values are created, EZ, EN, CN, and NC:

1. EZ: contains all expandable h = 0 and expandable h = -1.
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2. EN: contains all expandable h values that do not belong to EZ.

3. CN: contains all changeable h values that do not belong to (EZ and EN).

4. NC: contains all non-changeable h values.

Each difference value will fall into one and only one of the above four sets. As an

expandable difference value is always changeable, the whole set of changeable difference

values is EZ U EN U CN.

2.2.3 Creating Location Map

Every difference value h in EZ will always be selected for difference expansion. For EN,

depending on the payload size, some difference values will be selected for difference

expansion. For convenience, the subsets of selected and non-selected difference values in

EN as EN1 and EN2 are denoted respectively. A one-bit bitmap is created as the location

map. For an h in either EZ or ENI, a value "1" is assigned in the location map; for an h in

EN2, CN, or NC, a value "0" is assigned. Details can be clearly seen from the Table 2.1

[1].

Table 2.1 Embedding on Difference Values [1]

Category
Original

Set
Original
Value

Location
Map

New
Value

New
Set

Changeable
EZ or EN1 h 1 2*h + b

CH
EN2 or CN h 0

*2 Lh/2_I+
b

Non-
changeable

NC h 0 h NC
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2.2.4 Collecting Original LSB Values

With the location map, the encoder and the decoder will share the same information on

which difference values have been selected for difference expansion. While it is

straightforward for the encoder to embed a location map, the decoder needs to know

where to collect and decode it.

After difference expansion, the expanded difference value might not be

expandable. On the decoder side, to check whether the expanded difference value is

expandable does not tell whether the original difference value has been selected for

difference expansion during embedding. The expanded difference value is changeable so

the decoder could examine each changeable difference value.

In this method, the encoder serves for the decoder. The encoder will select

changeable values as the embedding area, so that the decoder will use the same data to

decode. During data embedding, this method will modify all changeable difference

values, by either adding a new LSB through the DE technique or modifying its LSB. To

guarantee an exact recovery of the original image, this method will also embed the

original values of those modified LSBs. So for the changeable difference values, the

original h values need to be known in preparation for the decoding process. In this

method, the original LSBs of difference values are collected in EN2 and CN. For each h

in EN2 or CN, LSB (h) will be collected into a bit stream C. An exception is when h = 1

or -2, nothing will be collected, as its original LSB (1 and 0, respectively) could be

determined by the location map.



12

2.2.5 Data Embedding by Replacement

The location map will be losslessly compressed by a JBIG2 compression or run-length

coding. The compressed bit stream is denoted as L. Then L, C, and P are combined

together into one binary bit stream B, where P is payload size. The bit stream B is

embedded into difference values matrix. This process can be explained by:

where bi = 0 or 1. The m is bit length of B. Here C is appended to the end of L, and

append P to the end of C. The bit stream B is embedded into the difference values.

2.2.6 Inverse Integer Transforms

When bit stream B is embedded into difference values, this method uses an inverse

integer transform shown below to calculate new pixel values, so that a new image with

embedding information inside is created. Then the reversible data embedding process is

finished.

2.2.7 Data Embedding Chart Flow

As seen above, only changeable difference values are modified. Non-changeable

difference values and all integer average values are unchanged. For a changeable

difference value, either a new LSB is embedded by difference expansion or its original

LSB is replaced. Thus after embedding, all embedded information is in the LSBs of

changeable difference values. By collecting the LSBs of changeable difference values,

the decoder will be able to recover the embedded bit steam B. After getting the bit stream
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B, decoder can recover original image exactly. This data embedding method based on the

DE technique can be clearly shown by chart Fig 2.3.

Fig 2.3 Data embedding chart flow
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2.3 Decoding and Authentication

Referring to Table 2.1, the embedded bit stream B can be retrieved, by collecting the

LSBs of all changeable difference values. From stream B, the location map stream L, the

original LSBs stream C, and the embedded data (payload) can be decoded. The location

map gives the location information of all expanded difference values and changeable

difference values. For expanded difference values, an integer division by 2 will give back

their original values; for other changeable difference values, their original LSBs can be

restored from the bit stream C. And for the non-changeable difference values, there are

nothing happened on them. After all changeable difference values have been, restored the

original image can be restored exactly.

Sharing with the information from the data embedding process, the decoding and

authentication process has similar working flow as embedding process. It consists of five

steps.

1. Calculating the average and difference values.

2. Creating two disjoint sets of difference values, CH, and NC.

3. Collecting LSBs of all difference values in CH, and forming a binary bit stream B.

4. Decoding the location map from B by JBIG2 decoder.

5. Getting matrix h and recovering the original image.

The process flow chart is shown as Fig 2.4. After getting the original difference

values, together with the average values got from step 1, reversible integer transform to

get original image can be used.



Fig 2.4 Decoding chart flow
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CHAPTER 3

DISCUSSIONS AND RESULTS FROM EMBEDDING METHOD

The reversible data embedding method based on the DE technique is a novel data

embedding method for digital images. It explores the redundancy in digital images to

achieve very high embedding capacity, and at the same time keep the distortion (the

quality degradation on digital images after data embedding) low. Some important

characteristics of this method will be discussed in this chapter. At the same time, this

method is used in some gray level images like "Lena" "Barbara" "Baboon" and "Boat",

and get simulation results.

3.1 Discussions and Analysis

Compared with other reversible data embedding methods, the DE method performs well

for both capacity limit and visual effect. This method is also very flexible for different

payload sizes.

3.1.1 Embedding Capacity Limit

The bit stream B has a bit length of (ILI + ClI  + 1P1), where 1.1 is the bit length or numbers

of elements of a set. From the data-embedding algorithm [1], the total embedding

capacity will be (1EZI + 1EN11 + IEN2I + ICN). So if we use the DE method to

successfully embed some information into an image, there must be

Assume the total number of 1 and —2 in EN2 and CN is N, then

16



Substitute into (3.1),

Then we get

Thus the payload size is upper bounded by the sum of the number of expandable

difference values equal to 0 and -1, other selected expandable difference values and the

number of not selected or not expandable difference value h equal to 1 or —2, minus the

bit length of the location map. From equation (3.4) most of the payload capacity is from

EZ and EN1, which are used for DE in the data embedding process.

3.1.2 Expandable Difference Value Selection

Normally, natural images tend to be continuous and smooth. The correlation between

adjacent pixels is very strong, and the difference values of neighboring pixel values are

usually small. And from the algorithm introduced in the previous chapter, a small

difference value is most likely to be expandable. For example, if the integer average of

two neighboring pixel values is in the range of 34 _..CI __220, and their difference value is

in the range of -34 4, then

for both b = 1 and 0. So in this case the difference value between two-pixel values h must

be expandable. If the integer average of two neighboring pixel values is in the range of 5

49, and their difference value is in the range of -5 ...11 __.5, then

17
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I 2*h + bl 2*1111 + b .2*5 + 1 = 11 .rnin (2(255 - /), 21 + 1)	 (3.6)

for both b = 1 and 0. From a statistical survey, natural grayscale images usually have over

99 percent expandable difference values.

The location map is a one-bit bitmap. It can be efficiently compressed by JBIG2,

the new international standard for lossless compression of bi-level images. JBIG2

supports model-based coding to permit compression ratios up to three times those of the

previous standard for lossless compression. For more detail on JBIG2, we refer to [14].

From the experiment, for any image if all those expandable difference values are

selected to do data embedding, most of values in its location map will be "1". After using

the JBIG2 compressor, a very high compressible rate will be achieved. Normally it will

reach 1:200. For a 1-layer stego-image, this method can get nearly a 0.5-bpp data-

embedding rate, and for multi-layer stego-images, this method can get an even higher

data embedding rate. This will be discussed in the following section.

When some data at a rate no less than 0.5-bpp need to be embedded, some small

differences from the total will be selected to do the data embedding. Here a threshold T,

separating EN into EN1 and EN2, is introduced by

For a payload P, we start with a small threshold T, and then increase T gradually until the

payload size is satisfied.

Please note that with a different threshold T, the location map L also changes, as

does its bits length ILI.
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3.1.3 Multi-Layer Data Embedding

The multi-layer data embedding for this reversible data embedding method can be

applied if the embedding bit rate is more than 0.5-bpp. That means that the reversible

data embedding method can be applied to an image more than once for multiple

embedding.

For an already embedded image, it can be embedded again with another payload.

Even for one payload, the payload can be divided into several parts and use multiple

embedding to embed them. In order to keep a low visual distortion rate, the difference

between two pixels values should not grow too large after data embedding. So a different

pair of pixel values in data embedding step 1 between two continuous data embedding

layers should be selected. A recommended approach is to use a complement pairing. For

example, if the image is embedded with a vertical pair, then a horizontal pair for the next

embedding can be used.

As each embedding has a payload capacity limit less than 0.5-bpp, a multiple

embedding will have a payload capacity limit less than M/2bpp, where M is the number

of embeddings. In practice, the payload capacity limit of each embedding will decrease

gradually, because the redundancy in pixel values becomes less and less.

As reversible data embedding, in order to help the decoder to determine whether

or not it is a multiple embedding and which pair to choose, this method needs to code a

16 bits header and embed it before the location map L. This header can be represented by

H. The bit stream B now becomes
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For the original image (1-layer stego-image), H is set to 0. The pairing pattern of the

original image will have H at the second embedding (2-layer stego-image). The second

embedding will have H at the third embedding (3-layer stego-image), and so on.

During the process of decoding, the B bit stream is extracted from the image. The

first 16 bits in B is the pairing pattern H. After the first 16 bits are extracted, the location

map is decoded, together with average values, reconstruct a restored image, and

authenticate the content. If the content is authentic, H is used as the pairing pattern to

decode the restored image again. The decoding process will continue until H = 0 or when

tampering has been discovered. If H = 0, and no tampering has been discovered during

the whole decoding process, then the final restored image will be exactly the same as the

original image, pixel by pixel, bit by bit.

3.2 Experimental Result from Reversible Data Embedding

Based on the DE technique, the experiments were preformed by embedding and decoding

an actual bit stream to verify the correctness of the algorithm. For test purposes, the

MATLAB function rand() was used to generate pseudo random number, then rounded

them to nearest integers to generate a payload.

The experiment was done on the pictures 512*512 "Lena", 512*512 "Barbara",

512*512 "Baboon", and 512*512 "Boat". The embedded payload size, its corresponding

bit rate, and the peak signal to noise ratio (PSNR) of the embedded image are listed in

Table 3.1, 3.2, 3.3, and 3.4, respectively. The experimental data from Jun Tian were

obtained, who introduced the DE technique into data embedding and proposed the

reversible data embedding method based on the DE technique. Comparisons between my



21

result and Jun Tian's result [1] on pictures 512*512 "Lena" and 512*512 "Barbara" are

listed as Fig 3.1 and Fig 3.2. Here only 1-layer data embedding was considered. A

location map example is given, where black dots mean that parts cannot be used for DE.

It is listed in Fig 3.3. Finally, 4 stego-images based on the DE technique are presented,

512*512 "Lena", 512*512 "Barbara", 512*512 "Baboon", and 512*512 "Boat",

respectively. The comparison between original images and their stego-images are listed

from Fig 3.4 to Fig 3.11, respectively.

Table 3.1 Embedded Payload Size vs. PSNR of Embedded "Lena" Image.

Payload
Size (bits)

39509 52674 71283 87845 100321 112136 123328 128390

Bit Rate

(bpp)
0.1507 0.2009 0.2719 0.3351 0.3827 0.4278 0.4705 0.4898

PSNR
(dB)

44.20 43.47 42.37 41.21 40.08 38.70 37.06 35.94

Table 3.2 Embedded Payload Size vs. PSNR of Embedded "Barbara" Image.

Payload
Size (bits)

25420 36960 50178 57954 71452 95397 111601 129749

Bit Rate

(bpp)
0.097 0.1410 0.1914 0.2211 0.2725 0.3639 0.4257 0.4950

PSNR
(dB)

44.17 42.80 41.09 40.10 38.43 35.35 33.25 31.57

Table 3.3 Embedded Payload Size vs. PSNR of Embedded "Baboon" Image.

Payload
Size (bits)

8569 23060 47360 66570 82287 106415 119728 124121

Bit Rate

(bpp)
0.0327 0.088 0.1807 0.2539 0.3139 0.4059 0.4567 0.4735

PSNR
(dB)

34.96 33.44 31.13 29.45 28.21 26.50 25.60 25.27



Table 3.4 Embedded Payload Size vs. PSNR of Embedded "Boat" Image.

Payload
Size (bits)

9889 33854 60071 85723 108246 118185 128875

Bit Rate

(bpp)
0.0377 0.1291 0.2292 0.3270 0.4129 0.4508 0.4916

PSNR
(dB)

41.93 40.55 39.08 37.52 35.72 34.67 33.30
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Fig 3.1 Capacity vs. Distortion comparison on "Lena"

In Fig 3.1, our simulation results are very close to the result from Jun Tian. Only

when embedding bit rate is above 0.5-bpp, there is a big difference happened. The reason

for that is: from that point, Jun Tian used 2-layer data embedding into "Lena" image, but
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here we only used one-layer data embedding to get the steg-image. Another comparison

on "Barbara" image can be found in Fig3.2.

Fig 3.2 Capacity vs. Distortion comparison on "Barbara"

Fig 3.3 Location map of "Lena" with 87,845 bits (0.34bpp) payload
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Fig 3.4 Original "Lena" image 	 Fig 3.5 Embedded "Lena" with a
payload 129946 bits

Fig 3.6 Original "Barbara" image 	 Fig 3.7 Embedded "Barbara" with a
payload 129749 bits
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Fig 3.8 Original "Baboon" image 	 Fig 3.9 Embedded "Baboon" with a
payload 124121 bits

Fig 3.10 Original "Boat" image 	 Fig 3.11 Embedded "Boat" with a
payload 128875 bits



CHAPTER 4

STEGANALYSIS BASED ON DIFFERENCE MOMENTS

In the previous two chapters, a high capacity, high visual quality, reversible data

embedding method is introduced, which is based on difference expansion. The basic idea

of this kind of data-embedding method is to explore the redundancy in digital image and

compute the difference between two pixel values to embed information. As this

reversible embedding method will only select the small difference value to do

embedding, it gets a good result in keeping distortion at a low level. In order to decode

images correctly after data embedding, this method needs to use the JBIG2 image

compressor to compress a location map and embed it together with message into

difference values. So when decoding, after getting the location map, one can restore the

original image exactly. The results in chapter 3 show this method can get very good

vision performance after data embedding, when using 1-layer data embedding.

4.1 Overview

In recent years, the concept of image steganalysis has been introduced because of the

practical need for detecting the stego-image. Steganalysis is a scientific technology to

decide if a medium carries some hidden message. In counter terrorism work, steganalysis

can also be served as an effective way to judge the security performance of

steganographic techniques. In this chapter, image steganalysis will be discussed, with

special focus on the reversible embedding method introduced in previous two chapters.

26
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From the discussion in previous chapters, when there is a difference expansion

happened in an image, or when there is data embedded in an image, there will be an

obvious change in the difference values between the original images and the stego-

images. Compared with the original image, in the stego-image the difference values

between two neighboring pixels will be enlarged. Making use of this fact, the difference

value was calculated in an image and a 12 dimensional feature vector was obtained for

the steganalysis. After observing the performance, a Bayes classifier is set up for

classification. All of the 1096 images are used in the coreldraw image database [15] for

our extensive experimental work.

4.2 12-D Feature Vector

As discussed previously, steganalysis is a method to decide if an image contains secret

messages. It is also a way to classify a given image into two different categories: the

original image and the stego-image. In this sense, steganalysis is actually a matter of

pattern classification in which a key issue is how to select effective features. Here the

name feature is often used in the pattern recognition literature to denote a descriptor.

4.2.1 Multi-dimensional Vector and Integer Haar Wavelet Transform

As may be evident by now, pattern features or vectors can be generated in numerous

ways. But not all features can be used for pattern classification. Selecting the features on

which to base each component of a pattern vector has a profound influence on the

eventual performance of pattern classification (object recognition). A good feature should

be sensitive to the hidden message while not sensitive to other operations such as

compression. At the same time, the feature should be applicable to all kind of images.
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During the experimental process, it is hardly possible to use one single feature to achieve

a highly correct classification rate. A multi-dimensional (M-D) feature vector should be

used. Each image is a sample point in the M-D feature space. Steganalysis has thus

become a pattern classification method in the M-D feature space.

We have already known the data embedding method is based on difference

expansion. The basic algorithm is an integer Haar wavelet transform, which is also called

a reversible integer transform. The equation can be represented as:

In chapter 2 and 3, this method accomplishes the data embedding mostly by adding one

bit into LSB. So when an image undergoes difference expansion, it will bring some

changes in the difference values in its stego-image. From this point, the integer Haar

wavelet transform can be used to get difference values as feature vectors.

4.2.2 Analysis of Difference Values

From statistical survey, more than 99 percent of difference values in any natural image

can be used for difference expansion. When an image undergoes difference expansion, it

will bring some changes in the difference values. For example, consider the difference

expansion operation below:

If the original difference h equals to 0, after difference expansion it will change into a

new difference h, which equals 0 (when b = 0) or 1 (when b = 1). Similarly, if the
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original difference h equals to -1, after difference expansion it will change into a new

difference h', which will equal -2 (when b = 0) or -1 (when b = 1).

The location map is always embedded first no matter how much message will be

embedded. Nearly all of the small differences, such as where absolute values are less than

or equal to 3, will be used for the difference expansion. From experiment, the obvious

change can be easily observed in the difference values between the original images and

the stego-images, especially for smaller difference values. Some small changes in

difference values after embedding (difference expansion) are listed as Table 4.1.

Table 4.1 Difference Values Comparison Between Original and Stego-images.

Original difference value h Embedded difference value h'

h = 0 h'=Oorh'=1

h = -1 h' = -2 orh'= -1

h = 1 h'=2orh'=3

h = -2 h' = -4 or h'= -3

h =2 h' = 4 or h'= 5

h = -3 h' = -6 or h'= -5

h = 3 h' = 6 or h'= 7

From the table, it can be seen that when a difference expansion method is used to

embed a random stream into an image, there will be some rules that define the

relationship between the original and the embedded difference values. All the differences

whose values equal 0 or 1 after embedding come from original difference h whose values

equal 0. If Num (h =0) is used to represent the total number of original differences h
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whose values equal "0", Num (h '=0) represent the total number of embedded difference

h' whose values equal "0", and Num (h'=1) to represent the total number of embedded

differences h' whose values equal "1", there should be the Equation (4.4).

Num (h=0) = Num (h '=0) + Num (h '=1) (4.4)

And the embedded stream is a random stream, so in an stego-image, Num (h'=0) should

be nearly equal Num (h'=1). The Num (h=0) in an original image is nearly 2 times

compared to the Num (h'=0) in its stego-image. In mathematics, they can be represented

by:

4.2.3 12-D Feature Vectors Selection for Steganalysis

In our proposed system, an integer Haar wavelet transform is performed on the image

under analysis. After getting the difference values, we will classify them into 12 groups,

and calculate the total number in each group. Num (h=0), Num (h=1), Num (h=-1), Num
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(h=2), Num (h=-2), Num (h=3), Num (h=-3), Num (4__<1111_ 9), Num (10_111( 20), Num

(21_. 'Ilk< 30), Num (31 IhI< 40) and Num (41_<. Ihl 255) are obtained. If Num (h) is

used to represent the total number of all differences, then Rate (Num (h=0)) can be used

to represent the ratio of the difference whose value equals "0" to whole differences. In

mathematics, it can be shown by below equation

Rate (Num (h=0)) = Num (h=0) I Num (h) (4.15)

Similarly, Rate (Num (h=1)), Rate (Num (h=-1)), Rate (Num (h=2)), Rate (Num (h=-2)),

Rate (Num (h =3)), Rate (Num (h=-3)), Rate (Num (41h1. 9)), Rate (Num (10_ ihl 20)),

Rate (Num (21... Ihl_<. 30)), Rate (Num (31 Ihl__ 40)) and Rate (Num (41<IhI< . 255)) are

gotten respectively. Those 12 feature ratios are used to build up 12-D feature vector for

steganalysis.

Next how to use the proposed 12-D feature vector to classify original images and

stego-images is discussed.

4.3 Bayes Classifier

Besides feature selection, the design of the classifier is another key element in pattern

recognition. It affects the classification performance in terms of successful classification

rate as well as computational complexity, and hence, implementation speed. Therefore,

the classifier plays an important role in steganalysis. In this section, a Bayes classifier

[16] is introduced because the embedded data basically follows a Gaussian distribution or

can be approximated by a Gaussian distribution. The foundational knowledge of the

Bayes classifier is given and its application in Gaussian pattern classes is present.
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4.3.1 Foundation

The probability that an image x comes from an original image to is denoted p(ω1 I x) . If

the pattern classifier decides that x came from stego-image w 2 when it actually came

from original image co l , it incurs a loss. So the loss incurred in assigning x to stego-

image pattern w2 is

If the pattern classifier decides that x came from original image co, when it actually came

from stego-image ω2, it incurs a loss. So the average loss incurred in assigning x to

stego-image co is

From basic probability theory, p(A I B) =[p(A)p(B I A)]I p(B) . Using this expression,

equations (4.16) and (4.17) are written in the form

where i = 1 or 2, j = 1 or 2 and i#j. Because 1/ p(x) is positive and common to r1 (x) and

r2 (x), it can be dropped from equation (4.18) without affecting the relative order of these

functions from the smallest to largest value. The expression for the average loss then

reduces to
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The classifier has 2 possible classes to choose from for an unknown pattern (original

image or stego-image). If it computes r 1 (x) and r2 (x) for each pattern x and assigns the

pattern to the class with the smallest loss, the total average loss with respect to all

decisions will be minimum. The classifier that minimizes the total average loss is called

the Bayes classifier. Thus the Bayes classifier assigns an unknown pattern x to class co; if

ri (x)<rj (x) . In other words, x is assigned to class cot if

where i = 1 or 2, j = 1 or 2 and i#j. And then we see that the Bayes classifier for a 0-1

loss function is nothing more than computation of decision functions of the form

where a pattern vector x is assigned to the class whose decision function yields the largest

numerical value.

4.3.2 Bayes Classifier for Gaussian Pattern Classes

Here we focus on two pattern classes governed by Gaussian densities, with means m 1 and

m 2 and standard deviations a l and σ2 , respectively. From equation (4.21) the Bayes

decision functions have the form
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for j = 1 or 2. In the n-dimensional case, the Gaussian density of the vectors in the jth

pattern class has the form

where each density is specified completely by its mean vector m j  and covariance matrix

C1 , which are defined as

and

where E1 {•} denotes the expected value of the argument over the patterns of class ωj  . In

equation (4.24), n is the dimensionality of the pattern vectors, and I C3 I is the

determinant of the matrix Cj . Approximating the expected value Ej by the average value

of the quantities in question yields an estimate of the mean vector and covariance matrix:

where N i is the number of pattern vectors from class co] , and the summation is taken

over these vectors.
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According to Equation (4.21) the Bayes decision functions for class ωi  is

This expression is same as Equation (4.21) in terms of classification performance because

the logarithm is a monotonically increasing function. Substituting Equation (4.24) into

Equation (4.29) yields

And the term 2—
n

 In 27-c is the same for all classes, so it can be eliminated from Equation

(4.30), which then becomes

for j = 1, 2,..., W. Equation (4.31) represents the Bayes decision functions for Gaussian

pattern classes under the condition of a 0-1-loss function. Here x can be represented by

the feature vector from an image.

4.3.3 Bayes Classifier Decision for Steganalysis

A Bayes classifier is used in our steganalysis. There are two classes, the original images

and the stego-images, and because the term In P(ωj ) is the same for both the original

images class and the stego-images class, it can be eliminated from Equation (4.31), which

then becomes
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for j =1, 2. If a features vector is set up as mentioned in the previous section, the

covariance matrix for either the original images or the stego-images will be symmetric.

Then the equation (4.32) becomes

for j = 1,2. Here "1" means original images class, "2" means stego-images class. After

calculating Equation (4.33), the Bayes classifier will assign an image to the original class,

if d 1 (x) d2 (x) , otherwise it will assign this image to the stego-image.



CHAPTER 5

EXPERIMENTAL RESULTS

Experiments were performed based on the features vector and the Bayes classifier. A

vertical pair embedding method was used on 100 512*512 gray level image. After

certified the steganalysis method was efficient, the completed algorithm was set up.

There are 4 different ways to perform data embedding based on the difference expansion

method. So the data was embedded by pairing vertical, horizontal, clockwise diagonal

and counter clockwise diagonal, respectively. A large number of images should be

amenable to steganalysis if the steganalysis makes sense and is used practically.

Therefore the CorelDraw image database was used as the experimental image set. This

database contains 1096 images in total, including images of leisure activities, places,

animals, foods, scenery, architecture and so on. In the experiments 896 images were

randomly chosen for training purposes. The remaining 200 images were used for testing

purposes.

5.1 Vertical Pairing Test

5.1.1 Data Training

In order to test the features vector and Bayes classier, 100 512*512 images were selected,

including images of "Lena", "Barbara", "Baboon", "Boat", and so on. Based on the

difference expansion method, vertical pairing was picked up to embed random data into

the images. Here only 1- layer data embedding was considered. The multi-layer case will

be discussed later. After getting 100 stego-images, 70 original images and 70

37
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corresponding stego-images were randomly selected to train the data. The process of data

training is as follows:

1. Setting up 70 original images and 70 stego-images for training.

2. In the 140-image training set, using the method mentioned in the previous chapter
to set up a 12-D feature vector for every original image and every stego-image,
respectively.

3. In those two feature vector groups, calculating the mean features vector m1 of the
original image and the mean features vector m2 of the stego-image, respectively. In
order to simplify the calculation, changing the features vector m1 and m2 into natural
logarithm form.

4. Using the mean features vector to calculate the covariance matrix C1 of the
original image and the covariance matrix C2 of the stego-image, respectively. The
covariance matrices C1 and C2 are 12*12 symmetric matrices, which will be used in
the Bayes classifier equation later.

5. Bringing m1, m2, C1 and C2 into Bayes classifier equation (4.33)

Below equations were obtained.

and

Here equation (5.1) and equation (5.2) are called testing equations. Assuming there is an

image with the feature vector x, we bring x into equation (5.1) and (5.2). If

d 1 (x) >  d 2 (x) , the Bayes classifier will assign this feature vector to the original class,

otherwise, it will assign it to the embedding class. The details about the decision-making

will be discussed in the next section.
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5.1.2 Classification Rate

From previous chapter, there are four pairing ways to calculate difference value to finish

data embedding, vertical pairing, horizontal pairing, clockwise diagonal pairing and

counterclockwise diagonal pairing, respectively.

In this experiment, vertical pairing was used. In order to efficiently separate

original images and embedding, during testing the same pairing way was also used as the

process of data embedding to calculate difference value between two continuous pixel

values, further get 12-D feature vector of each testing image. 30 original images and 30

stego-images were set up as testing set. So there are totally 30 12-D original feature

vectors and 30 12-D embedding feature vectors. Bring those testing vectors into testing

equation (5.1) and (5.2) respectively. If d 1 (x) d 2 (x), the Bayes classifier will say the

vector belong to original image, and the corresponding image is assigned to original

image. Otherwise, assign the image to stego-image. Compared this result with the

practical result (here we have already known which one is original image and which one

is stego-image.). The correct classification rate was gotten. After tested 30 original

images and 30 stego-images, the correct classification rate is shown in Table 5.1.

Table 5.1 Correct Classification Rate (Embedding Bit Rate from 0.01bpp to 0.5bpp)

Test 60 Images

Errors 1

Correct Classification Rate 98.33 %

Original Image Stego-Image

Test 30 30

Errors 0 1

Correct Classification Rate 100 % 96.67 %



40

The image was checked where the error happened. This image's embedding bit

rate is only 0.0153-bpp. The purpose of this experiment is to certify the efficiency of the

feature selection and the Bayes classifier for steganalysis. The experiment result showed

our steganalysis method based on a 12-D difference feature vector and Bayes classifier is

efficient for the data-embedding algorithm using difference expansion.

5.2 Testing Based on Completed Algorithm

During the process of data embedding, there are four ways to calculate the difference

value. These are vertical pairing, horizontal pairing, clockwise diagonal pairing and

counterclockwise diagonal pairing, respectively. Normally it cannot be known which

pairing way is used to do the difference expansion when the image is a stego-image. So

in order to make the steganalysis algorithm complete, all possible case must be

considered, which means we not only consider four pairing case, vertical pairing,

horizontal pairing, clockwise diagonal pairing and counterclockwise diagonal pairing, but

also need to consider the multi-layer data embedding case.

5.2.1 Completed Algorithm

Using a 1-layer data embedding algorithm, there are four ways to embed data into an

image. These are vertical pairing, horizontal pairing, clockwise diagonal pairing and

counterclockwise diagonal pairing. In the previous section, the efficiency of the 12-D

feature selection and Bayes classifier for the vertical pairing case were certified.

Accordingly, the same idea can be used in other cases and the other three classifiers can

be set up. Then four different classifiers were gotten for four different pairing cases,
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Fig 5.1 Completed algorithm flow
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vertical classifier, horizontal classifier, clockwise diagonal classifier and

counterclockwise diagonal classifier, respectively. They were named as classifier 1,

classifier 2, classifier 3 and classifier 4, respectively. Assuming there was an image that

needs to be tested. Four different pair methods can be used to get four different 12-D

feature vectors, and then they were brought into the corresponding classifier. For

example, the 12-D feature vector obtained using vertical pairing will be put into classifier

1 (vertical classifier), and the feature vector obtained using horizontal pairing will be put

into classifier 2 (horizontal classifier), and so on. The final decision was made by using

the results from all four different classifiers. The testing image will be assign to original

image class only when all results from four different classifiers show this image to be the

original image. Otherwise, it will be assigned to the stego-image class. The process of

decision-making can be clearly shown in figure 5.1.

5.2.2 Data Training

To develop the complete algorithm, vertical pairing training, horizontal pairing training,

clockwise diagonal pairing training and counterclockwise diagonal pairing training were

set up respectively.

This time the CorelDraw image database was used for the experimental image set.

This database contains 1096 images in total, including images of leisure activities, places,

animals, foods, scenery, architecture and so on. In the experiments 300 images were

selected randomly to do vertical data embedding, 300 images to do horizontal data

embedding, 300 images to do clockwise diagonal data embedding, and 196 images to do

counterclockwise diagonal data embedding. Then 250 original images and 250

corresponding vertical stego-images were used for vertical training, 250 original images
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and 250 corresponding horizontal stego-images for horizontal training, 250 original

images and 250 corresponding clockwise diagonal stego-images for clockwise diagonal

training, and 146 original images and 146 corresponding counterclockwise diagonal

stego-images for counterclockwise diagonal training. The remaining 200 original images

and 200 stego-images were used for testing. The process of data training is as below:

1. Set up 896 original images, 250 vertical stego-images, 250 horizontal stego-
images 250 clockwise diagonal stego-images and 146 counterclockwise diagonal
stego-images. Build up 8 image groups for training, including vertical original
and stego-images groups, horizontal original and stego-images groups, clockwise
diagonal original and stego-images groups, and counterclockwise diagonal
original and stego-images groups, respectively.

2. In those 8 groups, use the method mentioned in previous chapter to set up 12-D
feature vector for every image in each group, respectively.

3. In those 8 groups, calculate the feature mean vector m1 of the vertical original
images and the feature mean vector m2 of the vertical stego-images, the feature
mean vector m3 of the horizontal original images and the feature mean vector ma
of the horizontal stego-images, the feature mean vector ms of the clockwise
diagonal original images and feature mean vector m6 of clockwise diagonal stego-
images, and the feature mean vector I117 of the counterclockwise diagonal original
images and the feature mean vector ms of the counterclockwise diagonal stego-
images respectively. In order to simplify the calculation, change the feature mean
vectors ml, m2, m3, I114, ms , m6, 1117 and ms to their natural logarithm forms.

4. Using those mean feature vector to calculate the corresponding covariance matrix
CI, C2, C3, C4, CS, C6, C7 and C8 respectively.

5. Bring m1, m2, C1 and C2 into the Bayes classifier equation (4.33) to set up the
vertical classifier. Similarly, use M3, I114, C3, and C4 to set up horizontal classifier,
ms, I116, Cs and C6 to set up clockwise diagonal classifier, and 1117, 1118, C7 and Cs
to set up counterclockwise diagonal classifier.

5.2.3 Training Results

The training result comparisons between the12-D feature mean vector of the original

images and the 12-D feature mean vector of the stego-images are shown in Table 5.2,

Table 5.3, Table 5.4 and Table 5.5, respectively.
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Table 5.2 Vertical Pairing Training Result Comparison Between 12-D Feature Mean
Vector of Original Images and 12-D Feature Mean Vector of Its Stego-Images.

Feature
1

Feature
2

Feature
3

Feature
4

Feature
5

Feature
6

Vertical Pairing Feature Mean
Vector of Original Images -2.0338 -2.6496 -2.6374 -3.0927 -3.0985 -3.3979

Vertical Pairing Feature Mean
Vector of Stego-Images -2.7246 -2.729 -3.3319 -3.3429 -3.329 -3.3415

Feature
7

Feature
8

Feature
 9

Feature
10

Feature
11

Feature
12

Vertical Pairing Feature Mean
Vector of Original Images -3.4148 -1.5746 -2.0923 -3.2398 -4.0268 -3.9501

Vertical Pairing Feature Mean
Vector of Stego-Images -3.791 -1.6164 -1.8413 -2.418 -2.8474 -3.15

Table 5.3 Horizontal Pairing Training Result Comparison Between 12-D Feature Mean
Vector of Original Images and 12-D Feature Mean Vector of Its Stego-Images.

Feature
1

Feature
2

Feature
3

Feature
4

Feature
5

Feature
6

Horizontal Pairing Feature Mean
Vector of Original Images -1.9016 -2.4297 -2.4307 -2.9455 -2.948 -3.321

Horizontal Pairing Feature Mean
Vector of Stego-Images -2.5932 -2.5955 -3.1257 -3.1186 -3.1214 -3.1231

Feature
7

Feature
8

Feature
9

Feature
10

Feature
11

Feature
12

Horizontal Pairing Feature Mean
Vector of Original Images -3.324 -1.5984 -2.1661 -3.2449 -3.9466 -3.6279

Horizontal Pairing Feature Mean
Vector of Stego-Images -3.6399 -1.5282 -1.8808 -2.4826 -2.8811 -3.0134
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Table 5.4 Clockwise Diagonal Pairing Training Result Comparison Between 12-D
Feature Mean Vector of Original Images and 12-D Feature Mean Vector of Its Stego-
Images.

Feature
1

Feature
2

Feature
3

Feature
4

Feature
5

Feature
6

Clockwise Diagonal Pairing Feature
Mean Vector of Original Images -2.0744 -2.6208 -2.5983 -3.0945 -3.0842 -3.4265

Clockwise Diagonal Pairing Feature
Mean Vector of Stego-Images -2.7655 -2.7695 -3.292 -3.3119 -3.2909 -3.314

Feature
7

Feature
8

Feature
9

Feature
10

Feature
11

Feature
12

Clockwise Diagonal Pairing Feature
Mean Vector of Original Images -3.4316 -1.6015 -2.041 -3.0422 -3.6993 -3.2563

Clockwise Diagonal Pairing Feature
Mean Vector of Stego-Images -3.7782 -1.6315 -1.8631 -2.3431 -2.6759 -2.7111

Table 5.5 Counterclockwise Diagonal Pairing Training Result Comparison Between 12-
D Feature Mean Vector of Original Images and 12-D Feature Mean Vector of Its Stego-
Images.

Feature
1

Feature
2

Feature
3

Feature
4

Feature
5

Feature
6

Counterclockwise Diagonal Pairing
Feature Mean Vector of Original Images

_2 -2.5694 -2.5778 -3.0698 -3.0562 -3.4307

Counterclockwise Diagonal Pairing
Feature Mean Vector of Stego-Images _28418 -2.8437 -3.2733 -3.2598 -3.2682 -3.2635

Feature
7

Feature
8

Feature
9

Feature
10

Feature
11

Feature
12

Counterclockwise Diagonal Pairing
Feature Mean Vector of Original Images _3.4089 -1.6205 -2.0822 -3.0539 -3.6673 -3.0931

Counterclockwise Diagonal Pairing
Feature Mean Vector of Stego-Images

_3 -1.619 -1.8891 -2.3769 -2.6941 -2.6258
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5.2.4 Classification Rate

After setting up four classifiers for the completed algorithm, we tested 200 original

images and 200 corresponding stego-images. Four different 12-D feature vectors of each

image were initially calculated using four different pair ways, then they were brought into

corresponding classifiers to judge whether it belongs to the original image class or to the

stego-image class. When this result was compared with the practical result, the correct

classification rate 99.75% was obtained as shown in Table 5.6. The completed algorithm

is efficient and accurate.

Table 5.6 Completed Algorithm Correct Classification Rate (Embedding Bit Rate from
0.01bpp to 0.5bpp).

Test 400 Images
Errors 1
Correct

Classification Rate
99.75

 %

Original
Images

Vertical
Stego-
Images

Horizontal
Stego-
Images

Clockwise
Diagonal

Stego-
Images

Counter-
Clockwise
Diagonal

Stego-
Images

Test 200 50 50 50 50
Errors 1 0 0 0 0
Correct

Classification Rate
99.5 % 100 % 100 % 100 % 100 %

5.2.5 Discussion of Multi-Layer Case

From chapter 3, the reversible data embedding method based on difference expansion can

embed data in multi-layer way. It is necessary for us to further analyze the multi-layer

data embedding case to make steganalysis method complete.
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Although the multi-layer stego-image will be a little different from a 1-layer

stego-image, like the 1-layer data embedding case, after data embedding the difference

between two pixel values is enlarged compared with original image. From the analysis in

the previous section, the steganalysis method focused on this change in difference value,

so the completed algorithm obtained from the 1-layer case will still work in the multi-

layer case.

12 original images and 12 two-layer and three-layer stego-images were set up to

certificate this point test. The classification rate was 100 percent.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In chapter 2 and chapter 3 of this thesis, a low computational complexity, multi-layer

reversible data-embedding algorithm was introduced for digital images. A noticeable

difference between this method and other methods is that this method does not need to

compress the original values of the embedding area. Due to its hierarchical structure and

efficient embedding, both the embedding capacity and visual quality of embedded images

are among the best in the literature. In chapter 4 and chapter 5, an efficient steganalysis

system was proposed to classify the DE stego-images from the original images. The

difference between two neighboring pixel values in an image was calculated, and an M-

dimensional (currently M=l2) feature vector was set up. A Bayes classifier in this system

was built up for decision-making. Extensive experimental work demonstrated that the

steganalysis system is effective for separating the DE stego-images from the original

images. The correct selection rate was 99.75%.

6.2 Future Work

In this thesis, the steganalysis system was focused on differentiating the stego-images

generated by the DE scheme from the original images. Currently there are some other

reversible data embedding methods. There are also some lossy data embedding methods.

For future work, many more image data embedding algorithms will be

investigated and tested. The feature set will be improved in order to achieve a higher

48
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correct detection rate for other data embedding cases. We will also investigate if we

should increase dimensionality and how to optimize that. In addition, further

investigation on more powerful classifiers will be conducted in order to enhance the

performance. Our final objective is to set up a steganalysis system that can blindly detect

stego-images from the original images with a high and reliable success rate and that can

handle various images and data embedding algorithms.
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