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ABSTRACT

NON-LINEAR DIGITAL CONTROL OF A MCKIBBEN
MUSCLE SYSTEM

by
Surinkumar Patel

McKibben muscles are pneumatic actuators that have potential application in the

rehabilitation of persons with physical impairments. These actuators have been known to

exhibit similarities in human musculoskeletal systems. In order to better understand and

improve the closed — loop control of these pneumatic muscles, a physical joint model was

constructed with an agonist and an antagonist muscle operating under non-linear control.

With the use of LabVIEW software, compliant McKibben air muscles and Flock-of-Birds

sensor, the author was able to implement and compare a standard bang-bang controller

and experimental non-linear digital Proportional (P) controller. The feedback mechanism

is based on the input given from Flock-of-Birds sensor to achieve a desired position.

The results show the expected instability of the bang-bang controller, and confirm

the superiority of the non-linear proportional method in achieving rapid and smooth

movement of the joint from one target position to the next.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this Master's thesis is to present a working model of a biologically

inspired robotic joint utilizing agonist and antagonist McKibben muscles under the non-

linear control of a digital feedback system. Proportional (P) control via non-linear pulse

width modulation (PWM) techniques is proposed for optimum results.

The experimental approach as well as a conventional Bang-Bang control method

were evaluated and different fixed perturbations were exhibited by the system. The data

from the joint angle sensor used in this model were determined to provide adequate

feedback for achieving integration with the McKibben air muscles. The control of air

pressure to each muscle was established through the reading of the Flock-of-birds sensor.

The PWM is introduced to add as a powerful technique to control varying air flow

via tri-state valves using digital outputs from the computer. For the Proportional (P)

control method, the advantages of better performance and stability are measured over the

Bang-Bang control method. A LabVIEW program is introduced to incorporate a non-

linear digital proportional control.

1.2 Background Information

Robot motion has often been compared to human motion. Human actions consist of

highly non-linear elements such as multiple degree of freedom joints, muscles, ligaments

and sensory organs [21]. Furthermore, the system has kinematics and actuator
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redundancies. Robot movement takes on a much simpler form, which incorporates a

trajectory planner algorithm and position feedback control [2]. In an effort to better

understand muscle activity, it is important to note how muscle activation occurs from a

biological viewpoint. The smallest subunit that can be controlled is called a motor unit

because it is innervated separately by a motor axon. Neurologically the motor unit

consists of a synaptic junction in the ventral root of the spinal cord, a motor axon, and a

motor end plate in the muscle fibers [1]. Under the control of the motor unit are as few as

three muscle fibers or as many as 2000, depending on the fineness of the control required.

A muscle fiber is about 100 jim in diameter and consists of fibrils about 1 gm in

diameter. Fibrils in turn consists of filaments about 100 A in diameter.

In the figure below, the darker and wider myosin protein bands are interlaced with

the lighter and smaller actin protein bands. The space between them consists of a

crossbridge structure, and it is here that the tension is created and shortening or

lengthening takes place. The actin filaments are composed of two strands of protein that

are woven together as one. The actin filaments are anchored to Z lines that make the

boundaries of the functional unit of muscle contraction called the sarcomere. There are

many sarcomeres in a muscle fiber and Z lines are continuous across muscle fibers [4].

Figure 1.1 A-Band, I-Band and Z line.



Figure 1.2 Myofibril structure.

Muscle spindles are important proprioceptors. Muscle spindles are located within

the belly of muscles and run in parallel with the main muscle fibers. The spindle senses

muscle length and changes in length. It has sensory nerve terminals whose discharge rate

increases as the sensory ending is stretched. This nerve terminal is known as the

annulospiral ending, so named because it is composed of a set of rings in a spiral

configuration. These terminals are wrapped around specialized muscle fibers that belongs

to the muscle spindle (Intrafusal Fibers) and are quite separate from the fibers that make

up the bulk of the muscle (Extrafusal Fibers) [3]. Stretching a spindle fiber initiates a

volley of impulses in the sensory neuron (called an "I-a" neuron) attached to it. This I-a

neuron contains velocity information. The impulses travel along the sensory axon to the

spinal cord where they form several kinds of synapses.

Some of the branches of the I-a axons synapse directly with alpha motor neurons.

These carry impulses back to the same muscle causing it to contract in a reflex loop.
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Some of the branches of the I-a axons synapse with inhibitory interneurons in the

spinal cord. These, in turn, synapse with motor neurons leading back to the antagonistic

muscle, otherwise known as flexor. By inhibiting the flexor, these interneurons aid

contraction of the extensor, or the agonist. Still other branches of the I-a axons synapse

with interneurons leading to brain centers, e.g., the cerebellum that coordinates body

movements.

Skeletal muscle makes up most of the body's muscle and does not contract

without nervous stimulation [1]. During contraction, the myosin thick filaments attach to

the actin thin filaments by forming crossbridges. The thick filaments pull the thin

filaments past them, making the sarcomere shorter. In a muscle fiber, the signal for

contraction is synchronized over the entire fiber so that all of the myofibrils that make up

the sarcomere shorten simultaneously [4]. There are two structures in the grooves of each

thin filament that enable the thin filaments to slide along the thick ones: a long rod-like

protein called tropomyosin and a shorter bread-like protein complex called troponin.

Troponin and tropomyosin are the molecular switches that control the interaction of actin

and myosin during contraction.

In order to better understand and replicate the complex control of the central

nervous system (CNS), investigation was required into several musculoskeletal systems

models that biomedical researchers developed. These systems are then transformed from

highly non-linear into linear to give the ability to pursue a quantitative approach to

investigate the CNS and the peripheral system. Although much consideration has been

given to the individual components of these systems, little research has examined their

contribution to system as a whole. From a control-engineering viewpoint, the author is

only interested in the control of simple positioning tasks within single degree of freedom.
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1.3 Summary

In this experiment, the physical model is constructed in a manner that minimizes the

effect of non-linear properties. Examination of a single degree-of-freedom (DOF)

movement, and limited range of motion enable optimization of feedback loops to achieve

stability. A block diagram of the whole system is shown in Figure 1.3.

Figure 1.3 Block diagram of whole system.
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The apparatus includes a pair of McKibben pneumatic muscles connected in

agonist/antagonist fashion about a single joint. The control of movement in this model

requires co-activation of agonist and antagonist muscles. This is done by applying a force

via one muscle to get the joint moving, and turning on the other muscle to act as a brake

to slow the joint to achieve the desired angle. Although co-activation was previously

executed through the Bang-Bang control method (23), further investigation was needed to

increase the overall stability. Pulse width modulation technique used to produce

proportional controller.



CHAPTER 2

COMPONENT INTEGRATION

Many elements were included in constructing this single joint air muscle model. The

System includes two McKibben AM-02 air muscles and a 5 hp compressor to emulate

agonist and antagonist muscle activation. The digital control of the air pressure to the two

air muscles is accomplished by four Mead Fluid Dynamics isonic two-way solenoid

valves, which were modified to three-way control in order to maintain position. Flock of

Birds from the Ascension Technology Corporation (ATC) is used as a motion tracking

system. The sensor of the FOB system is fixed at the wrist of the arm. The FOB

simultaneously tracks the position and orientation of the sensor with respect to the

transmitter.

The continuous streams of position data are captured for the feedback. The joint

model also requires the use of four digital outputs to trigger the on/off state of the

pneumatic valves. Control of the pneumatic valves was accomplished through the use of

National Instruments (NI) LabVIEW software v.6i and a NI- DAQCard-AI-16E-4 data

acquisition device. A custom current amplifying circuit interfaces the DAQCard to the

valves. The power requirements were supplied by a separate continuous 5V DC

amplifier. In this chapter, the joint model composition, component limitations and effects

on stability are explored.

7
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2.1 McKibben Air Muscles

The McKibben pneumatic artificial muscle was invented in 1950s by physician Joseph L.

Mckibben to motorize pneumatic arm orthotics to help control disabled hands. The

Bridgestone Rubber Company of Japan has commercialized them for robotic

applications, and they were re-engineered by Prof Jack Winters for construction of

biomechanically realistic skeletal models [8]. The Air Muscle is an extraordinary actuator

that is small, light and simple. It is soft, has no stiction, and is easily controllable and

exceptionally powerful. The Air Muscle consists of a rubber tube covered in tough plastic

netting, which shortens in length like a human muscle when inflated with compressed air

at low pressure. Air Muscles are normally operated using compressed air in the 0-60psi

(0-4 bar) range.

Figure 2.1 McKibben air muscle.
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Several companies (Shadow, Images SI, Kinetic Muscle Inc) market a variety of

sizes of air muscles [9]. Many users fabricate custom versions, as they are quite simple to

construct. The one, which used in this project is 20 mm in diameter and weight is

approximately 10 grams. The Image SI Air Muscle is a simple yet powerful device for

providing a pulling force. It behaves in a very similar way to a biological muscle. When

actuated with a supply of compressed air, they contract by up to 40% of its original

length. The force it provides decreases as it contracts, and the first few percent of the

contraction are very powerful indeed.

Air Muscle Construction

The Core of an Air Muscle is a rubber tube....

Figure 2.2 Core of air muscle.

...wrapped in a tough helical plastic weave....

Figure 2.3 Air muscle plastic weave.

.... which shortens in a scissor action when pulled out, just like a Chinese finger puzzle.
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As the rubber tube fills with air it is forced to expand. A small Air Muscle, at just

6mm in diameter, has the strength, speed and fine stroke of a finger muscle in a human

hand [9]. An Air Muscle 30mm in diameter is capable of lifting more than 70 Kg at a

pressure of only four bar, while a large muscle (50mm) has enough power to pull down a

brick wall.

When the internal bladder is pressurized, it expands like a balloon and presses

outward against the external plastic weave. The cylindrical shape of the inner tube allows

helical weave to act as a pantograph and converts circumferential pressure forces into

axial contraction force (Figure 2.4).

Properties of Air Muscle

The Air Muscle behaves in a different manner to the pneumatic cylinder or other

actuator. As the Air Muscle contracts under constant pressure, pulling force produced

between the endpoints decreases. The maximum possible force at a given pressure is

obtained when the Air Muscle is pulled out as far as possible. If the Air Muscle is not

taut, then it will not yield its full force [9]. At a constant pressure, the curve of the Force

against Length is shown in Figure 2.4.
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Figure 2.4 Force-Length curve.

The relationships between tension, length, velocity and activation are major

characteristics of actuators, which vary greatly from type to type. Human skeletal

muscles also have its own particular characteristics: for example, the convex shape active

tension-length relationship, the non-linear passive tension-length relationship, and the

hyperbolic tension-velocity relationship. Each of these properties is also a function of

activation level. The air muscles used in this experiment measure 210 mm in length. The

diameter is 20 mm and the muscle can pull a load of 45 lbs. at the maximum 50psi

pressure.

2.2 Flock of Birds Sensor

The motion tracking system, Flock of Birds sensor was invented by the company

called Ascension Technology Corporation (ATC). The Flock of Birds (FOB) is a six

degrees-of-freedom measuring device that can be configured to simultaneously track the
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position and orientation of multiple sensors by a transmitter. Each sensor is capable of

making up to 144 measurements per second of its position and orientation when the

sensor is located within ± 4 feet of its transmitter. An optional extended range transmitter

increases this operating range to ± 8 feet. The FOB works by transmitting a pulsed DC

magnetic field that is simultaneously measured by all sensors in the Flock. From the

measured magnetic field characteristics, each sensor independently computes its position

and orientation and makes this information available to your host computer [11].

An FOB consists of one or more electronic units or extended range transmitter

controllers interconnected via a Fast Bird Bus (FBB). To increase the Flock size, an

additional Bird unit must be plugged into the FBB for each additional sensor. Because

each bird attached to the bus has its own independent computer , the FOB can

simultaneously track each sensor, providing up to 144 measurements per second from

each. The Flock can be configured to track from one to four sensors simultaneously with

one or more RS-232 interfaces to a host computer [10]. The actual physical components

of the FOB used for this model is shown in Figure 2.5. The Table 2.1 gives the name of

component corresponding to Figure 2.5.



Figure 2.5 Flock of Birds sensor.
Source: Ascension Technology Corporation.

Table 2.1 Components of Flock of Birds Sensor

Notation in Figure 2.5 Component

A Electronics Unit

B Bird Sensor

C Transmitter

Each Bird unit in the Flock contains two independent serial interfaces. The first

interface is for communications between the host computer and the FOBs. We may

configure this interface as a full duplex RS-232C interface or a half duplex RS422/485

interface. The second interface is a dedicated RS 485 interface for communications

between the flock members. The user and intra-flock RS422/485 buses are generally

13
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called the Fast Bird Bus. The host computer may utilize either a single or multiple

RS232/422/485 interfaces to command and receive data from all Bird units. The host can

send commands and receive data from any individual Bird unit because each Bird unit is

assigned a unique address on the FBB via back-panel dipswitches [11]. The FOBS can be

configured to suit many different applications - from standalone unit with a single

transmitter and sensor to more complex configurations consisting of various

combinations of transmitters and sensors. The Figure 2.6 below shows the block diagram

of the standalone Flock of Birds configuration set up, a single Bird unit with its own

transmitter and sensor using the RS232 interfaces, used for this thesis.

Figure 2.6 FOB set up for single Bird sensor interface to host computer.
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The main important precaution we have to take is the location of electronics

controller unit, transmitter and Bird sensor. Generally, the electronics controller unit is

not located on top of or under other electronic equipment that is not shielded. The

transmitter should be mounted on a non-metallic surface such as wood or plastic, using

non-metallic bolts or 300 series stainless steel bolts. It also may be mounted on the top

front edge of the electronics controller unit. Do not mount the transmitter on the floor

(concrete included), ceiling, or walls because these all contain metal or may have large

metal objects directly on their opposite side. Because the transmitter generates magnetic

fields, it may interfere with computer's display, causing image bending, jitter or color

distortion. The Bird sensor should also be mounted on a non-metallic surface as wood or

plastic. It should not be located near power cords, power supplies, or other low-frequency

current-generating devices. Their emanations will be picked up by the sensor and

converted into noise on the output position and orientation measurements [11].

In this thesis, the Bird is operated in the Normal Addressing mode. On the back

panel of each Bird unit there is a dipswitch that must be set to select the baud rate, unit

address, and other functions. Whenever you change the dipswitch settings, you must

toggle the Bird's FLY/STDBY switch to STDBY and then back to FLY for new setting

to be recognized by the system. The technical and physical specifications of FOB unit are

introduced in Appendix A. The Dipswitch Settings for the normal address mode is shown

in Appendix B.

The Dipswitches settings, which are used particular for this model setup is shown

in the Table 2.2.
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Table 2.2 Dipswitch Settings of Flock of Birds Sensor

Dip Switch 1 2 3 4 5 6 7 8

Setting (ON/OFF) ON ON ON OFF OFF OFF OFF OFF

2.3 Transistor Circuit

A digital input/output (I/O) block is used to transmit the signal to the four solenoid

valves. In order to accomplish this task, four digital lines must transmit a signal from the

computer to activate a high logic "one" state or a low logic "zero" state [121 The digital

values are produced by a LabVIEW program. The digital I/O circuit includes N-P-N

transistors, different value resisters and 1/2 watt diodes to provide a means of switching

current to the valves since the data acquisition (DAQ) card does not produce sufficient

output current. The current draw required to turn the valves is 263mA, which discussed in

next section. The Figure 2.7 shows the connection on the transistor power amplifier

circuit board.
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Figure 2.7 Transistor power amplifier circuit board.

The transistor driver subsystem is an electronic switch. The output signal from the

transistor has a much larger current than that of the input signal up to 100mA. The

transistor driver circuit uses an NPN transistor, which has three legs known as the base,

emitter and collector. The Figure 2.8 shows the schematic diagram of the transistor,

which is used in this thesis. The job of the transistor is to allow the small amount of

current that enters its 'base' terminal to control the amount of current flowing from its

`collector' terminal to its 'emitter' terminal [15]. When the voltage between the base and

the emitter is at least 700mV, a small current flowing into the base will cause a much

larger current to flow from collector to the emitter.



Figure 2.8 Motorola P2N2222A transistor.

The transistor gain can be calculated as follows:

Junction transistors consist of two junctions made from N-type and p-type

semiconductor materials and are called bipolar transistor. Motorola P2N2222A silicon

transistors were used to switch (on/off) the valve status and amplify the current

requirement [13]. A single transistor arrangement in the circuit lacks the gain to drive the

pneumatic valve. The Darlington Pair driver subsystem provides an output signal that is

powerful enough to drive high power output subsystems. A Darlington Pair is needed to

amplify the current and this is achieved by the first transistor's emitter feeding into the

base of the second transistor providing the two transistor's collector terminals short

circuited. The Figure 2.9 shows the schematic diagram of the Darlington Pair

arrangement of the transistor. The total gain can be calculated by multiplying the gain of

each transistor together. Similarly, the trigger voltage at the base doubles from 0.7V for

one transistor to 1.4V for two transistors.



Figure 2.9 Darlington pair arrangement of transistors.

2.4 Mead Fluid Dynamics Valves

The Isonic solenoid valves used in the model contains an integrated electronics board

with surge suppression and an LED. Mead's patented "half-shell" design of the three-way

valves allows flow channels and component compartments to be designed directly into

the body. The body halves are joined by ultrasonic welding, creating a strong bond and

hermetic seal [14]. The unique Isonic manifold allows instant valve connection and

removal, without the aid of a tool. An exploded view diagram of the Mead Isonic valve is

provided in the Figure 2.10.

The three-way design incorporates an inlet port, outlet port and hold. The valves

have been modified to facilitate individual flow control patterns by implementing a three-

way design. This was accomplished by sealing the exhaust port of the 2 nd valve in the

airflow path from the air compressor to the air muscle. The input port of the 1st valve is

connected to the manifold. The output port of 1 st valve connects to the input port of the

2nd valve, and the output port of the 2nd valve is connected to the air muscle.
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Figure 2.10 Mead Fluid Dynamics solenoid three-way valve.
Source: Mead Fluid Dynamics Inc.

The flow control patterns relating to the control of air pressure into each air

muscle can be seen in Table 2.3.

Table 2.3 Flow Control Patterns of a Single Air Muscle using a 3-way Design

Sequence Valve 1 Valve 2 McKibben Air Muscle

1 on on
Air flows in up to max pressure,

contracts

2 off on
Air flows out of Valve 1 & 2,

releases

3 on off
Air flows into valve 1, holds

contracted

4 off off
Air flows out of valve 1, holds

contracted

The electrical characteristics of the solenoid valves play an important role in

developing the transistor circuit [14]. The circuit was build to amplify the current supply

needed to actuate the valves. Using a multimeter, the resistances of the valves were
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\measured to be 19 ohms. The current draw required to turn on the valves was then

calculated using Ohm's Law:

E=IxR

I = 5V / 19ohms

I = 263mA

Therefore, the circuit was built so that the transistors are capable of switching the

minimum 263mA current rating. The transistor's maximum collector current (Ic) rated

600mA as a result of the overall 100 gain rating achieved through the Darlington Pair

arrangement. The total gain can be calculated by multiplying the gain of each transistor

together [13] :

hFE = rri hFE x T2 hFE

From this, calculations can be made for both first and second of the transistor's

base currents (IB1 & IB2 , respectively) to switch the 263mA minimum collector current

using the following equations:

First transistor Gain = IC1 / IB1 = 10

IB1 = 26.3mA / 10

IB1 = 2.63mA

Second transistor Gain = IC2 / IB2 = 10

IB2 = 263mA / 10

182 = 26.3mA

The Darlington Pair circuit is then repeated four times for the activation of the

four valves into the buffer circuit. Only one of the four duplicate Darlington Pair

arrangements is shown in Figure 2.11.



Figure 2.11 Circuit diagram for darlington pair arrangement.
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2.5 Data Acquisition Card

The software used to control the model was written in National Instruments (NI)

LabVIEW v.6i. In order to read data from Flock of Birds sensor via serial port and

activate the pneumatic valves, a data acquisition system was needed for program control.

The DAQCard E Series cards are multifunction analog, digital and timing I/O cards for

computers equipped with PCI slots [16]. The card that was selected, National Instruments

PCI-6024E is a low-cost data acquisition board that uses E Series technology to deliver

high-performance, reliable data acquisition capabilities in a wide range of applications.

We get up to 200 kS/s sampling and 12-bit resolution on 16 single-ended analog inputs. It

also features with two 12-bit analog outputs, 8 lines of TTL-compatible digital I/O, two

24-bit counter/timers for timing I/O. The PCI-6024E multifunction data acquisition

board is shown in the below Figure 2.12 [18].

Figure 2.12 NI PCI-6024E.
Source: National Instruments (NI) Corporation.
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LabVIEW and LabWindows/CVI are program development software packages

for data acquisition and control applications. LabVIEW uses graphical programming,

whereas LabWindows/CVI enhances traditional programming languages. Both packages

include extensive libraries for data acquisition, instrument control, data analysis and

graphical data presentation. LabVIEW features interactive graphics, a state-of-the-art

user interface, and a powerful graphical programming language. The LabVIEW Data

Acquisition VI Library, a series of VIs for using LabVIEW with National Instruments

DAQ hardware, is included with LabVIEW [16].

NI-DAQ has both high-level DAQ I/O functions for maximum ease of use and

low-level DAQ I/O functions for maximum flexibility and performance. Examples of

high-level functions are streaming data to disk or acquiring a certain number of data

points. An example of a low-level function is writing directly to registers on the DAQ

device. NI-DAQ does not sacrifice the performance of National Instruments DAQ

devices because it allows multiple devices operate at their peak performance. NI-DAQ

also internally addresses many of the complex issues between the computer and the DAQ

hardware such as programming interrupts. NI-DAQ maintains a consistent software

interface among its different versions to decrease code modifications. In this model, we

are using four out of eight digital I/O lines for activation of the four mead fluid dynamic

valves [16].

2.6 I/O Connector Block

The I/O connector block used for the DAQCard E Series cards has 68 pin connections. It

is referred to as the CB-68LP [17]. The connector block includes standoff feet for use on

a desktop or mounted in a custom panel. The CB-68LP has a vertical mounted 68-pin
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connector. The arrangement and details of the I/O board pin connections can be found in

Appendix E. It is important to note that exceeding the maximum input voltage rating can

damage the DAQ E Series card and other connected hardware. The connections which

are made with CB-68LP are shown in the Figure 2.13.

Figure 2.13 CB-68LP I/O connector block.

R6868 is 68-pin flat 1-meter long ribbon cable terminated with a 68-pin connector

on each end. This cable is used to connect 68-pin E Series DAQ devices, DIO-32HS, or
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NI 6533 device to 68-pin accessories. The Figure 2.14 gives the connection of DAQCard

6024E, CB-68LP and ribbon cable R6868 [17].

Figure 2.14 Connection of DAQCard 6024E, CB-68LP and ribbon cable R6868.
Source: National Instruments (NI) Corporation.

2.7 Summary

In order for the circuit to switch a current, a voltage source, a ground and a load are

required. NI-DAQCard's digital I/O lines have limited current sinking capacity.

Therefore, the transistor circuit that was incorporated into the system required the

DAQCard to drive the base current of the first transistor to provide higher base current

for the second transistor and allow sufficient current to activate the valve.

The solenoid valves provide linear motion when powered. The solenoid armature

moves inward when the signal coming into the driver is high. As shown in the transistor

circuit, the solenoid is connected between the 5V supply voltage and collector of the

second transistor of the darlington pair. This solenoid acts as a load on the driver. When
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the input signal of the digital line coming into the solenoid subsystem is high (logic 1), a

potential difference across the solenoid causes current to flow. It is this current (>263mA)

that causes the solenoid armature to move. In this logic 1 condition, the air from the air

compressor to the air muscle can be filled. When the input signal of the digital line

coming into the solenoid subsystem is low (logic 0), a potential difference across the

solenoid causes current to stop. A spring in the solenoid will cause the armature to move

back as soon as the current is turned off The valves have a 10 msec response time.



CHAPTER 3

METHODOLOGY AND RESULTS

3.1 Problem Statement

Bang-Bang control and Proportional control methods have been known to exhibit

similarities in the human musculoskeletal systems. These systems are very difficult to

replicate because the components that comprise them are highly non-linear [20].

Constructing a single degree-of-freedom joint model approached these two situations.

The Single DOF joint model is shown in Figure 3.1.

Figure 3.1 Biologically inspired single joint model.

28
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Single joint enables us to concentrate on fewer joint torques and forces that are

abundant in biological systems. Although this approach may not be ideal for modeling

such a system, the model was intended to examine force optimization techniques from a

control engineering point of view for quick quantitative analysis.

The first approach was the ON/OFF (or Bang-Bang) controller, which is a closed-

loop controller. A closed-loop uses a feedback signal to maintain the controlled process at

or as close as possible to the desired value. This type of controller is operated by turning

the actuator (valve) ON when the desired joint angle is greater than the actual angle

value, and OFF when the desired joint angle smaller than the actual angle. The actual

angle is measured continuously by Flock of Birds sensor and the desired angle is the user

selectable on the LabVIEW program's front panel.

As expected the Bang-Bang control method used in this experiment resulted in

instability. Some overshoot occurred due to the limitations of the valves and control of

the process variable such as joint angle. This is because the resulting position of the joint

exceeded the desired position before the valve could be turned off. Likewise, undershoot

occurred because of the end point positions moving higher than the desired position.

A pulse width modulation (PWM) technique is proposed to give digitally timed

intervals to improve overall instability [17]. Although the perturbations are expected to

be reduced, the system should fail in reaching a critically damped state due to the non-

linear nature of the pneumatic muscle.

In addition, a non-linear digital proportional (P) control program is proposed to

further alleviate the hysterisis. Now, the system does this by responding to the magnitude

of the error (proportional to difference in joint angle). This method should work quite

well compare to the above method.
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The physical model was constructed of a single joint with an agonist and an

antagonist muscle operating under computer control. Utilizing LabVIEW v.6i software,

McKibben air muscles and the Flock of Birds sensor, a Bang-Bang closed-loop controller

was implemented to exhibit end point position control. The Bang-Bang controller is

basically ON/OFF controller. Its output oscillates around the target position. Due to the

effect of overshoot and undershoot, the controller was found to be inadequate in

maintaining stability in the system. In an effort to alleviate the perturbations, a non-linear

digital proportional (P) controller and a program to include pulse width modulated

(PWM) output are introduced [16]. The side view of the physical model is shown in the

Figure 3.2.

The components used in this model corresponding to the given numbers as

shown in the Figure 3.2, are listed in the Table 3.1.



Figure 3.2 The side view of the physical model.

Table 3.1 Components used in the Physical Model

NUMBERS AS IN FIGURE 3.2 PHYSICAL COMPONENT

A UPPER AIR MUSCLE

B LOWER AIR MUSCLE

C BIRD SENSOR OF FOB UNIT

D TRANSMITTER OF FOB UNIT

E HINGE (FOR MOVEMENT OF ARM)

F ISONIC MANIFOLD

G TRANSISTOR CIRCUIT

H CONTROL VALVES

31
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3.2 Measurement and Automation Explorer

In order for the system to respond appropriately, configurations of the digital I/O

channels were required. This was accomplished through the use of NI Measurement and

Automation Explorer (MAX) v.2.0 tool that is built into the NI-DAQ driver software

[16]. The configuration process allowed us to set the parameters of the digital I/O

channels. The configuration setup also allowed testing of the system diagnostics. A panel

view of the MAX v.2.0 is shown in the Figure 3.3. The four digital I/O lines were

configured for the four solenoid valves. The whole configuration tree can be shown in the

panel view of the MAX. There were eight digital I/O lines in the NI-DAQ-Card PCI-

6024E. We used four digital I/O lines out of eight. The digital I/O lines 0 and 6 were used

for the two solenoid valves, used for the upper muscle activation. The digital I/O lines 2

and 4 were used for the two solenoid valves, used for the lower muscle activation.
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Figure 3.3 Panel view of the NI-MAX v.2.0.

The corresponding digital I/O of the solenoid valves shown in the Figure 3.4.
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Figure 3.4 NI MAX digital output configuration.

The initialization of the four solenoid valves using the MAX and LabVIEW

software was proposed in the Appendix F. We can control the four solenoid valves using

a LabVIEW program shown in Appendix F.

3.3 Bang-Bang Control

The Bang-Bang control is basically ON/OFF control. The Bang-Bang method used to

control the joint model was accomplished using NI LabVIEW v.6i software (Appendix

G). Upon entering an end point position located within 20° - 80° range, at 1 degree

increments, the joint moved through the desired location and then back past this point in

the opposite direction causing it to oscillate. When the actual angle is less than



35

the desired target angle, an overshoot occurred. When the actual angle is greater than the

desired target angle, an undershoot occurred. The value of the roll angle of the FOB

sensor was captured in the program continuously. The Bang-Bang control program

demonstrates the hysterisis achieved using this control method, which resulted in

perturbations around the desired position. The front panel of the NI LabVIEW Bang-

Bang control is shown in Figure 3.5. The Block diagram of VI is shown in the Figure 3.6.

The results of the program show that for Bang-Bang control, the system is underdamped.

This is an undesirable form of the control for the single joint model. However, the Figure

3.7 shows the graph, which incorporates the Bang-Bang control at 42 degrees.



Figure 3.5 Front panel of NI LabVIEW Bang-Bang control program.

36



Figure 3.6 Block diagram of NI LabVIEW Bang-Bang control program.
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Figure 3.7 Bang-Bang control output.

The actual angle data oscillates around the target angle. The limitations of the

response time of the mead fluid dynamics solenoid valve used decreased the reliability of

the system.

3.4 Pulse Width Modulation

Pulse Width Modulation (PWM) is a way of digitally encoding the analog signal levels.

Through the use of high-resolution counters, the duty-cycle of a square wave is

modulated to encode a specific analog signal level. The PWM signal is still digital

because, at any given instant of time, the full DC supply is either fully "ON" or fully

"OFF" [16]. The voltage or current source is supplied to the analog load by means of a

repeating series of on and off pulses. The on-time is the time during which the DC supply

is applied to the load, and the off-time is the time period during which that supply
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switched off. As long as the response time is sufficient, the solenoid valve can close or

open encoded with PWM [12].

The PWM technique is proposed to reduce the power consumption. The goal will

be to limit the amount of current supply to the solenoid valves by varying the duty cycle.

In doing this, the air muscles will incur a reduction in overshoot and undershoot, reduce

overall instability. Although the perturbations are reduced, the system is not expected to

reach a critically damped state. A PWM technique has been generated for easy

implementation into the VI of the Bang-Bang control method. The simple pulse width

modulation LabVIEW program is shown in the Figure 3.8.
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Figure 3.8 The pulse width modulation LabVIEW program.
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3.5 Proportional Control

Proportional (P) controllers are pure gain or attenuation controllers. A non-linear digital

proportional feedback controller is designed to generate an output that causes some

corrective effort to be applied to a process so as to drive a measurable process variable

towards a desired value known as the set-point [22]. The controller uses an actuator to

affect the process and a FOB sensor to measure the results. For this joint model, a

LabVIEW program of a non-linear digital proportional controller is proposed to minimize

perturbations (Appendix H).

Most feedback controllers determine their output by observing the error between

the current and the desired locations and a measurement of the process variable. A linear

proportional controller is identified by the following equation:

where, Controller input is error (reference value- output value).

Controller output is a controller signal.

Kp is the proportional gain constant.

P controller involves only a proportional gain (or attenuation).

A non-linear proportional controller is similarly defined by the equation:

where, the proportional gain is no longer a constant, but is a function of a variable 'a'.

The non-linearity of the pneumatic muscles required that a non-linear gain (duty

cycle) be applied to the muscles. Referring to the earlier equation for non-linear

proportional controller, the governed expression for the non-linear gain implemented in
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this thesis is a function of the angular error, yielding

u = kp(e)e

Proportional controller increases the gain, which upgrade both steady-state and

transient responses. As a result the steady-state error reduces. The non-linear digital

proportional control output will control the digital output channels to the solenoid valves.

Theoretically the LabVIEW program should reduce the fluctuations in the system but

accurate tuning of the digital proportional mode is essential. One important thing is that,

the activation of an air muscle does not require the current, but uses the air volume to

vary muscle force. The digital proportional program will eventually replace the Bang-

Bang method of control. The end result will be to generate a controller output that

steadily drives the process variable in the direction required to eliminate the error [22].

The Table 3.2 and Table 3.3 show the chart of the relationship between the

degrees and the operating time of the valves for agonist and antagonist muscle. If the

difference between the desired angle and actual angle is positive, the error is considered

as positive error. If the difference between the desired angle and actual angle is negative,

the error is considered as negative error. It describes the corresponding error of degree

interval (desired angle - actual angle) to the time of operation of the valves to the upper

and lower muscle.
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Table 3.2 Degree v.s. Time of the Upper Muscle for Positive Degree Error

CASE
ANGLE

(Desired - Actual)
(Degree)

UPPER
MUSCLE
ON TIME

(msec)

UPPER
MUSCLE

OFF/HOLD
TIME (msec)

DUTY CYCLE
(%)

1 >=20 50 0 100

2 >=15 & <20 45 10 81.82

3 >=8 & <15 40 10 80

4 >=7 & <8 35 15 70

5 >=6 & <7 30 20 60

6 >=5 & <6  25 25 50

7 >=4 & <5 20 30 40

8 >=3 & <4  15  35 30

9 >=2 & <3 10 10 50

10 >=1 & <2 5 10 33.33

11 >=0 & <1  0 0 0
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Table 3.3 Degree v.s. Time of the Lower Muscle for Negative Degree Error

CASE
ANGLE

(Desired-Actual)
(Degree)

LOWER
MUSCLE
ON TIME

(msec)

LOWER
MUSCLE

OFF/HOLD
TIME (cosec)

DUTY CYCLE
(%)

1 <=(-20) 50 0 100

2 <=(-15) & >(-20) 45 10 81.82

3 <=(-8) & >(-15) 40 10 80

4 <=(-7) & >( -8) 35 15 70

5 <=(-6) & >(-7) 30 20 60

6 <=(-5) & >(-6) 25 25 50

7 <=(-4) & >(-5)

_

20 30 40

8 <=(-3) & >(-4) 15 35 30

9 <=(-2) & >(-3) 0 0 0

10 <=(-1) & >(-2) 0 0 0

11 <=0 & >(-1) 0 0 0

The pulse width modulation relies upon a fast duty cycle of the valves and makes

the different cases for the system. The Figure 3.9 shows the graph to get 40 degrees by

implementing the proportional control. The Figure 3.10 shows the graph to get the

sequence of the desired angle values (35° - 20° - 40°). The Figure 3.11 shows the

transitions of the desired angle values (35° - 30° - 25° - 20°).
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Figure 3.9 Non-linear proportional control at 40 degrees value.

Figure 3.10 Non-linear proportional control at 35° - 20° - 40° values.
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Figure 3.11 Non-linear proportional control at 35°-30°-25°-20° values.

3.6 Summary

Initially the Bang-Bang (an ON/OFF) closed loop controller was introduced. Some

perturbations occurred due to the limitations of the valves and the control of the process

variable. The overshoot occurred because of the end point positions moving lower than

the desired position. Likewise, undershoot occurred because of the end point positions

moving higher than the desired position. This resulted in a feedback value incapable of

maintaining the controlled process at the desired position value.

Further the concept of PWM was introduced to alter the digital output signal in an

attempt to better control the system. With the use of PWM, the reduction of air coming

into the air muscles greatly enhances the stability. Furthermore, the implementation of a

non-linear digital proportional controller is suggested as a more appropriate means of

controlling the single DOF (degree of freedom) joint.



CHAPTER 4

CONCLUSION

In the biologically inspired joint model, the author initially demonstrated control by the

Bang-Bang method. Results show that this method of control for achieving single plane

movements is not optimum due to the resulting perturbations. In an effort to reduce the

hysterisis, a LabVIEW program implementing a pulse width modulated, non-linear

digital proportional controller is proposed. Reproducing non-linear biological systems for

quantitative analysis encompasses detailed knowledge of the control mechanisms in

biological systems as well as an understanding of control engineering methodology.

Controlling movement of a joint requires co-activation of agonist and antagonist

muscles. Essentially, a force needs to be applied to one muscle to get the joint moving,

and activation of the other muscle to act as a brake. This in turn, slows the joint, letting it

achieve the desired target angle.

The Bang-Bang (ON/OFF) control method has perturbations about the desired

target angle. Limitations of the Bang-Bang control method brought the investigation into

other possible methods of control. The concept of pulse width modulation is introduced

as a powerful technique for controlling the digital outputs. The LabVIEW program runs

and asks for the destination file name to user for store the roll angle data continuously at

60 frames per second. The plot of Bang-Bang controller is shown in Figure 3.7. The

graph shows the perturbations present about the desired target angle. The perturbations

are about 10 degrees of range.

Furthermore, a non-linear digital proportional control method is introduced as

future means of increasing stability. The plot of proportional controller is shown in the

47
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Figure 3.9. The graph shows that the desired angle is achieved through the non-linear

pattern. Implemented a novel controller that is appropriate for non-linear pneumatic

muscles, which allows for accurate and stable movement of a single DOF joint.



+5V DC @ 2.45 amps avg., 3.85 amps peak
+12V DC @ 0.53 amps avg., 0.63 amps peak

Power:

APPENDIX A

FOB TECHNICAL & PHYSICAL SPECIFICATIONS

This appendix describes the technical and physical specifications of Flock of Birds sensor
used in the system.

Physical Specifications:

Transmitter: 3.75" (9.6cm) cube (mounted inside enclosure or external)
with 10' (3.05m) cable

Sensor: 1.0" x 1.0" x0.8" cube (or optional 3-button mouse) with
10' or optional 35' cable

Enclosure: 9.5" x 11.5" x 2.6" (24cm x 29cm x 6.6cm)

Technical Specifications:

Tracking range: ± 4'(1.2m) ±10'(3.05m) optional in any direction

Angular range: ±180° Azimuth & Roll, ±90° Elevation

Static Accuracy: Position: 0.07" (1.8mm) RMS
Orientation: 0.5° RMS

Static Resolution: Position: 0.02' (0.5mm) @ 12" (30.5cm)
Orientation: 0.1° @ 12" (30.5cm)

Update Rate: Up to 144 measurements/second

Outputs: X, Y, Z positional coordinates and orientation angles, or
rotation matrix

Interface: RS-232 with selectable baud rates to 115,200

Format: Binary

Modes: Point to Stream (RS232 only)

Electrical Specification:

Environment: All specifications are valid at 30° C ± 10° in an environment
void of large metal objects and electromagnetic frequencies,
other than the power line.

Operating Humidity: 10% to 90% non-condensing

Source: Ascension Technology Corporation.
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APPENDIX B

DIPSWITCH SETTINGS FOR NORMAL ADDRESS MODE

This appendix describes the selection of dipswitch settings, which are located on back
panel of electronic controller unit. For this program author selected 115200 as the Baud
Rate.
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APPENDIX C

SPECIFICATION OF MEAD FLUID DYNAMICS VALVE

This appendix describes the specification of mead fluid dynamics valve. Mead Fluid

Dynamics Inc manufactures the valves used in this model. The Isonic solenoid valves

contain an integrated electronics board with surge suppression and an LED. Mead's

patented "half-shell" design of the three-way valves allows flow channels and component

compartments to be designed directly into the body. The technical specifications of the

control valve are shown in the next page.
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APPENDIX D

SPECIFICATIONS OF NI-DAQCARD-AI-16E-4

This appendix describes the technical specifications of NI-DAQCard-AI-16E-4 used in

the system.
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APPENDIX E

I/O CONNECTOR BOARD FOR DAQ-AI-16E-4

This appendix describes the I/O pin assignment for the NI-DAQCard-AI-16E-4 connector
board.
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The table E.1 below shows the I/O pin assignment for the NI-DAQCard-AI-16E-4

connector board for this model.

Table E.1 I/O Pin Assignment for the NI-DAQCard-AI-16E-4 Connector Board

PIN FROM CB-68LP I/O
CONNECTOR BLOCK

CONNECTED TO THE
PHYSICAL MODEL

16 VALVE 2 FOR UPPER
MUSCLE

19 VALVE 2 FOR LOWER
MUSCLE

49 VALVE 1 FOR LOWER
MUSCLE

52 VALVE 1 FOR UPPER
MUSCLE

18 DIGITAL GROUND



APPENDIX F

ACTIVATION OF THE SOLENOID VALVES USING MAX & LABVIEW

This appendix describes the LabVIEW program which was used for the activation of the
four solenoid valves using MAX v.2.0.

Control panel of the LabVIEW program.
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Block Diagram of the control panel.

62



APPENDIX G

BANG-BANG CONTROLLER PROGRAM

This appendix describes all of the program contents and icons used in the Bang-Bang
control progrm.

Front Panel

63



Block Diagram 1 of 3
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Block Diagram 2 of 3
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APPENDIX H

DIGITAL PROPORTIONAL CONTROL PROGRAM

This appendix describes the proposed program to be used in conjunction with some of the
components of the original Bang-Bang control program. This program highlights the
implementation of the non-linear pulse width modulated digital proportional (P) control.

Front Panel
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Block Diagram
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Block Diagram
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Block Diagram
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