

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

REBUILD PERFORMANCE ENHANCEMENT USING ONBOARD CACHING
AND DELAYED VACATION TERMINATION IN CLUSTERED RAID 5

by
Akheel Ahmed

The Clustered Raid 5 (CRAID5) architecture with a parity group size(G) smaller than the

number of disks(N) increases the load by the declustering ratio denoted by

a = (G -1)/(N -1), which can be lesser than that in Raid 5 while switching to, and

subsequently operating in rebuild mode. The Nearly Random Permutation (NRP) layout

provides the flexibility to vary the declustering ratio (a) for a given N, and the

Vacationing Server Model (VSM) of processing the rebuild requests provides acceptable

rebuild and user response times.

The rebuild performance and the user response time can be improved by

introducing an onboard buffer in the disks, which caches a single track upon arrival of a

rebuild request while in rebuild mode. Such an enhancement is proposed, and the

architecture is described along with an analysis using the DASim simulation toolkit

developed at NJIT.

Also proposed is the delayed termination of vacations with two user requests as

this improves the rebuild performance with a negligible negative impact on user response

time. Finally, the effect of limiting the rebuild buffer on the rebuild performance is

presented in the context of three different disk utilizations and declustering ratios.

REBUILD PERFORMANCE ENHANCEMENT USING ONBOARD CACHING
AND DELAYED VACATION TERMINATION IN CLUSTERED RAID 5

by
Akheel Ahmed

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science

May 2005

■■■

APPROVAL PAGE

REBUILD PERFORMANCE ENHANCEMENT USING ONBOARD CACHING
AND DELAYED VACATION TERMINATION IN CLUSTERED RAID 5

Akh eel Ahmed

Dr. Alexander Thomasian, Thesis Advisor Date
Professor of Computer Science, NJIT

Dr. Teunis J. Ott, Committee Member
Professor of Computer Science, NJIT

Dr. James M. Calvin, Committee Member 	 Date
Associate Professor of Computer Science, NJIT

Date

BIOGRAPHICAL SKETCH

Author:	 Akheel Ahmed

Degree:	 Master of Science

Date:	 May 2005

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2005

• Bachelor of Engineering in Computer Science,
Visveswaraiah Technological University, India, 2002

ACKNOWLEDGMENT

I would like to express my deepest gratitude to Dr. Alexander Thomasian, who is an

excellent research supervisor and a wonderful mentor who has provided me constant

support, encouragement and countless valuable resources. Special thanks are given to

Dr. Teunis J. Ott and Dr. James M. Calvin for participating in my committee.

Many of my fellow graduate students in the Integrated Systems Research

Laboratory are deserving of recognition for their support. I especially thank Gang Fu for

the help he has provided with DASim, an excellent disk simulation toolkit that he

developed at NJIT.

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Objective 	 1

1.2 Background Information 	 2

1.2.1 Hard Disk Technology 	 2

1.2.2 Overview of Clustered Raid 5 Architecture 	 10

	

2 REBUILD PROCESSING 13

2.1 Introduction to Rebuilding 	 13

	

2.2 Performance Evaluation of Clustered RAIDS 15

3 ONBOARD CACHING IN CLUSTERED RAIDS DISKS 	 22

3.1 Advantages of Onboard Caching 	 22

	

3.2 Cache Architecture. 23

3.3 Data Structures for CRAMS Performance Analysis. 	 25

3.4 CRAID5 Configurations and Simulation... 	 26

	

4 DELAYING VACATION TERMINATION 36

4.1 Enhancing VSM Processing 	 36

4.2 Effect on Rebuild Performance 	 37

5 REBUILDING WITH A LIMITED BUFFER	 40

	

5.1 Effect of Rebuild Buffer on Rebuild and Response Time 40

5.2 Rebuild Time Analysis with a Limited Buffer 	 41

6 CONCLUSION	 50

vi

TABLE OF CONTENTS
(Continued)

Chapter	 Page

APPENDIX A RELIABILITY MODELING 	 51

APPENDIX B SETTING UP DASIM FOR CRAID5 SIMULATION 	 52

REFERENCES 	 53

vii

LIST OF TABLES

Table Page

3.1 Simulation Results with Rebuild Unit Size of 64 KB 	 29

3.2 Simulation Results with Rebuild Unit Size of 128 KB 	 31

3.3 Simulation Results with Rebuild Unit Size of 256 KB 	 33

5.1 Relationship Between Mean Stall Time, Average Number of Stalls and
Rebuild Time 	 49

viii

LIST OF FIGURES

Figure	 Page

1.1 Physical Structure of a Hard Disk 	 2

1.2 Grouping data into sectors, tracks and cylinders 	 3

1.3 Sequential layout of sectors 	 4

1.4 Disk-array architecture 	 5

1.5 RAID level 0 (Non-redundant) 	 6

1.6 Data organization in RAID level 1 (Mirroring) 7

1.7 RAID 2 (Hamming Error Correction code) 7

1.8 RAID level 3 using a byte-interleaved parity 	 8

1.9 RAID level 4 using block-interleaved parity 	 8

1.10 RAID level 5 (Rotated Block Parity) 9

1.11 NRP initial logical allocation for N = 10 and G = 4 	 11

1.12 NRP data layout after permutation 	 12

2.1 Mean user response time and rebuild time in VSM and PCM for a = 0.75 	 16

2.2 Effect of Read redirection on response time and Rebuild progress 	 17

2.3 Effect of dynamic control of read redirection for a = 1 	 18

2.4 Effect of dynamic control of read redirection for a = 0.75 	 19

2.5 Effect of dynamic control of read redirection for a = 0.5 	 19

2.6 Effect of dynamic control of read redirection for a = 0.25 	 20

2.7 Impact of rebuild unit size on rebuild and user response times 	 21

3.1 Arrival of user request while sector S2 is being rebuilt in the above track 	 24

ix

LIST OF FIGURES
(Continued)

Figure	 Page

3.2 Cache contents after the track has been read once 	 24

3.3 Cache contents after the track has been accessed twice 	 24

3.4 Effect of onboard-cache on rebuild time for rebuild unit size of 64 KB 	 27

3.5 Effect of onboard cache on user response time for rebuild unit size of 64 KB.. 28

3.6 Effect of cache on rebuild time for rebuild unit size of 128 KB 	 30

3.7 Effect of cache on user response time for rebuild unit size of 128 KB 	 30

3.8 Effect of cache on rebuild time for rebuild unit size of 256 KB 	 32

3.9 Effect of cache on user response time for rebuild unit size of 256 KB 	 32

3.10 Effect of rebuild unit size on rebuild performance improvement using
onboard cache 34

3.11 Effect of rebuild unit size on user response time improvement using
the cache 	 35

4.1 Rebuilding in VSM Mode 	 36

4.2 Effect of rebuild unit size on rebuild performance improvement 	 37

4.3 Effect of delayed vacation termination on the response time for
rebuild unit size of 256 KB 	 38

4.4 Relative effect of delayed vacation termination on user response time 	 39

5.1 Impact of buffer size on rebuild and response times 	 40

5.2 Effect of buffer size on rebuild time for disk utilization of 0.3 	 41

5.3 Effect of buffer size on rebuild time for disk utilization of 0.6 	 42

5.4 Effect of buffer size on rebuild time for disk utilization of 0.9 	 42

5.5 Effect of disk utilization on rebuild buffer usage 	 43

5.6 Effect of declustering ratio on rebuild time 	 44

LIST OF FIGURES
(Continued)

Figure	 Page

5.7 Effect of disk utilization on rebuild time 	 45

5.8 Impact of number of disks on the rebuild time, for utilization of 0.3 45

5.9 Impact of number of disks on rebuild time, for utilization of 0.6 	 46

5.10 Impact of number of disks on rebuild time, for utilization of 0.9 	 46

5.11 Effect of buffer size on disk rebuild stalls 	 47

5.12 Variation of mean stall time with number of disks with a 48 MB buffer 	 48

:).13 Variation of mean stall time with disk utilization with a 48 MB 48

xi

CHAPTER 1

INTRODUCTION

1.1 Objective

Clustered Raid 5(CRAID5) has been the model of choice in database and OLTP (Online

Transaction Processing) applications that have a high access rate to relatively small

amounts of data. Although the performance of existing CRAID5 systems is acceptable,

integrating an onboard-cache on the constituent hard disks improves both rebuild time as

well as response time of the system. One of the objectives of this thesis is to propose this

enhancement in processing rebuild requests. This is supported by performance analysis

of the CRAID5 architecture with and without onboard caching.

When a quicker rebuild is critical, usually a tradeoff has to be made with the user

response time. The document proposes an efficient way in which two user requests can

be used to terminate the vacation of the system, resulting in a significant improvement in

rebuild performance with a negligible impact on user response times.

Finally, the impact of limiting the rebuild buffer on rebuild performance is

analyzed, and the effect of declustering on rebuild performance is presented. All

performance analysis is done using the DASim 18 Disk simulator developed at NJIT.

1

2

1.2 Background Information

This section of the document presents information that serves as the foundation for

subsequent chapters. An overview of hard disk drive technology along with a description

of the various levels of redundant disk Arrays is presented in the following subsections.

1.2.1 Hard Disk Technology

Figure 1.1 depicts a disk drive as an assembly of a stack of platters that are mounted on a

spindle.' The platters are double-sided, meaning they have magnetic coating on both

surfaces. All platters rotate at a constant velocity which is measured in revolutions per

minute (RPM). Each of the platter surfaces has a read-write head, which is in close

proximity to the surface. All disk arms are mounted on an actuator, which moves the

heads in unison. Only one of the heads is active at any given time since it is impossible

to position all heads at the same time on corresponding tracks due to thermal variations in

the platters and disk arms.'

Figure 1.1 Physical structure of a hard disk.

3

Data storage in a hard disk is organized into cylinders, tracks and sectors. A

sector is a block of sequential data, which is almost always 512 KB. It is the smallest

unit of data that can be read from or written onto the disk. A sector is preceded by sector

header that contains sector identification and clock synchronization information, and

followed by a trailer that contains an error correcting code which is computed over the

header and sector. All sectors on a platter surface that are equidistant from the spindle

form a track. A set of tracks that are equidistant from the spindle form a cylinder. The

sectors are numbered sequentially and form a linear address space.' The numbering

begins with 0. This is illustrated in Figure 1.2.'

Figure 1.2 Grouping data into sectors, tracks and cylinders.

When data is being accessed, the actuator is moved to place the heads on the

correct cylinder. After the sought after sectors come under the head, the data is read or

written. The time it takes to move the actuator is called the seek time, which varies from

1 to 15 ms, depending on the seek distance. A read or write is performed by first seeking

to the desired cylinder and then by rotating the disk to bring the starting sector under the

head. Seeking and rotating constitute the positioning operation. When the request is to

4

access one full track, the read/write operation can be done without having to wait for the

first sector to come under the head. The read/write can start as soon as the head is

positioned over the right track. The sectors are accessed in the order they appear under

the head. This is called a zero-latency operation, since there is no rotational latency.

This operation is also employed when only a part of the track is being accessed.

Since the circumference of tracks farther from the spindle is more than those

closer to it, more sectors are accommodated per track in the outer tracks than in the inner

ones. This technique is called Zone Bit Recording (ZBR). Here, 50 to 200 adjacent

cylinders are grouped into zones, where each zone has fixed number of sectors per track,

with this number higher in the outer zone than in the inner ones.

Figure 1.3 elucidates the arrangement of sectors, tracks and cylinders and the

assignment of data. 1

Figure 1.3 Sequential layout of sectors.

5

Amdahl's law illustrates that the performance of computer systems is limited by

the performance of the 1/0 subsystems. 2 This is evident from the rate at which CPU

performance has been increasing compared to storage performance. To utilize the

improved CPU performance, there is a need to use parallelism in the I/O subsystem.

As shown in Figure 1.4, the current RAID systems are composed of disks that are

connected via inexpensive low-bandwidth links to the array controller, which is

connected to the host computer system using a high-bandwidth link.3

Figure 1.4 Disk-array architecture.

6

The array controller performs system-related operations such as controlling

individual disks, maintaining address mapping and redundant information, and

recovering from disk failures. The controller presents a linear address space to the host

computer and maps this space to the individual disks. This mapping is known as the data

layout of the array.

The array controller stripes (breaks up) contiguous data into units of a constant

size called the stripe units. 4 ' 5 ' 6 These stripe units are assigned to consecutive disks. This

provides load balancing in case of concurrent workloads and increased bandwidth for

sequential transfer of large amounts of data by a single process. Disk arrays are normally

classified into RAID 1 through 5, depending on the organization of redundant

information and the layout of data. 4

There is a RAID level 0, also called a non-redundant disk array. In this

organization, there is only striping of data, but no duplication. This results in improved

throughput. This layout is depicted in Figure 1.5.

Figure 1.5 RAID level 0 (Non-redundant) .

7

In RAID level 1, the disks are organized into pairs where each pair has identical

data units. The data is striped across the mirror pairs. Figure 1.6 elucidates the

organization of data in this RAID level. The highlighted stripes are for redundancy.

Figure 1.6 Data organization in RAID level 1 (Mirroring).

RAID 2 consists of disks that serve as data disks and check disks. The data disks

use bit or byte striping, and the check disks use the Hamming code for error correction 8

as shown in Figure 1.7. The highlighted blocks/stripes are for parity or error correction.

Figure 1.7 RAID 2 (Hamming Error Correction code).

In RAID level 3 a bit or byte interleaved parity is used. The data is striped across

the data disks and a single parity disk stores the exclusive-or over the corresponding bits

of the data disks. RAID level 4 is similar to RAID 3, the only difference being the use of

8

block-interleaved parity instead of one at the bit or byte level. These two RAID levels

are illustrated in Figures 1.8 and 1.9.

Figure 1.8 RAID level 3 using a byte-interleaved parity.

Figure 1.9 RAID level 4 using block-interleaved parity.

RAID 5 uses rotated block-interleaved parity, and the parity blocks are distributed

in all disks. The RAID 5 considered here has a left symmetric organization. 9 In a left

symmetric organization, the parity blocks are placed along the diagonal and the

consecutive data stripe units are placed on the consecutive disks at the lowest available

offsets. Parity is computed over a group of disks, called the parity group. In all the

9

above RAID levels, there is only one parity group. This is also true for RAID 5 as

illustrated in Figure 1.10.

Figure 1.10 RAID level 5 (Rotated Block Parity) .

The reliablility of a single-disk failure tolerant array can be measured as the mean

time to data loss (MTTDL). It is given by the following expression. 4

Here N is the total number of disks in the array, G is the number of disks in the

parity group, MTTFdisk is the mean time to failure of a component disk, which is

typically one million hours, and MTTRdisk is the mean time to repair a disk, which is

typically a few hours.

It is possible to have more than one parity groups in a RAID level. If a RAID

level has more than one parity group, it is called Clustered RAID, and the technique is

called Declustering. Clustered RAID 5 is described in the following section.

1 0

1.2.2 Overview of Clustered RAID 5 Architecture

The Stripe Units (SUs) in RAIDS balance the workload on disks in case of a single disk

failure. They are allocated in a round-robin manner across all the N disks. Each parity

block is the Exclusive-OR (XOR) of the corresponding N-1 blocks. So the parity

information occupies storage worth one full disk.

These parity blocks are kept up-to date, and this incurs a small write penalty when

small randomly placed data blocks are updated. A non-volatile RAM can be used to

cache modified blocks and then these data and parity blocks can be written at a lower

priority than read requests.

During a disk failure, the requested data block on a failed disk is reconstructed by

XORing the corresponding N-1 blocks on the surviving disks by an N-1 fork-join

operation. The increase in load is at worst 100% when all requests are read. If the

utilization is already high in normal mode, disk saturation will occur in degraded mode.

This is possible in case of an infinite source model where the arrival rate of requests is

not reduced due to disk failure and increased response time.

Clustered RAID 7 trades hard disk capacity against increase in load. The number

of stripe units over which parity is computed, also called the parity group size denoted by

G, is the same as the number of disks N in RAIDS. In clustered RAID, G can be less

than N.

Hence, to reconstruct a block in clustered RAID, only a fraction of the disks need

to be accessed instead of all the N disks as in RAIDS. This fraction, also called the

declustering ratio (a) is given by the following relation: a = (G — 1)/ (N — 1). It is

obvious that in RAIDS a = 1.

11

There are two approaches to balancing the disk load during degraded mode. These

iiare the Balanced Incomplete Block Design (BIBD) 10, 	 and the Nearly Random

Permutation (NRP) 12 layouts. The NRP layout provides more flexibility than the BIBD

layout. Hence it is described here and considered in the rest of the document.

The NRP layout 13 is described as follows: The disk array is considered as a two-

dimensional array with N columns, equaling the number of disks, and M rows, each of

which has N stripe units. There are NM stripe units numbered 0 to NM — 1. The parity

group size is G, which is smaller than N. Parity group i occupies stripe units iG to iG +

G — 1. This is called the initial logical organization. Figure 1.11 13 shows the layout for

N= 10 and G = 4.

Figure 1.11 NRP initial logical allocation for N = 10 and G = 4.

For each row I, a random permutation of {0, 1, 2, 	 , N-1} is generated,

which is {Po, P1, P2, 	 PN-1 } . Here I is used to seed the random number generator.

When mod (N, G) = 0, the above permutation operation should be repeated M times,

otherwise it should be repeated K times where K = LCM (N,G) I N. LCM(N,G) is the

least common multiple of N and G.

For example, if P1 = {0, 9, 7, 6, 2, 1, 5, 3, 4, 8) then there will be the following

data allocation13 for the first two rows since K = 2. The data allocation is shown in

Figure 1.12. There will be approximately the same number of parity blocks per row.

12

Figure 1.12 NRP data layout after permutation.

The next chapter presents the various ways in which the rebuild

performance and user response time can be affected in CRAMS.

CHAPTER 2

REBUILD PROCESSING

2.1 Introduction to Rebuilding

Rebuild processing is the systematic reconstruction of data on the failed disk, on a hot

spare. It is begun as soon as the hot spare is available. The disk then changes its mode of

operation from degraded mode to rebuild mode. The smallest unit of data that is rebuilt

as a whole is called the Rebuild Unit(RU) which is usually a stripe unit or a fraction of it.

The time taken to rebuild the failed disk TRebu ild (p), and the response time for user

requests TResponse (р)(o) where p is the disk utilization in normal mode are the two main

yardsticks to measure the performance of the system. After a disk failure, the RAIDS

array operates at a higher disk utilization p' = Pp with r. = a + 1 where

a = (G — 1)/(N — 1) when all requests are reads.

There are two kinds of rebuild10 — Stripe oriented and Disk oriented. In a stripe

oriented rebuild, each RU is rebuilt by a dedicated process that reads RUs from the

surviving disks, XORs them and writes the resulting RU on the spare disk. Disk oriented

rebuild dedicates a process to each disk that reads RUs from the surviving disks in an

asynchronous way. This requires a larger buffer compared to stripe oriented rebuild

when the number of processes are small.

Disk oriented rebuild has been known to outperform stripe oriented rebuild 10 . For

this reason, the rest of the document restricts itself to disk oriented rebuild. There are two

types of buffer, temporary buffers dedicated to reading from each disk and buffers

dedicated to writing on the spare disk. 13

13

14

The unit of buffering is a rebuild unit (RU), and the buffers are interchangeable.

As soon as an RU is read into the temporary buffer, it is XORed with the corresponding

RUs and the result is stored in the spare disk buffer. The XOR operation is very fast and

the buffers are never exhausted. For this reason, the reading of RUs from disks during a

disk-oriented rebuild is not stopped due to buffer limitation. The buffer for the spare

disk, however, has an effect on the rebuild performance, and it is thoroughly investigated

in this study. All future references to buffer imply the buffer for the spare disk.

Rebuild requests can be processed in two ways — at the same priority as user

requests and at a lower priority than user requests. If they are processed at the same

priority as the user requests, the processing model is called a Permanent Customer Model

(PCM). Here only one request is processed at a time - a new rebuild request is inserted at

the end of the queue as soon as the previous one is served.

Rebuild can also be performed in the following way. When there is no user

request pending (i.e. as soon as the disk becomes idle) rebuild is started and is stopped

when a user request arrives. This mode of rebuilding is called the Vacationing Server

Model (VSM). Performance comparisons of VSM and PCM have shown VSM to give

shorter rebuild and response times. 13 For this reason, only VSM is considered in this

document.

Rebuild operations in RAIDS can further be classified into the following types. ?

In a Baseline rebuild, the materialized blocks of the spare are updated but are not used to

satisfy read requests. If Read Redirection is used, the materialized blocks of the spare

disk are not only updated on the disk but are also used to satisfy read requests resulting in

15

shorter response times for reads accessing the failed disk, lower utilization of existing

disks and shorter rebuild time.

If Piggybacking is used at the block level, the reconstructed data are written to the

spare disk when a read is targeted to the failed disk. This improves the performance only

when used at the track leve1. 14 There are a few policies that improve user response times

by pre-empting rebuild requests 15. Split seek calls for pre-empting the read operation

after the seek is completed if a user request is pending. In the absence of a user request,

however, consecutive tracks are read until a user request arrives. Split latency/transfer

proposes pre-emption even after seek and transfer have started. In this study, none of

these options are considered since the improvement in response time is at the expense of

rebuild time.

2.2 Performance Evaluation of Clustered RAIDS

In the past, analytical modeling has been widely used to evaluate storage systems. The

M/G/1 queuing model provides very accurate estimates of mean response times, even

with zoned disks when rebuilding using the VSM policy. 13

Analytical modeling has several shortcomings, the most important of them being

the inability to incorporate passive resources such as buffers. The rest of this document is

based on simulation of the Clustered RAIDS system using DASim.

This simulator uses a detailed single disk simulator which can simulate different

disk drives by reading their characteristics from a specs file. 16 All further investigation

pertains to the IBM 18ES disk drive which has a capacity of 9.17 GB and spins at 7200

RPM, resulting in a rotational time of 8.33 ms. It is comprised of 11 zones and the

16

number of sectors per track varies from 247 to 390. The average seek time is 7.16 ms

and the average access time is over 11 ms. For reasons of efficiency, an OLTP

workload is used'' as 96% of he requests will be for 4 KB blocks and the remaining 4%

will be for 24 KB blocks. This model is simplified and it is assumed that all disk requests

are for 4 KB blocks. This simplification is possible because the positioning time

dominates the service time. Also, the arrival process is assumed to be Poisson as it

allows for varying the arrival rate of requests and obtaining the mean response time

characteristic of the system in both normal and degraded modes. The rebuild is

assumed to start immediately in degraded mode (i.e. as soon as a disk fails). The effect

of VSM versus PCM for a declustering ratio a = 0.75 is shown in Figure 2.1. 13

Figure 2.1 Mean user response time and rebuild time in VSM and PCM for a = 0.75

17

Neither VSM not PCM allow pre-emption of rebuild requests. So when a user

request arrives while rebuild is in progress, it has to wait until the rebuild completes. As

can be seen in Figure 2.1, the user response time and the rebuild time in VSM are always

shorter than in PCM. For this reason, only VSM is considered hereafter. Figure 2.1 is

obtained by simulating the Clustered RAID5 system with 21 IBM 18ES disks (N). The

parity group size (G) is 16, scheduling policy is FCFS (First Come First Serve), Buffer

size is 128 MB, Stripe unit(SU) size is 512 KB and Rebuild unit size(RU) is 256 KB.

The effect of read redirection (RR) is shown in Figure 2.2. 13

Figure 2.2 Effect of Read redirection on response time and Rebuild progress.

As can be seen in the above figure, read redirection shortens rebuild and response

times significantly. It can, however, have a negative impact on the rebuild time when the

18

declustering ratio is very small as the surviving disks feed data to the spare disk at a rate

higher than it can consume. This can be alleviated by dynamically controlling the

fraction of read requests that are redirected to the spare disk. Figures 13 2.3, 2.4, 2.5 and

2.6 illustrate the effect of using dynamic control of read redirection for declustering ratio

a = 1, 0.75, 0.5 and 0.25,respectively.

Figure 2.3 Effect of dynamic control of read redirection for a = 1.

As seen in Figure 2.3, dynamic control of read redirection has no effect on the

rebuild or response times. The following figures show the effect when a is lowered.

Figure 2.4 Effect of dynamic control of read redirection for a = 0.75.

19

Figure 2.5 Effect of dynamic control of read redirection for cc = 0.5.

20

Figure 2.6 Effect of dynamic control of read redirection for a = 0.25.

As seen in Figures 2.4, 2.5 and 2.6, dynamic control of read redirection has effect

only for smaller values of a and at higher utilizations. The size of the rebuild unit has a

significant impact on the rebuild and response times. A larger rebuild unit size leads to

shorter rebuild time but a higher response time. This is due to the fact that a large rebuild

unit takes longer to service during rebuild operation and the user requests have to wait

longer before they can be serviced as there is no pre-emption of rebuild. This is

illustrated in Figure 2.7" in the following page.

21

Figure 2.7 Impact of rebuild unit size on rebuild and user response times.

While the performance of Clustered RAIDS systems can be fine-tuned by varying

the parameters discussed in this section, a significant improvement in rebuild and

response times can be achieved by incorporating an on-board cache on the individual

hard disks that constitute the disk array. This is the topic of discussion in the next

chapter.

CHAPTER 3

ONBOARD CACHING IN CLUSTERED RAIDS DISKS

3.1 Advantages of Onboard Caching

A Cache, by definition is a memory that acts as a bridge between a small fast memory

and a larger slower memory. It stores the data most frequently accessed by the larger

memory from the smaller one. The cache is usually smaller in size than the smaller

memory, but is much faster. This way, the frequently used data can be accessed much

faster.

The onboard cache discussed here, as the name says, is one that is integrated into

the hard disk. This cache is used to buffer a track during the rebuild operation. It can be

enabled or disabled by the array controller at the user's discretion. This cache, as the

later sections reveal, improves the rebuild performance and user response times

significantly at an additional cost which is a small fraction of that of the entire hard-disk.

It would be transparent to the array controller. Therefore, no major changes in the

controller hardware are necessary to use the cache. The controller, however, should be

capable of enabling or disabling the cache.

The next section discusses the features and design considerations of the onboard

cache in detail. Also discussed in detail is the operation of the cache in rebuild mode.

22

23

3.2 Cache Architecture

The hard disk drive being considered is the IBM 18 ES that has a capacity of 9.17 GB

with 11 zones and 247 — 390 sectors per track. It has a rotational speed of 7200 RPM.

The major requirement for the cache is that it should be able to buffer the largest track

(i.e. 390 sectors). Each sector is considered to be 512 Bytes long. So the size of the

cache would be 512 x 390 Bytes. The smallest unit of data transferred into or out of the

cache is a sector. The access times are neglected as they are very small compared to the

disk access times. The data transfer times from the cache are also neglected as they are

of the order of nanoseconds and those of the disk are in milliseconds.

The cache is used only in rebuild mode. When a user request arrives while the

rebuild operation is going on, the track being read is cached. After the current rebuild

unit is read, the user request is served by transferring the sectors directly from the cache,

if there is a hit to the cache. Otherwise, a normal read operation is performed, without

involving the cache.

When the user request arrives while the rebuild operation is reading a track, the

unread part of the track is cached first. Then another read is issued to read the remaining

sectors of the track. Following this, the rest of the rebuild unit is read. This fills the

cache with one full track. Then after the rebuild unit is read, the user request is served

directly from the cache if there is a hit. The cache is not used otherwise.

Figures 3.1 to 3.3 show the operation of the onboard cache when the user request

arrives while rebuild is underway. Here So, 51...5n represent sectors 0 through n in the

track being considered.

24

Figure 3.1 Arrival of user request while sector S2 is being rebuilt in the above track.

At this point of time the buffering of the track starts. Since it is a zero-latency

read operation, the entire track, starting from S3 to S n is read into the cache while the

rebuild operation is underway. S2 cannot be buffered since it would already have been in

the midst of being read when the user request arrived. Buffering starts from the next

sector in the track. This buffering is done simultaneously with the rebuild read operation.

Figure 3.2 shows the contents of the onboard cache after these sectors have been read.

Figure 3.2 Cache contents after the track has been read once.

If the user request is for the entire track, sectors So, Si and S2 are read now. This

is shown in Figure 3.3.

Figure 3.3 Cache contents after the track has been accessed twice.

The improvement in rebuild and response times depends heavily on the

percentage of hits to the cache, which itself is dependent on the probability of having a

user request for sectors in the current track being rebuilt. This probability in turn depends

on the size of the rebuild unit being used, as can be seen in the simulation results in later

25

sections. In the discussion that follows, the cache is assumed to have zero latency for

reads and writes. This is acceptable since cache delays are negligible when compared to

disk access times. The following section discusses the data structures and algorithms

supporting the operation of this onboard-cache.

3.3 Data Structures for CRAID5 Performance Analysis

The Clustered RAIDS (CRAID5) architecture involves the use of many data structures.

Some of them are built upon the data structures pertaining to single disk operation. The

following characterize the single disk.

• Single_disk_info: This structure, as the name says, has the information about the

disk: The total number of blocks, block size, total number of tracks, the type

(physical disk or virtual disk) and the queuing policy used. It is used by the single

disk simulator in DASim, which in turn is used by the CRAID5 simulator as

described later.

• SDSim_framework: Here, the functionality of the single disk controller is defined. It

handles requests for read and write. It also stores disk state and performance

monitoring information. It serves requests from a queue of disk access requests.

There is a single queue for each disk. Also in our discussion, the queue is FCFS.

Following are the three most important data structures relevant to the operation of

CRAMS.

• CRAID5_info: This characterizes the disk array with the number of disks, stripe unit

size, group size and mode which is discussed later.

26

• CRAID5 layoutmanager: As the name implies, this structure manages the layout of

the array. It is responsible for mapping of logical disks to physical disks (and also

logical block address to a block address in a specific disk).

• Rebuild_manager: All issuing of rebuild requests is done here. Also, the rebuild

read and write operations are handled here. In the following section, the performance

of the CRAMS architecture is analyzed with and without the cache, using various

configurations that are commonly used.

3.4 CRAID5 Configurations and Simulation

The following configuration has been used in all the simulations. Two identical sets of

simulations are performed, one with the cache and the other without it. In all cases the

following parameters are constant.

Buffer Size =128 MB

Read Redirection = Enabled

Model = VSM

Dynamic Control = Disabled

Disk Used = IBM 18ES (9.17 GB, 7200 RPM, 11 zones, 247-390 sectors per track)

Scheduling Policy = FCFS

Number of Disks(N) = 21

Parity Group Size (G) = 16, giving a declustering ratio a = (G — 1) / (N —1) = 0.75.

Stripe Unit Size = 128 Blocks = 512 KB, since each block is 4 KB

27

All disk accesses will be reads. The number of user requests to be processed

before and after the rebuild are 10000. The system is simulated for post-failure disk

utilizations from 0 to 96.25% (i.e. 0 to 55% before failure) with and without the onboard

cache. Post-failure disk utilization (p) is calculated using expression 3.1.

Where p is the pre-failure disk utilization. The entire procedure is performed for

rebuild unit (RU) size of 64, 128 and 256 KB. The graph in Figure 3.4 shows the

difference in rebuild performance seen while using the cache. The rebuild unit size here

is 16 blocks (i.e. 64 KB).

Figure 3.4 Effect of onboard-cache on rebuild time for rebuild unit size of 64 KB.

28

As seen in the previous figure, there is not much difference in the rebuild times

with and without the cache. Figure 3.5 shows the effect on user response times.

Figure 3.5 Effect of onboard cache on user response time for rebuild unit size of 64 KB.

The average number of times a track and sector is accessed with and without the

cache justifies the difference in the rebuild and response times. If the cache is enabled, a

track and sector will be accessed fewer times. Also, when the disk utilization is zero, the

arrival rate of user requests is not absolutely zero. Also, a stripe oriented rebuild is used

in this and the rest of the simulations since this utilizes the rebuild buffer in a more

efficient way. Disk oriented rebuild does not fully utilize the rebuild buffer. The reason

for a very small difference in the rebuild times becomes clear after analyzing the

following graphs. Table 3.1 shows the differences in the rebuild and response times,

average number of times a track and sector are accessed with and without the cache.

Table 3.1 Simulation Results with Rebuild Unit Size of 64 KB

U	 trb 	 fit 	 ns 	 trs 	 Trb 	 Nt 	 Ns 	 Trs

29

	1.15	 11.89

	

56.44 	 15.56

	

57.28 	 ! 	 16.06

	

57.94 	 ; 	 16.58

	

58.47 	 17.07

	

59.68 	 17.61

	

60.84 	 18.14 	 1

	

61.23 	 18.67

	

63.45 	 19.22

	

65.02 	 19.87

	

66.79 	 20.52

	

69.3 	 21.23

	

71.63 	 22.01

	

75.91 	 22.94
_.„

	

79.28 	 24.00

	

84.65 	 25.28

90.76 " 26.77

	

99.11 	 28.68

	

108.43 	 ; 	 31.21

	

121.98 	 34.72

	

140.72 	 40.10

	

171.62 	 50.18

	

• 232.71 	 80.11

0.000
,

0.025

1097

1123

1.30

57.29

0.050
. 	 _.

1150 58.83

0.075 1181 60.19

0.100 1217 61.42

0.125 1264 63.33

0.150 1318 65.19

0.175 1384 66.28

0.200 1462 69.20

0.225 1542 71.47

0.250 1640 73.94

0.275 1756 77.15

0.300 1886 80.18

0.325
.

2032 85.16
_

0.350 2197
_

89.23
..

0.375 2396 95.30

0.400 2636 102.11

0.425 2925 111.16

0.450 3274 121.18

0.475 3746 135.43

0.500 4398 154.87

0.525 5416 186.47

0.550 7471 248.26

1096

1119

1.30

56.24

1.15

56.13

11.86

15.37

1142 m 57.74 56.75 15.72

1170 59.06 57.19 16.09

1203 60.25 57.5 16.42

1246 62.12 58.49 16.81

1297 63.94 59.43 17.19

1360 65.00 59.60 17.56

1434 67.88 61.61 17.96

1511
.

70.11
_

62.96 18.46

1606 72.54 64.51 18.95

1718 75.71 66.80 19.51

1845 78.70 68.91 , 	 20.14

1987 83.64 72.97 20.91

2149 87.67 76.12 21.82

2345 t 	 93.70 81.27 22.95

2581 t 	100.47 87.17 24.29

2867 109.48 95.30 26.04

3213 119.46 104.4 28.42

3681 133.67 117.73 31.78

4330 153.07 136.25 37.00

5344 184.63 166.93 46.93

7396 246.38 227.80 76.71

Here, U is the disk utilization before failure occurs, Trb and trb are the rebuild

times in seconds, T rs and trs are the response times in milliseconds, N t and n t are the

average number of times a track is accessed, and N s and n s are the average number of

times a sector is accessed with and without the onboard cache respectively. Figures 3.6

30

and 3.7 show the effect on the rebuild and response times when the rebuild unit size is

128 KB. Table 3.2 gives the simulation results for this rebuild unit size.

Figure 3.6 Effect of cache on rebuild time for rebuild unit size of 128 KB.

Figure 3.7 Effect of cache on user response time for rebuild unit size of 128 KB.

0.000 	 ; 	 857 	 1.28 	 1.11 	 ! 	 11.89 	 i

0.025 1 	 877 	 40.48 	 : 39.48 	 1 	 17.34

0.050 ; 	 892 	 41.36 1 39.52 	 18.01

0.075 i 	 913 	 ' 42.28 	 39.61 	 18.58
_;..

0.100 1 	 940 	 43.16 	 39.66 : 	 19.20

0.125 	 975 	 44.47 	 40.14 	 19.78

0.150 : 	 1012 	 E 45.15 	 40.19 	 ! 20.34
i 	 -

0.175 i 	 1058 	 47.23 	 41.24 	 ' 20.93

0.200 	 1114 	 48.34 	 41.52 	 21.53

0.225 ;

	1179	 i 50.47 	 42.82 	 22.12

0.250 ! 	 1246 	 ! 52.41 	 43.92 	 22.76
1 	 .,

0.275 	 1327 	 ' 53.96 	 44.64 	 23.47

0.300 ! 	 1423 	 i 56.78 	 46.63 	 24.24
.

0.325 = 	 1532 	 ; 60.17 	 49.19 	 25.11

0.350 i 	 1649 	 • 62.88 	 51.07 	 26.15

0.375 : 	 1789 	 , 67.73 	 55.09 	 ! 27.33

	

0.400 	 1951 	 72.39 	 58.92 	 28.81

	

0.425 	 2150 	 78.16 	 63.86 ; 30.65
•	 ,

	

0.450 	 2402 	 86.48 	 71.34 	 33.01

	

0.475 	 2729 	 : 95.92 	 79.95 	 36.44

	

0.500 	 3181 	 E 110.10 	 93.31 	 41.74

	

0.525 	 3883 	 131.40 	 113.70 = 51.44

	

0.550 	 5312 	 174.50 	 156.00 	 81.26

2402

2729

Table 3.2 Simulation Results with Rebuild Unit Size of 128 KB

U	 trb	 nt 	 ns	 trs 	 Trb 1 Nt 	Ns	 T,

31

855 1.28 1.10 11.85

869 38.93 38.10 17.10

877 39.77 38.38 17.57

891 40.65 38.41 17.94

911 41.49 38.50 18.37

939 E 42.76 38.71 18.75
T_______

969 43.40 38.90 ! 	 19.11

1009 45.45 39.29 19.51

1058 46.52 39.31 19.91

1116 48.61 40.34
.

20.30
_

1176 50.51 41.18 20.75

1250 50.02 41.64 21.26

1340 54.80 43.37 21.83

1442 58.15 45.66 22.51

1552 60.82 47.28 23.35

1685 65.63 51.04 24.33

1840 70.25 54.61 25.62

2032 75.98 59.28 27.26

2278 84.26 66.50 29.42

2598 93.66 74.85 32.65

3043 107.81 87.95 37.76

3738 129.02 108.10 47.26

5160 172.07 150.10 76.88

Lastly, Figures 3.8 and 3.9 show the effect on the rebuild and response times for a

rebuild unit size of 256 KB.

Figure 3.8 Effect of cache on rebuild time for rebuild unit size of 256 KB.

32

Figure 3.9 Effect of cache on user response time for rebuild unit size of 256 KB.

trb nt ns trs Nt Trs

974	 40.18 : 30.35

41.44 . 30.65

0.300	 1103	 42.78 , 31.03

0.325	 1180	 46.31 . 33.60

0.350	 1272	 48.42	 34.74

0.375	 1376	 51.93	 37.29

0.400 ; 1501 ! 54.89	 39.29

0.425 ! 1646 E 59.74	 43.18

0.450	 1827 ! 65.01	 47.48

0.475	 2073	 73.26	 54.77

0.500	 2409 ! 83.39 ; 63.94

0.525	 2925 ! 99.14	 78.73

4027	 132.07	 110.7(

0.250

0.275 I 1032

0.550 110.70

Table 3.3 Simulation Results with Rebuild Unit Size of 256 KB

33

0.00	 ,	 667	 '	 1.19	 1.07

0.025	 687	 29.96	 28.8

0.050 '	 703	 31.15 ' 29.02

0.075 '	 722	 1 32.27	 29.18

	

11.89	 664	 ;	 1.19	 , 1.07	 11.83

	

20.14	 673	 27.91	 26.16

	

20.86	 678	 3 29.06	 26.22	 20.23
--

	

21.62	 686	 30.14	 26.43	 20.70

	

22.37	 695	 31.22	 26.64	 21.17

	

23.02	 708	 31.28	 26.75	 21.53

	

23.66	 730	 32.27	 26.81	 21.89

11.83

19.79

20.70

	

0.100	 743	 33.39 ; 29.34

	

0.125	 767	 33.49 ; 29.48

	

0.150	 800	 ! 34.52 ; 29.71

	

0.175	 832	 , 36.18	 29.83	 24.37	 751	 33.90	 26.87	 22.31

	

0.200	 875	 37.37	 29.87	 25.01	 782	 35.05	 26.94	 22.67

	

0.225	 921	 38.25	 29.93 ; 25.67	 817	 F35.89	 26.99	 23.05

26.41	 859	 37.78	 27.03	 23.50

27.14 I	 906	 39.00	 27.15	 23.95

27.90 ; 966	 40.30	 27.22	 24.42

28.82 E1031	 43.79	 29.49	 25.06

	

29.81 : 1112 ; 45.86	 30.32	 25.76

30.98	 1205	 49.33	 32.56	 26.65

32.40	 1391	 52.25	 34.26	 27.79

34.25	 1452	 57.06	 37.84	 29.35

36.66 , 1622	 62.29	 41.83	 31.48

39.84	 1857	 70.50	 48.82 , 34.37

45.16	 2182 I 80.59

54.90	 2686

85.28 I 3777	 129.19
RilarrAVOMMMgE•

In the following figures, the effect on rebuild performance and user response

times is summarized. As can be seen from these figures, the effect of enabling the

onboard-cache increases with the size of the rebuild unit. Figure 2.7 shows that as the

21.17

21.53

	

26.81	 21.89

	

26.87	 22.31

	

80.59	 57.68

	

96.30	 72.17

103.82

39.41

48.86

78.96

23.05

23.50

23.95

34

rebuild unit size increases, rebuild time improves at the expense of user response time.

This is reflected in Figure 3.10. Also, the difference in rebuild performance increases

with the rebuild unit (RU) size. The reason for this lies in probability theory. The

probability of a user request finding the requested track in the cache is higher for larger

rebuild unit size than for a smaller one. This is due to the fact that user requests are

processed among rebuild requests and there is no preemption of either of them by the

other. So the likelihood of a user request missing the requested track in the rebuild unit is

high when the rebuild unit size is small. Therefore the percentage of hits to the cache

will increase with the rebuild unit size, resulting in an increase in rebuild performance

improvement.

Figure 3.10 Effect of rebuild unit size on rebuild performance improvement using
onboard cache.

35

A direct result of using onboard cache is an improvement in user response time as

seen in the previous figures. Hence,the improvement in user response time also increases

with the rebuild unit size as seen in Figure 3.11.

Figure 3.11 Effect of rebuild unit size on user response time improvement using the
cache.

Improvements in rebuild and response times go hand in hand. An improvement in

user response time results in an improvement in rebuild performance since the rebuild

operation can be resumed quickly. The next chapter discusses another way of improving

rebuild performance by delaying the termination of vacations.

CHAPTER 4

DELAYING VACATION TERMINATION

4.1 Enhancing VSM Processing

In the traditional VSM (Vacationing Server Model) processing, the rebuild requests are

considered to be of lower priority than user requests. But there is no preemption of

rebuild requests due to user requests. Rebuild requests are processed only when the disk

is idle (i.e. in Vacation). When a user request arrives, it has to wait until the current

rebuild unit is being rebuilt. This is depicted in Figure 4.1.

Figure 4.1 Rebuilding in VSM Mode.

The rebuild performance in VSM can be improved by waiting for example two

user requests before serving them, thus delaying the termination of the disk vacations.

This improvement is at the expense of the user response time. But as the simulation

results in the next section show, the increase in user response time is negligible, and only

occurs at lower utilizations. The configuration for the simulation is exactly the same as

in section 3.4 except that the parameter for the VSM processing is set to two so that the

disks are allowed to be idle until there are two user requests.

36

37

4.2 Effect on Rebuild Performance

The effect on rebuild performance is discussed for rebuild unit sizes of 64, 128 and 256

KB. As seen in Figure 4.2, the improvement in rebuild performance increases as the

rebuild unit size is decreased. The reason for this lies in the number of rebuild units that

can be processed before two user requests are processed. For the same user request

arrival rate, more number of rebuild units (RUs) can be processed when the RU size is

small than when it is large. In summary, the greater the inter-arrival time of user requests

compared to rebuild unit processing time, the greater the rebuild performance

improvement.

Figure 4.2 Effect of rebuild unit size on rebuild performance improvement

38

Figure 4.3 shows the effect of batch processing user requests when the rebuild

unit size is 256 KB. The effect the similar for lower rebuild unit sizes as discussed later.

Figure 4.3 Effect of delayed vacation termination on the response time for rebuild
unit size of 256 KB.

As seen in the Figure 4.3, there is an increase in the response time at lower

utilizations since the arrival rate of user requests will be very small (i.e. the inter-arrival

time of user requests will be high). So a user request will have to wait longer before it

can be processed since there have to be two user requests before their processing can

begin. As the utilization increases, the difference diminishes. Since the utilization will

be usually high during rebuild, this negative impact on user response time is not

perceptible. Figure 4.4 shows the relative impact on user response times for the three

rebuild unit sizes.

39

Figure 4.4 Relative effect of delayed vacation termination on user response time.

The conclusion that can be drawn from this study is that the rebuild unit size does

not have a major impact on the effect the delaying of vacation termination has on

response time, but the improvement in rebuild performance is higher for smaller rebuild

unit sizes.

The next chapter discusses the effects a small rebuild buffer would have on the

rebuild performance.

CHAPTER 5

REBUILDING WITH A LIMITED BUFFER

5.1 Effect of Rebuild Buffer on Rebuild and Response Time

The size of the rebuild buffer has an effect on rebuild performance and user response

time as shown in Figure 5.1. 13 The parameters for the simulation are the same as those

discussed in chapter 3. The rebuild unit size is 64 blocks (256 KB), and the disk

utilization is 0.9. A shared buffer is used for the simulation. After a rebuild unit from the

surviving disks is read, it is XORed onto the rebuild working buffer and will be written to

the spare disk later. When all the surviving rebuild units from parity group are read, the

buffer contains the reconstructed data which can be written to the spare disk.

Figure 5.1 Impact of buffer size on rebuild and response times.

40

41

5.2 Rebuild Time Analysis with a Limited Buffer

Each disk has dedicated buffers that are used before each rebuild unit is XORed to the

rebuild buffer. These buffers are very small and can be neglected. The user response

time is not considered here since it is not affected significantly. There is a temporary

load imbalance, as a result of which the rebuild process is suspended. 13

A larger buffer reduces the possibility of this suspension. The improvement in rebuild

times is significant for smaller sizes of the buffer, and diminishes as the size gets larger.

It can be easily seen that there is no improvement in rebuild time beyond a buffer size of

128 MB. Further, Figure 2.7 shows that the rebuild performance does not improve

significantly after a rebuild unit size of 256 KB. Figure 5.2 shows the effect of buffer

size on rebuild time for a utilization of 0.3. The declustering ratio is taken as one since

this eliminates the delay due to the spare disk.

Figure 5.2 Effect of buffer size on rebuild time for disk utilization of 0.3.

42

Figures 5.3 and 5.4 show the effect on rebuild time for utilizations of 0.6 and 0.9.

Figure 5.3 Effect of buffer size on rebuild time for disk utilization of 0.6.

Figure 5.4 Effect of buffer size on rebuild time for disk utilization of 0.9.

43

It can be inferred from the previous three figures that the rebuild times are

constant until the buffer size is 80 MB, and start increasing when it is reduced. The key

transition points here are sizes 80, 64 and 48 MB where the rebuild time increases in

most cases. Another key observation that can be made from these figures is that the

effect of limiting the buffer increases with the disk utilization. When the utilization is

low (e.g. 0.3), there is no effect of reducing the buffer until a size of 32 MB, but as Figure

5.5 reveals, the rebuild time increases when the buffer is reduced to 16 MB whereas in

Figures 5.3 and 5.4, it increases when the buffer is reduced to 64 MB. This implies that

buffer usage increases with disk utilization.

Figure 5.5 Effect of disk utilization on rebuild buffer usage.

44

Until now a declustering ratio (a) of one was used. Figure 5.6 shows the effect a

has on the rebuild time for 21 disks. In this figure, G = 6, 11 and 21 imply declustering

ratios of 0.25, 0.5 and 1.0 respectively.

Figure 5.6 Effect of declustering ratio on rebuild time.

It is clearly evident from Figure 5.6 that for the same utilization, a lower

declustering ratio gives a shorter rebuild time. Also, the difference in rebuild times is

more visible at a higher utilization. The effect of disk utilization on the rebuild times is

shown in Figure 5.7. The rebuild time increases with disk utilization at different rates for

different declustering ratios. The rate increases with the declustering ratio. Here buffer

sizes of 48, 64 and 80 MB are used for reasons stated earlier. Also, the number of disks

used is 21 and three different declustering ratios are considered.

45

Figure 5.7 Effect of disk utilization on rebuild time.

Also of interest is the impact the number of disks (a = 1) has on the rebuild time

Figure 5.8 Impact of number of disks on the rebuild time, for utilization of 0.3.

46

Figure 5.9 Impact of number of disks on rebuild time, for utilization of 0.6.

Figure 5.10 Impact of number of disks on rebuild time, for utilization of 0.9.

47

It can be observed that for a utilization of 0.3, the increase in the rebuild time is

linear. Also, there is no difference in the rebuild time for the three different sizes,

implying that the buffer is not utilized fully at this ulitization. In Figures 5.9 and 5.10,

the increase in rebuild time takes a different pattern for different sizes of the buffer and

between different numbers of disks, the reason being that the utilization of the rebuild

buffer depends not only on its size but also on the number of disks being used.

The rebuild process is stalled when the buffer reaches 100% utilization and

resumes when utilization goes down. An analysis of the number of rebuild stalls shown

in Figure 5.11 justifies the increase in rebuild time when the buffer size is decreased.

Figure 5.11 Effect of buffer size on disk rebuild stalls.

It is evident that with fewer disks, the number of rebuild stalls increases at a

higher rate, and as Figures 5.12 and 5.13 show, the mean number of stalls per disk

decrease as the number of disks increases and as the utilization decreases.

48

Figure 5.12 Variation of mean stall time with number of disks with a 48 MB buffer.

Figure 5.13 Variation of mean stall time with disk utilization with a 48 MB buffer.

128 1843389 -

80 f 1862974 9917

64 1876994
•

9920

48 1893788 9923

9

49

Finally, Table 5.1 shows the relationship between the mean stall time, average number of

stalls per disk and the rebuild time, for buffer sizes of 128, 80, 64 and 48 MB. A size of

128 MB is considered close to an infinite buffer. The mean stall time varies very

insignificantly, as a result of which it appears constant in the table.

Table 5.1 Relationship Between Mean Stall Time, Average Number of Stalls and
Rebuild Time

Buffer Size(MB) Rebuild Time(ms) ; Mean number of stalls Mean stall time(ms)
per disk

In the above table, for any buffer size, the sum of the rebuild time with infinite

buffer (i.e. 128 MB) and the product of the mean stall time and mean number of stalls per

disk is close to the rebuild time. The difference is about 4%, and is attributed to the lack

of synchronization of the disks.

CHAPTER 6

CONCLUSION

An improvement in rebuild performance and user response time resulting from the

inclusion of an onboard cache was shown using the DASim toolkit. The architectural

features of the cache were presented and its operation was described followed by a

performance analysis done using the toolkit. The improvement in rebuild time increased

with the rebuild unit size.

A novel technique to enhance the rebuild performance was proposed that delays

the termination of the vacationing disks until there are two user requests waiting to be

processed. This was shown to improve the rebuild times without significantly affecting

the user response time. The rebuild time improved significantly when a smaller rebuild

unit was used, and the improvement in user response time was unaffected by the rebuild

unit size.

Finally, the consequences of having a limited rebuild buffer were presented. Most

of the previous work in CRAID5 had been done assuming an infinite rebuild buffer

(practically, a very large size), as a result of which its impact on rebuild performance was

not known. Using a thorough analysis, it was proved that the rebuild performance was

affected when the buffer size went below a cut-off value which itself depended on the

disk utilization, the number of disks being used and the declustering ratio.

50

APPENDIX A

RELIABILITY MODELING

Given the Mean Time To Failure (MTTF) and a target Mean Time To Data Loss

(MTTDL), The MTTDL of a disk array that can tolerate one failure is expressed as:

.a a. .4 .44, = ..101TIT y74, = I <I
N(G — I :LVfTTR

where N is the total number of disks in the array, G is the number of disks in a RAID

group (i.e. a set of disks over which a parity is computed), MTTFdisk is the mean time to

failure of a component disk, MTTRdisk is the mean time to repair of a component disk,

which is in fact the rebuild time of a disk array. This model assumes that disk failure rates

are identical, independent, and exponentially distributed random variables. In arrays that

maintain one or more on-line spare disks, the repair time can be very short, usually less

than an hour, and so that the MTTDL can be very long and exceeds the normal projected

disk deployment intervals (five years).

51

APPENDIX B

SETTING UP DASIM FOR CRAID5 SIMULATION

The CRAMS module in DASIM uses command line arguments to set up the simulation

environment. The normal and degraded mode is simulated in the file CRAID5Sim.h, and

the rebuild mode in CRAID5Sim2.h. The file CRAID5Frame.h contains definitions for

the CRAID5 controller, which use definitions of the single disk controller, defined in

SDFrame.h. Each simulation generates 4 files in a directory whose name should be

specified at the command line. The most important file is Rebuild.txt, which gives the

rebuild and mean response times. The following Parameters specified on the command

line in the order: buffer size, rebuild unit size, read redirection, model,

model parameters, rebuild type, dynamic control, request arrival rate, results directory,

name of the disk, scheduling policy, number of priority classes, threshold, number of

disks, group size, failed disk, stripe unit size, read/write ratio, number of requests

processed before rebuild, number of requests processed after rebuild, and the cache. A

batch file containing the required simulation command lines can be used. This eliminates

the recompilation step that was required in the earlier versions of DASim.

52

REFERENCES

1. Holland, M. (1994). On-line Data Reconstruction in Redundant Disk Arrays.
Carnegie Mellon University: Technical report cmu-cs-94-164.

2. Hennessy, J.L., Patterson, D.A., & Goldberg, D. (2003). Computer Architecture: A
Quantitative Approach (3rd ed.). Morgan-Kauffman Publishers.

3. Holland, M., Zelenka J et al. (1996). RAIDframe: A Rapid Prototyping Tool for
RAID Systems. Parallel Data Laboratory, Carnegie Mellon University.

4. Patterson, D., Gibson, G., & Katz, R.A. (1988). A case for redundant arrays of
inexpensive disks (RAID), Chicago: Proceedings of the 1988 ACM Conference on
Management of Data (SIGMOD), 109-116.

5. Gibson, G.A. (1992). Redundant Disk Arrays: Reliable, Parallel Secondary Storage.
MIT Press. Boston.

6. Merchant, A. Yu, P. (1993) Performance Analysis of a Dual Striping Strategy for
Replicated Disk Arrays. San Diego: Proceedings of the Second International
Conference on Parallel and Distributed Information Systems, 148-157.

7. Muntz, R.R. Lui, J.C.S. (1990). Performance analysis of disk arrays under failure.
Brisbane, Australia: Proceedings of the 16th VLDB Conference, 162-173.

8. Peterson, W., Weldon, E. (1972) Error-Correcting Codes. MIT Press. Boston.

9. Lee, E., Katz, R. (1991). Performance consequences of parity placement in disk array.
Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, 190-199.

10. Holland, M., Gibson, G.A. & Siewiorek, D.P. (1994). Architectures and algorithms
for on-line failure recovery in redundant disk arrays. Journal of Distributed and
Parallel Databases, 2(3), 295-335.

11. Ng S. W. and Mattson R. L. (1994). Uniform parity distribution in disk arrays with
multiple failures. IEEE Trans. Computers 43(4): 501-506.

12. Merchant, A. and Yu, P. S. (1996). Analytic modeling of clustered RAID with
mapping based on nearly random permutation.
IEEE Trans. Computers 45(3): 367-373.

53

54

13. Fu, G., Thomasian, A., Han, C., and Ng, S. W. (2004). Rebuild strategies for
clustered redundant disk arrays. SPECTSO4, 598-607.

14. Fu, G., Thomasian, A., Han, C. and Ng, S. W. (2004). Rebuild strategies for
redundant disk arrays. Proceedings of the IEEE/NASA Conference on Mass
Storage Systems and Technologies, 3 — 19.

15. Thomasian, A. (1995). Rebuild options in RAIDS disk arrays. Proceedings of the 7th
IEEE Symposium on Parallel and Distributed Systems, 511-518.

16. http://www.pdl.cmu.edu/DiskSim/diskspecs.html. (Retrieved Nov. 2004).

17. Ramakrishnan, K. K., Biswas, P., and Karedla, R. (1992). Analysis of I/O traces in
commercial computing environments. Proceedings of the Joint ACM
SIGMETRICS/Performance '92 Conf, 78 - 90.

18. Thomasian, A., Han, C., Fu, G. and Liu, C. (2004). A performance tool for RAID
disk arrays. Quantitative Evaluation of Systems (QEST), 6 — 7.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment Page
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Rebuild Processing
	Chapter 3: Onboard Caching In Clustered Raid5 Disks
	Chapter 4: Delaying Vacation Termination
	Chapter 5: Rebuilding With A Limited Buffer
	Chapter 6: Conclusion
	Appendix A: Reliability Modeling
	Appendix B: Setting Up Dasim For Craid5 Simulation
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

