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ABSTRACT

AN OPTIC FIBER SENSOR FOR
PARTIAL DISCHARGE ACOUSTIC DETECTION

by
Xiaodong Wang

Partial discharge (PD) is a very common problem in operating power transformers and is

one of the factors that could lead to failure of power transformers, leading to power

outage and expensive repairs. The acoustic wave induced by PD can be measured and

used for monitoring, diagnosing, and locating potential failures in power transformers.

The effects of the temperature of the transformer and transformer oil are one of

the very important parameters in PD and these effects are investigated in detail. The Fast

Fourier Transform (141-(1) is used to synthesize the measured data and results show that

for periodic PD events, the dominant components of the energy of the PD shift to higher

frequencies as the temperature increases. The experimental results are consistent with

theoretical expectations.

Fiber optic-based sensors have been shown to be attractive devices for PD

detection because of a number of inherent advantages including small size, high

sensitivity, electrical nonconductivity, and immunity to electromagnetic interference

(EMI). A fiber optic sensor based on a Fabry-Perot interferometry is constructed by a

simple micromachining process compatible with MIEMS (Microelectromechanical system)

technology. The sensor is used in a transformer to measure PD acoustic waves. The

experimental results show that the sensor not only has an inherent high signal to noise

capability, but is able to accurately localize the PD sources inside the transformer.
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CHAPTER 1

INTRODUCTION

1.1 General Overview

PD is a short abrupt flow or release of current caused by buildup of the electric field

intensity in a limited region. PD in the transformer is a sign of dielectric defects as well

as a cause for further degradation of its insulation system and may therefore lead to a

failure of the apparatus. PD measurements have been used for many years during

acceptance tests of new high voltage apparatuses for uncovering possible construction

problems, such as bad design, defects in insulation materials used, or poor workmanship.

They have also been used for detecting the deteriorated parts of the insulation in an

apparatus under normal operation [1-5] .

The primary methods of PD detection are based on the observable electric and

acoustic characteristics of the phenomenon. Acoustic PD detection systems are more

favorable than electric systems in transformer monitoring. The problem with current

acoustic PD detection systems is that the acoustic signal must be observed outside of the

transformer tank because there are no developed sensors that can survive the environment

of the tank interior and be electrically and chemically neutral. Because the path between a

PD and the acoustic sensors includes the wall of the tank, multipath interference can

severely limit the accuracy of any positioning system. The interference is caused by the

differing acoustic velocity of the wave in the oil and the transformer tank.

Therefore, it would be an enormous advantage if a sensor could be designed to

operate within the transformer tank without inhibiting or changing the functionality of the

1
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transformer [6]. Once an internal sensor has been designed, a positioning system must be

employed that makes the most efficient use of the received acoustic signals. The location

of the PD source within the transformer tank can be determined by measuring the time

difference of arrival of the acoustic signal among several sensor positions within the tank.

1.2 Objective of the Study

The objective of the study is to develop a new technology for on-line monitoring of PD

inside high voltage (HV) transformers. The technique has been based on detection of the

PD pulses by an optical acoustic sensor system installed inside the transformers. The

measuring system is computer assisted utilizing the Fast Fourier Transform (141-T) which

is used for PD signal spectrum analysis. The PD measurement is implemented directly in

the transformer oil, so attenuation of the signals is negligible compared with a

measurement outside the transformers.

1.3 Dissertation Outline

PD detection is very important for the safety of HV transformers. In Chapter 2 PD

fundamentals and different detection techniques are described with a focus on PD

detection and particularly on PD acoustic signal detection. The experimental and

theoretical analysis of PD acoustic signals in transformer oil at different temperature is

described in Chapter 3. The working principle, design, fabrication and testing of the

optical sensor are described in Chapter 4, and the optical sensor application in PD

detection is explained in Chapter 5. The work is finally concluded and suggestions for

future work are described in Chapter 6.



CHAPTER 2

LITERATURE REVIEW

2.1 Background

Transformers are one of the most important and cost-intensive components of electrical

energy supply network. A review of the structure and age of the transformers in service

for different utilities shows, that many of the transformers already have reached their

design limit. Thus, a replacement of some transformers can hardly be postponed, but the

deregulation forces the utilities to save costs. As a consequence, the need and the interest

for measures to extend the life span and load optimization of the components of the

electrical power supply strongly rose. As the HV device ages, the insulation can

breakdown due to mechanical, thermal and electrical stress, resulting in the catastrophic

failure of the device.

Therefore, it is important to have a system that is capable of warning device users

of potential insulation problems so that they may be repaired during a scheduled

shutdown. This is especially the case for PD-measurements, which are known as an

adequate and practical tool for diagnosing the actual condition of the insulation, thus

without these measurements only incomplete statements about the insulation condition

are possible leading finally to an insecure life-risk management. In order to design a

system to detect and locate this phenomenon within a HV transformer, it is important to

understand why PDs occur and what methods are currently employed to detect and locate

PDs. For this purpose, the knowledge about the operation condition of the component is

of enormous importance, thus monitoring and diagnostic systems become more and more

3



4

indispensable. PD detection is an important tool for monitoring insulation conditions in

HV devices in power systems.

2.2 PD Mechanism

The subject of PD which represents an antecedent term that has been commonly applied

to them in the past, constitutes a field of endeavor which can be traced back to the

beginning of the twentieth century [7-10]. While the study of PD may thus considered as

a well developed field, its preeminent importance as a tool for assessing the quality and

performance and characteristics of HV transformer has been responsible for sustaining a

high level of activity in investigations related to its mechanism, physical and chemical

effects, detection and measurements techniques [11-13].

PD in a HV transformer occurs when the electric field in a localized area changes

in such a way that a localized current is created. This localized current manifests itself as

an electrical pulse that is measurable at the output of the transformer. The most likely

sources of PDs can be broken down into three categories: floating components, coronas,

and voids. Information on the importance and mechanisms of floating components and

coronas in HV transformers can be found in [14]. However, the detection of PDs created

by these two sources does not yield any useful information about the insulation because

their appearance is not directly related to the condition of the insulation. Insulation

breakdown is physically manifested as small cracks, i.e. voids, in the insulation; therefore,

only void sources will be considered here.

Voids are defined as gaps in a more dense dielectric material, such as gas bubbles

in oil that fills the transformer tank, or cracks and fissures in the paper insulation lining
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the transformer walls. The void region has a lower dielectric constant than the

surrounding material so that PD can occur when the electric field difference across the

void exceeds the minimum breakdown field strength. However, reaching this minimum

field strength does not guarantee an immediate PD. In order for PD to occur, two criteria

must be met. First, the electric field difference across the void must be higher than the

breakdown value, which is determined by the field's ability to accelerate an electron to

the point that if it impacts another molecule, more electrons are released than are

absorbed. Second, the voltage across the void must contain free electrons and the voltage

across the specific volume of the void must be proportional to the size of void. If these

conditions are met, then the buildup of electrons in motion grows exponentially and a

streamer, or electron channel, is created so that current can flow across the void and

return the voltage across the void to zero [15].

2.3 PD Detection Methods

2.3.1 Introduction to PD Detection

Occurrence of PDs in electrical insulation is always associated with emission of several

signals: electrical and acoustic pulses and chemical reactions. These signals are a means

for detection and quantification of PD activities in high voltage apparatuses. Over the

past forty years, several methods have been developed to detect PDs within DV

transformers. These can be grouped into three categories, based on the PD manifestation

that they measure: chemical, electrical, and acoustic detection. Each is briefly explained

in the following sections.
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2.3.2 Chemical Detection

One of the consequences of PDs is chemical change of material [16-18]. For example, a

PD activity in GIS equipment decomposes SFr to basic chemical species. This has been

exploited to produce a low cost gas analyzer to detect SOF2 and thereby to detect PD

sources. In rotating machines, the presence of ozone in cooling air is evidence of the

discharge activity [19].

The two primary chemical tests employed by power companies today are

dissolved gas analysis (DGA) [20] and high performance liquid chromatography (HPLC)

[21]. The DGA test identifies gas levels in the oil produced by the breakdown of mineral

oil in the transformer into different gases, which dissolve back into the oil. The test is

administered by taking an oil sample from the tank and determining the levels of different

dissolved gases, which include acetylene, methane, hydrogen, carbon dioxide, and

ethylene. Another test, HPLC, measures the byproducts of transformer wall insulation

breakdown. Because the insulation on the wall of the transformer is made of paper, the

breakdown products are glucose and degraded forms of glucose. The test is administered

by evaluating oil samples from the transformer in an offsite lab.

Chemical testing has some limitations that prevent it from being the only method

used for PD detection. First, chemical testing does not provide any information about the

position of the PD or the extent of the insulation damage. The second problem is that

chemical testing cannot be performed online. In most cases, the transformers must be

taken out of operation to obtain the oil sample. These problems limit the usefulness of

chemical detection and rule it out as a singular solution to PD detection and positioning.
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2.3.3 Electrical Detection

During a PD a finite amount of charge carriers, electrons and ions, flow between the

discharge surfaces in a short time. This results in generation of current and voltage pulses

of short rise times that appear across the insulation. Electrical detection focuses on

capturing the electrical pulse created by the current streamer in the void. These pulses last

on the order of single nanoseconds and have measurable frequency components in excess

of 1 MHz [14]. These pulses have been one of the primary means for detection and

measurement of PD activity in insulation systems using high frequency current

transformers [22-24]. Electromagnetic waves are radiated from the discharges in the RF

band, 100 kHz to several hundreds of megahertz. These waves are detectable using

proper electromagnetic probes (antennas). The PD is then identified using several digital

processing methods. These processing methods make online electrical PD detection very

attractive because it makes real-time monitoring of HV systems possible. Using an RF

directional antenna the PD site may be localized [25, 26].

Like chemical detection, electrical detection has limitations. The primary

limitation of electrical testing is its susceptibility to noise. The HV transformer

environment contains high levels of electrical noise, both narrowband and broadband. In

some cases, it is extremely difficult to distinguish between noise and a PD because of the

short PD pulse width. This problem leads to false detection in online electrical PD

systems. The transformer can be taken offline and connected to an external power source

for testing in order to eliminate some of the noise, but taking the HV transformer offline

can cost hundreds of thousands of dollars a day in lost revenue for the power company

[27]. Another problem with electrical detection is that the received pulse characteristics
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are highly dependent on the geometry of the HV transformer. Different components

within the transformer can distort the pulse shape needed to characterize the type of PD

fault and can again result in erroneous detection.

2.3.4 Acoustic Detection

Acoustic detection of PDs is based on the detection of the mechanical waves propagated

from the discharge site to the surrounding medium. This signal is created because when

the current streamer is formed within the void, the material around the hot streamer is

vaporized. This vaporization causes an explosion of mechanical energy, which then

propagates through the transformer tank in the form of a pressure field [28-34]. Acoustic

detection has been widely used in diagnostics of transformers. In transformers, the use of

piezoelectric transducers attached to the transformer tank wall has been the most favored

approach [35].

The primary advantage of using acoustic detection over chemical and electrical

methods is that position information is readily available from acoustic systems using

sensors at multiple locations. This position information can help to identify the type of

PD as well as the location and severity of an insulation fault. Acoustic detection has

another advantage that observations can be made in the presence of large electromagnetic

disturbances.

However, some factors make the detection and interpretation of the results rather

complicated. These factors include the complexity of the acoustic impedance between the

PD source and the detector, frequency dependent velocity, transmission losses in

different media, different velocities for the different transmission types and reflections at

impedance discontinuities.
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2.4 Acoustic Detection Classifications

This section provides the necessary review of acoustic detection sensors currently in

production. PD acoustic detection sensors can be grouped into external and internal

monitoring sensors. External PD monitoring employs acoustic sensors located outside of

the transformer tank. Internal PD monitoring employs acoustic sensors inside the

transformers.

2.4.1 EDternal Detection Sensors

Several different technologies are used to fabricate these external sensors, but

piezoelectric transducers based on ferroelectric ceramic materials such as lead zirconium

titanate (PZT) dominate the systems currently in use. A PZT sensor converts acoustic

energy into an electrical signal.

Since piezoelectric acoustic sensors have wide bandwidth, are smaller than

coupling capacitors, and are capable of being inserted into the oil, or measuring acoustic

signals at transformer walls, they have been used in PD detection. Two types are used in

acoustic detection, accelerometers and acoustic emission sensors. Accelerometers, which

have a useful frequency range of up to 50 kHz, produce an electrical signal that is

proportional to the acceleration of the surface that the sensor is connected to. In contrast,

acoustic emission sensors, with a frequency range between 30 kHz and 1 MHz, produce

an electrical signal that is proportional to the velocity of the contact surface [36].

Both types of sensors are considered acoustic-electric (AE) sensors because they

convert mechanical vibrations into a corresponding electrical signal. Because the

electrical noise [37-38] environment of the HV transformer is so severe, the signal to

noise ratio at the output of the AE sensor can be significantly reduced. Sensors and
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receiver equipment are shielded to lower their susceptibility to EMT, but are not

completely immune. The position accuracy of these systems fall within useful bounds,

but the time it takes to find the position is much too long. Because PD can cause a failure

in minutes or in hours, it is desirable for the results to be instantaneous or at least

available in quasi-real time. One of the reasons that these calculations take so long is due

to multipath interference. The sensors for the acoustic detection system are located

outside the tank. The acoustic pulse can take several different paths along the transformer

interior and exterior to reach the sensor. Therefore, the same portion of the pulse can

arrive at the same sensor at different times. This effect is exacerbated by the fact that the

acoustic wave travels faster in the steel walls than in the fluid medium. While multipath

effects can be removed, it requires multiple measurements of the PD as well as a large

amount of computation time to accomplish. This speed limitation is one of the primary

drawbacks of the external measurement systems. The multipath issue can be

circumvented if the sensors are placed within the transformer tank. Internal systems have

the advantage of measuring the acoustic wave directly from the liquid medium before

reflection and multipath can distort the signal [39]. The problem with internal systems is

that AE sensors cannot be placed within the transformer tank because they transmit an

electrical signal that can interfere with the workings of the transformer. New acoustic

sensor technologies that are suitable for the harsh environment of an HV transformer

must be developed.
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2.4.2 Internal Detection Sensors

PD occurring in oil produces a pressure wave that is transmitted throughout the

transformer via the oil medium. The new technology, fiber optic sensing, is making it

possible for acoustic sensors to be placed inside the HY transformer. Fiber optic

technology is ideal for this application because the devices are chemically and electrically

inert. Therefore the sensor can be placed within the HV transformer tank where sensors

operate at frequencies of 100 to 300 kHz with a resonance frequency of 150 kHz. Also,

because the fiber sensor uses an optical signal to measure acoustic waves, the sensor is

completely immune to EMI. There are several interferometer-based designs for fiber

optic acoustic sensors [40-43], but the sensitivities of these sensors are not high. In the

following chapters, an optic fiber sensor development for PD acoustic detection is

described in detail. Table 2.1 shows the PD detection comparisons between external

detection (using PZT acoustic sensor) and internal detection (using optic fiber sensor).



Table 2.1 Comparisons of PD Measurement Methods.
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2.5 Discussions and Conclusions

PD is an electrical phenomenon that causes insulation deterioration and frequently is the

reason for breakdown (failure) of an insulation system. Most incipient dielectric failures

generate PD prior to complete failure. Sometimes the failure occurs within a matter of

minutes or hours after the inception of PD; but in other cases PD activity can be present

for years. It is therefore vital that PD measurements be made in the field in order to

predict these abnormal conditions [44-46].

One can achieve acoustic PD detection by mounting piezoelectric acoustic sensors

externally on the walls of a power transformer. An externally mounted piezoelectric

acoustic sensor offers the advantages of easy installation and replacement. However, a

piezoelectric sensor may suffer from degeneration of the signal-to-noise ratio caused by

environmental noises such as EMI and corona effects. Another possible disadvantage

associated with an externally mounted piezoelectric sensor is that the multiple paths of

acoustic wave transmission make locating the exact positions of PDs difficult.

It is thus desirable to have sensors that can function reliably inside a transformer,

even deep within the transformer windings, to pick up clean PD-induced acoustic signals.

For the sake of safety and easy installation these sensors have to be chemically inert,

electrically nonconducting, passive, and small in size.
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Optical fiber-based sensors have been shown to be attractive devices with which

to measure a wide range of physical and chemical parameters because the sensors have a

number of inherent advantages, including small size, light weight, high sensitivity, high

frequency response, electrical nonconductivity, and immunity to EMI noise. It can be

used for in-oil detection of PD and "snaked" close to the source via available openings in

the transformer like oil drain plugs. These advantages make optical fiber sensors

excellent candidates for PD detection.



CHAPTER 3

ACOUSTIC SIGNALS IN TRANSFORMER OIL
AT DIFFERENT TEMPERATURES

3.1 Introduction

Considerable research has been expended in the development of field techniques for PD

detection and measurement. An acoustic emission technique is useful to detect PD in

which sound and ultrasound waves are observed as elastic waves by a piezoelectric

acoustic sensor [47-50].

The importance of the temperature of transformer oil in the analysis of PD

acoustic spectrum has not been previously investigated. In this chapter, acoustic waves at

temperatures of 25°C and 40°C have been measured and the measurements results are

analyzed by means of the Fast Fourier Transform (FM. The experimental results show

that the dominant frequency components in the energy of the PD pulse shift from low

frequency to high frequency at increased temperature. A theoretical analysis is shown to

be consistent with the experimental results.

3.2 EDperimental Setup

Acoustic sensors are available for a variety of frequency ranges from 30 kHz to several

MHz, which are far above most of the background noise, but are low enough to give good

detection ranges in most applications in transformers. Usually they are manufactured

from piezoelectric ceramics or piezoelectric crystal. Since piezoelectric acoustic sensors

have wide bandwidth and can measure acoustic signals when placed on transformer walls,

they have been used in PD detection. In this experiment a Harisonic G-0504 type

15
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piezoelectric sensor is used, with frequency response up to 5 MHz, well above the

expected PD acoustic signal frequency of 400 kHz.

The PD generator circuit is shown in Figure 3.1. As illustrated in the block

diagram in Figure 3.2, the circuit of Figure 3.1 accomplishes three tasks: 1) first it

converts a low DC voltage of about 5 V, to a high AC voltage, 2) it then charges a

capacitor at a high voltage, and 3) it discharges the capacitor when the switch is closed

generates a PD between two needles with approximately 0.5 mm apart. A voltage gain

factor of the circuit is about 2000. Figure 3.3 shows the fabricated PD generator.

Figure 3.2 The working principle of the PD generator circuit.
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Figure 3.4 shows a close-up of the spark tank, spark gap and assembly. The spark

tank consists of a plastic tub filled with transformer oil, two micromanipulators for

placing and holding opposing electrodes in close proximity, and two hypodermic needles

to serve as sharp electrodes. The needle electrodes have a diameter of 0.1mm. The gap

length between the needles is 0.5 mm. An air compressor is used to create a source of

bubble in the vicinity of the spark gap. Sparks are generally modeled as occurring across

a bubble in the oil. Figure 3.5 shows the test apparatus (left to right): low noise Ithaco

amplifier connected to the piezoelectric sensor, a digital oscilloscope (HP Model

54616C) with sampling frequency of 500 MHz connected to the amplifier and 5 V DC

power supply connected to the spark generator circuit.

The piezoelectric sensor detects PD sounds in the transformer oil and transfers it

to the oscilloscope for real time display and storage. Then the data is sent to a computer

for FFT analysis.
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3.3 Experimental Results

In this section, PD detections in air and transformer oil are detected and analyzed. PD

signals are also studied at different temperatures. In order to simplify the analysis of the

experimental results, all experiments are carried out using the same needle gap in the

transformer oil, and all acoustic signals are detected at the same distance between needles

and the acoustic sensor.



19

3.3.1 Spark Detection in Air

A typical oscilloscope image is presented in Figure 3.6 showing the acoustic signature of

a spark in air (upper trace). In each of the oscilloscope images in this section, the upper

trace is the amplified transducer output curve and the lower trace is measured within the

spark generator circuit. Thus the upper trace is the only data of interest. The curve

displays two distinct regions, an initial very noisy period beginning less than 0.1 division

( about 2.0 ps) from the start of the data, lasting for about 20 gs ( about 1 division), and a

second lower frequency noisy region beginning at t = 20 on the trace. The first region

is EMI pick-up due to the spark and provides an accurate measure of the initial onset of

the spark. The second region is the acoustic pick-up of the transducer (think of this as the

thunder heard some time after the lightening flash), and is displaced from the initial onset

of the spark because of the finite speed of sound, i.e., the pressure sensor head is

displaced some distance (in this case about 7 mm) from the spark sound source. The

shape of the sound pulse is found to be fairly repeatable from spark to spark, generally

consisting of a large amplitude pulse followed by smaller amplitude features. The

duration of the single large amplitude pulse (about 15 its) corresponds to a "frequency"

of about 65 kHz, lower than the 200 kHz expected for oil. Since the spark is audible to

the ear, it contains frequency components that are less than 20 kHz.



Figure 3.6 The upper trace is the acoustic signature of a spark in air with the sensor
roughly 7 mm away from the spark source.

The upper trace in Figure 3.7 shows the sensor response measured with the

transducer placed roughly 35 mm from the spark sound source. Observe that the initial

large amplitude pulse is attenuated, compared to the 7 mm measurement, as one would

expect for sound radiating in all directions. The significant attenuation will require

phase-lock loop (PLL) or other detections for applications that are far removed from a

quiet sound source in air. Also notice in the figure that the pulse is farther displaced from

the EMI initial onset region, indicating that the sound takes longer to travel the greater

distance through the air from the spark sound source to the sensor head. By measuring

the time of flight versus distance one can calculate the speed of sound in air. In Figures

3.6 and 3.7 the speed of sound in air is approximately 350 m/s (around 7mm/20i-ts and

—35mm/100us, respectively), as expected.
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Figure 3.7 The upper trace is the acoustic signature of a spark in air with the sensor
roughly 35 mm away from the spark source.

3.3.2 Spark Detection in Transformer Oil

Figure 3.8 shows a typical acoustical signature of a spark in transformer oil. In this case,

the sensor is located roughly 30 mm from the sound source. In the figure there are

several observations of interest including

• The initial 15 Rs acoustic pulse is not as dominant in oil as it is in air,

• The high frequency components of the signal may be 200 kHz (0.25 divisions),

but there are clearly lower frequency components as well,

• While the electromagnetic noise due to the light of the spark lasts only

approximately 20 uS, the acoustic signal persists for at least 4 divisions or 80 us

before repeating itself.

After some investigation, it is determined that the repeated signal is merely an

echo of the initial 80 Rs sound signature, most likely reflected from a wall of a

micromanipulator. This suggests that the sound features in the initial portion are due to

the spark and not themselves echoes. This persistence is a striking observation that bears

further investigation. It may be analogous to the rumble of thunder that persists
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significantly longer than the flashes of lightening. If a dominant frequency component

within this persistent signal repeats for five or more cycles, it may provide an opportunity

for PLL detection.

Figure 3.8 The upper trace is the acoustic signature of a spark in oil with the sensor
roughly 30 mm away from the spark source.

Figures 3.9 and 3.10 shows the same sparking in oil, but measured at increasing

distances from the spark sound source, 50 mm and 75 mm, respectively. In each case, the

wave train repeats itself after roughly 4 divisions, and the signals in all three figures look

fairly similar in structure. Also, attenuation is observed with increasing distance from the

sound source, but the persistence of the wave train is still notable, and the attenuation

may be less than that in air.



Figure 3.9 The upper trace is the acoustic signature of a spark in oil with the sensor
roughly 50 mm away from the spark source.

Figure 3.10 The upper trace is the acoustic signature of a spark in oil with the sensor
roughly 75 mm away from the spark source.

The data in Figures 5.8, 5.9 and 5.10 give an average value for the speed of sound

in oil of about 1,440 m/s (50mm/35gs, 50mm/55gs and 50mm/55gs, respectively),

significantly higher than that in air, as expected [51]. The graphical speed of sound

derivations for both air and oil are shown in Figure 5.11. The calculated regression slope

values give the speed of sound in mm/gs. The average sound velocity is around 550 m/s

in air and 1440 m/s in transformer oil [52].
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Figure 3.11 Distance-time plot for sound in air (squares) and oil (circles).

3.3.3 Acoustic Signals at Different Temperatures

A typical sound signal for a spark in oil at 25°C is shown in Figure 3.12 with the sensor 5

cm away from the spark. The signal is reproducible from spark to spark in a given

medium at a given temperature. This is illustrated in Figure 3.13 that shows 25 spark

traces in oil. In Figure 3.13 similar sound signatures are observed for each spark (the

curves overlap), indicating that the character of the signal can be spectrally analyzed.
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Figure 3.13 Twenty-five periodic spark wave at 25 degrees C.

Spectral analysis is performed by digitizing the sound signal, then fast Fourier

transforming the result into the frequency domains. Figure 3.14 is a set of FFT of 25

spark time traces in transformer oil at 25 degrees C. The figure shows that, owing to

their similarity in the time domain, sparks emit sound at fairly reproducible frequencies.

This is not unexpected since the underlying physics that gives rise to each set of spark
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sounds is well defined, if not well understood. The similarity between sparks indicates

that "smart" sensing, enabled by analytical software, can be used to detect PD signals by

listening for the characteristic signature of the sound.

Figure 3.15 The average of FFT results of 25 periodic spark time traces at 25 degrees C.

Figure 3.15 shows the average FFT analysis result for 25 spark time traces. Since

the "energy" transported by a wave is proportional to the square of its amplitude, Figure

3.16 shows the relationship between frequency and energy at 25 degrees C. Figure 3.17
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shows the spectral energy of discharge in transformer oil at 40 degrees C. Figure 5.16 and

5.17 shows that most of the energy is distributed in 0-100 kHz ranges and very little in

the 200-400 kHz ranges.

By integrating over 50 kHz regions, one can smooth the E,E11 plots and focus on

the increased energy at higher frequencies at higher temperatures. Figure 5.18 shows

these integration results along with Table 5.1 of the calculated data which shows the

normalized energy in different parts of frequencies at two temperatures. According to the
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table, the percentage at 40°C is larger than at 25°C when the frequency is greater than

100 kHz. Clearly energy is shifted from the low to high frequencies with increased

temperature.

Figure 3.18 The energy integration results at 25 and 40 degrees C



Table 3.1 Experimental Normalized Energy and Ratio at 25 and 40 Degrees C.
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3.4 Theoretical Analysis

PD acoustic waves are longitudinal waves due to the characteristics of transformer oil

(viscid fluid medium). And acoustic wave propagation speed in transformer oil is about

1440 m/s under normal conditions. The acoustic waves in the oil-filled transformer can

be treated as linear wave propagation.

The sources of the acoustic wave dissipation may be divided into two general

categories: those intrinsic to the medium and those associated with the boundaries of the

medium. Losses in the medium may be further subdivided into three basic types: viscous

loss, heat conduction losses and losses associated with internal molecular processes. It is

proven that the most of energy loss is associated with viscous losses. So only the viscous

affect will be discussed in the wave equation derivation.
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3.4.1 Acoustic Wave Propagation

Assuming the fluid is adiabatic, homogenous, and isotropic; the viscous wave equation is

shown as following [55]:

To simplify the notation, subscipts (t and x) are used to represent the derivative of

the function respective to time and/or distance. Where v is the kinetic viscosity

coefficient, co is the acoustic wave propagation velocity in the medium. Then Equation

5.1 can be shown as following:
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Insert the above three derivatives into Equation 5.1 and eliminating the constant

and the common exponential terms,
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The time —harmonic solution of pressure becomes

peak amplitude of ej (" -13') decays. The attenuation coefficient is related with viscosity

and velocity. In normal condition, the velocity is a constant. It is necessary to consider

the effect of viscosity in the medium. Since viscosity is temperature dependent, it is

important to investigate the effect of temperature in acoustic wave traveling.

3.4.2 Theoretical Calculation

One can perform theoretical analysis on traveling waves in oil to calculate what one

would expect for the temperature dependence of sound transport. The amplitude of a

traveling sound wave in oil is:



In the experiments, the transformer oil (76 Lubricants Company) is used. The

viscosity of the oil is shown in Table 5.2 [54].

Table 3.2 Viscosity of Transformer Oil at Different Temperatures.

Since viscosity is temperature dependent, the relationship between viscosity and

temperature can be expressed by Equation 5.12 [55]:
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In Equation 3.12, a and b are constants determined from 2 temperature-viscosity

points, which are commonly 40 °C and 100 °C. von (unit cSt) is kinetic viscosity at 0°C.

One cSt is 10-6 m2/s. According to Table 3.2, a is 0.097965 and b 0.0014588. The

relationship between temperature and viscosity for the oil is shown in Figure 3.19.

Figure 3.19 The relationship between transformer oil viscosity and temperature.

Since viscosity is temperature dependent, Equation 3.12 becomes:

The amount of energy carried by a wave is related to the amplitude of the wave.

Considering a sound wave, the amplitude of the wave is synonymous with the pressure

amplitude. A high-energy wave is characterized by a high amplitude. The energy
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transported by a wave is directly proportional to the square of the amplitude of the wave.

Since the amplitude of the wave is

The "energy" transported by a wave is proportional to the square of its amplitude:

Since the distance between the sensor and needle is fixed, x is a constant in

Equation 5.15. One can smooth the EFT plots and focus on the increased energy at higher

frequencies at higher temperatures. Figure 5.35 shows these integration results. Table

5.5 shows that the ratios increase with increased frequencies. Clearly energy is shifted

from the low to high frequencies at the higher temperature.



Figure 3.20 Frequency spectrums for theoretical normalized energy.

Table 3.3 Theoretical Normalized Energy and Ratio at 25 and 40 Degrees C.
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According to Figure 3.21, the agreement between measurement and theory is

good. But it is also noticed that the measurement ratio in the 0-50 kHz range is 1.02 and

the theoretical ratio 0.79. This is due to extraneous noise in our laboratory which the

sensor picks up along with the PD. The noise spectrum consists mainly of frequencies

below 20 kHz so that these noises play an important role in the 0-50 kHz range. In the

50-100 kHz and the 100-150 kHz range, two ratios are almost the same, although the

normalized measurement energy, because of noise is larger than the normalized

theoretical energy.

Figure 3.21 Theoretical and experimental ratios of 40 degrees C and 25 degrees C.

In the 100-400 kHz range, the experimental normalized energy is smaller than

theoretical normalized energy. This is reasonable, because there is not little environment

noise in this range. Considering most of environment noise in the 0-100 kHz range and

noise energy also included in the total energy, the normalized energy will be smaller than

normalized theoretical energy in this range.
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3.5 Conclusions

A piezoelectric sensor is used for PD detection in transformer oil. For any particular

medium, the spark sound signature is relatively constant from spark to spark, although

the attenuation increases with distance from the source. In addition we observe that while

there are 350 kHz sound wave components as expected, there are also other features,

including lower frequency components. A detailed examination of spark signatures has

not been reported in the literature, and deserves further investigation.

The observed persistence of the sound signature, beyond the length of the

electromagnetic signal, is an important and potentially useful observation. It may be

analogous to the rumble of thunder that persists significantly longer than the flash of

lightning. The dominant 350 kHz frequency component within this signal appears to

repeat for five or more cycles, thus it may provide an opportunity for PLL detection and

the accompanying marked increase in sensitivity.

Experimental results demonstrate unequivocally the successful detection of PD

spark acoustic signatures by measuring the speed of sound both in air and oil. Similar

measurements using an array of sensors will enable the use of triangulation to locate the

sound source. The experimental part describes the spectrum of PD at two different

temperatures (25 and 40 degrees C). The detected signals are analyzed by means of FFT'

and their properties are discussed. Measurement of PD energy is currently a very

important issue, which has attracted an interest both from academic and industrial

sources. Spectral analysis of energy makes it possible to broaden knowledge of

information carried by an acoustic signal. Experimental results show that acoustic energy

shifting from low frequency to high frequency with increased temperature. The



40

theoretical analysis and simulations of PD acoustic signal energy are presented at 25 and

40 degrees C and simulation results agree with experimental results. The obtained results

show the temperature of the transformer oil is one of the important factors related to PD.

The impact of oil temperature changes has been evaluated on the spark signature

spectrum. The measurement result is in agreement with theoretical expectation. This is

possibly an important advance in spark sound diagnostics in oil.

Theoretical analysis enables us to calculate relative value of sound energy. Up-to

date preferred bandwidths usually have not exceeded the frequency of 100 kHz [56] or

350 kHz [57]. It indicates the necessity to extend the measurement bandwidths with

increased temperature of transformer oil.



CHAPTER 4

THE OPTIC FIBER SENSOR DEVELOPMENT

4.1 Introduction to the Optic Fiber Sensor

Optical fiber-based sensors have been shown to be attractive devices with which to

measure a wide range of physical and chemical parameters because the sensors have a

number of inherent advantages, including small size, light weight, high sensitivity,

electrical nonconductivity, and immunity to EMI noise [58-61]. These advantages make

optical fiber sensors excellent candidates for PD detection.

Fiber optical acoustic sensors have been shown useful in many applications, such

as underwater hydrophones [62, 63], material property analysis, civil structure

nondestructive diagnosis [64, 65], vehicle detection and traffic monitoring [66], and

partial-discharge detection [67]. Early fiber optic sensors for acoustic signal detection

were based mostly on fiber optic intrinsic interferometers such as all-fiber Michelson

interferometers and Mach—Zehnder interferometers. Optically interrogated pressure

sensors have been demonstrated in various configurations using MEMS technology [68-

76]; but sensitivities of these devices are low for PD acoustic signal detection.

A diaphragm-based fiber optical Microelectromechanical System (MEMS) sensor

with high sensitivity is designed and tested for on-line detection of the acoustic waves

generated by PD inside high-voltage power transformers. In principle, the sensor is made

according to a Fabry Perot interferometer, which is placed on a micro machined

rectangular silicon membrane as a pressure sensitive element. A fiber-optic readout

scheme has been used to monitor sensor membrane deflection. Sensor design, fabrication,

characterization are described.

41
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4.2 Optic Fiber Sensor System Design

The whole optical fiber sensor system is shown in Figure 4.1. The system consists of a

sensor probe, a 1510-nm LED, a low noise optical receiver (photodiode) and single-mode

fibers linking the sensor the optical receiver. A 1510-nm optical isolator was inserted

just after the LED to reduce optical feedback to the source. The incident light is first

partially reflected at the end face of the fiber. The remainder of the light propagates

across the air gap to the inner surface of the diaphragm, where it is once again partially

reflected. The multiple reflections travel back along the same lead-in fiber and through

the same fiber coupler to the optical receiver.

Figure 4.1 Operation principle of the fiber optical sensor.

4.3 Optic Fiber Sensor Design

The sensor described in this thesis has just one fiber. It consists of a Fabry Perot

interferometer integrated into a single mode optical fiber by building dielectric mirrors

into fibers. This interferometer converts the phase changes into variations of the reflected

and transmitted optical power. The optical sensor is illustrated schematically in Figure

4.2.



Figure 4.2 Schematic of sensor head.

The depth of square cavity is 50 gm. A center hole in glass substrate is used to

place a ferruled fiber for Fabry-Perot interrogation. The cavity between the fiber end and

glass surface is 105 gm wide and 40 gm deep. The width of the cavity is smaller than the

fiber diameter so that the cavity serves as a stop for the fiber and sets the baseline depth

of the fiber. The final chip size is about 5x5 mm. The total chip thickness is about 550

gm.

Suppose that a parallel beam of light of unit amplitude and of wavelength A falls

on a plane, parallel-sided, homogeneous, isotropic film of thickness d and refractive ni

supported on a substrate of index n2 as shown in Figure 4.5. The index of the first

medium is no and angle of incidence in this medium. The values of r and t for a given
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boundary depend on the direction of propagation of light across the boundary. The

coefficients for propagation from no to ni are given by ri and ti. The corresponding

'coefficients for propagation from ni to no will be given by rand

Figure 4.3 Multiple reflections of light by a single film.

The amplitudes of the successive beams reflected into medium no are thus given

Writing 01 , for the change in phase of the beam on

traversing the film,



The reflected amplitude is thus given by

45

The reflectance (defined as ratio of reflected energy to the incident energy) is

given by
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The output of the optical sensor can be expressed by Equation 4.6. In the sensor,

the bean is in normal incidence ( 4o = 0) and media include glass, air and silicon as

shown in Figure 4.4. Since

Figure 4.4 Reflection media in the fiber optic sensor.

For a fiber optic sensor, it is useful to plot the detected intensity versus gap length

d, as shown in Figure 4.5. The fringe contrast drops as the gap length increase. According

to the figure, one period of fringe variation corresponds to an air-gap change of one half

of the optical wavelength, which in our case is 0.655 um. In principle, continuous

tracking of phase changes in the interference fringes can yield information about air-gap
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changes in the sensor element. The acoustic signal generated by PD causes deflection of

the diaphragm and modulates the air-gap length. The sensor therefore yields outputs that

correspond to the applied acoustic signals.

Figure 4.5 Interference fringes of the optic fiber sensor.

4.4 Optic Fiber Sensor Membrane Design

Over the last decade, silicon pressure sensors have gained in popularity. In most cases,

these MEMS devices are manufactured from rectangular or circular diaphragms whose

thickness is of the order of several microns [78-80]. The development of high-

performance diaphragm structure is of critical importance in the successful realization of

the devices. In particular, diaphragms capable of linear deflection are needed and are

essential in many pressure sensors.
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The load-deflection method is a well-known method for the measurement of

elastic properties of thin films. In this technique, the deflection of a suspended film is

measured as a function of applied pressure. The load-deflection relation of a flat square

diaphragm is given by [81]:

Where

P applied pressure (Pascal),

y the center deflection of the diaphragm

a the half side length,

E young's modulus,

h the diaphragm thickness,

v Poisson's ratio of the diaphragm material.

The deflection range is divided into two regions: a small deflection region and

(deflection less than 25% of the diaphragm thickness) described by the linear term in

Equation 4.7, and a large deflection region described by the non-linear, cubic term in

Equation 4.7. As a general rule, the deflection of the diaphragm at the center must be no

greater than the diaphragm thickness; and, for linearity in the order of 0.5%, should be

limited to one quarter the diaphragm thickness.
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The linear part can be expressed by

In order to increase the sensitivity, the diaphragm thickness should be thin to

maximize the load-deflection responses. On the other hand, thin diaphragm under high

pressure may result in large deflection and nonlinear effects that are not desirable. It is

therefore important to characterize the relationship between diaphragm thickness,

deflection, and sensitivity, in order to establish the design guidelines for micro pressure

sensors.

For a diaphragm clamped on its edges, from a mathematical point of view, the

diaphragm can be viewed as a thin plate and the exact solution for the differential

equation that describes its oscillation is given in [82]. Assuming that the deflection of the

diaphragm is small compared to its thickness. The Rayleigh-Ritz method [85] was used to

find the frequency of the lowest mode of vibration. The relationship for the fundamental

frequency for a square plate having density pd and oscillating in a medium (pm) is found

to be:



Where g is acceleration of gravity, /3 and D are given by:
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Figure 4.6 shows the relationships among the side length, thickness, and natural

frequency of the diaphragm. With a given side length, the resonant frequency increases

with thickness. With a given thickness of diaphragm, the frequency decreases with side

length. Figure 4.6 also shows us that thickness has more effect on resonant frequency

than side length.

Figure 4.6 The relationships among the side length, thickness, and natural frequency
with a given pressure (100 Pa).



When a pressure (100 Pa) is applied to the diaphragm, the relationships among

natural frequency, deflection and thickness of diaphragm are shown in Figure 4.7. The

figure shows that in order to get large natural frequency and large deflection at the given

pressure, the thickness should be thin.



Figure 4.7 The relationships among the natural frequency, deflection and thickness of
diaphragm with a given pressure (100 Pa).

According to Equation 4.8,
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With given value of E and v, Equation 4.11 becomes
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When a pressure (100 Pa) is applied to the diaphragm, the relationship among the

natural frequency, deflection and diameter of diaphragm is shown in Figure 4.10. Figure

4.10 tells us that in order to get large natural frequency and large deflection of diaphragm

at given load, the side length need to be small.

Figure 4.8 The relationship among the natural frequency, deflection and side length of
diaphragm with a given pressure (100 Pa).

The thickness and side length of the sensor membrane are selected depending

upon the pressure range within which the device is required to operate. Due to the high

sensitivity requirement for PD acoustic detection, a silicon membrane with a thickness of

25 Um and a side length of 2 mm is selected. ANSYS simulation shows that the natural

frequency of the membrane is around 91 kHz as show in Figure 4.9.
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Figure 4.9 ANSYS simulation of the silicon membrane.

4.5 Optic Fiber Senor Fabrication

4.5.1 Introduction to Anodic Bonding [84-87]

A metal can be bonded to glass at relatively low temperatures using an applied voltage.

The same principle can be used to bond glass to silicon. The glass is normally a sodium

glass like Corning 7740. When an external electric field is applied at elevated

temperature the positive ions in the glass move and create a depletion layer in the glass

near the silicon surface. The voltage drop over this depletion layer creates a large electric

field that pulls the wafers together. The bonding is carried out at 180-500C near the
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annealing point but well below the melting point of the glass. The bonding is formed by

silicon bonds to oxygen in the glass. The voltage applied is in the range 350-1000 volts.

Anodic bonding is less sensitive to small particles or roughness of the surface,

careful cleaning of the wafers. The glass used in the process must be slightly conducting

at the chosen bonding temperature. The bonding process can be monitored by observing

the current which starts with a peak when the voltage is applied and then decreases. The

bond will normally be good when the current has reached about 10-50% of its initial

value. Normal bonding time is about 5-10 minutes but up to half an hour can also be

needed.

4.5.2 Anodic Bonding of Silicon and Glass Wafer

During this thesis work, an automated bonding system from Electronic Vision Inc. is

used. The EV5O1S is capable of performing direct, anodic and thermal compression

bonding, under vacuum or in a supplied gas, of wafers 4, 5 and 6 inches in diameter in a

repeatable fashion. As much as 2000 volts can be applied for anodic bonding, 2500

Newton pressure for thermal/compression bonding, vacuum as low as 10-6 Ton - and the

wafers can be individually heated up to 550°C.

If at lest one material is insulating, an applied voltage across the wafer stack may

help in bonding. The mechanics are not fully known, even for silicon to glass, but the

process generally involves elevated temperature (500-550°C) and high voltage (400-1000

V). Because of the elevated temperatures, material with similar thermal coefficients of

expansion (TCE) should be used to avoid high interface stress, which could lead to

cracking or debonding, upon cooling down.
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With its closely matching TCE, Pyrex code 7740 is commonly bonded to silicon.

Pyrex consists of about 80% Si0 2 , 13% B203, 15% Na2), and 2.55% Fe203, Al203. The

large voltage applied creates an electrostatic field in the gap between wafers. At the

elevated temperatures commonly used, sodium ions are mobile and tend to be drawn

away from the interface if the silicon wafer is biased positive with respect to the glass.

This results in a space charge region at the interface that promotes attraction to the silicon

surface.

The bonding chemistry is understood less well. The high electrical voltage is

assumed to cause oxygen ions to leave the glass and react with silicon to form an

observed oxide at the interface. The assumption is strengthened by the fact that anodic

bonding of silicon and Pyrex is not completely reversible. If the bias is made such that

the glass is now positive with respect to the silicon, the oxide layer does not completely

dissociate and the wafers remain bonded. Because of the high electric field and resulting

space charge region that promotes bonding, surface roughness and flatness is less critical

than for direct wafer bonding.

The pressure sensor head, consisting of the thin silicon membrane and the glass

substrate (as shown in Figure 4.10) with cavity and fiber through hole, is fabricated in

one clean room step: anodic bonding. After anodic bonding, the silicon wafer is bonded

to glass wafer (as shown in Figure 4.11). The thickness of the thin silicon wafer is

selected depending upon the pressure range within which the device is required to operate.

The wafer is diced to make the optical sensor head. A difference in pressure between the

exposed and internal surfaces of the membrane causes a deflection. Figure 4.12 shows the

optical sensor structure and dimensions. When the sensor was inserted inside the
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transformer, static oil pressure can be as high as 8 psi which will make the diaphragm

work in the nonlinear region. In our sensor, an additional hole is drilled through the glass

wafer into the cavity. Pressure measurements are then related to the surrounding pressure.

Figure 4.10 The glass wafer.

Figure 4.11 Silicon wafer bonded to glass wafer.



Figure 4.12 Sensor structure and dimensions.
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4.5.3 Evaporation of Gold to the Silicon Wafer

Figure 4.13 shows relationship between reflectance and sensor output (Given the

reflectance between fiber end and air is 5.5%, cavity length of 90 gm, and light source

wavelength of 1.51 gm). The sensor output increases when the interface reflectance

increases. The reflectance of the air/silicon interface at 1510 nm is about 50% at normal

incidence, although higher than that of the air and glass of 4%, a layer of gold is

evaporated (about 200 angstroms) to the silicon membrane to increase the reflectance.

Figure 4.13 Relationship between reflectance and output intensity.
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4.5.4 Sensor Packaging

A stainless steel housing for the sensor has been designed and fabricated. The housing is

illustrated in the engineering drawings in Appedix A, and a finished system is shown in

Figure 4.14. The sensor is placed at the end of a tube approcaimately 7 inch long that

can be attached to a drain plug by a compression fitting connection. The end of the

housing opposite the sensor has a stainless steel tee fitting for passing the optical fiber

and allowing control of the sensor backside pressure and environment, as described

above.

Figure 4.14 A packaged optical sensor.
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4.5.5 Sensor System Development

Figure 4.15 shows the schematic of the whole optic fiber sensor system. The

optoelectronic signal-processing unit consists of three main parts: light source, fiber

connection (FC), and electronic pre-amplifiers. In the system, a laser light source is used

as the light source. Photodiode module (model T-11-155-P-SFC) is used to convert the

optical signal to the electrical signal.

Figure 4.15 Sensor operation system.
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4.6 Sensor Characterization

Characterization of the optical sensor includes three parts: sensitivity, dynamic response,

and resolution.

4.6.1 Sensitivity

The sensitivity experiment setup is shown in Figure 4.16. A Motorola sensor is used as a

reference sensor that is used for calibration of the applied pressure. The sensor has linear

output (1 V to 5 V) when the applied pressure is from 0 to 4 kPa. Since the sensor system

noise is 100 mV, the smallest pressure that the Motorola sensor can measure is 100 Pa.

The fiber optical and a Motorola sensor (MPXV5004GC6U) are connected to the same

pressure source using a T-connector. Tube fittings make non-leakage connections

between the T-connector and the plastic pipe and super glue is used in the connection

between sensors and plastic pipes. The outputs of the sensors are sent to a data logger,

then to the computer for analysis.
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Figure 4.16 Sensitivity experimental setup.

The valve 1, initially closed is first opened slightly, and then the valve 2 is used to

adjust the pressure until pressure regulator 2 reads around 0.6 psi (around 4 kPa). Also

the opening of the T-connector 1 is closed so that air pressure can flow to the two sensors;

moreover when the opening is opened, the air pressure will be released from T-connector

1 and the pressure will be dropped from 4 kPa to 0 kPa. Figure 4.17 shows the outputs of
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two sensors when pressure drops from around 4 kPa to 0 kPa. According to the figure,

when pressure drops to 0 kPa, the output of the Motorola sensor decreases from 5 V to 1

V due to linearity and the optical sensor has 7.25 periods. But the nonlinear output of

optical sensor is found in the first 2 fringes. In order to accurately obtain the pressure

applied in the optical sensor and avoid nonlinearity, only 2.7 fringes are chosen for

calculation. When the output of the Motorola sensor changes from 1.7 V to 1 V (pressure

change about 700 Pa), the optical sensor results in about 2.7 fringes (Figure 4.17). 0ne

fringe represents 259 Pa. This means the sensor will give a period of a fringe when a

pressure of 259 Pa is applied to the sensor. Since the pressure change is not linear with

the time (see output of the Motorola sensor), fringe ringing have different periods. And

since each period of a fringe indicates that gap length has changed by half of the laser

wavelength, 2.7 fringes indicates that the membrae deflection is 1.7685 pm. Considering

the membrane thickness 25 gm and small deflection (deflection less than 25% of the

membrane thickness), 1.7685 Inn deflection of the membrane is in the linear range to the

applied pressure. According to the membrane thickness (25 gm) and 259 Pa giving a

period of a fringe, the sensor linear measurement range is 0-2490 Pa by calculation.
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Figure 4.17 0utputs of Motorola and optical fiber sensor with the same pressure applied.

4.6.2 Frequency Response

In the experiment, a sound generator is used to produce periodic 5, 10 and 21 kHz

acoustic signals which are connected to a computer speaker in air. The optical sensor is

used to detect signals from the function generator and the partial discharge acoustic

signals which are generated in our small tank filled with transformer oil. Then the

detected signals are sent to a digital oscilloscope to demonstration and data storage.

Experimental results are shown in Figures 4.18-20. Figure 4.18 shows the optical

sensor output when the function generator is producing a 5 kHz signal. Although there

are some system noises along with the signals, the sensor can detect the signals of 5 kHz.

Figure 4.19 shows the optical sensor output when the function generator sends a 10 kHz

signal to the sensor.



Figure 4.18 Sensor output of 5 kHz acoustic signal.
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Figure 4.19 Sensor output of 10 kHz acoustic signal.



Figure 4.35 shows the optical sensor output when the function generator sends a

21 kHz signal to the sensor. According to Figure 4.18 -35, the sensor can easily detect the

signals from the function generator and also show almost the same frequency as the

function generator applied.

In the other experiment, the optical sensor is used to measure the acoustic signal

with a single frequency (1kHz, 2kHz, up to 100 kHz) generated by a function generator.

The sensor output is sent to a dynamic signal analyzer (Standford research system model

SR785) for spectrum measurements. For these measurements, the dynamic sigani

analyzer (the input impendence of 1 MSG) is used to select the desired frequency to make

the required spectrum (power versus frequency). The resulting measurement scans show

received power in the desired frequency, and in decibels relative to one mW (dBm).

Figure 4.21 shows the experiment setup for measuring the frequency response of the

optical fiber sensor. The optical fiber sensor is close to a speaker and the speaker is
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connected to the frequency generator which supplies the acoustic source. The output of

the sensor was sent to a spectrum analyzer for analysis.

Figure 4.22 shows the sensor response to acoustic signals keeping the same

amplitude and increasing the frequency to 100 kHz. For this measurement, the

membrane of the optical sensor has a resonant frequency of about 90 kHz. The frequency

response indicates a fairly broad resonance of about 90 kHz, with small structure peaks

below this frequency. It shows that the sensor has a dynamic repoonse that is close to the

expected value.

Figure 4.21 Sensor frequency response experiment setup.
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Figure 4.22 Frequency Response of the optical fiber sensor.

4.6.3 Resolution

The smallest pressure change a sensor can measure is determined by the signal-to-noise

ratio of the sensor. According to Figure 4.23, the output of the optical fiber sensor noise

is around 100 mV. The full output of the sensor is from -5 V to 5 V. Since 1 fringe in the

optical fiber output represents 259 Pa, the smallest pressure of the sensor that can be

resolved will be 1.6 Pa.



Figure 4.23 System noise of the optic fiber sensor and Motorola sensor.

4.7 Conclusions

The optical fiber sensor has been designed based on the Fabry Perot principle. The

development of a high-performance diaphragm structure is of critical importance in the

successful realization of the optical sensor. The relationships among silicon membrane

thickness, resonant frequency and side length are investigated and simulated. According

to the investigation, the silicon membrane was constructed with a thickness of 25 gm, a

side length of 2 mm and a resonant frequency of about 90 kHz.

A simple micromachining process (anodic bonding) compatible with MIEMS has

been developed for fabricating the optical fiber sensor. Evaporation of gold to the silicon

surface of the sensor was done to increase the reflectance of the air/silicon interface. An

optoelectronic signal-processing unit has been designed and fabricated so as to be

compatible with the signals detected by the optic fiber sensor.
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The optical sensor frequency, sensitivity, and resolution have been characterized.

The characterizations show that the sensor has a dynamic response that is close to the

expected value of 90 kHz, also sensitivity tests shows that about 259 Pa applied pressure

will give a membrane deflection of 655 nm and the pressure measurement resolution of

the optical sensor is determined to be about 1.6 Pa.
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CHAPTER 5

THE OPTIC FIBER SENSOR APPLICATION IN PD DETECTION

5.1 Introduction

PD occurring under oil produces a pressure wave that is transmitted throughout the

transformer via the oil medium [88]. 0ne can achieve acoustic PD detection by mounting

piezoelectric acoustic sensors externally on the walls of a power transformer. An

externally mounted piezoelectric acoustic sensor offers the advantages of easy installation

and replacement. However, a piezoelectric sensor may suffer from degeneration of the

signal-to-noise ratio caused by environmental noises such as EMI. Another disadvantage

associated with an externally mounted piezoelectric sensor is that the multiple paths of

the acoustic wave transmission make locating the exact positions of PD difficult. It is

thus desirable to have sensors that can function reliably inside a transformer to detect

clean PD-induced acoustic signals. For the sake of safety and easy installation these

sensors have to be chemically inert, electrically nonconducting, passive, and small in size

making optical fiber sensors excellent candidates for PD acoustic detection [89, 90]. This

chapter describes the ultra sensitive optical sensor application in PD detection.

5.2 Comparisons of Piezoelectric and Optic Fiber Sensors in PD Detection

An experimental system is designed to evaluate the optical sensor performance in PD

acoustic detection. The standard acoustic methods used to detect partial discharge employ

piezoelectric sensors externally. As shown in Figure 5.1, the fiber optical sensor is

installed in transformer oil at one end of the tank, facing a piezoelectric acoustic sensor
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(Harisonic G-0504 type) at the other end of the tank. The piezoelectric sensor has an

acoustic frequency response up to 5 MHz. The PD generation system (also called the PD

source) is inside the tank. This arrangement is chosen because it represents many

practical PD test situations in which piezoelectric sensors are attached to the sidewall of a

transformer whereas fiber optical sensors can be inserted into the transformer tank. A

two channel digital oscilloscope (HP Model 54616C) is used to display and store the

acoustic signals detected by the two sensors.

Figure 5.1 Experimental setup for PD signal detection.

The experimental results for the two sensors are shown in Figure 5.2 when they

are placed at the same distance (0.4 m) from the PD source. The piezoelectric sensor

almost shows no response to the acoustic signals even though the output unit has a

sensitivity of 50 mV full scale, as compared to the full scale of sensitivity of 1 V for the

optical sensor.
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Figure 5.2 PD detection at same distance between discharge source and sensors.

Figure 5.2 shows that the electrical signal which initiates the acoustic signal is

picked up by the optical and piezoelectric sensors as unwanted noise almost

instantaneously in the experiment. In addition, the sensors each picks up the desired

acoustic signal at the same time, although later than the electrical signal. Because of its

steel housing, the optical sensor cannot be completely unaffected by the electrical signal.

This prototype model using the steel housing can always be changed to some material

that has no influence on electrical signals.

Since the piezoelectric sensor can't detect the signals when it is 0.4 m from the

PD source, the piezoelectric sensor is mounted inside the tank and much closer to the

source while the optical fiber sensor is still 0.4 m from the source. The measurement

results are shown in Figure 5.5 (output voltage unit for the optical sensor is 2 v and for

the piezoelectric sensor 5 my). Due to the piezoelectric sensor being much closer to the

PD source than the optical sensor, and the constant sound velocity in the transformer oil

(around 1440 m/s), the acoustic signal arrives at the piezoelectric sensor earlier than the

optical sensor. But the detected signal is still very weak compared to the optical sensor.
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These experiments further illustrate the enhanced sensitivity and superior performance of

the optical sensor when compared to the piezoelectric for PD detection.

Figure 5.3 PD detection using piezoelectric and fiber optical sensors.

5.3 The Optic Fiber Sensor Detection of PD Signal and Surrounding Noises

When the optical sensor works in a real transformer, the sensor should be capable of

detecting not only PD signal but also of discriminating the PD signals from surrounding

noise. An experiment is designed to test the sensor's capability to pick up the PD signal

from surrounding noises.

A function generator is used to generate 5 kHz signals which are sent to a

computer speaker and the PD acoustic signal is generated by our PD generation unit. The

optical fiber sensor receives both the 5 kHz signal and the PD acoustic signal which are

then sent to the digital oscilloscope for demonstration and data storage. The experimental

result is shown in Figure 5.4. According to the figure, when the sensor is faced with two

different acoustic sources, the sensor clearly discriminates the different sources.



76

Figure 5.4 The sensor output of the PD and the 5 kHz signals from the function
generator.

5.4 Optic Fiber Sensor Application in PD Localization

PDs are pulse-like in nature and cause mechanical stress waves (acoustic emission) to

propagate within the transformer. These stress waves propagate throughout the

surrounding oil and can be detected inside the transformer. By measuring the relative

time of arrival of the acoustic wave at different locations inside the transformer, the three

dimensional location of the PD within the transformer can be determined.

5.4.1 Localization Theory

Figure 5.5 shows that the acoustic wave emitted at any given point P(x, y, z) in the

transformer is measured by four sensors. It is assumed that the optical sensor is

unaffected by the electrical signal. Then only these four sensors are needed to locate the

PD position using the time-arrive-model. Each of the sensors are at known spatial

coordinate Sm (Xlm, Alm, Zrm) where 1=1, 2, 5 and m=1, 2, 5, 4. The distance from the



four sensors are placed in different positions to pick up sound from a PD occurring in the

transformer.

Assuming the propagation time from the PD source to the acoustic sensor S1 is T,
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Where An  (n is an integer) is the propagation time from the PD site to the sensor

An , tin is the time delay between the sensor AID and A„ and von is the acoustic wave

propagation velocity in the oil. Therefore, the relationship between the PD position and

sensors is as follows:



Since every possible position of PD has a relative tin, a PD location can be

calculated in advance so as to form a position table. Therefore, when data is obtained for

the time delay tin, software can determine its position by comparing data stored in the

table, which can speed up the location process and minimize errors.

5.4.2 2-D Localization

Localization of a PD source is always the main purpose for PD detection. The

measurement setup is shown in Figure 5.6. Two optical sensors are placed in the tank at

different distances from the PD source. The distance difference (L2-Lj) between the

sensors and the source is about 6 cm. The acoustic signals measured by the sensor are

shown in Figure 5.7 and 5.8. The time for the acoustic signal to travel from the PD source

to the optical sensors is about 60 micro second (sensor 1) and about 100 micro second

(sensor 2). Since the distance between the sensors and the source is about 6 cm and

measured velocity of the signal is about 1500 m/s (6cm/40micronseond). The result

agrees with the previous result (acoustic velocity is 1440 m/s in transformer oil). These

results show that the optical sensor can measure the speed of the PD acoustic signal

accurately.
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Since the time difference between electrical noises which is the onset of PD and

the acoustic signal can be measured, the distance between the sensor and the discharge

source can be calculated which is necessary to localize the PD source.

There always are some similar signals in the measurements. An experiment is

arranged and designed to determine if the signals are echoes. Figure 5.9 shows the

experimental setup. Initial experimental result is shown in Figure 5.10. The figure also

shows that the time difference between acoustic signal and its echo is about 750 micro

second. When the PD source was moved 15 cm closer to the optical fiber sensor, the

measured signal is shown in Figure 5.11. The figure shows that the time difference

between acoustic signal and its echo is about 1600 micro second.

By moving the PD source closer to the optical fiber sensor, the traveled distance

difference between the echo and signal changed 50 cm. The time difference between the

echo and signal changed by about 850 micro second. The speed of the acoustic signal is

552.9 m/s (50cm/850 micro second) which is the sound speed in air. This means that the
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similar signal is indeed an echo. The echo is generated by the wall's reflection of the

original acoustic signal. Details of this effect are illustrated in Figure 5.12.



5.4.3 3-D Localization with Sensors Close to the Transformer Wall

The oil-filled transformer used for this experiment is shown in Figure 5.15. The

transformer has a diameter of 80 cm and height of 1.2 m. Detail explanation of

experimental setup is shown in Figure 5.14. Since the sensor can supply information of

PD electrical and acoustic signals, only three sensors are needed for PD localization. The

optical sensors are in three positions at the same height level of 5 cm below the
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transformer oil surface. This setup makes sure that there is the same static pressure

applied in all of the sensors, each of which is contacting the transformer wall. The PD

source is in the bottom of the transformer. The detected signals at three different

positions are shown in Figure 5.15 (1-5). According to the time difference (between the

electrical signal and acoustic signal and the known distances (between the sensor and

partial discharge source), the acoustic propagation velocity can be calculated. If the

velocity is close to acoustic propagation speed in the transformer oil which is 1470 m/s,

Then the PD source can be localized. According to the calculations, the velocity is

significantly different from 1470m/s. The velocity at three positions is 4170 m/s, 4150

m/s, and 4540 m/s.

The large difference is due to the fact that the PD acoustic signals are transmitted

through not only the transformer oil but also the transformer wall which is made of steel.

The acoustic speed (about 5000 m/s) in steel is much faster than that in the transformer

oil. The detected velocity of about 4250 m/s is smaller than 5000 m/s and larger than

1470 m/s. It shows that the acoustic signals are partly transmitted in the oil and partly in

the transformer wall before they arrive at the sensors.
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Figure 5.14 Localization setup with the sensor close to the transformer wall.
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5.4.4 3-D Localization with Sensors in the Center of the Transformer

In the previous experimental setup, the sensor is close to the transformer wall which

allows the acoustic signals to transmit in both the transformer oil and transformer wall. In

this experiment, the optical sensors are placed near the center of the transformer. Thus the

sensors don't touch the transformer wall. In order to make sure there is a same static
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pressure applied in the sensors, the optical sensors are in three positions at the same

height level of 5 cm below the transformer oil surface. The experimental setup is shown

in Figure 5.16. Figure 5.17 shows the sensor outputs in three different positions inside the

transformer.

Figure 5.16 Localization setup with the sensor in the center of the transformer.



Figure 5.17 Experimental results in three positions.
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When using the velocity of 1470 m/s in the calculations, the calculation results

tell us the partial discharge source is located in (-0.24, 6.9, 50.5). The actual position in

the experiment is (0, 7.5, 50). The experimental result is close to the actual position

which confirms that the acoustic signals travel only through the transformer oil.

5.4.5 Discussions

Because PD localization is a very important part of PD detection, the localization

experiments are conducted in a small tank and a real transformer. When the optical

sensors are relatively far from the transformer wall, the detected acoustic signals are

mainly transmitted through the transformer oil before they are detected by the optical

sensors. The transmission velocity is the acoustic velocity in the transformer oil and it is

easy to localize the PD source.

When the sensor is touching or close to the transformer wall, the detected acoustic

signals are transmitted through both the transformer oil and wall. This inconsistency

yields erroneous results which makes it very difficult to localize the PD source.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Partial discharge (PD) detection and localization in high voltage transformers is an

essential diagnostic tool for monitoring the condition of electrical insulators within the

transformer. The insulation breaks down over time due to mechanical and electrical

stresses and if the insulation damage becomes severe, the device could suffer a

catastrophic failure that not only causes an unscheduled service outage, but also causes

damage to surrounding equipment and threatens the safety of onsite personnel. Partial

discharges are one symptom of insulation breakdown because the developing faults in the

insulation cause a local build up of electrical charge, which is then dissipated in the form

of an electrical and mechanical pulse of energy. In addition, PDs make insulation damage

worse because the event adds more electrical and mechanical stress to the developing

flaw. Therefore, accurate detection and positioning is required to maintain these devices

and limit the amount of diagnostic and repair time required.

The acoustic wave induced by PD can be measured and used for monitoring,

diagnosing, and locating potential failures in power transformers. 0ptical fiber-based

sensors have been shown to be attractive devices for PD detection because of a number of

inherent advantages, including small size, high sensitivity, electrical nonconductivity, and

immunity to EMI.

The thesis documents the results of a theoretical analysis of PD acoustic signal in

transformer oil at different temperatures and compares the results to actual experiments in
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the laboratory. The experimental results show that the dominant frequency components in

the energy of the PD pulse shift from low frequency to high frequency at increased

temperature. A theoretical analysis is shown to be consistent with the experimental

results.

The thesis details the development of a fiber optic acoustic sensor system for PD

detecting inside the transformer. In principle, the sensor is made according to the

principle of a Fabry Perot interferometer. A simple micromachining process compatible

with MEMS (Microelectromechanical system) has been developed for fabricating the

sensor. A fiber-optic readout scheme has been used to monitor sensor diaphragm

deflection. Design, fabrication and characterization are described in the thesis. The

resulting sensor has a resolution of 1.6 Pa and a resonant frequency of about 90 kHz.

The sensor used in PD acoustic detection is immersed in oil in a real transformer.

The experimental results show that the sensor not only detects the PD signal but also

discriminates against the surrounding noises. When the PD localization experiments are

conducted in the real transformer and the sensor is not touching or close to the

transformer wall, it is easy to localize the partial discharge source. When the sensor is

touching or close to the transformer wall, it is very difficult to localize the PD source.

6.2 Future Work

The ultimate goal of this project is to design and implement a PD detection and location

system in a commercial power environment. The work presented in this thesis represents

the preliminary studies necessary to achieve that goal and demonstrates the feasibility of

the approach. First and foremost is the further investigation of the PD phenomenon itself.
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It is very important to have the exact, accurate and complete characteristics of acoustic

PD pulses including the frequency content and pulse duration. It will also be very helpful

to optimize sensor characteristics for detecting the phenomenon.

The second area of future research is an investigation of the effect of obstructions

on the propagation of the acoustic waves within the transformer tank. Because of the

inhomogeneous nature of the tank, it is important to understand how signals are

attenuated and diffracted as they pass through the transformer oil and the transformer

wall in the HY transformer. Results of a study of this kind could be used to determine

sensor placement within the tank, an efficient sensor layout could be designed to offer the

largest coverage of the HY transformer interior with the least number of sensors used to

localize the PD source.

The final area of future study is field testing the whole system in a real world HY

working transformer. The true accuracy of the system as well as required improvements

and optimization can be determined by operating the system under real conditions. The

data from such tests would then allow a commercial company to take on the manufacture

and installation of this system in HV transformers.



APPENDIX A

SENSOR HOUSING DIMENSIONS

The appendix describes the dimension and structure of the optical sensor housing.
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Figure A.3 Detailed demonstration of D in Figure A.1.



APPENDIX B

SILICON WAFER BONDING TRAVELER

This appendix contains the documentation travelers that accompany anodic wafer

bonding that uses the Microelectronics Research Center cleanroom facilities at NJIT.
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